
INSTITUTO TECNOLÓGICO Y DE ESTUDIOS SUPERIORES DE
MONTERREY

CAMPUS MONTERREY

GRADUATE PROGRAMS IN INFORMATION TECHNOLOGIES
AND ELECTRONICS

DOCTOR OF PHILOSOPHY
INFORMATION TECHNOLOGIES AND COMMUNICATIONS

MAJOR IN INTELLIGENT SYSTEMS

Enabling Intelligent Organizations: An Electronic Institutions
Approach for Building Agent Oriented Information Systems

by
Armando Robles Pompa

May 2008

Enabling Intelligent Organizations: An Electronic
Institutions Approach for Building Agent Oriented

Information Systems

A Dissertation Presented by

Armando Robles Pompa

Submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy
in Information Technologies and Communications

Major: Intelligent Systems

Thesis Committee:

Francisco Cantú, ITESM Campus Monterrey
Pablo Noriega, Artificial Intelligence Research Institute, Barcelona

Mike Luck, King’s College London

Center for Intelligent Systems
Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Monterrey
May 2008

Instituto Tecnológico y de Estudios Superiores de Monterrey
Campus Monterrey

Graduate Program in
Information Technologies and Electronics

The committee members hereby recommend the dissertation presented by Armando
Robles Pompa to be accepted as a partial fulfillment of requirements to be admitted to
the Degree of Doctor of Philosophy in Information Technologies and Com-
munications, Major in Intelligent Systems.

Committee members:

Dr. Francisco Cantú
Advisor

Dr. Pablo Noriega
Advisor

Dr. Mike Luck

Dr. Graciano Dieck Assad
Director of Graduate Programs in

Information Technologies and Electronics

Abstract

In this Thesis, we describe a framework to build large information systems that sup-
port the operation of enterprises. We base our framework in the application of agent
technologies and the concept of Electronic Institutions for the design and development
of Institutional Agent Oriented Information Systems. It is intended that these systems
support the operation of large organizations.

This framework is based on an “institutional perspective” where an organization is a
group of people that use Information Technologies (IT) resources in order to better
achieve some shared objectives in an “institutional” way. With this perspective in
mind, for controlling the interaction between human activities and IT resources, we
decided: i) to use the concept of “Agent” to represent in the computational world human
participation and availability of IT resources like business processes or data bases, ii)
to use the concept of workflows to control the interaction between agents representing
either people or IT resources, and, iii) to use the concept of Electronic Institutions to
implement workflows in an institutional perspective.

In the formal world, using the electronic institution theory, we model the behavior of
the real world using its context and procedural rules, then we produce an electronic
institution. Assuming a language in first order logic with a classic semantic, the real
world interpretation for this model, is how the real world should behave in the specified
context. The electronic institution produces an automated version for this model that
is the input to the computational world. The computational world interpretation for
this model is in what order an subject to what conditions the intervening agent should
interact in the specified context. The composition of both interpretations enacts an
Intelligent Organization

We have built and deployed the framework consisting of organizational middleware and
domain agents. The organizational middleware reads performative scripts at run time
and interprets them delegating to specialized server agents access to business rules and
data bases. Those server agents, in turn, communicate with specialized user agents that
facilitate human interactions through traditional plain and grid forms.

We have demonstrated the viability of our approach using our ideas, concepts and
framework in a world class information system for management and operation of hotels.

We have shown that our framework, methodology and scalability enables the competi-
tiveness of an information technology business.

iii

Contents

Committee Declaration 1

Abstract iii

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement and Context . 3

1.3 Research Questions . 3

1.4 Solution Overview . 4

1.5 Main Contributions . 4

1.6 Thesis Overview . 5

1.7 Thesis Organization . 7

2 Background and State of the Art 8

2.1 Institutional Environment . 9

2.1.1 Organizations . 9

2.1.2 Institutions . 10

2.1.3 Intelligent Organizations . 10

2.1.4 Electronic Institutions Concepts 10

2.2 Information systems . 12

iv

2.3 Multi Agent Systems . 13

2.3.1 Agents . 13

2.3.2 Agent Oriented Information Systems 14

2.4 Service Oriented Architectures . 15

2.4.1 How services encapsulate logic . 16

2.4.2 How services relate . 16

2.4.3 How services communicate . 16

2.4.4 Principles of service orientation 17

2.5 Web Services . 18

2.5.1 Technology Standards . 18

2.6 SOA and Web Services . 19

2.7 Workflows . 19

2.7.1 Terminology . 20

2.7.2 SOA related context . 21

2.8 Related Work . 22

2.8.1 Agent-Based Business Process Management 22

2.8.2 Multiagent Systems for workflow - Interaction Oriented Program-
ming . 22

2.8.3 Inter-operation in Protocol Enactment 23

2.8.4 Representing and Reasoning About Commitments in Business
Processes . 23

2.8.5 Towards Adaptive Workflow enactment using Multiagent Systems 23

2.8.6 Coordinating multiple agents for workflow-oriented process or-
chestration . 24

2.8.7 Distributed Workflow enactment 24

2.9 Discussion about Related Work . 24

2.10 Summary . 26

3 Conceptual Model for IIS 27

3.1 Model Components . 28

3.1.1 Real Organization . 29

v

3.1.2 Computational World . 31

3.1.3 The Institutional World . 32

3.1.4 Formalizing the Conceptual Model 33

3.2 Processes Definition in IIS . 36

3.3 Identifying IIS elements . 36

3.3.1 Ontology . 37

3.3.2 Expressing Concepts . 38

3.4 Agents’ Interaction Context . 39

3.4.1 Agents . 40

3.4.2 Information Model . 41

3.4.3 Illocutions . 42

3.4.4 Communication Language . 42

3.4.5 Expression Language . 43

3.4.6 Constraint Language . 44

3.4.7 Action Language . 44

3.5 Institutional Framework . 44

3.5.1 Dialogical Framework . 45

3.5.2 Social Structure . 46

3.5.3 Scene . 46

3.5.4 Performative Structure . 47

3.5.5 Norms . 49

3.5.6 Electronic Institution for Information Systems EI2S 50

3.5.7 Institutional Agent Oriented Information System IIS 50

3.5.8 Real-Organization . 50

3.5.9 Organization Structure . 51

3.5.10 Achievement Structure . 51

3.5.11 Computational World . 51

3.6 Grounding Language . 52

3.6.1 Performative Scripts . 54

vi

3.6.2 Business Contexts . 56

3.7 Summary . 56

4 Framework for Building an IIS 58

4.1 Organization Engine’s Colony Agents . 59

4.1.1 Controller Agent . 60

4.1.2 Institutional Agent . 61

4.1.3 Messaging Agent . 61

4.1.4 Communication Agent . 62

4.2 Server Agents’s Colony . 62

4.2.1 Server Agent . 62

4.3 User Agents’ Colony . 63

4.3.1 User Agent . 63

4.3.2 Interaction Device Agent . 63

4.4 Accessing Business Rules . 65

4.5 Accessing Data Bases . 66

4.6 Framework Considerations . 67

4.6.1 Organization Engine’s considerations 68

4.6.2 Server Agents considerations . 69

4.6.3 User Agents considerations . 69

4.6.4 Interaction Devices Agents considerations 70

4.7 Messaging Infrastructure . 70

4.8 Advanced Features . 73

4.8.1 Agents Migration . 73

4.9 Summary . 73

5 Methodology 74

5.1 Example . 75

5.2 Real-organization specifications . 76

5.2.1 Establish the organizational structure 77

vii

5.2.2 Specify the procedural rules . 78

5.2.3 Define standard procedures . 78

5.2.4 Decompose each standard procedure into activities 79

5.2.5 Classify activities . 80

5.2.6 Design business process . 81

5.3 Computational world implementation . 82

5.3.1 Design Forms . 83

5.3.2 Ground Forms into the I-world 84

5.3.3 Ground Form’s commands into the I-world 85

5.3.4 Business Rules Programming . 85

5.3.5 Ground Business Rules into I-world 86

5.4 Build Model in the I-world . 86

5.4.1 Using Norms . 88

5.4.2 Discussion . 92

5.5 Intelligent Organization Enactment . 94

5.6 Summary . 96

6 Case Study 97

6.1 Hotel Domain . 97

6.1.1 Application Description . 97

6.1.2 Application’s Functionality . 97

6.1.3 Application’s Complexity . 101

6.1.4 Application’s Forms . 103

6.2 Results . 105

6.2.1 Advantages . 105

6.2.2 Areas for Improvement . 108

6.3 Summary . 108

7 Conclusions 109

7.1 Contributions . 109

viii

7.2 Future Work . 110

7.2.1 Enforcing goals to a convenient level 110

7.2.2 Organization Dynamics . 110

7.2.3 Agents’ Reputation . 111

7.2.4 Agents’ Architecture . 111

7.2.5 Grounding Language Definition Mapping Tool 111

7.2.6 Institutional MAS Development Environment 111

7.2.7 Load Balancing . 111

7.2.8 Alternative Network Routing . 112

7.3 Final Remarks . 112

Bibliography 112

A Differences between EI and EI2S 117

ix

List of Figures

1.1 Thesis roadmap . 6

2.1 Background concepts and their relationship 9

2.2 Orchestration in SOA . 21

2.3 Choreography in SOA . 21

3.1 Bridging role of the I-world . 27

3.2 Conceptual Process . 29

3.3 Model Components . 30

3.4 Architectural outline . 32

3.5 Domains’ correspondence . 33

3.6 Formal Model for an Intelligent Organization 34

3.7 Ontology’s elements . 37

3.8 Expressing concepts . 39

3.9 IIS’ elements . 40

3.10 Institutional Framework . 45

3.11 Check-in. Registering a walk-in guest . 52

3.12 EI2S coordinates domain elements interaction 55

3.13 A basic hotel “Check-in” business context and its corresponding Perfor-
mative Script . 57

4.1 Framework Overview . 59

4.2 Organization Engine Agents . 60

4.3 The Communication Agent parses xml messages sent using the required
protocol . 62

x

4.4 Business rule and database agents as a server agent’s specialization . . . 63

4.5 User Agents’ Colony . 64

4.6 User Agents interact with the real world environment through interaction
devices . 64

4.7 Accessing Business Rules . 65

4.8 Accessing Data Bases . 66

4.9 Messages’ internal representation . 72

5.1 Check-in Business Process . 82

5.2 Check-in. Registering a walk-in guest, before interaction 83

5.3 Front-desk’s Performative Structure . 87

5.4 Check-in’s Performative Structure . 88

5.5 Determine Stay Rate Scene . 89

5.6 Determine Stay Info Scene . 89

5.7 Determine Stay Rate Scene . 90

5.8 File Reservation Scene . 90

5.9 Ignore Scene . 90

5.10 Check-in. Registering a walk-in guest, completing guest’s info 91

5.11 Determine Guest General Info Scene . 92

5.12 Verify VIP Conditions Scene . 92

5.13 Guarantee Guest’s Payment Scene . 92

5.14 Provide Key Scene . 93

5.15 Login . 94

6.1 Front Desk’s Rack . 103

6.2 Check-in form . 104

xi

List of Tables

2.1 Object Oriented Programming versus Agent Oriented Programming . . . 15

3.1 Several functions in the front-desk process 31

3.2 Check-in. Registering a walk-in guest . 53

5.1 Check-in. Registering a walk-in guest . 85

6.1 Front Office functionality . 99

6.2 Points of Sale functionality . 99

6.3 Telephone and PBX systems’ control and different hardware devices . . . 100

6.4 Application Complexity . 102

xii

Chapter 1

Introduction

Current descriptions for the design, implementation, management and use of informa-
tion technology (IT) in organizations that are largely founded on notions of rationality,
science and method, are referred to as Information Systems, and their study deals with
the deployment of IT in organizations, institutions, and society at large[9]. We consider
that the term ”Information System” (IS) is the most appropriate for the kind of system
we are dealing with in this thesis, thus, we will use it to mean complex information
systems that instrument the operation of a corporation or large organization.

An intelligent organization is understood as a “knowledge-based organization, whose
business operations and internal processes are founded on knowledge competencies, and
the value of its products and services is given by the know-how, the intellectual capital,
and the technological advantage of the organization” [22]. We believe that many of the
promises and proven results of agent technologies will have a positive impact in the de-
velopment of information systems, provided a sound methodology and appropriate tools
are put in place.1 This thesis is a contribution in that direction. It defines a concep-
tual model and implements a framework for using agent-technologies in the information
systems of the so-called intelligent organizations.

We want to use electronic institutions (EI)–and software agents–to enable concrete forms
of “intelligent organizations” using what we will name Institutional Agent Oriented In-
formation Systems (IIS), where corporate knowledge is captured through the procedures
that establish the operation standards of the organization, on one hand and, on the other,
role–specific knowledge is captured in software agents that complement or implement
human tasks. While the former takes care of more stable corporate practices, the latter
serves to implement more fluid policies and infrequent or exceptional situations. We
also intend our framework to implement flexible information systems for organizations

1 There are reports of successful applications in different business domains like logistics, manufacturing
and e-commerce [29], and also as enabling technology for some IT tasks like simulation, communi-
cation, web foraging. Furthermore, although the AgentLink road map draft [24], reports the likely
application drivers for agent technology and the challenges for agent–based computing without ex-
plicit reference to corporate systems, it does mention business domains where large Information
Systems are frequent, such as telecommunications, transportation, manufacturing and health care.

1

CHAPTER 1. INTRODUCTION 2

that need to adapt to the dynamics of their business domains.

1.1 Motivation

In 1982 we founded TCA Software Solutions (TCA), as a privately owned information
systems company. It has been active in the design and development of integral–in the
sense that each IS covers functionality for the whole organization–information systems
for the Latin American market. Its main business comes from integral information
systems for vertical industries such as hotels, hospitals and retailers.

Internet technology has evolved and modern information systems are required to operate
over the internet as web-based systems. State of the art technology for developing
information systems is based on the Service Oriented Architecture (SOA) metaphor,
but current implementations for SOA don’t solve the problem of information systems
with high-intensity end-user interactions, such as our systems. The level of prescription
handled in the SOA metaphor is well suited to orchestrate business processes with
almost low-intensity end-user interaction. This is a mayor drawback for us, as our
systems requires high-intensity end-user interaction.

To address this drawback, over the last years, we implemented our Hotel Information
System (HIS) as a consolidated set of business rules available to a middleware workflow
engine that reads workflow definitions and delegates concrete tasks and procedures to
participating agents. This agentified HIS whose architecture was reported in [31], is now
already operational in more than 80 hotels. It is also the boot-strapping version of an
agent-pervasive HIS we are working on in this research project.

Along the way, the autonomy characteristic of agents in agent technologies, provided us
with a clear way for representing business rules interacting in complex environments,
then, it became evident that agent technologies were a core element in that effort.

We decided to use the organizational metaphor because the operational environment
is best understood in terms of participants, roles, tasks and resources, while business
rules and information are conceived as a collection of modules and data structures rep-
resented by agents. We focused our approach on providing agents’ governance through
a coordination artifact guided by high level specifications of how the organization is
supposed to function. Then, we decided to use the concept of Electronic Institutions
(EI), that makes explicit the institutional aspects of the organization and makes them
operational through agents that mediate organizational interactions that constitute the
IS.

By relying on EI and agent technologies, we have autonomy and governance, that allow
us to address, separately, interaction or procedural conventions, declarative or decisional
conventions, and the actual operation of the IT components of the IS.

As the initial motivation could suggest, our goal is to develop IIS that support the
so-called intelligent organizations with their inherent focus on knowledge management

CHAPTER 1. INTRODUCTION 3

and their need to adapt to a dynamic business environment. Crudely put, with this
approach we mean to enable intelligent organizations with agent technologies by build-
ing IS that capture corporate knowledge in an effective manner in order to support the
work of people and agents that make use of IT resources in a distributed and dynamic
environment. We intend to capture the established procedures and practices that orga-
nize IS’s user interactions through the performative representation of the organization
as an electronic institution.

Finally, keeping in mind that we want to develop IS for vertical industries, and that
companies in those industries have many similarities, we will take advantage of agent
technologies to deal with standard processes components, like forms and business rules,
and conventional IT resources, like databases or display devices, that would be used
across those application domains.

1.2 Problem Statement and Context

We have–at TCA–three large scale, industrial level, vertical market information systems,
namely for hotels, hospitals and retail industry, developed over the last 25 years with
client-server technology.

These three integrated information systems were developed using conventional client-
server technology, accounting for a total of over three million lines of “c” source code.
With the advent of SOA, new approaches are promoted regarding how to allocate and
how to invoke information system’s application code, giving place to a new paradigm
known as “Software as a Service” (SaaS); which consists of an IS that has separated
application code, business processes and user interfaces, giving end-users access to the re-
quired application code through the internet, accessing business processes implemented
as workflows allocated in computer servers that also contain the implementation of these
application code in form of business logic. SaaS clearly constitutes a threat to conven-
tional information systems, because it provides enterprises with flexible end-user access
and lower information systems’ implementation and maintenance costs; it also provides
software development companies with new business possibilities, renting their informa-
tion systems in a per-user basis instead of the conventional licensing fees, enabling their
access to new markets that otherwise could remain unaddressed.

We need to evolve our information systems for the requirements of a dynamic and
complex environment, where we can take advantage of technologies that are well suited
to handle those requirements.

1.3 Research Questions

• Can we define a conceptual model suitable for fulfilling our requirements?

CHAPTER 1. INTRODUCTION 4

• Can we formally specify the required theory in order to be able to implement the
conceptual model?

• Is the agent metaphor well suited to build such information systems?

• Is the electronic institution’s metaphor a convenient approach to regulate agents’
interactions in the intended environment?

• Supposing that the electronic institutions’ metaphor is convenient, are we able
to extend the electronic institutions’ theory for considering computational domain
elements, able to satisfy the demands imposed by an intensive end-user interaction
environment?; will a framework built around this theory, perform as expected in
an industrial scale real setting?

1.4 Solution Overview

Our proposal is based in the organizational metaphor with an “institutional perspective”
where an organization is thought of as a group of people that use all types of resources–
including IT–in order to better achieve some shared objectives, but they do it in an
“institutional” way when they follow some conventions that are intended to facilitate the
articulation of their activity. Thus, we assume that if an IS is to support the operation
of an intelligent organization, it should incorporate the conventions that govern the
organization.

We use the notion of an electronic institution to implement that institutional perspective
because it provides a convenient way of establishing a link between the conventions that
say how an organization should work, and the IS that support the actual operation. It
also provides a unifying metaphor that can be used from the design and specification
stages, all the way to the testing and updating of a deployed IS. Furthermore the EI
approach favors a clear separation of standard procedures and discretional behavior.
Last, it provides a way of bringing agents effectively into the top level specification layer
of the IS, as well as in the bottom operation layer of the system’s components.

1.5 Main Contributions

We intend to provide several contributions to the information technology business. We
present here those that we consider most important:

• Theoretical extension/modification to the concept of electronic institutions to pro-
vide a first approach for a less computationally loaded–lighter–electronic institu-
tion, that could be suitable–and certainly it will, but it is beyond the scope of this
thesis– for use in a “peer to peer” environment.

CHAPTER 1. INTRODUCTION 5

• A conceptual model for IIS based on multi agent system’s technology that provides
information system’s components autonomy, and also provides governance using
the concepts of electronic institutions.

• A formal model for IIS. We will develop a theory for grounding the conceptual
model into an implementable framework, giving formal detail to all required com-
putational domain’s elements.

• An IIS’s framework, that will enable available information technologies resources,
such as data bases, business rule repositories, data mining tools and automated
decision making devices with multi agent system’s technology in a web-based en-
vironment.

• Methodology to implement an agent based IS using the organizational metaphor.

• Knowledge Economy: We will demonstrate a case study at the industrial level,
scaling up the proposed framework, applying it for deploying an agent based IS in a
real setting. This case study will constitute a proof of concept for the consequence
of taking seriously the autonomy attribute provided by the agent’s metaphor and
the governance attribute provided by the electronic institution’s concept.

1.6 Thesis Overview

In this chapter, we explain our research motivations, what is the problem we are address-
ing to, and provide a solution overview, then we establish our intended contributions to
the information technology business.

In Figure 1.1 we present an overview for this thesis, indicating how chapters are related
with each other. We also include fundamental concepts that help to understand work
presented in each chapter. As we can see in the figure, chapter 2 provides research’s
perspective and scope; we benefit from the work already done by people in this field; in
several cases, we studied their work and took lessons learned from their approach and
ideas to solve similar or related problems. Workflow concepts and how they are handled
with current technologies are very important to our research, because they automates
business process, that are our main concern. Then workflows provide context to our
conceptual model. Enterprises operating in real world settings requires business process
implemented according to procedural rules in given contexts. Thus, real world provides
procedural rules and context to our conceptual model. Computational world is the per-
formance arena, it is the enacting domain and enables computational domain elements
interaction. In this world, agents’ technology is fundamental, as it provides element’s
autonomy to the conceptual model, and also provides agents for enabling domain el-
ements’ interaction. As we have agents interacting in the computational domain, we
need governance, that is provided by the electronic institution’s concept. Thus we have
all required elements to develop chapter 3.

CHAPTER 1. INTRODUCTION 6

Chapter 3

Conceptual

Model

is the

basis

Chapter 3

Theory

Chapter 4

Framework

Chapter 6

Case Study

MAS

Technology

provides

autonomy

provides

governance

Electronic

Institution's

Concept and Theory

Workflows
 and

SOA

Business

Processes

automates
provide

key concepts

requires

Chapter 2

State of

the art

provides

perspective

and scope

Real

World

Computational

World

provides

context and

procedural

rules

is used

to realize

is the

enacting

domain

provides

agents

enables

domain

elements

interaction

is used to

implement
 Chapter 7

Contributions

is a proof of

concept for
Chapter 5

Methodology

requires

Figure 1.1: Thesis roadmap

In chapter 3, we present a conceptual model including theory for building large informa-
tion systems based on agent technologies and the concept of electronic institutions. We
use the organizational metaphor to describe agent relations in an agent-based IS. This
is a starting point to describe what we name IIS. We separate real world, computational
world and institutional world elements, defining the required concepts and explaining
how they interact giving life to an intelligent organization. To provide institutional
governance, we define the concept of performative script, and we describe how we get it
into computational life by means of what we define as a business context. Once we have
the conceptual model, we present IIS’s theory, formally describing all required computa-
tional world elements, being able to handle institutional prescriptions to truly represent
how real world elements should behave, enacting an intelligent organization. We make
some modifications to the electronic institution’s theory to build the institutional model
within real world context, then we extend this theory to include concepts required by the
computational world in order to be able to interpret the institutional model, in a way
that modeled agent interactions coming from real world context and process definitions,
truly correspond to computational world elements interactions producing the intended
composition, enacting then an intelligent organization.

Once we have our IIS’s concepts and theory defined, in chapter 4 we describe a com-

CHAPTER 1. INTRODUCTION 7

putational framework that realizes our conceptual model, implementing the required
mechanisms to handle IIS’s theory. We explain how we implement our framework using
several specialized types of agents. Then we provide a detailed explanation and exam-
ples of how we define the required institutional prescriptions in order to provide the
framework with a coordination artifact using the IIS’s theory. We provide an expla-
nation of how the framework allows access to specific computational domain elements
through specialized agents. Finally we provide a detailed explanation of how agents
communicate in this framework.

In chapter 5, we provide an implementation methodology to build an IIS, using the
conceptual model presented in chapter 3 and the framework described in chapter 4 for
getting it all together producing the intended results. Finally, we provide an example
for an IS enactment in the context of an intelligent organization.

As a proof of concept for our contributions, in chapter 6 we implement a a large scale
agent-based hotel IS using our framework. We provide a description for the hotel IS in
terms of its functionality, separating front office, points of sale, and telephone control
systems, providing several tables summarizing system’s functionality and specifying the
domain elements required for the hotel’s operation. We also provide a summary for the
computational complexity involved in terms of computational domain elements required.
We exemplify how end-users interact with the system using forms and a graphical device
as interaction devices. We explain how interaction devices relates user information and
computational repositories through specialized agents controlled and coordinated by the
IIS’s organization engine. Finally we explain the results obtained.

As a closing point for our research, in chapter 7, we present our conclusions and we
propose several projects for future work.

1.7 Thesis Organization

This chapter provided an overview of the entire thesis, the required background, state
of the art, and related work is presented in Chapter 2; Chapter 3 presents a concep-
tual model and theory for our intended framework; Chapter 4 explains in detail the
framework built according to the conceptual model and theory; Chapter 5 presents the
required methodology to build and implement IIS; Chapter 6 explains how the method-
ology and framework was used to transform a conventional HIS into an Institutional
HIS, providing a real example of what we call IIS; and Chapter 7 presents conclusions
and future work.

Chapter 2

Background and State of the Art

In this chapter we present some background needed to better understand concepts pre-
sented in the rest of this thesis. Figure 2.1 shows background concepts and their rela-
tionship.

