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ABSTRACT

Combinatorial optimization is a branch of mathematical optimization
concerned with problems where the solution space is finite but often too large
for exhaustive search. Such problems arise in diverse domains, including
logistics, bioinformatics, and scheduling. Two main approaches exist for tackling
them: exact methods, which guarantee optimal solutions but scale poorly, and
approximate methods, which trade optimality for efficiency. Within approximate
methods lies the concept of metaheuristics, which are general frameworks that can
be adapted to multiple combinatorial optimization problems. Notable examples
include Ant Colony Optimization, Genetic Algorithms, and Tabu Search.

Recently, the field of machine learning has attracted considerable attention,
fueled by advances in computation and numerous breakthroughs. In particular,
a rather novel and promising application is its integration into combinatorial
optimization algorithms, particularly metaheuristics. In this context, learning can
take place either offline, with models trained before the algorithm’s execution, or
online, with models updated dynamically during the search.

This thesis investigates both paradigms. On the offline side, it introduces
an evolutionary framework for learning heuristic information to guide
metaheuristics. The framework is employed in three settings: a genetic algorithm
and a beam search applied to string-based optimization problems, and the Clarke
and Wright heuristic for vehicle routing problems. On the online side, two novel
variants of the hybrid metaheuristic Construct, Merge, Solve, and Adapt (CMSA)
are proposed. Both integrate feedback from the exact solver used in the solve
step of CMSA to improve solution construction, the first through a reinforcement
learning–inspired mechanism and the second via deep learning, enabling richer
adaptation during the search.

Keywords: Metaheuristics, Machine Learning, Neural Network, Evolutionary
Computation, Genetic Algorithm, Longest Common Subsequence Problem, Electric
Vehicle Routing Problem, Beam Search, Construct Merge Solve and Adapt, CPLEX,
Reinforcement Learning, Deep Learning, Minimum Dominating Set Problem, Far From
Most String Problem, Maximum Independent Set Problem.
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RESUMEN

La optimización combinatoria es una rama de la optimización matemática
que se ocupa de problemas cuyo espacio de soluciones es finito, pero a menudo
demasiado grande para ser explorado exhaustivamente. Este tipo de problemas
surge en dominios diversos, como la logística, la bioinformática y la planificación.
Existen dos enfoques principales para abordarlos: los métodos exactos, que
garantizan soluciones óptimas pero no escalan bien, y los métodos aproximados,
que sacrifican optimalidad a cambio de eficiencia. Dentro de los métodos
aproximados se encuentra el concepto de metaheurísticas, que son marcos
generales adaptables a múltiples problemas de optimización combinatoria.
Ejemplos notables incluyen la Optimización por Colonia de Hormigas, los
Algoritmos Genéticos y la Búsqueda Tabú.

Recientemente, el campo del aprendizaje automático ha atraído una
atención considerable, impulsado por los avances en computación y numerosos
descubrimientos. En particular, una aplicación relativamente novedosa y
prometedora es su integración en algoritmos de optimización combinatoria,
especialmente en metaheurísticas. En este contexto, el aprendizaje puede
producirse de manera offline, con modelos entrenados antes de la ejecución del
algoritmo, o de manera online, con modelos que se actualizan dinámicamente
durante la búsqueda.

Esta tesis investiga ambos paradigmas. En el ámbito offline, se introduce
un marco evolutivo para aprender información heurística que guíe a las
metaheurísticas. El marco se emplea en tres escenarios: un algoritmo genético y
un algoritmo beam search aplicados a problemas de optimización sobre cadenas
de caracteres, y la heurística de Clarke y Wright para problemas de ruteo
de vehículos. En el ámbito online, se proponen dos nuevas variantes de la
metaheurística híbrida Construir, Fusionar, Resolver, y Adaptar (CMSA). Ambas
integran feedback del solucionador exacto utilizado en el paso resolver de CMSA
para mejorar la construcción de soluciones: la primera mediante un mecanismo
inspirado en el aprendizaje por refuerzo, y la segunda a través del aprendizaje
profundo, lo que permite una adaptación más completa durante la búsqueda.
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RESUM

L’optimització combinatòria és una branca de l’optimització matemàtica que
s’ocupa de problemes l’espai de solucions dels quals és finit, però sovint massa
gran per ser explorat exhaustivament. Aquest tipus de problemes apareix en
àmbits diversos, com la logística, la bioinformàtica i la planificació. Hi ha dos
enfocaments principals per abordar-los: els mètodes exactes, que garanteixen
solucions òptimes però no escalen bé, i els mètodes aproximats, que sacrifiquen
optimalitat a canvi d’eficiència. Dins dels mètodes aproximats hi trobem el
concepte de metaheurístiques, que són marcs generals adaptables a múltiples
problemes d’optimització combinatòria. Alguns exemples destacats inclouen
l’Optimització per Colònia de Formigues, els Algorismes Genètics i la Cerca
Tabú.

Recentment, el camp de l’aprenentatge automàtic ha atret una atenció
considerable, impulsada pels avenços en computació i nombrosos descobriments.
En particular, una aplicació relativament nova i prometedora és la seva integració
en algorismes d’optimització combinatòria, especialment en metaheurístiques.
En aquest context, l’aprenentatge pot produir-se de manera offline, amb models
entrenats abans de l’execució de l’algorisme, o de manera online, amb models que
s’actualitzen dinàmicament durant la cerca.

Aquesta tesi investiga ambdós paradigmes. En l’àmbit offline, s’introdueix un
marc evolutiu per aprendre informació heurística que guiï les metaheurístiques.
El marc s’empra en tres escenaris: un algorisme genètic i un algortme beam search
aplicats a problemes d’optimització sobre cadenes de caràcters, i l’heurística de
Clarke i Wright per a problemes de ruteig de vehicles. En l’àmbit online, es
proposen dues noves variants de la metaheurística híbrida Construir, Fusionar,
Resoldre, i Adaptar (CMSA). Totes dues integren feedback del solucionador
exacte utilitzat en el pas resoldre de CMSA per millorar la construcció de solucions:
la primera mitjançant un mecanisme inspirat en l’aprenentatge per reforç, i
la segona a través de l’aprenentatge profund, que permet una adaptació més
completa durant la cerca.
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1

INTRODUCTION

0.1 Background and Motivation

Optimization consists of seeking a best element, with respect to some criteria,
from a set of available alternatives. It has a broad range of applications across
various fields, enhancing efficiency, reducing costs, and maximizing desired
outcomes. In business, optimization is used for job scheduling to minimize
makespan, in manufacturing to reduce waste while maximizing production,
and in logistics to plan the most efficient routes [89]. With its vast number of
applications, optimization plays a crucial role in addressing complex real-world
problems.

More formally, an optimization problem can be defined as follows:

Definition 0.1.1. Let E be a set, F ⊆ E a subset of E and f : F −→ R a function.
The optimization problem associated with (E,F, f) consists of finding S∗ ∈ F such
that f(S∗) ≥ f(S) ∀ S ∈ F (maximization) or such that f(S∗) ≤ f(S) ∀ S ∈ F

(minimization).
In this context, E is called the set of candidate solutions, F the set of feasible solutions,

f the objective function and S∗ a best solution to the optimization problem.

A particular type of optimization problems are the ones which have a finite,
although often extremely large, set of candidate solutions. These are called
combinatorial optimization problems and are the ones on which we focus in
this thesis. Methods for approaching combinatorial optimization problems can
be divided into exact and approximate. Examples of exact methods include
Branch-and-Bound [83] and Dynamic Programming [10], which systematically
explore the solution space to guarantee optimality. Exact methods can be useful
for particularly structured problems or for problem instances up to a certain size,
but they are often impractical. This is because many combinatorial optimization
problems fall into the category of NP-Hard problems [50], meaning informally
that they are at least as hard as the hardest problems in the NP class.

To understand this classification, it is essential to introduce the complexity
classes P and NP, which are defined in terms of decision problems, problems
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with a yes-or-no answer. Many combinatorial optimization problems have a
corresponding decision problem that asks whether a feasible solution exists
within a given bound. For example, in the Traveling Salesman Problem (TSP) [71],
the optimization version seeks the shortest tour that visits all cities exactly once,
while the decision version asks whether a tour exists with a total length of at most
k, for a particular value k.

The complexity class P consists of decision problems that can be solved in
polynomial time by a deterministic algorithm, meaning that their computational
complexity scales at most polynomially with input size. In contrast, NP includes
problems for which a given solution can be verified in polynomial time, even if
finding the solution itself may be computationally difficult. A problem is NP-hard
if it is at least as difficult as the hardest problems in NP, meaning that solving it
efficiently would imply an efficient solution for all problems in NP.

For many combinatorial optimization problems, their decision problem
counterparts are used to establish NP-hardness. If the decision version of an
optimization problem is NP-hard, then the optimization version is at least as hard.
This is because an efficient algorithm for the optimization problem would allow
one to efficiently determine the answer to its decision version. This classification
implies that no known algorithm can solve NP-hard optimization problems in
polynomial time with respect to input size unless P = NP, a fundamental open
question in theoretical computer science.

In practice, solving NP-hard optimization problems exactly is in general
computationally infeasible for large instances due to their exponential time
complexity. As many relevant combinatorial optimization problems are
NP-Hard, a lot of work has been done regarding the development of approximate
algorithms, which focus on finding high-quality solutions within reasonable time
limits rather than guaranteeing optimality. Metaheuristics are a particular class of
approximate algorithms that provide general algorithmic frameworks adaptable
to different optimization problems [18]. These strategies guide the search process
to efficiently explore the solution space, aiming to find optimal or near-optimal
solutions. They can range from simple local search procedures to more complex
learning-based strategies and are typically non-deterministic, meaning they may
produce different solutions in different runs.

While metaheuristics are designed to be broadly applicable, they can still
incorporate domain-specific heuristics, allowing them to balance generality and
problem-specific efficiency. A key feature of metaheuristics is their ability to
avoid getting trapped in certain regions of the search space, often through
mechanisms such as diversification and intensification strategies. Many modern
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metaheuristics also leverage search history, dynamically adjusting their strategies
based on past exploration to improve performance. Metaheuristics have become
widely used for solving complex real-world optimization problems where exact
methods are impractical.

They can be broadly categorized into trajectory-based methods and
population-based methods. Trajectory-based methods iteratively refine a single
solution by exploring the search space in a guided manner. Examples include
Iterated Local Search [85] and Tabu Search [53]. In contrast, population-based
methods maintain and improve a set of candidate solutions at each iteration.
Notable examples include Genetic Algorithms (GAs) [54] and Ant Colony
Optimization (ACO) [14].

The development of metaheuristics has evolved over several decades, driven
by the need for efficient methods to tackle complex optimization problems. Early
heuristic algorithms emerged in the mid-20th century, often tailored to specific
problems, but lacked the flexibility to be widely applied. The term metaheuristic,
introduced by Glover in 1986 in the context of Tabu Search [53], formalized the
idea of high-level strategies that guide heuristic search processes. Around the
same time, other influential metaheuristics were developed, including Simulated
Annealing in 1983 [76], inspired by thermodynamic annealing, and GAs in
1975 [61], which mimic evolutionary principles such as selection, crossover, and
mutation. The 1990s saw significant growth in the field, with the introduction of
ACO in 1992 [41], inspired by the foraging behavior of ants, and Particle Swarm
Optimization (PSO) in 1995 [72], which modeled the collective behavior of bird
and fish swarms. This part of the history of metaheuristics is known as the
method-centric period [119], during which multiple methods were proposed,
and the field of metaheuristics bloomed, which can be noted by the creation
of the Metaheuristics International Conference and the Journal of Heuristics,
both in 1995, which were the first outlets dedicated to publishing research in
metaheuristics.

Since the 2000s, research in metaheuristics has focused on their hybridization.
Researchers have focused on combining ideas from different frameworks into
a single heuristic algorithm. Some combinations have become more popular
than others, such as the use of GRASP to generate solutions that are then
combined using path relinking [108], or the use of local search within GAs [95].
Moreover, these hybridizations are not restricted to combining components of a
metaheuristic with components of another. An important type of hybridizations
involves using exact methods, such as Integer Linear Programming (ILP) solvers,
within metaheuristics [19].
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Parallel to this work on hybridization, a significant number of so-called
“novel” metaphor-based metaheuristics have been and are still being published.
However, these approaches do not introduce real innovations; instead,
they merely repackage concepts from existing metaheuristics under different
metaphors. While this body of literature cannot be ignored, it does not constitute
true scientific progress and only contributes to confusion in the field, see for
example [6].

Machine Learning (ML) [12] is a subfield of Artificial Intelligence concerned
with designing algorithms that can improve their performance on a task by
learning from data, rather than relying exclusively on explicit programming. The
origins of ML can be traced back to the mid-20th century, when early concepts
such as perceptrons and nearest-neighbor methods were first proposed. The
1980s and 1990s brought important developments in statistical learning theory
and kernel methods, culminating in algorithms such as Support Vector Machines
that remain influential today. More recently, advances in computing power,
data availability, and optimization techniques have fueled the rapid rise of Deep
Learning (DL) [56], which has become the dominant paradigm in modern ML.

ML has achieved remarkable success across a wide range of application
domains. In computer vision, deep convolutional networks (CNNs) [78] have
enabled breakthroughs in image recognition, object detection, and medical
imaging. In natural language processing, transformer-based architectures now
power state-of-the-art systems for translation, text generation, and information
retrieval. Reinforcement Learning (RL) [122] has been responsible for
notable achievements such as AlphaGo [117], which demonstrated superhuman
performance in the game of Go. Beyond these high-profile examples, ML has
also been widely adopted in areas such as recommendation systems, fraud
detection, autonomous driving, and scientific discovery, where the ability to
identify patterns in large datasets is highly valuable.

The defining strength of ML lies in its adaptability: models can be trained on
data to automatically discover representations and decision rules that generalize
to unseen situations. This stands in contrast to manually crafted heuristics,
which rely heavily on human intuition and domain expertise. As such, ML
is increasingly being considered not only as a standalone field but also as a
complementary tool for advancing other areas of computer science.

Among these diverse applications, one area that has recently gained particular
traction is the hybridization of metaheuristics with ML, which is the research line
explored in this thesis. This is driven by the goal of enhancing their efficiency,
adaptability, and overall performance. Traditional metaheuristics depend
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on manually designed strategies for balancing exploration and exploitation.
However, ML can improve these processes by adapting algorithmic components
on the basis of patterns extracted from past searches or problem instances.

There are two primary approaches for incorporating ML into metaheuristics:
online learning and offline learning [123]. In online learning, learning occurs
during the execution of the metaheuristic, where the algorithm continuously
refines its strategies based on real-time feedback from the search process. This
allows for dynamic adjustments. Conversely, offline learning takes place before
the optimization process begins. It leverages historical data or problem-specific
knowledge to tune parameters, generate heuristics, or train surrogate models.
The pre-trained knowledge is then applied during the optimization run.

By embedding ML into metaheuristics through these approaches, the
algorithms gain an adaptive intelligence that reduces reliance on handcrafted
rules, improving their ability to navigate complex search spaces.

This thesis presents an offline framework for learning search components of
metaheuristics in its first part, and two online learning approaches for improving
Construct, Merge, Solve, and Adapt (CMSA) [13], a hybrid metaheuristic from
the literature, in the second.

0.2 Literature Overview of Machine Learning in

Metaheuristics

The survey by Talbi [123] provides a taxonomy that separates the integration
of ML in metaheuristics into three main levels: problem-level, high-level,
and low-level. Each level solves a different bottleneck of metaheuristics:
problem-level integrations reduce solution evaluation cost or allow modeling
unknown objectives; high-level ones allow to choose or compose entire
metaheuristics; and low-level ones improve the behavior of internal operators.

Furthermore, as already introduced, applications within each category can be
distinguished based on the timing of the learning process. In offline learning,
ML models are trained before the execution of the metaheuristic, while in online
learning, the learning process occurs dynamically during the search, leveraging
data collected in real-time.

At the problem level, ML is employed to model the optimization problem,
with one notable application being the use of ML models as surrogates for
objective functions [69], which can be beneficial when solution evaluations
are computationally expensive. A representative example of this approach is
provided in [44], in which the combinatorial optimization problem arising in
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partition-based ensemble learning is tackled. In this paradigm, a pool of base
ML models is divided into disjoint subsets (partitions), and the final prediction
is obtained by aggregating the outputs within each subset and then combining
them. The optimization problem therefore consists of deciding how to form
these subsets. Hence, in their setting, evaluating the quality of a candidate
solution requires training and validating predictive models, a process that is
computationally expensive and impractical for large numbers of evaluations. To
mitigate this cost, the authors integrate a surrogate model within an evolutionary
algorithm, allowing fitness values of candidate solutions to be estimated rather
than computed exactly. The surrogate is periodically retrained during the search,
ensuring that it reflects the regions of the search space currently explored by the
algorithm. Their results show that this strategy substantially reduces the number
of true evaluations required while maintaining solution quality, illustrating
the effectiveness of surrogate assistance when evaluation costs dominate the
optimization process.

The high-level category encompasses the application of ML for selecting or
generating entire metaheuristics. A prominent example of high-level integration
is the algorithm selection paradigm, where models are trained to decide which
metaheuristic or algorithm to apply to a given problem instance. As surveyed
by Kerschke et al. [73], this approach has been widely studied in combinatorial
optimization domains such as SAT, CSP, and planning. The key idea is to extract
features that characterize problem instances and then use ML models to estimate
the performance of candidate algorithms. The selector then chooses, for each
new instance, the algorithm expected to perform best. A well-known example
is SATzilla [130], which employs supervised learning to select among a portfolio
of SAT solvers. This strategy effectively automates the high-level decision of
algorithm choice, shifting the burden from human expertise to data-driven
models and enabling portfolios of complementary metaheuristics to be exploited
more effectively.

Another more recent example of high-level integration can be found in [113],
where the authors explore the use of Large Language Models (LLMs) to
enhance metaheuristics. In their work, an LLM is leveraged to propose
alternative heuristics for the construct step of CMSA. By generating novel heuristic
variations, the LLM effectively influences the high-level structure and behavior
of the metaheuristic, rather than simply guiding low-level operators or tuning
parameters. Their results show that the heuristics proposed by the LLM can
outperform expert-designed heuristics, demonstrating the potential of generative
models to automate and improve the design of combinatorial optimization
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algorithms.
Finally, low-level integration, involves using ML to guide specific components

of the search process, such as generating high-quality initial solutions [94] or
tuning algorithm parameters [84]. The work presented in this thesis falls within
this category. Regarding the timing of learning, the first part of the thesis belongs
to the offline class, while the second belongs to the online one. We now provide
an overview of the literature related to this category of low-level integration.

Following the classification presented in the already mentioned survey, the
low-level ML applications can be classified as follows: initial solution generation,
search operator design, search operator selection, and parameter tuning.

Regarding initial population generation, metaheuristics usually generate
initial solutions randomly or by means of a simple constructive heuristic. Using
ML for this purpose can provide initial solutions of higher quality or greater
diversity. Although most work on end-to-end solution generation does not
explicitly aim at initializing metaheuristics, the methods developed in this area
can be naturally repurposed for that goal. For instance, Vinyals et al. [125]
introduced Pointer Networks, a neural architecture that learns to generate
complete solutions to problems such as the Traveling Salesman Problem (TSP).
Similarly, Kool et al. [77] proposed an attention-based model trained with RL
to output high-quality tours for routing problems. While these models are
typically evaluated as standalone solvers, their ability to produce diverse and
competitive solutions suggests that they could serve as powerful generators of
initial populations for metaheuristics, potentially improving convergence speed
and solution quality.

In search operator design, the ML model directly influences how the
metaheuristic explores the solution space by leveraging learned information.
Our contributions fall within this category. The offline framework introduced in
the first part of the thesis is presented in the context of three algorithms: a GA,
a Beam Search (BS), and the Clarke and Wright heuristic for the Vehicle Routing
Problem (VRP). Though applicable to broader tasks such as solution initialization
or parameter tuning, in the three cases it aids in defining search operators. For
the GA, the ML model is trained to generate high-quality individuals, that serve
to bias the search process by making individuals of the GA more similar to them.
In the case of the BS, the ML model serves as the heuristic function, guiding
the search process by selecting which nodes to expand. Lastly, in the Clarke
and Wright heuristic, the ML model replaces the savings values computations
which guide the search process by deciding which routes to merge at each step.
The second part of the thesis introduces two online learning approaches for
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incorporating learning capabilities into the construct step of CMSA, one of its key
search operators.

Several related works from the literature can be grouped along the same line of
learning search operators, which can be further classified depending on whether
the learning occurs offline or online.

In offline approaches, the ML model is trained prior to the execution of
the metaheuristic and then integrated as a fixed component during search.
A well-known example is DeepACO [131], where a graph neural network is
trained to provide learned heuristic information to Ant Colony Optimization
(ACO), effectively biasing the solution construction toward promising search
space regions. Similarly, NeuroLKH [129] enhances the Lin-Kernighan-Helsgaun
(LKH) heuristic for the Traveling Salesman Problem (TSP) by learning edge scores
to guide local search, replacing handcrafted measures with predictions from a
neural model. Both works are closely related to our own applications, where ML
models are trained to provide problem-specific guidance: in the case of the GA,
by biasing the generation of individuals toward high-quality solutions that act
as heuristic information, and in the case of the Clarke and Wright algorithm, by
replacing handcrafted savings values with learned estimates.

Another relevant line of research focuses on BS. In this context, Huber et
al. [63] and Ettrich et al. [46] both train models offline to approximate the
heuristic function that evaluates partial solutions, demonstrating substantial
improvements over manually designed heuristics. These works directly parallel
our integration of ML into BS, where the learned model likewise replaces the
heuristic function guiding node expansion. The key difference lies in the training
methodology: while the mentioned papers employ RL, our approach relies on
the proposed evolutionary learning framework, offering an alternative and more
general strategy for obtaining effective heuristic functions.

In the context of Evolutionary Computation (EC), [112] proposes a GA in
which a graph neural network (GNN) [115] is trained offline to bias the generation
of offspring solutions for the multi-hop influence maximization problem. This
is closely related to our own use of a GA for training within the offline learning
framework, as a GA is likewise employed as the training mechanism for the
learned model. In a different and more innovative direction, Chacón Sartori
et al. [114] explore the integration of LLMs into metaheuristics, leveraging
their pre-trained knowledge to generate problem-specific guidance. This
LLM-based approach illustrates a novel way of injecting external knowledge into
metaheuristic operators, complementing more traditional ML-driven strategies.

These contributions illustrate the diversity of offline learning approaches,
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which are typically tailored to a specific algorithm or problem. In contrast, the
offline framework introduced in this thesis aims at general applicability, offering
a methodology that can be adapted across different metaheuristics and problems.

Online approaches, where the ML model is updated during the run of the
metaheuristic, are far less common. Most existing works focus on operator
selection rather than operator design. For example, multi-armed bandit
strategies have been used in hyper-heuristics to adaptively select operators during
search [25, 81]. Another example regards [27], where the selection of operators
employed by an EC algorithm is learned online during its execution. While
these methods demonstrate the potential of online learning, they address which
operator to use, rather than how operators are designed.

Closer to operator design is the efficient active search framework [62], where
a pretrained neural model for combinatorial optimization is fine-tuned at test
time using feedback from the instance being solved. Although not strictly a
metaheuristic, this approach exemplifies the potential of adapting constructive
operators online.

The online learning mechanisms presented in the second part of this
thesis fall squarely into this underexplored area. By continuously adapting
the construct step of CMSA using feedback gathered during the run, our
contributions represent an instance of online operator design, pushing beyond
the prevalent focus on operator selection and highlighting new possibilities for
hybrid metaheuristics with dynamic learning capabilities.

Next, search operator selection consists of methods that maintain a pool of
available operators and use an ML model to decide which one to apply at each
step. The two online methods mentioned earlier fall into this category. A more
recent example is provided by Johnn et al. [70], who address the selection of Large
Neighborhood Search (LNS) operators. In their framework, each destroy–repair
operator pair is treated as an action in a Markov Decision Process (MDP) [122].
To model the state, they extract structural features from the current solution and
represent them using a graph-based encoding. A deep RL agent is then trained
offline to learn a policy that selects the most promising operator given the state
of the search. This approach enables the algorithm to adaptively exploit different
neighborhoods during execution, outperforming static or manually designed
selection strategies.

Finally, parameter tuning is the last considered class of low-level integration.
Broadly, three strategies can be distinguished. First, some approaches focus on
identifying high-performing parameter configurations for a given problem class
or subset of instances. Second, instance-specific models have been developed that
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extract descriptive features of problem instances and predict suitable parameter
settings accordingly. Third, adaptive methods adjust parameters dynamically
during the search itself. For example, Hutter et al. [64] employ a random
forest model to predict the performance of candidate parameter configurations,
enabling efficient offline tuning across instances. In contrast, Lessmann et al. [84]
use regression models in an online setting to adapt parameters on the fly, tailoring
the configuration to the course of a particular search run.

0.3 Thesis Contributions

This thesis contributes to the expanding body of research regarding the use of
ML within combinatorial optimization algorithms, in particular metaheuristics.
Two main research lines are explored, offline learning and online learning.

Regarding offline learning, the main contribution consists of the development
of a general offline evolutionary framework for learning specific components
of the search process. This framework consists of having an ML model
that parametrizes some search component of a metaheuristic. This could be
a parameter setting, a heuristic function that guides the search process, or
even a set of initial solutions. Given a problem instance, the model takes
extracted features from the instance as input and outputs the corresponding
predicted search component. The training process employs a GA and a set of
training and validation instances. Each individual of the GA represents a set
of model parameters, so that the training consists of the execution of the GA.
This framework is implemented into three algorithms applied to three different
combinatorial optimization problems.

• The first application is done in the context of another GA. In particular,
the ML model’s role is to produce a promising individual for a given
problem instance. This promising individual is used as search guidance
by biasing each individual toward it before applying the decoder. This GA
is applied to the Longest Common Square Subsequence (LCSqS) problem,
a combinatorial optimization problem that given a set of input strings aims
to find a common subsequence as long as possible that is the concatenation
of some other string with itself. The results show that the ML-guided
GA is statistically superior to the standard GA when tackling instances
with non-uniformly generated strings. It is currently the state-of-the-art
approach for the LCSqS problem.

• In the second application, the ML model parametrizes the heuristic function
of BS. BS is a tree search algorithm that, starting at the root node, at each
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iteration expands a certain number of nodes of the current depth level
depending on a parameter. The nodes to be expanded are decided using
a heuristic function, which indicates the quality of expanding a node.
This BS is applied to another string-related combinatorial optimization
problem known as the Restricted Longest Common Subsequence (RLCS)
problem. Given two sets of strings, this problem aims to find the Longest
Common Subsequence (LCS) of the first set that does not contain any string
of the second set a subsequence itself. Again, the results show that the
ML framework improves algorithmic performance. Also in this case, our
best-performing algorithm variant is currently the state-of-the-art for the
RLCS problem.

• The last application regards the Clarke and Wright heuristic, an algorithm
used to obtain reasonably good solutions to VRPs. A VRP, in its simplest
form, consists of a depot and a set of customers, each with a demand.
The goal is to schedule a number of routes, each starting and ending at
the depot, so that the demands of the customers are satisfied and so that
the routing cost, which is usually energy or distance, is minimized. The
Clarke and Wright heuristic starts with a trivial solution consisting of one
route per customer, each going from the depot to the customer and back.
It then iteratively merges the routes of this solution, at each step trying to
perform the merge that leads to the highest saving in routing cost. The
ML framework is used to replace the savings computations with a forward
pass of a neural network, leading to improvements in the quality of the final
solution.

In the context of online learning, our contribution consists of the development
of two online learning mechanisms for improving the construct step of the CMSA
metaheuristic. CMSA is a hybrid metaheuristic introduced in [21], which keeps
a subinstance of the problem at hand to which it applies an exact solver at
each iteration. The algorithm requires a problem-specific notion of solution
components, a finite set C = {c1, c2, . . . , cn} of elements so that every solution
of the problem under consideration can be expressed as a subset of C. For
example, in the case of the well-known Travelling Salesman Problem (TSP),
a valid set of solution components is the set of edges of the complete input
graph. The subinstance kept by CMSA is a subset of C and is modified
throughout the execution of the algorithm with the goal that the exact solver
can eventually find a good solution in it. CMSA consists of four iterated steps
which give its name: the construct, merge, solve, and adapt steps. The construct step
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probabilistically generates a certain number of solutions, the merge step adds the
solution component in the constructed solutions to the subinstance, the solve step
applies the exact solver to the subinstance and finally, the adapt step removes the
solution components of the subinstance that have not appeared in the solution
of the exact solver by a certain number of iterations. In the standard CMSA the
construct step generally employs a probabilistic greedy heuristic tailored to the
problem at hand. Our two developments consist of replacing this method with
ML-based approaches.

• The first proposed method is inspired by the multi-armed bandit problem,
one of the simplest RL settings in which there is no concept of state and the
agent simply iteratively performs an action from a finite set and observes
a reward. In the construct step of CMSA actions correspond to solution
components. The agent starts with an empty solution to which it iteratively
adds available solution components until obtaining a complete solution.
To decide within the available solution components, it keeps one value for
each, which we denote as quality values. These quality values are initialized
uniformly and are updated after every solve step, where the solution given by
the exact solver is used as feedback. In particular, the solution components
appearing in the solution given by the exact solver have their quality values
increased, while the ones in the subinstance that were not selected by the
exact solver have them decreased.

• The second approach extends the first one by taking into account the
current partial solution under construction when selecting the next solution
component to be added. This is done by leveraging DL. More particularly,
a neural network is built that takes the partial solution as input and outputs
one value for each solution component, which, as with the first approach,
represent the quality of selecting each solution component and are used to
derive sampling probabilities. As with the first method, the exact solver is
used to perform the learning update, this time by performing a gradient
descent step with the aim of leading the solutions constructed to the ones
outputted by the exact solver.

These two ML-enhanced implementations of CMSA are evaluated on three
combinatorial optimization problems: the Far From Most String (FFMS) problem,
the Minimum Dominating Set (MDS) problem, and the Maximum Independent
Set (MIS) problem. The FFMS problem involves finding a string that maximizes
the number of input strings whose Hamming distance from it meets or exceeds a
given threshold. The MDS and MIS problems, on the other hand, are graph-based.
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In the MDS problem, the objective is to identify the smallest possible set of nodes
such that every node in the graph either belongs to this set or has at least one
neighbor in it. Conversely, the MIS problem seeks to determine the largest subset
of nodes in which no two nodes are neighbors.

The first approach, referred to as RL-CMSA, outperforms the standard CMSA
across all three problems. The second approach, DL-CMSA, named for its DL
component, achieves superior results compared to RL-CMSA only in the MIS
problem. Notably, incorporating DL to account for the partial solution under
construction introduces computational overhead. This added complexity does
not appear to be worth it for all problems.

0.4 Thesis Organization

The remainder of this thesis is divided into two parts: offline learning and
online learning. As the names suggest, the first part focuses on developments
related to the offline learning framework, while the second introduces the new
CMSA variants that incorporate online learning mechanisms. The offline learning
section is structured as follows.

• Chapter 1 introduces the offline learning framework within the broader
context of learning a search component for a metaheuristic.

• Chapter 2 introduces the LCS, LCSqS, and RLCS problems, along
with algorithmic components from the literature for the LCS problem.
Specifically, it presents a Dynamic Programming algorithm and a BS
approach, both of which are utilized by the GA for solving the LCSqS
problem.

• Chapter 3 explores the application of the offline learning framework to
identify promising individuals within the GA for the LCSqS problem.
Furthermore, it includes an experimental evaluation demonstrating the
advantages of the learning mechanism.

• Chapter 4 presents the application of the offline learning framework for
learning the heuristic function of the BS for the RLCS problem. Additionally,
it presents an experimental comparison between the BS using the learned
heuristic function and the standard version.

• Chapter 5 presents the application of the offline learning framework to the
Clarke and Wright heuristic. It presents an experimental evaluation on two
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realistic variants of the Electric Vehicle Routing Problem (EVRP), which
consider electric delivery vehicles.

The online learning part is organized as follows.

• Chapter 6 presents the standard CMSA.

• Chapter 7 introduces RL-CMSA, the learning variant of CMSA that
incorporates a basic RL mechanism.

• Chapter 8 presents DL-CMSA, which implements a more detailed learning
mechanism by incorporating partial solution information through DL.

• Chapter 9 experimentally evaluates the CMSA variants on three
combinatorial optimization problems: the FFMS, the MDS, and the MIS
problems. Moreover, an in-depth algorithmic analysis is performed to better
understand the results obtained.

Finally, Chapter 10 concludes the thesis with a summary and sketches possible
future research directions related to the research presented.
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Part I

Offline Learning
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Chapter 1

The General Framework

This chapter introduces the general offline learning framework. We assume that
we have a metaheuristic and a Machine Learning (ML) model that parametrizes
one of its search components. For instance, this could consist of a neural
network that parametrizes the initial population of a Genetic Algorithm (GA)
or the probabilities of using each available neighborhood structure in a Variable
Neighborhood Search (VNS).

As mentioned previously, the ML model is trained by a GA, the individuals
of which represent values for its parameters. The particular GA employed is a
Random Key Genetic Algorithm (RKGA), introduced in the following section.

1.1 Random Key Genetic Algorithm (RKGA)

Evolutionary Computation (EC) algorithms are metaheuristics inspired by the
way nature adapts living organisms to their environment. They can be viewed as
computational models that simulate evolutionary processes. These algorithms
operate on a population of individuals, each representing a solution, which is
iteratively modified using recombination and mutation operators. The goal is
to progressively refine the population by favoring individuals associated with
better solutions through a selection process.

Algorithm 1.1, adapted from [18], outlines the fundamental structure of EC
algorithms when applied to optimization problems.

In each iteration, a set of new individuals is produced using recombination
and mutation operators, followed by the application of a selection operator to
form the next generation’s population. In our context, each individual represents
a set of parameter values for the ML model and selection is done by testing the
quality of the parameters of the individuals on a set of training problem instances.

