
IIIAIIIA
Inst i tut d ’ Invest igació en
I n t e l · l i g è n c i a A r t i f i c i a l

Scaling DCOP algorithms for
cooperative multi-agent

coordination

by

Marc Pujol-Gonzalez

A dissertation presented in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy in Computer Science

Tutor:
Dr. Jordi González Sabaté

Advisors:
Dr. Jesús Cerquides
Dr. Pedro Meseguer

Dr. Juan A. Rodŕıguez-Aguilar

September 24, 2014

Universitat Autònoma de Barcelona

Departament de Ciències de la Computació

In memory of

Marta Majó i Ayma

and

Juan González Coll

you passed away,
but your legacy remains.

Abstract

This dissertation focuses on scaling up distributed constraint optimization prob-
lem (DCOP) solving algorithms to cope with larger-scale and dynamic applica-
tions. The DCOP framework represents a coordination problem as a distributed
function to optimize by a group of agents. Although it has been employed to
tackle numerous application domains (e.g., meeting scheduling, sensor networks),
DCOPs are NP-hard, and thus solving them poses challenging scalability issues.

Here we identify the Generalized Distributive Law (GDL) as a promising
foundation to build complete and approximate DCOP algorithms. On opti-
mal solving, GDL-based algorithms offer scale-up opportunities thanks to their
exponential complexity on the treewidth instead of on the number of agents.
Firstly, we scale up the GDL with function filtering algorithm, a state-of-the-
art algorithm that employs upper and lower bounds to prune (filter) subop-
timal solutions. We present novel techniques to improve the quality of these
bounds, hence reducing the algorithm’s computation and communication costs.
Our experiments show that agents using our techniques can solve larger prob-
lems than the state-of-the-art. Thereafter, we introduce a novel scheme that
allows agents to trade off computation and communication costs. Using this
scheme, we propose novel, optimal GDL algorithms, including the best-in-class
for communication-constrained and for computation-constrained applications.

Secondly, we turn our attention to larger-scale, dynamic applications for
which optimality is not an option. We introduce the Limited-range Online Rout-
ing Problem (LORP) as a benchmark for such applications, along with the MAS-
Planes toolkit to facilitate research on it. Then we present LORP solutions based
on Max-Sum, the approximate version of GDL. Using Tractable Higher-Order
Potentials (THOPs), we show that it is possible to reduce Max-Sum’s complexity
from exponential to polynomial. Empirically, our novel approach for the LORP
achieves better results than current state-of-the-art methods. However, THOP
models are harder to design than standard DCOP models. Therefore, we also
introduce a methodology for developing such models for complex applications
involving heterogeneous teams of agents. Finally, we validate our methodology
by implementing an inter-team coordination model for the RoboCup Rescue
simulation that empirically yields notable performance benefits.

In summary, this thesis widens the range of applications that optimal and
approximate GDL-based DCOP algorithms can successfully tackle.

i

Acknowledgements

First and foremost I want to thank my advisors. This work would never have
been possible without your unconditional guidance, support and dedication. My
most sincere gratitude to Jesus Cerquides, for your always open door, your sharp-
ness, and your open mind. We have not changed the world —yet?— but you
definitely have changed me for the better. To Pedro Meseguer, for betting on
me, for your relentless encouragement and your attention to detail. To Juan A.
Rodgriguez-Aguilar, for your unbreakable optimism, your tenacity, your perpet-
ual willingness to help and our countless conversations. Chavales, you are my
heroes.

To Prof. Milind Tambe and the entire TEAMCORE crew for receiving me
with open arms. Your friday’s lunches, dinners and everyday discussions in the
lab inspired the entire second part of this thesis. To Dr. Alessandro Farinelli,
for a wonderful and productive stay in the charming and colorful Verona. For
the neverending discussions at coffee time and the lovely italian lunches. Those
days were an oasis of calm in-between storms.

To Meritxell Vinyals, because you laid the foundation stone of my entire
career, and I will never be able to thank you enough for that. Since those first
year classes until today, you have always been an inspiration. Yes we did!

Most of this dissertation has been developed at a very special place, the
Artificial Intelligence Research Institute (IIIA-CSIC). The institute has become
my second house, and all of you my second family. Thanks to all my fellow
colleagues in this adventure. To Norman, Andrew, and Marc, wherever you are,
because those were the times. To Isaac, Adrián, and Manu, because you showed
me the way forward. To Pere, for your contagious calmness. To Mari, for so
many little steps we took together. To Pablo, the life and soul of the party.
To Toni, my brother-in-thesis, whose suffering made mine seem petty. To Jesús,
because one joke a day is always cheering (even terrible ones). To Xavi, for being
the nicest guy I’ve ever met. And to all others whom I failed to mention, sorry
mates.

Thanks to the IIIA’s direction team for striving to maintain such great work
environment. To Montse and Ana for saving me from the madness of spanish
bureaucracy. To Tito for keeping everything working against all odds. To Dani
and Ángel because a smile before work is priceless, and to Isa and Anna for
never complaining about my messiness.

iii

I also want to thank all those who have supported me throughout this long
journey. To my mother Conxi, for everything. You taught me to work hard and
never give up. It took a while, but I got the message. To my father Xevi, because
whatever the space and time between us, I know I can always count on you. To
Ignasi, the voice of reason in our crazy family. To my grandma Aurora, for your
wholehearted proudness on everything I do. A la meva germana Marina, perquè
t’estimo molt guapa! To Anna, for all the fights we have left behind. To Helena,
because you make me believe in a better world. To Pol, who showed me that no
matter how lost, you will find your way if you search hard enough. To my Calella
family Antònia, Carlota and Helios for your undemanding encouragement. You
make me feel great even in the worst times.

To Oriol, for all the whining you have put up with during our morning teas.
For counting on me and backing me up. You are my very definition of friend. To
my Mataró gang Sònia, Clara, Xoán, Pere, Maria, Śılvia, David, and the kids!
For your unreserved support and all the moments we shared together. I would
not be me without you. To Josep and Iván, because you made home that special
place where you retreat to renew your energies, and the place you leave to burn
the night away. To Ricky, Iván “Asta”, and all the university friends, because
you made these years the best of my life.

Above all, thanks to my soulmate Eva. Thanks for picking me up when I am
down. For putting up with my worst facets without complaints, and bringing
out the best in me. I would be lost without you.

–Marc Pujol-Gonzalez

This work has been partially funded by the Spanish Ministry of Science and
Innovation “Formación de Personal Investigador” (FPI) grant BES-2010-030466
within the RECEDIT project (TIN2009-13591-C02-02). It has also received
support from the AT (CSD2007-0022), COR (TIN2012-38876-C02-01), MECER
(201250E053), and DAMAS (TIN2013-45732-C4-4-P) projects.

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Motivation . 2
1.2 Challenges . 5
1.3 Contributions . 6

1.3.1 On optimal solving . 7
1.3.2 On approximate solving 9

1.4 Guide to the thesis . 11

2 Background and related work 13
2.1 Background . 13

2.1.1 The DCOP model . 13
2.1.2 Example application: meeting scheduling 16
2.1.3 DCOP representations . 18
2.1.4 The Generalized Distributive Law 20

2.2 Related work . 23
2.2.1 Search-based algorithms 23
2.2.2 Inference based algorithms 28
2.2.3 Sampling-based algorithms 32
2.2.4 Scalability analysis of current DCOP algorithms 32

2.3 Summary . 34

I Optimal solving 35

3 Scaling by better filtering 37
3.1 Introduction . 37
3.2 Background for optimal DCOP solving 38

3.2.1 Minimizing DCOPs . 38
3.2.2 Operations between constraints 39
3.2.3 Computing lower bounds 40

v

3.3 Solving DCOPs using GDL . 42
3.3.1 The GDL algorithm . 42
3.3.2 Complete GDL-based algorithms 45
3.3.3 Global approximate GDL-based algorithms 46
3.3.4 GDL-based algorithms with function filtering 47

3.4 Two-sided filtering . 48
3.4.1 Empirical evaluation . 51

3.5 Improving upper bounds . 53
3.5.1 Centralized exploration 54
3.5.2 Distributed exploration 54
3.5.3 Empirical evaluation . 55

3.6 Conclusions . 59

4 Scaling by resource trade-offs 61
4.1 Introduction . 61
4.2 Communication-efficient approximations 64

4.2.1 Bottom-up approximations 66
4.2.2 Top-down approximations 69
4.2.3 Empirical evaluation . 74

4.3 A general workflow for computing messages 78
4.3.1 Complete GDL-based algorithms 79
4.3.2 Approximate GDL-based algorithms 79
4.3.3 GDL with function filtering 80
4.3.4 Analysis . 82

4.4 Trading off computation and communication 85
4.4.1 Parametrizing bounds . 85
4.4.2 Bounded Bottom-up message computations 86
4.4.3 Bounded Top-down message computations 87
4.4.4 Bounded Mixed message computations 87
4.4.5 Empirical evaluation . 88

4.5 Conclusions . 93

II Approximate solving 97

5 Scaling on dynamic applications 99
5.1 Introduction . 99
5.2 The Limited-range Online Routing Problem 102

5.2.1 Problem motivation . 102
5.2.2 Example scenario . 103
5.2.3 Related work . 104

5.3 Coordinating UAVs in the LORP 106
5.3.1 An aproach based on task ownership transfers 106
5.3.2 Coordination using Independent Valuations 107
5.3.3 Coordination using Workload-based Valuations 113

5.4 The MASPlanes toolkit . 115

vi

5.4.1 Simulation environment 115
5.4.2 Benchmark algorithms . 117

5.5 Empirical evaluation . 119
5.5.1 Effects of the spatial distribution of requests 120
5.5.2 Exploring d-workload’s behavior 123

5.6 Conclusions . 126

6 Scaling on the design front 129
6.1 Introduction . 129
6.2 Problem description . 131
6.3 Single-team coordination . 133

6.3.1 Firefighters DCOP model 133
6.3.2 THOP-only firefighters model 135

6.4 Inter-team coordination . 137
6.4.1 Define independent coordination models 138
6.4.2 Identify the coordination objects 140
6.4.3 Extending single-team models 140

6.5 Empirical evaluation . 143
6.6 Conclusions . 147

7 Conclusions and future work 149
7.1 Summary . 149
7.2 Lessons learned . 152
7.3 Future work . 156

A Max-Sum as a GDL algorithm 161

B Addition of independent valuations 165

C The AtMostOne constraint is a THOP 167

vii

List of Figures

2.1 Example of a meeting scheduling scenario 17
2.2 Graphical representations of the meeting scheduling DCOP . . . 18

3.1 Example of operations on cost functions 43
3.2 Subproblems in a junction tree 45
3.3 Example of one-sided vs. two-sided filtering 50
3.4 One-sided vs two-sided filtering results (increasing treewidth) . . 52
3.5 One-sided vs two-sided filtering results (increasing domain) . . . 52
3.6 Additional problems solved by two-sided w.r.t one-sided filtering 53
3.7 Multiple solution exploration results (increasing treewidth) . . . 56
3.8 Multiple solution exploration results (increasing domain size) . . 58
3.9 Experimental results when tightening the upper bound 59

4.1 Example functions to approximate 67
4.2 Examples of approximation strategies 69
4.3 Zero-tracking decomposition example 72
4.4 Performance evaluation of approximation strategies (random

graphs) . 76
4.5 Performance evaluation of approximation strategies (lattice-

structured graphs) . 77
4.6 Cost message computation task outline 79
4.7 CTE/DCTE/Action-GDL’s message computation method 80
4.8 MCTE(r)’s message computation method 80
4.9 IMCTEf message computation method (r is a computation bound) 81
4.10 DIMCTEf message computation method (r is a communication

bound) . 82
4.11 Top-down GDL message computation method (r is a communi-

cation bound) . 82
4.12 General scheme for message computation 83
4.13 Evaluation of bounded bottom-up message computation methods 90
4.14 Evaluation of bounded top-down message computation methods . 92
4.15 Evaluation of best overall algorithms 93

5.1 Example Limited-range Online Routing Problem scenario 103
5.2 Naive DCOP encoding of the example LORP scenario 108

ix

5.3 Independent task valuations encoding of the example scenario . . 109
5.4 Binary independent valuations encoding of the example scenario 110
5.5 Optimized graph for Max-Sum execution assuming independent

task valuations . 113
5.6 MASPlanes graphical user interface 116
5.7 Example of hot spots distribution of requests 120
5.8 Parameter exploration in the hot spots scenarios 120
5.9 Effects of the spatial distribution of requests 121
5.10 Impact of distributed solving . 122
5.11 Exploration of α values . 124
5.12 Main effects plots . 125

6.1 Example RCS scenario . 131
6.2 Example factor graph of the firefighters DCOP model 134
6.3 Example factor graph of the firefighters binary DCOP model . . 136
6.4 Example factor graph of the police forces binary DCOP model . 140
6.5 Example factor graph of the firefighters interface 141
6.6 Example factor graph of the police forces interface 142
6.7 Performance comparison when decreasing the agent resources . . 146

x

List of Tables

1.1 Example DCOP algorithms and their execution scalability 3
1.2 Example DCOP algorithms and their resource scalability 4

2.1 Classification of DCOP algorithms 23
2.2 Overview of local search DCOP algorithms 26

4.1 Effect of r parameter on the message computation task of GDL-
based algorithms . 83

4.2 Settings of the general message computation scheme to implement
message computation methods of GDL-based algorithms 84

4.3 Parameter settings to obtain the message computation methods
in the literature from our general message computation scheme in
Figure 4.12 . 86

4.4 Alpha values depending on application domain. 89

5.1 Relationship of the implemented algorithms with other state-of-
the-art approaches . 119

5.2 Problem dimensions explored and their values 124

6.1 Statistics for Greedy , DSA and BMS averaged over 30 runs in the
Paris scenario (agents start acting after 25 iterations). 144

xi

xii

Chapter 1

Introduction

Coordination is the process by which independent actors (agents) align their
decisions to achieve greater outcomes than when acting separately. From insect
colonies to human associations, coordination has naturally emerged everywhere
around us in many different forms. However, the advent of autonomic comput-
ing devices with communication abilities presents an unprecedented challenge:
to identify and develop mechanisms that allow agents to coordinate their actions
without human supervision. Moreover, scalability is a key feature of such mech-
anisms in many emerging applications, including sensor networks, smart grids
and emergency response [Estrin et al., 1999].