As we can observe in the figure, all concepts presented here are needed to later describe
a conceptual model for what we name “IIS”. We grouped concepts by themes. As a
central point, we have the IIS’s conceptual model, that is required to conceptualize a
framework to build agent based information systems.

These information systems will use agents to represent computational domain elements–
documents, information and tasks–organized according to our interpretation for Service
Oriented Architectures (SOA), that handle business processes as sets of linked com-
putational domain elements–services–accessible to end-users and also to other services
according to institutional procedural rules. Workflows automates business processes.
Web services are composed of technology standards, and they fit in the SOA paradigm,
but they also participates as processes in workflows.

Our IIS’s conceptual model is based on key concepts provided by workflows and their en-
vironment, as it will describe a framework–tools and methodology–to build agent based
information systems, and it will handle computational domain elements represented by
agents, then Multi Agent Systems theory and methodologies are required to provide
architecture and computational domain elements’ autonomy. Agents interaction will
require context and governance to do it in an institutional way.

This chapter gives an overview for each concept, and refers the reader to specialized
references to have a deeper look on each concept.

8

CHAPTER 2. BACKGROUND AND STATE OF THE ART 9

intelligent

Organizations'

conceptual Model

Organizations

and Institutions

theory

coordinate

interaction

Electronic

Institutions

Agents'

Technology

Agent oriented

programming

Agent oriented

information

systems

SOA

Workflows

Information

Systems

how services

encapsulate logic

how services

relate

how services

communicate

principles of

service

orientation

Orchestration

and

Choreography

BP execution

languages

provides

methodology

provides

theory

provides

architecture

provides

domain elements

autonomy

provides

domain

elements

governance

Web

Services

Technology

standards

composes

fit in

requires

execute

implemented by

conceptualizes

framework

to build

processes

participant in

provides

key concepts

provides

key concepts
 provides

context

 Service Oriented Architecture

 Multi Agent Systems

 Institutional

 Environment

 Web services

Workflows

 Intelligent Organization

Figure 2.1: Background concepts and their relationship

2.1 Institutional Environment

2.1.1 Organizations

One may think organizations as a group of individuals that act according to a set
of shared conventions in order to achieve goals in the best possible way. The shared
conventions establish stable procedures that reduce uncertainty about the interactions
and facilitate decision making and coordination [26, 27, 11].

CHAPTER 2. BACKGROUND AND STATE OF THE ART 10

2.1.2 Institutions

A traditional institution is a means to organize, articulate, or in some other way struc-
ture human interactions. Thus, an institution is a set of conventions that a group of
humans follow in order to accomplish some socially agreed upon objectives.

Organizations are characterized using two concepts: organizational rules and organiza-
tional structures.

• Organizational rules are constraints imposed on the component of the organiza-
tions; that is, roles and protocols.

• Organizational structures encompass two aspects: topology and control regime.

– The topology is formed of all the communication paths between member
roles.

– The control regime refers to the power relationship between the member roles
(peer-to-peer, master-slave).

We need the organizational metaphor–which implies that a MAS is seen as a set of
agents playing roles interacting to achieve societal goals– to describe the operational
environment and to operate within an organizational context to deal with the complexity
and dynamism of the interactions among the agents.

2.1.3 Intelligent Organizations

An intelligent organization is understood as a “knowledge-based organization, whose
business operations and internal processes are founded on knowledge competencies, and
the value of its products and services is given by the know-how, the intellectual capital,
and the technological advantage of the organization” [22]. An intelligent organization
typically operates around repositories of knowledge, information and data. Technologies
like data-warehouses, multi-agent systems and data mining gather the knowledge assets
and best practices within the organization and provides knowledge distribution means
for applying and using that knowledge throughout business operations [25, 21].

2.1.4 Electronic Institutions Concepts

An Electronic Institution EI, is the computational counterpart of a traditional institu-
tion. Thus, while an institution is a set of conventions that a group of humans follow in
order to accomplish some socially agreed upon objectives, an EI is a computer imple-
mentation of conventions that apply to the interactions of agents that may be human
or software agents.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 11

An EI is a coordination artifact, a computational entity that facilitates effective agent
coordination. An EI is a way of expressing conventions that agent interactions should
follow and a way to see to it that those conventions are actually followed by participating
agents. Those conventions can be thought of as constraints on the possible interactions:
intuitively, for instance, as a script for a play enacted by individuals who assume certain
roles, or more generally as a set of admissible dialogues, or more abstractly as a set of
norms–a deontic theory–to which agents are subject to [32, 33].

We adopt the concept of EI as defined in [3] and whose essential features are as follows.

1. Participants are commitment-making agents–human or software.

2. All institutional interactions are speech acts.

3. All admissible institutional interactions have the intended effects.

4. An EI is specified through the following components:

• Dialogical Framework. Constitutes the communication conventions that will
prevail in a given institution. Agents interact with each other–always and
only–by means of illocutions, whose object language elements and semantics
are set by the institution. Consequently, the domain ontology, as far as it
is ever used in an admissible institutional utterance, has to be included as
part of that object language. The dialogical framework also defines the roles
agents may play as well as the relationships and incompatibilities among
these roles.

• Performative Structure that includes a network of scenes linked by transi-
tions between scenes. Scenes are role-based interaction protocols specified
as finite state machines, arcs labeled by illocutions and nodes corresponding
to an institutional state. Transitions describe the role–flow policies between
scenes. The Performative Structure specifies the interaction conventions that
govern the illocutory exchanges. Or, more abstractly, the interaction flows
that are admissible in the institution. That flow is expressed through the
interlacing of repetitive interaction conventions called scenes. Connections
between scenes are expressed by canonical scenes called transitions that es-
tablish the conditions for access or departure from a given interaction context
(changes of conversation), activation of new scene enactments or even cloning
of individual agents.

• Rules of Behavior that establish role-based conventions regulating commit-
ments. These are expressed as pre and post-conditions of the illocutions
admissible by the performative structure of the EI. Dialogical interactions–in
the institution–have institutional consequences that are known to interven-
ing agents who are bound to their satisfaction. These consequences can be
thought of as commitments that impose constraints on actions these agents
might carry out in the future.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 12

Each of these concepts can be properly formalized in different ways. For instance, scenes
can be defined as finite state machines, arcs labeled by utterances, or as a declaration
of prohibitions and permissions; performative structures may be predefined and static,
or may evolve with use or be adapted or changed by participating agents themselves;
rules of behavior obligatory or elective. The current formalization of those concepts (EI)
assumes conventions are predefined and static, they are obligatory and their enforcement
is strict.

There is a publicly available suit of tools (EIDE) for specification, testing and de-
ployment of electronic institutions (EI). 1 It consists of a specification language
ISLANDER[14] for the specification and verification of electronic institutions. The par-
ticipating agents in an institution do not interact directly, they have their interactions
mediated by AMELI [15] which can be seen as the social layer for the MAS, or as the ex-
ecution engine for the Electronic Institution. There are four types of agents composing
AMELI: Institution Manager, Scene Managers, Transition Managers, and Governors,
the first three types manage the institutional activation and control of scenes and tran-
sitions, while the fourth type is attached to all domain (external) agents to enforce their
compliance with the institutional conventions. AMELI is implemented over the JADE2

platform. Therefore it can be distributed among different machines for scalability pur-
poses.

2.2 Information systems

Information Systems (IS) have become the backbone of all kinds of organizations today.
In almost every sector–manufacturing, education, hospitality, health care, government,
and businesses large and small–IS are relied upon for everyday work, communication, in-
formation gathering and decision-making. As many organizations are reinventing them-
selves to meet the challenges of global competition and e-commerce, there is increasing
pressure to develop and deploy new technologies that are flexible, robust and responsive
to rapid and unexpected change[7].

IS for organizations, capture the way those organizations work. They are complex
systems of programs, data repositories, best practices, operation flows, and canonical
documents. We will talk about IS to mean complex IS that instrument the operation
of a corporation or large organization.

Current practices address three main components in the design and development of
traditional information systems: business rules programming, form design, and workflow
modeling. In current IS development, there are two options to specify the interlacing of
this three elements:

• Form centered programming. The flow of activities is governed by forms; that

1 see http://e-institutions.iiia.csic.es/ for details
2 see http://jade.tilab.com/ for details

CHAPTER 2. BACKGROUND AND STATE OF THE ART 13

is, the intervening business rules are invoked by form’s fields where they read or
write data, in a sequence that is determined by form design. This approach has the
advantage of easy programming, but provides no facilities to implement workflow
control on the intervening processes, and clearly there is no room for normative
rules to govern the interaction between the intervening components.

• Workflow centered programming. The sequencing of the required business rules is
specified from a workflow perspective; that is, the intervening business rules are
invoked by states of the the specified workflow. This approach has the advantage
of having all processes well sequenced and with the proper follow-up. However all
links between the states and, both, business rules and forms, have to be specified
and programmed at design time, resulting in poor flexibility for the ”behavior” of
the intervening agents.

We believe that current technologies for the design an development of “modern” infor-
mation systems, has to face a deep change, maybe a paradigm shift. We strongly believe
that the future for modern information system’s development is in the multi-agent sys-
tems arena. As Munidar Singh said in one of his talks: “Unlike traditional information
systems, modern systems are open, consisting of autonomous, heterogeneous parties in-
teracting dynamically. Yet prevalent software techniques make few accommodations for
this fundamental change. Multiagent systems are conceptualized for open environments.
They give prominence to flexible reasoning and arms-length interactions captured via
communications.”[36]

2.3 Multi Agent Systems

2.3.1 Agents

Over the years, the term Agent has been used to denote a software based computer
system that has the following basic properties[41]:

• Autonomy. Agents operate without the direct intervention of human or others,
and have some kind of control over their actions and internal state.

• Social ability. Agents interact with other agents via some kind of agent commu-
nication language.

• Reactivity. Agents perceive their environment and respond in a timely fashion to
changes that occur in it.

• Pro-activeness. Agents do not simply act in response to their environment, they
are able to exhibit goal-directed behavior by taking the initiative.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 14

To some researchers the term agent has a stronger and more specific meaning. These
researchers generally mean an agent to be a computer system that, in addition to the
properties identified above, is either conceptualized or implemented using concepts that
are more commonly applied to humans. For example, it is quite common in artificial
intelligence to conceptualize an agent using mental notions, such as knowledge, beliefs,
intention and obligation[41], other researchers go further and consider emotional and
representational attributes.

Shoham [35] defines an agent as “an entity whose state is viewed as consisting of mental
components such as beliefs, capabilities, choices, and commitments”.

There are different labels for agents ranging from the generic autonomous agents, soft-
ware agents, and intelligent agents, to the more specific interface agents, mobile agents,
and so on. In our work, we will consider agents the same way as [23], that is, agents in
general terms, avoiding any particular definition but adhering broadly to the basic prop-
erties mentioned above, with focus on flexible behavior. We will also consider swarm
intelligence[5] concepts to collectively organize agents in convenient ways.

Agent Oriented Programming (AOP), was firstly described in Shoham’s technical report
[35] in 1990. Here we present basic key concepts, for a broad understanding we encourage
the reader to refer to the technical report.

AOP is a term that Shoham has proposed for the “set of activities necessary to create
software agents”, and use mental constructs to design the computational system:

• Mental categories appear in the programming language.

• Programming language semantics relates to the semantics of mental constructs.

The AOP framework specializes the object-oriented programming (OOP) paradigm in
the sense of viewing a computational system as composed of communicating modules,
each with its own way of handling messages. AOP fixes the (mental) state of the
modules (agents) to consist of components such as beliefs, capabilities, and decisions. A
computation consists of these agents informing, requesting, offering, accepting, rejecting,
competing, and assisting one another. According to speech act theory[34], each type of
communication act involves different preconditions and has different effects.

In his report, Shoham also presents Table 2.1 comparing AOP and OOP.

2.3.2 Agent Oriented Information Systems

Agent concepts hold great promise for responding to the new realities of information
systems. They offer higher level abstractions and mechanisms which address several
issues such as knowledge representation, reasoning, communication, coordination, goals,
etc., the concrete implementation of these concepts can lead to advanced functionalities.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 15

Basic Unit
 Object
 Agent

Parameters defining state of

basic unit

unconstrained
 beliefs, commitments,

choices
,...

Process of computation
 message passing and response

methods

message passing and response

methods

Types of messages
 unconstrained
 inform, request, offer, promise,

decline,...

Constraints on methods
 none
 honesty, consistency,...

OOP
 AOP

Table 2.1: Object Oriented Programming versus Agent Oriented Programming

“Enterprise information systems have traditionally suffered from an impedance mis-
match. Their operational environment is best understood in terms of agents, responsi-
bilities, objectives, tasks and resources, while the IS itself is conceived as a collection of
(software) modules, data structures and interfaces.” [7]

Agent Oriented Information Systems (AOIS), emerges by applying AOP methodologies
to implement the concepts mentioned above. As we can observe in Figure 2.1, workflow
technologies provide coordination artifacts to effectively implement AOIS, providing
agent based architectures, suitable to leverage conceptual models to address the men-
tioned impedance mismatch.

2.4 Service Oriented Architectures

Service Oriented Architecture SOA, is a computer system’s architecture, designed to
provide access to independent computational resources, communicating between them
through autonomous messages in the context of business processes. These autonomous
computational resources are units of logic known as services [13], that encapsulates logic
for business procedures or activities within different contexts. It is intended that services
conform to service-orientation’ principles (see Section 2.4.4), and they are linked together
to define business processes (see Section 2.7.1).

In SOA, there are four fundamental aspects that must be taken into account:

• how services encapsulate logic,

• how services relate with each other,

• how services communicate, and

• principles of service orientation.

The following paragraphs describe each aspect.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 16

2.4.1 How services encapsulate logic

If we take as example a HIS implemented using a service oriented architecture, each
service can represent a very different concern, ranging from a small and simple business
procedure to validate if a guest code exists, to a large business procedure implementing
some artificial intelligence technique to suggest the best room rate for a given guest type,
arrival date and stay. The size and scope of the logic represented by the service can
vary. The service required in the first example is simple and completely autonomous,
while the service required in the second example, maybe requires logic provided by other
services–v.gr. a service who learns cases.

To retain their independence, services encapsulate logic within a distinct context. This
context can be specific to a business task, a business entity, or some other logical group-
ing. Business automation solutions are typically an implementation of a business process
that is comprised of logic that dictates the actions performed by the solution. The logic
is decomposed into a series of steps that execute in predefined sequences according to
business’ procedural rules and runtime conditions[13].

2.4.2 How services relate

Within SOA, services can be used by other services or other programs. Regardless, the
relationship between services is based on an understanding that for services to interact,
they must be aware of each other. This awareness is achieved through the use of service
descriptions. A service description establishes the name and location of the service,
as well as its data exchange requirements. The manner in which services use service
descriptions results in a relationship classified as loosely coupled.

For services to interact and accomplish something meaningful, they must exchange in-
formation. A communications framework capable of preserving their loosely coupled
relationship is therefore required. One such framework is messaging. [13].

2.4.3 How services communicate

In SOA, the basic unit of communication is the message. After a service sends a mes-
sage, it loses control of what happens to the message thereafter. This means that
messages, like services, should be autonomous. This autonomy can be achieved using
a solid data representation platform, such as XML3 and accompanying XML Schemas
(packaged within SOAP4 messages), that fully standardize format and typing of all data
communicated providing a solid data representation architecture.

3 XML stands for Extensible Markup Language, is a simple, very flexible text format that is playing
an increasingly important role in the exchange of a wide variety of data on the Web and elsewhere[1].

4 SOAP once stood for “Simple Object Access Protocol” but this acronym was dropped with Version
1.2 of the standard[1]. It was originally designed as an object-access protocol. SMTP and HTTP are
valid application layer protocols used as Transport for SOAP.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 17

Messages are coordinated in a particular sequence so that the individual actions per-
formed by the message are execute properly and in alignment with the overall task. In
doing so, messages uses “message exchange patterns” (MEPs) that represent a set of
templates that provide a group of sequences for the exchange of messages. Primitive
MEPs are Request-response and Fire-and-forget [13]:.

Request-response. This MEP defines a synchronous communication (although this
pattern also can be applied asynchronously) that establishes a simple exchange
in which a message is first transmitted from a source (service requestor) to a
destination (service provider). Upon receiving the message, the service provider
then responds with a message back to the service requestor.

Fire-and-forget. This MEP defines an asynchronous communication based on the uni-
directional transmission of messages from a source to one or more destinations.
The fundamental characteristic of this pattern is that a response to a transmitted
message is not expected. There are several variations for this pattern:

single-destination pattern. A source sends a message to one destination only.

multi-cast pattern. A source sends messages to a predefined set of destinations.

broadcast pattern. Similar to multi-cast, except that the message is sent out
to a broader range of recipient destinations.

Primitive MEPs can be assembled in various configurations to create complex MEPs.

2.4.4 Principles of service orientation

Some of the key aspects for the principles of service orientation[13] are:

Loose coupling Services maintain a relationship that minimizes dependencies and
only requires that they retain an awareness of each other.

Service contract Services adhere to a communications agreement, as defined collec-
tively by one or more service descriptions and related documents.

Autonomy Services have control over the logic they encapsulate.

Abstraction Beyond what is described in the service contract, services hide logic from
the outside world.

Reusability Logic is divided into services with the intention of promoting reuse.

Composability Collections of services can be coordinated and assembled to form com-
posite services.

Statelessness Services minimize retaining information specific to an activity.

Discoverability Services are designed to be outwardly descriptive so that they can be
found and assessed via available discovery mechanisms.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 18

2.5 Web Services

A Web service is defined by the W3C [1], as “a software system designed to support inter-
operable machine to machine interaction over a network.” Web services are frequently
just Web APIs that can be accessed over a network, such as the Internet, and executed
on a remote system hosting the requested services.

Web services refers to clients and servers that communicate using xml messages that
follow the SOAP standard. Their basic unit of communication is an operation offered
by a service, whose description is written in the Web Services Description Language
(WSDL).

2.5.1 Technology Standards

There is a collection of computer networking protocols that are used to define, locate,
implement, and make Web services interact with each other. They are grouped in four
areas[1]:

Transport Protocols. Used for transporting messages between network applications,
includes protocols such as HTTP5, SMTP6, and others.

Messaging Protocols. Used for encoding messages in XML format so that they can
be understood at either end of a network connection. Currently, this area includes
protocols such as SOAP and XML-RPC7.

Description Protocols. Used for describing the public interface to a specific web ser-
vice. The WSDL8 protocol is mostly used for this purpose.

Discovery Protocols. Centralizes services into a common registry such that network
web services can publish their location and description. The UDDI9 protocol is
mostly used for this purpose.

The web services technology set offers an implementation platform that allows to pull
these pieces together to build service-oriented automation solutions.

5 HTTP stands for Hypertext Transfer Protocol, is a communications protocol for the transfer of
information on the intranet and the World Wide Web[1].

6 SMTP stands for Simple Mail Transfer Protocol, is the de facto standard for e-mail transmissions
across the Internet[1].

7 XML-RPC is a remote procedure call protocol which uses XML to encode its calls and HTTP as a
transport mechanism[1].

8 WSDL stands for Web Services Description Language, is an XML-based language that provides a
model for describing Web services[1].

9 UDDI stands for Universal Description Discovery and Integration, is a platform-independent, XML-
based registry for businesses worldwide to list themselves on the Internet[1].

CHAPTER 2. BACKGROUND AND STATE OF THE ART 19

2.6 SOA and Web Services

Integration approaches have come full circle with the advent of SOA and Web Services,
we need an accurate understanding of at least three facts[17]:

• SOA is a set of best practices that includes ways to effectively use Web Services.

• Web Services are a set of technology standards.

• Web Services fit in SOA, but by themselves aren’t enough to build a solid inte-
gration approach.

There are four key point to have into account when thinking about SOA and Web
Services[13]:

• SOA and service-orientation are implementation-agnostic paradigms that can be
realized with any suitable technology platform.

• The mainstream variation of SOA is based solely on web services and common
service-orientation principles.

• Achieving SOA does not require web services.

• Regarding the evolution of SOA, traditional architectures have an can continue
to use web services within their own design paradigms, but it’s important to not
confuse these architectures with SOA. Non SOA use of web services is typically
found within distributed internet architectures, where web services are employed
to mirror RPC-style10 communication.

2.7 Workflows

The industry has yet to standardize on a single model for process logic, but all models
include some variation of three basic elements[28]:

• Activities

• Sequences

• Rules

Process logic contains references to a set of activities codified in business logic and, if
an activity is to be performed by a person, presentation logic. Human activities are
workflow-oriented tasks, such as approving a document, or performing activity outside

10 RPC stands for Remote Procedure Call

CHAPTER 2. BACKGROUND AND STATE OF THE ART 20

the system, such as calling a customer. Examples of system activities include adding a
new customer record in a Customer Relationship Management (CRM) application, or
checking the status of a reservation in an Enterprise Resource Planning (ERP) system
for hotels.

The foundation of process logic is a sequence that describes in what order the activities
must occur. As we saw in Section 2.4.1, this sequence can have branches of activities,
such that either one of two activities, according to a rule, follows an activity that first
checks the available room’s inventory level in an internet booking system for a given date
and room type. For example, the rule codifies that if the inventory covers the length of
stay for that room’s type, then the process proceeds by granting the reservation, if not,
it sends a message to the customer asking if they’ll accept a different room type for the
same date and length of stay.

For the interested reader, in [38] a reference framework for workflows, as well as discus-
sions on analytical methods are presented.

2.7.1 Terminology

The Workflow Management Coalition (WfMC) Terminology and Glossary document
[10], [2] provides the following definitions:

Business Process. A set of one or more linked procedures or activities which col-
lectively realize a business objective or policy goal, normally within the context of an
organizational structure defining functional roles and relationships.

Workflow. The automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to another for action,
according to a set of procedural rules.

Process Definition. The representation of a business process in a form which sup-
ports automated manipulation, such as modeling, or enactment by a workflow man-
agement system. The process definition consists of a network of activities and their
relationships, criteria to indicate the start and termination of the process, and informa-
tion about the individual activities, such as participants, associated IT applications and
data, etc.

Workflow Management System. A system than defines, creates and manages the
execution of workflows through the use of software, running on one or more workflow
engines, which are able to interpret the process definition, interact with workflow par-
ticipants and, where required, invoke the use of IT tools and applications.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 21

2.7.2 SOA related context

Orchestration express a body of business process logic that is typically owned by a
single organization, and establishes a business protocol that formally defines a business
process definition. The workflow logic within an orchestration is broken down into
a series of basic and structured activities that can be organized into sequences and
flows. Orchestration is the “heart of SOA”, as it establishes a means of centralizing
and controlling a great deal of inter and intra-application logic through a standardized
service model. Figure 2.2 shows how it is related to other parts of SOA. [13].

implement

protocols

defined in

Orchestrations

Business

activity

Choreography

Web

services

become

process

participants in

can enable

collaboration

between

Figure 2.2: Orchestration in SOA

Choreography is a complex activity comprised of a service composition and a series
of message exchange patterns that attempts to organize information exchange between
multiple organizations (or even multiple applications within organizations). The concept
of choreography extends the SOA vision to standardize cross-organization collaboration.
Figure 2.3 shows how how it is related to other parts of SOA. [13].

Choreography

Orchestrations

Web

services

become

collaborative

participants in

can enable

collaboration

between

Figure 2.3: Choreography in SOA

CHAPTER 2. BACKGROUND AND STATE OF THE ART 22

2.8 Related Work

In this section, we describe the related work that provides novel approaches to similar
problems that we are addressing in our research. We learned something from each
work presented here, they contributed to maintain us with an open mind attitude, not
rejecting different ideas to solve similar problems, and when pertinent, taking lessons
learned from their approach to similar ideas; they also motivate us, maintaining our
interest in their work having always their perspectives into account.

There are two pioneer approaches describing how to control business process using
agents. As a starting point, we will briefly discuss their work. These approaches were
the basis for further research that is currently going-on. The next two sub-sections will
discuss this pioneer related work, while the rest of the sub-sections will present current
related work.

2.8.1 Agent-Based Business Process Management

In their work, Jennings et al. [20], describe ADEPT (Advanced Decision Environment
for Process Tasks), a project devoted to develop an agent-based infrastructure for man-
aging business processes. They describe step by step how they solved a real problem;
they did it following an agent oriented programming approach, where the architecture
for agents was clearly defined, providing them with programming code for their behav-
ior, facing domain facts focusing their behavior on negotiation and commitments. This
work demonstrates that domain elements–computational or human– can be effectively
represented by agents. It also demonstrates how complex domain business processes
can be carried out using speech acts for negotiation and commitments. It stated clearly
that workflow concerns not necessarily should be centralized.