An RKGA is a particular EC algorithm first introduced in [8]. It belongs to the
broader class of GAs [54, 61].

Like other EC algorithms, GAs operate on a population of individuals, each



20 Chapter 1 The General Framework

Algorithm 1.1 The general structure of an EC algorithm
1: P := generate_initial_population()
2: evaluate(P )
3: while termination conditions not met do

4: P ′ := recombine(P )
5: P ′′ := mutate(P )
6: evaluate(P ′′)
7: P := select(P ′′ ∪ P )
8: end while

representing a solution to the optimization problem under consideration. These
solutions are encoded as chromosomes, which are strings composed of multiple
positions, known as genes. Each gene takes a value, called an allele, from a
predefined set. The population undergoes an evolutionary process over multiple
iterations, referred to as generations. In each generation, a new population is
formed from the existing one through selection, mating and random mutation.
The selection mechanism favors individuals with higher fitness values, aiming to
enhance the overall quality of solutions over time.

In an RKGA, chromosomes are represented as vectors of real numbers within
the interval [0, 1]. A key component of these algorithms is a decoder function,
which converts each chromosome into a solution for the given optimization
problem. Like any GA, an RKGA maintains a fixed-size population of individuals,
the size of which is denoted as psize. The initialization process assigns each allele
in every chromosome a random value from the interval [0, 1]. Once initialized, the
fitness of each individual is evaluated using the decoder function. The population
is then divided into two groups: (i) the elite population, comprising the top pe

individuals and (ii) the non-elite population, which consists of the remaining
psize −pe individuals. The parameter pe, known as the number of elites, is defined
such that pe < psize − pe. In addition, another parameter, pm represents the
number of mutants, where pm < psize − pe. The three groups, elites, non-elites,
and mutants are used to generate the next generation. The next population is
constructed as follows: the elite individuals are carried over unchanged, while
pm new mutants are introduced, each generated randomly in the same manner
as during initialization. The remaining psize − pe − pm individuals are produced
through mating, where two parents are randomly selected from the population.
For each gene, the offspring inherits the corresponding allele from either parent,
chosen at random.

Algorithm 1.2 shows the main structure of an RKGA.
In this process, the decoder is employed within the evaluate() function, where
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Algorithm 1.2 The general structure of an RKGA
Input: Values for parameters psize, pe, and pm

1: P := generate_initial_population()
2: evaluate(P )
3: while termination conditions not met do

4: P ′ := new_empty_population()
5: P := sort_depending_on_fitness(P )
6: for i ∈ {1, . . . , pe} do

7: P ′
i := Pi

8: end for

9: for i ∈ {1, . . . , pm} do

10: P ′
pe+i := generate_random_individual()

11: end for

12: for i ∈ {1, . . . , psize − pe − pm} do

13: P ′
pe+pm+i := generate_offspring(P )

14: end for

15: P := P ′

16: evaluate(P )
17: end while

it decodes each individual and assigns them their corresponding fitness value.
This step is essential to the algorithm as it is the only part that depends on the
specific problem. The RKGA explores the hypercube [0, 1]n, where n represents
the number of genes in each chromosome. Through the use of the decoder, this
search in the hypercube is effectively translated into a search within the feasible
solution space of the optimization problem at hand.

1.2 The Training Procedure

Once the search component of the metaheuristic has been parameterized using an
ML model, the only remaining task in the training process is to decide the number
of genes of each chromosome and design function evaluate() of Algorithm 1.2,
which assigns a fitness value to every individual. In the most straightforward
way possible, we keep one gene for each parameter of the ML model, so that
individuals directly represent parameter settings. As restricting parameters to
the interval [0, 1] might hinder the learning process, we decide to use the interval
[−1, 1] instead. Notice that the RKGA description given above still holds, as this
is equivalent to the decoder applying x 7−→ 2x − 1 to each gene. In general, a
bigger interval could be considered as a larger range for the parameter values can
improve the adaptability of the ML model employed. In our case, using [−1, 1]

already produced good results.
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We opt to use two distinct sets of problem instances inside evaluate(), which we
refer to as the training and validation set. These sets should consist of instances
that are representative of the types of problem instances the metaheuristic will
need to solve in practice. The training set is used to evaluate individuals, while
the validation set serves as a means of detecting overfitting and determining
when to terminate the training process.

Algorithm 1.3 presents the structure of the evaluate() function.

Algorithm 1.3 The evaluation function of the training RKGA
Input: Set of training and validation instances Itraining, Ivalidation
Input: ML model M
Input: Population P

1: for i ∈ {1, . . . , psize} do

2: Fit the model M with the weights Pi

3: vtraining = 0
4: for each training instance I ∈ Itraining do

5: vtraining = vtraining + evaluate_training_quality(M, I)
6: end for

7: vtraining =
vtraining

size(Itraining)

8: Set the fitness of Pi to vtraining
9: if vtraining is the best training value so far then

10: vvalidation = 0
11: for each validation instance I ∈ Ivalidation do

12: vvalidation = vvalidation + evaluate_validation_quality(M, I)
13: end for

14: vvalidation = vvalidation
size(Ivalidation)

15: Store vvalidation
16: end if

17: end for

As shown, the fitness of an individual is determined by the so-called training
value vtraining, which represents the average quality of the model with the weights
of the individual evaluated on the training instances. If a new best individual
is identified, its parameters are again evaluated by computing the so-called
validation value vvalidation in order to check for overfitting. This value is similarly
the average quality of the model with the individual’s weights, but in this case,
over the validation instances. This latter value can be used to decide when to stop
the training process as its decrease might indicate overfitting. In our first two
applications, presented in Chapters 3 and 4, we decided to employ early stopping,
meaning that we stopped the training process whenever the validation value first
decreased. For the Clarke and Wright application, presented in Chapter 5, the
validation value fluctuated considerably, making the early stopping approach
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less reliable. In this case, we opted to train for a fixed time, selecting the weights
corresponding to the lowest validation value as the trained weights once the
training is finalized.

Functions evaluate_training_quality(M, I) and evaluate_validation_quality(M, I)

of Algorithm 1.3 have to be designed depending on the metaheuristic, the problem
and the ML model at hand. A straightforward approach is to have them consist
of an execution of the metaheuristic guided by the model M on problem instance
I . Other methods for evaluating quality could be considered, as running the
metaheuristic might be too computationally expensive as the evaluation function
is called many times during the training process.

In the following chapters, we demonstrate the application of this framework to
three algorithms applied to different combinatorial optimization problems. The
first two are applied to two different string-related problems, and the last one
is applied to two variants of the Electric Vehicle Routing Problem (EVRP). The
next chapter introduces the two string-related problems tackled and presents the
methods from the literature employed by our approaches.
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Chapter 2

The LCSqS and RLCS Problems

2.1 Introduction

This chapter provides a detailed introduction to the Longest Common Square
Subsequence (LCSqS) and Restricted Longest Common Subsequence (RLCS)
problems, the two string-related combinatorial optimization problems used as
examples for applying the offline learning framework. Moreover, we introduce
the algorithmic components from the literature employed by the Biased Random
Key Genetic Algorithm (BRKGA) for solving the LCSqS and the Beam Search (BS)
for solving the RLCS.

Both problems are variants of the well-known Longest Common Subsequence
(LCS) problem, which we introduce first.

Definition 2.1.2 (String). A string is a finite sequence of characters drawn from a finite
set Σ, referred to as its alphabet. If s is a string with characters s1, s2, . . . , sn, we denote
it as s = s1s2 · · · sn. The empty string, represented by ε, is the one that contains no
characters.

Definition 2.1.3 (String length). Given a string s over an alphabetΣ, its length, denoted
by |s|, is the number of characters it contains.

Definition 2.1.4 (String subsequence). Given a string s, a subsequence of s is a
string formed by deleting zero or more characters from s without altering the order of the
remaining characters.

Definition 2.1.5 (LCS problem). Let {s1, s2, . . . , sm} be a finite set of strings over an
alphabet Σ. The LCS problem with input strings {s1, s2, . . . , sm} seeks to find the longest
possible string that is a subsequence of all given input strings.

Definition 2.1.6 (String concatenation). Let s1 = s11s21 · · · sn1
1 and s2 = s12s22 · · · sn2

2 be
two strings over an alphabetΣ. The concatenation of s1 and s2, denoted s1 ·s2, is the string
formed by appending the characters of s2 to the end of s1: s1 ·s2 = s11s21 · · · sn1

1 s
1
2s

2
2 · · · s

n2
2 .
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Definition 2.1.7 (Square string). Let s be a string over an alphabet Σ. s is a square
string if it can be expressed as s = t · t, where t is some string over Σ.

Definition 2.1.8 (LCSqS problem). Let {s1, s2, . . . , sm} be a finite set of strings over
an alphabet Σ. The LCSqS problem with input strings {s1, s2, . . . , sm} involves finding
the longest possible square string that is a subsequence of all given input strings.

Definition 2.1.9 (RLCS problem). Let S = {s1, s2, . . . , sm} and R = {r1, r2, . . . , rk}
be two finite sets of strings over an alphabet Σ. The RLCS problem with input strings S
and restricted stringsR consists of finding the longest possible string that is a subsequence
of all strings in S while ensuring that none of the strings in R appear as a subsequence.

The BRKGA for the LCSqS problem builds on the following proposition. It
enables obtaining an approximate solution by selecting a cut point for each string
and then solving the LCS problem using the resulting strings as input.

Proposition 2.1.1 (LCSqS to LCS reduction). The LCSqS problem with input
strings S = {s1, s2, . . . , sm} can be solved by computing the LCS of the 2m strings
in the set:

Sp = {s1[1, p1], s1[p1 + 1, |s1|], . . . , sm[1, pm], sm[pm + 1, |sm|]} (2.1)

for every possible cut-point selection

p = (p1, . . . , pm) ∈ P =
m∏
i=1

{1, . . . , |si| − 1} (2.2)

In particular, if t′ is a maximal-length solution among the |P| LCS problems,
then t = t′ · t′ is a solution to the original LCSqS problem.

Proof. Assuming that the LCS problem has been solved for all possible p ∈ P with
input strings Sp, we define k = |P| =

∏m
i=1(|si| − 1). Furthermore, let {t1, . . . , tk}

be set of solutions to these k LCS problems.
We obtain a maximal-length solution to the previous problems t′ =

argmax{|t1|, . . . , |tk|}, and define t = t′ · t′. t is an optimal solution to the LCSqS
problem with input string S = {s1, s2, · · · , sm} since it is a square subsequence of
every string in S and has maximal length.

The first claim follows directly from the construction: each string si ∈
{s1, . . . , sm} contains t′ as a subsequence twice. Once in si[1, pi] and once in
si[pi + 1, |si|]. In order to prove that t is of maximal length, we argue by
contradiction.
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Suppose there exists a square subsequence s = s′ · s′ of every string in S with
|s| > |t|. For every i ∈ {1, 2 . . . ,m} we define qi ∈ {1, |si| − 1} as the smallest
index such that s′ is a subsequence of si[1, qi] and si[qi + 1, |si|]. By construction,
s′ must be a solution to the LCS problem with the following input strings:

{s1[1, q1], s1[q1 + 1, |s1|], . . . , sm[1, qm], sm[qm + 1, |sm|]} (2.3)

By definition of t′ we have |t′| ≥ |s′|, which implies:

|t| = |t′ · t′| = |t′|+ |t′| ≥ |s′|+ |s′| = |s′ · s′| = |s| (2.4)

This contradicts our initial assumption that |s| > |t|.
Thus, by solving the k we have optimally solved the LCSqS problem, with t

as an optimal solution.

Thanks to the previous proposition, the LCSqS problem with input strings S
can be solved by solving the LCS problem with input strings Sp by choosing p to
be the set of cut points that leads to the longest solution of the LCS problem with
input strings Sp. This forms the basis of the BRKGA decoder, where individuals
represent cut points that are mapped to feasible solutions by approximately
solving the corresponding LCS problem. To achieve this, a BS for the LCS problem
is employed, which we introduce later in this section.

We now introduce a dynamic programming algorithm for the LCS problem,
which is an exact method that can be applied to small problem instances and is
used within the BRKGA for guiding the search process.

2.2 A Dynamic Programming Algorithm for the LCS Problem

When the number of input strings and their lengths are relatively small, an
exact dynamic programming approach can be used to solve the LCS problem
efficiently [58]. We present this algorithm in the case of two input strings, as this
is the scenario relevant for the BRKGA.

Throughout this section, given a finite set of strings {s1, s2, . . . , sm} we denote
by LCS(s1, s2, · · · , sm) an optimal solution to the LCS problem with these strings
as input.

This approach relies on the following two properties of the LCS.

Proposition 2.2.1. Let s and t be two strings over some alphabet Σ and let a ∈ Σ.
We have:

LCS(s · a, t · a) = LCS(s, t) · a (2.5)
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Proof. Since LCS(s · a, t · a) ends in a, the equality above is equivalent to saying
that LCS(s, t) corresponds to the substring obtained by removing the last a from
LCS(s · a, t · a), which we denote by s′.

Now, suppose this is not the case and seek a contradiction. In this case,
there must exist some other string s′′ such that |s′′| > |s′| and s′′ is a common
subsequence of both s and t. By construction s′′ · a is a common subsequence of
s · a and t · a with length |s′′ · a| = |s′′| + 1 > |s′| + 1 = |s′ · a| = |LCS(s · a, t · a)|,
leading to contradiction.

Proposition 2.2.2. Let s and t be two strings over an alphabet Σ and let a, b ∈ Σ

with a ̸= b. The following holds:

LCS(s · a, t · b) is one of the maximal-length strings from the set

{LCS(s · a, t),LCS(s, t · b)}
(2.6)

Proof. We distinguish two cases:

• LCS(s · a, t · b) ends in a.

Since LCS(s · a, t · b) ends in a, the final b from t · b cannot be part of it, as
a ̸= b and there is no a after the final b. Thus, removing b from t · b does
not affect the LCS, leading to LCS(s · a, t · b) = LCS(s · a, t).

• LCS(s · a, t · b) does not end in a.

In this case the final a from s · a cannot belong to LCS(s · a, t · b) by the same
argument. Hence, LCS(s · a, t · b) = LCS(s, t · b).

These results allow us to derive the following recursive formulation, which
forms the basis of the dynamic programming approach:

Observation 2.2.1. Let s = s1s2 · · · sn and t = t1t2 · · · tm be two strings over an
alphabet Σ. Define the prefixes si = s1 · · · si and tj = t1 · · · tj for all i = 0, · · ·n
and j = 0, . . . ,m. We have that:

LCS(si, tj) =


ε if i=0 or j=0

LCS(si−1, tj−1) · si if i, j > 0 and si=tj
argmax{|LCS(si, tj−1)|, |LCS(si−1, tj)|} if i, j > 0 and si ̸=tj

(2.7)
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The first case is clear as s0 = t0 = ε and the second and third directly result
from Propositions 2.2.1 and 2.2.2 respectively.

This observation allows us to construct the LCS between s and t by iteratively
constructing the LCS between each pair si and tj , ultimately yielding the LCS of
the full strings. This process is illustrated in the following example:

Example 2.2.1. Consider s = acgau and t = gca. We compute the LCS between s and
t using the dynamic programming algorithm. We consider the following table, which will
keep LCS(si−2, tj−2) in position i, j.

Ø a c g a u

Ø
g

c

a

We begin by computing the second row and the second column, which correspond to
the values of LCS(t0, si) and LCS(s0, tj) for i = 0, . . . , 5, j = 0, . . . , 3. Note that all of
these values are empty strings, as per the first case in Observation 2.2.1.

Ø a c g a u

Ø ε ε ε ε ε ε

g ε

c ε

a ε

Next, we compute the third row. Since s1 and t1 end in a different character, we apply
the third case from Observation 2.2.1, yielding LCS(s1, t1) = ε. The same holds for
LCS(s2, t1). However, s3 and t1 end in the same character, so we use the second case from
the observation, resulting in LCS(s3, t1) = g. Similarly, since s4 and t1 end in different
characters, we again apply third case, which gives LCS(s4, t1) = g. The same is true for
s5 and t1, yielding LCS(s5, t1) = g.

Ø a c g a u

Ø ε ε ε ε ε ε

g ε ε ε g g g

c ε

a ε
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Now, we compute the last two rows in the same manner, using the expression from
Observation 2.2.1. Since s1 and t2 end in different characters, we have LCS(s1, t2) = ε.
For s2 and t2, both end in c, so LCS(s2, t2) = c. For s3 and t2, they end in different
characters, so we apply the third case from the observation. This leads to LCS(s3, t2)
being the set of maximal elements from {LCS(s2, t2),LCS(s3, t1)} = {c, g}. Since
|c| = |g| = 1, we have LCS(s3, t2) = {c, g}. Similarly, the same applies for LCS(s4, t2)
and LCS(s5, t2), yielding two longest common subsequences in these cases as well. After
filling the fourth row, our table looks as follows:

Ø a c g a u

Ø ε ε ε ε ε ε

g ε ε ε g g g

c ε ε c c,g c,g c,g
a ε

Doing the same for the last row, we obtain:

Ø a c g a u

Ø ε ε ε ε ε ε

g ε ε ε g g g

c ε ε c c,g c,g c,g
a ε a a,c a,c,g ca,ga ca,ga

Therefore, a solution for LCS(acgau, gca) is any string from the set {ca, ga}.

As we can see, given two strings s and t, this algorithm computes LCS(s, t)
by evaluating LCS(si, tj) for all i and j, applying observation 2.2.1 at each step.
Initially, LCS(s0, tj) and LCS(si, t0) are set to ε. Then, each LCS(si, tj) is calculated
by either using LCS(si−1, tj) when si and tj end with the same character, or
LCS(si−1, tj) and LCS(si, tj−1) if otherwise.

In our case, we are interested in the length of the LCS rather than the LCS itself.
To obtain the LCS length using the dynamic programming approach described
earlier, we simply track the length of the LCS at each step of the algorithm. The
pseudocode for this approach is provided in Algorithm 2.1.

As the reader may have noticed, this algorithm can be adapted to handle
any number of input strings. This is achieved by generalizing Propositions 2.2.1
and 2.2.2 to accommodate multiple input strings. However, in practice, this
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Algorithm 2.1 A dynamic programming approach for calculating the LCS length
with two input strings
Input: Two strings s and t
Output: Length of an LCS between s and t

1: C ∈ M|s|,|t|(Z)
2: for i ∈ {1, . . . , |s|} do

3: Ci,0 := 0
4: end for

5: for j ∈ {1, . . . , |t|} do

6: C0,j := 0
7: end for

8: for i ∈ {1, . . . , |s|} do

9: for j ∈ {1, . . . , |t|} do

10: if si = tj then

11: Ci,j := Ci−1,j−1 + 1
12: else

13: Ci,j := max(Ci−1,j, Ci,j−1)
14: end if

15: end for

16: end for

17: return C|s|,|t|

approach becomes too slow because the set that appears in the generalization of
proposition 2.2.2 grows rapidly as the number of input strings increases, making
the algorithm impractical when this value is large.

As mentioned earlier, we are primarily focused on the dynamic programming
approach for two input strings. This algorithm is incorporated within the
standard BRKGA to guide the search process as explained later in Chapter 3.

We now introduce the BS for the LCS problem, which is utilized within the
BRKGA decoder to translate cut-points into valid LCSqS solutions. Additionally,
its heuristic function, denoted as UB, serves as the heuristic function for the BS
approach to solve the RLCS problem as well.

2.3 Beam Search for the LCS Problem

Beam Search (BS) is an incomplete tree search algorithm that expands nodes in
a breadth-first manner while maintaining a set of candidate nodes, called the
beam, at each iteration. Each node represents a partial solution to the problem
at hand. The algorithm was first introduced in the context of scheduling [98].
The number of nodes (partial solutions) retained per iteration is determined by
a parameter β > 0 known as the beam width. In each iteration, every node is
expanded, and the best β child nodes are kept for the next step.
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In the context of the LCS problem, BS was first applied by Blum et al. [20].
Here, nodes of the search tree represent different possible common subsequences
between the input strings, and expanding a node involves appending exactly one
character to the partial solution represented by the node. To determine which β

nodes remain in the beam, a heuristic function is used to estimate the quality of
each partial solution.

Several BS approaches have been proposed for the LCS problem. In our
case, we adopt the method introduced by Djukanovic et al. [34]. To present this
algorithm in detail, we first introduce some necessary notation.

Let S = {s1, . . . , sm} be the set of input strings. We denote by s[j, j′] the
contiguous subsequence of string s starting at position j and ending at position
j′. If j > j′, then s[j, j′] = ε. Given a vector pL = (pL1 , . . . , p

L
m) ∈ Nm with

1 ≤ pLi ≤ |si| for all i = 1, . . . ,m, we define S[pL] = {si[pLi , |si|] | i = 1, . . . ,m}. pL

is referred as a left position vector.
Every node v in the BS tree represents a partial solution, which is a common

subsequence of all input strings. Each node is associated with its partial solution
length lv and a left position vector pL,v. The left position vector pL,v is such that for
each input string si, the index pL,vi − 1 is the smallest value for which si[1, p

L,v
i − 1]

contains the partial solution as a subsequence. For a given node v, the goal is to
extend its partial solution by adding characters that are common to every string
in S[pL,v]. The objective is to iteratively add these characters in a way that leads
to the construction of an LCS.

2.3.1 State Graph for the LCS Problem

The graph which BS partially constructs is known as the state graph. It is a
directed acyclic graph G = (V,A). An edge a = (v1, v2) ∈ A with label l(a)
exists if (i) lv2 = lv1 + 1 and (ii) the partial solution obtained by appending letter
l(a) to the partial solution represented by v1 has the left position vector pL,v2

associated. Each node in the state graph represents a partial solution, which
can be recovered by tracing back from the node to the root while following the
appended characters. Because of this backtracking property, partial solutions are
not explicitly stored in the nodes during the search process.

The root node r of G corresponds to the original problem. It is defined by
the left position vector pL,r = (1, . . . , 1), meaning that no characters have been
selected yet, and its partial solution length is lr = 0. When determining the
successor nodes of a given node v, not every character needs to be considered.
Some characters may be infeasible, meaning that appending them to v’s partial
solution leads to a sequence that is not a common subsequence of all input strings.
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For a node v, the feasible characters are those that appear in every string from
S[pL,v]. The set of feasible characters for node v is denoted Σv. However, not
all feasible characters need to be considered, as some would lead to suboptimal
partial solutions. These characters are referred to as dominated characters. For
every character a ∈ Σv, we define pL,vi,a as the position of the first occurrence of a in
the substring si[p

L,v
i , |si|]. A character a ∈ Σv is said to be dominated by another

character b ∈ Σv if pL,vi,b < pL,vi,a for every i = 1, . . . ,m. In this case, considering
expanding v through character a is unnecessary, as it will never lead to a better
solution than expanding v using character b. The set of feasible, non-dominated
characters for a node v is denoted Σnd

v .
The state graph for the LCS problem is constructed by starting with the root

node r, expanding it using the characters in Σnd
r and doing the same in a recursive

manner, for every node obtained in this first expansion. Doing this until every
node v that has not been expanded has Σnd

v = ∅ leads to the complete state graph.
An example for the state graph will be provided in the next section, in Figure 2.1.

2.3.2 Beam Search

BS constructs a subgraph of G by considering only the best β nodes at each height
level. If β is set to a sufficiently large value, the whole state graph is constructed.

In each iteration, the algorithm processes the current set of nodes (the beam)
as follows. Firstly, for every node v in the beam, Σnd

v is calculated. After that,
for each a ∈ Σnd

v a successor node v′ of v is derived: v′ = (pL,v
′
, lv + 1) where

pL,v
′

i = pL,v
′

i,a + 1 for all i = 1, . . . ,m. The nodes that have Σnd
v = ∅ are called

complete nodes, and represent common subsequences that cannot be extended
further. After building the successors of every node in the beam, they are given
a fitness value using a heuristic function h and the β best are retained, which
form the next iteration’s beam. Once every node in the beam is complete, the
algorithm returns the subsequence corresponding to the node v with a largest
value for lv, which corresponds to the LCS found.

Algorithm 2.2 illustrates the BS procedure for the LCS problem.
Here, extend_and_evaluate() takes the current beam and expands each node

by considering all feasible, non-dominated characters that can be added to the
partial solution represented by that node. It then assigns them a heuristic value
through the evaluation function h. Afterwards, reduce() returns the best β nodes
from the newly expanded nodes, based on the heuristic values computed by h.
These form the next iteration’s beam.

In Figure 2.1, the state graph for the LCS problem with input strings S =

{abcaabc, cabacb, aabacba} is displayed. Each node v shows the left position
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Algorithm 2.2 Pseudo-code of the BS for the LCS problem
Input: Input strings S = {s1, . . . , sm}, beam width β and heuristic function h
Output: An approximate LCS problem solution with S as input strings

1: B := {r}
2: slcs := ∅
3: while B ̸= ∅ do

4: Vext = extend_and_evaluate(B, h)
5: update slcs if a complete node with a largest lv value is found
6: B := reduce(Vext, β)
7: end while

8: return slcs

vector pL,v and the length of the corresponding partial solution lv.
The root node r represents the empty string, so lr = 0 and pL,r = (1, 1, 1),

indicating that this partial solution has not used any part of the input strings.
To extend r, we first compute Σnd

r . As observed, every letter from the alphabet
{a, b, c} appears in every string from S[pL,r] = S, making every character feasible.
However, b is dominated by a, so it does not need to be considered in order to
expand r. This is because a appears before b in every string from S[pL,r] = S.

Since Σnd
r = {a, c}, the state graph has two nodes at the second depth level.

One corresponds to the extension of the empty string with a, and the other
corresponds to extending it with c. The left position vectors for these two nodes
can now be computed. For the right node, the left position vector is (4, 2, 6), as the
first c appears in position 3 in abcaabc, at position 1 in cabacb, and at position
5 in aabacba. Similarly, the left position vector for the left node is (2, 3, 2). Both
nodes have lv = 1, as their partial solutions are of length one.

The rest of the state graph is constructed in the same manner until the leaf
nodes v are reached, where no further extension is possible because Σnd

v = ∅.
BS would generate a subgraph of this graph. If β = 1, only one node would

be considered for further expansion at each level, with the node selected based
on the better value for h. Since the maximum number of nodes per level is 3, a
BS with β ≥ 3 would construct the entire state graph for these input strings.

The final aspect to explain is the guiding function h, which is used to select the
best β nodes at each level. Within extend_and_evaluate() from Algorithm 2.2, h
provides a fitness measure for each node generated by expanding the nodes in the
beam. Then, in reduce(), the β nodes with the best values for h are retained, while
the others are discarded. In the next subsection, we will explore two potential
designs for h.
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((1, 1, 1), 0)

((2, 3, 2), 1)

((3, 4, 4), 2)

((5, 5, 5), 3)

((7, 7, 7), 4)((8, 8, 6), 4)

((4, 6, 6), 3)

((4, 2, 6), 1)

((5, 3, 8), 2) ((7, 4, 7), 2)

a

b

a

bc

c

b

c

a b

Figure 2.1 LCS problem state graph for S = {abcaabc, cabacb, aabacba}. It
contains five complete nodes. The three bold paths from ((8, 8, 6), 4) and
((7, 7, 7), 4) to the root node are the longest in the graph. Hence, they represent
the three optimal solutions for this problem instance, abac, abab, and abcb
respectively.

2.3.3 Guiding Function

We propose two designs for the guiding function h, with the choice between them
being determined by a parameter of the BRKGA. The first design, introduced
in [20], provides an upper bound on how much a given node can be extended.
We refer to this design as UB. Although this upper bound is not tight, it has
proven effective in guiding the BS.

The second design, introduced in [34], provides an expected value for how
much a particular node can be extended under certain assumptions. This guiding
function will be referred to as EX.

Upper bound UB

Given a string s over an alphabet Σ, we denote the number of occurrences of a
character a ∈ Σ in s as |s|a. Using this notation, the guiding function UB applied
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to a node v is defined as follows:

UB(v) =
∑
a∈Σ

min
1≤i≤m

{|si[pL,vi , |si|]|a} (2.8)

As can be observed, UB(v) provides an upper bound on the number of
characters that can be appended to the partial solution represented by v.
This is because the appended characters must appear in every string from
S[pL,v] = {s1[pL,vi , |si|], . . . , sm[pL,vm , |sm|]}, and therefore, for every character a ∈ Σ,
no more than min1≤i≤m{|si[pL,vi , |si|]|a} a’s can be appended. This reasoning
applied to every character leads to the expression for UB.

Expected value EX

This guiding function involves assigning to a node v an approximation of the
expected number of characters with which it can be extended. It requires
knowledge of the probability P (p, q) that a uniform random string of length p

is a subsequence of a uniform random string of length q. These probabilities are
computed in [93], where the following recurrence for P (p, q) is derived:

P (p, q) =


1 if p = 0

0 if p > q

1
|Σ|P (p− 1, q − 1) + |Σ|−1

|Σ| P (p, q − 1) otherwise

(2.9)

Now, the expected amount by which a certain node v can be extended can be
approximated. This corresponds to approximating the expected length of a LCS
of S[pL,v].

Let Y be the discrete random variable representing the length of an LCS of a
set S ′ of m strings over an alphabet Σ . The approximation derived is based on
the following two assumptions:

• All strings from S ′ are uniform

• The event that a given string over Σ is a common subsequence of all strings
in S ′ is independent of the corresponding events for the other strings.

An LCS for input strings S ′ can have a length of at most lmax = min{|s| | s ∈ S ′},
so Y ∈ {0, . . . , lmax}. Let Yk ∈ {0, 1} be the binary random variable which takes
the value 1 if there exists a subsequence of length k common to all strings in S ′,
and 0 otherwise. The following holds:
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P (Y = k) = P (Yk = 1 ∩ Yk+1 = 0)

= P (Yk = 1)P (Yk+1 = 0 | Yk = 1)

= P (Yk = 1)
(
1− P (Yk+1 = 1 | Yk = 1)

)
= P (Yk = 1)− P (Yk = 1)P (Yk+1 = 1 | Yk = 1)

= P (Yk = 1)− P (Yk = 1 ∩ Yk+1 = 1)

= P (Yk = 1)− P (Yk+1 = 1)

= E(Yk)− E(Yk+1)

(2.10)

Where the last equality follows from Yk being a binary random variable, which
leads to:

E(Yk) = 1 · P (Yk = 1) + 0 · P (Yk = 0) = P (Yk = 1) (2.11)

Using this, the following expression for E(Y ) is obtained:

E(Y ) =
∑

1≤k≤lm

k · P (Y = k) =
∑

1≤k≤lm

k · (E(Yk)− E(Yk+1)) =
∑

1≤k≤lm

E(Yk) (2.12)

Finally, the probability that the strings in S ′ have no subsequence of length k

is equal to:

P (Yk = 0) = 1− P (Yk = 1) = 1− E(Yk) (2.13)

On the other hand, using the second assumption and the fact that there are
|Σ|k strings of length k over the alphabet Σ, we have that the latter probability
can also be written as: (

1−
m∏
i=1

P (k, |si|)
)|Σ|k

(2.14)

Therefore E(Yk) = 1− (1−
∏m

i=1 P (k, |si|)|Σ|k . Now, using the previously derived
expression for E(Y ), we obtain:

E(Y ) =
∑

1≤k≤lm

E(Yk) =
∑

1≤k≤lm

(
1−

(
1−

m∏
i=1

P (k, |si|)
)|Σ|k

)
(2.15)

Using this for S ′ = S[pL,v], the guiding function EX evaluated at a node v is
obtained:

EX(v) =
∑

1≤k≤lm

E(Yk) =
∑

1≤k≤lm

(
1−

(
1−

m∏
i=1

P (k, |si| − pLv
i + 1)

)|Σ|k
)

(2.16)
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Here it has been used that every string si[p
L,v
i , |si|] from S[pL,v] has length

|si| − pL,vi + 1. In practice, the latter calculation is performed in a decomposed
manner, and a Taylor approximation is applied to avoid issues with floating point
arithmetic. More details can be found in [34, 36].
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Chapter 3

BRKGA for the LCSqS Problem

3.1 Introduction

This chapter introduces the Biased Random Key Genetic Algorithm (BRKGA) for
the Longest Common Square Subsequence (LCSqS) problem and explains how
the offline learning mechanism is integrated into it. The content is based on
publications [105, 107]. The first presents the BRKGA, while the second applies
the offline learning framework to it.

A BRKGA [55] is a specialized variant of the previously introduced Random
Key Genetic Algorithm (RKGA). The key distinction between a BRKGA and an
RKGA lies in the mating process: in a BRKGA, one parent is always selected
uniformly from the elite population, while the other is chosen from the non-elite
population. Once two parents are selected for mating, the value at the i-th position
of the offspring’s vector is inherited from the elite parent with a probability
ρe ∈ (0.5, 1], and from the non-elite parent otherwise. The parameter ρe, referred
to as the elite inheritance probability, controls the bias toward the elite parent.
Algorithm 3.1 shows a pseudo-code for a BRKGA.

As with RKGAs, the only problem-specific component in BRKGA is the
decoder, which maps individuals to solutions for the given problem. This
corresponds to the function evaluate() in Algorithm 3.1, which decodes each
individual and assigns a corresponding fitness value.

A key aspect of the decoding process is that, beyond simply mapping a point
from the hypercube to a feasible solution, the search can be guided using a
greedy heuristic. Our BRKGA for the LCSqS problem leverages this feature, with
different greedy information designs considered.