There exist multiple frameworks to handle Multi-Agent coordination in the
literature, each with its own strengths and weaknesses [Tambe et al., 2005]. For
instance, the Distributed POMDPs framework allows for cooperative decentral-
ized coordination when the outcome of the agents’ actions is uncertain. How-
ever, handling uncertainty explicitly leads to very complex (NEXP-Complete)
problems [Bernstein et al., 2002]. Similarly, the Belief-Desire-Intentions (BDI)
framework empowers agents with cognitive abilities, but requires agents with
symbolic reasoning capabilities [Rao et al., 1995]. In this dissertation we center
on the Distributed Constraint Optimization Problem (DCOP) framework [Modi
et al., 2005]. Despite being a simpler framework than the others above, our
hypothesis is that DCOPs are powerful enough to handle many application do-
mains, and that this simplicity provides tangible efficiency benefits. In essence,
the DCOP framework captures the value of local interactions between agents to
subsequently maximize the social value.

A DCOP is basically a distributed Markov Random Field [Rogers et al.,
2011]. Variables represent the decisions that agents must make, and edges be-
tween variables indicate that joint choices for those decisions yield different val-
ues for the system. This model captures the distributed nature of a problem
because an agent only needs to know how its decisions interact with those of
its direct neighbors in the graph. Then it is the task of a DCOP algorithm to
find the combination of choices that maximize the value obtained from all these
inter-related interactions.

1

2 CHAPTER 1. INTRODUCTION

This approach has two main advantages. Firstly, it can represent a vast num-
ber of coordination situations [Pecora and Cesta, 2007; Junges and Bazzan, 2008;
Kim et al., 2010]. Secondly, it supports the development of generic algorithms
to solve them (e.g., ADOPT [Modi et al., 2005], DPOP [Petcu and Faltings,
2005b], AFB [Gershman et al., 2009], DSA [Zhang et al., 2005], MGM [Mah-
eswaran et al., 2004a], Max-Sum [Farinelli et al., 2008]). Moreover, although
DCOP algorithms may pursue the optimal solution, they may also trade-off
solution quality for execution speed, providing the flexibility required to reach
our goals. Hence, in the following we first introduce the reasons that lead to
this work, and then present the research questions that settle these goals in
Section 1.2.

1.1 Motivation

The DCOP model enables agents to make coordinated decisions in a decentral-
ized manner. However, some may argue that the burden of decentralized solving
is unnecessary: agents may send their information to a central authority who
decides the actions each agent should execute and communicates those actions
back. This is a sensible strategy in some situations, but has some very undesir-
able properties for certain applications.

Consider a number of personal assistant software agents whose task is to
schedule meetings between the people they represent. These people have their
own agendas and preferences, and they would rather not reveal them to each
other. However, they want their software agents to decide where and when each
meeting should be held. This is a canonical example application of the DCOP
framework [Maheswaran et al., 2004b], and showcases one of the motivations for
decentralized solving: to enable coordination without making agents reveal their
private information completely. A DCOP model for this problem is to introduce
one variable for each agent and meeting a user has to attend. The possible values
for that variable are the possible start times of the meeting. Then we capture
the relationships between these choices by introducing constraints between the
variables. These constraints yield some cost when either two agents choose a
different start time for the same meeting, or an agent chooses the same start time
for two different meetings. A DCOP algorithm will try to find the combination
of starting times that minimizes the sum of the costs among all constraints. If
the cost is zero, then the algorithm has found a conflict-free schedule.

This hints the first and most studied dimension of scalability issues that
DCOPs must handle: the scalability in execution time. Notice that, to find a
conflict-free schedule, the DCOP algorithm may have to try all possible combi-
nations of starting times (variable values). Nonetheless, the number of possible
combinations grows exponentially on the number of meetings and the number
of possible starting times. This follows from the fact that, despite being one of
the least complex multi-agent coordination models, DCOP problems are shown
to be NP-Hard [Modi et al., 2005].

Table 1.1 summarizes the scalability levels of some DCOP algorithms in

1.1. MOTIVATION 3

Execution scalability
(approx. num. of agents)

Low (tens) Mid (hundreds) High (thousands)

Quality guarantee Optimal Tight bound Loose or no bound

DCOP
Algorithms

ADOPT
DPOP

Action-GDL

Bounded Max-Sum
DaCSA

p-optimality

DSA
MGM

Max-Sum

Table 1.1: Example DCOP algorithms and their execution scalability.

terms of solving time. Despite the intractability of DCOPs, researchers have
successfully developed several complete algorithms for DCOP solving, such as
ADOPT [Modi et al., 2005], DPOP [Petcu and Faltings, 2005b] and its gener-
alization Action-GDL [Aji and McEliece, 2000; Vinyals et al., 2010b]. Optimal
algorithms guarantee the maximum possible solution quality, but they can only
cope with small problems of a few tens of agents at most. Another approach
is to drop optimality in exchange for faster execution times, yet still provide a
tight bound on the quality of the solutions. Examples of such algorithms include
the Bounded Max-Sum algorithm [Rogers et al., 2011], DaCSA [Vinyals et al.,
2010a], and the p-optimality framework [Okimoto et al., 2011]. The caveat of
these algorithms is that, to guarantee such tight bounds, they must maintain
some global information of the problem. For instance, Bounded Max-Sum in-
cludes a pre-processing step that identifies the constraints with maximum costs.
In a decentralized setting, these kinds of global computations take a long time
if the number of agents is large. Finally, there are also algorithms that pro-
vide approximate solutions with loose or no bounds on their quality, such as
DSA [Fitzpatrick and Meertens, 2003], MGM [Maheswaran et al., 2004a] and
Max-Sum [Farinelli et al., 2008]. These algorithms exclusively operate with lo-
cal states, and thus can handle applications with large numbers of agents.

Although execution time scalability is one of the major concerns of DCOP
algorithms, it is not the only one. To illustrate this, consider another applica-
tion: the coordination of a network of autonomous sensors [Zhang et al., 2005].
In this scenario, an institution deploys a number of small, battery-operated au-
tonomous sensors to monitor a hazardous or hard-to-reach location. The sensors
should coordinate their sensing schedules to cover as much area as possible while
minimizing their battery usage to extend the network’s lifetime. In this case,
privacy (between the sensors) is simply not an issue. However, it is still desir-
able to allow the sensors to coordinate in a decentralized manner to improve the
robustness of the network and eliminate any single point of failure. Moreover,
communication in this scenario is particularly expensive, because the sensors’
radios consume more battery than their CPUs and sensing units. Therefore, a
coordination mechanism for such wireless sensor network should strive to employ
as little communication as possible, even at the expense of increasing computa-
tional cost.

The above example highlights that an important characteristic that deter-
mines whether a DCOP algorithm is appropriate for some application domain

4 CHAPTER 1. INTRODUCTION

Resource scalability
(approx. num. of agents)

Low (tens) Mid (hundreds) High (thousands)

DCOP
Algorithms

DPOP
Action-GDL
p-optimality

Bounded Max-Sum
Max-Sum
DaCSA

ADOPT
DSA
MGM

Table 1.2: Example DCOP algorithms and their resource scalability.

or not is the amount of resources that agents require to run it. Table 1.2 shows
the same DCOP algorithms considered in Table 1.1, now classified regarding re-
source scalability. For instance, DPOP scales badly on this front because it uses
a linear (in the number of variables) amount of steps to solve a problem, but each
step requires an exponential amount of memory and computation. In contrast,
Max-Sum typically requires more steps, but the resources required at each step
are exponential only on the number of neighbors of any variable, instead of on
all the problem’s variables. At the further end of the scale we find algorithms
that do need a constant amount of memory and computation at each step. No-
tice that this table classifies the algorithms regarding the amount of resources
employed at each step, disregarding the number of steps they require. Hence,
ADOPT (which takes an exponential number of steps) belongs to the same cat-
egory than DSA and MGM (which typically need much fewer iterations), even
though the cumulative amount of resources they use is widely different.

Execution time and resource requirements tell us whether an algorithm can or
cannot operate on a particular application domain. Hence, we now have a some
rough guidelines to pick a DCOP solving algorithm depending on the number of
agents or decisions involved in our problem. Nonetheless, there is another, more
subtle issue we should consider: the modeling scalability. In the two previous
examples, all agents were of the same kind, and made similar decisions. Even in
this relatively simple cases, a non-trivial amount of research has been devoted
to the modeling of different problems [Maheswaran et al., 2004b; Pecora and
Cesta, 2007; Farinelli et al., 2008; Junges and Bazzan, 2008; Kim et al., 2010].
Moreover, many situations in the actual world require heterogeneous agents to
cooperate between them. Consider an emergency response scenario: a city has
just suffered a major natural disaster (e.g., an earthquake). As a result, some
buildings collapsed, trapping civilians inside and partially blocking the streets,
other buildings caught fire, and the city traffic is chaotic. In this situation,
medical teams must cooperate with firefighter brigades and police patrols to
rescue as many civilians as possible while keeping fires at bay. Consequently, to
coordinate these heterogenous teams becomes a critical issue in such scenarios.

As explained before, one of the major advantages of the DCOP model is that
it can represent a vast number of coordination situations. Hence, it is certainly
possible to model a complex scenario such as the rescue one using DCOPs, as
shown by Ramchurn et al. [2010a]. However, this is a non-trivial task: there
are multiple ways to model a problem, and different models work better with
some algorithms than others. Therefore, it is important to develop languages

1.2. CHALLENGES 5

and methodologies that ease the development of DCOP models to increase their
potential applicability. Furthermore, such languages and methodologies should
allow the models to capture as much information about the problem as the
designer has, and the algorithms should employ this information. Unfortunately,
to the best of our knowledge, the design of methodologies and languages for
DCOP modeling has received very little attention so far. Although a few works
exist on this topic [Sultanik et al., 2007; Delle Fave et al., 2012a], we argue that
this area requires further research.

1.2 Challenges

There are many challenges that may be tackled to improve the scalability (and
thus applicability) of the DCOP framework. In this dissertation we begin by
focusing on those problems where it is feasible to compute optimal solutions.
Looking at Table 1.1 it may seem that all complete algorithms have the same time
costs. However, each algorithm employs different techniques and heuristics, and
hence their performance varies on different types of problems. As a consequence,
a sensible question to ask is

Question 1. Can we identify application characteristics that provide cues as to
which solving algorithm is better for that application?

For instance, based on the analysis in Section 1.1, DPOP and Action-GDL
do not seem to be good algorithms, because they scale poorly both in terms of
execution time and resource requirements. However, it has been shown that they
actually outperform other complete algorithms on many applications [Petcu and
Faltings, 2005b; Junges and Bazzan, 2008], provided the agents can cope with
the resource requirements of the algorithm. Thus, we can formulate a follow-up
question:

Question 2. Can we improve the resource scalability of DCOP algorithms for
which this scalability is a limitation?

By answering Question 1 we can identify problems where a certain DCOP
algorithm is preferable over others, up to the point where it may be the only
choice to optimally solve those scenarios within their required execution time.
Then, if that algorithm has certain resource limitations and we can successfully
answer Question 2, we can effectively extend the range of optimally solvable
problems using state-of-the-art techniques.

In the second part of the dissertation we focus on larger-scale, dynamic ap-
plications where optimal solving is not an option anymore. A typical assump-
tion on the current DCOP literature is that problems are static. That is, that
the value of the interactions between agents does not change and no decisions
are introduced or removed while the agents are running the algorithm. This
is a reasonable assumption on some application domains, such as the meeting
scheduling described above. However, large scale coordination problems usually
involve agents that can move and operate within a dynamic environment that is

6 CHAPTER 1. INTRODUCTION

constantly changing. A clear example of such application is the rescue scenario.
There, rescue teams have to move to accomplish their goals, and meanwhile the
city’s conditions keep constantly evolving. As a result, an important question
to answer before dealing with scalability issues in such scenarios is:

Question 3. Can the DCOP framework handle dynamic problems? And if so,
how?

Intuitively, it is reasonable to think that such dynamic settings require agents
to make decisions quickly. Moreover, quality guarantees in this setting are still
desirable, but much less important because the environments’ evolution quickly
invalidates those guarantees. Hence, the best candidates here are algorithms
that scale well in terms of execution time. Ideally, we should be able to answer
Question 1 and Question 2 for this kind of applications, too. There is a significant
difference though: where complete algorithms compete for the best possible
execution times, approximate algorithms usually take a similar amount of time,
and compete on the quality of the obtained solutions instead.