2.8.2 Multiagent Systems for workflow - Interaction Oriented
Programming

In their work, Singh and Huhns [37] consider interaction-oriented programming (IOP),
as an approach to software engineering based on multiagent systems, with the idea of
programming with interactions as first-class entities instead of objects. Then, protocols
are to interactions as classes are to objects. IOP deals with social commitments and
enables agents to flexibly enact a multi-enterprise workflow by entering into and behav-
ing according to their commitments to each other. Agents can cancel or modify their
base-level commitments only if they satisfy the meta-commitments that then go into ef-
fect. They treat interactions as first class elements, taking into account the importance
of shifting from an object oriented programming to one oriented to interactions.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 23

2.8.3 Inter-operation in Protocol Enactment

In this work, Chopra and Singh [8], study and formalize the inter-operability of agents
dealing with their autonomy and heterogeneity in computational terms. They establish
that in open systems, inter-operability is an important concern, and that a common
way of achieving it is by requiring agents to follow prescribed protocols in their inter-
actions with others. They criticize that agents should exchange messages exactly as
prescribed by the protocol, resulting in a restrictive constraint, that results in rigid and
fragile implementations, and limits the autonomy of agents. They provide an example
in which a customer agent may send a reminder to a merchant agent to deliver the
promised goods. However, if reminders are not supported explicitly in the protocol they
are enacting, then the reminder would be considered illegal and the transaction may
potentially fail. The proposed definition of inter-operability declares two agents to be
inter-operable provided that, from each joint state that they can enter, they can reach
a final state.

2.8.4 Representing and Reasoning About Commitments in Busi-
ness Processes

This work presented by Singh et al. [12], is developed in the same context as the
one described in Section 2.8.3, but here, they focus their attention on commitments in
the context of choreography (see Section 2.7.2), in particular, with semantic choreogra-
phy. They show how to represent and reason about commitments in a general manner,
considering complex and nested commitment conditions, and concurrent commitment
relations. Singh describes six operations on commitments: create, discharge, delegate,
assign, release, and cancel; commitments can be conditional. By doing so, they enable a
rich variety of open business scenarios. Their main contribution is in modeling complex
commitments and handling concurrent commitment operation in inter-organizations set-
tings.

2.8.5 Towards Adaptive Workflow enactment using Multiagent
Systems

In their work, Buhler and Vidal [6], provide a critical survey of workflow, workflow
description languages, web services and agent technologies, and propose that workflow
description languages and their associated design tools can be used to specify multi-
agent systems. They claim that the Business Process Execution Language for Web
Services (BPEL4WS) can be used as a specification language for expressing the initial
social order upon a collection of agents, which can then intelligently adapt to changing
environmental conditions. They convert BPEL4WS activity constructs into Petri Net
[39] [40] constructs for the workflow, which is then partitioned based upon Web ser-
vices’ partner information–contained in the BPEL4WS definition–, then, agents within

CHAPTER 2. BACKGROUND AND STATE OF THE ART 24

a multiagent system represent each partner and enact the workflow in a distributed
manner.

2.8.6 Coordinating multiple agents for workflow-oriented pro-
cess orchestration

In his work, Blake [4], describes an approach that considers several environmental con-
ditions related to the dynamism of the Internet, and he claims to describe a model and
supporting software toward the efficient design of interaction protocols for coordinating
agent teams in the business process orchestration domain. He establish that composite
services or workflow processes of web services may be constantly changing in terms of
responsiveness and accessibility of services and their meta-information, business process
schema changes, etc.; these conditions impact what interactions a team of agents must
undergo to achieve a specific process derived of composite web services. He focus his
work on workflow interaction that occurs when one business incorporates services of
another within its own processes, these services are located through a distributed UDDI
registry server, populated with business services offerings; agents are used to implement
brokers that using WSDL and SOAP documents, are able to access the required ser-
vices. These agents can be defined as autonomous software entities that have knowledge
of their environment to reactively and pro-actively proxy service executions and process
management.

2.8.7 Distributed Workflow enactment

In this paper, Fortino et al. [16], describe the design and implementation of an Agent-
based Workflow Enactment Framework (AWEF), which can be instantiated on the basis
of a workflow schema for obtaining a specific workflow enactment engine. A workflow
engine therefore is a MAS capable of managing instances of the workflow schema used
for the instantiation of AWEF. They use workflow patterns [40] to enact workflows in a
distributed environment; they also define specializations for server agents: an enacting
agent responsible for enacting workflows, a manager agent for workflow control, and a
task agent for the execution of internal tasks.

2.9 Discussion about Related Work

Regarding work described in Section 2.8.1, we consider that having decentralized work-
flows is as an aggressive approach if we talk about large information systems with in-
tensive human interactions. This approach is focused on negotiation and commitments
among different agents to carry out a workflow; however, it doesn’t handle business
context properly, since they don’t handle institutional states in their interactions.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 25

In the work described in Section 2.8.2, social issues are properly handled, as agents
assumes roles for interaction; however, the underlying notion of interactions as first-
class entities, and their refined treatment for commitments, don’t handle by themselves
the additional complexity required to enact workflows that handle intensive human
interaction business processes using diverse and disperse interaction devices.

Similar to the work described in Section 2.8.3, we base our framework on agent’s inter-
operability; however, we address this problem using the electronic institutions’ concept
(see Section 2.1.4), where all agent interactions are formally defined in a scene, where
once all different agents enter, by definition they are able to reach the final state.

Facing the problem of complex commitments as described in Section 2.8.4, we have a dif-
ferent approach for commitments, they are based on prescribed protocols, nevertheless,
we propose to handle complex commitments by using preconditions for an illocution; if
several agents are performing some given protocol, and they reach–say–state w3, valid
illocutions can be restricted by an expression established as a precondition to reach state
w4, thus we can handle run-time conditions that may appear in a complex protocol con-
sisting in an arbitrary number of valid illocutions at a given state. Thus, protocols are as
complex as modeled in the electronic institution. Additionally, we provide for run-time
generated conditions for commitments using norms (see Section 3.5.5 and [18]), that
constitutes a rich environment for handling complex or even recurring commitments.

In the work presented in Section 2.8.5, the purpose of the authors was to contextualize
thoughts of multiagent systems as a workflow enactment tool, not actually to implement
in a real system their ideas. We liked their ideas; however, without an organizational
structure dictating valid roles and responsibilities for agents, it seems very difficult to
apply the intended social order for workflow enactment using agents. We think that
current workflow specifications for web services are weak in the sense that we must
provide complete service descriptions each time a service is required, producing xml
text specifications very cumbersome and error prone to maintain. Our approach works
in the opposite direction, we prescribe agent interactions, then we take advantage of
services groups, and avoid repetitive definitions related to service definition and location,
delegating this work to specialized server agents.

In the work presented in Section 2.8.6 for workflow definition, they use workflow patterns
[40] that represent the atomic operations. This is not a framework definition, nor an
implementation project, it provides a guidance toward automated mechanisms for eval-
uating the best formation of software entities to control the composition of web services;
however, they assume that software engineers are always capable of conceptualizing the
proper set of interaction protocols that realize the workflow pattern.

In the work presented in Section 2.8.7, agents’ specializations are similar to our agent’s
colonies; however, they don’t provide any formalization in order to be able to separate
theoretical and practical concerns, it is realized using an heuristic approach.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 26

2.10 Summary

In this chapter we presented the background needed to effectively understand the rest
of the thesis; we presented a conceptual map for background concepts and their rela-
tionship, separating concepts into more adequate reference frames: Institutional Envi-
ronment, Multi Agent Systems, Service Oriented Architecture, Web Services and Work-
flows, all of them providing something to the concept of IIS. We described each back-
ground concept with enough detail to clearly understand the conceptual model presented
in Chapter 3. Then we presented the State of the Art discussing related work.

Chapter 3

Conceptual Model for IIS

In this chapter, we present a conceptual model and theory to build Institutional agent-
oriented Information Systems (IIS) based on an “institutional perspective”, where the
IIS enacts an intelligent organization comprised by a group of people that use IT
resources in order to better achieve some shared objectives in an “institutional” way.
With this perspective in mind, we use agents to represent human users and IT resources
in the computational world, and we use the electronic institution concept to coordinate
interactions between these agents.

Our aim is to present a conceptual model to support business operations through an
agent-intensive IS that is harness by a prescriptive specification of the way that system
should behave.

The conceptual model assumes there is a real-organization –e.g. a hotel, a hospital, a
convenience store chain– whose everyday operation is to be automated as thoroughly as
possible with conventional IT resources like data bases, input-output forms and business
rules. We introduce a third element, an institutional world (I-world), that establishes
a bridge between the human organization and its information system so that the IS is
governed by a prescription that the organization’s experts formulate.

Figure 3.1 shows the bridging role of the I-world between the real organization and the
IS that automates its everyday operation.

I-World

Real

Organization

Information

System

governs
models

Figure 3.1: Bridging role of the I-world

27

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 28

The everyday operation of the organization involves employees who are part of the
organization —like doctors and nurses, front-desk clerks, cashiers, etc.–as well as other
users that are external to it, like patients, guests and customers. All these participants
interact in what is usually called business contexts –like outpatient care, front-desk,
housekeeping, inventory management— where, in practice, interactions take place as
more or less structured activities –like the check-in process in a hotel or a hospital, or
the process through which an outpatient is referred to a specialist or an analytical test.

The automation of the everyday operation, in turn, takes the actual business processes
and activities and translates them into workflows that involve the different human par-
ticipants and different computational resources, namely knowledge repositories like data
bases and business rules, and interaction devices like workstations or touch screen ter-
minals.

Ideally, these automated business processes correspond to what managers expect that
operation to be and different conventional technologies are used to achieve that purpose
of aligning the intended operation with its automation. We propose a framework that
we claim is appropriate for specification of the intended operation and also makes sure
that actual operation follows the prescribed behavior.

In fact our framework is based on an institutional prescription, that is a high-level
description of the business activities and the behaviors intended to happen in them.
As shown in Figure 3.2, that description is then grounded on the IS through an orga-
nizational engine, that governs workflows and business rules in an agent-pervasive IS
composed by three types of software agents, ones that are specialized on the different
types of IS components –server agents– another type that work as representatives of
human users –user agents–, and a third type of specialized agents that accomplish tasks
that support the computational infrastructure required by our framework.

In this chapter we will present the components of this conceptual model and then outline
how this model is related to the computational framework that allows the model to be
put to work on a real organization. We will use the front-desk business process of a
hotel to illustrate our proposal throughout this chapter.

3.1 Model Components

Figure 3.3 shows the three model’s components. The I-world models the real-organization
and governs the information system. The real-organization prescribes the I-world and
provides knowledge to the information system. The information system interprets the
I-world and enacts the real-organization as an intelligent organization.

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 29

Organization

Business Environment

Institutional Prescription

Organization

Engine

Agent-pervasive

information system

instructs

define

realizes

governs

Adaptation

Isomorphism

Figure 3.2: Conceptual Process

3.1.1 Real Organization

In this section, think of the real-organization as a non-automated world, somehow like
what an actual hotel may have been in the first half of the twentieth century as op-
posed to the sophisticated IS that a large hotel would now need to run smoothly. Such
sophisticated IS is what will serve as a running example in the next subsection.

A real-organization like a large hotel is organized around several business processes. A
standard hotel has around 500 business processes, some more elaborate than others.
A not untypical one, the hotel front-desk business process, involves several activities
grouped in five groups of standard procedures: check-in, check out, room-rack, guest
services and cashier.

Each standard procedure in a business process involves humans performing specific
roles: receptionist, cashier, concierge, and these participants perform a series of actions
according to a more or less standard or regular procedure. For example, in the check-in
activity, guests are registered once they have given the receptionist the information she
requested and she, in turn, has checked with house-keeping and the room-rack manager
which rooms are available and best suited for this guest, then the receptionist informs
the guest of the services the guest is entitled to and offers some other services that may
be available, then gives the guest a key and instructs the bell-boy to accompany the
guest to his or her room.

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 30

I-World

Real

Organization

Information

System

governs
models

interprets

provides

knowledge

enacts

prescribes

Figure 3.3: Model Components

We may attempt to be a bit more precise:

Definition 3.1.1.1 Business process: A set of one or more linked activities which
collectively realize a business objective or policy goal, normally within the context of an
organizational structure (see Section 2.7.1).

Definition 3.1.1.2 Activity. A set of one or more pre-defined actions that implements
a business task.

Definition 3.1.1.3 Standard procedure. A set of activities that are systematically
put in practice in order to realize a business goal.

Definition 3.1.1.4 Role Is a collection of permissions that entitles a person to perform
a set of activities and standard procedures.

Definition 3.1.1.5 Procedural rule. Specifies in what order and subject to what
circumstances a set of activities and standard procedures should be executed.

Definition 3.1.1.6 Organizational structure. Establishes a set of procedural rules
to specify business processes, defining functional roles and their relationships providing
context for the realization of business goals.

Example A receptionist is allowed to register the information of a guest, inform the
guest about the services the guest is entitled to, to offer available offers and service, and
give the key to the guest. However, in principle, the receptionist does not decide which
room to assign. It is the rack-room clerk, who is in charge of the room occupation, and
tells the receptionist which room is assigned to an incoming guest. In practice, though,
a receptionist is usually a role that may be played by a front-desk clerk who is entitled
to perform the functions of a receptionist clerk, concierge and cashier. Table 3.1 shows
a list of functions in the front-desk process and how different roles are related to them.

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 31

Function Role
determine stay information receptionist
determine stay rate receptionist
authorize special requests manager on duty
provide special services concierge
receive guests’ payments cashier

Table 3.1: Several functions in the front-desk process

3.1.2 Computational World

We now turn our attention to the computational world that enacts an intelligent or-
ganization. That is, the implementation of some of the activities of an organization
through computational resources like programs, data repositories of different sorts and
interaction devices).

In Section 3.1, we described the three components of our intended model. In Figure 3.4
we show an architectural outline to make sense on how to enact an intelligent organi-
zation. We omitted details–we present the details in Chapter 4–, but schematically we
show that the computational world provides all the required infrastructure to:

• build the model in the I-world according to how is the real-organization intended
to work,

• represent the model in a form that supports automated manipulation, and

• interpret the model governing agents interactions according to specific prescrip-
tions, enacting an intelligent organization.

Strictly speaking, the I-world is part of the computational world, but we make a spe-
cific separation to isolate institutional concerns. Having made this precision, through
this thesis, we will use the term I-world to refer to the institutional part of our frame-
work, while we will use the term computational world to refer to everything else in
the computational world. Thus, the Computational world is comprised of the following
elements:

• the organization engine, which is composed by several types of agents–explained
in Chapter 4–,

• user and server agents, and

• business rules.

In order to have a better idea of how things are performed in the computational world,
we need a couple of definitions:

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 32

Real

Organization

O

Organization

Engine

Institutional World

EI

2

S

Business Rules

Computational World

Intelligent Organization

enactment

models

governs

enacts

Server Agents

User Agents

Figure 3.4: Architectural outline

Definition 3.1.2.1 Workflow: The automation of a business process, in whole or
part, during which documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules (see Section 2.7.1).

Definition 3.1.2.2 Business rule. A set of one or more linked activities codified
in some programming language, that implement real-world pre-defined actions realizing
business goals. If the activities require human interaction, they constitute presentation
logic, otherwise, they constitute business logic.

In the I-world, we model the real-world producing for the computational world a kind of
workflow specification, actually a performative script–defined in Section 3.6.1– that im-
plements a business process from the real-organization; in the computational world, we
have business rules Repositories made available for the workflow through server agents;
thus the proper sequence of activities are performed as prescribed by the institution.

3.1.3 The Institutional World

The two worlds we just mentioned, computational and real-organizational domains, will
be linked by the I-world that contains those aspects of the real-organization that have
an institutional character and should be present in its automated operation. The idea
is to be able to produce a prescription that institutes what are the business processes,
roles and entities involved in the real-organization and their intended interplay in its
everyday operation.

To give an intuition of how we intend to produce the intended prescription, in Figure
3.5 we show the correspondence between some representative elements of each domain.

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 33

Organizational

Structure

Procedural

Rules

Business

Process

Standard

Procedure

Performative

Structure

Scene

EI

2

S

Social

Structure

Attributes,

Permissions

WF
 +

{BR}

IO

enactment

{BR}

Agents

O
 C

I

Figure 3.5: Domains’ correspondence

The idea is to link each element from the real-organization and computational domain
into I-world elements. Thus, in the I-world, a performative structure represents a pro-
cedural rule from the real-organization, and it could be seen as workflow and a set of
business rules; likewise, a scene represents a standard procedure that could be seen as a
set of business rules; the institutional social structure represents several organizational
structure’s relations that could be seen as attributes an permissions in the computa-
tional world; and the electronic institution model represents a business process from the
real-organization governing agents interaction in the context of an institutional agent
oriented information system in the computational world, enacting an intelligent organi-
zation.

3.1.4 Formalizing the Conceptual Model

For the purposes of our work, we have defined EI2S as an electronic institution1 for
information systems, and we have incorporated it in the definition for the intelligent
organizations’ theory, used to build institutional agent oriented information systems
“IIS”. Now we will outline how we will incorporate IIS into the required computational
framework, capable to enact an intelligent organization.

1 In order to provide our institutional framework with the required functionality to successfully imple-
ment “IIS”, we made several changes to the original EI definition as presented in [14]; thus, there
are several differences between EI and EI2S, in Appendix A we enumerate these differences.

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 34

O

intended

behavior
 EI

2

S

agents

interaction

I-world

C

Context &

Procedural Rules

M

o
d

e
l

f

o
r

a

u
t

o
m

a
t

e
d

m

a
n

i
p

u
l

a
t

i
o

n

F

G

F
 G
o

I
C

=

=

=

I
O

I
OC

Figure 3.6: Formal Model for an Intelligent Organization

As depicted in Figure 3.6, using the electronic institution, we model the real-organization
behavior using its context and procedural rules. The real-organization interpretation
for this model, is how the real-organization should should behave in the specified con-
text. We have an injective function F that maps the electronic institution to the
required behavior in the real-organization. F = {O, EI2S}; where O is the real-
organization domain, EI2S the electronic institution, is the interpretation: IO(EI2S) =
intended behavior.

The electronic institution produces an automated version for this model–a performative
script– that is the input to the computational world. The computational world inter-
pretation for this model is in what order an subject to what conditions the interven-
ing agents should interact in the specified context–agent roles and their relationships–
. We define an injective function GL that maps the electronic institution to agents
interaction in a model consistent context. GL = {C,EI2S}; where C is the com-
putational world domain, and EI2S the electronic institution, is the interpretation:
IC(EI2S) = agents interaction.

The composition F ◦ GL of both functions enacts an intelligent organization. Figure
3.6 clarifies these functions, that is, the F = IO function is the real-organization in-
terpretation for the electronic institution, while the GL = IC function is the computa-
tional world interpretation for the electronic institution. Therefore, F ◦ GL = IOC is
the real-organization/computational –the enactment– world interpretation for the elec-
tronic institution. We name this composition as the Intelligent Organizations’ Theorem:

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 35

IOC(IO(EI2S)) = IC(EI2S).

Summarizing, we have the following properties:

IO(EI2S) = intended behavior
IC(EI2S) = agents interaction
IOC(intended behavior) = IC(EI2S)
I−OC(agents interaction) = intended behavior

By applying the first three properties, we have the following Theorem:

IOC(IO(EI2S)) = IC(EI2S)

Whose proof by construction is straightforward.

IO and IC are injective in general (endomorphism).
IOC is an isomorphism between the images of IO and IC .

Relating the formal model shown in Figure 3.6 with the architectural outline shown
in Figure 3.4, we have that using the electronic institution in the I-world, we model
the organizational world behavior. Then, the I-world produces a performative script–
see Section 3.6.1 below– that is read by the organization engine in the computational
world. The organization engine instantiates this performative script creating a busi-
ness context –see Section 3.6.2 below– governing agents interaction, thus, producing the
intended behavior between people and IT resources as prescribed by the institution en-
acting an intelligent organization. In this thesis we use the term “IIS” to refer to agent
oriented information systems that are intended to be built according to the “Intelligent
Organization Theorem” defined above. In the remaining of this chapter we will formal-
ize the required theory to handle real-organization, I-world and computational domain
elements in the form of institutional components in the context of this Theorem.

We will build EI2S on the current model of electronic institutions developed in the
IIIA (cf. [?]) to represent some of those institutional components, namely the busi-
ness processes, business rules, the social structure and some of the norms that govern
interactions. As the current IIIA definition has features that we don’t need in our
framework–accounting for a heavy run-time implementation– such as the handling of
institutional procedural models to modify information models, or the implementation of
a complete tracking for all variables’ substitutions as scenes evolve; and it doesn’t have
features that we require, such as handling business rules and interaction devices, we will
need to revise the current model in order to have the human users and computational
domain elements properly represented in the institution in a less computationally loaded
run-time environment. The next sections give the details, intuitions and illustrations.

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 36

3.2 Processes Definition in IIS

Intuitively, we use an electronic institution to have a process definition, we use a perfor-
mative structure to represent a network of activities, called scenes, connected through
a series of transitions. In the IIS model we will follow the same intuition and make a
conventional business process correspond to an EI2S, its procedural rules correspond to
a performative structure (of the EI model), its standard procedures to scenes (of the EI
model). We will then make the performative structure of the whole IIS to correspond
to a merging of the performative structures of the different business processes. Thus, a
process definition is defined as follows:

Definition 3.2.1 Process definition: The representation of a business process in
a form which supports automated manipulation, such as modeling, or enactment by a
workflow management system. The process definition consists of a network of activities
and their relationships, criteria to indicate the start and termination of the process, and
information about the individual activities, such as participants, associated IT applica-
tions and data (see Section 2.7.1).

The merging results from the union of the components of each of the EIs involved (i.e.
the dialogical frameworks, social structures and information models –adapted to the IIS
model– and also of the new normative and achievement structures) and the conversion
of the starting scenes of each of the EIs into a single initial scene of the IIS, and likewise
joining all the exit scenes in a single IIS exit scene. Thus, informally speaking an IIS is
a non-atomic EI. 2

3.3 Identifying IIS elements

We need an ontology to define domain elements from the three worlds. In Figure 3.7,
we show the ontology’s formalization elements. We can intuitively observe in the figure
the following relationships between these elements:

• An ontology term is a concept expressed as a valid data type.

• Data types are used to define variables and constants; they allow for class and
enumerated type definitions.

• Variables and constants are symbols.

• Symbols are used to identify class and enumerated type definitions in the ontol-
ogy, and more specifically to identify agents and roles; they are also used in the
expression and communication languages.

2 similar to the ones introduced in the last version of EIDE

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 37

• The ontology consists of enumerated type definitions, class definitions and order
over classes that provides classes’ hierarchy.

• Ontology terms are used for expressing concepts producing more terms.

• Terms are used in the expression and communication languages.

Ontology

Symbols

Class

definitions

Enum
 type

definitions

Order over

classes

Types

Basic Data

Types

Integer

Real

Boolean

String

Variables

Constants

is a

is a

is a

is a

is a

to define
 are

allow

allow

to define
 are

is a

is a

provides

hierarchy

part of
 part of
part of

identify

identify

Figure 3.7: Ontology’s elements

In the following paragraphs of this subsection, we will formalize what we observe by
intuition.

Let V be a set of variables, K a set of constants, and Υ = V
⋃

K a set of symbols,
then Vi, Ki and Υi denotes a set of variables and constants of type i. These sets contain
constants and variables of the domain as conceptualized in the ontology, along with
constants and variables of the electronic institution formalization elements. For instance,
Vagents denotes the set of agent variables and Kscene the set of scene identifiers. In the
formalization uppercase letters denote sets, while lowercase letters denote elements (see
[?]).

The domain is formalized as a set of classes representing the different domain concepts
and the hierarchy relationship among them. B = {integer, real, boolean, string} is the
set of basic data types and allow the definition of enumerated types, which are defined
as finite sets of values.

3.3.1 Ontology

An ontology is defined as a tuple o = 〈E, C, <〉 where:

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 38

• E = {(ei, Di)}i∈IE
is a set of enumerated type definitions, where ei ∈ Dtype is the

enumerated type identifier, and Di ⊆ K is a set of values.

• C = {(ci, Ai, ρci
, σci

)}i∈IC
is a set of class definitions, each one defined as a tuple,

where ci ∈ Kclass stands for the class identifier, Ai ⊆ Kattrib is a set of attribute
identifiers, ρci

: Ai −→ boolean tells which attributes must receive a value when
defining a term representing an instance of the class and which attributes may be
left unspecified, and σci

: Ai −→ T maps each attribute to its type T , where T is
recursively defined in the following rules:

– (B
⋃{ei}i

⋃ {ci}i) ⊂ T

– if ti, tj ∈ T then ti × tj ∈ T

– if ti ∈ T then tilist ∈ T

– Nothing else belongs to T .

• < is a partial order over class identifiers, which must be regarded as a class hier-
archy, such that if ci < cj then Aj ⊆ Ai.

The elements of an ontology must satisfy the following requirements:

1. Enumeration type identifiers should be unique: ∀i, j ∈ IE · (ei 6= ej)

2. Class identifiers should be unique: ∀i, j ∈ IC · (ci 6= cj)

3. The class identifiers, enumeration type identifiers and basic data type identifiers
must be different: {ei}i∈IE

∩ {ci}i∈IC
= ∅, ({ei}i∈IE

∪ {ci}i∈IC
) ∩B = ∅

4. Class inheritance preserves attribute characteristics: ci < cj → (∀a · ρcj
(a) →

ρci
(a)) ∧ (∀a · σcj

(a) = σci
(a))

5. The class hierarchy does not contain cycles.

3.3.2 Expressing Concepts

In order to refer about thinks, we need to express concepts. For this purpose we need
terms. In Figure 3.8 we can see that given an ontology, we can follow several rules to
define new concepts.