Moreover, the offline learning mechanism is incorporated at this stage to
learn instance-specific greedy information, enhancing the search effectiveness.
The next section provides details on this problem-specific evaluation, including
the decoder, while the implementation of learning-based guidance is discussed
later.
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Algorithm 3.1 The general structure of a BRKGA
Input: Values for the parameters psize, pe, pm, and ρe

1: P := generate_initial_population()
2: evaluate(P )
3: while termination conditions not met do

4: P ′ := new_empty_population()
5: P := sort_depending_on_fitness(P )
6: for i ∈ {1, . . . , pe} do

7: P ′
i := Pi

8: end for

9: for i ∈ {1, . . . , pm} do

10: P ′
pe+i := generate_random_individual()

11: end for

12: for i ∈ {1, . . . , psize − pe − pm} do

13: select v1 ∈ Pe randomly
14: select v2 ∈ P \ Pe randomly
15: v := (v1i with probability ρe and v2i otherwise)mi=1

16: P ′
pe+pm+i := v

17: end for

18: P := P ′

19: evaluate(P )
20: end while

To explore different strategies for guiding the search, we have considered
multiple approaches for defining both the greedy information and the fitness
measure. The goal is to determine the most effective designs through
experimental testing. To facilitate this, all the resulting options are encapsulated
within a single decoder, which allows for flexibility in selecting and comparing
different configurations. The following subsection details the structure and
functioning of this decoder.

3.1.1 Decoder

The decoding process in the BRKGA for the LCSqS problem leverages
Proposition 2.1.1, which enables solving the LCSqS problem by splitting each
input string into two parts and then solving an Longest Common Subsequence
(LCS) problem with the resulting substrings. To find an approximate solution
efficiently, the Beam Search (BS) algorithm for the LCS problem introduced in the
previous chapter is employed.

With this goal, each individual consists of m values in [0, 1], with m being
the number of input strings. The decoder follows a two-step process. First it
translates an individual into a set of cut points that split each input string into
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two. Then, it applies the BS to the resulting strings and concatenates the obtained
solution with itself, obtaining the approximate LCSqS solution associated with
the individual.

We designed the mapping of an individual v = (v1, v2, . . . , vm) ∈ [0, 1]m to a
cut-point vector as follows:

(v1, v2, . . . , vm) ∈ [0, 1]m 7−→ (v1|s1|, v2|s2|, . . . , vm|sm|) ∈
m∏
i=1

{0, 1, . . . , |si|} (3.1)

Hereby, every product is rounded to the closest integer.
Each element (c1, c2, . . . , cm) ∈

∏m
i=1{0, 1, . . . , |si|} is interpreted as a cut-point

vector, where for each i = 1, 2, . . . ,m, the string si is cut so that ci characters
remain in the first part of the cut.

Once this association is made, the BS described in Chapter 2 is used,
introducing parameters β and h, which denote its beam width and heuristic
function respectively. Algorithm 3.2 illustrates the decoder.

Algorithm 3.2 The decoder of the BRKGA for the LCSqS problem
Input: Input strings S = {s1, . . . , sm}, an individual v, beam width β, and

heuristic function h
Output: The LCSqS solution associated with v

1: v′ := greedy_transformation(v)
2: pv := map_to_cut_points(v′)
3: Spv := LCS problem instance induced by pv

4: tv := beam_search_for_LCS_problem(Spv , β, h)
5: return tv · tv

As one can see, before mapping a hypercube element to a set of cut points using
Equation (3.1), greedy information is employed to influence these hypercube
elements. In the following section, we will explore our various proposals for the
greedy information.

3.1.2 Greedy Information

Function greedy_transformation() applies a greedy bias to an individual v =

(v1, . . . , vm) before mapping it to a cut point vector. We propose several options
for this transformation, all of which follow the same basic principle: first, a
promising hypercube point u = (u1, . . . , um) is identified, and then individual v
is adjusted toward this hypercube point by the following update:

vi := vi + γ · (ui − vi). (3.2)
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Hereby, γ ∈ [0, 1] is the so-called greedy rate, controlling the degree to which vi is
adjusted toward ui for each i = 1, . . . ,m. When γ = 1, vi is directly replaced by ui,
while when γ = 0, no greedy information is used. The three different approaches
for constructing the vector u are described next.

• The first approach for greedy information we designed involves setting
u = (0.5, . . . , 0.5). This choice is motivated by the fact that, generally, the
middle point of each string serves as an effective cut location, as these cuts
maximize the minimum length of the resulting substrings. This is clearly
desirable when we have no information about the distribution of characters
throughout the strings and we assume them to be uniform.

• The second approach for greedy information involves assigning ui the
following value for all i = 1, . . . ,m:

argmin
r∈[0,1]

∑
a∈Σ

∣∣∣∣∣∣si[1, r · |si|]∣∣a − ∣∣si[r · |si|+ 1, |si|]
∣∣
a

∣∣∣∣ (3.3)

The products r · |si| are rounded to the closest integer.
∣∣si[1, r · |si|]∣∣a and∣∣si[r · |si| + 1, |si|]

∣∣
a

denote the number of occurrences of character a in the
two strings obtained after cutting si at position r · |si|.

This approach selects the cut that maximizes the overall balance of each
character’s quantity on both sides of the cut. The value that minimizes the
above expression may not be unique; in such cases, a random value from
those that minimize it is selected.

With this design, the greedy value incorporates information about the
character distribution across the strings and uses it to determine the best
cuts. These chosen cuts are generally reasonable, as, in the absence of
detailed information about the character distribution in a set of strings, the
LCS is typically expected to be longer when the input strings have a similar
number of occurrences of each character.

• The last considered greedy information approach consists in setting ui to
the following value for all i = 1, . . . ,m:

argmax
r∈[0,1]

∣∣∣∣LCS
(
si[1, r · |si|], si[r · |si|+ 1, |si|]

)∣∣∣∣ (3.4)

Hereby, the same notation as before is used, and
∣∣LCS(si[1, r · |si|], si[r · |si|+

1, |si|])
∣∣ denotes the length of an LCS between the two strings obtained by
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cutting si at position r · |si|. This length is computed using the dynamic
programming approach (Algorithm 2.1) introduced in Chapter 2. This
approach is suitable for obtaining greedy information due to the efficiency
of the dynamic programming method for two input strings.

This greedy value design is also logical because the ultimate goal when
determining the cuts is to maximize the LCS length between the resulting
strings. Since it is computationally infeasible to select cuts that maximize
this value for all strings simultaneously, we instead choose each cut to
maximize the LCS length between the two resulting parts of the string.

Generally, we can expect the set of cut-points obtained using this approach
to be close to those that maximize the LCS length across all the strings,
which are computationally infeasible to calculate.

3.1.3 Measure of Fitness

To evaluate an individual v, we naturally consider the length of the LCSqS solution
tv obtained from the decoder. The value of this primary objective function is
denoted by f1(v). During the study of our algorithm’s behavior, we observed
that many individuals shared the same primary objective function value, which
indicates the presence of plateaus in the search space. To address this, we
introduced an additional way to differentiate between such solutions, in the form
of a secondary objective function value. The following options are considered for
designing the secondary objective function value f2(v) of an individual v.

1. The first approach favors individuals whose cut points are more
concentrated around the central positions of the input strings. We calculate
the secondary objective function value f2(v) using the following expression:

m∑
i=1

∣∣2 · pvi − |si|
∣∣. (3.5)

This sum results in a lower value when cuts are more centered and a higher
value otherwise. This is because |2 · cpI i

− |si|| can be rewritten as |cpI i
−

(|si| − cpI i
)|, which represents the absolute difference between the number

of characters on either side of the cut.

2. The second option favors individuals whose cut points create a better
balance between the quantity of each character on both sides of the cut.
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In this case, f2(v) is calculated by

max
1≤i≤n

{∑
a∈Σ

∣∣∣∣∣∣si[1, pvi ]∣∣a − ∣∣si[pvi + 1, |si|]
∣∣
a

∣∣∣∣}. (3.6)

Note that this approach is similar to the one used in the second greedy
transformation design.

3. The third approach favors individuals whose cut points maximize the LCS
distance between each side of the cut. It defines f2(v) by

− min
1≤i≤n

{∣∣∣∣LCS(si[1, pvi ], si[pvi + 1, |si|])
∣∣∣∣}. (3.7)

The motivation behind this approach is the same to that of the third greedy
value approach. The negation of the sum ensures consistency with the other
secondary objective function designs, where individuals with a lower value
are preferred.

To compare two individuals, v and v′, within the BRKGA, both the primary
and selected secondary objective functions are used in a lexicographical manner:
v is considered better than v′ if and only if f1(v) > f2(v

′) or f1(v) = f2(v
′) and

f2(v) < f2(v
′).

The algorithm design is now complete, and the final step is to determine the
preferred greedy value and secondary measure of fitness. We will select between
the available designs through parameter tuning, which will be carried out during
the experimental evaluation.

3.2 Implementing the Offline Learning Component

Following the general offline learning framework introduced in Chapter 1,
the components that need to be described include the search component
parameterized by the Machine Learning (ML) model, the ML model used with
the features extracted, and the methods employed to compute the training and
validation values.

As mentioned, the offline learning framework is applied to the original
BRKGA in the greedy information vector u. Specifically, with this
implementation, ui is determined by a feed-forward neural network (NN) that
receives features of the input string si along with some global features of the
entire instance. From now on, we refer to this learning variant as Brkga-Learn,
while denoting the standard one by Brkga.
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3.2.1 Neural Network and Features

As explained, the neural network is applied separately to each input string,
predicting a value for the corresponding greedy component ui. Six features are
used as input to the neural network: the first two are specific to each string, while
the last four are global features. This approach aims to capture information both
about individual strings and the overall problem instance.

Given a problem instance consisting of input strings S = {s1, s2, . . . , sm}, we
denote by gv2i and gv3i the values for the second and third greedy value designs,
as outlined in the previous subsection, for the i-th input string, respectively.

The following features are extracted for each string si, i = 1, 2, . . . ,m:

X =
(
gv2i, gv3i, gv2, gv3, σ(gv2), σ(gv3)

)
(3.8)

Here, gv2 and gv3 represent the averages of the second and third greedy
values across all strings in S, while σ(gv2) and σ(gv3) denote the corresponding
sample standard deviations, respectively:

gv2 =

∑m
i=1 gv2i

m
, σ(gv2) =

√∑m
i=1

(
gv2i − gv2

)2
m− 1

(3.9)

gv3 =

∑m
i=1 gv3i

m
, σ(gv3) =

√∑m
i=1

(
gv3i − gv3

)2
m− 1

(3.10)

Feature values are standardized before being fed into the neural network to
ensure a mean of zero and a standard deviation of one. The neural network
consists of a single node in the output layer with a sigmoid activation function, as
it is applied to one string at a time, outputting a promising cut point in the form
of a value in (0, 1). Furthermore, tuning indicated that a single dense hidden
layer with five nodes and a ReLU activation function is sufficient. This choice
also aligns with the general guideline of selecting a hidden size between the input
layer (6 nodes) and the output layer (1 node). More complex networks were tested
as well, but they did not lead to noticeably better results. Figure 3.1 provides a
graphical representation of the architecture used.

The expressions for the ReLU and sigmoid functions are given below.

ReLU(x) = max{0, x}, x ∈ R (3.11)
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Input layer
Hidden layer

Output layer

Figure 3.1 A graphical representation of the employed feed-forward neural
network. f(X) is the output of the neural network for the feature value vector
X = (X1, X2, . . . , X6). The sets {wk,j} and {βk} represent the 41 parameters of the
neural network. Specifically, {wk,j} transform the features into the hidden layer,
and {βk} transform the hidden layer into the output. Additionally, the lines from
the top node in each layer represent the biases, which are parameters {wk0} and
β0.

sigmoid(x) = 1

1 + e−x
, x ∈ R (3.12)

3.2.2 Evaluation of an Individual

The computation of the training value proceeds as follows: First, a value ui is
obtained by supplying the neural network (equipped with the weights of the
individual) for every string si of each problem instance in the training set. Then,
Equation (3.1) is applied to generate the corresponding cut points. Afterward,
BS is applied on the strings obtained after cutting to evaluate the cut points.
The average of the obtained solution lengths for all training instances is then the
training value, which is used as the measure of fitness of the corresponding
individual. Running the BRKGA guided by the model with the individual
weights is impractical, as it would lead to excessively long training times due to
the large number of individual evaluations required during training. However,
this can be done for validation values, as they have to be computed with much
less frequency.

The BRKGA is executed to compute validation values by running the
algorithm for the same time limit as used in the experimental evaluation on the
validation instances, guided by the vector u obtained from the neural network
with the corresponding individuals’ weights. The average of the resulting LCSqS
lengths is then used as the validation value. Again, it is important to note that,
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for validation, running the BRKGA instead of BS is computationally feasible, as
new best individuals are found only sporadically.

3.3 Experimental Evaluation

In this section, we evaluate bot the standard Brkga and Brkga-Learn to compare
their performance. Moreover, we also compare to the previously state-of-the-art
algorithm from the literature for solving the LCSqS problem, which is a Reduced
Variable Neighborhood Search (RVNS) introduced in [33] that also employed BS
as one of its components. We denote the latter by Rvns from now on.

To do this experimental evaluation, we train Brkga-Learn on two benchmark
sets, tune the three approaches and obtain numerical results. The first benchmark
set, referred to as Random, consists of instances where strings are generated
uniformly at random. In contrast, the second set, called Non-Random, consists
of instances with non-uniform strings, which are created by implanting specific
patterns.

3.3.1 Problem Instances

The first benchmark set, called Random, was previously used to evaluate Rvns
in its original publication [33]. It was originally introduced in the context of the
LCS problem in [15]. This set includes both tuning and evaluation instances, all
of which are generated uniformly at random. There are ten evaluation instances
for each combination of n ∈ {100, 500, 1000}, m ∈ {10, 50, 100, 150, 200}, and
|Σ| ∈ {4, 12, 20}. Here, n represents the length of the input strings, m denotes the
number of strings, and |Σ| refers to the size of the alphabet. In total, there are 450
problem instances. Additionally, for every combination of n, m, and |Σ|, there
are three tuning instances.

The second benchmark set, called Non-Random, is generated by ourselves.
It consists of non-uniform instances, with the goal of testing the algorithms on
instances with different characteristics. Similar to the Random set, we include
both tuning and evaluation instances. The instances are generated by implanting
a square pattern string into each input string of an instance. For each combination
ofn ∈ {100, 500, 1000},m ∈ {10, 50, 100, 150, 200}, and type ∈ {1, 2} (where "type"
refers to the method of implanting the pattern, as described below), we generate
ten evaluation instances. The alphabet size is varied based on string length, with
values set to 12, 15, and 18 for n = 100, n = 500, and n = 1000, respectively.
Therefore, the Non-Random benchmark set contains 90 problem instances in
total. Additionally, three tuning instances are created for each combination of n,
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m, and type.
The patterns used are determined solely by the length of the input strings.

They consist of the following strings, each concatenated with itself.

• For input strings of length n = 100:
commonsubsequence

• For input strings of length n = 500:
longestcommonsubsequenceproblem

• For input strings of length n = 1000:
longestcommonsquaresubsequenceproblem

In both type 1 and type 2 instances, the pattern is implanted into each string by
selecting positions equal to the length of the pattern and filling them sequentially
with the pattern’s letters. Then, the remaining empty positions in each string are
filled uniformly at random with characters from the alphabet.

The difference between type 1 and type 2 instances lies in how the positions
for the pattern string are selected. In type 1 instances, the positions are chosen
uniformly at random. In contrast, for type 2 instances, the probability of selecting
a particular position is decreased from left to right, with the probability for
position i given by:

pi =
p′i∑n
k=1 p

′
k

with p′i = 2− i

n− 1
, i = 1, . . . , n. (3.13)

This way, the probability of selecting the first position is twice as high as the
probability of selecting the last position, with the probability decreasing linearly
from left to right.

3.3.2 Training and Parameter Tuning

To ensure a fair comparison, we allocate the same computation time limit to
the three algorithms. Specifically, a time limit of 600 CPU seconds was set
for each algorithm execution. This time limit was also the one applied for
each algorithm execution during parameter tuning and for the calculation of
the validation value during the Brkga-Learn trainings. The benchmark sets
Random and Non-Random consist of 150 and 100 instances, respectively, for
each n ∈ {100, 500, 1000}, where n represents the string length in the instances.
Additionally, Non-Random instances are further divided into two sets based on
the parameter type, which specifies how the patterns were implanted.
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Table 3.1 Parameter values obtained after tuning Brkga and Brkga-Learn on the
LCSqS problem benchmark set Random. Three tunings are performed for each
algorithm, one for each size: n = 100, 500, 1000.

Allowed Range Brkga Brkga-Learn

pe {0.01, 0.02, . . . , 0.45} 0.21 0.36 0.21 0.15 0.21 0.31
pm {0.01, 0.02, . . . , 0.45} 0.09 0.20 0.40 0.13 0.03 0.28
ρe {0.30, 0.31, . . . , 0.99} 0.64 0.69 0.53 0.35 0.45 0.68
psize {10, 11, . . . , 1000} 954 282 535 706 329 737
of2 {1, 2, 3} 2 2 2 1 3 2
γ {0.00, 0.01, . . . , 0.99} 0.80 0.93 0.97 0.51 0.92 0.98
β {1, 2, . . . , 1000} 21 139 137 113 53 587
h {UB,EX} UB UB UB UB UB UB
gv {1, 2, 3} 1 1 1 - - -

Table 3.2 Parameter values obtained after tuning Brkga and Brkga-Learn on the
LCSqS problem benchmark set Non-Random. Three tunings are performed for
each algorithm, one for each size: n = 100, 500, 1000.

Allowed Range Brkga Brkga-Learn

pe {0.01, 0.02, . . . , 0.45} 0.42 0.12 0.19 0.18 0.16 0.23
pm {0.01, 0.02, . . . , 0.45} 0.01 0.18 0.04 0.04 0.33 0.02
ρe {0.30, 0.31, . . . , 0.99} 0.55 0.55 0.60 0.47 0.58 0.56
psize {10, 11, . . . , 1000} 836 334 113 906 372 218
of2 {1, 2, 3} 2 1 3 2 2 1
γ {0.00, 0.01, . . . , 0.99} 0.76 0.84 0.90 0.79 0.84 0.87
β {1, 2, . . . , 1000} 949 19 70 388 6 6
h {UB,EX} EX UB UB UB UB UB
gv {1, 2, 3} 3 1 1 - - -

We train Brkga-Learn separately based on n for the Random instance set and
on n and type for the Non-Random instance set. As a result, three separate
training procedures are conducted for the Random benchmark set, and six for
the Non-Random set. We tune the parameters based on n for both instance
sets, following the same procedure for all algorithms. Additionally, different
equivalently generated instances are used for training, parameter tuning, and
evaluation. For each Random training, fifteen instances are used for calculating
training values and another fifteen for validation values, one for each combination
ofm (number of strings) and |Σ| (alphabet size). Likewise, Non-Random trainings
use two sets of ten instances, with two instances for every possible value of m.

Regarding the training RKGA, we apply it using the following default
parameters: a population size of 20, one elite individual, and seven mutants.
In the BS used to compute training values, a beam width of β = 250 is
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applied alongside the UB guiding function presented in Equation (2.8) of
Chapter 2. Meanwhile, for the Brkga executions performed during validation
value computations, we adopt the parameter values produced by the parameter
tuning for the original Brkga, found in Tables 3.1 and 3.2.

We carried out each training, tuning and evaluation run on a cluster of
machines with 10-core Intel Xeon processors at 2.2 GHz and 8 GB of RAM.
Parallelism in the training runs was applied in the calculation of validation
and training values. Each training utilized 10 cores, distributing the training
and validation instances across them. However, no parallelism was applied for
parameter tuning or the final experimental evaluation, as was the case with the
original Brkga and Rvns. Early stopping was employed for the training runs
of Brkga-Learn, meaning they were terminated whenever the validation value
decreased, indicating potential overfitting. On average, training runs lasted about
one hour, with runs involving larger instances requiring up to four hours.

Tables 3.1 and 3.2 report the results of the parameter tuning for Brkga
and Brkga-Learn. For each algorithm, three parameter sets are presented,
corresponding to n = 100, n = 500, and n = 1000, shown from left to right.
Specifically, pe, pm, ρe, psize, and of2 refer to the proportion of elites, the
proportion of mutants, the elite inheritance probability, the population size,
and the secondary objective function design, respectively. Additionally, γ is
the greedy rate, which controls the extent of greedy information used, and β

and h are the parameters of the BS, representing the beam width and the guiding
function design. Finally, gv is the greedy value design employed by Brkga, which
is replaced by the neural network in the learning variant.

To perform parameter tuning, we utilized the automatic configuration tool
irace [87]. For benchmark set Random, one tuning instance was selected for
every combination of m and |Σ|. Similarly, for benchmark set Non-Random,
one instance was chosen for every combination of m and type. This resulted
in 15 tuning instances for each parameter tuning run concerning the Random
benchmark set, and 10 instances for each Non-Random run. Each tuning process
was allocated a budget of 5000 algorithm executions. Table 3.1 presents the
allowed values for each parameter during the tuning process. These ranges were
the same for both instance sets.

Regarding the parameter settings of Rvns, they were also set by irace using
the same budget. For benchmark set Random the parameters produced were
α = 0.9, σ = 5 and β = 100 for n = 100; α = 0.9, σ = 10 and β = 200 for n = 500;
α = 0.9, σ = 20 and β = 200 for n = 1000. With the guiding function EX being
the preferred one for all sizes. For benchmark set Non-Random, the following
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configuration was yielded: α = 0.7, σ = 5 and β = 10 for n = 100; α = 0.9, σ = 10

and β = 200 for n = 500; α = 0.9, σ = 20 and β = 200 for n = 1000. Moreover, EX
was chosen as the BS heuristic function for n = 100 and UB for the rest.1

Table 3.3 Comparison of Brkga-Learn, Brkga and Rvns on the LCSqS problem
Random instances with string length n = 100.

Brkga-Learn Brkga Rvns

m |Σ| |s| tbest[s] |s| tbest[s] |s| tbest[s]

10 4 28.44 98.36 28.34 19.06 27.46 58.78
12 8.94 11.73 8.00 0.06 8.32 19.11
20 4.20 0.04 4.00 0.00 3.92 8.79

50 4 19.02 144.95 19.94 85.65 18.62 32.86
12 4.00 0.03 4.00 1.25 3.98 2.75
20 1.40 0.39 0.20 0.00 0.20 0.02

100 4 15.72 168.17 17.16 68.45 16.32 41.25
12 2.42 30.20 2.20 5.38 1.60 0.02
20 0.12 12.91 0.00 0.00 0.00 0.02

150 4 13.16 160.99 15.94 53.37 15.28 101.42
12 2.00 0.02 2.00 0.20 0.40 0.02
20 0.00 0.00 0.00 0.00 0.00 0.03

200 4 12.02 34.86 14.78 92.28 14.02 5.96
12 2.00 0.29 1.60 1.08 0.00 0.03
20 0.00 0.00 0.00 0.00 0.00 0.00

3.3.3 Results for Benchmark Set Random

The results obtained for the benchmark set Random are presented in
Tables 3.3–3.5. These tables contain results for instances with n = 100, n = 500,
and n = 1000, respectively. For each combination of n, m, and |Σ|, as well as
for each algorithm, we report the average length of the best solutions found (|s|)
and the average time required to find these best solutions (tbest[s]). Since each
group consists of ten instances and each algorithm was applied ten times to each
instance, the results for each of the 45 table rows represent averages over 100 runs.
In each row, the best result is highlighted in bold.

We can observe that the results for this benchmark set do not differ
significantly between the three algorithms, although Brkga-Learn performs
slightly better than the rest on average. Similarly, Brkga is often better than
Rvns on average.

1For the meaning of these parameters we refer to the original publication of Rvns [33].
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Table 3.4 Comparison of Brkga-Learn, Brkga and Rvns on the LCSqS problem
Random instances with string length n = 500.

Brkga-Learn Brkga Rvns

m |Σ| |s| tbest[s] |s| tbest[s] |s| tbest[s]

10 4 159.56 235.68 158.94 226.69 157.58 137.93
12 59.90 47.88 59.60 51.22 58.94 80.61
20 36.12 11.69 36.04 7.97 36.04 63.97

50 4 126.40 297.95 125.76 146.66 125.10 89.62
12 40.06 65.44 40.00 52.29 39.30 65.65
20 22.00 25.71 21.82 14.19 21.46 76.73

100 4 117.26 246.59 116.82 102.85 116.54 81.61
12 34.30 55.78 34.12 21.53 34.00 15.96
20 18.00 0.70 18.00 0.60 18.00 22.21

150 4 112.50 125.87 112.50 64.91 112.48 61.43
12 32.00 2.71 32.00 2.14 32.00 31.68
20 16.02 0.99 16.00 0.16 16.00 4.26

200 4 109.96 109.96 110.00 26.02 110.00 36.60
12 30.08 17.80 30.04 6.96 30.00 6.34
20 15.76 74.79 15.90 73.57 14.80 82.82

Table 3.5 Comparison of Brkga-Learn, Brkga and Rvns on the LCSqS problem
Random instances with string length n = 1000.

Brkga-Learn Brkga Rvns

m |Σ| |s| tbest[s] |s| tbest[s] |s| tbest[s]

10 4 324.42 155.60 323.98 164.38 322.96 181.82
12 125.44 78.44 125.78 110.02 125.00 112.43
20 77.68 46.47 78.02 107.96 77.50 100.46

50 4 263.90 88.78 263.74 96.49 262.82 77.69
12 87.62 99.69 87.62 87.74 86.56 77.88
20 50.16 17.68 50.54 43.04 50.00 29.99

100 4 249.30 70.03 248.84 78.81 248.16 43.58
12 78.36 44.55 78.48 58.38 78.02 26.25
20 44.00 3.68 44.00 1.76 44.00 48.63

150 4 242.22 62.90 242.06 73.12 241.30 52.63
12 74.26 40.61 74.42 49.93 74.02 24.30
20 41.26 100.94 41.32 87.43 40.22 40.29

200 4 237.50 64.25 237.32 69.46 236.88 129.61
12 72.02 19.07 72.00 13.19 71.68 88.88
20 39.88 124.41 39.94 77.83 38.64 86.65
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It is important to note that, for this set of instances, the original Brkga
used the first greedy information design, which simply biases cuts toward
the middle of every string. As these instances consist of uniform strings, the
first greedy information approach already produces a good prediction for the
optimal cut point, leaving little room for improvement to the learned guidance
of Brkga-Learn.

3.3.4 Results for Benchmark Set Non-Random

The results for benchmark set Non-Random are shown in Tables 3.6–3.8, which
follow the same structure as outlined in the previous section.

Table 3.6 Comparison of Brkga-Learn, Brkga and Rvns on the LCSqS problem
Non-Random instances with string length n = 100.

Brkga-Learn Brkga Rvns

m type |s| tbest[s] |s| tbest[s] |s| tbest[s]

10 1 32.24 97.06 32.14 114.59 32.56 79.64
2 30.56 66.05 30.84 95.25 32.26 118.42

50 1 25.78 151.84 24.98 227.49 22.70 102.23
2 25.28 100.28 24.86 183.25 22.60 111.26

100 1 22.16 107.93 19.34 180.61 18.04 84.55
2 21.98 120.53 20.08 149.02 18.62 105.24

150 1 19.36 127.27 16.76 154.21 16.50 81.51
2 19.76 161.05 16.68 147.78 15.22 95.14

200 1 18.10 136.83 14.72 145.22 14.98 86.77
2 18.58 120.13 14.70 160.61 13.46 87.22

In this case, Brkga-Learn consistently and significantly outperforms the
original Brkga, except for instances with a very low number of input strings (m),
where the results are inconclusive. For all other instances, Brkga-Learn yields
better solutions than Brkga, demonstrating a clear benefit from the proposed ML
guidance in the case of non-uniform strings. Regarding the Rvns, its solutions are
of much worse quality than the ones of the BRKGA-based approaches, showing
that it does not adapt well to solving non-uniform strings. The only exception
is with the instances with m = 10 and n = 100, for which interestingly Rvns
performs best.

In order to measure the statistical significance of the differences between
the obtained solution lengths of Brkga-Learn and Brkga on the Non-Random
benchmark set, we employed the signed-rank Wilcoxon test [128].
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Table 3.7 Comparison of Brkga-Learn, Brkga and Rvns on the LCSqS problem
Non-Random instances with string length n = 500.

Brkga-Learn Brkga Rvns

m type |s| tbest[s] |s| tbest[s] |s| tbest[s]

10 1 66.18 39.68 70.92 129.82 29.48 32.67
2 70.14 60.28 64.78 117.03 32.56 36.44

50 1 58.58 160.06 59.16 287.05 25.74 78.84
2 60.76 218.02 55.32 187.35 23.94 67.24

100 1 52.58 205.24 49.30 321.75 22.44 63.15
2 53.60 222.17 51.00 277.44 21.02 50.23

150 1 51.08 286.49 46.52 344.74 21.22 58.55
2 48.80 285.49 48.78 315.31 22.00 54.17

200 1 48.18 327.75 43.62 354.31 21.46 60.57
2 45.60 368.48 43.60 407.89 20.60 38.65

Table 3.8 Comparison of Brkga-Learn, Brkga and Rvns on the LCSqS problem
Non-Random instances with string length n = 1000.

Brkga-Learn Brkga Rvns

m type |s| tbest[s] |s| tbest[s] |s| tbest[s]

10 1 90.50 96.65 91.14 113.29 51.24 62.16
2 90.92 130.95 91.38 102.84 52.86 66.85

50 1 66.16 154.49 65.40 284.90 53.18 101.13
2 66.28 157.41 63.94 255.81 51.68 74.58

100 1 61.66 228.93 59.60 346.65 50.52 104.43
2 60.32 223.04 57.88 266.50 52.36 122.27

150 1 57.70 286.83 55.74 306.60 50.32 157.27
2 57.20 258.09 54.38 195.92 50.90 129.77

200 1 54.62 282.27 52.46 72.89 50.92 152.97
2 54.48 268.08 52.06 149.85 49.88 162.23

This test evaluates the one-sided alternative hypothesis that a solution value
obtained by Brkga-Learn is, in the expected case, larger than the corresponding
solution value obtained by Brkga. We obtained a p-value of less than 10−4, which
indicates that the observed differences are statistically highly significant.
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Chapter 4

Beam Search for the RLCS Problem

4.1 Introduction

This chapter presents the Beam Search (BS) for the Restricted Longest Common
Subsequence (RLCS) problem and its integration with the offline learning
framework for learning its heuristic function. The content is based on
publications [38, 39]. The first presents the BS while the second applies the
offline learning framework to it.

The BS for the RLCS problem, a variant of the Longest Common Subsequence
(LCS) problem introduced in Chapter 2, is closely related to the BS for the LCS
problem, also presented in that chapter. The only difference with the latter are
the nodes of the graph partially constructed during the BS execution, the state
graph. In the case of the RLCS problem, nodes also represent partial solutions
and hence, in addition to the partial solution length lv and the left position vector
pL,v, they also contain information regarding the restricted strings.

Consider a set of input strings S = {s1, s2, . . . , sm} and restricted strings
R = {r1, r2, . . . , rk}. A node v represents a partial solution sv and consists of a
triple (lv, p

L,v, rv). As with the LCS problem, lv is the length of sv and pL,v is the
left position vector, the vector such that for each input string si the index pL,vi − 1

is the smallest value for which si[1, p
L,v
i − 1] contains sv as a subsequence. Finally,

rv is the vector that contains information about the restricted strings. For each
restricted string rj , the index rvj is such that the prefix rj[1, r

v
j ] is not contained as

a subsequence of sv, but rj[1, rvj − 1] is.
As with the LCS problem, edges represent partial solution extensions. There

is an edge a between two nodes v1 = (lv1 , p
L,v1 , rv1) and v2 = (lv2 , p

L,v2 , rv2) with
label l(a) if (i) lv2 = lv1 + 1 and (ii) the partial solution represented by node v2 is
obtained by appending character a to the partial solution represented by v1.

For extending a node v, its successor nodes have to be determined. This
consists of identifying the characters that can feasibly extend the partial solution
sv represented by v. The same set of available characters as in the case of the
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LCS problem is considered, and is further restricted by taking into account the
restricted strings. First, the characters occurring in each string of set S[pL,v] are
considered. Then, the characters a ∈ Σ that cause one of the restricted patterns
ri ∈ R to be a subsequence of sv · a are removed. Finally, the dominated letters
as in the case of the LCS problem are also omitted. Remember, that a character
a ∈ Σ is said to dominate a character b ∈ Σ if pL,vi,a < pL,vi,b for all i = 1, . . . ,m,
where pL,vi,a and pL,vi,b denote the first occurrence in s[pL,vi , |si|] of character a and b
respectively. As a appears before b in the remaining part of each input string,
extending the partial solution through b will never lead to a better solution than
doing it through a. We denote the set of non-dominated feasible characters to
extend the partial solution of a node v by Σnd

v .
As with the LCS state graph, the state graph for the RLCS problem is obtained

by starting with the root node r = (0, (1, . . . , 1), (1, . . . , 1), which represents the
empty string, expanding it with the characters in Σnd

r , and doing the same for
every obtained node iteratively, until every node v not yet expanded has Σnd

r = ∅.
Figure 4.1, shows an example state graph for the RLCS problem with a particular
set of input and restricted strings. It is similar to the LCS state graph, the only
difference lies in the information kept about the restricted strings.

The BS for the RLCS problem works in the same way as the BS for the LCS
problem, described in Algorithm 2.2 of Chapter 2. Again, the only two differences
lie in the structure of nodes, which now keep track of which suffixes of the
restricted strings are subsequence of the node’s partial solution, and in the further
restriction of the characters considered for extension.

The final component to define is the heuristic function h. Given a set of input
strings S = {s1, s2, . . . , sm} and a set of restricted strings R = {r1, r2, . . . , rk},
every valid RLCS solution is also a solution to the LCS problem for the input
strings S. As a result, any heuristic function designed for the LCS problem can
also serve as a valid heuristic for the RLCS problem. We take advantage of
this by employing the UB guiding function, which was originally introduced for
the LCS. However, we also consider an alternative heuristic function, shown to
deliver better performance in some cases. This is similar to the heuristic function
EX for the LCS problem and we describe it next.