This distinction is important because the quality of the solutions obtained by
approximate DCOP algorithms heavily depends on how the problem is modeled.
Unfortunately, it is currently hard to identify which model works best with each
algorithm without actually testing them. An appealing possibility is thus to
approach the situation from another angle, and asking:

Question 4. Can we develop modeling techniques that benefit certain DCOP
algorithms?

This question rises awareness of the fact that modeling is a fundamental is-
sue to consider to improve the practical ability of the DCOP framework. In
addition, notice that potential DCOP applications are rapidly growing not just
in the number of involved agents, but also in the heterogeneity of the decisions
these agents must make. As a consequence, it is desirable to study modeling
approaches that explicitly consider and exploit such heterogeneity to facilitate
the designer’s task. Therefore, the last major challenge considered in this dis-
sertation is

Question 5. Can we ease the modeling of complex scenarios as DCOPs?

1.3 Contributions

In this dissertation we contribute to the challenges posed by improving DCOP
algorithms to scale better, and applying them to actual-world problems. In
particular, we study techniques to improve the scalability and applicability of
DCOP algorithms exploiting the Generalized Distributive Law (GDL) idea [Aji
and McEliece, 2000]. The GDL is a generic theoretical framework that captures
the core ideas behind several DCOP algorithms [Vinyals et al., 2010b], and also

1.3. CONTRIBUTIONS 7

from many algorithms in other research areas [Aji and McEliece, 2000].1 The
main reasons to choose the GDL framework are the following: (i) it is flexible
enough to encompass both complete and approximate algorithms; (ii) it has nice
theoretical properties, such as a guaranteed better worst case time than any
other complete algorithm; and (iii) being such a general framework, it fosters
opportunities for cross-pollination between research areas.

Due to the significantly different issues and possible applications between
optimal and approximate DCOP algorithms, we divided this dissertation in two
parts: a first part focused on optimal solving, and a second one concerned with
approximate solving.

1.3.1 On optimal solving

In the first part of the thesis we exploit the aforementioned theoretical proper-
ties of the GDL framework to answer our Question 1 above. Specifically, most
complete DCOP algorithms have a worst time complexity exponential on the
number of variables of the problem. In contrast, the complexity of GDL-based
algorithms is bounded by the treewidth of the problem, which is always lower
than or equal to the number of variables [Dechter et al., 2001].

However, GDL-based algorithms bear large computation and communication
costs [Vinyals et al., 2009]. As a result, in this part we focus on answering Ques-
tion 2 in Section 1.1, regarding GDL-based algorithms on applications where the
treewidth is typically low with respect to the number of variables. Against this
background, we make the following contributions:

Pure algorithmic improvements

The direct approach to lessen the resource requirements of an algorithm is to
devise techniques that make it more efficient. Hence, we begin by building
on top of the state-of-the-art GDL with function filtering algorithm [Brito and
Meseguer, 2010a]. Function filtering is a technique introduced by Sánchez et al.
[2005] that can reduce the resource requirements of the classic GDL algorithm by
pruning (filtering) parts of the solution space that are known to be suboptimal.

The amount of filtering (and hence the efficiency increase) depends on two
measures computed during the execution of the algorithm: lower bounds on
the exchanged constraints, and the best known solution so far which is used
as a global upper bound. Therefore, in Chapter 3 we make improvements on
both fronts. First, we introduce the so-called two-sided filtering technique, which
improves the tightness of the computed lower bounds. Then, we show how better
solutions can be found during the algorithm’s execution by exploring multiple
solutions in parallel.

1We note that the GDL framework was introduced after several of the algorithms we call
GDL-based were already developed. Hence, we use the GDL-based qualifier to mean algo-
rithms that can be explained through the GDL framework, disregarding their chronological
development.

8 CHAPTER 1. INTRODUCTION

Related publications:

• Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., and Rodriguez-Aguilar,
J. A. (2011c). Two-sided function filtering. 11th Workshop on Preferences
and Soft Constraints, pages 104–112

• Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., and Rodriguez-Aguilar,
J. A. (2011b). Improving function filtering for computationally demanding
dcops. Workshop on Distributed Constraint Reasoning at IJCAI 2011,
pages 99–111

Source code available at:

• Pujol-Gonzalez, M. (2010–2014a). GDLFiltering: a GDL with function
filtering DCOP solver. http://github.com/kilburn/GDLFiltering

Adapting the algorithm to agents’ resources

A more subtle approach to increase the scalability of a distributed algorithm is
to better adapt its functioning to the agents’ capabilities. Hence, in Chapter 4
we focus on techniques allowing agents to tradeoff between computation and
communication costs to achieve such adaptation.

With this aim, we first introduce the so-called top-down message computa-
tion approach, which is specifically designed to reduce the communication re-
quirements of the algorithm, disregarding the computational costs. As a result,
top-down approximations are good for application domains where communica-
tion is vastly more expensive than computation. For instance, the sensors of a
sensor network possess low-bandwidth, high-latency radios to communicate. In
contrast, their computation abilities are much better.

However, top-down approximations by themselves are an all-or-nothing ap-
proach, and do not provide us with the required flexibility. Therefore, we then
present a scheme that generalizes several variants of GDL-based algorithms. This
general scheme sheds some light on the differences between these methods, and
which conditions fit each of them best. Moreover, it allows the system designer
to tradeoff communication for computation resources, adapting it to the specific
characteristics of the application domain.

Related publications:

• Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., and Rodriguez-Aguilar,
J. A. (2011a). Communication-constrained dcops: Message approxima-
tion in gdl with function filtering. In The 10th International Conference
on Autonomous Agents and Multiagent Systems-Volume 1, pages 379–386.
International Foundation for Autonomous Agents and Multiagent Systems

Source code available at:

• Pujol-Gonzalez, M. (2010–2014a). GDLFiltering: a GDL with function
filtering DCOP solver. http://github.com/kilburn/GDLFiltering

http://github.com/kilburn/GDLFiltering
http://github.com/kilburn/GDLFiltering

1.3. CONTRIBUTIONS 9

1.3.2 On approximate solving

In the second part of this dissertation we focus on realistic, larger scale problems
where optimal solving is not possible anymore. Unfortunately, there is a lack of
realistic datasets, benchmarks and testbeds to explore DCOP-based solutions for
such applications. A notable exception is the RoboCup Rescue Simulation Plat-
form [Skinner and Ramchurn, 2010], where several teams of rescue agents must
coordinate to mitigate damages after an earthquake has taken place on a large
city. However, the RoboCup simulation platform represents a fairly complex
problem involving heterogeneous agents with uncertain information. Consider-
ing that, we start undertaking our Question 3 on a novel, simpler yet realistic
problem, and only after turning our attention to more involved applications such
as the RoboCup.

Tackling dynamic problems

In Chapter 5 we first introduce the Limited-range Online Routing Problem,
where a team of UAVs with limited communication range must coordinate to
service tasks as requested by the human operators. Then we identify state-of-
the-art approaches to deal with this problem. Furthermore, we present a full
simulation toolkit to develop new solutions for the LORP, and to compare them
with the readily-implemented sate-of-the-art approaches mentioned above.

Thereafter we show how such a highly-dynamic problem can be approached
as a series of distributedly-built DCOPs, and then solved using a fast, approx-
imate DCOP algorithm. Additionally, we introduce two solutions using the
approximate version of GDL, commonly known as the Max-Sum algorithm. We
selected Max-Sum because of its theoretical guarantees and good experimental
results [Farinelli et al., 2008]. Nonetheless, the standard version of Max-Sum
also suffers from some exponentiality issues. Despite that, we show that by us-
ing a clever encoding of the problem and the Tractable Higher-Order Potentials
(THOPs) introduced in Tarlow et al. [2010] it is sometimes possible to overcome
that limitation. Namely, we show that by designing using binary DCOPs and
THOP constraints, it is possible to reduce Max-Sum’s complexity from expo-
nential to polynomial, thus answering our Question 4 above.

Related publications:

• Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., Rodŕıguez-Aguilar, J. A.,
and Tambe, M. (2013b). Engineering the decentralized coordination of
UAVs with limited communication range. In Advances in Artificial Intel-
ligence - 15th Conference of the Spanish Association for Artificial Intelli-
gence, CAEPIA, volume 8109 of Lecture Notes in Computer Science, pages
199–208. Springer

• Pujol-Gonzalez, M., Cerquides, J., and Meseguer, P. (2014b). MASPlanes:
A multi-agent simulation environment to investigate decentralised coor-
dination for teams of UAVs (demonstration). In The 13th International

10 CHAPTER 1. INTRODUCTION

Conference on Autonomous Agents and Multiagent Systems, pages 1695–
1696. International Foundation for Autonomous Agents and Multiagent
Systems

Source code available at:

• Pujol-Gonzalez, M. (2013–2014b). MASPlanes simulator for the devel-
opment of distributed coordination algorithms. https://github.com/

MASPlanes/MASPlanes

• Pujol-Gonzalez, M. and Penya-Alba, T. (2013–2014). Binary max-sum
java library. http://binarymaxsum.github.io/

Tackling design complexity

The above work highlights the impact modeling can have when dealing with
highly dynamic environments. As a consequence, in Chapter 6 we focus on an-
swering Question 5 above. To this end, we present a new methodology to model
problems where heterogeneous teams of agents must cooperate in non-trivial
ways to achieve a common objective. Our methodology exploits the additive
nature of DCOPs to break the design task into smaller and simpler composable
sub-tasks. Essentially, each sub-task models a different functional area of the
problem (e.g., a team in the RoboCup example).

Using this methodology we introduce an inter-team coordination model for
the RoboCup Rescue Simulation scenario. Furthermore, we show that the result-
ing model can also be encoded as a binary DCOP using only THOP constraints.
As a consequence, we are able to employ Max-Sum on the full inter-team model
to allow agents to reach joint decisions within the constraints of this demanding
domain.

Related publications:

• Pujol-Gonzalez, M., Cerquides, J., Farinelli, A., Meseguer, P., and
Rodriguez-Aguilar, J. A. (2014a). Binary max-sum for multi-team task al-
location in robocup rescue. International Joint Workshop on Optimisation
in Multi-Agent Systems and Distributed Constraint Reasoning (OptMAS-
DCR)

• Pujol-Gonzalez, M., Cerquides, J., Escalada-Imaz, G., Meseguer, P., and
Rodriguez-Aguilar, J. A. (2013a). On binary max-sum and tractable hops.
11th European Workshop on Multi-agent Systems (EUMAS 2013), 1113

Source code available at:

• Pujol-Gonzalez, M., Kleiner, A., Farinelli, A., Ramchurn, S., Shi, B., Maf-
fioletti, F., and Reffato, R. (2012–2014c). RMASBench: Multi-agent coor-
dination benchmark. https://github.com/MASPlanes/MASPlanes

In addition, we have submitted two journal papers from the material pre-
sented in Chapters 4 and 5 respectively, which are currently undergoing the
review process.

https://github.com/MASPlanes/MASPlanes
https://github.com/MASPlanes/MASPlanes
http://binarymaxsum.github.io/
https://github.com/MASPlanes/MASPlanes

1.4. GUIDE TO THE THESIS 11

1.4 Guide to the thesis

The remainder of this dissertation is organized as follows.
Chapter 2. We first formalize the DCOP model and introduce some defini-

tions and notation we use throughout the thesis. Then we present an example
application, we show how it can be modeled as a DCOP, and we present a few
different DCOP visualizations used elsewhere in the dissertation. Thereafter,
we contextualize our work within the state-of-the-art literature, and discuss dif-
ferent existing approaches to optimal and approximate DCOP solving. In this
chapter we also introduce the General Distributive Law and explain how it can
be employed to develop both optimal and approximate DCOP algorithms.

Chapter 3. We introduce the GDL with function filtering algorithm for
optimal DCOP solving, and show how two-sided filtering improves the compu-
tation of lower bounds during the algorithm’s execution. Then we focus on the
computation of upper bounds within the algorithm, introducing a scheme to
compute multiple upper bounds simultaneously. Finally, we present a couple of
techniques to exploit such scheme and empirically evaluate all these improve-
ments.

Chapter 4. We describe the top-down approximations technique to com-
pute GDL messages in communication-constrained scenarios. After that, we
present our general framework for message computation, that allow us to trade-
off computation and communication requirements of the algorithm.

Chapter 5. We present the LORP and the MASPlanes simulation environ-
ment for the development and testing of LORP solution techniques. Thereafter
we show how to model the LORP problem as a sequence of DCOP algorithms,
and introduce two LORP solutions using the Max-Sum algorithm. Additionally,
we introduce the THOP constraints and show how these can help at scaling the
Max-Sum algorithm.

Chapter 6. We explain our methodology to model complex problems with
heterogeneous agent teams, and provide an example by modeling the RoboCup
Rescue Simulation challenge problem.

Chapter 7. We conclude this dissertation by providing a summary of the
presented contributions, drawing the most notable conclusions derived from this
work, and outlining possible directions for future research.

Chapter 2

Background and related
work

In this chapter we provide the necessary context to position this dissertation
within the extensive literature about DCOPs. With this aim, we first explain
the DCOP model and the GDL framework, as well as some definitions required
to understand it. Thereafter we examine the most prominent DCOP solving
approaches and algorithms, with special emphasis on their scalability character-
istics. Ultimately, this survey allows us to highlight the necessity and relevance
of the techniques developed throughout this thesis.

2.1 Background

In Section 2.1 we introduce the Distributed Constraint Optimization Problem
(DCOP) framework for multi-agent coordination. We begin by formally defin-
ing what a DCOP is and introducing some notation that we will use across the
dissertation. Thereafter, we present an example application, show how it can be
modeled as a DCOP, and introduce a number of different representations com-
monly used to represent DCOP models. Finally, we introduce the Generalized
Distributive Law framework and explain why it is our foundation of choice to
build DCOP algorithms upon.