The terms associated to a given ontology are written according to the following defini-
tion.

The set of terms of an ontology o = 〈E, C, <〉, denoted by terms, is recursively defined
by the following rules:

• All constants in the ontology must be of a basic data type: {k, k : t | k ∈ Kt} ⊂
termst ∀t ∈ B

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 39

Ontology

Rules for

concepts

Terms

part of

define

used by

Figure 3.8: Expressing concepts

• All enumerated type identifiers must identify an enumerated type already defined
in the ontology: {d, d : e | d ∈ D} ⊂ termse ∀(e,D) ∈ E

• When defining a term representing an instance of a class identifier already defined
in the ontology, it must have associated all their attributes identifiers, where each
attribute must receive an initial value if so defined in the class, and also, each
attribute must be of the type defined in the class: {c(a1 = p1, . . . an = pn) | ai ∈
A, pi ∈ termsσc(ai), ρ(aj) = true → aj ∈ {a1, . . . an}} ⊂ termsc ∀(c, A, σc) ∈ C

• All variable identifiers must be of a type already defined in the ontology: {v, v :
t | v ∈ Vt} ⊂ termst ∀t ∈ T

• When referring to pairs of terms of different types, each term must be defined in
its type: {(p, q), (p, q) : ti × tj | p ∈ termsti , q ∈ termstj} ⊆ termsti×tj

• When referring to terms in a list, each element of the list must be defined in its
type: {[p1, . . . pn] | pi ∈ termst, n ≥ 0} ⊆ termstlist for each t ∈ T

• The nil term is a valid term: nil ∈ termst ∀t ∈ T

• terms denotes all terms defined in the ontology: terms =
⋃

t∈T termst

termsK
t ⊆ termst is defined as the set of terms that do not contain variables. Similarly

for termsK ⊆ terms.

3.4 Agents’ Interaction Context

In order to give an intuition for the relationship between institutional elements and how
they are used to provide agents’ interaction context, in Figure 3.9 we show the insti-
tutional elements required; these elements will be formalized in the next sub-sections.
Intuitively, we can describe institutional elements’ relationship as follows:

• Symbols are used to identify agents and roles; they are also used in expression and
communication languages’ expressions.

• Symbols are part of the ontology that is mainly composed of terms.

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 40

• Terms are used in the expression and communication languages’ expressions.

• The expression language is used to define terms, uses basic operators and provides
context for the action and constraint languages.

• The constraint language restricts illocutions.

• The communication language is used to construct illocutions,

• Illocutions are addressed to specific agents or agents’ roles and they enable action
language’s expressions and they also activate norms.

• The action language modifies institution, scenes and roles’ information models.

• Agents play roles.

• Agents utter illocutions.

Ontology

Symbols

Comm.

language

Constraint

language

Expression

language

Terms

Agents

identify

constructs

illocutions

Addressed

to

part of

used in

used in

Basic

operators

used in

used in
 provides

context

restricts

used in

Roles

Addressed

to

Information

Model

have

identify

play

part of

Action

language

modifies

enable

provides

context

Norms
restricts

utter

enforces

enforces

activate

Figure 3.9: IIS’ elements

3.4.1 Agents

In order to provide access to business rules and databases, represent human users in the
computational world, and implement the organization engine, we use agents. Basically
we have the following type of agents, not considering those specific types of agents
required to implement the organization engine itself:

• Server agents that act as front ends for business rules and all the repositories and
devices of the computational domain,

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 41

• User agents that act as front ends for interaction devices and thus represent ex-
ternal users (employees, clients, etc.) of the IS, and

• Middleware agents that implements the organization engine.

Server agents are used to make IS components available for institutionally mediated
interactions. Each of them will manage specific resources: a business rule or a set
of business rules or a database. They will be involved in institutional illocutions and
the resources they handle may be referred to in the content of those illocutions. In
virtue of this functionality they establish a correspondence between prescribed actions–
illocutions– and transactions or operations that happen in the computational word.

User agents are the institutional counterpart of the humans that participate in the
organization and in particular to those that are in contact with the automated version
of the organization. The manage interaction devices, for example a conventional form
to capture or display user input. Each user of the IS system will have a user agent
attached that is absolutely subservient to the user, that is, it never makes a decision
for the user but is capable of requesting and displaying information according to the
institutional prescriptions that apply to that user at every moment.

Thus, while server agents are a device to deal with computational components and
user agents are front-ends to humans in the system, middleware agents are used to
implement the organizational engine, which will be responsible of agents’ coordination
through its electronic institution’s agent; thus, middleware agents will be responsible
for the computational infrastructure.

3.4.2 Information Model

Electronic institutions are persistent organizations of software that need to keep infor-
mation about the state of a computation. That information affects the participants
agents playing certain roles, and activities scenes played in the past. This information
is organized as information models associated to the institution itself and to each scene
and agent role of the institution specification. Each information model is specified as a
set of attributes, whose type must be one of the types defined in the institution ontology.

The information model is defined as a tuple i = 〈o, A, σ, δ〉 where:

• o stands for an ontology,

• A ⊆ Kattrib stands for a set of attribute identifiers,

• σ : A −→ T maps each attribute to its type.

• δ : A −→ termsK returns for each attribute its default value, such that δ(a) ∈
termsσ(a).

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 42

3.4.3 Illocutions

As we mentioned above, illocutions are used by agents to communicate with other agents.

Definition 3.4.1 An Illocution is an expression of the communication language. It
contains an illocutionary particle, expressing the intention when uttering it, the sender
and receiver(s), the message content–which must be an ontology term–and a time term
to capture the concrete instant in which the illocution is uttered.

For example, a particular agent playing the role “receptionist” could utter the following
illocution to request a server agent playing the “check-in” role to assign a room number
for a given room type specified in the variable “SK”:

request(receptionist,check-in,assignRoomNumber(roomType,SK))

3.4.4 Communication Language

This definition explains how to construct illocutions, that is, expressions of the commu-
nication language. Illocutions contain an illocutionary particle, expressing the intention
when uttering an illocution, the sender and addresses, the message content–which must
be an ontology term–and a time term to capture the concrete instant in which an il-
locution is uttered. If the illocution is addressed to one agent, this is expressed by a
pair of agent and role identifiers, if the illocution is addressed to all the agents playing
a specific role, this is expressed by a role identifier, and if the illocution is addressed to
all the agents in a conversation, this is expressed by the particle “all”.

Given an ontology o = 〈E,C, Γ, <〉 and a set of internal and external roles, RI and RE

respectively, the communication language LCL is defined by the following grammar with
starting symbol CL:

CL ::= ι(xi : ρi, A, ϕ : t, τ) ι ∈ Γ, xi ∈ ΥAgent, ρi ∈ (ΥRI
∪ΥRE

),
ϕ ∈ terms0, t ∈ T0, τ ∈ Υtime

A ::= (xj : ρj) xj ∈ ΥAgent, ρj ∈ (ΥRI
∪ΥRE

)
| ρj ρj ∈ (ΥRI

∪ΥRE
)

| all

The communication language expression is an illocution schema when some of the terms
contain variables. Otherwise, the communication language expression is an illocution.

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 43

3.4.5 Expression Language

The expression language is used to provide context to the constraint and action lan-
guages, that is, it uses basic operators and valid constructs to build expressions used by
those other languages.

For example, if we need to express some precondition for an illocution, using the con-
straint language we should write the following expression:

st-vars.guest-type = VIP

Meaning that when the referred illocution is uttered and the guest type is “VIP”, then
the illocution must actually be considered as uttered. The following paragraphs formal-
ize this language.

Ω is defined as the set containing the following basic operators:

• =, 6=: α× α −→ boolean where α stands for any type in T0;

• <,≤,≥, >: integer × integer −→ boolean and real × real −→ boolean;

• +,−,÷,× : integer × integer −→ integer and real × real −→ real;

• − : integer −→ integer and real −→ real;

• +string × string −→ string;

• ∨,∧ : boolean× boolean −→ boolean;

• ¬ : boolean −→ boolean;

Ω1 and Ω2 denote the sets containing the unary and binary operators respectively.

The expression language LE is defined as the language generated by the following gram-
mar with starting symbol E:

E ::= EopE with op ∈ Ω2

| opE with op ∈ Ω1

| p with p ∈ terms0

| v ·R with v ∈ V
| R

R ::= a with a ∈ KA

| R · a with a ∈ KA

Lti
E denotes the set of all expressions of type ti.

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 44

3.4.6 Constraint Language

In EI2S the constraint language operates over information models associated to the
institution itself, agent’s roles and scenes; it consists of a sequence of boolean expressions,
where all boolean terms are required to evaluate to true in order to proceed with the
illocution. The constraint language LC is generated by the following grammar with
starting symbol P :

C ::= C ; e with e ∈ LE

| e with e ∈ LE

3.4.7 Action Language

During the institution execution, the values of the different information models at-
tributes have to be modified as a consequence of agent’s illocutions. In order to specify
how they are modified, we define a very simple language containing only assignment
statements.

We define an action language LA as the language generated by the following grammar
with starting symbol A:

A ::= v = e with v ∈ V, and e ∈ LE

| A ; A

3.5 Institutional Framework

In order to provide our institutional framework with the required functionality to suc-
cessfully implement “IIS”, we made several changes to the original EI definition as
presented in [14]; thus, there are several differences between EI and EI2S, in Appendix
A we enumerate these differences.

In Figure 3.10 we give an outlook for the relationship between institutional framework
elements. We can summarize the main institutional framework’s components as follows:

• The real-organization provides context and procedural rules.

• Through modeling we specify how the real-world should behave.

• The computational world provides IT resources enacting the IO.

• Grounding maps real-organization and computational elements into the I-world.

• The electronic institution provides agent governance.

• The Dialogical framework provides communication conventions.

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 45

Intelligent

Organization

Grounding

Modeling

Electronic

Institution for

IS
Computational

world

Real

Organization

Scenes

Norms

Information

models

Performative

Structures

Dialogical

Framework

Transitions

provides

communication

conventions

govern

illocutory

exchanges

regulates

commitments

provides

agents

governance

provides context

and procedural rules

maps real-organization

and computational elements

into the I-world

specifies how

the
 IO
 should

behave

provides IT

resources

enacting the
 IO

facilitate

business

contexts

are interaction

protocols

interlace

scenes

Figure 3.10: Institutional Framework

• Performative structures govern illocutory exchanges.

• Scenes are interaction protocols.

• Transitions interlace scenes.

• Information models facilitate business contexts.

• Norms regulate commitments.

In the following sub-sections we will formalize these institutional framework’s compo-
nents.

3.5.1 Dialogical Framework

Constitutes the communication conventions that will prevail in the institution. Agents
interact with each other–always and only–by means of illocutions, whose object language
elements and semantics are set by the institution. Consequently, the domain ontology,
as far as it is ever used in an admissible institutional utterance, has to be included as
part of that object language. The dialogical framework also defines the roles agents
may play as well as the relationships and incompatibilities among these roles.

A Dialogical Framework is defined as a tuple df = 〈o, st,LCL,LC ,LA〉 where:

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 46

• o stands for an ontology;

• st is the social structure.

• LCL stands for a communication language;

• LC stands for the constraints language

• LA stands for the action language

3.5.2 Social Structure

A social structure is defined as a tuple st = 〈RI , RE, RS, θ, fI〉, where:

• RI ⊆ KRI
is the set of internal role identifiers;

• RE ⊆ KRE
is the set of external role identifiers;

• RS ⊆ KRS
is the set of relationships over role identifiers;

• θ : RS −→ P((RI∪RE)×(RI∪RE)) returns for each relationship the set of couple
of role identifiers related by it;

• fI : (RI ∪RE) −→ I maps each role to its information model.

satisfying the requirement below:
The internal and external roles must be disjoint sets. RI ∩RE = ∅.

3.5.3 Scene

Scenes are role-based interaction protocols specified as finite state machines, arcs labeled
by illocutions and nodes corresponding to an institutional state.

A Scene is defined as a tuple: s = 〈R, W,w0,Wf , (WAr)r∈R, (WEr)r∈R, Θ, λ, min, Max, i〉
where:

• R is the set of roles of the scene;

• W is a finite, non empty set of scene states;

• w0 ∈ W is the initial state;

• Wf ⊆ W is the non-empty set of final states;

• (WAr)r∈R ⊆ W is a family of non-empty sets such that WAr stands for the set of
access states for the role r ∈ R;

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 47

• (WEr)r∈R ⊆ W is a family of non-empty sets such that WEr stands for the set of
exit states for the role r ∈ R;

• Θ ⊆ W ×W is a set of directed edges;

• λ : Θ → (LC × LCL × LA) is a labeling function. Each arc is labeled with a set
of triples of constraint expression, an illocution schema, and an action language
expression. In EI2S, the execution’s order for the arc’s labeling functions is as
follows: First the constraints language’s expressions are evaluated, if they evaluate
to true, then the illocution is considered and the action language expressions are
performed modifying the corresponding information models.

• min,max : R → N . Functions min(r) and max(r) return respectively the mini-
mum and maximum number of agents that must and can play the role r ∈ R.

• i stands for the scene information model.

3.5.4 Performative Structure

The Performative Structure specifies the interaction conventions that govern the illo-
cutory exchanges. Or, more abstractly, the interaction flows that are admissible in the
institution. That flow is expressed through the interlacing of scenes or even other perfor-
mative structures–a performative structure can contain other performative structures–.
Connections between scenes and/or performative structures are expressed by canonical
scenes called transitions that establish the conditions for access or departure from a
given interaction context (changes of conversation), activation of new scene or perfor-
mative script enactments or even cloning of individual agents. Transitions describe the
role–flow policies between scenes and/or performative structures.

A Performative Structure is defined as a tuple: ps = 〈W,T, s0, sΩ, E, fL, fW , fT , fE , C, µ〉
where:

• W ⊆ KW is a finite, non-empty set of node identifiers, such that W = WS ∪WPS,
where WS stands for the scene nodes identifiers and WPS stands for the set of
performative structure node identifiers.

• T is a finite and non-empty set of transition identifiers;

• s0 ∈ S is the initial scene;

• sΩ ∈ S is the final scene;

• E = EI ⋃
EO is a set of arc identifiers where EI ⊆ W × T is a set of edges from

scenes and performative structures to transitions and EO ⊆ T × W is a set of
edges from transitions to scenes and performative structures;

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 48

• fL : E → LL is a labeling function, returning for each arc a disjunctive normal
form of pairs of agent variable and role identifier expressed in LL. The arc label
language LL is defined by the language generated by the following grammar with
starting symbol L:
L ::= C

| L ∨ C
C ::= (x : r) with x ∈ VAgents, r ∈ (KRI

∪KRE
)

| C ∧ (x : r) with x ∈ VAgents, r ∈ (KRI
∪KRE

)

• fW : W −→ S
⋃

PS maps each element in W to a scene type or a performative
structure type;

• fT : T → T maps each transition to its type. The following types of transitions
are defined:

– And: They establish synchronization and parallelism points since agents are
forced to synchronize at their input to subsequently follow the outgoing arcs
in parallel.

– Or: They behave in an asynchronous way at the input (agents are not re-
quired to wait for others in order to progress through) and as choice points
at the output (agents are permitted to select which outgoing arc to follow
when leaving).

– xOr: They behave in an asynchronous way at the input (agents are not
required to wait for others in order to progress through) but they must follow
the specified outgoing arc when leaving).

According to this classification, the set of transition types is defined as:
T = {And,Or, xOR};

• fE : EO → E maps each arc to its type. The following types of arcs are defined:

– 1: Constrains agents to enter a single instance of the target activity.

– some: Is less restrictive and allows the agents to choose a subset of instances
to enter.

– all: Forces the agents to enter all the activity instances to which the paths
lead.

– new: Fires the creation of a new scene instance of the target activity.

According to this classification, the set of arc types is defined as:
E = {1, some, all, new};

• C : EI → CONS maps each arc to a expression representing the arc’s constraints;

• µ : S → {0, 1} sets if a scene can be multiple instantiated at execution time.

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 49

3.5.5 Norms

Norms establish role-based conventions regulating commitments. These are expressed
as pre-conditions of the illocutions admissible by the performative structure. Dialogical
interactions have institutional consequences that are known to intervening agents who
are bound to their satisfaction. These consequences can be thought of as commitments
that impose constraints on actions these agents might carry out in the future.

A Norm is defined as a tuple n = 〈sj, wkj
, ilj , dmj, s

′
j, w

′
kj

, i′lj〉 where:

• sj is a scene identifier,

• wkj
is one of k states of scene sj,

• ilj is one of lj illocution schemata of scene sj,

• dmj is a predicate used in order to represent basic deontic 3 4 notions. The
following predicates are used:

– obl(x, i, [w,]s) = an agent x is obliged to do i in state w of scene s.

– prh(x, i, [w,]s) = an agent x is prohibited to do i in state w of scene s.

• s′j is a scene identifier,

• w′
kj

is one of k states of scene s′j,

• i′lj is one of lj illocution schemata of scene s′j,

Basic normative rules are first-order formulae of the form [18]:

(
∧n

j=1 uttered(sj, [wkj
], ilj)) −→ (

∧n′
j=1(obl | prh)(uttered(s′j, [w

′
kj

], i′lj))).

The meaning of normative rules is that if grounded illocutions matching il1 , . . . , iln are
uttered in the corresponding scene states, then grounded illocutions matching i′l1 , . . . , i

′
ln

must be enforced or are prohibited.

Note: In the current electronic institution’s specification, it is clearly stated that the
electronic institution doesn’t enforces norms. We use a slightly different approach in
the sense that norms need to be enforced by the electronic institution; if a grounded
illocution matches, then its corresponding illocution will be executed as soon as the
conditions imposed by the scene and state hold.

3 Deontic modality is a modality that connotes the speaker’s degree of requirement, (desire for), or
commitment to the realization of the proposition expressed by the utterance.

4 An utterance is a complete unit of talk, bounded by the speakers silence.

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 50

3.5.6 Electronic Institution for Information Systems EI2S

The EI2 is a coordination artifact, a computational entity that facilitates effective agent
governance. It is a way of expressing conventions that agent interactions should follow
and a way to see to it that those conventions are actually followed by participating
agents. Those conventions can be thought of as constraints on the possible interactions.

An Electronic Institution for Information Systems is defined as a tuple: EI2S =
〈df, ps, i, N〉, where:

• df stands for a Dialogical Framework;

• ps stands for a Performative Structure;

• i stands for the information model;

• N stands for a set of norms.

3.5.7 Institutional Agent Oriented Information System IIS

An Institutional IS is a tuple: IIS = 〈O, C, EI2S,F ,GL〉, where:

• O is the Real World Organization.

• C is the Computational World.

• EI2S is the Electronic Institution for information systems

• F is a mapping function for the elements in EI2S to elements in O.

• GL is the Grounding Language, a mapping function for the elements in C to
elements in EI2S.

3.5.8 Real-Organization

The real-organization is a tuple O = 〈OE, OG, OS, PR〉, where:

• OE is the organization environment.

• OG are the organization goals, that is: business goals and performance metrics.

• OS is the organization’s structure, that specifies people’s functional roles and their
relationship.

• PR is a set of procedural rules.

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 51

3.5.9 Organization Structure

A Organization Structure is a tuple: OS = 〈R, AR,WS〉 where:

• R is the set of possible Roles.

• AR are the Roles’ attributes.

• RR is the relation between roles.

The Social Structure relates roles, departments, functions and user permissions within
the organization.

3.5.10 Achievement Structure

An Achievement Structure is a tuple: AS = 〈G, I〉 where:

• G are the Goals of the organization.

• I are the performance indicators.

3.5.11 Computational World

The Computational World is a tuple C = 〈oc, IDi, IDf , IDe, BR, IDP , DBP , SA, RA〉,
where:

• oc is the computational domain’s ontology.

• IDi ∈ oc are unique identifiers for forms and interaction devices.

• IDf ∈ oc are tags identifiers required to identify interaction devices’ field names.

• IDe ∈ oc are events identifiers that identify user action over an interaction device.

• BR ∈ oc stands for a set of business rules procedures identifiers.

• IDP ∈ oc stands for a set of interaction devices procedures identifiers.

• DBP ∈ oc stands for a set of database procedures identifiers.

• SA ∈ oc stands for a set of server agents identifiers.

• RA ∈ oc is the set of relationships between procedures and server agents identifiers.

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 52

3.6 Grounding Language

We want every institutional action to correspond to an action in the business domain.
That is, we need an isomorphism from the electronic institution into the IS, such that
(i) there is a correspondence between real world entities and entities in the electronic
institution, and (ii) every illocution in the electronic institution corresponds to an action
(transaction, message, procedure execution, etc.) in the IS. In order to construct this
isomorphism we need to establish a mapping of ontologies and build a grounding language
that must be interpreted by the electronic institution.

In Figure 3.11 we show a simple form for the hotel check-in example. This form con-
tains data fields tags and values, for example the field “Arrival Date:” has the value
“20071130”; also this form contains events identifiers, for example pressing the “Es-
cape” key or clicking the mouse over the “Esc-exit” icon produces the “Esc” event,
similarly pressing the “F2” key produces the “F2” event. In Table 3.2 we show the
correspondence between the real world form elements and the elements required in the
electronic institution’s ontology.

c

Figure 3.11: Check-in. Registering a walk-in guest

We need to align the ontologies of the Computational and Institutional worlds by es-
tablishing appropriate correspondences between the following elements:

• Illocutory particles: in practice, inform and request.

• Unique identifiers for forms and interaction devices.

• Tags to identify forms’ field names. Each form is defined as a class inside the
institution; class’ attributes correspond to field names.

• Events to identify user action; There is a special enumerated attribute inside the
form’s class definition, this is the events attribute, its values correspond to events
descriptions, for example, the ESC, F3 and F4 keys, and their corresponding
event status represented as boolean values, that is: (ESC-enabled, F3-enabled,
F4-disabled), see Figure 3.11 and Table 3.2.

• Identifiers for forms’ control commands. They must be incorporated in the institu-
tional ontology as valid terms. The required commands’ identifiers are: setFocus,

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 53

Form Label
 Label / Tag

Attributes

Initial Tag

Value

Institution

Ontology

Reservation

Form
 all
 reservationData

Reservation ID
 R/O, Integer
 reservationID

Arrival Date
 Date
 2007/11/30
 arrivalDate

Departure Date
 Date
 departureDate

Nights
 R/O, Integer
 0
 nights

Adults
 Integer
 1
 adults

Children
 Integer
 0
 children

Room type
 Combo
 roomType

Room Number
 R/O, Text
 roomNumber

Folio Number
 R/O, Integer
 0
 folioNumber

Folio Qty
 R/O, Integer
 0
 folioQty

Daily Rate
 R/O, Double
 0.00
 dailyRate

Stay Rate
 R/O, Double
 0.00
 stayRate

Form Label
 Label / Event

Attributes

Initial

Event

Value

Event

Esc-Exit
 Present
 Enabled
 Esc

F3
-Ignore
 Present
 Enabled
 F3

F4
-Save
 Present
 Disabled
 F4

Table 3.2: Check-in. Registering a walk-in guest

disableEvents, enableEvents, enableFields, disableFields, and displayForm. Each
one must be defined as a class term in the institutional ontology, defining their
corresponding attributes and required initial values.

• Basic interaction devices’ commands to activate functions for interaction devices.
The required commands are: print and display. They must be incorporated in the
institutional ontology as classes as in the previous paragraph.

• Business rules’ identifiers to specify business rules, database and intelligent agents
procedures. These identifiers are application domain’s specific terms. For the ex-
ample provided in this section, the required terms are: validateStay, assignRoom-
Number, calculateStayRate, assignFolioNumber, and saveReservation. They must
be incorporated in the institutional ontology as classes, defining their correspond-
ing attributes that will be business rule’s tag-value values required for interaction
between computational domain elements.

• A business context environment, that is defined as information models (see Section
3.4.2) for scenes and roles associated to each server agent instance in its life cycle.
For example, a business rule agent will have a business context information models
associated to it while performing inside a scene.

The Grounding Language is a tuple GL = 〈o, oc, C, ip, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9〉, where:

• o stands for the basic electronic institution’s ontology.

• oc stands for the computational domain’s ontology.

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 54

• ip stands for illocutory particles: inform and request.

• θ1 : IDi −→ Ic, is a function that maps, forms and interaction devices’ unique
identifiers into an EI2S class identifier that is used to represent such device in the
institution.

• θ2 : IDf −→ K ⊆ Kinteraction devices is a function that maps tags identifiers in
class’ attributes into the institution’s ontology. Each form or interaction device
has its own class inside the institution, thus, these tags are mapped as class’
attributes representing forms and interaction devices’ field names; class’ attributes
correspond to field names.