At a given node v and for an arbitrary string s of length k, let Xi be the discrete
random variable for each i = 1, 2, . . . ,m, where Xi takes the value one if s is a
subsequence of si[pL,vi + 1, |si|], and zero otherwise. Assuming these events are
independent, we can write:
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Figure 4.1 RLCS problem state graph for S = {bcaacbb, cbccacb, }, R = {cbb}.
It contains four complete nodes. The two bold paths from the root node to
((7, 8), (3, 2), 4) to are the longest in the graph. Hence, they represent the two
optimal solutions for this problem instance, bccb and cacb respectively.

P

( m⋂
i=1

Ei = 1

)
=

m∏
i=1

P (Ei = 1) =
m∏
i=1

P (k, |si| − pL,vi + 1) (4.1)

where P (k, |si|) represents the probability that an arbitrary string of length
|si|−pL,vi +1 contains an arbitrary string of length k as a subsequence. Assuming
both strings are generated uniformly at random, the same recurrence relation
as in the EX heuristic heuristic proposed by [93], described in Expression 2.9 of
Chapter 2, can be employed to compute these probabilities. This approximation
serves as the heuristic for node v.

HRLCS(v) =
m∏
i=1

P (k, |si| − pL,vi + 1) (4.2)

Here, k is considered a parameter that is heuristically determined at each level
of the BS. In [93], this heuristic guiding function is applied to the LCS problem,
where the value of k is computed using the following expression:
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k = max

{
1,

⌈
min
v∈Vext

|si| − pvi + 1

|Σ|

⌉}
(4.3)

As stated in the original paper [93], the underlying intuition is that the
probability of extending a partial solution decreases as |Σ| increases and increases
as minv∈Vext(|si| − pvi + 1) grows. We propose an improved approach by avoiding
the consideration of all nodes in Vext, which can lead to an underestimation of k.
Instead, we determine a more suitable value of k based on a subset V ′

ext ⊆ Vext

consisting of promising nodes.
To determine V ′

ext at each level, we sort all nodes in decreasing order according
to their UB value, introduced in Equation (2.8) on page 36. A tie-breaking
mechanism is applied, utilizing information from the restricted strings through
the so-called Rmin score, which is defined as:

Rmin(v) = min{|ri| − lv + 1 | i = 1, . . . , k} (4.4)

where larger values are preferred. The size of V ′
ext is determined by the

algorithm parameter percent_extension ∈ [0, 100], which sets the size of V ′
ext as a

percentage of the size of Vext.
Once V ′

ext is selected, Equation (4.3) is applied using V ′
ext instead of Vext to

determine the value of k. If two nodes have the same value according to HRLCS ,
the node with the larger Rmin value is prioritized.

4.2 Implementing the Offline Learning Component

The search component that is parameterized is the heuristic function h, and the
model used is a feed-forward neural network. Given a node, the neural network
processes a set of features and outputs a heuristic value for that node. Specifically,
in the case of the BS applied to the RLCS problem, a Biased Random Key Genetic
Algorithm (BRKGA) was employed for training instead of a standard Random
Key Genetic Algorithm (RKGA), as this resulted in better optimization of the
neural network parameters.

Notably, this modification introduces an additional parameter ρe > 0 and
alters the mating mechanism by ensuring that one parent is always selected from
the elite population and the other from the non-elite population. Each gene then
inherits the elite parent’s value with probability ρe. The general structures of
RKGA and BRKGA are outlined in Pseudocodes 1.2 and 3.1, on pages 40 and 21,
respectively.
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4.2.1 Neural Network and Features

The same structure as in Brkga-Learn from the previous chapter is followed.
Both node–specific features and global features from the given problem instance
are incorporated, enabling the model to consider both the overall characteristics
of the instance and the specific properties of each node.

The features specific to the node are as follows. Recall that a node v is stored as
a tuple (lv, p

L,v, rv) in the state graph. Here, lv represents the length of the node’s
partial solution. The vector pL,v tracks the suffixes of the input strings available
for further extension of the partial solution represented by v. Finally, the vector
rv keeps track of the prefixes of the restricted strings that are subsequences of
the same partial solution. These three values are used to define the node-specific
features.

The lengths of the vectors pL,v and rv depend on the number of input and
restricted strings, respectively. Additionally, the scale of their values is influenced
by the lengths of these strings. To ensure that the number of features and their
scale remain comparable across different instance sizes, the information contained
in these vectors is summarized as follows. First, both vectors are normalized with
respect to the string length in the following manner:

p̃L,vi =
pL,vi

|si|
for i ∈ {1, . . . ,m} and r̃vj =

rvj
|rj|

for j ∈ {1, . . . , k} (4.5)

The maximum, minimum, average, and sample standard deviation of the
resulting standardized vectors are then used as the corresponding node features,
ensuring that the number of features remains independent of the instance size:(

max
(
p̃L,v
)
,min

(
p̃L,v
)
, avg

(
p̃L,v
)
, sd
(
p̃L,v
)
,

max
(
r̃v
)
,min

(
r̃v
)
, avg

(
r̃v
)
, sd
(
r̃v
)) (4.6)

To incorporate global information about the problem instance, the following
features are included: (i) alphabet size (|Σ|), (ii) number of input strings (m), and
(iii) number of restricted strings (k). Two benchmark sets of problem instances
will be employed for evaluating the BS: Random and Abstract. In the case of
the first one, the length of the input strings (n) and the length of the restricted
strings (|r0|) are also included as additional features, since, within each instance,
all input strings and all restricted strings have the same length, respectively.

Therefore, a total of 13 features are extracted when addressing a problem
instance from benchmark set Random, while 11 features are extracted when
dealing with an instance from the benchmark set Abstract. Finally, before being
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Figure 4.2 A graphical representation of the feed-forward neural network
employed for benchmark set Abstract. The lines from the top node in each layer
represent the biases. Remember that two extra instance features are considered in
the context of benchmark set Random, as opposed to the benchmark set Abstract.

fed into the neural network, all features are standardized to have a mean of zero
and a variance of one.

After conducting several preliminary experiments, we selected a neural
network architecture consisting of three hidden layers. The first two hidden
layers contain 10 nodes each, while the final hidden layer comprises 5 nodes. All
hidden layers utilize the sigmoid activation function. The structure of the chosen
neural network is depicted in Fig. 4.2.

4.2.2 Evaluation of an Individual

Since BS executions are generally fast, the entire algorithm is run to compute
both training and validation values. The evaluation of an individual, i.e., a set
of neural network weights, is performed as follows. First, the neural network
is initialized with the individual’s weights. Then, BS, guided by the neural
network, is applied to each instance from the training set. The average length of
the obtained solutions is recorded as the training value. Similarly, the validation
value is computed whenever a new best individual is identified. This is done
by executing BS guided by the neural network once again, but this time on the
validation instances. The validation value is then set as the average length of the
solutions obtained. Recall that validation values are used to determine when to
end the training process as their decrease might indicate overfitting.
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Regarding the beam width β used for computing training and validation
values, its value was varied depending on the benchmark set. This will be
described in the next section.

4.3 Experimental Evaluation

This section presents a comprehensive experimental comparison between the
standard BS, guided by the probability-based heuristic introduced at the
beginning of this chapter, denoted as BS-Prob and the BS guided by the learned
heuristic function, referred to as BS-Learn. The evaluation is conducted using
two benchmark sets, which we introduce below. We do not include a comparison
to the previous state-of-the art heuristic algorithms for the RLCS problem due to
their bad relative performance to the BS variants presented, as can be seen in [38].

4.3.1 Problem Instances

The first benchmark set, Random, follows a similar structure to the benchmark
set of the same name used for evaluating the BRKGA for the Longest Common
Square Subsequence (LCSqS) problem. It consists of instances where strings
are generated uniformly at random. Specifically, five instances were generated
for each combination of parameters: m ∈ {3, 5, 10}, k ∈ {3, 5, 10}, n ∈
{200, 500, 1000}, |r| ∈ {0.01 · n, 0.02 · n, 0.05 · n}, and |Σ| ∈ {4, 20}. Here, m

and k represent the number of input and restricted strings, respectively, while n

and |r| denote their corresponding lengths, and |Σ| is the alphabet size. Notably,
in this benchmark set, all input strings within an instance share the same length,
and the same holds for the restricted strings. In total, this dataset comprises 810
RLCS instances.

The benchmark set Abstract consists of 298 instances, where the input strings
are derived from the existing Abstract dataset in the literature, previously used
for the LCS problem in [96]. The instances in this benchmark set comprise strings
available at https://cwi.ugent.be/respapersim. These strings correspond
to abstracts of real scientific papers written in English and are specifically
designed for experiments assessing research paper similarity. Notably, for a
subset of abstracts, each pair is accompanied by a label indicating whether the
corresponding research papers were classified as similar or dissimilar by an
expert.

The Abstract instances were generated by forming two groups of 12 instances
each, one group with abstracts deemed as similar (POS) and one group with
abstracts deemed as dissimilar (NEG). Then, for each of these groups and m ∈

https://cwi.ugent.be/respapersim
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{10, 11, 12},
(
12
m

)
different instances were generated containing m input strings

(one for each combination). This lead to one instance containing all 12 strings, 12
instances containing 11 strings and, 66 instances containing ten strings for each
POS and NEG strings. Moreover, for m ∈ {3, 4, . . . , 9} ten of the corresponding(
12
m

)
instances were also added to the benchmark set.

Restricted strings are added to these input strings to construct RLCS problem
instances. These restricted strings consist of the sixty most frequently occurring
words in research literature, as identified in [26]. The purpose of this approach
is to facilitate abstract comparisons while excluding the most common words in
academic writing, which are typically not relevant for assessing content similarity.

4.3.2 Training and Parameter Tuning

BS does not impose a time limit, as its execution time is inherently regulated
by the beam width parameter, β. This parameter controls the trade-off between
computational effort and solution quality: a larger β results in higher-quality
solutions but increases runtime. To ensure a fair comparison between BS-Prob
and BS-Learn, both methods must use the same beam width. Based on
preliminary experiments, we selected β = 5000 to present the numerical results,
as it achieved high-quality solutions while maintaining reasonable execution
times. Apart from β, BS-Learn does not require any additional parameters. In
contrast, BS-Prob includes the percent_extensions parameter, which was set to 100

3

following preliminary experimentation.
Figure 4.3 illustrates how varying the beam width β affects the trade-off

between solution quality and execution time. Each subplot corresponds to a
different benchmark set and presents five data points per algorithm, reflecting
the average solution length and average runtime for the following beam width
values: β = 500, 1000, 2000, 5000, 10000. Within each algorithm’s plot, points are
ordered from left to right according to increasing β values. As expected, both BS
variants yield better average solution quality as β increases, albeit at the cost of
longer execution times.

Notably, for larger beam widths, further increasing β results in only marginal
improvements in solution quality while significantly increasing running time.
This effect is particularly evident when comparing β = 5000 and β = 10000. The
plots also highlight the superior average performance of BS-Learn over BS-Prob:
BS-Learn consistently produces longer average solutions and requires less
execution time across all considered values of β. Interestingly, the performance
gap is especially pronounced in the Abstract benchmark set, particularly at
higher beam widths.
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Figure 4.3 Relation between beam width and the balance between solution quality
and execution time for the Random and Abstract benchmark sets.

For the BS-Learn training parameters, we used the same default RKGA
training settings as in the case of the LCSqS problem, which consist of 20
individuals, one elite individual, and seven mutants. Additionally, since a
BRKGA was used for training, an elite inheritance probability ρe of 0.5 was
applied. Other values were tested without significant impact, so such default
was chosen. For computing training and validation values, we set β = 100 for the
Random benchmark set and β = 200 for the Abstract benchmark set. The latter
setting likely performed better due to the greater difficulty of the instances in the
Abstract set.

We trained BS-Learn separately for each benchmark set. For the Random set,
training involved one instance for every combination of m, k, n, |r|, and |Σ| to
compute the training and validation values, resulting in a total of 162 different
instances for each. It is important to note that these instances were not used
for the algorithm’s evaluation. For the Abstract set, three instances for each
value of k were used to compute the training and validation values, except for
k = 11, for which 5 instances were used, and k = 12, for which only one instance
was available. In this case, the instances used for training were also used for
evaluating the algorithm due to the limited number of available instances.

All experiments were conducted in single-threaded mode on an Intel Xeon
E5-2640 processor with a clock speed of 2.40 GHz and 16 GB of RAM. The training
durations were approximately 15 hours for the Random benchmark set and 63
hours for the Abstract benchmark set. It is important to note that, compared to the
BRKGA trainings for the LCSqS problem, a significantly larger number of training
instances were used here. This is because the computation of validation values
is much faster than in the case of the LCSqS problem. The training process was
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executed in single-threaded mode. However, a similar multi-threaded training
approach, as used for the BRKGA, could be implemented, which would likely
reduce training times.

4.3.3 Results for Benchmark Set Random

The results obtained for the benchmark set Random are presented in
Tables 4.1–4.9. Each table corresponds to a specific combination of n ∈
{200, 500, 1000} and m ∈ {2, 5, 10}. For each combination of |k|, |p|, and |Σ|,
as well as for each algorithm, we report the average length of the best solution
found (|s|) and the average runtime (tbest[s]). Each group of instances consists
of five individual instances, and the results are averaged over the five runs. For
clarity, the best results in each table are highlighted in bold.

Table 4.1 Comparison of BS-Prob
and BS-Learn on the RLCS problem
Random instances with number of
input strings m = 3 and input string
length n = 200.

BS-Prob BS-Learn

k |r| |Σ| |s| tbest[s] |s| tbest[s]

3 2 4 61.20 0.64 61.20 0.46
20 44.80 28.72 44.80 4.04

4 4 93.80 2.88 93.80 2.11
20 46.00 16.35 46.00 5.93

10 4 106.60 3.32 106.80 3.48
20 45.80 6.44 45.80 6.59

5 2 4 52.80 0.02 52.80 0.02
20 43.80 34.26 43.80 4.73

4 4 91.80 2.65 91.80 2.06
20 45.20 18.93 45.20 7.52

10 4 105.60 3.80 106.00 3.82
20 44.60 8.55 44.60 8.91

10 2 4 37.00 0.00 37.00 0.00
20 41.00 35.73 41.00 6.18

4 4 87.80 2.52 87.80 1.76
20 44.20 30.50 44.20 11.33

10 4 101.00 3.69 101.20 3.62
20 45.00 11.64 44.80 12.50

Table 4.2 Comparison of BS-Prob
and BS-Learn on the RLCS problem
Random instances with number of
input strings m = 5 and input string
length n = 200.

BS-Prob BS-Learn

k |r| |Σ| |s| tbest[s] |s| tbest[s]

3 2 4 74.20 1.37 74.20 1.02
20 29.40 19.37 29.40 4.27

4 4 88.80 3.15 89.20 3.01
20 30.00 7.92 30.00 5.46

10 4 94.20 3.59 94.60 4.26
20 29.40 5.17 29.40 5.53

5 2 4 55.00 0.63 55.00 0.44
20 27.60 23.75 27.60 4.77

4 4 89.80 3.33 89.40 2.77
20 29.60 10.41 29.60 6.39

10 4 93.20 3.84 93.20 3.92
20 30.20 6.21 30.20 6.50

10 2 4 38.00 0.00 38.00 0.00
20 29.20 27.78 29.20 5.82

4 4 74.40 2.11 74.40 1.69
20 29.80 13.46 29.80 8.63

10 4 89.60 3.84 90.20 3.69
20 29.60 8.63 29.60 9.12

For instances with n = 200, BS-Prob and BS-Learn perform similarly, with the
latter obtaining slightly better solutions in the cases with m = 10.
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Table 4.3 Comparison of BS-Prob
and BS-Learn on the RLCS problem
Random instances with number of
input strings m = 10 and input string
length n = 200.

BS-Prob BS-Learn

k |r| |Σ| |s| tbest[s] |s| tbest[s]

3 2 4 65.80 1.27 66.00 1.37
20 19.40 15.05 19.40 4.58

4 4 78.00 3.23 78.20 3.29
20 19.60 6.59 19.60 4.89

10 4 80.80 3.72 81.60 4.06
20 19.20 5.46 19.20 4.65

5 2 4 58.60 0.01 58.60 0.01
20 18.60 15.00 18.60 4.45

4 4 75.00 2.85 75.80 2.67
20 19.20 7.08 19.20 5.02

10 4 82.20 4.11 82.00 4.36
20 19.20 5.92 19.20 5.32

10 2 4 36.00 0.00 36.00 0.00
20 18.60 16.77 18.60 4.27

4 4 70.60 2.54 70.40 1.90
20 19.40 7.56 19.40 5.40

10 4 81.80 4.23 82.00 4.14
20 19.20 6.66 19.20 5.75

Table 4.4 Comparison of BS-Prob
and BS-Learn on the RLCS problem
Random instances with number of
input strings m = 3 and input string
length n = 500.

BS-Prob BS-Learn

k |r| |Σ| |s| tbest[s] |s| tbest[s]

3 5 4 246.40 8.65 246.00 6.97
20 118.40 85.78 118.60 22.64

10 4 256.00 8.77 256.00 8.55
20 117.60 31.05 118.20 27.60

25 4 269.20 9.05 275.00 11.35
20 116.80 24.64 117.20 28.78

5 5 4 237.40 8.16 237.20 6.72
20 115.00 110.09 115.40 28.76

10 4 254.00 9.30 256.20 9.26
20 117.60 40.08 117.80 35.97

25 4 262.80 10.57 267.80 12.27
20 118.00 30.76 118.60 37.06

10 5 4 220.00 7.78 220.00 5.30
20 116.40 134.52 116.20 36.24

10 4 247.00 9.76 252.20 9.11
20 115.80 66.76 117.00 50.64

25 4 261.20 10.64 266.20 12.53
20 118.40 43.13 118.00 50.67

As n increases, the differences between the algorithms become more
pronounced. Specifically, for n = 500, the results are mixed, with BS-Learn
outperforming BS-Prob in instances with m = 3, where it achieves the best
performance in 12 cases, while BS-Prob is the best in 4 cases. Form = 5, BS-Learn
obtains the best results in 6 cases, while BS-Prob does so in 8 cases. Finally, for
m = 10, both approaches achieve the best results in 6 cases, with a tie in the
remaining instances.

For the largest instances, BS-Learn proves to be the superior approach,
consistently finding better solutions on average compared to BS-Prob across all
values of m. Specifically, BS-Learn outperforms BS-Prob in 15, 15, and 13 cases
for instances with m = 3, m = 5, and m = 10, respectively.

As in the case of the LCSqS problem, we employ the signed-rank Wilcoxon
test [128] to measure the statistical significance of the observed differences. We
test the one-sided alternative hypothesis that a solution obtained by BS-Learn is
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Table 4.5 Comparison of BS-Prob
and BS-Learn on the RLCS problem
Random instances with number of
input strings m = 5 and input string
length n = 500.

BS-Prob BS-Learn

k |r| |Σ| |s| tbest[s] |s| tbest[s]

3 5 4 225.60 9.40 225.40 9.40
20 80.00 52.52 79.60 22.50

10 4 230.00 9.72 229.00 9.20
20 79.00 22.79 78.80 25.19

25 4 233.60 9.29 243.20 12.59
20 79.80 22.61 80.40 26.35

5 5 4 213.80 8.36 212.80 8.00
20 79.00 68.42 78.80 25.43

10 4 228.80 10.11 228.40 9.83
20 80.00 25.79 80.00 30.39

25 4 235.80 9.96 239.20 12.86
20 79.00 25.42 79.40 29.36

10 5 4 213.00 8.84 212.80 8.01
20 78.20 89.87 78.20 30.74

10 4 230.60 10.52 230.60 9.23
20 79.20 31.53 79.40 37.59

25 4 225.00 10.21 237.60 13.60
20 79.20 30.26 79.20 36.05

Table 4.6 Comparison of BS-Prob
and BS-Learn on the RLCS problem
Random instanceswith number of
input strings m = 10 and input string
length n = 500.

BS-Prob BS-Learn

k |r| |Σ| |s| tbest[s] |s| tbest[s]

3 5 4 202.40 9.65 205.00 12.77
20 53.80 36.37 53.40 22.87

10 4 208.40 11.10 203.80 9.54
20 54.00 25.14 54.00 24.34

25 4 212.00 10.67 213.00 12.95
20 53.20 24.60 53.20 24.42

5 5 4 194.60 9.18 193.20 8.78
20 53.20 41.49 53.40 24.49

10 4 200.60 9.55 205.40 12.52
20 53.20 25.11 53.40 25.75

25 4 210.60 11.18 210.40 13.35
20 53.80 25.07 53.80 25.51

10 5 4 186.40 8.46 183.80 7.74
20 53.40 55.23 53.40 24.38

10 4 204.00 10.74 204.00 12.68
20 54.00 25.61 53.80 27.30

25 4 209.60 12.01 209.80 14.59
20 53.60 25.77 53.60 26.32

longer than that obtained by BS-Prob in the expected case. By testing separately
based on n, we obtain p-values of 0.06, less than 10−3, and less than 10−9 for
n = 200, n = 500, and n = 1000, respectively. This indicates that, for n = 500 and
n = 1000, the differences are statistically highly significant.

4.3.4 Results for Benchmark Set Abstract

Numerical results for the Abstract dataset are provided in Tables 4.10–4.11. The
results are divided into two tables: one for the NEG instances and the other for
the POS instances. Each row presents the average results obtained by BS-Prob
and BS-Learn, similar to the results for the Random benchmark set. The first two
values in each row define the instance group, as they correspond to the number
of input strings and the group’s number of instances.

For NEG instances, BS-Learn performs better for instances with m ≤ 7.
Interestingly, a similar pattern emerges for the POS instances, where BS-Learn
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Table 4.7 Comparison of BS-Prob
and BS-Learn on the RLCS problem
Random instances with number of
input strings m = 3 and input string
length n = 1000.

BS-Prob BS-Learn

k |r| |Σ| |s| tbest[s] |s| tbest[s]

3 10 4 505.00 17.69 507.40 16.55
20 238.40 149.54 237.00 53.04

20 4 512.60 18.47 522.20 17.26
20 240.80 65.68 241.00 69.08

50 4 539.20 19.76 550.40 24.44
20 241.00 59.27 242.20 68.62

5 10 4 470.40 17.40 505.60 17.01
20 237.60 186.22 236.80 68.37

20 4 503.00 19.50 513.20 18.88
20 238.00 75.00 240.40 81.20

50 4 526.00 19.95 541.80 24.80
20 239.60 72.77 240.60 86.11

10 10 4 464.40 17.65 485.40 17.49
20 232.80 241.04 229.20 85.40

20 4 505.20 20.98 508.80 19.80
20 233.40 96.73 238.80 113.63

50 4 517.80 22.29 537.60 29.33
20 236.20 94.58 238.20 120.36

Table 4.8 Comparison of BS-Prob
and BS-Learn on the RLCS problem
Random instances with number of
input strings m = 5 and input string
length n = 1000.

BS-Prob BS-Learn

k |r| |Σ| |s| tbest[s] |s| tbest[s]

3 10 4 456.80 20.40 455.40 18.64
20 162.40 83.59 162.40 54.00

20 4 462.40 20.08 463.20 20.80
20 162.80 52.39 163.00 60.69

50 4 477.20 21.09 488.00 24.83
20 160.80 53.10 162.20 63.47

5 10 4 440.60 19.25 451.80 19.85
20 161.80 115.87 161.60 63.09

20 4 459.00 19.82 463.80 23.11
20 162.40 57.74 163.20 70.56

50 4 474.80 21.52 487.80 27.09
20 164.80 58.68 165.40 69.01

10 10 4 399.60 16.77 451.60 21.54
20 161.20 159.76 161.40 80.51

20 4 456.60 22.86 460.40 23.03
20 160.00 68.93 161.40 86.91

50 4 454.60 20.82 481.80 30.35
20 161.60 68.25 163.60 86.79

is the superior approach for instances with m ≤ 10. The better performance of
BS-Prob for the NEG instances compared to the POS ones may be attributed to
the fact that NEG instances are less similar. This aligns with the probabilistic
heuristic function employed by BS-Prob, which assumes that the events in which
an arbitrary string is a subsequence of the input strings are independent.

The superiority of BS-Prob over BS-Learn for larger values of m can be
attributed to BS-Prob benefiting from a larger number of input strings, which
allows for more differentiated UB values. This, in turn, enables a more relevant
subset of extensions V ′

ext to be selected. On the other hand, BS-Learn may require
more intensive training for larger instances. One possible solution could be to
train the model separately depending on the number of input strings.

Generally, the RLCS solutions for instances in the POS set are larger than those
for the corresponding-sized instances in the NEG set, except for the smallest
instances with m = 3.
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Table 4.9 Comparison of BS-Prob and BS-Learn on the RLCS problem
Random instances with number of input strings m = 10 and input string
length n = 1000.

BS-Prob BS-Learn

k |r| |Σ| |s| tbest[s] |s| tbest[s]

3 10 4 412.20 19.39 413.00 24.09
20 111.00 69.50 110.00 59.45

20 4 402.20 21.46 411.20 22.71
20 111.00 56.20 111.40 62.42

50 4 429.80 23.14 427.40 28.76
20 110.40 57.99 111.00 60.76

5 10 4 400.60 21.57 409.20 26.62
20 111.40 85.40 110.60 60.84

20 4 414.60 22.65 416.40 27.00
20 111.40 58.55 112.00 64.55

50 4 427.40 22.75 427.80 29.68
20 110.40 58.35 110.80 64.80

10 10 4 395.00 21.12 405.80 22.05
20 110.80 77.61 110.60 62.35

20 4 414.20 24.91 413.20 26.23
20 111.60 60.03 111.80 64.85

50 4 409.20 22.52 427.00 31.77
20 110.40 58.99 110.80 61.11

Table 4.10 Comparison of BS-Prob
and BS-Learn on the RLCS problem
Abstract instances of type POS.

BS-Prob BS-Learn

m #inst |s| tbest[s] |s| tbest[s]

3 10 225.20 649.78 246.50 150.53
4 10 211.60 604.41 225.50 124.65
5 10 188.60 540.93 203.80 110.23
6 10 171.40 507.56 178.50 97.64
7 10 162.20 492.51 168.50 95.84
8 10 151.50 467.62 154.10 95.97
9 10 146.70 435.61 149.70 90.67
10 66 136.23 377.25 137.83 88.49
11 12 133.08 331.96 132.25 89.61
12 1 131.00 294.85 129.00 80.55

Table 4.11 Comparison of BS-Prob
and BS-Learn on the RLCS problem
Abstract instances of type NEG.

BS-Prob BS-Learn

m #inst |s| tbest[s] |s| tbest[s]

3 10 231.90 644.95 248.80 141.06
4 10 210.10 635.06 222.80 123.69
5 10 190.50 589.71 193.60 98.51
6 10 172.60 460.74 173.30 94.92
7 10 167.50 456.79 168.50 89.19
8 10 149.50 433.96 148.00 85.06
9 10 146.00 422.70 144.50 83.53
10 66 134.05 343.09 132.50 79.44
11 12 129.58 321.23 128.25 83.44
12 1 126.00 296.43 124.00 72.82
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This observation aligns with the classification from the literature, which
categorizes these instances into either the positive (POS) or negative (NEG)
group based on the similarity of the research papers represented by the input
strings. Furthermore, restricting the 60 most frequent academic words results in
solutions for NEG and POS instances of the same size having a length difference
approximately 2% larger compared to when no strings are restricted, as noted
in [96]. This suggests that incorporating the most common academic words as
restricted strings aids in determining the similarity of the abstracts in a given
instance.

We again test the statistical significance of the results obtained using the
signed-rank Wilcoxon test [128]. The POS and NEG instances are tested
separately, with further separation into instances with m ≤ 7 and m > 7 for
the NEG instances, and instances with m ≤ 10 and m > 10 for the POS instances.

For the NEG instances with m ≤ 7 and the POS instances with m ≤ 10, we test
the hypothesis that a solution obtained by BS-Learn is longer than one obtained
by BS-Prob in the expected case. This produces p-values of less than 10−5 and
10−15, respectively.

For the NEG instances with m > 7 and the POS instances with m > 10, we test
the hypothesis that a solution obtained by BS-Prob is longer than one obtained
by BS-Learn in the expected case. This produces p-values of less than 10−8 and
of 0.08, respectively.

Figure 4.4 presents the average results and running times obtained by both
BS variants across different beam widths for the four subsets of the Abstract
benchmark set: NEG instances with m ≤ 7, NEG instances with m > 7, POS
instances with m ≤ 10, and POS instances with m > 10. The same structure is
followed as with Figure 4.3 for plotting. Interestingly, the overall performance
patterns remain consistent across all beam widths, with one notable exception,
POS instances with m > 10. In this subset, BS-Learn outperforms BS-Prob for
β = 500 and β = 2000, while it underperforms in the remaining cases.
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Chapter 5

The Clarke and Wright Heuristic for VRPs

5.1 Introduction

This chapter presents a last application of our offline learning framework. So
far, we have presented two applications to algorithms applied to solving-string
related problems. In this case, the problem tackled is of a reasonably different
kind. In particular, we present an application of our offline framework to the
Clarke and Wright heuristic, which can be applied to obtain reasonably good
solutions to most Vehicle Routing Problem (VRP) variants. The content is based
on a journal article currently under review.

In its simplest form, the VRP, introduced in 1959 by Dantzig and Ramser [28],
aims to find the optimal set of routes for a fleet of vehicles so that every customer
in a given set is served. Many variants of the problem exist, each with its own
particular characteristics designed to model realistic scenarios. Some notable
variants include the Vehicle Routing Problem with Time Windows (VRPTW) [30],
which considers time slots in which deliveries need to take place, the Vehicle
Routing Problem with Pickup and Delivery (VRPPD) [91], which considers
pickup requirements on top of the delivery ones, and the Electric Vehicle Routing
Problem (EVRP) [79] and its variants, which consider electric delivery vehicles
subject to battery-capacity constraints.

One of the simplest and most studied VRP variants is the Capacitated Vehicle
Routing Problem (CVRP) [124], which considers delivery vehicles with a limited
capacity. It can be defined as follows. Given a depot D, a fleet of m identical
vehicles each with capacity C > 0 and n customers each with a demand di ≥ 0,
the goal of the CVRP is to find a set of routes with minimum routing cost such
that:

• Each customer is served once by one vehicle.

• Each route starts and ends at the depot.

• The total demand on each route does not exceed the vehicle capacity C.
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Algorithm 5.1 Pseudo-code of the Clarke and Wright heuristic
Input: Problem instance I
Output: Routing solution S

1: S := create_initial_solution(I)
2: savings_list := compute_savings_list(I, S)
3: for s ∈ savings_list do

4: r := merge_routes(s, S)
5: if is_valid(r) then

6: accept_merge(S, r)
7: end if

8: end for

9: return S

Routing cost is generally defined as follows:

∑
r∈R

∑
(i,j)∈r

cij (5.1)

R represents the solution, which is a set of routes. cij represents the travel cost
between customers i and j. This value is usually defined as the distance, time, or
energy consumption. Other objectives are also considered in the literature, such
as minimizing the number of vehicles used, or the maximum route length.

The Clarke and Wright heuristic is a fast algorithm for obtaining reasonably
good solutions to VRPs which can be applied to most problem variants [24]. It is
based on iteratively merging the routes of a solution, which is initialized as the
trivial one, consisting of one route per customer, each route going from the depot
to the customer and back.

Algorithm 5.1 presents the standard Clarke and Wright heuristic. As
mentioned, the algorithm begins by constructing an initial solution in method
create_initial_solution(). This initial solution is formed by one route per customer,
each consisting of a path from the depot to the customer and back. Once this is
done, function compute_savings_list() calculates the potential savings in terms of
objective function value for merging each pair of routes. For a pair of customers ci
and cj , the potential saving from merging corresponds to the difference in routing
cost between the corresponding individual routes and the merged one. Note that
if we denote the depot by 0, this value can be expressed as:

(c0i + ci0 + c0j + cj0)− (c0i + cij + cj0) = ci0 + c0j − cij. (5.2)

Here, ckl is the cost of travel between nodes k and l, measured as distance,
time or energy consumption depending on the objective value employed.
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Algorithm 5.2 Pseudo-code of the dynamic Clarke and Wright heuristic
Input: Problem instance I
Output: Routing solution S

1: S := create_initial_solution(I)
2: routes_merged := true
3: while routes_merged do

4: routes_merged := false
5: savings_list := compute_savings_list(I, S)
6: for s ∈ savings_list do

7: r := merge_routes(s, S)
8: if is_valid(r) then

9: accept_merge(s, r)
10: routes_merged := true
11: break

12: end if

13: end for

14: end while

15: return S

These savings are then sorted in descending order so that the best merges are
considered first. Afterwards, the algorithm iterates over the ordered savings list,
and merges the pair of routes corresponding to each entry using merge_routes().
A merge corresponding to customers ci and cj is then accepted if deemed valid
based on the following checks:

1. Customer ci must be the last customer in its current route, i.e., it must be
the last customer visited before returning to the depot.

2. Customer cj must be the first customer in its route, i.e., it must be the first
customer visited after leaving the depot.

3. The merged route must satisfy all problem-specific constraints, such as
capacity limits in the CVRP.

This process continues until no further merge can be performed, when the
resulting solution is returned.

An important observation is that for simple VRP variants in which cost does
not depend on load, the savings values are valid throughout the execution of the
algorithm. This is because cost is additive and terms corresponding to previous
merges are canceled in the subtraction of Equation (5.2). This is not true if load
affects cost, as then these terms cannot be canceled as previous merges affect load
and therefore cost. In these cases it can be beneficial to recompute the savings
list after every successful merge. This strategy leads to the variant of the Clarke
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and Wright heuristic presented in Algorithm 5.2, which we denote as dynamic
Clarke and Wright.

This is the variant of the Clarke and Wright we will apply our offline
framework to, since the VRP variants we consider have load-dependent costs.
In particular we will apply the offline framework to learning the savings values
of the dynamic Clarke and Wright heuristic applied to two variants of the EVRP,
which consider load to determine energy consumption.