2.1.1 The DCOP model

A Distributed Constraint Optimization Problem models a number of agents
that must make some decisions. These agents have a finite number of possible
choices for each decision. Then, the synergies between decisions are captured
using constraints: functions that specify a different value for each combination
of choices of a subset of the problem’s decisions. An assumption of the DCOP
framework is that the global utility of the system is simply the sum of the utilities

13

14 CHAPTER 2. BACKGROUND AND RELATED WORK

obtained from each constraint. Hence, the task of a DCOP algorithm is to find
the choice for each decision that maximizes this global utility.

In the following we introduce a formal definition of a DCOP, as well as
some further definitions that we require to formalize the objective of a DCOP
algorithm.

Definition 2.1. A DCOP problem is a tuple Ω = 〈A,X,D,C,m〉, where:

• A is the set of agents involved in this problem.

• X is a set of discrete variables that represent all choices to make. Each
variable x ∈ X has a finite domain Dx, which is the set of possible choices
for that decision.

• D = {Dx | x ∈ X} is the set of all domains of all variables. That is, the
set that contains all possible choices for each decision in this problem.

• C is the set of constraints. Each constraint f ∈ C is a function defined
over a subset S ⊆ X of the problem’s variables, and specifies a utility for
each combination of choices for these variables. Namely, f :

∏
x∈S Dx →

R∪ {−∞}, where
∏

is the set cartesian product. The set S is also known
as the scope of the constraint, namely S = sc(f).

• m : X → A is a function mapping each variable (decision) to an agent
(that must make that decision).

We require some further definitions prior to the introduction of the notion
of solution of a DCOP.

Definition 2.2. Given a set of variables S ⊆ X, the assignment space of S,
noted as S, is the set of all possible combinations of values for the variables in
S. That is, S =

∏
x∈S Dx.

Assignment spaces capture all possible combinations of choices that the
agents may make for a subset of the problem’s decisions.

Definition 2.3. An assignment of a set of variables S ⊆ X, noted as s ∈ S,
maps each variable y ∈ S to some value in its domain.

For instance, the assignment s = 〈x = a, y = b〉 maps (assigns) value a to
variable x and value b to variable y. In other words, an assignment s is a tuple
of specific choices for the decisions in S. When an assignment specifies a choice
for all of the decisions of the problem, we say that it is a complete assignment.
Namely,

Definition 2.4. A complete assignment of a DCOP is an assignment x that
assigns a value to each variable in X.

In some situations it is useful to consider only a subset of the choices repre-
sented in an assignment. Hence, we define the projection of an assignment as
an operation that defines a new assignment, but containing only the subset of
choices related to specific decisions:

2.1. BACKGROUND 15

Definition 2.5. The projection of an assignment s over a set of variables T ⊆ S,
written s[T], is a new assignment t formed by the values that s assigns to the
variables in T .1

With these definitions in place, we can readily introduce the DCOP model
as an optimization problem whose objective is to maximize the utility obtained
from the sum of all constraints. Formally,

Definition 2.6. The objective function of a DCOP Ω = 〈A,X,D,C,m〉 is the
function that captures the aggregated utility of a complete assignment x, namely∑

f∈C
f(x[sc(f)]). (2.1)

Moreover, DCOP algorithms must function in a distributed manner because
the problem’s information is assumed to be spread between the agents. Addi-
tionally, we make the following common assumption:

Assumption 2.1. An agent knows about all constraints involving its own de-
cisions. Namely, an agent a only knows about the set of constraints Ca, where

Ca = {f ∈ C | ∃x ∈ sc(f) such that m(x) = a}.

Furthermore, all agents involved in Ca (except a itself) form the neighbors
of a. In other words,

Definition 2.7. The neighbors of an agent a ∈ A, written nb(a), is the set of
agents with which a shares some constraint. Formally,

nb(a) = {a′ ∈ A | ∃f such that f ∈ Ca and f ∈ Ca′}.

Also, we make the following assumption regarding the communication abili-
ties of agents in a DCOP:

Assumption 2.2. An agent a can only communicate directly with its neighbors
nb(a).

Consequently, a DCOP algorithm is a distributed algorithm that aims to
find a complete assignment that maximizes the DCOP’s objective function in
Equation (2.1). While this is the goal of any DCOP algorithm, there are a
few discrepancies regarding what constitutes a DCOP solution. Research on
complete DCOP algorithms considers that a solution is a complete assignment
whose utility is not−∞, meaning that no hard constraint is violated. In contrast,
research on approximate DCOP algorithms considers any complete assignment
to be a solution, because approximate algorithms generally cannot guarantee
that no hard constraint is violated. In any case,

1In an abuse of notation, we write s[x] to mean the projection of assignment s to a set
containing the single variable x, namely s[{x}].

16 CHAPTER 2. BACKGROUND AND RELATED WORK

Definition 2.8. An optimal solution x∗ is any complete assignment that max-
imizes the DCOP’s objective function in Equation (2.1).

This concludes the basic definitions employed by the DCOP framework, but
it may still be a bit unclear how to actually model situations using it. Hence,
the following Section introduces a few different applications and shows how they
can be modeled as DCOPs.

2.1.2 Example application: meeting scheduling

The DCOP model has already been used to represent a wide range of applica-
tion domains. Examples include meeting scheduling [Maheswaran et al., 2004b],
sensor networks [Ali et al., 2005], traffic light control [Junges and Bazzan, 2008],
and radar coordination [Kim et al., 2010] among others. In this Section we first
introduce the meeting scheduling problem and then show how it can be tackled
using the DCOP framework.

Arranging meetings with other people is a naturally distributed, very time
consuming task that we constantly perform. In essence, the process involves
matching our personal agendas with those of the people we need or want to
meet. In an actual-world scenario it would be interesting to consider additional
features (e.g., restrictions about the meeting places), but we leave those out of
our example to keep it simple. The main problems with manual meeting arrange-
ments are that: (i) the communication latency is huge (receiving a response from
another person can take from seconds to days); (ii) our agendas change often;
and (iii) the whole process is very time-consuming for everyone involved.

As a result, we have decided to automate this task using software assistants.
Each person on the system has her own software assistant that knows the user’s
preferences and manages her agenda. Now, when we want to schedule a new
meeting, we just need to notify our assistant. Then, our assistant will arrange
the meeting with the assistants of other attendants, possibly rescheduling other
meetings in the process. Hence, we require some model that allows these soft-
ware assistants to represent their users’ preferences and to compute meeting
schedules. Hereafter we present an example problem, and define a DCOP model
that encodes the situation as an optimization problem.

Example 2.1. In our example scenario, three users u1, u2 and u3 need to
arrange two meetings µ1 and µ2. Figure 2.1 shows that only u2 and u3 should
attend µ1, whereas u3 and u1 should attend µ2. Moreover, each meeting can be
scheduled at either 8 am or 9 am, and emoticons represent each user’s preferences
for each time slot. The goal is to decide the time at which each meeting should
be scheduled to maximize users’ preferences.

Definition 2.9. The scenario in Example 2.1 can be formalized as a DCOP
Ω = 〈A,X,D,C,m〉, where:

• A = {u1, u2, u3} is the set of agents in the scenario.

2.1. BACKGROUND 17

u2
u3

u1

µ1

µ2

Figure 2.1: Example of a meeting scheduling scenario.

• There is one variable xam ∈ X for each user ua ∈ A and each of the
meetings µm that user has to attend. That is, each variable xam represents
the time at which user ua decides to attend to meeting µm.

• The domain of each variable Dxam ∈ D is the set of available time slots
for the meetings, i.e., {8 am, 9 am}.

• There are three types of constraints in C:

1. First, constraints specifying the user’s preferences. Notice that our
constraints must yield real values, so we assign the utilities =1,

=0, and =−1 to the preferences in Figure 2.1. Now we can
introduce on preference constraint for each user and meeting she has
to attend. In this case the constraints are

f(x21) =

{
−1 if x21=8 am

1 if x21=9 am
, f(x31) =

{
0 if x31=8 am

1 if x31=9 am
,

f(x12) =

{
1 if x12=8 am

−1 if x12=9 am
, and f(x32) =

{
0 if x32=8 am

1 if x32=9 am
.

2. Second, constraints enforcing that all the participants of a meeting
must schedule it at the same time. Hence, there is one constraint f
with scope S·m for each meeting, defined as

f(s·m) =

{
0 if all xam ∈ s·m are equal

−∞ otherwise
,

where S·m is the set of variables of the meeting’s participants, namely
S·m = {xam′ ∈ X | m′ = m}.

18 CHAPTER 2. BACKGROUND AND RELATED WORK

x21

x12

x31

x32

(a) Primal graph.

f(s·1)

f(s·2)

f(s3·)

f(x12)

f(x21)
f(x32)

f(x31)

(b) Dual graph.

f(s·1)

f(s·2)

f(s3·)

f(x12)

f(x21)

f(x32)

f(x31)

x31

x32

x21

x12

(c) Factor graph.

Figure 2.2: Graphical representations of the meeting scheduling DCOP.

3. Third, constraints ensuring that an agent cannot attend multiple
meetings at the same time. Thus, there is one constraint of this
type for each agent a, with scope Sa·, defined as

f(sa·) =

{
0 if all xam ∈ sa· are different

−∞ otherwise
,

where Sa· = {xa′m ∈ X | a′ = a} is the set of all variables of the same
agent.

• Finally, m simply maps each variable xam to agent a.

With this definition the DCOP objective is aligned with the goal in our
example application. Hence, the optimal solution

x∗ = arg max
x

∑
f∈C

f(x[sc(f)]).

with value x∗ = 〈x12=8 am, x21=9 am, x31=9 am, x32=8 am〉 corresponds to the
best possible schedule, which is to conduct meeting µ1 at 9 am and meeting µ2

at 8 am, with a global utility of 3.

2.1.3 DCOP representations

In the previous section we presented a mathematical description of the DCOP
model for our example meeting scheduling problem. However, some may argue
that it is easier to grasp the agent relationships in the graphical representation
of Figure 2.1 than in our mathematical DCOP model. Because such interactions
form the basis of the DCOP model, multiple alternative visualizations have been
proposed in the literature. In this section we quickly review these graphical
representations, encoding our example problem in each one to highlight their
major advantages and caveats.

2.1. BACKGROUND 19

Primal graph

One of the most common graphical representations of DCOP models is the primal
graph, which focuses on providing a clean representation of the dependencies
between decisions (variables). Formally,

Definition 2.10. The primal graph of a DCOP Ω = 〈A,X,D,C,m〉 is a graph
Gp = 〈Vp, Ep〉 that contains one vertex vi ∈ Vp for each variable xi ∈ X and
one edge eij ∈ Ep between every two nodes vi and vj whose variables appear
together in a constraint. That is,

eij ∈ Ep if and only if ∃f ∈ C such that xi ∈ f and xj ∈ f.

Figure 2.2a shows the primal graph of our meeting scheduling DCOP model.
As expected, the result is a very simple graph where dependencies between
meeting attendance times are extremely easy to visualize. For instance, we
immediately see that x21 (the time at which user u2 decides to attend meeting
µ1) depends on x31 (the time at which user u3 decides to attend meeting µ1).
Moreover, because m maps each variable to some agent, this graph also represents
the direct communication links between agents.

Nonetheless, this simplistic visualization cannot represent certain informa-
tion about the nature of these interactions. In this simple example this is not
a problem. However, say that the graph contained an additional edge between
the x21 and x32 nodes. In such case, we would not be able to tell whether the
problem has a single interaction between x21, x32 and x31, or three separate
pairwise interactions between these decisions. This difference is a minor issue
when trying to understand a model, but can make an important difference for
solving algorithms.

Dual graph

For some solving algorithms, the most important part of the problem are the
constraints and how they depend on each other. Hence, a better visualization
for these algorithms is the dual graph, where the nodes are interactions (con-
straints), and links between nodes indicate that these interactions depend on at
least one shared decision (variable). Formally,

Definition 2.11. The dual graph of a DCOP Ω = 〈A,X,D,C,m〉 is a graph
Gd = 〈Vd, Ed〉 that contains one vertex vi ∈ Vd for each constraint fi ∈ C and
one edge eij ∈ Ed between every two nodes vi and vj whose constraint contains
the same variable. That is,

eij ∈ Ed if and only if ∃x ∈ sc(fi) such that x ∈ sc(fj).

The dual graph of our meeting scheduling example is represented in Fig-
ure 2.2b. This representation is less intuitive than the primal graph, but is
better at characterizing the objective function of our model. Hence, it is pri-
marily used to asses the complexity of computing solutions for a problem, or as
a foundation to distribute the computation load between agents.

20 CHAPTER 2. BACKGROUND AND RELATED WORK

Factor graph

Another common visualization is the factor graph, which seeks to provide all
the information of both the primal and the dual graphs in a single view. With
this aim, it represents the problem as a bipartite graph with two types of nodes:
variable nodes, usually represented as circles; and constraint nodes, represented
as rectangles. Then, an edge is added between every variable node and constraint
node such that the constraint depends on that variable.

Definition 2.12. The factor graph of a DCOP Ω = 〈A,X,D,C,m〉 is a bipartite
graphGf = 〈(X,F), Ef 〉 that contains one variable node for each variable xi ∈ X
and one constraint node for each constraint fi ∈ C. The graph contains an edge
eij ∈ Ef for each pair of variable and constraint nodes such that the constraint
depends on that variable. Formally,

eij ∈ Ef if and only if xi ∈ sc(fj).