• θ3 : IDe −→ K ⊆ Kinteraction devices is a function that maps events identifiers in
enumerated class’ attributes into the institution’s ontology; their values correspond
to events descriptions.

• θ4 : BR −→ K ⊆ Kbusiness rules is a function that maps business rules modules’
computational domain identifiers, into institutional identifiers.

• θ5 : IDP −→ K ⊆ Kinteraction devices is a function that maps interaction devices
modules’ computational domain identifiers, into to institutional identifiers.

• θ6 : DBP −→ K ⊆ Kdatabase is a function that maps database modules’ computa-
tional domain identifiers, into institutional identifiers.

• θ7 : SA −→ K ⊆ Kserver agent is a function that maps server agents’ computational
domain identifiers, into institutional identifiers.

• θ8 : RA −→ P((BR∪IDP ∪DBP)×(SA)) ∈ KRA
is a function that returns for each

relationship, the set of couple of module’s institutional identifier–business rule,
interaction device or database–and server agent’s institutional identifier handling
it.

• θ9 : P((BR ∪ IDP ∪ DBP) × (SA)) −→ i is a function that returns for each
relationship between modules and server agents identifiers, the information model
associated to it.

3.6.1 Performative Scripts

Definition 3.6.1 A Performative Script is an IIS presented in a form that is well
suited for automated manipulation, it is the basic unit of execution in this framework.

We build each performative script as an electronic institution specifying:

• a dialogical framework that establishes the institutional ontology, communication
languages, and the valid agents’ roles and their relationships;

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 55

• a set of performative structures–we must observe here that according to the per-
formative structure’s definition (see Definition ??), a performative structure can
contain other performative structures–, each one specifying a network of scenes
where agents interact according to the established social order, and

• a set of scenes, where each scene specifies how agents interact according to valid
illocutions.

It specifies the conventions participating agents should comply with; these are basically
roles, illocutions, repeated scenes and transitions where obligations are committed and
fulfilled.

In Figure 3.12, intuitively we can see how a Performative Script is executed by an EI2S
(shaded area) to coordinate the interactions between domain agents. The performative
script is provided to the institution by a specialized middleware agent. Dashed lines
indicate how the performative script’s internal model coordinates actual server and user
agents interaction.

Electronic

Institution

Performative

Script

DBag
 BRag
 BRag
 BRag

Uag

DBag
 BRag
 BRag
 BRag

Uag

Uag

User

Business

Rules

Business

Rules

Information System

User
DB

Uag

Form

Form

Figure 3.12: EI2S coordinates domain elements interaction

The performative script is the basic unit of execution in this framework. We build each
performative script as an electronic institution defining:

• a dialogical framework that establishes the institutional ontology, communication
languages, and the valid agents’ roles and their relationships;

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 56

• a set of performative structures–we must observe here that according to the per-
formative structure’s definition (see Definition ??), a performative structure can
contain other performative structures–, each one specifying a network of scenes
where agents interact according to the established social order, and

• a set of scenes, where each scene specifies how agents interact according to valid
illocutions.

3.6.2 Business Contexts

Sometimes, we need to refer to related functionalities of an IS, usually grouped by
organization’s departments, employees responsibilities or functional roles, for example in
a HIS, if we want to refer to the part of the IS that is used at the reception department to
attend guests, we refer to the front-desk group of activities implemented for this purpose;
and more specifically, we could need to refer to the group of activities to attend a guest
at check-in time, which could be implemented in the IIS as a set of scenes, each one
containing their interacting agents playing their roles–with their associated information
models– according to a set of norms. We use the term business context to refer to such
group of scenes.

Definition 3.6.2 A Business Context is an execution time instance of a performative
structure that contains only scenes.

In Figure 3.13 we can see how the hotel’s “Check-in” business context is enabled by
instantiating the corresponding performative structure as part of the performative script.
Also, we can see how it is related to other domain business contexts.

3.7 Summary

In this chapter, we presented a conceptual model and theory for a framework to build
IIS based on agent technologies and the concept of electronic institutions. We separated
organizational world, computational world and institutional world elements, explaining
how they interact in order to enact domain elements interaction, giving life to an intel-
ligent organization. We made slight modifications to the electronic institution’s theory
to build the institutional model within organizational world context, then we extended
this theory to include concepts required by the computational world in order to be able
to interpret the institutional model, in a way that modeled agent interactions coming
from organizational world context and process definitions, truly correspond to compu-
tational world elements interactions producing the intended composition, enacting then
an institutional IS.

CHAPTER 3. CONCEPTUAL MODEL FOR IIS 57

Check in

Hotel

Services

Folio

Management

Check out

Accounting

Reservation

Electronic

Institution

Performative

Script

DBag
 BRag
 BRag
 BRag

Uag

DBag
 BRag
 BRag
 BRag

Uag

Uag

User

Business

Rules

Business

Rules

User
DB

Uag

Form

Form

Figure 3.13: A basic hotel “Check-in” business context and its corresponding Perfor-
mative Script

Chapter 4

Framework for Building an IIS

This chapter describes a framework consisting of computational infrastructure that re-
alizes the ideas outlined in Chapter 3. More specifically, in order to deal with complex
interactions, we use the theory and notions of organizations and institutions to imple-
ment prescriptive specifications that may be properly enacted. As described earlier, we
are working with the notion of Electronic Institutions to allow teleological and normative
specification of agent interactions [3].

We have built and deployed the framework consisting of organizational middleware and
domain agents. The organizational middleware reads performative scripts at run time
and interprets them delegating to specialized server agents access to business rules and
data bases. Those server agents, in turn, communicate with specialized user agents that
facilitate human interactions through traditional plain and grid forms.

The purpose of this framework is to facilitate the building of ISs that implement a
high-level prescriptive specification of an organization by encapsulating its institutional
elements through standard procedures and corporate decision-making criteria made
available through specialized agents. We intend our framework to allow for the con-
struction of ISs that are flexible enough to adapt to changing requirements and business
conditions.

Figure 4.1 depicts a general view of the relation between the three worlds and shows
all type of agents required: i) agent “EI” to model the intended real world behavior
in the electronic institution producing a performative script, ii) agent type “run-time
EI” as part of the organization engine to use the performative script as input to the
computational world and thus interpreting it, iii) organization engine’s agents to instan-
tiate and control business rules and database server agents allowing them to interact as
prescribed, using their repositories and sending messages to other user or server agents,
and iv) user agents allowing people and hardware devices to interact through special-
ized interaction devices agents. As can be observed in the figure, the computational
interpretation of the model coordinates agent behavior giving into life an IIS.

The architecture used to implement this framework follows a distributed agents sys-

58

CHAPTER 4. FRAMEWORK FOR BUILDING AN IIS 59

Real World

Organization

Engine

Electronic

Institution

Business rules

Computational World

Intelligent

Organization

Enactment

Br

EI

Ma

Mg

Co

Co
Ua

Performative

Scripts

Repository

Business

Rules

Repositories

Db

Data Base

EI

Id

Id

Figure 4.1: Framework Overview

tems approach. As suggested by the swarm intelligence metaphor ([5]): the required
functionality is implemented in many small autonomous agents organized into colonies :
organization engine agents, server agents, and user agents. They communicate with each
other through messages, then messages are first class elements in this implementation.

Section 4.1 explains organization engine’s agents, Section 4.2 explains server agents,
Section 4.3 explains user agents, Sections 4.4 and 4.5 explain how to access business
rules and database repositories respectively, and finally Section 4.7 explains how agents
communicate.

4.1 Organization Engine’s Colony Agents

As shown in Figure 4.2, the organization engine is comprised of the following agents:

• Controller agent,

• Institutional agent,

• Messaging agent, and

• Communication agent.

CHAPTER 4. FRAMEWORK FOR BUILDING AN IIS 60

A server agent is considered part of the server agent’s colony and it’s explained in Section
4.2. It is shown here because it is created by the controller agent. There are several
remarkable point to mention about the figure:

• The controller agent creates new server agents, which leave in their own thread,
communicating through the messaging agent to other external agents, that is,
agents from other colonies.

• Any communication required from another colony is done through the communi-
cation agent.

• The internal messages are Java classes. However, inter-colonies messages are xml
formatted messages.

A detailed explanation of each agent follows.

Controller

Agent

Communication

Agent

Server

Agents

Communication

Agent

Messaging

Agent

<<listens/talks>>
 <<listens/talks>>

<<listen/talks>>

<<creates>>

run-time

Electronic

Institution

Agents

<<creates>>

<<uses>>

Middleware Agents

Organization Engine

<<talks>>

User

Agent

<<uses>>

Domain Element

Figure 4.2: Organization Engine Agents

4.1.1 Controller Agent

This agent maintains three directories. The first directory identifies all business rules
registered and therefore available in the framework. For each procedure’s type–business

CHAPTER 4. FRAMEWORK FOR BUILDING AN IIS 61

rule or database–, this directory includes its unique procedure identifier and its associ-
ated server agent (see Section 3.5.11). The second is a run-time directory, that identifies
all server agents currently active, including their corresponding ip address and access
port. this directory also includes the type of server needed to provide this service, a
business rule server agent for example, but also can be a web-service. It’s worth to note
that the ip address can reference another organization engine located elsewhere, allowing
clustering. When the execution of a business rule that is not currently represented by an
active business rule server agent is required, the controller agent creates a new instance
for a server agent specializing it in the proper type (see Section 4.2). The instantiated
server agent will represent this associated business rule procedure as explained above in
this paragraph. The third directory is used to keep track of all instantiated workflow
controllers, that is, all instantiated run-time institutional agents. When the controller
agent reads a new performative script, it instantiates an institutional agent and gives it
control over the required workflow (see next sub-section).

4.1.2 Institutional Agent

Workflow control is the main concern for this agent. This agent controls an instance of
an electronic institution in the form of a performative script as explained in Section 3.6.1.
It takes as input a performative script, transforms it into an internal representation, and
then executes it.

Note: For the purposes of this thesis, in Section 3.5 we specified the required Theory
that defines the institutional framework, however, we haven’t worked in their operational
semantics, neither in its rigorous implementation. For the purposes of this thesis and
in order to be able to put our ideas in practice and deploy the case study presented
in Chapter 6, we built an institutional workflow controller that simulates the intended
institutional behavior.

4.1.3 Messaging Agent

This agent is in charge of receiving and delivering all messages among agents. Agents
register themselves with this agent in order to send or receive messages. These messages
may have an origin, an addressee or a role. This agent would decide to what particular
agent or group of agents to deliver a message. The following heuristics are applied when
delivering a message:

• If the message has an addressee, then the message is delivered directly to it.

• If the message does not have an addressee, it must have a role, which this agent
will use to broadcast the message to all agents playing the role.

CHAPTER 4. FRAMEWORK FOR BUILDING AN IIS 62

4.1.4 Communication Agent

Those process that require input from the user, uses the interaction device agent in order
to acquire a proper way of achieving this. A specialization of the interaction device is
the form manager. There are two kind of form managers:

• the Desktop Form Manager which deals with the functionality required by Desktop
Applications.

• The Browser Form Manager which deals with the functionality required by In-
Browser Applications.

As shown in Figure 4.3, all agents that need an external–xml–communication with
another agent, use the services of a communication agent that uses a xml parser and a
socket manager components to interpret messages in the proper protocol.

User

Agent

Socket

Manager

Component

Communication

Agent

TCP / IP

protocol

<<uses>>

HTTP

protocol

Messaging

Agent

<<uses>>

<<uses>>

XML parser

Component

<<uses>>

Server

Agent

<<uses>>

Figure 4.3: The Communication Agent parses xml messages sent using the required
protocol

4.2 Server Agents’s Colony

4.2.1 Server Agent

As shown in Figure 4.4, this agent has two specializations as established in theory (see
Section 3.5.11): business rule or database server agent. It is instantiated on demand as

CHAPTER 4. FRAMEWORK FOR BUILDING AN IIS 63

a specialized server agent from the organization engine’s colony by the controller agent.
It knows what actions should be taken given a specific message. This agent can have
an external communication with any other server agents. As mentioned elsewhere, all
external communication is done by means of an illocution. The communication agent
is the one described in Section 4.1.4.

Server

Agent

Data Base

Access

Agent

Server

Agent

Business Rules

Agent

<<listen/talks>>

Figure 4.4: Business rule and database agents as a server agent’s specialization

In Sections 4.4 and 4.5 we explain how server agents are used to represent business
rules or database procedures in this framework. Artificial intelligence techniques access
can be implemented by a server agent having both, business rules and database agents’
functionality, as required.

4.3 User Agents’ Colony

As shown in Figure 4.5, the user agents’ colony is comprised of three types of agents:
user agents, interaction device agents and communication agents; the communication
agent is the one described in Section 4.1.4.

4.3.1 User Agent

User agents can communicate with agents belonging to the same colony as well as with
agents belonging to other colonies–user and/or server agents’ colonies–.

4.3.2 Interaction Device Agent

This agent has direct interaction the human user through a graphical interaction device
such as a form presented in a computer screen, this agent also handles directly the
interfaces for specialized hardware like credit card readers, hand held devices, printers
and computer ports, among others.

CHAPTER 4. FRAMEWORK FOR BUILDING AN IIS 64

Interaction

Device

Agent

Communication

Agent

User

Agent

<<uses>>

<<uses>>

Figure 4.5: User Agents’ Colony

As shown in Figure 4.6, user agents use an interaction device agent in order to interact
with the real world environment.

User

Agent

Form

Manager

Agent

Interaction

Device Agent

<<uses>

Desktop Form

Manager

Agent

Browser Form

Manager

Agent

<<interacts>>
 <<interacts>>

Specific

Device

Agent

<<interacts>>

<<instantiates>

Figure 4.6: User Agents interact with the real world environment through interaction
devices

CHAPTER 4. FRAMEWORK FOR BUILDING AN IIS 65

4.4 Accessing Business Rules

Business

Rule

Agent

User

Agent

Data Structures

Delphi,

'c' or java

program

<<loads>>

<<uses>>

Business Rule Agent

issues

illocutions
 Server

Agent

issues

illocutions

Figure 4.7: Accessing Business Rules

Our particular implementation for this framework supports writing business rules in
three languages: delphi, c and java. As shown in Figure 4.7, we can write code for
business rules the same way we do in a regular program. All we need to consider is that
all business rules written in the same program, will share the same business context as
explained in Section 3.6.2. That is, we can define any set of structures, objects and
variables expecting to be maintained in context while the business rule server agent is
alive. This means that if a person interacts with a form controlled by an interaction
device through a user agent, all intervening agents will remain alive and the value
assigned to all variables will represent the state of the world–the context–while the
interaction is in course. A usual behavior is when the human user decides to terminate,
someway he indicates his desire to the interaction device–maybe pressing the F1 key–,
then the corresponding agent sends the terminate interaction illocution, and all server
agents intervening in the dialog will be discharged by themselves, freeing all allocated
computer resources.

If we want to provide access to business rules coming from different business contexts,
then we need to code a single program per business context. The same server agent is
able to load and maintain context for several sets of business rules belonging each set to
a different business context, but federated in a single interaction as explained in Section
??.

CHAPTER 4. FRAMEWORK FOR BUILDING AN IIS 66

4.5 Accessing Data Bases

The database server agent is a server agent’s specialization that is used to deal with
database systems. As shown in Figure 4.4, to achieve communication with those systems,
it uses three components, the fist is a particular component used to translate generic
SQL requests written in the “c” language into java a component element, the second
component resides in a java virtual machine and is used to bridge requests between the
“c” language and java–this is a particular situation for our case study as we will see
in Chapter 6–. The third component is the actual bridge used to access a particular
database management system–such as Oracle or MS-SQL–.

TCAJSqlC

c/c++

Business Rule

Agent

<<dll>>

TCAJDBC

Bridge

TCAJSqlC

java

<<uses>>

<<uses>>

<
<
i
n
t
e
r
a
c
t
s
>
>

DBMS

Translates a C call

into a java Class

and viceversa

Java component

resides in JVM

These components

are used to bridge

the request

through JNI

among C and java

Data Base Agent

Issues SQL

commands

Figure 4.8: Accessing Data Bases

The database agent knows how to access tables and records stored in a particular
database. This delegation allows using different data bases using a loosely coupled
approach.

The functionality implemented for our case study is as follows:

1. The server agent, using a dll issues a sql command, this command is received by
the TCAJSqlC component,

2. The TCAJSqlC component, written in C/C++, sends this information to a TCA-
JSqlC java component class.

3. The TCAJSqlC java component class interacts with a TCAJDBCBridge in order
to have the issued command executed in the DBMS. This TCAJDBCBridge may
be implemented as a state-full session Enterprise Java Bean (EJB).

CHAPTER 4. FRAMEWORK FOR BUILDING AN IIS 67

4. The results are sent back to the Java component which in turn sends it to the
TCAJSqlC component written in C/C++. Finally it sends it back to the server
agent.

4.6 Framework Considerations

As we defined in Definition 3.6.1, a performative script is an IIS representation suited
for automated manipulation, that is, a data file stored on disk with an associated file
name; this file name corresponds to the performative script name, thus the complete IIS
is composed by several performative scripts stored as disk files. When the organization
engine reads a performative script, it reads a file, loads it into computer memory and
passes it to the institutional agent –a member of the organization engine as explained
in Section 4.1– and it instantiates the performative script as a “business context” (see
Definition 3.6.2). When we want to refer to a specific institutional scene–like the check-
in scene–, we choose to refer to the “business context”. We do this way because it is not
important if we refer to a scene at design time, or while it is stored on disk, or when it
is instantiated, what is important to specify is what particular interactions the scene is
referring to.

As defined in Section 3.5.3, each scene has its own information model, then each “busi-
ness context” has its own information model. As defined in Section 3.6, we need to
map computational domain ontology identifiers representing business rules, database,
interaction devices and user agents into institutional ontology identifiers.

Each set of business rules and database programming code, is grouped in a module; thus
a particular business context can have associated several modules, one for each group of
programming code. Each module shares the same computational context, that is: data
structures and variables; the institutional information model is shared by the institution
and all modules belonging to that particular business context.

It is important to mention here, that as each module refers to particular type of program-
ming code, in order to make the framework available for the incorporation of artificial
intelligence techniques, such as those required for learning and reasoning, for example
those needed to analyze the hotel occupancy and pricing history in order to suggest the
best price for a given guest type, at a given location for specified dates, we need to have
business rules capable of handling their particular implementation requirements.

As we mentioned above, at run-time, the organization engine is in charge of reading
and instantiating the performative script producing a business context. In order for the
organization engine to be able to identify their required computational domain elements,
we must take into account the considerations described in the following sub-sections.

CHAPTER 4. FRAMEWORK FOR BUILDING AN IIS 68

4.6.1 Organization Engine’s considerations

In order to create and pass control to server agents, the organization engine needs to
maintain at run-time a server agents directory containing the following information:

• server agent identifier.

• agent type: business rule or database.

• Instantiated modules. In order to locate business rules at run-time, the organiza-
tion engine maintains the following table:

– module identifier.

– an identifier for each business rule that is implemented as part of this module.

In order to provide the organization engine with the required server agents information,
we must take into account the considerations presented in Section 4.6.2.

When a user agent is invoked by a end-user in his workstation, the performative script
for the login business context is instantiated; the user enters his name and associated
information in order to be identified by the institution, then the institution instantiates
the performative script for the particular business context required by the user. In the
institutional ontology, we must provide grounding information as described in Section
??. The institutional ontology identifier for each form is used by the organization engine
to locate that particular form in the disk files of the central computer server, that is,
forms are controlled by the organization engine instead of each particular user agent.
We do this way to provide automatic form version and language control. As part of
the performative script initialization process, the organization engine ask the user agent
for the form version it has in its local computer –if any– for all required forms for that
particular performative script; then it verifies if the form version available in the user
computer is the same as the last form version in the computer server, if not or if it
doesn’t exist, the organization engine sends to the user agent the required actualized
form. The next organization engine’s step is to pass control to the institution agent as
described above.

The organization engine needs to maintain at run-time a user agents directory containing
the following information:

• user agent identifier.

• agent type: user agent.

• Forms needed. In order to locate forms at run-time, the organization engine
maintains the following table:

– form institutional identifier.

– form local identifier (name on computer disk).

CHAPTER 4. FRAMEWORK FOR BUILDING AN IIS 69

– form version.

– form language.

In order to provide the organization engine with the required user agents information,
we must take into account the considerations presented in Sections ?? and ??.

4.6.2 Server Agents considerations

We must provide the following specifications for each business rules module that will be
represented –loaded and instantiated– by a server agent:

• agent type: business rule or database.

• module identifier.

• module local name; as each module identifier references a local program containing
the implementation of all business rules belonging to it, it can be named differ-
ently in the computational domain, usually the name of the program; in case of
programming languages producing dynamic link libraries, this name will refer to
the run-time name of these libraries.

• an identifier for each business rule that is implemented as part of this module.

In the case study presented in Chapter 6, business rules were implemented in the “c”
language; thus, the set of business rules grouped together in the check-in module, were
programmed and stored in the “hot020.c” source file; when compiled, this source file
produced the “hot020.dll” library. At run-time, the corresponding server agent loads and
instantiates this library and passes control to an initialization function where all data
structures and variables are allocated in local memory; also, a special data structure
defined as an image of the institutional information model for the scene where this
module participates is allocated in local memory.

4.6.3 User Agents considerations

As user agents instantiates when users invokes them in their workstations, we must
provide the following specifications for each user agent:

• user agent identifier.

• agent type: user agent.

• For each form needed:

– form institutional identifier.

CHAPTER 4. FRAMEWORK FOR BUILDING AN IIS 70

– form local identifier (name on computer disk).

– form version.

– form language.

Note that we don’t need to specify any form’s command, as they are only important in
the institutional context.

4.6.4 Interaction Devices Agents considerations

Interaction devices’ agents are special purpose agents, built according to the specific
needs or the device being used. For example, the agent required use the credit card
magnetic reader in the check-in business context acts and responds locally to the re-
quirements of such device. The only communication it has with the framework is though
illocutions. Thus we only need to identify the agent for addressing purposes, then the
only required information is the interaction device’s institutional identifier.

4.7 Messaging Infrastructure

Agent communication is divided in three cases:

1. Agents from different colonies communicate with each other through illocutions
contained in messages.

2. Agents from the same organization engine colony, communicate with each using
a proper internal representation message–such as a java class–, nevertheless if
agents came from different organization engine colony, they communicate using
illocutions.

3. User agents colony agents communicate with other colonies always through illocu-
tions, nevertheless, they communicate with their own colonies’ interaction devices
agents using both, illocutions or an internal message representation.

Then, we can say that agent communications is internal–java classes–or external–xml
message–. In both cases, a message follows the definition presented in Section 3.4.4:

• an origin, that is, the source of the message.

• an addressee, which, if not empty, the recipient of the message,

• a role, used for broadcasting the information if an addressee is not defined.

• the body of the message, which usually is a “verb” contained in the ontology and
describes the particular information or request that may include other specific
information.

CHAPTER 4. FRAMEWORK FOR BUILDING AN IIS 71

The messaging agent considers several types of messages:

Flow. This type of messages are used for flow control. Currently the controller agent
is interested in this type of messages. When a message of this type arrives, the
controller agent creates a new server agent of a proper type, entering its proce-
dure identifier and associated business rule identifier in the organization engine’s
services directory (see Section 3.5.11).

GUI. Messages with this type are used for communication from the server agent to
a graphical interaction device. Because a graphical interaction device agent is
tightly coupled with a business rule agent, messages from interaction device agent
have the addressee set to the business rule agent it interacts with.

Send External Data. This type of message is sent by server agents to other colonies.
In the process, the communication agent takes the internal representation of the
message and generates its corresponding xml message based on a data type defi-
nition (DTD).

Received External Data. This type of message is received from the exterior by the
communication agent, it parses the message and converts it into an internal rep-
resentation for use inside the colony.

TCP Port Configuration. This type of message is used by the communication agent
in order to self-change the socket’s configuration it is working with. In this way,
the communication agent can send messages to agents in other colonies having
different ip-address and/or port.

InterGUI Communication. This type of message is used for communication between
user agents in the same colony, for example, a user agent communicating with its
associated interaction device agent.

When a message arrives to the organization engine, the communication agent processes
it and transforms it into an internal representation as shown in Figure 4.9 as a UML
class diagram. The diagram contains all message’s specializations.

The messages used for sending information back and forth are:

StartingApplicationMessage. This message is used to tell the controller agent that
there is a user agent interested in its services, but that prior to this, there has
been no interaction between them.

AskForBusinessServer. This message is used to ask the controller agent if a particular
business rule is actually available through some server agent. The controller agents
answers this message indicating the ip address and port of an already instantiated
server agent that has associated the required business rule as explained in Section
4.1.1.