Although we focus on these two VRP variants it is worth noting that the offline
learning framework can be applied for learning the savings values for any other
VRP variant, and could also be applied to the standard Clarke and Wright which
does not recompute the savings list after every successful merge.

5.1.1 The Electric Vehicle Routing Problem (EVRP)

EVRPs are an important family of VRPs [79]. In these problems, delivery vehicles
are electric, which adds both constraints regarding battery capacity and optional
visits to charging stations for recharging. These VRP variants have gained
importance in recent years as delivery companies are slowly adapting electric
vehicles with the main goal of reducing emissions.

There are many different EVRP variants, to take into account different
characteristics. We will apply our learning Clarke and Wright heuristic to
two particular EVRP variants: the Capacitated Electric Vehicle Routing Problem
(CEVRP) [67], and the Electric Vehicle Routing Problem with Road Junctions and
Road Types (EVRP-RJ-RT) [5]. The first one is a standard variant which considers
load capacities on top of battery-related constraints. The second extends the
CEVRP by modelling road junctions, which are nodes that join two or more road
segments (edges). Moreover, this variant considers road types, which define
minimum and maximum allowed speeds for each edge.

Similarly to the VRP, given a set of customers, in its simplest form the EVRP
aims to find a set of routes with minimum routing cost so that:

1. Each customer is served once by one vehicle.

2. Each route starts and ends at the depot.

3. The battery level of each electric vehicle is always between 0 and its battery
capacity.

4. A vehicle’s battery is fully charged when visiting a charging station.
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As it happens with the VRP, the EVRP is often considered with capacity
constraints. The routing cost is often total energy consumption, number of
vehicles or a combination of the two. In our case we adopt a lexicographic
objective function for both considered EVRP variants, where the primary goal is
to minimize the number of vehicles used, and the secondary goal is to minimize
total energy consumption.

The first variant considered is the CEVRP, as introduced in [90], extended
with additional constraints limiting route duration. These constraints model
realistic considerations such as driver working hours, increasing the realism of
the problem setting. From now on, we refer to this variant simply as CEVRP.

Note that we consider asymmetric travel costs between nodes. In real-world
scenarios, the cost of traveling from one location to another may differ from
the reverse trip due to factors such as one-way streets, traffic rules, or terrain
variations. Consequently, assuming symmetric travel costs as is often done in
simplified formulations can result in overly idealized models.

The mathematical formulation builds upon the model proposed in [90], with
modifications to incorporate route duration constraints. To represent these
constraints, the depot is divided into two nodes: 0d for departures and 0a for
arrivals. Furthermore, the objective function employs a sufficiently large constant
K > 0 to ensure that minimizing the number of vehicles used takes precedence
over minimizing total energy consumption.

The problem is defined on a directed graph G = (V,E), where V consists of
the depot nodes 0d, 0a, the set of customers C and the set of charging stations S. To
allow multiple visits to the same physical charging station, S includes multiple
copies of each station. The edge setE contains all possible directed edges between
distinct nodes, with the exceptions that: no edges connect a charging station to
any of its copies, and the depot node 0d is linked to all nodes except 0a, while 0a

is reachable from all nodes except 0d.
Each edge (i, j) ∈ E is associated with an energy consumption Eij and a travel

time tij . The energy consumption depends on the load and a constant travel
speed v, while travel time depends only on v. Each customer i ∈ C requires the
delivery of a package with load qi and a service time si. Routes in a solution have
a maximum duration Tmax, and vehicles are defined by their maximum carrying
capacity C, maximum battery capacity Q, and charging speed g.
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min
∑
i,j∈V
i ̸=j

Eijxij +K
∑
j∈V

x0dj (1)

s.t
∑
j∈V
i ̸=j

xij = 1 ∀ i ∈ C (2)

∑
j∈V
i ̸=j

xij ≤ 1 ∀ i ∈ S (3)

∑
j∈V
i ̸=j

xij −
∑
j∈V
i ̸=j

xji = 0 ∀ i ∈ V \ {0d, 0a} (4)

f0d = 0 (5)

fi + (tij + si)xij

− Tmax(1− xij) ≤ fj
∀ i ∈ C, j ∈ V \ {0d} (6)

fi + (tij + g(Q− yi))xij

− Tmax(1− xij) ≤ fj
∀ i ∈ S, j ∈ V \ {0d} (7)

t0dj ≤ fj ≤ Tmax − (tj0a + sj) ∀ j ∈ V \ {0d, 0a} (8)

0 ≤ m0d ≤ C (9)

0 ≤ mj ≤ mi − qixij

+ C(1− xij)
∀ i, j ∈ V, i ̸= j, 0a, j ̸= 0d (10)

0 ≤ yj ≤ yi − Eijxij

+Q(1− xij)
∀ i ∈ C, j ∈ V \ {0d}, i ̸= j (11)

0 ≤ yj ≤ Q− Eijxij ∀ i ∈ S ∪ {0d}, j ∈ V \ {0d}, i ̸= j (12)

xij ∈ {0, 1} ∀ i, j ∈ V, i ̸= j, 0a, j ̸= 0d (13)

A solution is represented by binary variables xij , which take the value 1 if
a vehicle travels from node i to node j, and 0 otherwise. Equation (1) defines
the objective function. The primary goal is to minimize the number of vehicles
used, represented by the second summand, which counts the edges leaving the
departure depot, each corresponding to a distinct route. Among solutions that
use the same number of vehicles, preference is given to the one with the lowest
total energy consumption, represented by the first summand.

Constraints (2)–(4) ensure connectivity. Constraint (2) guarantees that each
customer is visited exactly once, constraint (3) allows visits to charging stations,
and constraint (4) ensures that every visited node except the depot is also exited.

Constraints (5)–(8) impose the time limit for each route. Constraint (5)
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initializes the arrival time at the departure depot, while constraints (6), (7), and
(8) define the timing relationships after visiting a customer, visiting a charging
station, or leaving the depot, respectively. These constraints also implicitly
eliminate subtours, as they enforce a monotonic time flow that can only start
and end at the depots.

Constraints (9) and (10) govern the vehicle load, where mi denotes the load
at node i. Finally, constraints (11) and (12) manage the vehicle’s battery charge,
updating it after visiting customers or, alternatively, after stopping at a charging
station or leaving the depot.

As mentioned, the EVRP-RJ-RT, introduced in [5], extends the CEVRP to a
more realistic setting by modeling road junctions. Moreover, road segments
have a type associated, defined by a minimum and maximum allowable speed,
reflecting real-world constraints such as speed limits and road quality.

The problem is defined on a directed graph G = (V,E), where two depot
nodes are used: 0d for departures and 0a for arrivals. The graph is assumed to be
strongly connected, meaning a path exists between any two nodes. The node set
V includes the customers C, the charging stations S, and a set J of road junctions.
To allow repeated visits, both S and J contain multiple copies of their respective
elements.

Each edge (i, j) ∈ E is associated with a specific road type, which imposes
a speed interval defined by lower and upper bounds vlb

ij and vub
ij . This captures

variability in travel conditions more accurately than in the previous setting, where
speed was treated as a fixed constant. Because the graph is not complete, standard
neighborhood notation is used: for any node u ∈ V , N(u) = {v ∈ V | (u, v) ∈ E}
denotes its outgoing neighbors.

min
∑
i∈V

j∈N(i)

Eijxij +K
∑

j∈N(0d)

x0dj (1)

s.t
∑

j∈N(i)

xij = 1 ∀ i ∈ C (2)

∑
j∈N(i)

xij ≤ 1 ∀ i ∈ S ∪ J (3)

∑
i∈N(j)

xij −
∑

i∈N(j)

xji = 0 ∀ j ∈ V \ {0d, 0a} (4)

f0d = 0 (5)
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fi + (tij + si)xij

− Tmax(1− xij) ≤ fj
∀ i ∈ C ∪ J , j ∈ N(i) (6)

fi + (tij + g(Q− yi))xij

− Tmax(1− xij) ≤ fj
∀ i ∈ S, j ∈ N(i) (7)

t0dj ≤ fj ≤ Tmax − (tj0a + sj) ∀ j ∈ V \ {0d, 0a} (8)

0 ≤ m0d ≤ C (9)

0 ≤ mj ≤ mi − qixij + C(1− xij) ∀ i ∈ V, j ∈ N(i) (10)

0 ≤ yj ≤ yi − Eijxij +Q(1− xij) ∀ i ∈ C ∪ J , j ∈ N(i) (11)

0 ≤ yj ≤ Q− Eijxij ∀ i ∈ S ∪ {0d}, j ∈ N(i) (12)

vlb
ij ≤ vij ≤ vub

ij ∀ i ∈ V, j ∈ N(i) (13)

xij ∈ {0, 1} ∀ i ∈ V, j ∈ N(i) (14)

The model follows the same structure as the previous one, with neighborhoods
being used to account for the graph’s non-completeness. Additionally, constraint
(13) is added, which regulates the speed allowed at each edge.

For both problems, the learning-based and standard Clarke and Wright
heuristic attempt to repair routes that become infeasible after merging. This
is handled by the function is_valid() in Algorithm 5.2. The repair process tries
to repair battery-infeasible routes by inserting charging stations when necessary.
It first identifies the earliest point in the route where the remaining battery is
insufficient to traverse the next edge. From this point, it moves backward through
the route, examining each preceding edge to determine whether a charging
station can be inserted between its endpoints to restore feasibility. Among all
candidate stations, it selects the one that minimizes the additional energy cost
while ensuring the vehicle can complete the remainder of the route. If such a
station is found, it is inserted, and the route is re-checked for infeasibilities. This
process repeats until the route becomes feasible or no valid insertion exists, in
which case the merge is deemed invalid and discarded.

Moreover, for the EVRP-RJ-RT both algorithms set the speed on each road
segment to its maximum allowed value. Once a solution is built, a greedy
post-processing step reduces speeds to lower energy consumption while keeping
route durations within the time limit. This step begins by computing the
slack time available for each route. The edges in each route are then sorted
in descending order of speed, and their speeds are iteratively reduced in fixed
steps. If lowering the speed of an edge still keeps the route within the allowed
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time, the change is accepted, and the corresponding energy savings are retained.
This continues until either no further feasible reductions are possible or all edges
reach their minimum allowed speeds. Energy consumption is then recalculated
using the updated speeds.

Although the charging station insertion and speed adjustment methods are
relatively simple, they are deliberately designed to remain straightforward. The
aim of this work is not to optimize every component of the solution process, but
rather to assess the effectiveness of the learned savings mechanism within the
Clarke and Wright heuristic. These routines serve as supportive mechanisms to
ensure feasibility and realistic energy modeling, enabling a focused evaluation of
the learning-based approach.

5.2 Implementing the Offline Learning Component

In this case the search component parametrized is the savings values, which are
computed after every successful merge and determine the sorting order of the
savings list. As with the two previous applications we employ a feed-forward
neural network to produce these values, replacing the standard computation that
looks at the potential improvements in terms of cost. This neural network will
process a set of features regarding a pair of routes in the savings list, and output a
value indicating the quality of performing that merge. Following the framework,
a BRKGA using full-sized instances will be used for training. Remember that the
general structure of a BRKGA is presented in Pseudocode 3.1 of chapter 3.

5.2.1 Neural Network and Features

As before, the neural network takes both specific features of the savings list entry
and global features of the problem instance. This way, the model considers both
the global characteristics of the instance and the specific ones of the savings list
entry to be evaluated.

The features specific to the savings list entry are extracted from the pair of
routes ri, rj it represents and the corresponding customers ui and uj which will
be bridged in case of merging. They consist of the following:

1. The distance between the depot and ui via route ri.

2. The distance between ui and uj .

3. The distance between uj and the depot via route rj .

4. The load of route ri.
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5. The load of route rj .

To incorporate global information about the problem instance, the following
features are added:

1. The total number of road junctions.

2. The total number of customers.

3. Seven statistical descriptors from each of two vectors:

(a) The vector of depot-to-customer distances.

(b) The vector of customer-to-customer distances.

These statistical descriptors consist of the average, sample standard
deviation, minimum, maximum, and values at the first, second, and third
quartiles.

This results in 21 features associated with each savings list entry: 5 specific
ones, and 16 global ones giving information about the whole problem instance.
As with the other problems, before being fed into the neural network, all features
are normalized to have a mean of zero and a variance of one.

Note that the number of road junctions is used as a feature even though
road junctions are only present for the EVRP-RJ-RT. In practice, our experimental
evaluation adapts EVRP-RJ-RT instances to the CEVRP; hence, using the number
of road junctions makes sense for both problems, giving a measure of instance
size.

For this problem, we selected a simple neural network architecture consisting
of one hidden layer with 10 nodes using a sigmoid activation function. This
simple model was selected because the road junctions in the EVRP-RJ-RT already
produce a high overhead, as it will be shown in the experimental evaluation
section.

5.2.2 Evaluation of an Individual

As running the Clarke and Wright heuristic is relatively fast, the entire algorithm
is run to compute both training and validation values. An individual is evaluated
as it was for the last problem. First, the neural network is set with the individual’s
weights. Then, the Clarke and Wright heuristic, using the neural network
to produce its savings values, is applied to each instance from the training
set. The average quality of the obtained solutions, in this case the average
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number of vehicles required and energy consumption, is set to be the individual’s
fitness. The validation value is computed similarly, this time running the Clarke
and Wright heuristic using the neural network with the best-so-far individual’s
weights on the validation instances.

5.3 Experimental Evaluation

Here we present a comparison of the learning Clarke and Wright heuristic, which
uses a neural network to compute savings values, against the standard Clarke
and Wright which computes savings values in terms of consumption. From now
on, we denote them as CW-Learn and CW respectively.

5.3.1 Problem Instances

The problem instances used in our experimental evaluation were generated with
the EVRPGen instance generator [1], specifically designed to produce realistic
EVRP-RJ-RT problem instances. This tool uses OpenStreetMap (OSM) road
network data and allows generation based on user-defined parameters, such as
the target area, the number of customers and charging stations, customer demand
and service time distributions, and the maximum allowed route duration. Depot,
customer, and charging station locations are selected from actual warehouses,
shops, and charging or fuel stations in the chosen city.

To adapt EVRP-RJ-RT instances for the CEVRP, which assumes a complete
graph without road junctions, we replaced the generated graph with a complete
one. The distance between any two nodes was defined as the length of the shortest
path in the original graph, computed via Dĳkstra’s algorithm. Speeds were set to
90% of the average maximum allowable speeds in the corresponding EVRP-RJ-RT
instance. This ensures each EVRP-RJ-RT instance can be seamlessly converted
into a compatible CEVRP instance.

Figure 5.1 illustrates the process of adapting a problem instance. The red
circle denotes the depot, yellow squares correspond to road junctions, green
circles represent customers, and blue triangles indicate charging stations.

Figure 5.1a depicts the original EVRP-RJ-RT instance generated with EVRPGen.
Its adapted version, shown in Figure 5.1b, corresponds to the CEVRP, where road
junctions are removed and only the shortest paths are kept. Finally, Figure 5.1c
presents the directed graph representation of the CEVRP instance. In this
example, distances are symmetric, so a single bidirectional edge suffices for each
pair of nodes. In the general case, however, distances may be direction-dependent,
requiring two distinct edges per node pair, one for each direction.
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(a) The original EVRP-RJ-RT problem instance viewed on the map.

(b) The corresponding CEVRP problem instance viewed on the map.

(c) The corresponding graph to the CEVRP problem instance.

Figure 5.1 Example of the transformation of an EVRP-RJ-RT problem instance to
a CEVRP one.
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We selected cities across Europe with populations of approximately 100,000,
500,000, and 2 million inhabitants for the benchmark set of problem instances.
The cities in each group were:

• 100k: Bolzano (Italy), Bruges (Belgium), Girona (Spain), Maastricht
(Netherlands), Tarnów (Poland).

• 500k: Bratislava (Slovakia), Lyon (France), Murcia (Spain), Nuremberg
(Germany), Poznań (Poland).

• 2M: Bucharest (Romania), Hamburg (Germany), Paris (France), Vienna
(Austria), Warsaw (Poland).

For each city, instances with 50, 100, and 150 customers were generated, all
with 10 charging stations. For every city–customer combination, 12 instances
were created: two for training (one for training fitness computation and one for
validation) and ten for testing. This resulted in 180 instances per size group.
Training was performed separately for each group, with 15 training and 15
validation instances per category. The benchmark set is publicly available in [106].

(a) Complete instance view.
(b) Zoomed-in section.

Figure 5.2 Example of a problem instance based in Girona.
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(a) Complete instance view.
(b) Zoomed-in section.

Figure 5.3 Example of a problem instance based in Warsaw.

Figures 5.2 and 5.3 show two examples of generated problem instances: one
based in Girona, one of the smallest cities considered, and another based in
Warsaw, one of the largest. In these visualizations, road junctions are shown as
yellow squares, the depot as a red circle, customers as green circles, and charging
stations as blue triangles. Roads of different types are distinguished by different
colors.

These visualizations help illustrate the high density of road junctions in
the EVRP-RJ-RT, which contributes to its greater computational and memory
demands. In contrast, the CEVRP stores only the shortest paths between
customers, charging stations, and the depot, resulting in a far more compact
graph.

Customer demands and service times were uniformly sampled from (20, 100)

kg and (0.25, 0.5) h, respectively. Vehicle specifications were inspired by electric
delivery vans used by companies like Amazon in the US: curb weight 3250 kg,
load capacity 1000 kg, battery capacity 100 kWh, and charging rate 0.02 h/kWh.
The maximum route duration was set to 8 hours, matching a standard workday.

As in [5], energy consumption was modeled following [9]. The power demand
P (W) of a vehicle traveling a road segment is estimated by:

P = Mav +Mgv sin(θ) + 0.5CdAfρv
3 +MgCr cos(θ)v (5.3)

Here,M is the total vehicle weight (curb weight + load) in kg, v is average speed
(m/s), a is acceleration (m/s2), g is gravitational acceleration (approximated to
9.81 m/s2), and θ is road slope in radians. The constants are frontal area Af (m2),
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air density ρ (kg/m3), rolling resistance coefficient Cr, and drag coefficient Cd.
In our implementation, all variables are fixed except speed and load, which

vary between edges in the EVRP-RJ-RT. In the CEVRP, speed is constant and only
load varies. The energy consumption Eij (J) from node i to j is approximated as:

Eij ≈ P
dij
vij

≈
(
αij(w +mij) + βv2ij

)
dij (5.4)

where dij is distance, vij speed, mij load, w curb weight, αij = a+ g sin(θij) +

gCr cos(θij) is the road resistance factor, and β = 0.5CdAfρ captures aerodynamic
and rolling effects. We set αij = 0.0981 and β = 2.11 for all edges, based on
realistic values for electric delivery vehicles [132].

5.3.2 Training

The Clarke and Wright heuristic does not require a time limit, since it terminates
once no further merges are possible, either because all initial routes have been
merged into a single route, or because no merge in the savings list can be
applied. Moreover, the heuristic has no tunable parameters, so parameter tuning
is unnecessary.

Regarding the training parameters, we used the same default BRKGA
parameters as in the case of the BS for the RLCS problem, which consist of
20 individuals, one elite individual, seven mutants, and an elite inheritance
probability ρe of 0.5.

As described earlier, CW-Learn was trained separately for each instance
size, resulting in three independent training processes. Each training used one
instance for every combination of city and customer count, yielding 15 training
and 15 validation instances per size category.

All experiments were conducted in single-threaded mode on an Intel Xeon
E5-2640 processor running at 2.40 GHz with 16 GB of RAM. The training process
itself was parallelized using OpenMP. For the small and medium city trainings,
we used 15 threads, while for the large cities only two threads were employed.
This limitation for large cities was due to the high memory requirements, loading
15 large instances into RAM simultaneously was not feasible.

Training durations for the CEVRP were approximately 1, 2, and 5 hours
for small, medium, and large cities, respectively. In contrast, EVRP-RJ-RT
required significantly longer training: roughly 6, 2, and 5 days for the same
categories. For applying the offline framework to the Clarke and Wright heuristic,
training was performed with a fixed time limit, and the weights yielding the best
validation value were the ones retained. Recall that this was done due to the high
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oscillation in validation values observed in this application, which made using
early stopping unreliable. A total time limit of 7 days was used for both problems,
so the reported training times correspond to when the best-validation weights
were found. The substantial difference between the problems is primarily due to
the additional computational overhead introduced by road junctions, as will be
discussed later when presenting the results.

5.3.3 Results

Tables 5.1–5.6 present the numerical results obtained in the experimental
evaluation. The first three correspond to the EVRP-RJ-RT, while the remaining
three are for the CEVRP. Each line in these tables represents one combination
of city and number of customers, and reports the average results over the
ten instances associated with that configuration. The reported values include
the number of electric vehicles required, the total energy consumption of the
solution in Joules, and the computation time needed to obtain it in seconds.
The best average value for each row is shown in bold. Remember that solution
quality is primarily judged according to the number of vehicles, with total energy
consumption serving as a tie-breaker when two solutions require the same fleet
size.

CW-Learn CW
City Customers Evs Consumption Time Evs Consumption Time
Bolzano 50 3.50 9.51 0.26 3.60 8.06 0.48

100 6.60 15.98 1.92 6.50 13.04 3.95
150 9.30 20.69 5.50 9.60 17.15 11.39

Bruges 50 3.50 24.84 0.49 3.50 19.04 1.02
100 6.30 40.72 2.64 6.50 33.90 6.80
150 9.80 44.57 6.93 9.70 36.90 20.34

Girona 50 3.50 6.84 0.18 3.60 6.21 0.46
100 6.50 13.43 1.30 6.60 11.49 3.63
150 9.60 18.16 4.19 9.70 15.88 12.47

Maastricht 50 3.60 11.47 0.25 3.80 9.37 0.56
100 6.70 19.20 1.38 6.60 15.44 3.30
150 9.80 23.46 4.76 9.90 19.55 11.44

Tarnów 50 3.50 10.64 0.25 3.70 8.84 0.53
100 6.50 18.81 1.57 6.60 15.02 4.27
150 9.50 24.24 5.22 9.60 20.74 14.74

Table 5.1 Comparison of CW-Learn and CW on the EVRP-RJ-RT small instances.

When looking at the results as a whole, CW-Learn tends to produce better
solutions than its standard counterpart. This advantage is visible in most instance
groups, where CW-Learn achieves the best average number of vehicles in the
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CW-Learn CW
City Customers Evs Consumption Time Evs Consumption Time
Bratislava 50 3.60 42.23 3.84 3.60 33.31 4.85

100 6.70 72.02 9.60 6.70 59.54 28.39
150 9.80 84.70 24.03 9.90 69.57 95.81

Lyon 50 3.70 14.71 0.61 3.90 10.48 1.88
100 6.60 23.39 3.42 6.50 18.99 12.93
150 9.70 29.89 9.94 9.80 24.10 37.78

Murcia 50 3.80 27.26 1.37 3.90 24.95 3.98
100 6.80 61.95 5.67 6.80 54.85 23.05
150 9.60 77.80 15.56 9.90 68.97 70.40

Nuremberg 50 3.80 30.22 2.51 3.70 25.74 3.38
100 6.50 54.26 6.51 6.60 42.84 19.83
150 9.50 57.81 17.24 9.70 48.50 60.61

Poznán 50 3.90 44.02 3.09 3.80 30.44 4.09
100 6.50 52.18 8.04 6.70 38.83 22.06
150 9.50 65.05 18.75 9.60 58.47 65.17

Table 5.2 Comparison of CW-Learn and CW on the EVRP-RJ-RT medium
instances.

majority of cases. The main exception is the group of large EVRP-RJ-RT instances,
where CW obtains better results in eight of the fifteen configurations.

We test the statistical significance of the results obtained using the signed-rank
Wilcoxon test [128]. With this we only test regarding the main objective function
value, which is the number of vehicles. This means that solutions requiring the
same amount of vehicles are deemed as equivalent, independent of the energy
consumption. This produces p-values of less than 0.01 in favour of CW-Learn
for all tested groups, which consist of one group per problem and instance size.
These results confirm that the learning-based approach significantly reduces the
number of vehicles compared to the baseline. Importantly, note that CW-Learn
was explicitly trained to minimize fleet size, and we observe that it very rarely
produces solutions requiring more vehicles than CW. This occurred in fewer than
5 out of the 150 instances in each instance group.

An interesting trend emerges when examining total energy consumption: CW
achieves lower average consumption in every single case. This is unsurprising
when CW-Learn uses fewer vehicles, as these solutions may require longer or
more complex routes that naturally lead to higher energy use. However, the
fact that CW still consumes less energy even when the number of vehicles in
the CW-Learn solutions is the same or bigger than in the CW ones is more
intriguing. This can be explained by the design of the algorithms. CW is explicitly
constructed to minimize energy consumption: at each step, it merges the two
routes that yield the greatest energy saving. CW-Learn, in contrast, is trained
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CW-Learn CW
City Customers Evs Consumption Time Evs Consumption Time
Bucharest 50 3.30 39.78 3.50 3.70 29.26 8.02

100 6.80 59.81 9.84 6.80 47.42 33.24
150 9.70 72.79 23.47 9.60 57.96 100.57

Hamburg 50 3.80 58.91 4.81 3.80 46.93 23.52
100 6.70 97.48 12.85 6.90 79.73 55.88
150 9.90 113.55 33.40 9.90 95.38 149.47

Paris 50 3.50 20.13 0.74 3.70 15.82 2.48
100 6.20 33.40 3.73 6.20 26.66 14.48
150 9.60 42.24 11.02 9.60 34.13 46.43

Vienna 50 3.90 33.02 1.58 3.70 27.49 6.72
100 6.60 53.90 5.84 6.60 44.70 25.28
150 9.50 71.98 15.97 9.70 61.83 75.90

Warsaw 50 3.50 74.12 4.59 3.80 50.72 18.44
100 6.50 98.76 13.15 6.60 76.10 44.39
150 9.70 129.09 24.69 9.90 104.65 103.32

Table 5.3 Comparison of CW-Learn and CW on the EVRP-RJ-RT large instances.

to minimize the number of vehicles first and only considers energy consumption
when breaking ties. This alignment between the CW-Learn’s training and the
objective function explains its superior performance in reducing the fleet size,
but also why it consistently performs worse in terms of energy. It would be an
interesting extension to retrain CW-Learn with energy consumption as the sole
optimization objective, so that the two algorithms could be compared in the exact
context for which CW was originally designed.

To complement the statistical significance analysis we apply a binomial signed
test [40] based on the lexicographic objective, where the number of vehicles is
the primary criterion and energy consumption is used as a tie-breaker. In this
evaluation the baseline achieves significantly more wins, because although the
learning method sometimes reduces fleet size, more frequently both approaches
require the same number of vehicles in which cases the baseline consistently
consumes less energy as noted above. The binomial test produces p-values of
less than 0.01, this time in favour of the standard Clarke and Wright. This shows
that the learning variant is effective and important in achieving the primary goal
of reducing vehicles, but that additional modelling of secondary objectives may
be needed to also capture energy efficiency.

Regarding computation time, results are also interesting. Firstly, much more
computation time is required for obtaining solutions to the EVRP-RJ-RT than
to the CEVRP. In some of the largest cases, such as CW on Hamburg with
150 customers (row 6 of Table 5.3), average runtimes exceed 150 seconds, while
for the CEVRP the time is always below 0.5 seconds. As hinted before, this
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CW-Learn CW
City Customers Evs Consumption Time Evs Consumption Time
Bolzano 50 3.60 11.92 0.05 3.60 10.07 0.01

100 6.50 19.61 0.44 6.60 16.39 0.10
150 9.30 24.96 1.51 9.40 21.41 0.37

Bruges 50 3.50 39.39 0.05 3.50 34.75 0.01
100 6.40 62.93 0.43 6.50 56.41 0.11
150 9.60 78.25 1.55 9.80 70.23 0.39

Girona 50 3.50 10.09 0.05 3.50 8.57 0.01
100 6.60 18.69 0.40 6.50 15.99 0.10
150 9.60 25.13 1.50 9.60 21.69 0.37

Maastricht 50 3.80 22.53 0.05 3.70 18.33 0.01
100 6.60 35.02 0.42 6.70 29.52 0.11
150 9.70 46.19 1.53 10.00 39.67 0.39

Tarnów 50 3.60 13.51 0.05 3.70 11.54 0.01
100 6.40 23.31 0.42 6.60 19.76 0.11
150 9.50 31.08 1.47 9.60 26.92 0.38

Table 5.4 Comparison of CW-Learn and CW on the CEVRP small instances.

disparity stems from the large number of road junctions in the EVRP-RJ-RT,
which significantly increase graph size and route complexity.

CW-Learn CW
City Customers Evs Consumption Time Evs Consumption Time
Bratislava 50 3.50 84.88 0.05 3.70 73.19 0.01

100 6.60 151.59 0.45 6.60 130.53 0.08
150 9.80 196.27 1.58 9.80 168.19 0.30

Lyon 50 3.70 16.15 0.05 3.80 13.67 0.01
100 6.50 28.55 0.45 6.50 24.44 0.09
150 9.70 36.02 1.58 9.90 30.38 0.29

Murcia 50 3.80 32.75 0.05 3.90 28.23 0.01
100 6.70 64.84 0.45 6.80 56.84 0.08
150 9.70 85.79 1.50 9.80 77.72 0.30

Nuremberg 50 3.80 55.37 0.05 3.70 43.12 0.01
100 6.50 81.06 0.43 6.60 69.44 0.08
150 9.50 106.41 1.55 9.70 92.49 0.31

Poznán 50 3.70 60.18 0.05 3.80 48.07 0.01
100 6.50 86.41 0.43 6.80 73.73 0.08
150 9.60 115.29 1.54 9.70 98.88 0.31

Table 5.5 Comparison of CW-Learn and CW on the CEVRP medium instances.

Other than the difference in required computation time between problems,
another notable observation regards the difference in computation time between
algorithms. For the EVRP-RJ-RT, CW-Learn is consistently faster than CW,
often requiring only one-half or one-third of the computation time. For the
CEVRP, however, the situation is reversed, and CW-Learn can be up to five times
slower. The reason behind this lies in how road junctions affect both algorithms.
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CW-Learn CW
City Customers Evs Consumption Time Evs Consumption Time
Bucharest 50 3.30 44.34 0.05 3.50 37.66 0.01

100 6.80 74.40 0.46 6.90 63.73 0.08
150 9.60 95.73 1.62 9.70 83.82 0.31

Hamburg 50 3.50 69.96 0.05 3.80 61.37 0.01
100 6.40 112.67 0.45 6.70 100.71 0.09
150 9.90 149.15 1.60 10.00 130.15 0.33

Paris 50 3.50 23.01 0.05 3.70 19.10 0.01
100 6.20 36.07 0.42 6.30 31.38 0.08
150 9.60 49.17 1.49 9.60 42.07 0.30

Vienna 50 3.80 44.07 0.05 3.90 38.91 0.01
100 6.40 75.02 0.42 6.80 63.67 0.09
150 9.50 101.07 1.56 9.70 87.11 0.31

Warsaw 50 3.70 129.79 0.05 3.90 113.66 0.01
100 6.40 220.60 0.42 6.60 185.28 0.09
150 9.60 291.16 1.45 10.00 253.51 0.30

Table 5.6 Comparison of CW-Learn and CW on the CEVRP large instances.

In CW, savings are computed as the reduction in total energy consumption,
which requires traversing the routes corresponding to each savings list entry.
In EVRP-RJ-RT, these routes contain many road junctions, meaning that each
computation involves summing over a large number of edges, which creates
significant overhead. CW-Learn instead calculates savings by extracting features
and performing a forward pass through its neural network. Only the distance
features are affected by road junctions, and since these distances are precomputed,
the cost of computing savings scales much better. In CEVRP, where there
are no road junctions, CW’s energy-saving calculations are much faster, while
CW-Learn still incurs the cost of the neural network’s forward passes, leading to
its relative slowdown.

Figures 5.4 and 5.5 provide a visual summary of these patterns. The first
shows, for each city and customer count, the average percentage reduction in the
number of vehicles achieved by one algorithm compared to the other. Positive
values indicate that CW-Learn requires fewer vehicles, while negative values
indicate the opposite. The second figure presents the same type of comparison
but for computation time. Together, these figures confirm what is seen in
the tables: CW-Learn generally reduces the number of vehicles, particularly
in the CEVRP instances, while computation time improvements are strongly
problem-dependent, with CW-Learn being much faster in the EVRP-RJ-RT but
slower in the CEVRP.
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Figure 5.4 Average percentage reduction in the number of vehicles required by
one algorithm compared to the other for the EVRP-RJ-RT (top) and the CEVRP
(bottom). Each cluster of three bars represents a city, with bars corresponding
to customer counts of 50, 100, and 150. Positive values indicate that the learning
variant outperforms the standard, while negative values indicate the standard
variant performs better than the learning approach.
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Figure 5.5 Average percentage reduction in execution time by one algorithm
compared to the other for the EVRP-RJ-RT (top) and the CEVRP (bottom). Each
cluster of three bars represents a city, with bars corresponding to customer counts
of 50, 100, and 150. Positive values indicate that the learning variant requires
less time than the standard, while negative values indicate the standard variant
requires less time than the learning approach.
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Chapter 6

CMSA

6.1 Introduction

Construct, Merge, Solve, and Adapt (CMSA) is a hybrid metaheuristic introduced
rather recently [13, 17, 21]. The main idea of the algorithm is to iteratively
apply an exact solver restricted to an evolving sub-instance C ′ of the original
optimization problem, with the goal that the exact solver eventually finds a
high-quality solution in it. Each iteration begins with the construct step, where
multiple feasible solutions are probabilistically generated for the full problem
instance. Next, in the merge step, solution components present in these generated
solutions are incorporated into C ′. An exact solver is then applied in the solve
step restricted to the current sub-instance. Finally, in the adapt step, outdated
solution components are systematically removed from C ′ based on an aging
mechanism. CMSA is broadly applicable to optimization problems that allow for
(1) the probabilistic generation of feasible solutions and (2) the use of an exact
solver that can be applied restricted to sub-instances.