The caveat of this visualization is that, as shown in Figure 2.2c, the resulting
graph is larger than when using other representations. However, the fact that
it accurately represents all interactions and dependencies of the model makes it
a very compelling choice to develop and analyze DCOP models for actual-world
applications.

2.1.4 The Generalized Distributive Law

This Section introduces the Generalized Distributive Law (GDL) as described
by [Aji and McEliece, 2000], which is the foundation upon which most of the
algorithms developed in this dissertation build upon. In the following we only
describe briefly the main idea exploited by the large family of GDL-based algo-
rithms. The particular details of different realizations of this basic idea will be
studied in depth in the corresponding chapters.

In mathematics, the Distributive Law is a widely known law relating the op-
erations of multiplication and addition. In its simplest form, the law is typically
stated as

ab+ ac = a(b+ c) . (2.2)

A first insight on why the Distributive Law is important for computer science in
general is that it provides the means for saving computation. That is, the results
of the operations on both sides of the equality are exactly the same. However,
we require three operations to compute the left-hand side (two multiplications
and one addition), whereas the right-hand side requires only two operations (one
addition and one multiplication).

The second key insight is that the gains can also be obtained when operating
functions defined over discrete variables, such as the constraints of a DCOP. To
illustrate this, consider a DCOP with constraints f1(x1) and f2(x1,x2), whose
variables all have d possible values. Thus, the domain of the constraint f1(x1),
defined over a single variable, has size |Dx1 | = d. Analogously, the domain size

2.1. BACKGROUND 21

of constraint f2(x1,x2) defined over two variables, is |Dx1
×Dx2

| = d× d = d2.
The objective function of such DCOP is

max
x1,x2

f1(x1) + f2(x1,x2) .

To make our point clearer, this objective function can be rewritten as

max
x1

max
x2

[
f1(x1) + f2(x1,x2)

]
. (2.3)

Now, because the maximization (max) is distributive over the sum (+), we can
apply the generalized distributive law to obtain

max
x1

[
max
x2

f1(x1) + max
x2

f2(x1,x2)

]
,

and since f1 does not depend on x2, this is equivalent to

max
x1

[
f1(x1) + max

x2

f2(x1,x2)

]
. (2.4)

To proceed, we require the following facts, which are explained in detail in
Chapter 3:

• We can sum two constraints fi and fj , obtaining a new constraint fk whose
scope is the union of the scopes of fi and fj . The cost of this computation
is the product of the domain sizes in the resulting constraint’s scope. For
instance, computing f1(x1) + f1(x1) yields a new constraint f3(x1) with
cost d, whereas computing f1(x1) + f2(x1,x2) yields a new constraint
f4(x1,x2) with cost d2.

• We can maximize a constraint fi over a subset S ⊆ sc(fi) of its variables,
obtaining a new constraint defined over the remaining variables. This
operation’s cost is equal to fi’s domain size. For example, we can compute
maxx1 f2(x1,x2) to obtain f4(x2) with cost d2. When we maximize a
constraint over all its variables, the result is simply the maximum value of
the constraint.

Using these facts, we can now assess that the time it takes to compute our
objective function using Equation (2.3) is 2d2 (d2 for the sum plus d2 for the
max). In contrast, if we compute using Equation (2.4) the cost is d2 + 2d (d2 for
the right-hand max, plus d for the sum, plus d for the final max), which is a lower
cost for any domain size d > 2. The savings in this example are modest because
the problem is very simple. However, these savings can become dramatic on
more involved problems.

Aji and McEliece [2000] also introduce the so-called GDL algorithm, a mes-
sage passing algorithm to compute arbitrary functions defined over any semi-
ring. In its purest form, the algorithm expects a tree as an input, where nodes

22 CHAPTER 2. BACKGROUND AND RELATED WORK

represent combinations of functions, and edges represent projections. The theo-
retical properties of the algorithm only guarantee a correct solution if the input
is a (special kind of) tree. However, there exists extensive literature showing
that, in practice, the algorithm provides good approximate solutions when re-
peatedly iterated on arbitrary input graphs [Kschischang et al., 2001]. Hence,
the GDL algorithm can be used as a basis for both complete and approximate
algorithms.

One of the most appealing points of the GDL framework is that it is not
defined for some particular model such as DCOPs. Instead, it is defined over
semi-rings, which are abstract mathematical structures defined by a set of possi-
ble values and two operations. For instance, here we employed a semi-ring whose
possible values are the real numbers plus −∞, and whose operations are the sum
and max. By using other semi-rings, the same techniques can be employed to
solve a wide range of problems. In fact, the GDL algorithm has been shown
to generalize algorithms from many research areas [Aji and McEliece, 2000], in-
cluding signal processing (e.g., Fast Fourier Transform on finite Abelian groups),
information theory (e.g., the Viterbi and BCJR decoding algorithms for convo-
lutional codes), and artificial intelligence (e.g. discrete-state Kalman filtering,
belief propagation) among others. As a consequence, algorithms and techniques
based on the GDL create a huge opportunity for cross-pollination between these
areas.

At this point it should be clear that the GDL framework is an appealing
foundation to build DCOP algorithms upon. Nonetheless, in DCOP solving
there are certain issues that are not addressed by the GDL algorithm, and hence
must be addressed specifically. First, notice that the GDL algorithm works
over a tree or graph which is assumed to be known before the algorithm’s execu-
tion. Thus, GDL-based DCOP algorithms must provide techniques to build such
graph from the DCOP definition. Second, DCOP algorithms must operate in a
decentralized manner. Being a message passing algorithm, the GDL algorithm is
relatively easy to distribute. However, DCOPs define a communication topology
that must be respected, and hence the allocation of GDL nodes to agents is also
an important concern to address. Third, the GDL algorithm allows us to com-
pute the value of a discrete function, whereas the DCOP objective is to compute
the assignment that yields this value. Therefore, GDL-based DCOP algorithms
must also devise techniques to obtain assignments instead of just values.

The core of this dissertation can be seen as a thorough exploration of different
approaches to deal with these issues. Particularly, we first study how the current
approaches affect the scalability of the resulting algorithms. Thereafter, we
propose improvements and new techniques that improve the scalability of both
optimal (Chapters 3 and 4) and approximate (Chapters 5 and 6) GDL-based
DCOP solving.

2.2. RELATED WORK 23

Type

Complete
Approximate

Global state Local state

S
o
lv

in
g

ap
p

ro
a
ch Search

SyncBB
AFB

ADOPT
BnB-ADOPT
ADOPT(k)

DSA
MGM

C-DALO

Inference
(*-)DPOP

Action-GDL
Filtered DPOP

DaC
Bounded Max-Sum

p-optimality
Max-Sum

Sampling
DUCT

D-Gibbs

Table 2.1: Classification of DCOP algorithms.

DJAO

2.2 Related work

In the background section of this chapter we have introduced the DCOP and
GDL frameworks, and explained how they can help us achieve multi-agent co-
ordination with a simple example. However, we have not yet discussed the
extensive literature about DCOP solving, and how this dissertation relates to
all this body of work.

To address this issue, Table 2.1 presents most existing DCOP algorithms
classified by type (columns) and solving approach (rows). Traditionally, these al-
gorithms are considered as either complete or approximate: complete algorithms
are guaranteed to find an optimal solution whereas approximate algorithms are
not. In this dissertation we go one step further and divide the approximate al-
gorithms into two additional categories: global-state and local-state algorithms.
Global state algorithms require some kind of global computation. For instance,
the algorithm may need to compute the total utility value of a configuration,
which can only be achieved by involving all the problem’s agents. In contrast,
local-state algorithms completely avoid such computations, and operate exclu-
sively using a local view of the problem.

In the remainder of this section we review the algorithms introduced in Ta-
ble 2.1 by going through the different solving approaches, briefly explaining how
they operate, and identifying their strengths and weaknesses.

2.2.1 Search-based algorithms

As the name implies, the basic idea of search-based DCOP algorithms is to per-
form a search over the assignment space to identify an assignment with optimum
utility. Moreover, this search must be carried in a distributed manner, because

24 CHAPTER 2. BACKGROUND AND RELATED WORK

this a basic requirement of the DCOP framework. Also, recall that the assign-
ment space of a DCOP is exponential on its number of variables, so brute-force
search methods do not scale beyond very small numbers of agents. This short-
coming can be addressed either by using exhaustive search with clever heuristics
and pruning techniques (leading to complete and global-state algorithms), or by
performing non-exhaustive local search (leading to local-state algorithms).

Complete and global-state search algorithms

The first class of search algorithms are those that employ exhaustive search
techniques, meaning that they orderly check the assignment space and can thus
explore (or discard) it entirely. Notice that most algorithms in this class can
be seen as both complete and global-state approximate algorithms: complete
because they are guaranteed to find an optimal solution given enough time; and
global-state approximate because they can be easily modified to maintain the
best solution found so far during the search. Then we could potentially stop
them at any time and use that solution.

We can differentiate algorithms of this type by looking at four main charac-
teristics: (i) the method used to build the search tree; (ii) the operation mode
(synchronous or asynchronous); (iii) the search strategy; and (iv) the heuristics
employed to prune the search space.

One of the first presented DCOP algorithms is the Synchronous Branch and
Bound (SBB) algorithm [Hirayama and Yokoo, 1997]. As its name implies, SBB
is a synchronous algorithm. The search tree is actually a search chain defined by
an ordering submitted to the algorithm. Then, SBB performs a depth-first search
strategy which backtracks whenever a partial solution is found to have larger
cost than that of a known complete assignment. That is, the algorithm keeps
accumulating the known cost of the current partial assignment, and backtracks
whenever that cost is already larger than the cost of a known solution.

The most famous among search-based DCOP algorithms is the Asynchronous
Distributed OPTimization (ADOPT) algorithm [Modi et al., 2005]. In its origi-
nal form, ADOPT is essentially a distributed and asynchronous implementation
of the classic A∗ algorithm. First, the DCOP’s variables are arranged in a Depth-
First Search (DFS) tree, also known as pseudotree, which defines parent-child
relationships between them. Next, ADOPT performs a best first search along
this tree, changing the exploration path whenever a possibly better alternative is
detected or a path is identified as sub-optimal. Later on, several improvements of
the original ADOPT algorithm have been proposed. Some works focused on tech-
niques to compute better DFS trees (e.g., ADOPT-ng [Silaghi and Yokoo, 2006]
and ADOPT-ing [Silaghi and Yokoo, 2007]), while others focused on constraint
preprocessing techniques [Ali et al., 2005]. One of the most notable ADOPT
spin-offs is the Branch and Bound ADOPT (BnB-ADOPT) algorithm [Yeoh
et al., 2008], which uses the same infrastructure than ADOPT but switches the
search strategy from best-first to depth-first search. BnB-ADOPT has also seen
a number of improvements over time. For instance, Yeoh et al. [2009] intro-
duced several caching techniques to speed-up the algorithm, and Gutierrez and

2.2. RELATED WORK 25

Meseguer [2010]; Gutierrez et al. [2013] combined it with soft arc consistency to
achieve large reductions in the number of exchanged messages. Later on, these
two algorithms have been generalized in the ADOPT(k) algorithm [Gutierrez
et al., 2011], whose k parameter serves as a gauge between best-first and depth-
first search strategies. Finally, the very recent DJAO algorithm [Kim and Lesser,
2014] is essentially the ADOPT(k) algorithm, but adapted to operate over a dif-
ferent kind of trees known as AND-OR trees. This enables DJAO to employ
heuristics computed by an approximate global state inference algorithm, signif-
icantly increasing its pruning capabilities.

Another significant algorithm is the Asynchronous Forward Bounding (AFB)
algorithm [Gershman et al., 2009]. Despite its name, the major insight of this al-
gorithm is that partial synchronization can be beneficial. That is, whereas BnB-
ADOPT operates in a fully asynchronous manner, AFB uses a mixed strategy: it
explores assignments synchronously, but computes their bounds asynchronously.

Local-state search algorithms

All the search algorithms mentioned above employ exhaustive search techniques,
which have the advantage of providing quality guarantees but must operate
within a global view of the problem. In this subsection we present some non-
exhaustive search algorithms for DCOPs, which can operate on entirely local
views of the problem and can find good assignments quickly, but cannot make
strong guarantees about the quality of their solutions. Essentially, algorithms
of this family are iterative algorithms where, at each iteration, the agents have
the opportunity to update their decisions depending on what their neighboring
agents choices are.

An excellent framework for the understanding of local-state search algorithms
is introduced by Chapman et al. [2011]. In that work, the authors identify
three issues that these algorithms must handle, as well as the different strategies
available to tackle them. In the following we briefly describe these issues and
how different algorithms solve them.

First, a local-state search algorithm must define its target function, which
is the local function each agent uses to assess its individual utility given the
neighbors’ choices. In the DCOP context, these algorithms usually employ one
of the following functions:

• The immediate payoff function, which is simply the sum of utilities ob-
tained from all constraints that involve the agent.

• The fictious play function, that maintains (and updates) an estimation of
the utility of each choice throughout the algorithm’s iterations.

• The joint strategy fictious play, which is similar to the fictious play func-
tion, but computes the estimations conditioned on the neighbors’ choices.