CHAPTER 4. FRAMEWORK FOR BUILDING AN IIS 72

IMessage

+
getIdentifier
:String

InternalMessage

AskForABusiness

Rule Server

ExecuteProcess

Message

StartProcess

Message

StartApplication

Message

EndProcess

Message

StablishNew

Connection
msg

StoreData

Message

ReqstClientAction

Message

AbstractInternal

Message

{abstract}

Figure 4.9: Messages’ internal representation

StartProcessMessage. This message is used for requesting a business rule server agent
to load and initialize data structures for a business context as explained in Section
4.4.

EndProcessMessage. This message is used to tell the business rule server agent that
the infrastructure ins no longer interested in its services, then, the business rule
server agent is able to self-discharge freeing any resources it has acquired.

StoreDataMeessage. This message is used to tell a specific business rule server agent
tag-value data streams in order to actualize data structures in a specific business
context.

ExecuteProcessMessage. This message is used for asking the business rule server
agent to execute a specific business rule.

CreateMenuMessage. This message is used to tell to an interaction device agent
information concerting a pertinent menu that must be shown in an interaction
device. This information is sent in a tree-like data structure.

CHAPTER 4. FRAMEWORK FOR BUILDING AN IIS 73

RequestClientActionMessage. This message is used by the business rule server
agent to tell an interaction device agent that a modal intervention for human
user interaction follows. This is the case when the infrastructure displays an error
message on the screen and waits until the human user press a key or clicks its
mouse.

SuccessMessage. This message is used by an interaction device agent for telling the
infrastructure that the previously requested operation was successfully fulfilled.

4.8 Advanced Features

This section includes advanced features implemented in our framework that were not
explained before for clarity purposes. These features weren’t essentially required in our
framework but we were enthusiastic with these ideas and implemented them, providing
a framework with advanced features that helped us with the complexity of real world
deployments and promoting better scalability enabling intelligent organizations.

4.8.1 Agents Migration

What we do in our framework is to have an interaction devices agents repository, then,
each time an interaction device agent interaction is required by a user agent, it is in-
stantiated, and the first thing they do is to verify if the device identifier and attributes
are the same as the physical device installed in the enterprise’s real setting, if not, the
interaction device agent migrates from the repository directly to the users’ colony–see
Section 4.3–and the user agent instantiates it there.

4.9 Summary

In this chapter we described a framework that realizes the ideas presented in Chap-
ter 3, implementing the required mechanisms to handle our ideas. We explained how
we implemented the framework using agents colonies representing organization engine’s
agents, server’s agents and user’s agents. We made several framework’s considerations,
and we provided an explanation of how the framework allows access to business rules and
database rules through specialized server agents. Finally we provided a detailed expla-
nation of how we implemented the required messaging infrastructure for this framework.

Chapter 5

Methodology

In this chapter we provide an implementation methodology to build an IIS using the
conceptual model presented in Chapter 3 and the framework for building IIS presented in
Chapter 4. As an initial step, in order to understand the real-organization requirements,
we will suggest to use some suitable methodology based on the organizatioanal metaphor.
We will then to establish the required steps for the organizational structure definition
that we require establishing procedural rules, roles and their relationships. Then we will
provide required steps –clarifying them using the check-in business context– to build a
business process definition according to our model. We will specify the required steps
for grounding real-organization and computational world’s elements into institutional
elements using the conceptual model and theory. Then we will explain how to build the
I-world model in order to enact the intended real-organization behavior. Finally we will
present an example on how an intelligent organization is enacted using our methodology.

We consider that an implementation methodology is important because we have a new
way of deling with IS (with new concepts, etc) and because we are concerned with
real world applications, so that the development and implementation of an application,
based on IIS is critical to our work. Then methodology is thus critically important. The
methodology presented in this chapter is aimed to application developers.

Our implementation methodology must be addressed considering the three worlds and
consists of the following steps:

1. Real-organization specifications:

(a) Establish the organizational structure.

(b) Specify the procedural rules.

(c) Define standard procedures.

(d) Decompose each standard procedure into activities.

(e) Classify activities according to:

i. Human performed activities.

74

CHAPTER 5. METHODOLOGY 75

ii. Computer performed activities that will become business rules. Specify
if the required business rule for each activity will consist of business logic
or presentation logic.

(f) Design business process specifying all the activities according to the order
and circumstances specified in procedural rules and standard procedures,
and considering the organizational structure.

2. Computational world implementation:

(a) Design forms to handle the information required by the business process.

(b) Ground forms into I-world.

(c) Ground form’s commands into the I-world.

(d) Code business rules.

(e) Ground business rules into I-world considering status variables and informa-
tion models required.

3. Consider framework requirements.

4. I-world modeling:

(a) Build the model in the I-world.

In the following sections, we will explain all the required steps to implement the check-in
business context as part of the whole institutional hotel IS implemented as case study
in Chapter 6.

5.1 Example

In this section we will describe an example that will be used through this chapter to
illustrate the methodology. We will explain the implementation methodology using the
the following check-in business context example:

We want to implement an institutional IS for a hotel, we will focus our attention in
the check-in business context for guests arriving without a reservation. In the hotel’s
reception we have a front-desk, where hotel’s employees work attending guests. We
have several employees attending directly in the front-desk, they are the receptionists;
there is a manager on duty who is in charge of guaranteeing that everything goes as
desired, he also supervises receptionists and authorizes special guest’s requests. Each
receptionist has a workstation to access the check-in module of the HIS, he also has one
credit card reader and one magnetic device to produce room’s keys, both connected to
the workstation. The credit card reader is used to guarantee guest’s payments blocking
the total stay amount at arrival time. The magnetic device is used to save guest’s stay
information–such as room number and arrival and departure dates– into a magnetic

CHAPTER 5. METHODOLOGY 76

card provided to the guest to enter his room. As this is a “city” hotel for businessmen,
it is common to have VIP–Very Important Person– guests arriving without reservation
as frequently they don’t have enough time to arrange their schedule, specially if business
meetings prolongs. There is a special policy in the hotel to provide special considerations
for service to VIP guests arriving at the hotel without a reservation, providing them
with special prices and special services.

5.2 Real-organization specifications

As our approach is based on the organizational metaphor and as our focus is on im-
plementation issues, that is, our methodology does not address how we analyze and
define real-organization’s specifications, we assume that we are able to use at our own
choice, any convenient agent oriented analysis methodology based on the organizational
metaphor, such as the Gaia Methodology [42], [43], and specially the Gaia Methodology
Extended with Organizational Abstractions (GaiaExOA) [19]; thus, instead of defining
a new methodology for the high-level analysis of the real-organization needed to de-
fine the organizational components required by our conceptual model, we suggest to
use –as a guideline– the analysis phase of the GaiaExOA methodology that deals with
the features needed to model the system and is not tied to any particular architectural
implementation.

According to these methodology, in the analysis phase, we define the following real-
organization components:

• organizational structure,

• preliminary roles model,

• preliminary interactions model, and

• organizational rules.

These components are compatible with the organizational components we need, thus we
will assume that for the definition of the organizational components we used the steps
defined in the methodology mentioned above. Once we have specified the organizational
components mentioned above, we proceed to map these specifications into our required
organizational specifications according to the following mappings:

• organizational structure maps to organizational structure,

• preliminary roles model maps to organizational structure’s roles and relationships,

• preliminary interactions model maps to standard procedures, and

• organizational rules maps to procedural rules.

CHAPTER 5. METHODOLOGY 77

Once we have completed the analysis, we proceed to complete real-organization’s spec-
ifications according to the following steps:

1. Establish the organizational structure (from the analysis phase).

2. Specify the procedural rules (from the analysis phase).

3. Define standard procedures (from the analysis phase).

4. Decompose each standard procedure into activities.

5. Classify activities according to:

(a) Human performed activities.

(b) Computer performed activities that will become business rules. Specify if
the required business rule for each activity will consist of business logic or
presentation logic.

6. Design business process specifying all the activities according to the order and cir-
cumstances specified in procedural rules and standard procedures, and considering
the organizational structure.

5.2.1 Establish the organizational structure

As defined in Definition 3.1.1.6, the organizational structure defines a set of procedu-
ral rules to specify business processes, defining functional roles (see Definition 3.1.1.4)
and their relationships. We take the organizational structure and the preliminary role
model specified according to the GaiaExOA methodology, and we map these specifi-
cations into our organizational structure. Thus, for the check-in business context, the
following procedural rules (see Definition 3.1.1.5), roles and relationships are defined in
the organizational structure:

• Procedural rules:

– Check-in for a walk-in guest –check-in–

– Check-in with reservation

– Check-out

– etc.

• Roles:

– receptionist

– manager on duty

– cashier

CHAPTER 5. METHODOLOGY 78

• Roles relationships:

– receptionist depends of manager on duty,

– manager on duty controls receptionist, and

– receptionist is peer to cashier.

5.2.2 Specify the procedural rules

According to organizational rules defined in the analysis phase, and according to our
definition for procedural rules (see Definition 3.1.1.5), we proceed to specify procedural
rules for our implementation. The following procedural rule is required for the check-in
business context according the the real-organization’s organizational structure:

1. The receptionist determines stay information.

2. The receptionist determines stay rate.

3. The receptionist determines guest’s general information.

4. If the guest is classified as VIP–Very Important Person–, he is eligible for better
prices subject to manager on duty authorization.

5. The receptionist determines payment information.

6. The receptionist files the reservation.

5.2.3 Define standard procedures

According to preliminary interactions defined in the analysis phase, we proceed to es-
tablish the standard procedures for the real-organization as part of the check-in business
context. In this stage, we do not assign a specific role to any activity, as this assignment
could vary according to procedural rules. As defined in Definition 3.1.1.3, a standard
procedure could be composed of one or more activities, as long as they realize a business
goal–such as determining guest’s stay information–. The following standard procedures
are required to implement the check-in business context:

• Determine stay information: the employee asks the guest for arrival and departure
dates, calculating the number of nights, then he must ask for the number of adults
and children that will occupy the room.

• Determine stay rate: the employee asks for room type, then he calculates the
proper rate for the selected room type, verifying first if a room is available; the
employee asks the guest if he accepts the calculated rate; if the rate is not accepted,
the employee repeats the procedure until the guest accepts the rate or rejects to
stay in the hotel.

CHAPTER 5. METHODOLOGY 79

• Determine guest’s general information: the employee ask the guest’s name and
verifies if the guest is present in guest’s history files; if he is in the files, the
employee copies the guest’s general information into the form, then he verifies his
attributes and determines if the guest has VIP attribute. If the guest is not in the
files, the employee ask the guest for general information, such as address, city, etc.

• Verify VIP conditions: the employee performs the following activities: i) he re-
quests his boss for an authorization to offer a better price to the guest. If his boss
authorizes his request, the employee calculates the new price and informs it to
the guest; and ii) verifies in the guest’s history if the guest has special requests or
preferences –such as being waked-up every day at 6:30 AM, or if he needs special
pillows in his bed–, if he does, annotates his preferences in a special service form.

• Guarantee guest payment: the employee ask for a credit card verifying that is a
valid credit card with enough credit limit to cover the stay rate.

• File reservation: the employee files the reservation.

• Provide key: the employee produces the room’s key and gives it to the guest.

5.2.4 Decompose each standard procedure into activities

For each standard procedure, we identify basic tasks and decompose it into activities as
defined in Definition 3.1.1.2. The following activities are identified from the standard
procedures specified above:

• ask for arrival and departure dates

• calculate number of nights

• ask number of persons (adults and children)

• ask room type

• verify if there is a room available

• assign room number

• calculate and inform stay rate

• ask guest name

• verify guests’ history for guest’s attributes

• ask manager authorization

• manager verifies information and authorizes (or not)

• annotate guest’s preferences

CHAPTER 5. METHODOLOGY 80

• ask for a credit card and verify it

• complete guest’s information

• file reservation

• provide key.

5.2.5 Classify activities

One we have listed all the activities required by the business context, we proceed to
classify each activity according to the following criteria:

• who performs the activity:

– a person,

– a computer, or

– a device.

• if the activity is performed by a computer, then it needs to be implemented as a
business rule. We have the following types of business rules:

– business logic, and

– presentation logic.

The following table shows all the activities identified for the check-in business context.
The first column specifies the activities’ description, the second column shows who
performs the activity: “p” for person, “c” for computer, and “d” for device; and the
third column specifies the type of business rule: “bl” for business logic or “pl” for
presentation logic.

CHAPTER 5. METHODOLOGY 81

ask for arrival and departure dates h
calculate number of nights c bl
ask number of persons (adults and children) p
ask room type p
verify if there is a room available c bl
assign room number c bl
calculate stay rate c bl
inform stay rate p
ask guest name p
verify guests’ history for guest’s attributes c bl
ask manager authorization* c pl
manager verifies information and authorizes (or not) c bl
annotate guest’s preferences c bl
ask for a credit p
verify credit card c bl
complete guest’s information h
file reservation c
provide key** p,c bl

The activity “ask manager authorization” is performed by a presentation logic business
rule and is triggered by a business logic business rule; it requires presentation logic
to perform the authorization, maybe this activity requires a presentation of a modal
window showing VIP information and asking for a password and an authorization code
–that will require another business logic business rule–.
The activity “provide key” is performed by an employee and by a device. The employee
takes the key-card, inserts it into the magnetic device, the magnetic device records
the room number, and the arrival and departure dates; then the employee releases the
key-card from the device and gives it to the guest.

5.2.6 Design business process

In the business process (see Definition 3.1.1.1) is where the main interactions are defined.
The organizational structure gives context for the business process definition specifying
the required procedural rules as well as the roles that will play the human actors of the
real-organization. In Figure 5.1 we show the check-in business process. The procedural
rules for this business context were the rules used for sequencing standard procedures
as the main building blocks of the process (shown in dashed rounded squares in the
figure); As we can observe, each activity is incorporated into its corresponding standard
procedure. From each standard procedure we took the proper sequencing of activities
as well as the decision points required for flow control.

CHAPTER 5. METHODOLOGY 82

Guest arrives

ask for arrival and

departure dates

calculate number

of nights

ask number of

persons (adults &

chlds
)

ask room type

room

available

no

assign room

number

calculate and

inform stay rate

yes

Guest

accepts

no

ask guest

name

verify guests'

history

VIP

yes

special

rate

yes

ask credit

card
valid cc
File reservation

ask manager

authorization

authorized

yes

calculate and

inform new rate

has

preferences

no

yes

annotate

preferences

yes

yes

no

Standard

procedures

activities

no

no

determine

stay info

determine

stay rate

file

reservation

provide

key

guarantee

guest

payment

determine

guest

general info

verify

VIP

conditions

Figure 5.1: Check-in Business Process

5.3 Computational world implementation

Once we have the business process defined, it is the turn for the computational world
to implement the required behavior for each activity. As we have performed all steps

CHAPTER 5. METHODOLOGY 83

defined for the real-organization, we have defined –at some level– all the intended be-
havior for each activity. We must recall that as this is an implementation methodology,
we do not intend to provide a guide on how to develop or programm the required com-
putational world components, instead, we provide a series of steps required to have all
components ready to be enacted by our architectural framework defined in Chapter 4.

The steps required steps to complete the computational world implementation are the
following:

• Design forms to handle the information required by the business process.

• Ground forms into I-world.

• Ground Form-commands into the I-world.

• Code business rules.

• Ground business rules into I-world considering status variables and information
models required.

In the following subsections we will explain each step illustrating details with the check-
in business process example.

5.3.1 Design Forms

From the specifications provided by the real organization domain and using the graphical
tools provided by a programming language (such as java), we design and draw each one
of the forms required for human interaction, such as the “check-in” form shown in Figure
5.2. This is a drawing activity only, as we don’t need to know “how” the business rules
will be implemented.

c

Figure 5.2: Check-in. Registering a walk-in guest, before interaction

We must mention here, that it is supposed that the programming language we have
selected, includes all controls1 required by our particular application. In Figure 5.2 we

1 A control is a software component, in this case used for handling data through a workstation, such
as edit box, date selector, list box, combo box, grids, etc.

CHAPTER 5. METHODOLOGY 84

can identify edit, date selector, and list controls. We want to recall here that usually
each control has its associated behaviors that are programmed as a language function
associated to a control data tag. In traditional application’s programming–such as client-
server programming–, in each behavior we program the interaction logic–such as basic
data validations or displaying messages–, in our approach, these behaviors are used only
to send entered data to the user agent; thus we have forms without any programming
logic associated to them.

5.3.2 Ground Forms into the I-world

Once we have designed and implemented all required forms2, we must identify with a
“tag”–an identifier– and incorporate in the institutional ontology each element in the
form that can have some “functionality”. In a similar way, we must identify and in-
corporate in the ontology each “event” associated with the form that could drive some
behavior–such as pressing the “F2” key or clicking the right button of the mouse–. We
should note that as each business context is modeled by its own EI, it has also its own
performative script, and then it could have a different interpretation for the ontology,
that is, if pressing the “F2” key defines a particular behavior in the ”check-in busi-
ness context”, pressing the same key could have a different behavior in the “individual-
reservation business context”.

In Table 5.1 we show all required grounding language information in order to give
interaction into life. The first column shows form label’s as they appear on the screen
in the form. The bottom part of the table shows the same information for events. Each
form’s label is identified in the grounding language’s ontology by a tag. Tags’ values are
shown in the fifth column. We can use any tag as long as we enter it in the ontology.
The second column, shows tags’ attributes–R/O for Read Only–and data types. In the
bottom of the table, we specify if the event is present or not in the form. If the event
attribute is shown as “present”, then it will have an associated “icon” in the form,
allowing the user to press over it with the mouse. If the event attribute is not shown or
it is shown as “not-present”, then it will not appear in the form. In the third column, we
show the initial value associated with each tag. In these fields are were the information
is actually entered. The possible values for an event are: “enabled”, meaning that the
icon is shown in full color and that is accessible by the user, or “disabled”, meaning that
the icon–or its legend–is shown in gray color and it’s not accessible by the user. Note
that those are initial values, that is, as the user interacts with the form, those values
change, representing the correct user’s information.

In the sixth column we show all required user agent illocutions. All user agents’ illocu-
tions (see Definition 3.4.1) are inform particles, that is, the only responsibility for the
user agent concerning user input through a form, is to inform the organization engine
(see Section 4.1) that information was entered or that the user has pressed an event
icon. It has nothing to do with business logic. Another pertinent observation is that,

2 Strictly speaking, this activity is performed in parallel promoting system’s engineers specialization

CHAPTER 5. METHODOLOGY 85

Form Label
 Label / Tag

Attributes

Initial Tag

Value

Final Tag

Value
 Tag
 User Agent Illocutions
 Electronic Institution

According to model

Business Rule / Data Base

Agent Illocutions

Reservation

Form
 all
 reservationData

Reservation ID
 R/O, Integer
 11090
 reservationID

Arrival Date
 Date
 2007/11/30
 2007/11/30
 arrivalDate

Departure Date
 Date
 2007/12/08
 departureDate

inform(
Ua
,
BRa
,

arrivalDate
,2007/11/30,

departureDate
,2007/12/08)

request(
Wa
,
BRa
,
validateStay
(

arrivalDate
,2007/11/30,

departureDate
,2007/12/08))

inform(
BRa
,
Ua
,nights,8)

Nights
 R/O, Integer
 0
 8
 nights

Adults
 Integer
 1
 1
 adults

Children
 Integer
 0
 0
 children

Room type
 Combo
 SK
 roomType
 inform(
Ua
,
BRa
,
roomType
,
SK
)

request(
Wa
,
BRa
,

assignRoomNumber
(
roomType
,
SK
))

request(
Wa
,
BRa
,
calculateStayRate
(

 adults,1,children,0))

request(
BRa
,
Ua
,
enableEvents
(
F4
))

inform(
BRa
,
Ua
,
roomNumber
,112)

inform(
BRa
,
Ua.dailyRate
,100.00,

stayRate
,800.00)

Room Number
 R/O, Text
 112
 roomNumber

Folio Number
 R/O, Integer
 0
 8153
 folioNumber

Folio Qty
 R/O, Integer
 0
 1
 folioQty

Daily Rate
 R/O, Double
 0.00
 100.00
 dailyRate

Stay Rate
 R/O, Double
 0.00
 800.00
 stayRate

Form Label
 Label / Event

Attributes

Initial

Event

Value

Final

Event

Value

Event
 Electronic Institution

According to model

Business Rule / Data Base

 Agent Illocutions

Esc-Exit
 Present
 Enabled
 Enabled
 Esc
 inform(
Ua
,
BRa
,event,Esc)
 inform(
Wa
,
BRa
,close())

F3
-Ignore
 Present
 Enabled
 Enabled
 F3
 inform(
Ua
,
BRa
,event,
F3
)
 request(
Wa
,
UA
,

clearForm
(
reservationData
))

F4
-Save
 Present
 Disabled
 Enabled
 F4
 inform(
Ua
,
BRa
,event,
F4
)

request(
Wa
,
BRa
,

assignFolioNumber
())

request(
Wa
,
DBa
,

saveReservation
(
reservationData
))

inform(
BRa
,
Ua
,
folioNumber
,8153)

inform(
BRa
,
Ua
,
reservationID
,11090)

inform(
DBa
,
Ua
,status,ok)

Table 5.1: Check-in. Registering a walk-in guest

when the user agent issues the inform illocution, is because that part of the data requires
validation, that is, the execution of a business rule.

5.3.3 Ground Form’s commands into the I-world

Depending on the characteristics of the controls used to define forms in Stage 5.3.1, we
need to define each form command as a class term in the institutional ontology, defining
their corresponding attributes and required initial values.

For the form shown in Figure 5.2, that was defined for the check-in business context,
we need the following form commands: setFocus, disableEvents, enableEvents, enable-
Fields, disableFields, and displayForm.

5.3.4 Business Rules Programming

We need a computational implementation for the real-organization’s activities, then we
code business rules mapping activities from the real-organization to business rules in
the computational world.

From the specifications provided by the real-organization and using a programming
language–such as java–, we program the required business rules associating them to
some business rules server agent. It is required that we preserve computational world

CHAPTER 5. METHODOLOGY 86

context, that is, we group together all business rules required by a particular business
context in the same module or program, in this way, we preserve the value of data
structures required in the business context as a whole. The “grouped” business rules
will be available for a business context through the server agent; nevertheless, we can
have a federation of business contexts where each business context could be represented
by a different server agent.

5.3.5 Ground Business Rules into I-world

Once we have programmed all business rules, we must identify them in the institutional
ontology, for this purpose we define classes for each business rule specifying their corre-
sponding attributes. These attributes will be business rule’s “tag” values required for
interaction with other computational domain elements.

The required business rules’ identifiers for the check-in business context are:

• validateStay,

• assignRoomNumber,

• calculateStayRate,

• assignFolioNumber,

• saveReservation,

• considerSpecialRate,

• managerAuthorization, and

• considerPreferences.

5.4 Build Model in the I-world

Once we have performed all steps described in Section 5.3, using the electronic institu-
tion, we model the required performative structures and scenes for the check-in business
context.

The front-desk performative structure contains one scene (login) and two performative
structures: the rack and check-in performative structures. In Figures 5.3 and 5.4 we
show the front-desk and check-in performative structures respectively.

Table 5.5 shows the correspondence between the arcs’ labels present in the scenes and
the illocution uttered by the corresponding agent. Column 1 shows the scene name,
column 2 shows the state in which agents are interacting at a given moment, column
3 shows the arc’s label in order to reach the next state, column 4 shows the illocution

CHAPTER 5. METHODOLOGY 87

uttered, and column 5 shows the target state. States’ identifiers preceded by a clear
bullet are initial states, those preceded by a black bullet are final states.

In Figures 5.6, 5.7, 5.8, and 5.9 we present the check-in’s scenes required to handle the
user agent requirements to attend a human user throug the form presented in Figure
5.2.