Since its introduction in 2016, CMSA has been effectively applied to various
combinatorial optimization problems. Some of its most recent applications
include the variable-sized bin packing problem [4], the electric vehicle routing
problem with simultaneous pickup and deliveries [3], as well as a bus driver
scheduling problem with complex break constraints [110]. Additionally, CMSA
has been utilized for test data generation in software product lines [48] and for
scheduling the maintenance of nuclear power plants [43]. Furthermore, a variant
designed to mitigate the parameter sensitivity observed in certain applications
denoted Adapt-CMSA was recently introduced [2].

The research presented in this second part of the thesis introduces and
explores two approaches that integrate Machine Learning (ML) to enhance
CMSA. Both methods incorporate learning into the construct step of CMSA,
utilizing the solutions generated by the exact solver as feedback to refine the
construction of new solutions.
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The first approach, called RL-CMSA, draws inspiration from the multi-armed
bandit problem in Reinforcement Learning (RL). It maintains a quality score for
each solution component, guiding solution construction based on these values.
At the end of each iteration, these scores are updated by identifying which
components are part of the solution generated by the exact solver.

The second approach, called DL-CMSA, employs a more advanced learning
mechanism by integrating Deep Learning (DL). It considers the partial solution
under construction when selecting the next solution component during the
construct step. At the end of each iteration the parameters of the neural network
are updated to make the selections performed by the exact solver more likely in
future iterations.

The next section offers a comprehensive explanation of the standard CMSA,
while the next two chapters introduce RL-CMSA and DL-CMSA. In addition,
various designs for the learning mechanisms of RL-CMSA are explored.
Following this, in Chapter 9, the three CMSA variants are experimentally assessed
on three well-known combinatorial optimization problems: the Minimum
Dominating Set (MDS) problem, the Far From Most String (FFMS) problem, and
the Maximum Independent Set (MIS) problem. Finally, the concluding chapter
presents a summary and suggestions for future work related to this research.

6.2 The Standard CMSA

To apply CMSA to a combinatorial optimization problem, the first step is to define
a set C of solution components such that every valid solution to the problem can
be represented as a subset of the complete set of solution components C. For
instance, in the case of the classic Traveling Salesman Problem (TSP), the edge
set of the complete input graph is a possible definition of C. This is because any
valid tour can be expressed as a subset of edges.

In the following explanation of CMSA, we assume a general set of solution
components C = {c1, c2, . . . , cn}, the existence of a method for probabilistically
generating solutions to the given problem, and the availability of a solver that
can produce solutions restricted to a subset of solution components. While this
solver does not necessarily have to be exact and could, for instance, be another
metaheuristic, we assume it to be an exact solver, as is typically the case in CMSA
applications.

Algorithm 6.1 outlines the structure of the standard CMSA. Initially, the
sub-instance C ′ is set to empty, and the best-so-far solution Sbsf is initialized as
null. Subsequently, the main loop of the algorithm begins, during which the
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Algorithm 6.1 Pseudo-code of the standard CMSA
Input: Set C of solution components for the problem instance to be solved
Input: Values for parameters na, agemax and tILP
Output: A solution to the problem at hand

1: Sbsf = null, C ′ = ∅
2: while termination conditions not met do

3: for j = 1, . . . , na do

4: S := probabilistic_solution_construction()
5: for all ci ∈ S and ci /∈ C ′

do

6: ageci = 0
7: C ′ := C ′ ∪ {ci}
8: end for

9: end for

10: Sopt := apply_exact_solver(C ′, tILP)
11: if Sopt is better than Sbsf then Sbsf := Sopt end if

12: adapt(C ′, Sopt, agemax)
13: end while

14: return Sbsf

construct, merge, solve, and adapt steps are executed in sequence until a specified
time limit is reached. The steps can be described as follows:

1. In the construct step, na solutions to the problem are generated
probabilistically.

2. The merge step involves adding to C ′ the solution components ci that appear
in at least one of the na constructed solutions and are not already present in
C ′. Additionally, the ages of these components are set to 0.

3. The solve step employs an exact solver with a time limit tILP restricted to the
problem instance C ′, obtaining a solution Sopt for the given problem.

4. Finally, the adapt step involves increasing the age of solution components
in C ′ \ Sopt by one, resetting the age of the components in Sopt to 0,
and removing from C ′ those solution components whose age reaches the
maximum allowed age, agemax.

Here, na, tILP, and agemax are algorithm parameters that define the number of
solutions generated in the construct step, the time allocated to the exact solver in
the solve step, and the maximum permissible age for solution components in the
sub-instance, respectively.

The construct and solve steps are the only problem-specific components of
the algorithm. Typically, the construct step employs a probabilistic solution
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generation mechanism combined with a greedy function adapted to the specific
problem, while the solve step relies on an exact method designed for solving the
given problem.
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RL-CMSA

This chapter introduces the RL-CMSA variant and is based on publications [102,
103]. The first presents an initial implementation of the algorithm; the second,
which is a journal extension, explores additional algorithmic component designs
and tackles a broader set of problems.

RL-CMSA maintains a quality measure qi for each solution component ci ∈ C,
referred to as the q-values. The complete vector of these values is denoted as
q. The probabilistic construction of solutions in RL-CMSA is guided by these
q-values, where components with higher values have a greater probability of
being selected. Furthermore, after each iteration of CMSA, once the exact solver
has been applied, the q-values are updated. Specifically, the values associated
with solution components in C ′ that appear in the solution Sopt returned by the
exact solver are increased, whereas the values corresponding to components in
C ′ that do not belong to Sopt are decreased.

Algorithm 7.1 outlines the general framework of RL-CMSA. Initially, the stored
sub-instance C ′ is set to empty, the best-so-far solution Sbsf is initialized to null,
and all q-values are set to zero. Within the main loop, the algorithm follows
the standard four CMSA steps along with an additional fifth step, referred to as
the learn step. The four standard CMSA steps remain unchanged, except for the
construct step.

Similar to traditional CMSA, the construct step in RL-CMSA involves the
probabilistic generation of na solutions. However, in RL-CMSA, this process is
influenced by the q-values: solution components with higher q-values are more
likely to be selected. The newly introduced learn step updates the q-values and
computes a convergence measure, which may trigger a restart of the learning
process if necessary. Such a restart involves (1) resetting all q-values to zero and
(2) emptying the sub-instance C ′ based on a predefined parameter, as explained
below.

Various designs were explored for the new solution construction mechanism
and the update of the q-values in our work [103]. These designs were partially
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Algorithm 7.1 Pseudo-code of RL-CMSA
Input: Set C of solution components for the problem instance to be solved
Input: Values for parameters na, agemax, tILP, cflimit and breset
Output: A solution to the problem at hand

1: Sbsf = null, C ′ = ∅
2: qi = 0 for i = 1, . . . , n
3: while termination conditions not met do

4: for j = 1, . . . , na do

5: S := probabilistic_solution_construction(q)
6: for all ci ∈ S and ci ̸∈ C ′

do

7: ageci = 0
8: C ′ := C ′ ∪ {ci}
9: end for

10: end for

11: Sopt := apply_exact_solver(C ′, tILP)
12: if Sopt is better than Sbsf then Sbsf := Sopt end if

13: adapt(C ′, Sopt, agemax)
14: update_q_values(q, C ′, Sopt)
15: cf = compute_convergence_factor(q)
16: if cf > cflimit then

17: qi = 0 for i = 1, . . . , n
18: if breset = true then C ′ = ∅ end if

19: end if

20: end while

21: return Sbsf

inspired by prior research on the multi-armed bandit problem, a classic problem
in Reinforcement Learning (RL) [80]. The concept of multi-armed bandits was
first introduced by Robbins in 1952 [109].

In its simplest form, a multi-armed bandit problem consists of a set of k

probability distributions {D1, . . . , Dk}. The objective is to devise a sampling
strategy for an agent that does not have prior knowledge of these distributions.
The agent iteratively samples from these distributions, receiving a reward at each
iteration. From a technical perspective, the goal is to design a sampling strategy
that maximizes the total accumulated reward. The problem is often framed
metaphorically, where the distributions correspond to k arms of a slot machine,
and the agent represents a gambler aiming to maximize their earnings.

As observed, the RL strategy incorporated into CMSA in this work leads to a
scenario that closely resembles a multi-armed bandit problem. In RL-CMSA,
the sampling process corresponds to selecting one of the available solution
components. However, a crucial distinction exists: instead of assigning rewards
after each individual sample or after every solution construction, RL-CMSA
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assigns rewards only after the solve step. These rewards are determined based on
the outcome obtained by the exact solver when solving the current sub-instance.

7.1 Update of the q-values

In the learn step, consisting of lines 14 to 19 of Algorithm 7.1, the q-values
associated with solution components in C ′ are updated based on whether they
are part of the solution Sopt obtained by the exact solver during the solve step.
Notably, this approach differs from standard CMSA, where the quality of a
solution component is typically evaluated using a myopic measure that considers
only its immediate benefit when added to a partial solution under construction.
Moreover, the quality is not directly linked to the objective function value of
the final solution in which the component was included. Instead, the quality of
a component is assessed in comparison to all other solution components in the
sub-instanceC ′. Specifically, the q-value qi of a solution component ci is increased
if it is part of Sopt and decreased otherwise. This adjustment is made by assigning
a reward R > 0 in the former case and −R in the latter. We consider the following
three strategies for updating the q-values:

1. The initial approach involves accumulating the rewards over time. In each
iteration, once the reward ri ∈ {R,−R} for a solution component ci ∈ C ′ is
determined, its q-value is updated in the following manner:

qi := qi + ri (7.1)

2. The second approach relies on averaging the rewards received over time.
To facilitate this, a variable ni keeps track of how many times the q-value
qi of a solution component ci has been updated since the algorithm began.
In each iteration, after determining the reward ri ∈ {R,−R} for a solution
component ci ∈ C ′, its q-value is updated as follows:

qi := qi +
1

ni

(ri − qi). (7.2)

3. The final design extends the previous one by substituting 1/ni with a
constant step-size parameterα > 0. Consequently, the update of the q-value
qi for a solution component ci ∈ C ′ is given by the following expression:

qi := qi + α(ri − qi). (7.3)
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The first design option may lead to a bias toward solution components that are
selected more frequently. For instance, with this approach, a solution component
that receives a reward R would accumulate the same q-value as one that was
awarded rewards R, −R, and R. In contrast, the second design avoids this issue
by setting the q-values to the average of the rewards, ensuring that the number of
times a solution component is selected does not introduce bias. The second and
third designs are widely used strategies for updating q-values in multi-armed
bandit problems [122]. It is worth noting that, due to the constant step-size α, the
third design places more emphasis on recent rewards than on older ones. This
can be advantageous in the RL-CMSA context, where rewards might shift over
time.

7.2 Solution Construction in RL-CMSA

The updated construct step utilizes the q-values for probabilistic solution
generation. This updated construction process, corresponding to the function
probabilistic_solution_construction(q) of Algorithm 7.1, begins with an empty
solution S = ∅. Then, at each step, one of the solution components that can
feasibly extend the current partial solution is added to it until the solution is
complete. We denote by Cfeas ⊆ C \ S the set of feasible solution components
with respect to the partial solution S. Additionally, recall that qi represents the
q-value associated with solution component ci ∈ C. We propose two distinct
approaches for selecting a solution component from Cfeas.

7.2.1 Softmax Selection

The first proposed design introduces a real parameter dr ∈ [0, 1], referred to as the
determinism rate. At each step of the construction process, a solution component
is selected as follows:

1. With probability dr, a solution component is randomly selected from those
in Cfeas that have the highest q-value.

2. Otherwise, with probability 1 − dr, the selection is made using a roulette
wheel approach, where the probability pi of selecting solution component
ci ∈ Cfeas is given by

pi =
eβqi∑

ck∈Cfeas
eβqk

. (7.4)
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Here, β ≥ 0 is a parameter that, in conjunction with dr, controls the balance
between exploration and exploitation.

It is important to note that this first selection design may lead to the algorithm’s
convergence. Specifically, the q-values of certain solution components may
become significantly larger than those of others, resulting in the same solution
being repeatedly constructed and further increasing their q-values. To address
this potential issue, we propose measuring the level of convergence as described
below. This measurement is carried out once per iteration in the learn step, after
the q-values have been updated. If high convergence is detected, the algorithm
is reset by re-initializing the q-values to zero and emptying C ′ according to a
specified parameter. See lines 15 to 19 of Algorithm 7.1. This mechanism relies
on a convergence factor and a convergence factor limit. When the convergence
factor exceeds the convergence factor limit, the algorithm is re-initialized.

The following describes how the convergence factor is calculated, which
is done in method compute_convergence_factor(q) of Algorithm 7.1. For each
solution component ci in the most recently constructed solution S, the probability
zi of selecting ci over all other solution components that are not part of S is
computed. The convergence factor is then defined as the minimum of these
probabilities for all ci ∈ S. It is important to note that, according to this
definition, the closer the convergence factor is to 1, the closer the algorithm is to
converging. In this context, it is worth mentioning that the probability of selecting
a particular solution component depends on the values of the parameters dr and
β. Specifically, the probability zi of selecting solution component ci is given by:

zi := dr · χi + (1− dr) · eβqi∑
ck ̸∈S e

βqk + eβqi
, (7.5)

where χi is defined as:

χi :=


1

|{ck∈C\S∪{ci}|qk=qi}| if qi = max{qk | ck ∈ C \ S ∪ {ci}}

0 otherwise

(7.6)

The expression for zi is derived from the selection process in the construct step.
With probability dr, a solution component is selected uniformly at random from
the solution components that have the highest q-value. With the complementary
probability 1 − dr, the selection is made in a roulette-wheel-based manner,
where the probabilities are given by the softmax function. After calculating
the probabilities zi for each solution component ci ∈ S, the convergence factor is
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computed as cf := min{zi | ci ∈ S}.
Once the convergence factor cf is calculated, the algorithm checks whether it

exceeds the convergence factor limit, which is defined by the parameter cflimit ∈
[0, 1]. If this condition is met, the algorithm is re-initialized as follows:

1. The q-values are reset to zero.

2. Sub-instance C ′ is cleared based on the Boolean parameter breset. If breset =

true, C ′ is set to ∅. Otherwise, if breset = false, C ′ remains unchanged.

Emptying C ′ during the re-initialization of the algorithm effectively removes
all the information accumulated by the learning process. On the other hand, if
C ′ is not cleared, some of the previously gathered information is retained.

7.2.2 UCB Selection

As an alternative to the Softmax selection, we also explore the Upper Confidence
Bound (UCB) selection method [122]. This approach, originally developed for
the multi-armed bandit problem, focuses on sampling from the distribution set
based on their potential to be optimal. We view this as a different approach to
addressing convergence, as this selection strategy ensures sufficient exploration
over time. Similarly to Softmax selection, this method was implemented as
follows:

1. With probability dr, a random solution component is selected from those
with the highest q-value.

2. Otherwise, with probability 1 − dr, UCB selection is used, which involves
randomly selecting among the solution components whose q-values
maximize the following expression:

qi + ρ ·

√
log(n)

ni

(7.7)

Here, ρ > 0 is a parameter, n denotes the current iteration number, log(n)
represents the natural logarithm of n, and ni is the number of times solution
component ci has been selected up to the present iteration.

The square-root term in the UCB expression represents the uncertainty in the
estimate of qi. Every time a solution component is selected, its corresponding
square-root term decreases, thereby reducing the estimated uncertainty in its
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q-value. On the other hand, if a solution component is not chosen in an iteration,
the square-root term increases.

Note that if the q-values are unbounded, this method becomes unsuitable, as
the square-root term loses its effectiveness once the q-values become sufficiently
large. This issue may arise with the first and third designs we proposed for
updating the q-values. For this reason, we will apply this method in conjunction
with the second design mentioned above for updating the q-values, which sets
the q-values to the average of the rewards observed so far.

7.3 Variants Considered

To experimentally evaluate RL-CMSA in [103], we considered the following four
algorithm variants, each utilizing different designs for updating the q-values
and selecting solution components during the solution construction. The four
RL-CMSA variants are described as follows:

1. RL-CMSA-1: This variant is characterized by the first design for updating
the q-values (summation of the rewards) and the use of Softmax selection.
The reward (R) is set to one.

2. RL-CMSA-2: This variant uses the second design for updating the q-values
(average rewards) and Softmax selection. The value of the reward (R) is
treated as a parameter of the algorithm.

3. RL-CMSA-3: This variant is identical to RL-CMSA-2, except that the third
design (average rewards + step-size) is used for the q-value update.

4. RL-CMSA-4: This variant uses the second design for the q-value update,
combined with the UCB selection for solution construction as an alternative
method to avoid convergence. The reward (R) is set to one.

These four variants were experimentally evaluated in [103] on the Minimum
Dominating Set (MDS) and the Far From Most String (FFMS) problems. The
results obtained showed that the first variant, RL-CMSA-1, was superior to the
rest with statistical significance. Hence, in this thesis we consider only the first
variant for evaluation, which we simply denote RL-CMSA from now on. In
Chapter 8 the standard CMSA, RL-CMSA, and DL-CMSA are experimentally
compared on three combinatorial optimization problems: the MDS problem, the
FFMS problem, and the Maximum Independent Set (MIS) problem.

Note that by design, the quality values in RL-CMSA do not differentiate
between the partial solution being constructed. Clearly, the solution under
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construction has a significant impact on which solution components should be
added next. DL-CMSA, introduced in the next chapter, addresses this by utilizing
a neural network to take into account partial solutions.
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DL-CMSA

This chapter presents DL-CMSA and is based on the paper “Improving the CMSA
Algorithm with Online Deep Learning”, presented at the European Conference
on Artificial Intelligence (ECAI) of 2025 [104].

As mentioned earlier, RL-CMSA does not take into account the partial solution
under construction when deciding which solution component to select next. In
other words, the q-values are independent of the solution being constructed.
However, the current partial solution at each construction step clearly impacts
the quality of the available solution components at that moment. Therefore, it is
a natural idea to extend RL-CMSA in this direction. One possible approach is to
mirror the process used in RL-CMSA by maintaining separate q-values for each
possible partial solution. However, this is clearly not feasible in practice due to
the enormous number of possible partial solutions.

DL-CMSA incorporates information from the partial solution currently under
construction by employing a neural networkQ to approximate this corresponding
separate q-value vector. The role of Q is to estimate, for each possible solution
component, how beneficial it would be to extend the current partial solution with
that component. To achieve this, the neural network receives as input a binary
encoding of the partial solution and produces as output a quality score for each
solution component.

Specifically, DL-CMSA assumes a fixed order of the solution components in
order to ensure consistent encodings. Let C = (c1, c2, . . . , cn) denote the ordered
set of all solution components associated with the problem instance being tackled.
The input and output layers of Q are then both of size n. The input is a one-hot
encoding of the partial solution S, which is a binary vector representing S, with
its i-th entry set to one if ci ∈ S, and zero otherwise. Given this representation,
the j-th entry of the output vector is intended to reflect the estimated quality of
extending the partial solution S with component cj .

Just like the q-values in RL-CMSA, the parameters of the network Q are
updated at the end of each iteration, based on the solution provided by the
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Algorithm 8.1 Pseudo-code of DL-CMSA
Input: Ordered set C = (c1, . . . , cn) of solution components for the problem

instance to be solved
Input: Values for parameters na, tILP, agemax, εdec and εmin
Output: A solution to the problem at hand

1: Sbsf := null, C ′ := ∅, ε := 1
2: Initialize the weights of neural network Q randomly
3: while termination conditions not met do

4: for j = 1, . . . , na do

5: S := probabilistic_solution_construction(Q, ε)
6: for all ci ∈ S and ci /∈ C ′

do

7: ageci := 0
8: C ′ := C ′ ∪ {ci}
9: end for

10: end for

11: Sopt := apply_exact_solver(C ′, tILP)
12: if Sopt is better than Sbsf then Sbsf := Sopt end if

13: adapt(C ′, Sopt, agemax)
14: Order the solution components in Sopt := (cki)

m
i=1

15: for (Ŝ, ci) ∈ {({cki}
j
i=1, ckj+1

)}m−1
j=0 do

16: Set target yi := Qθ(ϕ(Ŝ)), yici := yici + 1

17: Compute loss L(θ) := ∥Qθ(ϕ(Ŝ))− y∥2
18: end for

19: Apply gradient descent step on average loss
20: if ε > εmin then ε := ε · εdec end if

21: end while

22: return Sbsf

exact solver. A gradient descent update is used to adjust the parameters of Q
to increase the likelihood of performing selections similar to those done by the
exact solver.

A challenge arises from the fact that the order in which the solver constructs its
solution is typically unknown. To address this, we assume the solver constructs
solutions in the same order as the one defined for the one-hot encoding. Given the
ordered solution Sopt = (ck1 , ck2 , . . . , ckm) produced by the solver, the parameters
of the neural network Q are updated with the objective of increasing the output
of Q for the corresponding (partial solution, solution component) pairs:

{(∅, ck1), ({ck1}, ck2), ({ck1 , ck2}, ck3), . . . , ({ck1 , . . . , ckm−1}, ckm)}. (8.1)

This is done by setting a target for each partial solution as the output of Q
for that solution, where the component corresponding to the associated solution
component is incremented by one. The loss is then calculated, and a gradient
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descent step is executed using the Adam optimizer [75] on the average loss.

Figure 8.1 Diagram depicting the construction process of DL-CMSA. The
algorithm iteratively builds a partial solution S using the neural network Q and
epsilon-greedy selection.

The neural network Q is employed in the construct step of DL-CMSA to
generate solutions. Just like in RL-CMSA, the solution construction begins with
an empty solution, and solution components are added iteratively. In this case,
the neural network Q replaces the q-values during the construction process. In
particular, the next solution component is selected using epsilon-greedy selection,
as this method has shown better performance for this algorithm. Given the set
Cfeas ⊆ C of available solution components for extending a partial solution S, the
next solution component added to S is selected as follows:

1. With probability ε, a random solution component from Cfeas is selected.

2. Otherwise, a random solution component is selected from those inCfeas that
have the maximum output for Q.

ε is initialized at one and is gradually reduced based on two parameters:
εdec ∈ [0, 1), which controls the rate of decrease for ε at each iteration, and
εmin ∈ [0, 1], which defines the minimum value that ε can reach.

Algorithm 8.1 outlines the overall structure of DL-CMSA and
Figures 8.1 and 8.2 provide diagrams representing the construct and learning
steps of DL-CMSA, respectively. As mentioned earlier, the neural network Q

takes the place of the q-value vector in RL-CMSA for solution construction, while
the gradient descent step replaces the straightforward q-value update mechanism
of RL-CMSA. The construction process, which now employs the neural network
Q, corresponds to line 6. Meanwhile, the new update process corresponds to
lines 16 to 21. In this context, we use the notation Qθ(ϕ(Ŝ)), where ϕ(Ŝ) is the
one-hot encoding of the partial solution Ŝ, and θ denotes the parameters of the
neural network being updated.
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Figure 8.2 Diagram depicting the learning process of DL-CMSA. The algorithm
computes an average loss over the selections forming the solution produced by
the exact solver and applies a gradient descent step. Lastly, it decreases the
parameter ε.

It is worth noting that DL-CMSA does not incorporate a restart mechanism,
as no convergence issues have been observed, which can be effectively managed
by ensuring a sufficiently large value for εmin.

To better illustrate the construction and learning steps in DL-CMSA, let us
consider a small example using a Set Cover problem instance. Given a set
of elements U and a collection of subsets of elements S, this problem aims
to identify a smallest sub-collection of S whose union equals U . For this
problem, a straightforward definition for the set of solution components is
C := S, which we use for the following example. Consider U = {1, 2, 3, 4} and
S = {c1 = {1, 2}, c2 = {2, 3}, c3 = {3, 4}, c4 = {4}}. For the solution component
order, we choose (c1, c2, c3, c4).

The construction process starts with an empty solution S = ∅. Its one-hot
encoding is (0, 0, 0, 0), as none of the four solution components belong to it. The
neural network Qθ takes this encoding as input and produces output scores, for
example: Qθ((0, 0, 0, 0)) = (0.3, 0.6, 0.4,−0.1). Using ε-greedy selection, suppose
component c2 is chosen. The partial solution becomes S = {c2}, and hence
its encoding (0, 1, 0, 0). At the next step, the network outputs Qθ((0, 1, 0, 0)) =

(0.7, 0.2, 0.5, 0.9). Now the ε-greedy selection can choose any of the available
solution components given S, which are all except c2. If it selects c4, the solution
is still not complete, and again Q is fed with the encoding of the current partial
solution which is now (0, 1, 0, 1). The next selection will be the last, as a complete
solution will be produced by any of the two possible selections.

Regarding the learning step, assume the exact solver outputs the following
solution: Sopt = {c1, c3}. To train the network, this solution is binary
encoded and decomposed into pairs of partial solutions and the next selected
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component following the order assumed. In this case these pairs are:
((0, 0, 0, 0), c1), ((1, 0, 0, 0), c3). For each pair, a loss is computed with respect
to a target that is the current output of the neural network with the position
of the solution component selection corresponding to the pair incremented by
one. For example, as Q((0, 0, 0, 0)) = (0.3, 0.6, 0.4,−0.1), the target would be
(0.3, 0.6, 0.4,−0.1) + (0, 1, 0, 0) = (0.3, 1.6, 0.4,−0.1). And therefore, the loss for
this selection L(φ) = ||Qφ((0, 0, 0, 0)) − (0.3, 1.6, 0.4,−0.1)||2. In the same way,
the loss would be computed for the second pair of partial solution and solution
component selected. Afterwards, the average loss would be considered and the
Adam optimizer [75] used to perform a gradient descent step with respect to it.
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Chapter 9

Experimental Evaluation

This chapter provides an experimental evaluation of RL-CMSA and DL-CMSA.
Specifically, we compare the standard CMSA, RL-CMSA, and DL-CMSA across
three combinatorial optimization problems: the Far From Most String (FFMS)
problem, the Minimum Dominating Set (MDS) problem, and the Maximum
Independent Set (MIS) problem. Notably, these are three NP-Hard problems,
meaning that they cannot be solved in polynomial time unless P = NP [51, 82].

The chapter is organized into separate sections, each dedicated to one of the
three problems. Each section follows a consistent structure: first, the problem is
formally defined; next, the set of solution components C used is described. Then,
the probabilistic solution generation method employed by the standard CMSA is
explained, along with the construction mechanism utilized by the learning-based
variants. Following this, the exact solver applied is discussed, and finally, the
parameter tuning process and experimental results are presented and thoroughly
analyzed. Before diving into the problem-specific evaluations, we first list the
parameters of each algorithm, which will be fine-tuned for each problem.

It is important to note that all algorithms were executed in single-threaded
mode on a computing cluster equipped with 10-core Intel Xeon processors
running at 2.2 GHz, with 8 GB of RAM per machine. Additionally, each algorithm
utilized an Integer Linear Programming (ILP) model in the solve step, which was
solved using the commercial solver CPLEX version 22.1.1 [65].

9.1 Algorithm Parameters

Each algorithm utilizes the standard CMSA parameters: tILP, na, and agemax.
These parameters respectively define the time limit allocated to the exact solver
in the solve step, the number of solutions generated in the construct step, and the
age threshold used in the adapt step. Additionally, every algorithm incorporates
three parameters related to the solve step, which influence the behavior of CPLEX.
These parameters are cplexwarmstart, cplexemphasis, and cplexabort.
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The first parameter, cplexwarmstart, determines whether an initial solution is
provided to CPLEX. If set to true, the best-so-far solution is used to warm-start
the solving process. The second parameter, cplexemphasis, governs the trade-off
between proving optimality quickly and enhancing the best-found solution
efficiently. When set to true, CPLEX employs its highest heuristic emphasis;
otherwise, the default setting is used. Lastly, cplexabort dictates whether the
CPLEX execution terminates upon discovering a solution that improves the
best-so-far solution. This can be advantageous since CPLEX may otherwise
allocate significant computational resources to bound computations necessary
for proving optimality.

For the standard CMSA, in addition to the parameters mentioned above, each
problem-specific solution generation method includes additional parameters that
regulate the diversity of the generated solutions. These parameters will be
introduced in their respective sections.

For RL-CMSA, the additional parameters consist of dr, β, cflimit, and breset.
Here, dr is the determinism rate used when selecting solution components, β is
a parameter in the Softmax function, cflimit sets the threshold for the convergence
factor, and breset is a Boolean parameter indicating whether C ′ should be emptied
upon re-initialization of the q-values.

Finally, DL-CMSA introduces the parameters εdec and εmin for solution
construction, which represent the decrease rate of ε and its minimum allowable
value, respectively.

Additionally, we consider the number of hidden layers nlayers in the neural
network Q, the number of hidden nodes per layer nnodes, and the learning rate
lr used by the Adam optimizer during the gradient descent step as parameters
of the algorithm. The activation function was not tuned, a Leaky ReLU [88] was
employed as the default choice.

9.2 Application to the FFMS Problem

9.2.1 Problem Definition

The Far From Most String (FFMS) problem [47] is a combinatorial optimization
problem that arises in bioinformatics and belongs to the family of sequence
consensus problems. These problems have applications in various fields,
including molecular biology [58]. Given a set of input strings of equal length
over an alphabet Σ and a threshold t > 0, the objective is to find a string of the
same length that maximizes the number of input strings whose Hamming distance
from it is at least t.
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S = {s1 = baba, s2 = bbba, s3 = abaa}, Σ = {a, b}, t = 3

s = aaab,

dH(s, s1) = 3

dH(s, s2) = 4

dH(s, s3) = 2

⇒ f1(s) = 2

Figure 9.1 Example of an FFMS problem instance and a solution. The instance is
defined by the top line, which specifies the set of input strings S, the alphabet Σ,
and the threshold th.

For two strings s and s′ of lengthm, their Hamming distance dH(s, s′) is defined
as the number of positions where their corresponding characters differ, i.e.,

dH(s, s
′) :=

∣∣{k ∈ {1, . . . ,m} | s[k] ̸= s′[k]}
∣∣ (9.1)

An instance of the FFMS problem is represented as (S,Σ, t), where S =

{s1, s2, . . . , sn} is a set of n input strings of length m over the alphabet Σ, and t is
a threshold satisfying 0 < t ≤ m. Any string of length m over Σ is considered a
feasible solution. The objective is to determine a feasible string s that maximizes
the following function:

f1(s) :=
∣∣{s′ ∈ S | dH(s, s′) ≥ t}

∣∣ (9.2)

In practice, our algorithm implementations incorporate a secondary objective
function to distinguish between solutions that yield the same value for the
primary objective function (Equation (9.2)). This secondary objective function
is defined as follows:

f2(s) :=
∑

s′∈{t∈S|dH(t,s)≥t}

dH(s, s
′) + max

s′∈{t∈S|dH(t,s)<t}
{dH(s, s′)} (9.3)

A higher value of f2(s) reduces the likelihood that a minor modification in
s results in a decrease in the primary objective function f(s). Consequently, a
solution s is considered superior to another solution s′ (i.e., f(s) > f(s′)) if and
only if: (1) f1(s) > f1(s

′), or (2) f1(s) = f1(s
′) and f2(s) > f2(s

′).
This lexicographic objective function was introduced in [16] to mitigate the

adverse impact of large plateaus in the search space of the FFMS problem.
Figure 9.1 shows an FFMS instance and a solution. The solution s = aaab is

valid since it has the same length as the strings in S and uses only characters from
Σ. As the threshold is 3 and s achieves a Hamming distance of at least 3 in two
strings of S, its objective value is 2.
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9.2.2 Solution Components

A natural definition for the set C of solution components in the FFMS problem is
to include one solution component for each position-character pair. Specifically,
for each position k = 1, . . . ,m in a solution string and each character a ∈ Σ, the
set C contains the corresponding solution component ck,a.

C := {ck,a | k = 1, . . . ,m, and a ∈ Σ} . (9.4)

Thus, at each step j = 1, . . . ,m of the solution construction process, the set
of feasible solution components is Cfeas := {cj,a | a ∈ Σ}, where selecting cj,a

represents the addition of character a at the current position j.

9.2.3 Probabilistic Solution Construction

In the following, we explain how solutions are generated in both standard CMSA
and the learning variants. All algorithms employ the same solution construction
mechanism, where a letter for each position j ∈ {1, . . . ,m} is determined
sequentially from position 1 to m. In other words, at each j-th construction step,
exactly one solution component from Cfeas = {cj,a | a ∈ Σ} is selected. However,
the method of selection differs between CMSA and the learning variants. In
standard CMSA, a probabilistic approach is used based on the following greedy
function. For a given position 1 ≤ j ≤ m and character a ∈ Σ, the corresponding
frequency fj,a is defined as:

fj,a :=

∣∣{s ∈ S | s[j] = a}
∣∣

|S|
(9.5)

For selecting a letter for position j, the following procedure is employed:

1. With probability 0 ≤ drCMSA ≤ 1, the solution component (letter-position
assignment) with the lowest frequency value is selected, with ties being
broken randomly.

2. Otherwise, with probability 1−drCMSA, a solution component is chosen from
Cfeas, with the letter probabilities being proportional to the inverse of their
frequencies. Specifically, the probability of selecting solution component
cj,a is given by:

1/fj,a∑
α∈Σ 1/fj,α

(9.6)

Here, drCMSA ∈ [0, 1] is a parameter known as the determinism rate of CMSA.
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In contrast, RL-CMSA selects a letter for each position j of a solution s

based on the q-values. A q-value is maintained for each solution component,
meaning a q-value qj,a is kept for every position-character pair. At the j-th
solution construction step, one of the solution components is chosen from
Cfeas = {cj,a | a ∈ Σ} using Softmax selection.