Second, given a target function, the agents must decide which of their choices
to pick next. This is defined by a decision rule, which is typically one of the
following ones:

26 CHAPTER 2. BACKGROUND AND RELATED WORK

Target function Decision rule Adjustment schedule

DSA Immediate payoff argmax Parallel random (p)
MGM Immediate payoff argmax Maximum gain
BR-I Immediate payoff Gain Parallel random (p)
SAP Immediate payoff Logistic Sequential random
FP Fictious play argmax Flood
smFP Fictious play Logistic Flood
JSFP-I Joint strategy FP argmax Parallel random (p)
WRM-I Immediate payoff Logistic Parallel random (p)

Table 2.2: Overview of local search DCOP algorithms.

• The argmax rule, where each agent simply picks the choice that maximizes
its target function.

• The gain rule, where each agent selects any of the choices that improves
its value with equal probability.

• The logistic rule, where each agent picks a choice randomly, but the prob-
ability of picking each choice is weighted by the value it provides.

Third, an algorithm must define which agents are allowed to change their
choices at each iteration. This is known as the adjustment schedule, and admits
different strategies such as:

• The flood strategy, that allows all agents to update their choices at each
iteration.

• The parallel random (p) strategy, that allows each agent to change with
probability p at each iteration.

• The sequential random strategy, that only allows a single (randomly cho-
sen) agent to update its choices at each iteration.

• The maximum gain strategy, that operates in two rounds: first, each agent
computes the gain (increase in utility) it would obtain if it is allowed to
change, and communicates this information to its neighbors; next, an agent
is only allowed to pick that choice if its gain is larger than the gains of all
its neighbors.

Using these characteristics, Table 2.2 presents an overview of the landscape of
local-search algorithms in the literature. Despite their differences, most of these
algorithms perform similarly, and no particular algorithm has been identified as
better than the others, even for particular classes of problems [Chapman et al.,
2011].

Nonetheless, an algorithm that deserves a special mention is the Distributed
Stochastic Algorithm (DSA) [Fitzpatrick and Meertens, 2003; Zhang et al., 2005].
This was the very first local-search DCOP algorithm presented, yet it has been

2.2. RELATED WORK 27

shown to quickly attain notably good solutions [Maheswaran et al., 2004a; Katag-
ishi and Pearce, 2007; Chapman et al., 2011], and is guaranteed to converge to
a Pareto optimal solution. Intuitively, the DSA algorithm implements a parallel
version of a simple hill-climbing algorithm. That is, at each iteration the agents
simply pick the choices that maximize the utility they obtain, given the choices
made by the other agents in the previous iteration. However, allowing all agents
to change at every iteration leads to a very chaotic and unstable algorithm. DSA
addresses this issue by using the parallel random (p) adjustment schedule. First,
the system designer sets a probability of changing parameter p. Then, at each
iteration, each agent generates a random value and only tries to improve if that
value is lower than p. This technique allows the system designer to gauge the
amount of parallelism that best fits the application at hand.

Later on, Maheswaran et al. [2004a] introduced the Maximum Gain Mes-
sage (MGM) algorithm, that uses the same target function and decision rule
than DSA but a different adjustment schedule. Instead of using a stochastic
parameter, MGM restricts the parallelism by using the maximum gain strategy
presented above. Although MGM does not generally improve on DSA’s re-
sults [Maheswaran et al., 2004a; Vinyals et al., 2010a], it is significant because it
guarantees that the global utility increases monotonically during the algorithm’s
operation.

Furthermore, the idea of maintaining a monotonically increasing utility led
to the development of a new class of algorithms, which are not entirely local
yet not global either. These algorithms operate essentially like local search
algorithms, but enforce (usually small) groups agents to operate jointly. For
instance, MGM-2 [Maheswaran et al., 2004a] is like MGM but tracks the pos-
sible gains for joint choices of pairs of agents instead of individually. Likewise,
KOPT [Katagishi and Pearce, 2007] is a synchronous algorithm that can track
joint movements of an arbitrary number of agents k, and k-DALO [Kiekintveld
et al., 2010] implements the same idea in an asynchronous manner, obtaining
significant speed gains. Along the same line, t-DALO [Kiekintveld et al., 2010]
tracks joint choices of agents within t communication hops, and c-DALO [Vinyals
et al., 2011] generalizes the algorithm to operate on agent neighborhoods of ar-
bitrary shapes/sizes. Nonetheless, notice that the cost per iteration of running
these algorithms is exponential on the parameters k, t or c.

One advantage of algorithms using an immediate payoff target with the max-
imize decision rule (from DSA to c-DALO) is that they provide quality guar-
antees [Pearce and Tambe, 2007; Bowring et al., 2008; Kiekintveld et al., 2010;
Vinyals et al., 2011]. Unfortunately, the guaranteed quality drops quickly with
the number of involved variables, to the point where it becomes irrelevant for
mid-to-large problems. For instance, in a problem with 35 variables and binary
constraints, DALO(k = 10) (which is very costly to run) guarantees a solution
within 15% of the optimum. In contrast, the typical quality of the actual solu-
tions obtained by these algorithms is much larger, even with the simplest ones
such as DSA.

28 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.2 Inference based algorithms

In the previous section we presented search-based algorithms, whose approach
to finding good assignments is to explore the DCOP assignment space. Next
we present a family of algorithms whose solving approach is radically different:
inference based algorithms. Instead of exploring the search space, inference
based algorithms collect information about the problem and try to infer good
assignments based on this knowledge.

Complete inference algorithms

The first introduced algorithm of this class is the Dynamic Programming Opti-
mization Protocol (DPOP) algorithm [Petcu and Faltings, 2005b]. As its name
implies, DPOP is a dynamic programming algorithm, meaning that it tries to
solve the problem by breaking it into a series of smaller, easier to solve sub-
problems. In the context of DCOPs, our problem is to maximize the objec-
tive function, and we start with that problem already divided in subproblems:
the DCOP’s constraints. Unfortunately, these constraints cannot be maximized
(solved) independently because they share some variables. Hence, a sensible ap-
proach is to build larger constraints in such a way that some variables are not
shared by multiple constraints anymore. This can be achieved by exploiting the
sum operation introduced in Section 2.1.4. For instance, assume a DCOP with
three constraints f1(x, y), f2(y, z) and f3(x, z). None of these constraints can be
maximized independently, because all their variables are involved in some other
constraint. However, we can build a larger constraint (subproblem) by summing
two of the initial constraints

f4(x, y, z) = f1(x, y) + f3(x, z) .

As a result, we now have our DCOP represented as just two constraints f2(y, z)
and f4(x, y, z). Moreover, realize that now variable x is involved in only one of
these constraints. Hence, we can now partially solve this constraint using the
maximize operation to remove variable x from f4 to obtain

f5(y, z) = max
x

f4(x, y, z) ,

and our problem is still represented as two constraints f2(y, z) and f5(y, z), but
with one less variable. Hence, the dynamic programming approach to solve
DCOPs involves repeatedly summing and partially maximizing constraints until
no variables remain (meaning that the we have found the optimal utility of our
DCOP).

Notice that this approach is analogous to that of the Generalized Distribu-
tive Law. Hence, the basic issues that DPOP must overcome are the same ones
we presented at the end of Section 2.1.4, namely: (i) how to distributedly deter-
mine the order of summations and maximizations to perform; (ii) which agent
should perform which operations; and (iii) how to obtain the optimal assignment
from the optimal DCOP utility. DPOP resolves these issues by arranging the

2.2. RELATED WORK 29

agents into a DFS tree (pseudotree), just like most exhaustive search methods
presented above. The algorithm works in two phases over this pseudotree. First,
agents compute the optimal utility by performing summations and maximiza-
tions flowing from the leafs to the root of the tree. Then, the optimal assignment
is obtained using a so-called value propagation procedure down the tree. This
approach has two main advantages:

1. It requires a linear number of messages. Because the algorithm op-
erates on just two passes over the tree, and each agent only sends one
message per pass, the total number of messages is guaranteed to be twice
the number of agents in the problem.

2. The complexity of the algorithm is exponential on the treewidth of the
pseudotree, not on the number of agents. This is a result of the first
phase of the algorithm, during which agents are performing summations
and maximizations. Due to how the pseudotree is constructed, it can be
proven that the largest constraint computed during this phase involves
exactly as many variables as the treewidth of the pseudotree. 2 Hence, the
costlier operation performed by the algorithm is to compute this function,
whose assignment space is exponential on the number of variables in its
domain.

However, these benefits comes at a stiff price: each computed constraint needs
to fit within the memory of the agent computing it. Thus, some agent requires
an amount of memory exponential on the treewidth.

Along time, many techniques have been introduced to alleviate this problem.
For instance, H-DPOP [Kumar et al., 2007] tries to reduce memory requirements
by using a compact constraint representation for constraints involving many for-
bidden combinations. Instead, MB-DPOP(k) [Petcu and Faltings, 2007a] oper-
ates like DPOP but switches to a search method when the constraints become
too large to hold in memory. In contrast, agents in O-DPOP [Petcu and Falt-
ings, 2006] generate the constraints as streams of assignments with decreasing
utility, and try to prove that the solution has been found before computing them
entirely. Finally, BT-IDPOPf [Brito and Meseguer, 2010b] introduced the idea
of function filtering, which iteratively builds better approximations of the con-
straints to compute, while saving space by filtering out (eliminating) suboptimal
assignments from the computed constraints.

The introduction of the Action-GDL [Vinyals et al., 2009] algorithm explicitly
connected this body of research with the GDL framework. Action-GDL itself
operates exactly like DPOP, but over a junction tree instead of a pseudotree.
This difference is not a major one, but it has been shown that junction trees
allow for better representations (and hence reduced solving complexity) on some
problems [Atlas and Decker, 2007; Vinyals et al., 2010b]. More importantly,

2The treewidth is a widely studied measure of a graph. Intuitively, it measures the in-
terconnectedness density of the graph: a treewidth of one means that the graph is a tree,
whereas a treewidth equal to the number of nodes means that it is fully connected. For further
information we refer the reader to [Dechter, 2003].

30 CHAPTER 2. BACKGROUND AND RELATED WORK

the connection with the GDL clarified the relationship between the seemingly
unrelated DPOP and Max-Sum algorithms (as explained below), and created
a huge opportunity for cross-pollination between research areas. For instance,
this connection has already been exploited to develop a number GDL-based
algorithms for more complex models such as: (i) DCOPs whose constraints
yield uncertain utilities [Stranders et al., 2011, 2012], (ii) DCOPs with multiple
objectives [Delle Fave et al., 2011]; and (iii) resource-aware DCOPs [Stefanovitch
et al., 2011] among others.

Global-state inference algorithms

In the previous section we introduced a number of inference algorithms that
are guaranteed to compute the optimal solution. Contrary to complete search
algorithms, most of the these algorithms are not anytime because they do not
compute any solution until they finish. Nonetheless, two of the variants in-
troduced to alleviate the exponential memory requirements of these algorithms
turn out to be of this anytime class, and can thus be considered global-state
approximate algorithms too. First, MB-DPOP(k) can be considered anytime
because, when computing the full constraint becomes too expensive, it turns
into a search algorithm (and hence inherits the search’s anytime characteris-
tic). Second, BT-IDPOPf has some anytime flavor, because it first computes
an approximate solution, and then keeps refining it until the optimal solution is
found.

Another breed of global-state inference algorithms are those that follow the
same basic recipe than DPOP/Action-GDL, but mitigate the exponential mem-
ory requirement by dropping optimality.

On the one hand, optimality can be dropped during the algorithm’s op-
eration. This is the case of both A-DPOP [Petcu and Faltings, 2005a] and
DMCTE(r) [Brito and Meseguer, 2010a]. In these algorithms, when an agent
must calculate a constraint too large to be exactly computed, it assesses an ap-
proximate of the constraint instead. As a result, these algorithms end up finding
an approximate solution to the problem, but can still provide a bound on the
quality of that solution.

On the other hand, optimality can be dropped before even running the al-
gorithm by simply discarding some of the problem’s constraints. This approach
was first used in the Bounded Max-Sum algorithm [Rogers et al., 2011], where
agents heuristically discard problem constraints (tree edges) until the treewidth
of the pruned tree is one. At this point, the algorithm can efficiently obtain the
optimal solution of the relaxed problem, and provide a bound by assessing the
maximum utility lost because of the discarded constraints. Extending this idea,
the p-optimality framework [Okimoto et al., 2011] proposes different heuristics
to discard constraints until the tree is guaranteed to have treewidth lower than
or equal to p (a parameter chosen by the system designer).

Finally, there is also a completely different approach to perform global-state
approximate inference in DCOPs, as first introduced by the DaCSA [Vinyals
et al., 2010a] algorithm. Recall that the above algorithms basically divide the

2.2. RELATED WORK 31

problem into a series of partially-independent subproblems. Then, these prob-
lems are partially solved one after the other, leading to the algorithm’s solution
for the DCOP. In contrast, the Divide-and-Coordinate (DaC) approach breaks
the problem into one trivially solvable subproblem per agent. These subprob-
lems may be dependent between them, yet DaC agents solve them as if they were
independent. As a result, two subproblems oftentimes pick different choices for
the same decision. When this happens, DaC algorithms adapt the subproblems
by exchanging utilities between them according to some update rules. Thus,
DaC agents keep re-solving and adapting the subproblems until either all agents
obtain the same choices for all of the problem’s decisions or they run out of time.
The only differences between DaC algorithms are thus (i) how they divide the
original problem into subproblems; and (ii) the update rules used to adapt the
subproblems when the agents disagree about the best choice for some decision.
Being the first of this class, DaCSA is the simplest algorithm: each initial sub-
problem is simply the sum of all constraints involving the agent, and updates
are based on the specific choices made by each agent. EU-DaC [Vinyals et al.,
2010c,d] improved on the update rules by considering the choice’s utilities too,
and DeQED [Hatano and Hirayama, 2013] employs larger (though efficiently
solvable) subproblems.