Login

Rack

Check-in

r
:Receptionist |
m
:Manager on duty |
sa
:Server Agent

and

xor

and

and

sa

sa

r
 |
m

r
 |
m
sa
:business rule

sa

new

new

new

r
 |
m

r
 |
m

Figure 5.3: Front-desk’s Performative Structure

CHAPTER 5. METHODOLOGY 88

determine

stay info

determine

stay rate

determine

general info

guarantee

payment

provide key

file reservation

verify

VIP conditions

and

and

and

and

and

and

and

and

r
:Receptionist |
m
:Manager on duty |

sa
:Server Agent

sa
:business rule
 r

new

r

r

r

r

r

sa
:business rule

sa
:business rule

sa
:business rule |

ua
:interaction device

new

new

new

new

new

new

r
 |
m
sa
:business rule

ua
:interaction device

sa
:business rule |

sa
:database

r
:Receptionist |
m
:Manager on duty |

sa
:Server Agent

Ignore

and

xor

r

r
 |
sa

r
 |
sa

Figure 5.4: Check-in’s Performative Structure

5.4.1 Using Norms

In Table 5.5, we can see that the user agents utter inform illocutions only; we want to
maintain user agents completely isolated from what is happening in the institution, so
that they are only concerned on what human users do using Forms; that is, we don’t want
user agents to be worried about what business rules are in execution, neither how is the
business context status, we want user agents completely abstracted from the institution;
for this purpose we need norms to produce business rules execution when user agents
send inform illocutions. This is this way because somebody has to tell business rules
agents when to interact when a user enters information that requires validation. As we

CHAPTER 5. METHODOLOGY 89

Scene
 State
 Arc's Label

Agent Illocution

Ua
: User agent

BRa
: Business Rule agent

DBa
: Database agent

Wa
: Institutional agent

Target

State

determine stay info
 w0
 arrival & departure

dates

inform(
Ua
,
BRa
,

arrivalDate
,2007/11/30,

departureDate
,2007/12/08)

w1

determine stay info
 w1
 validate stay

request(
Wa
,
BRa
,
validateStay
(

arrivalDate
,2007/11/30,

departureDate
,2007/12/08))

w2

determine stay info
 w2
 nights
 inform(
BRa
,
Ua
,nights,8)
 w3

determine stay rate
 w0
 room type
 inform(
Ua
,
BRa
,
roomType
,
SK
)
 w1

determine stay rate
 w1
 assign room

request(
Wa
,
BRa
,

assignRoomNumber
(
roomType
,
SK
))
 w1

determine stay rate
 w2
 disable events
 request(
BRa
,
Ua
,
disableEvents
())
 w2

determine stay rate
 w2
 room number
 inform(
BRa
,
Ua
,
roomNumber
,112)
 w3

determine stay rate
 w3
 calculate stay
 request(
Wa
,
BRa
,
calculateStayRate
(

 adults,1,children,0))
 w4

determine stay rate
 w4
 request(
BRa
,
Ua
,
enableEvents
(Esc,
F3
,
F4
))
 w4

determine stay rate
 w4
 inform stay rate
 inform(
BRa
,
Ua.dailyRate
,100.00,

stayRate
,800.00)
 w5

file reservation
 w0
 file reservation
 inform(
Ua
,
BRa
,event,
F4
)
 w1

file reservation
 w1
 assign folio
 request(
Wa
,
BRa
,

assignFolioNumber
())
 w2

file reservation
 w2
 reservation ID
 inform(
BRa
,
Ua
,
folioNumber
,8153,

reservationID
,11090)
 w3

file reservation
 w3
 save reservation
 request(
Wa
,
DBa
,

saveReservation
(
reservationData
))
 w4

file reservation
 w4
 error
 inform(
DBa
,
Wa
,status(code,
ErrorCode)
)
 w5

file reservation
 w4
 ok
 inform(
DBa
,
Ua
,status(ok))
 w6

file reservation
 w5
 display error
 inform(
Wa
,
Ua
,
displayForm
(Error,
ErrorCode)
)
 w6

ignore
 w0
 ignore
 inform(
Ua
,
BRa
,event,
F3
)
 w1

ignore
 w1
 request(
BRa
,
Ua
,
disableEvents
())
 w1

ignore
 w1
 clear form
 request(
Wa
,
UA
,

clearForm
(
reservationData
))
 w2

exit
 w0
 exit
 inform(
Ua
,
BRa
,event,Esc)
 exit

Figure 5.5: Determine Stay Rate Scene

w0
 w1

arrival & departure

dates
 validate stay

w2

nights

determine

stay info

w3

Figure 5.6: Determine Stay Info Scene

don’t want user agents having to deal with business logic, then we delegated this job to
the norms management defined in the electronic institution.

CHAPTER 5. METHODOLOGY 90

w0
 w2
 w3
 w4

assign

room

disable events

room

number

calculate

stay rate

inform

stay rate

room

Type

w1

determine

stay rate

w5

Figure 5.7: Determine Stay Rate Scene

w0

w6

w1
 w2

file reservation
 assign folio

w4

save reservation

ok

reservation ID

w3

w5

display error
error

file reservation

Figure 5.8: File Reservation Scene

w0
 w1

ignore

disable events

clear form

Ignore

w2

Figure 5.9: Ignore Scene

As we can see in the forth column of Table 5.5, institutional agent illocutions–“Wa” in
the Table–, must be enforced by the insitution using norms; for example, in the same
Table in the “determine stay info” scene–see also Figure 5.6–, when it is in state “w0”
and the user agent informs “arrival and departure dates”, the scene goes to state “w1”,

CHAPTER 5. METHODOLOGY 91

where the institution enforces the forllowing illocution:

“request(Wa,BRa,validateStay(arrivalDate,?x,departureDate,?y))”

Then we required norms for proper interaction. As defined in theory (see Section 3.5.5),
norms become active when an illocution is said in a predefined scene. When the specified
conditions hold, then the specified illocution is enforced; this causes the same effect as
if the user agent were told such illocutions.

A

B

C

c

Figure 5.10: Check-in. Registering a walk-in guest, completing guest’s info

Figure 5.10 shows the complete form for the check-in business context. This form
contains the data fields required to handle guest’s general information as well as guests’
preferences and payment information –first two tabs in part “C” of the form–; these
scenes are shown in figures 5.11, 5.13, 5.14. As the hotel wants to provide outstanding
guest services management and special rates, as part of the institutional model for this
form, we present the corresponding scene in Figure 5.12.

CHAPTER 5. METHODOLOGY 92

w0
 w1

guest name

guest type

special rate

enable events

determine guest

general info

w2

Figure 5.11: Determine Guest General Info Scene

w0

w1
 w2

consider preferences

consider special

rate

ok

service

messages

inform stay rate

payment

data

w3

request manager

authorization

authorization

code

verify VIP conditions

w4

close

Figure 5.12: Verify VIP Conditions Scene

w0
 w
1

payment information

authorization code

reject credit card

guarantee guest payment

w2

Figure 5.13: Guarantee Guest’s Payment Scene

5.4.2 Discussion

It is important to note that there is a semantic mapping between real world and their
corresponding institutional model. For example, the real world operation’s manual spec-
ify: At check in time, the receptionist fills the “check-in” form, writing all guest general

CHAPTER 5. METHODOLOGY 93

w0
 w
1

stay information
 ok

provide key

w2

Figure 5.14: Provide Key Scene

data, room type, arrival date and departure date. Then, for building the formal model,
from the real world we have the following inputs: role: “receptionist”, responsibility:
fill the “check-in” form, procedural rules: form’s format and filling directions; that is,
the real world provides context–role and responsibilities–and procedural rules: form’s
format and filling directions.

In the real world, this form must be designed and produced as a physical form, and it
could be filled by hand, writing directly into it producing the required real world behav-
ior. If the hotel operation manual includes 500 guidelines like this, we can imagine the
amount of hotel operation knowledge involved. In a similar way, in the computational
world, the check-in form must be drawn and stored in a repository.

In both worlds, there are procedural rules that must by satisfied, such as the arrival
date can’t be posterior to the departure date, the receptionist can’t assign for this guest
a particular room if it is assigned to another guest. It is left to the discretion to the
information system’s designer to decide the level of prescription that he wants to model,
that is, taking the arrival date example, we can model in the electronic institution
if a particular rule is satisfied, but also, we can left this responsibility to a business
rule. There is a trade-of between business rules complexity and model complexity,
the more complex the business rules are, the simpler the model becomes. For the
design an development of information systems, it is desirable to maintain when possible
the complexity in the business rules, reserving the electronic institution for modeling
”events”, such as pressing the “F2” key or completing the input of a form’s data field
that requires validation or access to a database.

We want to clarify that it is to the information systems’ designer discretion to decide
the level of complexity modeled in the electronic institution and the level of complexity
coded in business rules, and also, the level of decision making delegated to business rules
agents.

CHAPTER 5. METHODOLOGY 94

5.5 Intelligent Organization Enactment

As modeled in Section 5.4, the interaction initiates with the login scene, then at some
point the electronic institution instantiates the check-in performative script producing
its corresponding check-in business context.

At run time, supposing that the user wants to execute the “check-in business context”,
the following will be the enacted interaction:

c

Figure 5.15: Login

1. The user access the user agent to login into the system.

2. The user agent tells–by means of an illocution, remember that all communication
between agents are “speech acts”–the organization engine that someone wants to
enter into the system.

3. The organization engine loads the front-desk performative structure and directs
the institutional agent to start its execution.

4. The institutional agent (I-agent) instantiates the login performative structure and
intitates its execution to have access to the login business context, then, the I-agent
initiates its execution coordinating the proper sequence of activities modeled in
the performative structure.

5. The user agent directs the interaction device agent to display the form shown in
Figure 5.15.

6. Using this form, the user enters his user name, password and hotel id and then
clicks the “Sign in” button.

7. As this form has associated an event when clicking the “Sign in” button, the
interaction device agent tells the user agent that this event has happened, sending
all information entered by the user.

CHAPTER 5. METHODOLOGY 95

8. The user agent informs the organizatoin engine that this events has occurred
sending all associated information.

9. As the organizaton engine is responsible for instantiating the required server
agents, it analyzes the business context for the event, and as it doesn’t have this
service–strictly speaking, the server agent that provides access to the required set
of business rules–determines that a particular server agent must be instantiated
in order to provide access to the required business rules.

10. The organization engine instantiates the required business rule server agent reg-
istering its associated information into the server agent services directory. In the
server agent instantiation process, all required context memory is initialized and
made available while the server agent is registered.

11. The I-agent identifies the user role and event, and as the model specifies that in
this state, when the user agent sends the “sign in” event, then the proper business
rule server agent should interact; then, the I-agent, sends the illocution to the
server agent playing the required role–login business rules server agent–.

12. The I-agent waits until some agent says something valid.

13. The business rule server agent executes the required business rule, then sends an
illocution to the I-agent telling that the business rules were executed properly, as
it is modeled in the performative structure, this illocution is also sent to the user
agent. If access to the system were not permitted for this user, an “access not
permitted” illocution were sent to the interaction device through the user agent,
displaying the proper message in the form.

14. The I-agent analyzes the new ”conversation state” and determines that this con-
versation has ended, then, the I-agent informs the organization engine that the
“login business context” has ended. But, as the I-agent knows the role the user
agent is playing, it also determines and informs the middleware agent that the
“check-in business context” must follow.

15. The middleware agent shuts down the login business rule server agent and informs
the user agent the successful termination of this business context; then it loads the
“check-in” performative structure and directs the I-agent to start its execution.

And the whole process repeats, this time the user agent directs the interaction device
agent to display the form shown in Figure 5.10; At some point, according to the perfor-
mative structure, the I-agent determines that the interaction must end.

Somewhere in the form, if an input field requires validation, the user agent request a
business rule agent to perform such validation, maybe it is necessary for the business
rule to ask a database server agent to read the required data in order to verify that a
particular data exists.

CHAPTER 5. METHODOLOGY 96

Note that as the user enters the required information into the form, the I-agent will be
determining the “state” of the conversation allowing only valid illocutions for intervening
user, business rules and/or database server agents. Maybe somewhere in the “conversa-
tion”, it is required the intervention of an artificial intelligence specialized server –this
specialization is provided by the set of business rules implemented– agent that could
determine the better price to maximize revenue for a given stay in a specific room type
for a particular market segment.

In Figure ??, we present the resulting form and associated information before the check-
in performative structure is executed for the form shown in figure 5.2. Initially, at scene
“determine stay info”, the user enters information in the Arrival Date and Departure
Date fields, the Ua informs the BRa both dates entering state w1, then the I-agent
using its norms engine determines that the BRa must validate stay information, then
the BRa informs the UA that the total of nights is 8. In a similar way, at the “determine
stay rate” scene, the assignRoomNumber business rule is activated and the BRa tells
the Ua to enable event F4–F4-Save is available to the user– and then informs the room
number to the Ua and proceeds to calculate stay costs, informing the Ua night and
total stay rates. At this point, the scene ends. The interaction is now at the check-in
performative structure level; The user decides to enter the “file reservation” scene by
pressing the F4 icon, then the BRa assigns the guest’s folio number. The I-agent enforces
the saveReservation database rule, the DBa saves the information in the database.
At this point, the user decides to terminate pressing de Esc-Exit icon, the electronic
institution sends an illocution to the BRa and DBa indicating that interaction has
ended and then, they can de-allocate resources and discharge-themselves. Interaction
terminates.

5.6 Summary

In this chapter we presented the required methodology in order to be able to implement
an Institutional Agent Oriented Information System based in the concepts and ideas
presented in chapter 3 and using the framework described in chapter 4. As an initial
step, in order to understand the real-organization requirements, we suggested to use
some suitable methodology based on the organizatioanal metaphor. We stated that,
once we have finished the real-organization analysis, we proced to the organizational
structure definition that we require establishing procedural rules, roles and their rela-
tionships. Then we gave the required steps –clarifying them using the check-in business
context– to build a business process definition according to our model. We specified
the required steps for grounding real-organization and computational world’s elements
into institutional elements using the conceptual model and theory presented in chapter
3, then we explained how to build the I-world model in order to enact the intended
real-organization behavior. We finished the chapter explaining how an intelligent orga-
nization as a result of using our concepts, framework and methodology.

Chapter 6

Case Study

This chapter explains how the framework presented in the previous chapter, was used
to transform a conventional HIS into an agent-based HIS, providing a real example of
what we call an IIS.

6.1 Hotel Domain

We have used the ideas presented in this thesis to transform a conventional HIS into a
multi layered, agent-based IS. Our agent based HIS is already in operation in 80 hotels.

6.1.1 Application Description

TCA deployed its first HIS “INNSIST” in 1986. Its successors have evolved over the
years and are now supporting the integral operation of more than 250 hotels in Latin
America. Each hotel has between 120 and 1200 rooms, with an average of 300 rooms.
INNSIST supports the management and operation for the Front Office, Points of Sales
and Back-office systems for high-class hotels and resorts. Those management and op-
erational functionalities are implemented as several modules, whose specific procedures
were programmed to become the content for a hotel domain’s repository of computer
“commodities”, such as: business rules, interaction device procedures, interaction de-
vice’s agents –who are able to migrate–, and forms. In this case study, we consider the
Front Office and Points of Sales implementation. In the following sections, we present
their functionality and complexity.

6.1.2 Application’s Functionality

In order to have an idea of what are we talking about, in this section we present the
whole system’s functionality. For this case study, we concentrated our efforts in the

97

CHAPTER 6. CASE STUDY 98

following systems:

• Front Office system,

• Points of Sales system, and

• Telephony control system.

We selected these systems because as a whole, they provide a strong level of complexity
and enable us to analyze the real world behavior of our framework in an environment
with a representative variety of elements.

All three systems have their focus on guest’s satisfaction, and enables the interaction
between the hotels’ employees and the computational infrastructure. Thus, agents we
build will be representing to these employees and will represent them into the com-
putational infrastructure in order to better achieve their institutional individual goals,
according as established in the real world hotel’s owners and managers organizational
goals.

Front Office System

Table 6.1 shows a representative set for system’s functionality descriptions that serves
as a basis to have an idea for the kind of interactions in the real deployment.

The Front Office system is characterized by a moderately large amount of real-time
transactions with high focus on guest’s historic information in order to provide a high-
quality and personalized service. The main interaction device here will be forms, and
they will be represented in the framework by user agents. It is pertinent to say here,
that forms will be stored in a domain’s forms repository, handled and represented in our
framework by server agents. As each form has its own identifier and version number,
server agents identify them and provide user agents with the right form as they require
them.

Points of Sale System

Table 6.2 shows a brief description for the system’s functionality, and also shows that
in order to provide the required guest’s service, it must interact with several devices:
touch screen monitors, printers, credit card readers and hand-held devices.

This is the first time that we show an obvious distinction between agent’s specializations:
user agents should be capable of representing both, the human user and the hardware
device, then we use the framework facility to differentiate between both. As we can
think, touch screen monitors don’t require a strong specialization, as we can see them
as a simple monitor because the operating system is able to handle it as a regular
monitor, that is, it manages all required drivers in a programmer’s transparent way.

CHAPTER 6. CASE STUDY 99

General Features
 Reservations
 Front Desk

Web-based system
 Reservation Dashboard
 Front-desk Dashboard

Multi-lingual configuration per

user

Individual and Group Reservations
 Individual & Groups Check-in

Customizable menus per user

Guest History and guest's

preferences management

Quick Check-in

Complete overview of guest

activity at all touch points

Agencies and Rate Management
 Room assignments and changes

Enables forecasting, pricing, and

business analysis on an enterprise

scale

Hotel status allowing drill-down

access to relevant information

Cashier module, express

check-out, transactions'

management

Allows consistent availability and

pricing in every sales channel or

varied by individual channel

Closed dates, revenue

management

Rate Management by room

availability, market segment,

guest type, room type and season

Back-up of main reports for offline

use in case of
 internet
 failure

Reservations, Forecast, and

Group Reports

Master and Individual Folio

Management

Guest Search and guest's flag

control.

GDS and
 CRS
 systems

integration:
 Expedia
, Travel Click,

Trust, Apple vacations and others

Graphical Folio Transferring by

date, code, and amount

Messages between hotel

departments

Multi-property room inventory

control

Multi-property front-desks

Manager on duty
 Housekeeping
 Night Audit

Statistics
 Room Status Dashboard
 Daily Operation

Scheduled processes and utilities
 Status Reports
 Folio's transfers

Manager Reports
 Guest's requirements control
 Audit Reports

Guest History Management
 Housekeeping Reports
 Budgets

Table 6.1: Front Office functionality

POS for Food & Beverage and

Gift Shops

Printer Devices
 Touch Screen devices

Unlimited number of restaurants,

bars or convenience stores

Tickets and Kitchen printers

Posiflex
, Pioneer, Javelin, Par,

IBM 4695 and Super POS 500

Unlimited cash registers per point

of sale

Menus composition and

configuration

Credit Card Readers
 Hand Held devices

Automatically separates hot and

cold kitchen or bar orders

Several banks

Taking orders from mobile

stations

Operations' audit, shift reports,

accounts balancing, front office

integration

Table 6.2: Points of Sale functionality

Then, user agents will handle forms that will be presented to the user directly through

CHAPTER 6. CASE STUDY 100

the operating system. Some popular printers and several hand held devices may also
be in this category, but others don’t. Meanwhile, credit card readers will probably
require a special handling –depending on the bank’s politics–, then we will require
special interaction devices represented in the framework by interaction device agents.
The required interaction device’s procedures will be stored in a domain’s interaction
devices repository, handled and represented in our framework by server agents. Each
interaction device procedure has its own identifier and associated attributes, such as
manufacturer, bank and version control. Server agents will provide interaction device
procedure’s agents with the right procedure as they require them.

Telephony Control System

Table 6.3 shows a brief description for the system’s functionality. What is worth to
observe here, is the hardware devices’ diversity. PBX’s 1 interfaces, Air Conditioning
Control systems, Ambient Systems –they remember the guest’s physical room prefer-
ences, such as light color and intensity, preferred TV channels, room temperature and
sound level, also control door opening via RFID 2 control–, door locking systems, video
systems and mini-bar systems.

Telephony Control
 PBX
 Interfaces for several manufacturers

Door Locking System

Interface

Integrated management
 Adviser
 Lucent Technology
 Ving
 Card

Phone calls charges
 Alcatel
 Mailitec
 Tesa

PBX
 Activity
 AT&T
 definity
 Matra
 Onity

Open/Close Lines
 Callegra
 Mitel

Voice Mail
 Centigram
 NEC
 Video Systems

Guest Location
 DCNET
 Northern
 Telecomm
 Interactive

Wake-up Call
 Diavoz
 Panasonic
 Spectravision

Disyctel
 Phillips
 On-command

Air Conditioner
 Ericsson
 Rolm
 Lodgenet

Alertron
 Fujitsu
 Samsung

GTE
 Siemens
 Minibar
 Systems

Ambient Systems
 Harris
 Taridan
 Servitron

Philips
 Intercel
 Vslim

Table 6.3: Telephone and PBX systems’ control and different hardware devices

As we can expect, the complexity introduced to control all these devices is remarkable,
they are represented in our framework by interaction devices agents. But this is not
good enough if we consider devices’ diversity and thousands of users, for example, in
Table 6.3 we count 26 different PBX’s interfaces from different manufactures and differ-
ent interfaces’ specifications. Each manufacturer has its own evolution program, then,

1 PBX stands for Private Branch Exchange, that is, any telephone system connected directly to the
telephone public network

2 RFID stands for Radio Frequency IDentification, its main purpose is to transmit an object identifi-
cation by radio waves

CHAPTER 6. CASE STUDY 101

they change their products’ specifications and product behavior –as new models with
new functionality are developed– as their business requires. What we do in our frame-
work is to have an interaction devices agents repository, we recall in the word agents.
The framework allows for an agent’s repository, each time an interaction device agent
interaction is required by a user agent, it is instantiated, and the first thing they do is to
verify if the device identifier and attributes are the same as the physical device installed
in the hotel, if not, the interaction device agent migrates (see Section 4.8.1) from the
repository directly to the users’ colony –see Section 4.3– and the user agent instantiates
the interaction device agent there.

6.1.3 Application’s Complexity

In Table 6.4 we show the application’s complexity. Column 1 identifies server agents
by business rules’ groups, that is, business rules that must share the same server agent.
Column 2 indicates the number of performative scripts –business contexts at run time–
defined for each business rules’ group. For example, Individual Reservation –first row in
the table– has 2 performative scripts, the first for the Individual Reservation’s rack, and
the second for the Individual Reservation’s form. As explained in detail in Section ??,
each form or graphical device has its own performative script to coordinate interaction
between user and business rules agents. Column 3 indicates an approximated number
of business rules included in the business rules group associated to each performative
script. Column 4 indicates the total of business rules in each group. Finally, column 5
indicates the type of interaction device required for interaction: graphical device –such
as the rack–, form, or physical device such as a PBX (see Section 6.1.2 above).

As we can observe in the table, for this case study we need to design, build and/or
programm the following:

• design 25 complex performative scripts,

• design 50 simple performative scripts for catalogues maintenance,

• design 400 very simple performative scripts for reports and scheduled processes,

• design 140 simple performative scripts for updating data bases,

• write 1600 medium sized business rules,

• write 800 large business rules for reports and scheduled processes,

• write 4 business rules for database add, update, delete and query respectively,

• write 560 SQL query type business rules for database retrieving,

• design 25 complex forms,

• design 125 simple forms,

CHAPTER 6. CASE STUDY 102

Server

Agent

Number of

Business

Contexts

Br per

Business

Context

Total of

Business

Rules

Interaction

Device

Individual

Reservations

2
 60
 120

graphical device +

forms

Group

Reservations

1
 100
 100
 forms

Front Desk

Form

1
 100
 100
 forms

Front

Desk Rack

9
 10
 20

graphical device +

forms

Cashier and

Transactions

2
 15
 30
 forms

Folio

Management

2
 70
 140
 forms

Points of

Sale

5
 60
 300

graphical device +

forms + physical

device

House-

keeping

1
 10
 10

graphical device +

forms

PBX

control

2
 15
 30

forms + physical

device

Total
 25
 850

20 complex forms

80 simple forms

4 graphical devices

2 physical devices

Catalogues

maintenance
 50
 15
 750

5 complex forms

45 simple forms

Reports and

scheduled

processes

400
 2
 800
 400 simple forms

Data Base

Tables

140

4

add, update,

delete, query

560
 data base

Table 6.4: Application Complexity

• design 400 very simple forms for reports and scheduled processes,

• design 4 graphical devices, and

• write the interaction device’s business rules for 8 different physical devices, each
one with its own set of flavors, such as the PBX interfaces that came from 26
different manufacturers.

As we can conclude from the paragraphs above, this is a very complex application
environment, that truly represents the complexity level for agent based information
systems that we intend to deploy using our framework.

CHAPTER 6. CASE STUDY 103

6.1.4 Application’s Forms

In this section we describe two representative forms used for user interaction. The
discussion presented here is applicable to all forms contained in the agent oriented HIS
deployed as part of this research. We made two version for all forms, the first using
delphi controls3, and the second using java controls.

A

B

Check-in

Check-Out

Statement

Modify

Transactions

Create Folio

Modify Folio

Free Room

Change Room

C

c

Figure 6.1: Front Desk’s Rack

In Figure 6.1 we show the front-desk rack divided in three sections, section A is used
to select the information we want to work with in section B. Section A exemplifies the
“very simple forms” referred to in Section 6.1.3 that are required to select parameters
when a user wants to print a report. Section B exemplifies a graphic device used by
a user in order to abstract and better visualize information in a graphical way. Each
row in the rack contains information relating rooms and guests. It contains the room
status, room type, room number, as well as columns for several calendar days. On each
column, it can be present a bar segment indicating either the room is out of order, or it

3 A Control is a standard component available to be integrated with our own, it can be a java control or
another language control. Common controls are grid, spreadsheets, display buffers, etc. Each control
exhibits its own behavior, all the interaction device have to do, is to provide pertinent information.

CHAPTER 6. CASE STUDY 104

has a reservation or an in-house guest crossing, arriving or leaving that day. Thus if the
bar starts in column labeled “05-w” and ends in the column labeled “08-s”, it indicates
that there is a guest for that room arriving on Wednesday 5, and leaving on Saturday
8. If the user passes his mouse over any bar, a caption appears showing detailed guest’s
information. Note that passing the mouse over a bar is a local control’s functionality,
that is, when the user passes his mouse over the bar, the control shows the information,
nevertheless, the interaction device agent is responsible for updating the information as
it changes –maybe changes made by another user using a different interaction device,
such as a form–.