DL-CMSA uses the output of the neural network Q to determine the next
character to add. Recall that partial solutions are encoded by a vector, where each
solution component is represented by a binary value, resulting in m · |Σ| values
in total. Specifically, for this problem, the solution components are ordered
by position and character. For each position i = 1, . . . ,m and character j =

1, . . . , |Σ|, the encoding position i · j takes a value of 1 if the partial solution
contains the j-th character of the alphabet in its i-th position. For instance,
if m = 4 and Σ = {a, b, c}, the partial solution S = aca would be encoded
as (1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0). At each construction step, the output from Q,
given the current partial solution, is combined with ε-selection to decide which
character is added next.

9.2.4 ILP Model and Sub-Instance Solving

In CMSA algorithms, sub-instances are typically modeled using Integer Linear
Programming (ILP) models, which are solved at each iteration by an ILP solver. As
noted earlier, this work employs the commercial solver CPLEX for this purpose.
The standard ILP model for the FFMS problem consists of two sets of binary
variables. The first set contains a variable xj,a for each position j = 1, . . . ,m and
character a ∈ Σ, while the second set contains a variable yj for every position
j = 1, . . . ,m.

max
n∑

i=1

yi (9.7)

subject to
∑
a∈Σ

xj,a = 1, for j = 1, . . . ,m (9.8)

m∑
j=1

xj,si[j] ≤ m− t · yi, for i = 1, . . . , n (9.9)

xj,a, yi ∈ {0, 1}

The variable xj,a is assigned a value of one if character a is selected for position
j in the solution string, and zero otherwise. Constraint (9.8) ensures that only
one character is selected for each position. Furthermore, constraint (9.9), in
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conjunction with the maximization objective, guarantees that yi equals 1 if and
only if the Hamming distance between the solution string and the input string si

is at least th.
To solve a sub-instance C ′ ⊆ C, for every cj,a ∈ C \C ′, the constraint xj,a = 0 is

added to the ILP model. In other words, the variables corresponding to solution
components that are not included in sub-instance C ′ are fixed to zero.

9.2.5 Experimental Evaluation

We generated a set of benchmark instances to evaluate the performance of the
different CMSA variants in the context of the FFMS problem. Each instance
consists of n strings of length m, with characters drawn from an alphabet Σ

of size |Σ| uniformly at random. Additionally, each instance has its associated
threshold, denoted as th, specified as a proportion of m. The benchmark set
includes 720 instances for each value of |Σ| ∈ {4, 12, 20}. These instances are
further divided into 30 instances for every combination of n ∈ {100, 200, 300, 400}
and m ∈ {100, 500, 1000}. Furthermore, two threshold values, depending on
|Σ|, are considered for all instances: (0.8m, 0.85m) for instances with |Σ| = 4,
(0.97m, 1.0m) for |Σ| = 12, and (0.99m, 1.0m) for |Σ| = 20.

In addition to the previously mentioned instances, the benchmark set also
comprises 72 tuning instances, one for each combination of n, m, |Σ|, and th. Each
algorithm underwent two separate tuning procedures: the first for all instances
with the lower threshold th from each threshold pair, and the second for those
with the higher threshold. This was based on prior research indicating that
changes in the threshold value have a more significant effect on the problem’s
characteristics than variations in n or m. To minimize the number of tuning
instances, instances with m = 500 were excluded. As a result, each tuning run
utilized 24 instances. Moreover, a total of 3000 algorithm runs were allocated to
each tuning process, with each algorithm run being given a time limit of 600 CPU
seconds for both tuning and evaluation phases.

Table 9.1 presents the results obtained from the parameter tuning process. The
first column lists the names of the parameters that were tuned, while the second
column specifies the allowed numerical range for each. For each algorithm, two
columns report the selected parameter values by irace [87], one corresponding to
the lower-threshold instances and the other to the higher-threshold instances.

Some consistent patterns emerge from the parameter tuning results. Across all
cases, a high value for tILP is selected, indicating the importance of giving the exact
solver sufficient time. (Interestingly, significantly lower values are selected for the
MDS and MIS problems, as shown in Tables 9.5 and 9.8.) Another trend concerns
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Table 9.1 Parameter values obtained after tuning the three CMSA variants for
the FFMS problem. Two tuning runs are performed for every algorithm. One
for the lower thresholds (0.8m, 0.97m, 0.99m) and one for the higher thresholds
(0.85m, 1.00m, 1.00m).

Allowed Range CMSA RL-CMSA DL-CMSA

tILP {1, 2, . . . , 50} 48 32 36 28 27 38
na {1, 2, . . . , 50} 17 35 14 46 19 36
agemax {1, 2, . . . , 10} 7 10 9 7 8 9
cplexwarmstart {0, 1} 1 1 1 1 1 1
cplexemphasis {0, 1} 1 1 1 1 1 1
cplexabort {0, 1} 0 1 0 0 0 0
drCMSA {0, 0.01, . . . , 0.99} 0.35 0.48 - - - -
dr {0, 0.01, . . . , 0.99} - - 0.36 0.95 - -
β {0.0, 0.01, . . . , 2.0} - - 0.70 1.12 - -
breset {0, 1} - - 1 0 - -
cflimit {0.90, 0.91, . . . , 1.0} - - 0.95 0.95 - -
nlayers {1, 2, 3} - - - - 1 1
nnodes {10, 11, . . . , 1000} - - - - 37 225
lr {0.001, 0.002, . . . , 0.2} - - - - 0.132 0.159
εdec {0.950.0.951, . . . , 1} - - - - 0.962 0.958
εmin {0, 0.01, . . . , 0.1} - - - - 0.04 0.06

the number of constructed solutions na, which is always set to a higher value
for the higher-threshold instances. Additionally, the CPLEX-related parameters
show clear and consistent preferences: cplexwarmstart and cplexemphasis are always
set to 1, while cplexabort is set to 0 in all but one case. For DL-CMSA, the tuning
process favors a single hidden-layer neural network with similar values for lr, εdec,
and εmin across instance types, except for the number of hidden nodes, which is
notably larger for the higher-threshold instances.

The results obtained by the three CMSA variants are reported in Tables 9.2–9.4.
For each combination of th, n, m, and each algorithm, we present the average
length of the best solutions found, as well as the average execution time required to
obtain these best solutions. These two values are shown in columns |s| and tbest[s],
respectively. The three tables correspond to instances with |Σ| = 4, |Σ| = 12,
and |Σ| = 20, respectively. As each combination of th, n, and m includes 30
distinct benchmark instances the reported values represent averages over the
corresponding 30 values.

The results indicate that RL-CMSA achieves the best average performance.
Standard CMSA ranks second overall, while DL-CMSA shows the weakest
average performance. Interestingly, for the high-threshold instances with |Σ| = 4,
RL-CMSA performs poorly, with standard CMSA yielding the best results.
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Table 9.2 Comparison of the three CMSA variants for the FFMS problem instances
with alphabet size |Σ| = 4.

CMSA RL-CMSA DL-CMSA

th n m |s| tbest[s] |s| tbest[s] |s| tbest[s]

0.8m 100 100 76.07 129.23 75.97 134.00 75.40 116.96
500 79.37 193.15 81.07 258.66 78.80 150.81
1000 78.97 249.11 83.27 380.96 77.10 217.75

200 100 98.57 106.89 101.43 216.27 96.93 148.98
500 94.20 234.71 94.07 277.99 91.70 188.68
1000 86.70 417.10 92.97 532.67 81.90 455.36

300 100 118.50 114.87 119.63 362.91 114.80 162.35
500 96.37 295.47 99.03 368.70 93.47 362.06
1000 88.33 472.47 94.63 565.84 84.60 492.72

400 100 141.80 170.77 144.97 328.59 138.97 140.59
500 95.27 384.24 101.10 453.05 92.57 462.19
1000 86.40 544.58 95.23 577.30 76.57 560.73

0.85m 100 100 38.40 106.95 38.37 40.91 38.33 62.78
500 27.97 225.42 27.93 55.87 27.93 72.28
1000 25.20 229.84 24.50 62.49 24.57 107.17

200 100 46.53 120.81 46.07 48.35 46.30 75.68
500 27.93 217.18 27.17 115.07 27.03 106.26
1000 24.93 283.50 24.77 92.43 24.83 214.71

300 100 49.80 95.61 50.40 40.95 50.37 53.81
500 27.60 220.7 27.17 104.47 27.23 145.69
1000 25.13 310.81 23.90 183.55 24.53 326.27

400 100 53.57 106.36 51.00 76.36 51.53 75.85
500 27.50 289.57 27.07 165.47 27.73 130.13
1000 24.03 336.02 23.10 228.00 23.43 411.30

Regarding computation time, all three algorithms require a similar amount
of time to find their best solutions. The only notable exception occurs in the
instances with |Σ| = 12, where RL-CMSA utilizes a significantly larger portion
of the 600-second time limit compared to the other two variants. This extended
search effort may indicate that RL-CMSA is less prone to getting trapped in local
optima, which could help explain its superior performance.

Figure 9.2 presents Critical Difference (CD) plots for the FFMS problem results,
generated using the R package scmamp [22]. Each plot displays the average rank
of the algorithms along the x-axis, with horizontal bars connecting those whose
differences are not statistically significant. Statistical significance is assessed using
the Friedman rank-sum test, with Finner’s procedure [49] as the post-hoc method
for pairwise comparisons, applying a significance level of 0.05.

The CD plot in Figure 9.2a, which aggregates all instances, shows RL-CMSA
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Table 9.3 Comparison of the three CMSA variants for the FFMS problem instances
with alphabet size |Σ| = 12.

CMSA RL-CMSA DL-CMSA

th n m |s| tbest[s] |s| tbest[s] |s| tbest[s]

0.97m 100 100 74.10 212.25 74.13 262.15 73.63 242.33
500 66.63 277.79 67.43 390.97 67.17 180.70
1000 64.00 293.85 64.40 292.47 64.73 226.14

200 100 98.00 274.53 97.87 280.40 97.20 191.88
500 74.07 316.19 75.43 419.16 74.83 250.32
1000 67.17 316.43 68.23 297.67 68.67 270.92

300 100 111.50 276.12 113.23 249.19 112.00 141.37
500 76.10 327.43 78.07 438.66 76.83 286.99
1000 67.90 305.39 69.73 385.95 66.90 233.66

400 100 123.20 284.09 124.00 282.25 122.50 159.29
500 77.57 334.70 80.53 467.82 78.47 246.64
1000 68.23 343.07 69.97 368.69 69.23 265.24

1.0m 100 100 31.43 120.36 31.53 198.29 31.33 127.89
500 19.33 98.86 19.30 332.61 19.17 130.15
1000 17.00 46.18 17.07 297.36 17.00 186.82

200 100 34.60 153.45 34.73 204.35 34.40 157.16
500 19.23 76.03 19.37 256.75 19.10 116.91
1000 17.00 51.30 17.03 267.31 17.00 217.02

300 100 36.23 129.72 36.33 238.39 36.23 129.02
500 19.20 97.21 19.53 211.86 19.10 128.80
1000 16.97 154.56 17.00 257.58 16.93 209.56

400 100 37.23 127.64 37.23 215.16 36.93 122.34
500 19.07 81.34 19.40 295.79 19.33 139.66
1000 16.97 106.38 16.97 300.63 16.93 222.01

achieving the best average rank, followed by standard CMSA, and then DL-CMSA.
All pairwise differences are statistically significant. Figures 9.2b and 9.2c report
CD plots for the lower and higher threshold instances, respectively. For the
lower threshold set, performance differences are more pronounced and mirror
the overall ranking. In contrast, for the higher threshold instances, differences in
average rank are smaller: CMSA ranks best, followed closely by RL-CMSA, with
no statistically significant difference between them. DL-CMSA ranks lowest,
though the difference compared to CMSA is not statistically significant.

For this problem, the standard CMSA just presented was the state-of-the-art
algorithm until 2024. Then, a new variant of CMSA, which hybridizes the
standard algorithm with a particular population-based metaheuristic known as
a bacterial algorithm, showed better performance [99].
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Table 9.4 Comparison of the three CMSA variants for the FFMS problem instances
with alphabet size |Σ| = 20.

CMSA RL-CMSA DL-CMSA

th n m |s| tbest[s] |s| tbest[s] |s| tbest[s]

0.99m 100 100 86.93 264.18 86.80 340.17 86.80 137.30
500 84.33 289.07 84.23 263.97 84.13 224.17
1000 81.13 238.01 82.20 363.23 80.63 265.10

200 100 117.93 288.90 117.53 290.23 117.83 217.09
500 93.60 383.37 93.13 222.34 94.00 267.38
1000 86.53 403.65 87.97 392.85 86.57 274.71

300 100 136.23 287.32 136.43 293.30 136.03 253.69
500 97.87 423.38 97.47 264.78 97.37 286.13
1000 88.40 397.48 89.57 366.82 88.10 300.55

400 100 151.33 317.64 151.10 297.16 150.33 212.57
500 99.53 381.12 98.93 242.14 98.93 315.44
1000 89.03 387.21 90.93 383.92 88.87 334.50

1.0m 100 100 62.23 65.82 62.07 279.75 62.20 123.72
500 43.63 273.42 43.80 234.20 43.67 227.71
1000 37.83 187.77 38.03 326.79 37.70 405.85

200 100 77.10 212.56 77.20 245.91 76.90 214.12
500 43.77 237.56 44.13 286.73 44.40 262.02
1000 37.47 172.53 38.20 256.08 37.70 385.84

300 100 84.63 170.86 84.27 243.04 83.93 251.11
500 44.57 278.63 44.53 257.92 44.67 282.16
1000 38.03 244.75 38.20 281.44 37.87 404.62

400 100 90.00 194.44 89.60 256.06 89.10 168.68
500 44.37 282.37 44.87 275.58 45.13 284.81
1000 37.87 193.87 38.07 260.2 38.00 405.26

9.3 Application to the MDS Problem

9.3.1 Problem Definition

The Minimum Dominating Set (MDS) problem is another well-known
combinatorial optimization problem. Given an undirected graph, the goal of
the MDS problem is to identify the smallest subset of nodes such that every node
in the graph is either included in this subset or is adjacent to at least one node in
it. Formally, let G = (V,E) be an undirected graph. The MDS problem seeks the
smallest subset Ṽ ⊆ V such that for each node v ∈ V , at least one of the following
two conditions holds:

1. v ∈ Ṽ

2. v′ ∈ Ṽ for some v′ ∈ N(v)
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(0.85m, 1.00m, 1.00m).

Figure 9.2 CD plots concerning the FFMS problem results.

Here,N(v)denotes the set of neighbors of a node v in the graphG. Specifically,
N(v) := {v′ ∈ V | (v′, v) ∈ E}. A subset of nodes that satisfies the two conditions
above is referred to as a dominating set ofG. Therefore, the MDS problem focuses
on finding dominating set of minimal size, as indicated by its name. The MDS
problem has various applications in fields such as wireless sensor networks [100]
and natural language processing [116].

Figure 9.3 illustrates two solutions to the MDS problem on the given graph.
They are both valid solutions, as every node is orange or neighbor of an orange
one. The solution on the right is optimal, since the graph admits no smaller
dominating set.

9.3.2 Solution Components

A natural way to define the solution components for the MDS problem is to
introduce a solution component for each node in the input graph. The set of
solution components is then C = V . For convenience, we will abuse notation and
refer to solution components directly as the nodes, i.e., C := {v1, . . . , vn}, where
each solution component vi corresponds to a node in the input graph G. At each
step of the solution construction process for a partial solution S ⊆ C, the set of
available solution components Cfeas ⊆ C = V consists of all nodes except those
that are already covered by a node in S and have no uncovered neighbors.
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Figure 9.3 Example of an MDS problem instance and two solutions. The problem
instance corresponds to the graph, and the nodes forming the two solutions are
highlighted in orange.

9.3.3 Probabilistic Solution Construction

All CMSA variants considered follow the same solution construction mechanism.
The process begins with an empty solution, S := ∅, and at each step, a single node
(solution component) is added until a valid solution, which is a dominating set,
is achieved. In this context, Cfeas ⊆ C represent the set of feasible solution
components at the current step as discussed previously.

The standard CMSA employs the following greedy function to select, at each
construction step, a node from Cfeas. To define this greedy function, let N [v] :=

N(v) ∪ {v} represent the closed neighborhood of node v, and let N [v | S] ⊆ N [v]

denote the set of uncovered neighbors of v relative to the current partial solution
S. Based on this, the process for selecting a node to add to S in CMSA is as
follows:

1. With a probability 0 ≤ drCMSA ≤ 1, a node v ∈ Cfeas is selected as follows:

v := argmax
v′∈Cfeas

{∣∣N [v′ | S]
∣∣} (9.10)

2. Otherwise, with probability 1−drCMSA, a subset ofmin
{
lsizeCMSA, |Cfeas|

}
nodes

from Cfeas is selected and stored in L ⊆ Cfeas, such that:

∣∣N [v | S]
∣∣ ≤ ∣∣N [v′ | S]

∣∣ for all v ∈ L, v′ ∈ Cfeas \ L (9.11)

A node v ∈ L is then selected uniformly at random and added to S.

Here, drCMSA and lsizeCMSA are parameters of the CMSA algorithm.
Unlike standard CMSA, the learning-based variants do not rely on this greedy

function. Instead, RL-CMSA utilizes the set of q-values, where each node
(solution component) vi ∈ C is assigned a corresponding value qi. At each
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construction step, a node is selected using softmax selection (see Section 7.2 of
Chapter 7).

In DL-CMSA, the construction process is driven by the neural network Q,
which evaluates the current partial solution and assigns a quality score to each
solution component. In order to get fed into the neural network, recall that partial
solutions are one-hot encoded based on the solution components. Since, in the
MDS problem, these components correspond to the nodes of the input graph,
each partial solution is represented as a binary vector, where each entry indicates
the presence or absence of a node. The ordering of nodes is predefined when
the problem instance is first processed by the algorithm and remains consistent
throughout its execution.

9.3.4 ILP Model and Sub-Instance Solving

The following simple ILP model for the MDS problem is solved by CPLEX at each
iteration. It keeps a binary variable xi for every node vi ∈ V , which takes value
one if vi forms part of the solution and zero otherwise.

min
∑
vi∈V

xi (9.12)

subject to
∑

vj∈N(vi)

xj + xi ≥ 1, for vi ∈ V (9.13)

xi ∈ {0, 1}, for vi ∈ V

Constraints (9.13) ensure that the solutions form valid dominating sets by
requiring that each node is either included in the solution or covered by at least
one of its neighbors. Additionally, the objective function minimizes the total
number of selected nodes, ensuring the smallest possible dominating set.

To solve a sub-instance C ′ ⊆ C, we introduce the constraint xj = 0 for all
vj ∈ C \C ′. This ensures that the variables corresponding to solution components
(nodes) that are not part of sub-instance C ′ are fixed to zero in the ILP model.

9.3.5 Experimental Evaluation

To conduct the experimental evaluation on the MDS problem, we utilize a
benchmark set composed of graphs of varying sizes and densities, generated
using three well-known graph models: Erdös-Rényi [45], Watts-Strogatz [127],
and Barabási-Albert [7].

The Erdös-Rényi model, one of the most widely used random graph
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models, generates graphs based on two parameters: the number of nodes
and the probability that an edge exists between any given pair of nodes. The
Watts-Strogatz model is designed for constructing small-world networks, which
exhibit both a short average path length between nodes and a high degree of local
clustering. Finally, the Barabási-Albert model generates graphs characterized by a
scale-free degree distribution, where most nodes have relatively few connections,
while a few nodes possess significantly higher degrees.

A total of thirty graphs were generated for each combination of graph
model, number of nodes |V | ∈ {500, 1000, 1500, 2000}, and four distinct density
levels. The density of the graphs is controlled by parameters p, k, and m

corresponding to the three graph models, respectively. The four density levels
considered are p ∈ {0.00416381, 0.0062414, 0.0103881, 0.020705} for Erdös-Rényi
and k,m ∈ {2, 3, 5, 10} for Watts-Strogatz and Barabási-Albert.

For clarity, these density levels will be referred to as the 1st, 2nd, 3rd, and
4th density levels, respectively. Consequently, the benchmark set comprises 480
graphs per model, resulting in a total of 1440 instances. Additionally, the set
includes one tuning instance for each combination of graph model, density level,
and graph size.

The three CMSA variants were tuned using the tuning instances
corresponding to the lowest and highest density levels, meaning the instances
related to the 2nd and 3rd density levels were excluded in order to speed up
the process. This results in a total of 24 tuning instances. Similar to the FFMS
problem, the tuning was performed using the R package irace [87], with a budget
of 3000 experiments per tuning run. For both tuning and evaluation phases, each
algorithm execution was allocated a time limit of 150, 300, 450, and 600 CPU
seconds for instances of size 500, 1000, 1500, and 2000, respectively.

Table 9.5 presents the parameter configurations selected by irace for each
algorithm on the MDS problem. The table follows the same structure as used for
the FFMS problem. However, in this case, only a single value per parameter and
algorithm is reported, as each algorithm was tuned just once.

An interesting observation concerns the preferred value for the parameter
tILP, which sets the time limit given to CPLEX at each iteration. Notably, for the
two learning-based variants, the selected value is significantly smaller than the
one chosen for the standard CMSA. A lower value for this parameter results in
a greater number of iterations, which is advantageous for the learning processes
in RL-CMSA and DL-CMSA. This preference likely reflects the effectiveness
of the learning mechanisms, which benefit more from frequent updates than
from allocating additional time to the exact solver. Another noteworthy pattern
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Table 9.5 Parameter values obtained after tuning the three CMSA variants for the
MDS problem. Every algorithm is tuned exactly once.

Allowed Range CMSA RL-CMSA DL-CMSA

tILP {1, 2, . . . , 20} 13 6 6
na {1, 2, . . . , 50} 4 10 3
agemax {1, 2, . . . , 10} 3 1 4
cplexwarmstart {0, 1} 0 0 0
cplexemphasis {0, 1} 1 1 1
cplexabort {0, 1} 0 0 0
drCMSA {0.0, 0.01, . . . , 0.99} 0.29 - -
lsizeCMSA {3, 4, . . . , 50} 35 - -
dr {0.0, 0.01, . . . , 0.99} - 0.44 -
β {0.0, 0.01, . . . , 2.0} - 0.28 -
breset {0, 1} - 1 -
cflimit {0.90, 0.91, . . . , 1.0} - 0.98 -
nlayers {1, 2, 3} - - 2
nnodes {10, 11, . . . , 1000} - - 30
lr {0.001, 0.002, . . . , 0.2} - - 0.168
εdec {0.950.0.951, . . . , 1} - - 0.963
εmin {0, 0.01, . . . , 0.1} - - 0.05

emerges in the CPLEX-related parameters: all three algorithm set cplexwarmstart

and cplexabort to 0, while assigning a value of 1 to cplexemphasis.
The results are summarized in Tables 9.6 and 9.7. For each combination of

graph size, graph type, and density level, the tables report the average size of
the solutions found and the average time taken by the algorithms to obtain them.
Table 9.6 includes results for problem instances with 500 and 1000 nodes, while
Table 9.7 covers instances with 1500 and 2000 nodes. Each value represents the
average over the 30 instances of every configuration.

The main observation is that, for this problem, both RL-CMSA and DL-CMSA
achieve better results on average compared to the standard CMSA. The
performance of the two learning-based variants is largely similar, with no
consistent pattern favoring one over the other.

Regarding the time required to find the best solutions, DL-CMSA is the most
time-consuming approach. This is likely due to the computational overhead
introduced by its Deep Learning (DL) mechanism, which is significantly greater
than the simpler update procedure used in RL-CMSA. In contrast, the standard
CMSA is the fastest, likely because it tends to get stuck in local optima more
quickly, as reflected in its overall inferior performance.

Figure 9.4 presents the CD plots for the MDS problem results. As with the
FFMS problem, each plot displays the average rank of the algorithms along the
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Table 9.6 Comparison of the three CMSA variants for the MDS problem instances
of size |V | = 500 and |V | = 1000

CMSA RL-CMSA DL-CMSA

|V | Graph Type Density |s| tbest[s] |s| tbest[s] |s| tbest[s]

500 Barabási-Albert 1st 101.23 0.04 101.23 0.13 101.23 0.54
2nd 71.97 0.96 71.97 3.11 71.97 5.77
3rd 47.90 18.01 47.87 20.58 47.87 17.92
4th 27.13 18.94 27.10 28.65 27.17 23.29

Erdös Rényi 1st 209.97 0.20 209.97 0.08 209.97 0.69
2nd 153.37 0.66 153.37 0.17 153.37 0.84
3rd 101.90 42.66 101.67 28.90 101.63 26.81
4th 60.37 55.80 60.60 41.67 60.17 59.14

Watts-Strogatz 1st 110.33 42.43 110.13 39.12 110.17 36.94
2nd 82.40 70.20 82.23 57.67 82.20 46.38
3rd 57.20 72.67 57.67 38.12 57.20 80.23
4th 34.87 59.06 35.13 51.79 34.93 80.61

1000 Barabási-Albert 1st 202.07 0.37 202.07 0.43 202.07 0.58
2nd 145.07 15.69 145.00 20.90 145.00 26.26
3rd 92.27 64.60 92.20 41.20 92.27 35.24
4th 50.40 72.50 50.67 56.36 50.47 52.83

Erdös Rényi 1st 241.43 90.70 241.17 20.15 241.17 30.36
2nd 175.30 145.99 174.37 114.85 174.40 167.53
3rd 122.07 126.97 120.67 176.69 121.00 227.16
4th 75.73 114.87 75.23 220.15 75.80 197.33

Watts-Strogatz 1st 220.90 163.33 220.10 83.28 220.03 85.63
2nd 166.33 151.48 165.03 132.51 164.80 200.25
3rd 117.37 156.41 115.33 167.53 115.70 244.17
4th 72.10 126.95 70.63 245.70 71.27 258.31

x-axis, with horizontal bars indicating non-statistically significant differences in
performance. Statistical significance is assessed using the Friedman rank-sum
test, with Finner’s procedure [49] applied as the post-hoc method, using a
significance level of 0.05.

Figure 9.4a, which considers all instances together, confirms the trends
observed in the results tables: RL-CMSA and DL-CMSA perform similarly,
while the standard CMSA performs worse. The difference in performance
between RL-CMSA and DL-CMSA is not statistically significant, whereas both
learning variants significantly outperform the standard CMSA. This same pattern
is evident in Figures 9.4c and 9.4d, corresponding to the Erdös-Rényi and
Watts-Strogatz instances, respectively. In contrast, Figure 9.4b, which concerns
the Barabási-Albert instances, shows that all three algorithms achieve very similar
performance, with no statistically significant differences. This is likely due to the
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Table 9.7 Comparison of the three CMSA variants for the MDS problem instances
of size |V | = 1500 and |V | = 2000

CMSA RL-CMSA DL-CMSA

|V | Graph Type Density |s| tbest[s] |s| tbest[s] |s| tbest[s]

1500 Barabási-Albert 1st 303.97 18.43 303.83 1.52 303.83 1.74
2nd 213.73 48.63 213.67 61.82 213.70 52.58
3rd 136.83 146.81 136.77 98.99 136.77 84.69
4th 73.30 107.81 73.60 128.50 73.53 77.18

Erdös Rényi 1st 263.17 261.17 261.30 172.09 261.07 241.29
2nd 198.47 221.23 194.80 296.68 194.97 356.25
3rd 140.50 194.25 138.17 271.25 137.83 386.43
4th 87.40 135.35 86.13 335.87 86.23 375.31

Watts-Strogatz 1st 331.10 284.44 329.60 160.07 329.53 153.96
2nd 251.77 239.13 248.30 225.37 248.17 261.99
3rd 178.60 216.38 174.57 233.85 173.73 363.34
4th 110.97 143.81 106.73 328.33 107.07 395.86

2000 Barabási-Albert 1st 403.70 23.70 403.57 1.73 403.57 2.35
2nd 285.67 81.66 285.40 121.12 285.50 74.81
3rd 180.93 177.78 180.87 149.31 181.00 109.86
4th 95.57 152.56 95.70 215.08 95.73 115.67

Erdös Rényi 1st 289.10 255.75 284.17 290.83 283.27 391.59
2nd 218.77 283.50 214.07 401.48 213.47 478.74
3rd 156.30 208.89 153.50 369.36 153.63 535.36
4th 96.17 181.82 95.07 436.07 96.70 510.05

Watts-Strogatz 1st 442.63 367.59 440.70 200.91 440.60 193.46
2nd 337.77 328.00 331.67 292.25 331.30 314.12
3rd 241.97 243.74 233.13 378.62 231.97 438.04
4th 152.57 58.85 145.80 421.32 147.93 577.52

relative simplicity of these instances, as Barabási-Albert graphs tend to include
high-degree nodes that are obvious candidates for inclusion in the solution.

9.4 Application to the MIS Problem

9.4.1 Problem Definition

The Maximum Independent Set (MIS) problem is another well-known
combinatorial optimization problem in graph theory. As with the MDS problem,
given an undirected graph G = (V,E) and a node v ∈ V , we define the closed
neighborhood of v as N [v] := N(v) ∪ {v}, where N(v) is the set of neighbors of
v. A set S ⊂ V is considered a feasible solution to the MIS problem if, for any
pair of distinct nodes v, u ∈ S, there is no edge between them, i.e., (v, u) /∈ E. In
other words, a feasible solution S ensures that no two nodes in S are adjacent.
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Figure 9.4 CD plots concerning the MDS problem results.

The objective of the problem is to find the largest feasible solution.
Figure 9.5 illustrates two solutions to the MIS problem on the given graph.

The solutions are valid as no pair of orange nodes are neighbors. Moreover, the
solution on the right is optimal, since the graph admits no independent set of
larger size.

9.4.2 Solution Components

For the set of solution components, we follow the same straightforward approach
as in the MDS problem, defining C as the set of nodes in the input graph, i.e., C =

V . As in the previous case, we will directly represent the solution components
by the nodes themselves. At each construction step, the set of available solution
components, denoted asCfeas, consists of the nodes that do not have any neighbors
included in the current partial solution.

9.4.3 Probabilistic Solution Construction

As with the previously discussed problems, all CMSA variants utilize the same
solution construction mechanism. This process begins with an empty solution,
and at each step, a solution component is added by selecting it from the set of
available solution components Cfeas, defined previously.

The standard CMSA uses the following greedy function to choose a node from
Cfeas at each step of the construction process.

1. With a probability drCMSA, a node from Cfeas with the least amount of
neighbors is randomly selected.
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Figure 9.5 Example of an MIS problem instance and two solutions. The problem
instance corresponds to the graph, and the nodes forming the two solutions are
highlighted in orange.

2. Otherwise, a set L is created, containing the lsize nodes from Cfeas with the
fewest neighbors. A node is then chosen uniformly at random from L.

As with the previous problems, RL-CMSA and DL-CMSA do not utilize this
approach, as they generate solutions using the quality value vector q and the
neural network Q, respectively. In DL-CMSA, a one-hot encoding of the current
partial solution is provided at each construction step. This encoding is based
on the solution components, which, in this case, correspond to the nodes of the
graph. Similarly to the MDS problem, an arbitrary ordering of the nodes is
determined when the algorithm first processes the problem instance. This order
is then consistently used for encoding the partial solutions.

9.4.4 ILP Model and Sub-Instance Solving

The following ILP model for the MIS problem is employed at each iteration, along
with CPLEX, restricted to the sub-instance. It uses a binary variable xi for each
node vi ∈ V , where xi takes the value of one if vi is included in the solution and
zero otherwise.

max
∑
vi∈V

xi (9.14)

subject to xi + xj ≤ 1, for e = (vi, vj) ∈ E (9.15)

xi ∈ {0, 1}, for vi ∈ V

Constraint (9.15) ensures that no two neighbors are part of the solution. To
apply this ILP model restricted to the sub-instance C ′, the following additional
constraints are imposed: xi = 0 for all vi ∈ C \ C ′.
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9.4.5 Experimental Evaluation

The same graph models used for generating problem instances in the MDS
problem were employed here as well: Barabási-Albert [7], Watts-Strogatz [127],
and Erdös-Rényi [45]. In this case, the graph densities of the Barabási-Albert
and Watts-Strogatz were varied across different graph sizes. As with the MDS
problem, 30graphs were generated for each graph type and for every combination
of |V | ∈ {500, 1000, 1500, 2000} and four distinct graph densities, resulting in a
total of 480 graphs for each model. Additionally, one extra instance was also
generated for each combination of graph type, density, and size for the purpose
of parameter tuning.

In this case, the four corresponding density levels are achieved with p ∈
{0.01, 0.04, 0.07, 0.1} for all Erdös-Rényi graph sizes, while for the Watts-Strogatz
and Barabási-Albert graphs, the following values are used: k,m ∈ {3, 10, 17, 25}
for |V | = 500, k,m ∈ {5, 20, 35, 50} for |V | = 1000, k,m ∈ {7, 30, 52, 75} for
|V | = 1500, and k,m ∈ {10, 40, 70, 100} for |V | = 2000.

As with the previous problems, the algorithm variants are tuned using the
R package irace [87]. Again, half of the tuning instances are used, with the
instances corresponding to the 2nd and 3rd density levels excluded to speed up
the procedure. This amounts to 24 tuning instances. A budget of 3000 algorithm
runs was allocated to the tuning process of the three algorithms. The same
time limits as in the case of the MDS problem were applied to each tuning and
evaluation run, consisting of 150, 300, 450, and 600 seconds for instances of 500,
1000, 1500, and 2000 nodes, respectively.

Table 9.8 presents the parameters obtained through the tuning process. A
similar trend to that observed for the MDS problem can be noted regarding
the setting of tILP. Specifically, significantly smaller values are selected for the
learning variants compared to the standard CMSA. This suggests a favorable
performance of the learning-based approaches, as allocating less time to the
exact solver emphasizes the role and effectiveness of the learning mechanisms.

Among the CPLEX parameters, the only one exhibiting a consistent pattern is
cplexemphasis, which is set to 1 in all cases. An additional noteworthy observation
concerns the determinism rate of the standard CMSA, drCMSA, which is set to
the minimum allowed value. This indicates that increased diversity during the
solution construction phase benefits the standard approach.