Local inference algorithms

As briefly mentioned at the end of Section 2.1.4, it is also possible to per-
form purely local inference to assess good solutions to DCOP problems. The
canonical algorithm for this task is known as Max-Sum [Farinelli et al., 2008].
Max-Sum was introduced as an adaptation of Pearl’s Loopy Belief Propagation
algorithm [Pearl, 1988] to solve DCOPs. Nonetheless, it has been shown that
Max-Sum can be regarded as a particular instance of the GDL algorithm [Aji and
McEliece, 2000]. The actual difference between Max-Sum and DPOP or Action-
GDL lays on how they approach the basic issues that any GDL algorithm must
handle.

Where Action-GDL uses a junction tree, the summations and maximizations
to perform in Max-Sum are dictated by the factor graph. Additionally, because
the factor graph is not necessarily a tree, a sequential execution of the algorithm
could never terminate. Hence, Max-Sum does not terminate after a fixed number
of steps. Instead, it terminates either because the messages do not change any-
more, or because some designer-imposed limit has been reached (e.g.: maximum
time, maximum number of iterations). Nonetheless, this also enables Max-Sum’s
nodes to operate in a fully parallel schedule, where each node of the factor graph
computes and sends messages at the same time. Finally, the actual solution is
not recovered through a global-state phase such as in DPOP. On the contrary,
Max-Sum typically lets each agent independently pick whatever choices it deems
best according to the latest information received from its neighbors.

32 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.3 Sampling-based algorithms

A last approach to DCOP solving, introduced very recently, is that of sampling-
based algorithms. Algorithms of this class operate by letting agents sample
their decision space, and make decisions based on the outcome of these samples.
At the time of this writing, there are only two algorithms of this kind in the
literature, both being approximate and global-state.

The first algorithm of this class is the Distributed Upper-bound Confidence
on Trees (DUCT) algorithm [Ottens et al., 2012]. In DUCT, agents are first
organized in a pseudotree. From there on, the algorithm operates in rounds.
At each round, each agent randomly picks a choice for its variables, given the
choices of its parents in the tree. Then, the agents compute the global utility
of the complete assignment formed by their individual random choices. Finally,
each agent keeps track of the combination of choices picked by itself and all its
parents, as well as the associated outcome obtained. After a number of rounds it
is provable that each agent knows its best choice with a certain confidence (the
larger the number of rounds, the higher the confidence). The key element that
makes this algorithm work well is that the random choices made by agents are
not uniform. Instead, they are guided by the outcomes obtained in the previous
rounds of the algorithm. Unfortunately, notice that leaf nodes have to keep track
of a large number of combinations of choices, which grows exponentially with
the height of the tree. Hence, DUCT requires exponential memory to operate,
which is highly undesirable, especially for an approximate algorithm.

The very recent D-Gibbs algorithm [Nguyen et al., 2013] solves this issue by
tracking outcomes differently, and using another approach to weigh the random
choice picks. Essentially, agents in D-Gibbs only need to track the outcome
for their own choices, disregarding their parent’s ones. Hence, the algorithm
does not require exponential memory anymore, and turns into a competitive
global-state approximate algorithm. Furthermore, it has been shown that the
algorithm can be parallelized and executed on GPUs [Fioretto et al., 2014] to
achieve significant speed boosts.

2.2.4 Scalability analysis of current DCOP algorithms

After introducing the most significant DCOP algorithms, we now analyze their
scalability characteristics. The classification presented in Table 2.1 helps us
at this task, because algorithms of the same type (complete, global state ap-
proximate or local-state approximate) have very similar scalability characteris-
tics. Hence, we now review these characteristics by type, and identify the most
promising algorithms (from a scalability standpoint) of each class.

Recall that, as introduced in Section 1.1, DCOPs are NP-Hard. Because
complete algorithms are guaranteed to find the optimal solution, their scalabil-
ity in the general case is doomed by the problem’s complexity. This means that,
without any additional information, we cannot risk using an optimal DCOP
algorithm in a multi-agent system because failing to obtain a solution would
lead to a complete lack of coordination. Nonetheless, we can study which op-

2.2. RELATED WORK 33

timal solving algorithms work better on which problem classes, and how these
algorithms scale. As a result, we may be able to identify application domains
where it is actually feasible to perform optimal solving (due to the problems’
characteristics and the application scale).

Unfortunately, no matter what the problem’s characteristics are, there are no
results in the literature that guarantee a better runtime for any complete search
algorithm. In contrast, inference based algorithms do provide such a guarantee.
Namely, the guarantee of a runtime exponential on the treewidth instead of on
the total number of agents. Even though computing the pseudotree or junction
tree of a problem with minimal treewidth is an NP-Hard problem itself, good
approximations can be found quickly. Furthermore, these trees can be computed
ahead of time, because they depend on the structure of the constraints but not
on their utilities. As a result, we argue that inference based algorithms are very
appealing candidates for practical DCOP applications at a scale where optimal
solving is still feasible.

On this front, the GDL framework provides a solid foundation that encom-
passes most works developed to this time. Nonetheless, there is a significant open
issue regarding the usage of GDL-based algorithms: agents in the actual world
have limited computation and communication resources, and the GDL frame-
work simply does not consider those characteristics at all. Thus, on the first part
of this work we focus on optimal solving within the GDL framework umbrella,
with special attention to minimizing and satisfying the resource requirements of
actual-world agents.

Once optimal solving becomes unfeasible, there are a wide range of global-
state approximate algorithms that provide varying degrees of solution qualities
and quality guarantees. However, all these algorithms employ techniques where
global computations must be made. Moreover, notice that performing such com-
putations is inherently frail: a single agent failing stalls the whole computation,
and hence the algorithm stops functioning. This is not a huge problem in small-
scale applications that can be solved optimally, but quickly becomes a liability
when the applications scale up. Furthermore, even in an ideal setting without
such failures, larger problems require more communication hops to perform a
global computation. Thus, the solving time necessarily grows larger when the
problems get larger.

In contrast, local-state approximate algorithms are inherently well equipped
to deal with such nuisances. A non-functioning agent may slightly decrease
the performance of others, but does not prevent the algorithm from working.
Likewise, agents running these algorithms can always provide solutions very
quickly, even on problems vast amounts of agents. Additionally, although local-
state algorithms cannot provide good quality guarantees, their actual solutions
are on the same range (quality-wise) than those of global-state approximate
algorithms. Therefore, in the second part of this work we focus on local-state
algorithms for actual-world, moderate-to-large scale problems.

34 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3 Summary

In this chapter we provided the necessary context to position this work within the
extensive literature about DCOPs. With this aim, we first formally introduced
the DCOP model. Then we have shown an example of the kind of practical
applications it can deal with, as well as some useful representations that help
us understand the problem’s structure. Next we presented the GDL and the
abstract framework built around it to support the development of efficient solving
algorithms for a wide range of problems. Moreover, we have shown that DCOPs
are one of the problem types that fit such a framework.

Then we explored the large literature about DCOP solving. We analyzed
the most prominent DCOP algorithms, classifying them by solving approach
and algorithm type. Such classification provided us an overview of the most
promising methods depending on the practical applications’ characteristics. As
a result, this survey allowed us to highlight the necessity and relevance of the
techniques developed throughout this thesis.

Namely, we identified two areas that are worth exploring and improving.
First, GDL-based complete algorithms appear as a very promising approach
for relatively small-scale applications (i.e.: tens of decisions). At this scale,
robustness is not a major issue, whereas algorithms with a cost exponential on
the number of agents are already non-applicable. Thus, GDL-based algorithms
are a good fit because they guarantee a cost exponential on the treewidth (which
is typically much lower than the number of decisions). However, this guarantee
comes at the price of increased resource requirements on the agents. Hence, in
the first part of this work we explore techniques to lower and/or trade-off the
different kinds of resources (e.g., network usage and computation time) possessed
by the agents. In this manner we effectively widen the applicability of GDL-based
complete solving algorithms.

Second, robustness becomes an important issue on larger scale, practical
applications. Here, the Max-Sum GDL-based local algorithm rises as a more
suitable and promising technique. On the one hand, because it provide empir-
ically good solutions while tolerating agent failures and communication losses.
On the other hand, because it is one of the few local-state algorithms that does
not behave in a greedy manner. That is, agents in Max-Sum do not simply try
to maximize their own utility. On the contrary, they truly strive to optimize the
global objective instead. Nonetheless, Max-Sum has an important caveat: its
cost is exponential on the number of neighbors of each agent, whereas other local
algorithms take only linear costs. As a result, the second part of this work fo-
cuses on developing actual-world, larger-scale dynamic DCOP applications and
lowering the Max-Sum’s resource requirements to solve them.

Part I

Optimal solving

Chapter 3

Scaling by better filtering

3.1 Introduction

In Section 2.3 we identified GDL-based algorithms as a promising approach
for optimal DCOP solving. The grounds of this argument is that GDL-based
algorithms are the only complete algorithms for which we can identify easy to
solve problem classes. Namely, the worst case complexity bound on the problem’s
treewidth (instead of on the total number of decisions to make) directly identifies
such problem classes, thus answering our Question 1 in the introductory chapter.

As a result, we now focus our efforts on answering Question 2. That is, in
this chapter we strive to improve the applicability of GDL-based algorithms by
considering their computation and communication requirements. The straight-
forward approach to achieve such goal is to devise techniques that lower the
amount of resources required by the algorithm. Therefore, in this chapter we aim
at developing purely algorithmic improvements that lower the required amount
of resources.

As introduced in Section 2.2.2, the most advanced state-of-the-art GDL-
based algorithms is known as GDL with function filtering. In this variant, the
algorithm does not find an optimal solution in a single pass through the junction
tree. Instead, it performs a number of passes through that tree. Initial passes
are cheap on resources and produce loose upper and lower bounds on the optimal
utility. Subsequent passes are increasingly more expensive but produce tighter
bounds. After a fixed number of passes the algorithm is guaranteed to find an
optimal solution. The key insight is that bounds found in previous iterations
allow the algorithm to prune (filter) the search space in latter iterations, thus
alleviating their computation and communication costs.

As a consequence, the tighter the bounds computed at each iteration, the
lower the overall cost of the algorithm. In this chapter we present two different
techniques to improve such bounds. First, we introduce the so-called two-sided
function filtering technique. The basic idea behind two-sided filtering is the
same as in classical filtering (which we call one-sided filtering from now on).

37

38 CHAPTER 3. SCALING BY BETTER FILTERING

However, agents employing two-sided filtering make a better use of the infor-
mation they have. As a result, they are able to compute tighter lower bounds
and thus prune larger parts of the search space, reducing the algorithm’s costs.
Second, we present a distributed solution exploration technique that enables
agents to explore multiple solutions. In contrast, previous approaches to GDL
with function filtering computed a single solution each pass over the tree. The
cost of that solution is then used as the upper bound employed by the filtering
technique. Therefore, by exploring multiple solutions, the agents can find better
upper bounds and further improve the filtering’s results.

Combining our two novel techniques we reduce the amount of resources re-
quired to optimally solve DCOPs. Empirically, we estimate a reduction of up
to about 70% on communication costs and up to around 30% on computational
costs with respect to the state-of-the-art one-sided filtering. Furthermore, we
also obtain a significant memory reduction. This is a crucial improvement be-
cause, if an agent runs out of memory, the problem cannot be solved by GDL.
As a result, our agents can solve up to 75% more problem instances than before
given the same amount of memory. To summarize, we manage to increase the
range of problems that can be solved optimally by algorithms employing function
filtering.

In the remainder of this chapter we first introduce some further background
that is specifically useful to solve DCOPs optimally. Next we outline GDL with
function filtering as a DCOP solving approach. Thereafter in Section 3.4 we
present the so-called two-sided filtering technique, focused on improving lower
bounds. Next in Section 3.5 we turn our attention to improving upper bounds
by computing multiple candidate solutions in parallel. Finally we draw some
conclusions from the observed results, which lead to the further work presented
in the next chapter.

3.2 Background for optimal DCOP solving

In Section 2.1.1 we introduced a general DCOP model and the associated ob-
jective function that DCOP algorithms try to optimize. That definition can
capture any kind of DCOP with any kind of utilities. However, certain algo-
rithms require a more stringent definition, enabling them to employ techniques
that could not be used otherwise. In this section we first present an alternative
DCOP definition that is particularly suitable for complete DCOP algorithms.
Next we present the general operations employed by all GDL-based algorithms,
and introduce the idea of bound computation that enables function filtering to
prune the solution space.

3.2.1 Minimizing DCOPs

There is a specific characteristic in Definition 2.1 that makes optimal DCOP
solving particularly hard: utilities of the constraints can be any real value or−∞.
This prevents us from using partial evaluations of a solution as a bound of

3.2. BACKGROUND FOR OPTIMAL DCOP SOLVING 39

its global utility. To clarify, consider a DCOP with two constraints f1(x) and
f2(x, y), where both variables are binary. Say that f2(0, 0) = 10. Unfortunately,
this provides us with no immediate information about the global utility of the
complete assignment 〈x = 0, y = 0〉 because f1(0) could be any value.