In section C, a small window is displayed when the user right-click his mouse over a bar.
It contains several business contexts, from which the user can select one for execution.
All he needs to do is to select it with the mouse and the associated inform illocution
will be sent by the user agent to its corresponding business rule agent. Note that doing
so, we are actually activating a federation of business contexts es explained in Section
??.

A

B

C

c

Figure 6.2: Check-in form

If we select the check-in business context in this small window identified with letter “C”
in Figure 6.1, the form shown in Figure 6.2 appears containing all particular guest’s

CHAPTER 6. CASE STUDY 105

information. The performative script required to coordinate agents interaction in sec-
tion A of this form, was fully described in Section ??. Section B contains a form with
two tabs, the first tab manages general guest’s information, while the second manages
Agencies and rates information. Section C contains a form with twelve tabs. It’s impor-
tant to note that while a large amount of tabs are required for this section, the relation
between tags an their values adds no complexity to the user agent, as it’s the tab con-
trol component that is in charge of relating tabs with their correspondent position in
a particular tab inside the form. As described in Section ??, each field contained in
each form associated to a tab, has its identifier that associates the field with the infor-
mation it receives as agents interaction evolves according to the modeled performative
script, enacted as a business context at run time. The three sections shown in Figure
6.2 constitute a form that is considered as a complex form in Section 6.1.3.

6.2 Results

As we explained in this chapter, we have used the framework described in Chapter 4 to
transform a traditional client server IS into a multi-layered, web-enabled, agent oriented
IS. As we conceived our ideas as a conceptual model and we formalized them with theory
in Chapter 3, and implemented them as a framework in Chapter 4, we made a lot of
field tests to assure that the conceived ideas will be functional and convenient in real
settings. If an idea resulted in a poor performance in real settings, then we went back
several times until we obtained the desired results. This is not the end of the road for
us concerning this research, simply is a stage stop where we can report relevant and
complete results.

We don’t know if we are promoting a paradigm shift concerning information system’s
development methodologies, what we know is that at this point in time, through this
research we produced an IS that with the committed participation of 10 software de-
velopment engineers from our company, we finally deployed an agent-based IS that is
actually in use in 80 hotels, having impact in the daily operation of about 800 employ-
ees. As an information systems’ development company, we found several advantages
and some disadvantages. From our software engineers we collected their perceived ad-
vantages and disadvantages –from the software development engineer point of view of
course–. From the 80 hotels, we collected their point of view regarding business im-
provement. From the 800 users, we collected the end-user point of view. Of course, we
feel with some freedom to describe the advantages and disadvantages we found.

6.2.1 Advantages

As an information system’s development company and concerning business competitive
advantages, using this framework we are enabled to:

• Have a large HIS showing “vanguard” performance.

CHAPTER 6. CASE STUDY 106

• Have a high degree security label concerning invasive software, as our users are
not obliged to user browsers in order to use our application.

• Provide a centralized control of domain elements, as one application server allows
for multiple properties –v.gr. hotels– operation and management.

• Vanguard tools (marketing).

• Use this framework for the portability of information systems that we have in
other domains, that is, all elements developed according to the framework de-
scribed in Section 4, are completely reusable, they are generic elements that can
be generalized to other domains.

• Open new possibilities for new business, as we advanced with this project, we
implemented new business strategies, such as offering our HIS in an on-demand
basis. Until now, we have contracted two data centers where we have allocated our
system, the first in London and the second in California, our purpose is to serve
the American market from California and the European market from London.

• Implement specialized domain repositories for: language translation, forms and
interaction devices.

• Considerably reduce maintenance efforts and cost for specialized devices’ interface
maintenance. Interaction agents’ migration feature enables us to keep together in
a central repository all required interface changes.

Regarding systems’ development people, using this framework they have the following
benefits:

• Separation of concerns between forms design, business rules programming and
workflow specification, promoting specialization. This approach allows designing
forms without any knowledge concerning business rule programming or infrastruc-
ture details, the form designer concentrates himself only in form shape, function-
ality and contents.

• In relation with the previous point, this approach also allows a graphic designer
for a better level of abstraction concerning how human users will interact using
interaction devices. Graphic designers are enabled as active elements of software
development teams. Their abilities and specialization in graphic issues greatly
benefits the deployed application with better interaction devices, as if we were
designing a car. We concentrate on drawing.

• This approach also promotes programmers’ specialization, as the programmer is
focused on writing business rules, forgetting how the human user will invoke them.
All he needs to know is how to programm the desired functionality. Comparatively
speaking, to deploy a web-based application for complex interactions –intensive

CHAPTER 6. CASE STUDY 107

human user intervention– in current implementation of the MVC 4 model, the
same developer has to deal with presentation and process logic issues; it’s this
way because current frameworks (such as the java programming language used in
SOA architectures such as J2EE –see Section 2.4), allows a complete separation of
concerns that is practical only for low user interaction business process (see Section
2.7.1), such as authorizing a loan by a credit department in a bank; developing
intensive human interaction systems with this methodology becomes cumbersome
and in most cases impossible –try to model and implement using BPEL4WS (see
Section ??) the check-in business context described in Section 5.5–.

As this framework is for developing agent based information systems for enterprises, in
their perspective they have the following benefits:

• Desktop application’s functionality in a web-based application.

• Lower cost of ownership, as users don’t need to address infrastructure costs in his
user station as all required elements are provided by the middleware.

• If the user’s enterprise is located at several places –it’s mostly the case–, as a
web-based development framework, deployed applications requires lower technical
support costs, as the user’s enterprise don’t need a local technician to fix large
infrastructure problems.

• Users can use the application in an on-demand basis, lowering software licensing
royalties, as in this modality users don’t have to pay high licenses fees, having also
lesser operation costs as the enterprise concentrates all infrastructure in one place.
That is, this framework provides less cost of ownership –IT and people–.

• Compared to an intensive human interaction application –usually client-server–,
this approach requires much less or zero management in each user station. With
this approach we don’t have to deal neither with environmental variables settings
nor database access parameters.

• Processing speed even in graphical-intensive applications behaves as a desktop
deployed application.

• This framework allows for better speed performance, as it has a very light com-
munication infrastructure allowing real dumb-forms that contains zero business
or control logic. And as all user forms resides in the user computer –with zero
human administration–, these forms –nor portions of it– don’t need to travel over
the network each time we change data associated to a frame or complete form
–web browsers approach–. Related to this issue, this approach allows also for
richer graphical implementations, as graphic drawings don’t need to travel over
the network every time they are required.

4 MVC stands for Model View Controller, where the processing model, user’s view and process con-
troller are separated

CHAPTER 6. CASE STUDY 108

6.2.2 Areas for Improvement

As everything in life, advantages acquired on one side, produces disadvantages in other
side. The following are the areas for improvement that we have identified:

• System development using this framework requires better management. The fact
that the business logic is not embedded in presentation logic, requires management
for the synchronization between business rules and forms repositories.

• The system’s designer requires a deeper knowledge about all framework elements,
as the functionality provided by each agents’ colony is strongly related with other
colonies.

6.3 Summary

In this chapter we described the case study for this research. We started with the hotels
information system’s description in terms of its functionality, separating the front office,
points of sale, and telephone control systems, providing several tables summarizing
system’s functionality and specifying domain elements required for the hotel’s operation.
Then we provided a summary for the computational complexity involved in terms of the
computational domain elements required. We exemplified how a user interacts with the
system using forms and a graphical device –rack– as interaction devices. We explained
how interaction devices relates user information and computational repositories through
specialized agents controlled and coordinated by the organization’s engine. Finally we
provided obtained results.

Chapter 7

Conclusions

We traveled a long way, there were 8 years since the initial ideas for this project emerged.
We were motivated with competitive factors, we did’t like to loose business facing com-
petitors selling dreams, but that was a reality. Then we decided to face the problem and
we became immerse in a long term “renovation” project, long term based, high tech-
nology impact, high already built software capitalization possibilities. Then we started.
Now we have new business implementations for a highly mature system, one million
and two hundred lines of code, mostly with 22 years in their back, but strongly compet-
itive, now as a large business rule repository, sharing space with brand new beautiful
and functional forms and interaction devices, already competing but ready to accelerate
business in the international market; to our knowledge, this is scalability and knowledge
economy!. We are happy for that.

7.1 Contributions

In the course of our research project, we verified to provide several contributions to the
information technology business. Here we recapitulate those that we consider as most
important:

• Theoretical extension/modification to the concept of electronic institutions to pro-
vide a first approach for a lighter electronic institution, that could be suitable for
use in a “peer to peer” environment.

• We developed a conceptual model based on multi agent system’s technology that
provides information system’s components autonomy, and also provides gover-
nance using the concepts of electronic institutions.

• A formal model for IIS. We will develop theory for grounding the conceptual model
into an implementable framework, giving formal detail to all required computa-
tional domain’s elements.

109

CHAPTER 7. CONCLUSIONS 110

• We provided an IIS’s framework that enables available information technologies
resources, such as data bases, business rule repositories, data mining tools and
automated decision making devices with multi agent system’s technology in a
web-based environment.

• We provided the required methodology to implement an agent based IS using the
organizational metaphor.

• Knowledge Economy: We demonstrated a case study at the industrial level, scaling
our framework, applying it for deploying an agent-based IS in a real setting. This
case study constitutes a proof of concept for the consequence of taking seriously
the autonomy attribute provided by the agent’s metaphor and the governance
attribute provided by the electronic institution’s concept.

7.2 Future Work

There are several open research lines for the enrichment of the framework presented
in this research. Through the development of this research project, we identified the
following projects:

7.2.1 Enforcing goals to a convenient level

As we intended an organization to evolve, in Section 3.5.10 we defined an achievement
structure for an IIS, this definition includes organization’s goals and goal’s performance
indicators. We propose the use of this concept and the concept of norms defined as part
of an electronic institution (see Section 3.5.5), to provide a way for an IIS to learn how
to better achieve the desired performance metrics using norms.

7.2.2 Organization Dynamics

Related to Section 7.2.1, it is also desirable to relate organizational’ goals to busi-
ness contexts involving artificial intelligence techniques agents. According to specific
achievement structure’s performance metrics (see Section 3.5.10), we could have com-
peting agents providing a similar service reaching –or not– a specific organizational goal.
Then the framework could provide a mechanism to assign a specific task to the agent
that performs better. We could extend this project providing agents whose job could
be to analyze intelligent agent’s performance, thus, this agent could suggest changes in
business contexts to better achieve goals raising specific performance metrics.

CHAPTER 7. CONCLUSIONS 111

7.2.3 Agents’ Reputation

Once we have realized the project described in Section 7.2.1, we can address agent repu-
tation and trust. If the framework is providing us with agents that supposedly performs
better, then we can maintain information about this framework’s recommendations and
build our own reputation’s knowledge base, incorporating factors that could affect such
recommendations.

7.2.4 Agents’ Architecture

In the framework implementation presented in Chapter 4, we used the concept of swarm
intelligence [5] to organize agents in colonies, and we presented several UML diagrams
to show how each type of agent relates to each other. But we say nothing about internal
agents structure. We left the internal agent architecture decision to the implementa-
tion requirements of the reader. We propose a projet to define the most convenient
architecture for each type of agent, that should be the most convenient if we intend to
generalize the computational domain components, providing different resources to each
agents’ colony.

7.2.5 Grounding Language Definition Mapping Tool

In Section ?? we formalized the concept of grounding language as a ontology mapping
element from the computational world (see Section 3.5.11) to the institutional model. It
is convenient to have a mapping tool, in which we could define a computational ontology
related to their intervening elements, such as form’s tags, form’s events, business rules
identifiers, etc., an using this tool we could maintain an institutional ontology updated
as defined by the grounding language. This issue becomes cumbersome when we are
talking about several hundred on forms and business rules.

7.2.6 Institutional MAS Development Environment

Once we have realized the projects proposed in Sections 7.2.4 and 7.2.5, we will be
ready to address the problem of building an institutional multi agent system develop-
ment environment. In this development tool, we could define in a graphical way all
computational domain elements and their relationship in an institutional context using
agents to represent them.

7.2.7 Load Balancing

Our approach promotes specialization in server agents behavior and specialized use.
As we explained in Section ??, we have built the basics in our framework to have

CHAPTER 7. CONCLUSIONS 112

a cluster of organization engine’s, each one residing in its own computer server and
location. We propose a project to define relevant parameters and performance metrics,
for the framework be able to decide, giving an illocution addressed to a set of server
agents, –each one residing in a different organization engine– playing the same role and
capable to attend such illocution, to which server agent should the framework address
the illocution?. This could be a good functionality to add to the framework.

7.2.8 Alternative Network Routing

As our framework produces web-enabled information systems, we can –and we should
perhaps– install the organization engine and all its repositories in different locations;
this way we could have organization engine’s mirroring, that is, if the communication
lines to reach a particular organization engine are unavailable, then the user agent could
request service from an alternative organization engine. It is important to note, that
such organization engines should share or synchronize performative scripts in order to
guarantee expected results.

7.3 Final Remarks

We are so satisfied with the results obtained with this research and development project,
that we have already scheduled the transformation from classical information systems
into institutional agent oriented information systems for two large scale information
systems that we already have in operation with several hundreds of users. Specifically,
Merksyst, an IS for the operation and management of large warehouses and distribution
centers, including retail, convenience and departmental stores. We have also scheduled
the transformation for an IS for Hospitals and clinic services, including private and
government health-care services as well as an Electronic Medical Records (EMR) system.
We have also reported some results on the agentification process for the EMR system
as described in [30].

We strongly believe, that the information system’s development paradigm proposed by
this research project, will be the way to build large scale, intensive human interaction,
web-based industrial information systems. Our best knowledge is in it, we are betting
on this approach.

Bibliography

[1] http : //www.w3.org/.

[2] http : //www.wfmc.org/.

[3] Josep Arcos, Marc Esteva, Pablo Noriega, Juan Rodriguez-Aguilar, and Carles

Sierra. Environment engineering for multiagent systems. Engineering Applications

of Artificial Intelligence, (18):191–204, Elsevier Ltd. January 2005.

[4] M. Brian Blake. Coordinating multiple agents for workflow-oriented process or-

chestration. Information systems and e-Business Management, pages 387–404, Jan

2005.

[5] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence, from Nat-

ural to Artificiall Systems. Oxford University Press, New York, USA, 1999.

[6] Paul A. Buhler and José M. Vidal. Towards adaptive workflow enactment using

multiagent systems. Information Technology and Management, 6:61–87, Feb 2005.

[7] Jaelson Castro, Manuel Kolp, and John Mylopoulos. Developing agent-oriented

information systems for the enterprise. In Proceedings Second International Con-

ference On Enterprise Information Systems, Stafford, UK., July 2000.

[8] Amit K. Chopra and Munindar P. Singh. Interoperation in protocol enactment.

In Declarative Agent Languages and Technologies V, 5th International Workshop,

DALT 2007, pages 36–49, Honolulu, HI, USA, May 2007.

[9] Claudio Ciborra. The Labyrinths of Information: Challenging the Wisdom of Sys-

tems. Oxford University Press, Great Clarendon Street Oxford, OX2 6DP, UK, 1st

edition, 2002.

[10] Workflow Management Coalition. Workflow management coalition terminology &

glossary. Technical Report Document Number WFMC-TC-1011, Workflow Man-

agement Coalition, Feb 99.

[11] Richard M. Cyert and James G. March. A behavioral theory of the firm. Prentice-

Hall, Englewood Cliffs, N.J. USA, 1963.

113

BIBLIOGRAPHY 114

[12] Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. Representing and reasoning

about commitments in business processes. In AAAI, pages 1328–1333, 2007.

[13] Thomas Erl. Service-Oriented Architectures, Concepts, Technology and Design.

Prentice Hall, One Lake Street, Upper Saddle River, NJ 07458, USA, 1st ed. edition,

2006.

[14] M Esteva. Electronic Institutions: from specification to development. PhD thesis,

Universitat Politècnica de Catalunya (UPC), Bellaterra, Catalonia, Spain, 2003.

Institut d’Investigació en Intelligència Artificial. IIIA monography Vol. 19.

[15] Marc Esteva, Juan A. Rodriguez-Aguilar, Bruno Rosell, and Josep Lluis Arcos.

AMELI: An agent-based middleware for electronic institutions. In Third Inter-

national Joint Conference on Autonomous Agents and Multi-agent Systems (AA-

MAS’04), pages 236–243, New York, USA, July 19-23 2004.

[16] Giancarlo Fortino, Alfredo Garro, and Wilma Russo. Distributed workflow enact-

ment: an agent-based framework. In Andrea Omicini Flavio De Paoli, Antonella

Di Stefano and Corrado Santoro, editors, Proceedings of the 7th WOA2006 Work-

shop, From Objects to Agents, Catania, Italy, Sep 2006.

[17] Jake Freivald. Can soa finally deliver on the promise of enter-

prise integration? Business Integration Journal, (65):42–45, 2006.

http://www.bijonline.com/index.cfm?section=issue&iid=65.

[18] Andres Garcia-Camino, Pablo Noriega, and Juan Antonio Rodriguez-Aguilar. Im-

plementing norms in electronic institutions. In Fourth International Joint Confer-

ence on Autonomous Agents and Multiagent Systems, 2005.

[19] Jorge Gonzalez-Palacios and Michael Luck. A Framework for Patterns in Gaia:

A Case-Study with Organisations. In AOSE, LNCS, number 3382, pages 174–188.

Springer-Verlag Berlin Heidelberg, 2005.

[20] Faratin P. Johnson M. J. Norman T. J. O’Brien P. Jennings, N. R. and M. E. Wie-

gand. (1996) agent-based business process management. Int. Journal of Cooperative

Information Systems, 5((2 & 3)):105–130, 1996.

[21] Jay Liebowitz. Knowledge Management Handbook. CRC Press, Boca raton FL,

1999.

[22] Jay Liebowitz and Tom Beckman. Knowledge Organizations. Saint Lucie Press,

Washington, DC, 1998.

[23] Michael Luck, Ronald Ashri, and mark D’Inverno. Agent-Based software develop-

ment. Artech House, Ind., Norwood, MA, USA, 2004.

BIBLIOGRAPHY 115

[24] Michael Luck, Peter Mc Burney, Onn Shehory, and Steve Willmott. Agent based

computing . Agent Technoloty Roadmap draft, 2005.

[25] Anandarajan M., Anandarajan A., and Srinivasan Cadambi A. Business Intelli-

gence Techniques. Springer, Germany, 2004.

[26] James G. March and Herbert A. Simon. Organizations. John Wiley and sons, New

York, USA., 1958.

[27] Douglass C. North. Institutions, Institutional change and economic performance.

Cambridge Universisy press, 40 west 20th Street, New York, NY 10011-4211, USA,

1990.

[28] James O’Leonard. Application integration manifesto. (Former) Ar-

tificial Intelligence (Business Integration) Journal, (53):32–36, 2002.

http://www.bijonline.com/index.cfm?section=issue&iid=53.

[29] Michael Pechoucek, Donald Steiner, and Simon Thompson. Industry track of the

Fourth International Conference on Autonomous Agents and Multiagent Systems.

ACM press, New York, USA, 2005.

[30] Armando Robles, Pablo Noriega, Michael Luck, Francisco Cantú, and Francisco

Rodriguez. A multi agent approach for the representation and execution of medical

protocols. In U. Annicchiarico R. Nealon J Moreno, A. Cortés, editor, 4th Workshop

on Agents Applied in Health Care. ECAI 2006, pages 11–16, Riva del Garda, Italy,

2006.

[31] Armando Robles, Pablo Noriega, Marco Robles, Hector Hernandez, Victor Soto,

and Edgar Gutierrez. A Hotel Information System implementation using MAS

technology. In Industry Track Proceedings Fifth International Joint Conference

on AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS 2006),

Hakodate, Hokkaido, Japan, May 2006.

[32] Juan Antonio Rodŕıguez and Carles Sierra. Enabling open agent institutions. In

Lola Ca namero Kerstin Dautenhahn, Alan H. Bond and Bruce Edmonds, editors,

Socially Intelligent Agents: Creating relationships with computers and robots, pages

259–266. Kluwer Academic Publishers, 2002.

[33] Juan A. Rodŕıguez-Aguilar. On the Design and Construction of Agent-mediated

Electronic Institutions. PhD thesis, Universitat Autonoma de Barcelona, 2001.

Institut d’Investigació en Intelligència Artificial. IIIA monography N. 14.

[34] John R. Searle. Speech acts - an essay in the philosophy of language. Cambridge

University Press, New York, fist edition, 1969.

BIBLIOGRAPHY 116

[35] Y. Shoham. Agent-oriented programming. Technical Report STAN-CS-1335-90,

Computer Science Department, Stanford University, Stanford, CA 94305, USA,

1990.

[36] Munindar P. Singh. Interaction-oriented programming: Concepts, theories, and re-

sults on commitment protocols. In Australian Conference on Artificial Intelligence,

pages 5–6, 2006.

[37] Munindar P. Singh and Michael P. Huhns. Multiagent systems for workflow. Inter-

national Journal of Intelligent Systems in Accounting, Finance and Management,

June 1999.

[38] Wil van der Aalst and Kees van Hee. Workflow management - Models, Methods

and Systems. MIT Press, Boston, MA, USA, first - translation edition, 2004.

[39] W.M.P. van der Aalst. The applicatoin of Petri Nets to Workflow Management.

Department of Mathematics and Computing Science, Eindhoven University of Tech-

nology, Eindhoven, The Netherlands., (1997).

[40] W.M.P. van der Aalst. Making Work Flow: On the Application of Petri nets to

Business Process Management. Department of Technology Management, Eind-

hoven University of Technology, Eindhoven, The Netherlands, (2002).

[41] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and

practice. Knowledge Engineering Review, 10(2):115–152, 1995.

[42] Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The GAIA Method-

ology for Agent-Oriented Analysis and Design. In Autonomous Agents and Multi-

Agent Systems, volume 3, pages 285–312. Kluwer Academic Publishers, 2000.

[43] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing

Multiagent Systems: The GAIA Methodology. In ACM Transactions on Software

Engineering and Methodology, volume 12, pages 317–370. ACM, 2003.

Appendix A

Differences between EI and EI2S

We defined the Electronic Institution for Information Systems (EI2S) mostly the Elec-

tronic Institution’s definition made in the IIIA. [14].

We dropped all elements of the original definition that we don’t want to preserve, like-

wise, we incorporated several elements that are indispensable to implement “IIS”.

The differences between the original EI definition and the EI2S definition are the

following:

• Expression language differences:

– EI defines operations over lists; lists are not defined in EI2S.

– EI handles functions in its expression language grammar, while functions are

not handled in EI2S.

• EI provides list iterator functions for analyzing constraints over lists; EI2S pro-

vides a reduced capability, allowing a single set of independent constraints, eval-

uated together as a conjunction.

• EI handles functions defined in its procedural model; EI2S doesn’t have a proce-

dural model in its definition, then EI2S doesn’t handle functions.

• Action language differences:

– EI provides conditional processing for action language instructions, while

EI2S allows a single set of assignment instructions to be performed in a

sequential manner.

– EI allows using functions in expressions; EI2S doesn’t handle functions,

then it only allows operations over information models–roles, scenes and elec-

tronic institution’s information models– defined in its constraint and action

languages.

117

APPENDIX A. DIFFERENCES BETWEEN EI AND EI2S 118

– In EI, an information model attribute can be modified applying a function

included in an expression, instead EI2S allows for a computational model

element, such as a business rule, to modify an information model’s attribute

being part of an illocution, that is, in the business rule implementation,

through the grounding language–not defined in EI–, the information model’s

attribute can be referenced by its illocution context, thus allowing EI2S to

map values between information model’s attributes and business rule’s local

variables. This EI2S characteristic is indispensable to maintain business

rules’s context inside the institution.

• Scene management differences:

– In EI and EI2S, each illocution schema has associated a constraint and

action language expressions. The constraint expression must be regarded as a

pre-condition of the action, and it has to be satisfied in order for the action to

be performed. However, while in EI, the action language expression defines

the consequences of the action, making the scene state to evolve from the

source state of the arc to its target state, in EI2S, if the illocution involves

an agent representing a computational domain element–such as a business

rule–, it is supposed that the computational domain context has changed

by the execution of the associated business rule, making the scene to evolve

to its target state, the institutional state is changed–besides the change to

the target state–by executing the action language expressions, which can

modify information model’s variables mapped by the grounding language to

computational domain variables.

– In EI and EI2S, during a scene conversation, the variables in illocution

schemas are bound to the values of the uttered illocution. These bindings

change dynamically. On one side, these bindings are considered as contex-

tual information in EI, thus it keeps track of all variable bindings during

scene execution, preserving in lists a history of all substitutions–that’s why

EI handles lists in its expressions– for the constraint and action languages–.

On the other side, in EI2S contextual information is modified by compu-

tational domain elements as we explained in the previous paragraph, then

EI2S doesn’t keep track of institutional variable’s binding history.