The results are summarized in Tables 9.9 and 9.10, which follow the same
structure as those presented for the MDS problem. As in the case of the latter,
the learning variants consistently outperform the standard CMSA on average.
Among the two learning-based approaches, their performance is comparable on
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Table 9.8 Parameter values obtained after tuning the three CMSA variants for the
MIS problem. Every algorithm is tuned exactly once.

Allowed Range CMSA RL-CMSA DL-CMSA

tILP {1, 2, . . . , 20} 20 9 9
na {1, 2, . . . , 50} 6 23 7
agemax {1, 2, . . . , 10} 3 1 3
cplexwarmstart {0, 1} 0 1 0
cplexemphasis {0, 1} 1 1 1
cplexabort {0, 1} 1 1 0
drCMSA {0.0, 0.01, . . . , 0.99} 0.01 - -
lsizeCMSA {3, 4, . . . , 100} 72 - -
dr {0.0, 0.01, . . . , 0.99} - 0.36 -
β {0.0, 0.01, . . . , 2.0} - 0.73 -
breset {0, 1} - 1 -
cflimit {0.90, 0.91, . . . , 1.0} - 0.97 -
nlayers {1, 2, 3} - - 1
nnodes {10, 11, . . . , 1000} - - 254
lr {0.001, 0.002, . . . , 0.2} - - 0.199
εdec {0.950.0.951, . . . , 1} - - 0.959
εmin {0, 0.01, . . . , 0.1} - - 0.05

the instances with 500 and 1000 nodes. However, for the larger instances with
1500 and 2000 nodes, DL-CMSA achieves superior solution quality.

Regarding computation time, DL-CMSA requires the most time to find its best
solutions, which is consistent with the overhead introduced by its DL mechanism.
Interestingly, the standard CMSA is the second slowest approach, despite
performing significantly worse than RL-CMSA. This suggests that, although
CMSA spends more time than RL-CMSA, it is less effective in utilizing this time
to improve solution quality.

The CD plots for the MIS problem are presented in Figure 9.6. In this
case, we organize the plots by the number of nodes, as this grouping reveals
more insightful patterns. Figure 9.6a shows the CD plot for all instances
combined, indicating that DL-CMSA is the best-performing approach, followed
by RL-CMSA, with all pairwise differences between the three algorithms being
statistically significant. Similar results are observed when grouping by graph
type. Figures 9.6b–9.6e display the CD plots for graphs with 500, 1000, 1500, and
2000 nodes, respectively. As reflected in the numerical tables, the performance
differences among algorithms are statistically significant for the larger instances
(1500 and 2000 nodes), whereas RL-CMSA and DL-CMSA are statistically
equivalent for the smaller instances (500 and 1000 nodes). In all cases, the
standard CMSA is the worst-performing algorithm with statistical significance.
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Table 9.9 Comparison of the three Construct, Merge, Solve, and Adapt variants
for the Maximum Independent Set problem instances of size |V | = 500 and
|V | = 1000

CMSA RL-CMSA DL-CMSA

|V | Graph Type Density |s| tbest[s] |s| tbest[s] |s| tbest[s]

500 Barabási-Albert 1st 242.47 5.15 242.53 0.46 242.53 1.19
2nd 148.30 34.98 148.73 24.95 147.80 92.81
3rd 111.67 39.73 112.50 39.29 112.53 52.83
4th 88.80 51.08 89.43 35.50 89.27 46.55

Erdös Rényi 1st 217.90 21.77 217.93 21.74 217.73 62.96
2nd 104.30 59.38 104.60 46.29 104.80 61.13
3rd 71.67 58.07 71.97 68.78 72.30 76.84
4th 54.97 67.00 55.03 57.80 55.23 81.87

Watts-Strogatz 1st 174.90 18.67 175.03 27.46 175.20 38.90
2nd 89.80 50.93 90.20 49.78 89.90 68.66
3rd 62.70 71.57 63.10 55.73 62.97 86.87
4th 46.93 59.72 47.57 60.92 47.30 74.32

1000 Barabási-Albert 1st 403.77 82.40 406.17 53.88 406.23 86.80
2nd 204.90 139.43 208.63 99.14 208.97 147.18
3rd 147.27 138.37 149.17 142.64 148.20 125.04
4th 116.20 120.38 116.93 139.75 113.40 134.49

Erdös Rényi 1st 311.83 172.03 314.20 106.12 315.47 161.51
2nd 131.07 197.69 131.00 139.05 131.40 236.06
3rd 83.83 198.28 85.30 156.04 85.43 235.78
4th 63.17 176.71 64.00 156.86 63.70 217.28

Watts-Strogatz 1st 269.20 153.01 270.20 102.55 272.03 230.96
2nd 109.73 144.60 111.87 157.73 110.17 233.01
3rd 72.33 204.80 73.50 141.08 73.87 223.63
4th 54.70 186.87 55.30 128.91 55.03 193.99
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Table 9.10 Comparison of the three Construct, Merge, Solve, and Adapt variants
for the Maximum Independent Set problem instances of size |V | = 1500 and
|V | = 2000

CMSA RL-CMSA DL-CMSA

|V | Graph Type Density |s| tbest[s] |s| tbest[s] |s| tbest[s]

1500 Barabási-Albert 1st 522.93 219.24 529.23 138.89 530.43 250.63
2nd 243.40 269.95 247.50 100.17 250.17 256.45
3rd 172.37 213.55 173.17 148.83 174.70 279.92
4th 133.00 214.62 132.63 155.81 132.80 238.52

Erdös Rényi 1st 371.17 253.86 376.03 223.51 377.87 295.45
2nd 142.67 293.73 142.53 176.77 144.80 345.35
3rd 87.33 225.45 91.33 170.54 92.47 322.01
4th 64.23 227.44 68.40 203.67 68.20 308.46

Watts-Strogatz 1st 331.40 312.74 332.93 248.16 334.33 394.90
2nd 119.57 259.25 123.10 233.47 123.67 351.93
3rd 76.10 279.75 80.23 220.24 80.30 319.77
4th 56.83 305.76 59.50 165.15 59.60 285.76

2000 Barabási-Albert 1st 591.23 399.37 604.13 220.43 606.43 444.02
2nd 269.63 373.66 275.10 246.50 278.50 424.62
3rd 188.20 325.21 189.03 245.82 181.43 318.55
4th 145.47 331.82 143.50 208.51 145.73 387.46

Erdös Rényi 1st 413.97 409.75 419.07 279.78 422.33 449.55
2nd 147.17 291.38 151.30 274.14 151.80 452.41
3rd 89.17 305.93 95.63 274.19 94.57 405.05
4th 64.50 250.79 70.10 251.55 70.50 380.90

Watts-Strogatz 1st 351.67 415.24 353.23 368.81 359.17 502.23
2nd 123.67 297.47 129.60 271.44 131.90 487.21
3rd 77.03 279.67 84.63 314.65 84.10 469.82
4th 56.90 285.13 62.97 352.36 62.33 414.77
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Figure 9.6 CD plots concerning the MIS problem results.
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9.5 In-Depth Algorithmic Analysis

This section analyzes the behavior of RL-CMSA and DL-CMSA, the two
new CMSA variants introduced. Experimental results show that RL-CMSA
consistently outperforms the standard CMSA across all three problems.
DL-CMSA, in contrast, achieves the best performance on the MIS problem,
performs comparably to RL-CMSA on the MDS problem, and significantly
underperforms in comparison to the other variants on the FFMS problem. This
section aims to explain the reasons behind these differences in performance.

For the MDS and MIS problems, four figures are included, based on
data gathered from repeated experimental runs. These runs were conducted
separately from the performance evaluations to ensure that the data collection
process did not impact algorithm performance. The first two figures present
data related to the solution construction process for certain selected instances.
The first plot illustrates how the average quality of the solutions constructed in
each iteration evolves over time, while the second tracks the evolution of the
subinstance size prior to the solve step. Together, these plots offer insight into the
learning dynamics of the algorithms, with the second plot additionally reflecting
the diversity of the constructed solutions.

The remaining two figures analyze the computational overhead introduced
by the learning mechanisms of RL-CMSA and DL-CMSA. These are shown as
boxplots based on data collected from all problem instances, grouped by relevant
instance characteristics. The first plot displays the average time overhead per
iteration caused by the new learning steps and the modified construct steps,
highlighting how this overhead varies across instance types. The second plot
reports the average number of solution component selections made during the
learning step, as well as the average number of solution components forming the
CPLEX solution produced in the solve step. This plot helps to illustrate how
the number of selected components influences overhead and how this behavior
varies depending on instance characteristics. For the FFMS problem, the first
three figures are also included; however, the fourth is replaced by a table, since
the number of solution component selections in this case depends solely on the
number of input strings in the problem instance.

9.5.1 FFMS Problem

The plots corresponding to the FFMS problem can be found in Figures 9.7 - 9.9.
Remember that for this problem RL-CMSA performed best, followed by the
standard CMSA and DL-CMSA and that the differences between the three
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Figure 9.7 Evolution of the average quality of the constructed solutions per
iteration over time for a set of selected FFMS problem instances.

algorithms were found to be statistically significant.
Figure 9.7 shows the evolution of the average quality of the solutions

constructed in one iteration over time for a set of selected instances. For this
problem, one instance for every combination of alphabet size |Σ| and threshold th
for a quantity of n = 100 and n = 400 strings of a length of m = 500 was selected.

The figure highlights a major limitation of the standard CMSA and DL-CMSA
approaches: both consistently generate low-quality solutions across all instances.
In most cases, the average objective function value of the solutions they construct
remains at zero. Recall that for the FFMS problem, this value represents the
number of input strings for which the solution string has a Hamming distance
greater than th. Only two of the considered instances, those with n = 100, |Σ| = 4,
t = 0.85m and n = 400, |Σ| = 4, t = 0.8m, show DL-CMSA eventually producing
solutions with an average objective value above zero. In these cases, a slow
upward trend suggests some degree of learning.

In contrast, RL-CMSA demonstrates consistent learning behavior across
all instances, as evidenced by steadily increasing objective values in its
constructed solutions. Occasional drops in the curves reflect algorithm restarts.
Furthermore, a distinct pattern emerges between low and high threshold
instances, corresponding to the first and third columns versus the second and
fourth columns of plots, respectively. This is probably due to the separate
parameter tuning. For low-threshold instances, lower values for dr and β were
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Figure 9.8 Evolution of the subinstance size over time for a set of selected FFMS
problem instances.

selected, resulting in flatter learning curves compared to those for high-threshold
settings.

Figure 9.8 presents the evolution of subinstance size over time for the three
algorithms, using the same selected FFMS instances as in the previous figure.
For both the standard CMSA and DL-CMSA, the subinstance size remains large
and relatively stable across iterations, typically close to the full instance size of
500 · |Σ|. This behavior is consistent with their weaker performance, as applying
the exact solver to such large subinstances limits its effectiveness.

In contrast, RL-CMSA in most cases exhibits a decreasing subinstance size
over time, which facilitates the exact solver’s ability to identify better-quality
solutions. These reductions are periodically interrupted by sharp increases,
indicating algorithm restarts. An exception is observed for the instance with
n = 100, |Σ| = 4, and t = 0.85, where RL-CMSA’s subinstance size remains
high and constant. This anomaly results from frequent restarts preventing the
subinstance from shrinking effectively. Specifically, the algorithm’s maximum
solution component age, agemax = 7, selected during tuning with irace, is relatively
high compared to the total number of iterations (23) for this instance, limiting the
opportunity for subinstance size reduction.

Figure 9.9 illustrates the average computational overhead introduced by
RL-CMSA and DL-CMSA. The top part of the figure shows the overhead from
modifications in the construct step, while the bottom part displays the overhead
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Alphabet Size

String Length

Figure 9.9 Average time overhead for (top) the construction of a solution, and
(bottom) the update of the learning procedure for the FFMS problem.
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from the learning step, both relative to the standard CMSA. Boxplots are provided
for each, with instances grouped by alphabet size |Σ| (indicated along the top axis)
and string length m (shown on the bottom axis). Remember that, for RL-CMSA
the learning step includes updating the q-values, computing the convergence
factor, and executing a restart if convergence is detected. For DL-CMSA, it
involves updating the neural network parameters, which requires a gradient
descent step using Adam over the loss computed from the CPLEX selections, as
well as reducing the exploration rate ε.

This plot highlights the main drawback of DL-CMSA: the significant overhead
introduced in both its construct and learning steps. In both cases, the overhead
is considerably higher than that of RL-CMSA and increases substantially with
the alphabet size |Σ| and the string length m. For example, for instances with
|Σ| = 20 and m = 1000, the median overhead reaches nearly 1.5 seconds for
the construct step and 4 seconds for the learning step. These high overheads,
combined with the large CPLEX time limits selected by irace, hinder DL-CMSA’s
performance, as too few iterations are completed for effective learning. In
contrast, RL-CMSA exhibits much lower overheads, and in some cases, even
achieves negative overhead relative to the standard CMSA during the construct
step. Its learning step introduces minimal overhead, with median values below
0.5 milliseconds even for the largest instances. As with DL-CMSA, RL-CMSA’s
overhead increases with |Σ| and m, but remains far more manageable.

Table 9.11 Number of solution component selections for constructing a solution
in both the construct and solve steps, and neural network input and output sizes
for the FFMS problem.

m |Σ| Selections Input and Output sizes
100 4 100 400

12 100 1200
20 100 2000

500 4 500 2000
12 500 6000
20 500 10000

1000 4 1000 4000
12 1000 12000
20 1000 20000

Table 9.11 reports the number of solution component selections made during
the construct step and the number of components included in the CPLEX solution,
along with the input and output sizes of the neural network. These values help
explain the overheads discussed previously. Recall that, for the FFMS problem,
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the solution components are position-character pairs, and constructing a solution
requires one selection per string position. Consequently, the number of selections
during construction is always equal to the string length m. The input and
output sizes of the neural network correspond to the total number of solution
components, given by m · |Σ|. Both the number of selections and the neural
network dimensions increase with m and |Σ|, which directly impacts runtime
overhead. The number of selections determines how many forward passes the
neural network must perform during construction, while the size of the network
affects the duration of each pass. Additionally, one gradient descent step is
performed in the learning step for every selection made by CPLEX, and the size of
the network again heavily influences the cost of each step. These factors explain
the substantial overheads observed in Figure 9.9, which grow rapidly as m and
|Σ| increase.

As we will see, in the MDS and MIS problems these overheads are much
smaller, due to both fewer selections and significantly smaller network sizes.
This difference accounts for DL-CMSA’s poor performance on the FFMS problem
relative to the other two.

9.5.2 MDS Problem

Figures 9.10–9.13 present the plots corresponding to the MDS problem. In
this case, both RL-CMSA and DL-CMSA performed best, with no statistically
significant difference between them.

As before, Figure 9.10 shows the evolution of the average quality of the
solutions constructed by the three algorithms over time, for a selected set of
instances. Since the MDS problem is a minimization problem, lower objective
values (i.e., smaller dominating sets) indicate better solutions. The plots were
generated with one instance of the third density level for every combination of
graph type and graph size |V |.

The behavior of RL-CMSA closely resembles the one it displayed for the
FFMS problem, with clear signs of learning and periodic restarts. DL-CMSA also
demonstrates learning, as the average size of its constructed solutions steadily
decreases over time, though at a slower rate than RL-CMSA. This difference may
be attributed to the values of their respective parameters, dr and β for RL-CMSA,
and εdec and lr for DL-CMSA.

The standard CMSA, in contrast, shows no improvement over time, as
expected from a variant that lacks a learning mechanism. However, unlike in
the FFMS problem, it constructs solutions of relatively good quality compared to
the learning variants.
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Figure 9.10 Evolution of the average quality of the constructed solutions per
iteration over time for a set of selected MDS problem instances.

Algorithm CMSA DL−CMSA RL−CMSA

10
0

20
0

30
0

40
0

50
0

0 50 10
0

15
0

Barabási−Albert, |V| = 500

25
0

50
0

75
0

10
00

0
10

0
20

0
30

0

Barabási−Albert, |V| = 1000

50
0

10
00

15
00

0
10

0
20

0
30

0
40

0

Barabási−Albert, |V| = 1500

50
0

10
00

15
00

20
00

0
20

0
40

0
60

0

Barabási−Albert, |V| = 2000

10
0

20
0

30
0

40
0

50
0

0 50 10
0

15
0

Erdös−Rényi, |V| = 500

25
0

50
0

75
0

10
00

0
10

0
20

0
30

0

Erdös−Rényi, |V| = 1000

50
0

10
00

0
10

0
20

0
30

0
40

0

Erdös−Rényi, |V| = 1500

50
0

10
00

15
00

0
20

0
40

0
60

0

Erdös−Rényi, |V| = 2000

10
0

20
0

30
0

40
0

0 50 10
0

15
0

Watts−Strogatz, |V| = 500

25
0

50
0

75
0

10
00

0
10

0
20

0
30

0

Watts−Strogatz, |V| = 1000

50
0

10
00

15
00

0
10

0
20

0
30

0
40

0

Watts−Strogatz, |V| = 1500

50
0

10
00

15
00

0
20

0
40

0
60

0

Watts−Strogatz, |V| = 2000

Time (s)

S
u
b
in

s
ta

n
c
e
 S

iz
e

Figure 9.11 Evolution of the subinstance size over time for a set of selected MDS
problem instances.
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Figure 9.12 Average time overhead for (top) the construction of a solution, and
(bottom) the update of the learning procedure for the MDS problem.
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Figure 9.13 Average solution component selections for (top) the construction of a
solution, and (bottom) done by CPLEX for the MDS problem.
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A pattern emerges for Barabási–Albert instances: RL-CMSA converges quickly
and restarts multiple times during execution, while DL-CMSA also converges
faster than on other graph types. This behavior can be attributed to the structure
of Barabási–Albert graphs, which typically include a few high-degree nodes and
many low-degree ones. The learning variants rapidly identify the importance of
high-degree nodes, as CPLEX consistently selects them in the solve step.

One further observation concerns DL-CMSA’s performance on instances with
500 and 1000 nodes. For these, the quality of its constructed solutions generally
falls short of RL-CMSA’s, except in the easier Barabási–Albert cases. This
suggests that the time limits used in the experiments may have been too restrictive
for DL-CMSA on smaller instances, and that its performance could potentially
improve with longer time budgets.

Figure 9.11 illustrates the evolution of subinstance size over time for the
selected MDS instances. These plots largely mirror the trends observed in
Figure 9.10, as reductions in subinstance size tend to coincide with improvements
in the quality of constructed solutions.

This correlation arises because, as learning progresses, the algorithm
increasingly favors a smaller subset of frequently selected solution components,
leading to more compact subinstances.

A notable observation is that the standard CMSA tends to maintain larger
subinstances than the learning variants, even when achieving similar or better
solution quality. The rate at which subinstance sizes decrease also differs between
RL-CMSA and DL-CMSA. For RL-CMSA, the decrease is more pronounced,
which can be attributed to irace selecting a low maximum age parameter
(agemax = 1). In contrast, DL-CMSA exhibits a more gradual reduction in
subinstance size, consistent with a higher agemax value of 4. These settings
influence how quickly older, less frequently selected components are removed,
directly affecting the evolution of subinstance size.

Figure 9.12 shows the average overhead introduced by RL-CMSA and
DL-CMSA compared to the standard CMSA on the MDS problem. The
instances are grouped by density level (top labels) and graph size (bottom
labels). The most prominent observation is the significantly lower overheads for
DL-CMSA compared to what was observed for the FFMS problem, an important
factor contributing to its improved relative performance here. Specifically,
for DL-CMSA, the overhead from the modified solution construction process
typically remains under 20ms, while the overhead from the new learning step is
mostly below 60ms.

For RL-CMSA, the average overhead during solution construction is often
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negative, meaning it tends to construct solutions faster than the standard CMSA.
This is due to the slow greedy function employed by the standard CMSA for this
problem, which requires sorting the available solution components depending
on their number of uncovered neighbors at every construction step. Interestingly,
the learning overhead for RL-CMSA is comparable to, and in some cases slightly
higher than, that of DL-CMSA across several instance groups.

Figure 9.13 presents the average number of solution components selected
during construction and the average number included in the CPLEX-generated
solutions. For the MDS problem, these values correspond to the average sizes
of the constructed and CPLEX solutions, respectively. Compared to the FFMS
problem, the number of selections is lower, and more importantly, the neural
network used by DL-CMSA has considerably smaller input and output sizes, as
they correspond to the total number of solution components which is the graph
size for this problem. This reduced model size, along with a more modest
architecture selected by irace, contributes directly to DL-CMSA’s lower time
overheads in this setting.

Lastly, the number of selections decreases with increasing density (since
denser graphs allow smaller dominating sets) and increases with graph size,
reflecting the natural scaling behavior of the problem.

9.5.3 MIS Problem

The plots for the MIS problem correspond to Figures 9.14 – 9.17. For this
problem, DL-CMSA was the superior algorithm, followed by RL-CMSA, with
the differences between the three algorithms being statistically significant.

Figure 9.14 illustrates the average solution construction quality per iteration
for a selection of MIS instances, while Figure 9.15 shows the corresponding
evolution of subinstance size over time. The chosen instances are some of
those for which DL-CMSA outperformed RL-CMSA, aiming to better understand
the factors behind DL-CMSA’s superior performance on this problem. In the
presented runs, DL-CMSA achieved solutions with sizes approximately 2.12% to
5.88% larger than those found by RL-CMSA.

A key observation is that, for some instances, DL-CMSA attains a higher
maximum average solution quality within an iteration compared to RL-CMSA,
something not observed for the MDS problem, where DL-CMSA’s peak iteration
quality was typically similar to or below that of RL-CMSA. However, this alone
does not fully explain DL-CMSA’s stronger overall performance. For most
1500-node instances, DL-CMSA does not outperform RL-CMSA in terms of
maximum average solution construction quality, yet still delivers better overall
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Figure 9.14 Evolution of the average quality of the constructed solutions per
iteration over time for a set of selected MIS problem instances.
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Figure 9.15 Evolution of the subinstance size over time for a set of selected MIS
problem instances.
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Figure 9.16 Average time overhead for (top) the construction of a solution, and
(bottom) the update of the learning procedure for the MIS problem.
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Figure 9.17 Average solution component selections for (top) the construction of a
solution, and (bottom) done by CPLEX for the MIS problem.
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results.
A notable difference appears in the learning patterns of the two algorithms.

RL-CMSA exhibits steep increases in solution quality and sharp reductions in
subinstance size, indicating that it tends to concentrate its best constructions
within just a few iterations. In contrast, DL-CMSA tends to maintain a broader
range of iterations where it constructs diverse high-quality solutions. This
diversity is highly advantageous for the solve step, as it provides CPLEX with
richer subinstances. This might be one of the main reasons behind the better
performance of DL-CMSA for this problem.

Importantly, the improved performance of DL-CMSA does not stem from
differences in the selection mechanisms. RL-CMSA was re-tuned and evaluated
using a greedy epsilon-selection strategy, and the performance gap persisted.

As with the MDS problem, DL-CMSA appears to suffer from tight time
constraints on smaller instances (500, 1000, and 1500 nodes), where it fails to match
the solution construction quality of RL-CMSA. However, for larger instances (2000
nodes), DL-CMSA not only matches but sometimes surpasses RL-CMSA in terms
of average construction quality, suggesting that its performance could further
improve with extended time limits.

Figure 9.16 presents the computational overhead of the learning variants
relative to the standard CMSA for the MIS problem. Compared to the MDS
problem, DL-CMSA exhibits noticeably higher overheads, despite the average
number of selections and the neural network input/output sizes being similar.
This discrepancy is likely due to irace selecting a larger neural network architecture
for the MIS problem, which increases the cost of both forward passes during the
construct step and the gradient descent updates in the learning step.

RL-CMSA also incurs greater overheads during solution construction for
the MIS problem than for the MDS, while its learning step overhead remains
comparable. This difference arises from the distinct solution construction
mechanisms used by the standard CMSA for the two problems. Specifically, the
greedy functions differ: as already mentioned, in MDS constructing a solution
requires sorting available components by their number of uncovered neighbors
at each iteration, a computation that depends on the current partial solution.
In contrast, MIS uses a simpler greedy function, the number of neighbors,
which remains static throughout construction. This makes MIS constructions
inherently faster for the standard CMSA, thereby amplifying the relative overhead
of RL-CMSA’s construction phase for this problem.

As expected, overheads increase with graph size and decrease with density,
which can be explained by the average number of selections performed, shown in
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Figure 9.17. Notably, the reduction in selections with increasing density is more
pronounced for MIS than for MDS, while the increase in selections with graph
size is less steep.
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Chapter 10

CONCLUSIONS AND FUTURE WORK

10.1 Conclusions

This thesis contributed to the growing and promising field of integrating Machine
Learning (ML) techniques into combinatorial optimization. Specifically, it
explored enhancements to metaheuristics, versatile search frameworks that can
be adapted to a wide range of optimization problems. The work was structured in
two main parts. The first part focused on offline learning approaches, where ML
models are trained prior to the execution of the optimization algorithm and then
applied during its runtime. The second part addressed online learning methods,
in which the models are continuously updated and improved as the optimization
algorithm progresses.

The offline learning part of this thesis focused on implementing a general
framework for learning search components within metaheuristics. This
framework involves parametrizing a metaheuristic’s search component using an
ML model, which is trained via a Genetic Algorithm (GA). During this training
process, the GA maintains a population of parameter configurations, which are
evolved over generations guided by two sets of full-sized problem instances used
for evaluation. This approach was applied to two distinct metaheuristics targeting
two variants of the well-known Longest Common Subsequence (LCS) problem:
a Biased Random Key Genetic Algorithm (BRKGA) for the Longest Common
Square Subsequence (LCSqS) problem, and a Beam Search (BS) for the Restricted
Longest Common Subsequence (RLCS) problem. Additionally, it was applied to
the Clarke and Wright heuristic for two variants of the Electric Vehicle Routing
Problem (EVRP).

In all cases, applying the framework resulted in improved performance.
The first application was evaluated on two sets of instances: one with strings
generated uniformly at random, and another with strings containing implanted
patterns, which were more challenging. For the simpler instances, the offline
learning approach did not yield improvements, as a basic heuristic outperformed
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the learned model in both speed and quality. However, on the more difficult
instances, the learning-based approach achieved significant gains, as the ML
model was able to capture patterns beyond the reach of the simpler heuristic.

In the second application, also two distinct sets of problem instances were
used. Across both, the learning-enhanced BS outperformed its standard
counterpart on average, not only in solution quality but also in execution time.
This improvement was due to the fact that the original BS relied on a complex
heuristic, which scaled poorly compared to the lightweight neural network used
in the learned version. One of the key advantages of offline learning was
highlighted here: although training incurs a cost upfront, it can ultimately lead
to faster algorithms at runtime, depending on the complexity of the baseline
heuristics. For the first benchmark set, performance improvements grew with
the length of the input strings. For the second set, a trend emerged showing the
standard algorithm outperforming the learned variant when the number of input
strings became large.

In the last application, two variants of the EVRP were used for evaluation:
the Capacitated Electric Vehicle Routing Problem (CEVRP) and the Electric
Vehicle Routing Problem with Road Junctions and Road Types (EVRP-RJ-RT).
A realistic benchmark set of problem instances based on European cities was
used in both cases. The learning Clarke and Wright heuristic achieved a better
average performance in minimizing the number of vehicles required compared to
the standard Clarke and Wright for both problems. This is thanks to the flexibility
of the learning approach, which can be trained to minimize the number of
vehicles, while the standard algorithm is specifically designed to minimize energy
consumption and cannot be adapted for minimizing the number of vehicles in
a straightforward way. This application also presented interesting differences
in execution time: for the CEVRP, the standard Clarke and Wright presented
much faster executions, while it was the other way around for the EVRP-RJ-RT.
This is because the road junctions present in the EVRP-RJ-RT affect the standard
heuristic much more than the learning variant.

Overall, this part of the thesis demonstrated the effectiveness of offline
learning in enhancing metaheuristics. Despite the need for training, the resulting
models were able to improve both performance and efficiency in many scenarios.

The second part of this thesis introduced two new variants of the Construct,
Merge, Solve, and Adapt (CMSA) metaheuristic from the literature. Applying
CMSA to a combinatorial optimization problem requires defining a set of solution
components, C, such that any feasible solution can be expressed as a subset of
C (for example, the set of graph edges in the case of the Traveling Salesman
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Problem). CMSA maintains a subinstance of the problem, defined as a subset
of C, and applies an exact solver to it at each iteration. This subinstance is
dynamically modified throughout the search process with the goal that the exact
solver will eventually discover a high-quality solution in it.

The subinstance is expanded during the construct and merge steps, where
a number of solutions to the full problem are probabilistically generated and
their corresponding components are added to the subinstance. Conversely, it is
reduced during the adapt step by removing components that have not appeared
in the exact solver’s solution over a given number of iterations. In standard
CMSA implementations, solution construction in the construct step is typically
performed using a problem-specific greedy probabilistic heuristic, designed to
ensure diverse and reasonably good solutions.

The two proposed variants, named RL-CMSA and DL-CMSA, replace this
heuristic with online learning mechanisms that adapt solution construction based
on feedback from the exact solver. RL-CMSA maintains a quality score for each
solution component, which is updated depending on its presence in the exact
solver’s solution. At each iteration, components used in the solver’s solution have
their quality scores increased, while those present in the subinstance but not in the
solution see their scores decreased. New solutions are constructed by sampling
components with probabilities biased by these quality scores, encouraging the
use of high-performing components.

DL-CMSA extends this idea by incorporating the partial solution under
construction at each step. It replaces the static quality vector with a neural
network, which takes the current partial solution as input and outputs a value for
each component, representing its estimated usefulness in extending the current
solution. This allows DL-CMSA to dynamically adapt its decisions based on
solution context, rather than relying solely on static quality estimates.

The performance of RL-CMSA and DL-CMSA was evaluated on three
combinatorial optimization problems: the Far From Most String (FFMS) problem,
the Minimum Dominating Set (MDS) problem, and the Maximum Independent
Set (MIS) problem. RL-CMSA consistently outperformed the standard CMSA,
achieving statistically significant improvements across all three problems.
DL-CMSA performed worse than the standard CMSA on the FFMS problem
but outperformed it on the MDS and MIS problems. Compared to RL-CMSA,
DL-CMSA achieved comparable results on the MDS problem and a statistically
significantly better performance on the MIS problem.

The detailed analysis of algorithm behavior highlighted the reasons behind
these performance differences. For the FFMS problem, DL-CMSA incurred
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substantial computational overhead from its neural network–based learning,
which scaled poorly with string length and alphabet size. As a result, too few
iterations were completed for effective learning, and the algorithm constructed
mostly low-quality solutions. In contrast, RL-CMSA maintained low overhead
and exhibited clear learning dynamics, with shrinking subinstances that enabled
the solver to identify better solutions.

On the MDS problem, both learning variants benefited from smaller model
sizes and more favorable scaling, keeping overheads modest. Here, RL-CMSA
reduced subinstances more aggressively, while DL-CMSA achieved slower but
steady improvements, leading to comparable overall performance.

For the MIS problem, DL-CMSA proved most effective. Although its overhead
was higher than on the MDS, it maintained greater diversity in the high-quality
solutions it constructed, providing richer subinstances for the solver. This broader
exploration enabled it to outperform both RL-CMSA and the standard CMSA,
especially on larger instances where time budgets allowed its learning mechanism
to take full effect.

Overall, this part of the thesis demonstrated the effectiveness and possible
risks of integrating online learning mechanisms into metaheuristics. While these
approaches eliminate the need for prior training, they often incur considerable
computational overhead, which may become a limiting factor in practice,
depending on the problem and implementation.

10.2 Future Work

As discussed in the previous section, this thesis primarily investigated the
integration of ML techniques into metaheuristics, both from offline and online
perspectives. The emphasis was on the integration process rather than on
optimizing the ML components themselves. For this reason, all models employed
were simple feed-forward neural networks. This design choice leaves ample room
for future research in which more sophisticated ML models are considered.

Regarding the offline learning part, one promising direction is to explore
models that do not rely on handcrafted features. Feature engineering can
be time-consuming, requires domain expertise, and risks discarding useful
information. For the two string-related problems addressed here, the LCSqS
and the RLCS, future work could leverage models designed to process text
directly. Potential candidates include recurrent neural networks (RNNs) [57],
convolutional neural networks (CNNs) [74] for sequences, or more recent
transformer-based architectures such as BERT [31] or GPT [101] variants. These



157

models could learn representations of strings end-to-end, potentially capturing
structural similarities and repetitions more effectively than handcrafted features.
Transfer learning from pre-trained language models might also reduce data
requirements in this context.

For the Clarke and Wright heuristic, Graph Neural Networks (GNNs) present
another natural extension. A GNN applied once to the graph representing the
Vehicle Routing Problem (VRP) instance at hand could generate node embeddings
encoding global spatial and cost structure. These embeddings could then be
combined, along with pooled route embeddings, by a neural network to predict
savings values for candidate merges. An alternative is a two GNN setup: one
GNN encoding the global instance structure and another encoding the local
subgraph corresponding to the routes under evaluation. Such models could
capture both high-level problem context and detailed route interactions, reducing
reliance on handcrafted savings features.

In the online setting, additional model classes could be explored within
DL-CMSA. In particular, the choice of model could be tailored to the problem
domain. For example, for graph-structured problems, a GNN could be used to
represent the partial solution under construction, enabling the model to exploit
structural regularities during the construction phase. Similarly, sequence models
might be better suited for string-based problems.

Finally, both the offline learning framework and the online CMSA variants
should be applied to a broader range of combinatorial optimization problems.
Thus far, RL-CMSA and DL-CMSA were benchmarked on three rather academic
problems, with the goal of comparison against the standard CMSA. A natural next
step is to evaluate them on more realistic problems where CMSA has already
demonstrated strong performance, such as in VRP variants and scheduling
problems [13]. Such applications would allow testing the scalability and
robustness of the learning-augmented approaches and would provide insights
into their practical value.
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