Now consider an alternative definition of DCOPs where the constraint util-
ities can only be negative values or 0. Formally, the constraints in this new
definition are of the form f :

Ś

x∈S Dx → R−∪{0,−∞}. Under this new defini-
tion, a partial evaluation of a complete assignment immediately tells us that this
assignment is going to provide at most that amount of utility. That is, using the
same example above, say that f2(0, 0) = −10. Then, we can guarantee that the
global utility of the complete assignment 〈x = 0, y = 0〉 is lower than or equal
to −10. Such information can be very valuable for DCOP algorithms, because
it enables them to reason in terms of bounds.

Nonetheless, thinking in terms of negative utilities is fairly counter-intuitive
for us humans. Thus, we can further adjust the DCOP definition and its objetive
to ease our reasoning. Instead of using negative utilities, we can now think
in terms of costs, and define the constraints as yielding positive costs instead
(f :

Ś

x∈S Dx → R+ ∪ {0,∞}). Moreover, since the constraints’ values are
now costs instead of utilities, the objective of DCOP algorithms under this new
formulation is to minimize (instead of maximizing) the objective function in
Equation (2.1).

Notice that any DCOP represented using Definition 2.1 can be transformed
into an equivalent DCOP using this new formulation. Formally, given a DCOP
Ω = 〈A,X,D,C,m〉 whose utility we want to maximize, we can formulate an-
other DCOP Ω = 〈A,X,D,C+,m〉 that uses only positive (or ∞) costs and
should be minimized instead of maximized. Furthermore, C+ can be easily con-
structed from C by applying a simple transformation to each constraint. Namely,
C+ = {f+

1 , · · · , f+
n }, where

f+
i (x) = v∗i − fi(x)

and v∗i is the maximum value within the fi constraint:

v∗i = max
x

fi(x).

Given the aforementioned advantages, in the remainder of this part (Chap-
ters 3 and 4) we employ this formulation instead of the formulation in Sec-
tion 2.1.1.

3.2.2 Operations between constraints

The objective of a complete (optimal) DCOP algorithm is to find a complete
assignment that is an optimal solution of a DCOP (and possibly the correspond-
ing optimum cost). In what follows, we provide an alternative definition to that
in Equation (2.1). This alternative definition will help us introduce the GDL
with function filtering framework and explain the improvements presented in
this chapter.

40 CHAPTER 3. SCALING BY BETTER FILTERING

First, we introduce an operator that allows us to assess the cost of an assign-
ment for two constraints.

Definition 3.1. The combination of two constraints f1 with scope S and f2

with scope T , noted as f1 ./ f2, is a new cost function defined over the union of
their scopes U = S ∪ T , which we define as:

(f1 ./ f2)(u) = f1(u[S]) + f2(u[T]),

where u stands for all possible assignments to the variables in U .

Notice that the combination operator is both associative and commutative. It
is straightforward to generalize the combination operator over a set of functions
as follows.

Definition 3.2. Given a set of functions F = {f1, . . . , fm}, the combination of
F , noted as ./F , is the function resulting from the joint combination of all the
functions in F :

./F = f1 .// fm.

At this point, we can readily offer an alternative definition to solving a DCOP.
Thus, finding the optimal solution of a DCOP Ω = 〈A,X,D,C+,m〉 amounts
to finding a complete assignment x that minimizes the following expression over
all complete assignments:

(./C)(x). (3.1)

3.2.3 Computing lower bounds

As mentioned above, function filtering [Brito and Meseguer, 2010a] is a technique
that has been employed to solve DCOPs. The basis of function filtering is to filter
out suboptimal solutions from the assignment space. With this aim, function
filtering proposes to employ two different types of bounds: (i) an upper bound
on the global cost, given by the best solution found so far; and (ii) a lower bound
on the assignments of the constraint to be filtered. Those partial assignments
whose lower bound is larger than the global upper bound represent suboptimal
solutions, and hence they can be safely filtered out. Next we formally define the
notion of lower bound on assignments, constraints and sets of constraints.

First, the notion of lower bound of an assignment requires to define the notion
of extension of an assignment.

Definition 3.3. Let V ⊆ X be a subset of variables and v an assignment of
values to each of the variables in V . An extension of an assignment v to X is a
new assignment with scope X that keeps the values of v and sets new values to
the variables in X \ V .

3.2. BACKGROUND FOR OPTIMAL DCOP SOLVING 41

Therefore, we can easily generate an extension of a tuple v to produce a an
assignment x with scope X by simply adding values for the variables in X \ V
to v.

Definition 3.4. Given an assignment v with scope V , where V ⊆ X, if the
cost of every possible extension of v to X is larger than or equal to some value
LB ∈ R+, we say that LB is a lower bound on the cost of the assginment v.

Next, we generalize the definition above to encompass constraints. Before
that, we introduce the notion of projection of a constraint over a set of variables
(as a generalization of Definition 2.5), on which our definition of lower bound on
a cost function relies.

Definition 3.5. The projection of a constraint f with scope S over a set of
variables T ⊆ S, noted as f [T], is a new constraint with scope T that assigns
to each tuple t the minimum cost that can be obtained by extending t with all
possible values for the variables in S \ T . Formally,

f [T](t) = min
s extension of t

to S

f(s)

Definition 3.6. A constraint f1 with scope T is a lower bound on a constraint
f2 with scope S, noted as f1 ≤ f2, iff:

• T ⊆ S, and

• f1(s[T]) ≤ f2(s) for all possible assignments s.

Finally, based on the definition of lower bound on a constraint, we introduce
the notion of lower bound on a set of constraints.

Definition 3.7. A constraint f is a lower bound on a set of constraints F if
it is a lower bound on the constraint ./F resulting from the combination of all
constraints in F .

From Equation (3.1), observe that a constraint f with scope S is a lower
bound on a DCOP 〈A,X,D,C+,m〉 if and only if it is a lower bound on the
combination of the set of constraints C+. Namely, if for each assignment s, f(s)
is a lower bound of the cost of the best extension of s to X (standing for a
possible solution to the DCOP).

Now consider the matter of obtaining tight bounds for both a constraint or
a set of constraints. On the one hand, regarding a single constraint, consider a
constraint f with scope S and a set of variables T such that T ⊆ S. We can
readily obtain the tightest bound on function f as its projection on T , namely
as f [T].

Definition 3.8. Given a set of constraints F = {f1, . . . , fm}, the combination
of a set of constraints over a set of variables T ⊆ ∪mi=1sc(fi), noted as (./F)[T]
is a single constraint that stands as the tightest possible lower bound of F .

42 CHAPTER 3. SCALING BY BETTER FILTERING

Observe that the time to compute the tightest bound of F is bounded by

O(d
|T |
T), where dT is the largest domain among the variables in T . Depending

on the features of the problem, such computation can become overly demanding.
Interestingly, there is a less costly way of computing a tight lower bound on a
set of functions. This way requires the prior introduction of a further operation,
namely the projection on a set of cost functions:

Definition 3.9. Given a set of constraints F = {f1, . . . , fm}, the projection of
a set of constraints under a set of variables T ⊆ ∪mi=1sc(fi), noted as F [T], is a
new set composed of the projections of each constraint in F over T . Formally,

F [T] = {f1[T], . . . , fm[T]}

Based on Definition 3.9, we can compute a lower bound of F as the com-
bination of all projections in F [T], namely as ./(F [T]). We call this lower
bound the combination of F under T . This bound can be computed in

O(max[maxmi=1 d
|Vi|
Vi

, d
|T |
T]) time, where Vi = sc(fi). Notice that this can be

largely smaller than O(d
|V |
V) above, hence reducing computational time.

Example

To illustrate the above concepts on operations of constraints, we consider the
following toy example: a DCOP with 3 agents each holding a variable x, y,
and z, whose domains are all {a, b}, and two constraints f1(x, y) and f2(y, z).
Figure 3.1 shows the combination of f1 and f2 over {x, z}, and the combination
of f1 and f2 under {x, z}. Observe that the latter is a lower bound of the former.

3.3 Solving DCOPs using the Generalized Dis-
tributive Law

In this Section we review the algorithms in the literature that have extended the
generalized distributive law (GDL) algorithm, originally introduced in [Aji and
McEliece, 2000], to solve DCOPs. In Section 3.3.1 we provide an overview on
the GDL algorithm. Thereafter, we analyze the contributions in the literature
that have focused on specializing GDL to solve DCOPs. First, we analyze both
complete and approximate GDL-based algorithms in Sections 3.3.2 and 3.3.3
respectively. Second, Section 3.3.4 reviews GDL-based algorithms that exploit
function filtering [Sánchez et al., 2005] to prune the space of solutions of a DCOP.

3.3.1 The GDL algorithm

As introduced in Section 2.1.4, the GDL algorithm [Aji and McEliece, 2000] is
a general message-passing algorithm that exploits the way an objective function
factors into a combination of functions (constraints), to compute it in an efficient

3.3. SOLVING DCOPS USING GDL 43

f1 =

x y

a a 1
a b 2
b a 3
b b 4

f1 ./ f2 =

x y z

a a a 1+8
a a b 1+7
a b a 2+6
a b b 2+5
b a a 3+8
b a b 3+7
b b a 4+6
b b b 4+5

f2 =

y z

a a 8
a b 7
b a 6
b b 5

(f1 ./ f2)[{x, z}] =

x z

a a 8
a b 7
b a 10
b b 9

f1[{x, z}] ./ f2[{x, z}] =

x

a 1
b 3

./

z

a 6
b 5

=

x z

a a 7
a b 6
b a 9
b b 8

Figure 3.1: Example of operations on cost functions.

manner. In particular, notice that this is the case of a DCOP, since the definition
of its objective function Equation (3.1) results from the combination of cost
functions.

GDL is defined over two binary operations that form a semi-ring. Consider-
ing that the objective function of a DCOP is to minimize Equation (3.1), such
operations are minimization and addition. To ensure optimality and conver-
gence, GDL operates on a special structure named junction tree (JT) [Jensen
and Jensen, 1994] (also known as joint tree, cluster tree or tree decomposition),
which exploits the way an objective function factors into a combination of func-
tions.

A JT is a tree structure 〈N,E〉, where N is a set of nodes and E is a set of
edges. For a DCOP Ω = 〈A,X,D,C+,m〉, each node i ∈ N in the JT contains
a subset of variables Vi ⊆ X and a subset of constraints Ci ⊆ C satisfying the
following conditions:

• For each cconstraint f in node i of the JT (i.e., f ∈ Ci), the variables in
its scope are contained in Vi, namely sc(f) ⊆ Vi.

• For each constraint f ∈ C of the DCOP, there is exactly one node i of the
JT such that f ∈ Ci.

• For each variable x ∈ X, the set of nodes of the JT where x is present,
namely {i ∈ N such that x ∈ Vi}, forms a connected subtree.1

1This is the so-called running intersection property.

44 CHAPTER 3. SCALING BY BETTER FILTERING

If two nodes i and j are connected, it means that they share some variable.
Shared variables between nodes i and j, Sij = Vi∩Vj , are known as the separator
between i and j.

In general, there are several JTs that can represent an objective function for
GDL. Hence, there is the issue of finding the best JT. This is not an easy endeavor
because, although it is known that the complexity of GDL is exponential in
the size (in terms of number of variables) of its largest node, finding the JT
whose largest node has minimum size is NP-complete [Jensen and Jensen, 1994].
Therefore, the construction of a JT is typically performed by means of heuristics,
which cannot assure optimality but often provide good enough JTs.

As mentioned above, GDL is a message-passing algorithm on a JT. The
purpose of the algorithm is that nodes distributedly compute some objective
function that is factored among them. Aji and McEliece [2000] distinguish two
cases regarding the application of GDL: the single-vertex problem, when the
goal is to compute the objective function at a single node, and the all-vertices
problem, when the goal is to compute the objective function at all nodes. In
what follows we focus on the all-vertices problem because of its relationship with
DCOPs (as we discuss further ahead in Section 3.3.2) and we also consider that
the objective function is the one in Equation (3.1). To solve this problem, the
fully-serial version of GDL (also known as CTE [Dechter et al., 2001]) operates
in two passes through the JT. The first pass flows up the tree (from leaves to
root), where each node sends a message to its parent node after receiving a
message from each of its children. The second pass flows down the tree (from
root to leaves), where each node sends a message to each of its children after
receiving a message from its parent. In both passes, the messages exchanged
contain a single constraint. The basic operation to compute these constraints is
simple. Namely, to compute the message for some recipient, the sending node
combines its own constraints (those in Ci) with the constraints received from its
neighboring nodes except from the recipient. This produces a constraint that is
then projected over the variables of the separator linking both nodes. The result
is yet another constraint, which is the message that is actually sent. Considering
the objective function in Equation (3.1), the combination of cost functions can
be performed using the operation in Definition 3.2, while a projection can be
assessed using Definition 3.5.

To understand the operation of GDL, it is fundamental to understand the
semantics of the messages that nodes in a JT send and receive. Consider the
JT depicted in Figure 3.2. Say that node j contains variables x1, x2 and node
i contains variables x2, x4. Hence, their separator contains variable x2. Then,
node j would send to node i a constraint that contains the best cost that x2

could obtain for each value of its scope after considering all the possible values
of x1. Therefore, the message from node j to node i summarizes the cost of the
assignments to x2 when only considering the values for the variables in node j. In
general, if node j has further children below the JT, as shown in Figure 3.2, then
the message from node j to node i would summarize the cost of the assignments
to the variables in the separator between both nodes when only considering the

3.3. SOLVING DCOPS USING GDL 45

j -subproblem
i-subproblem

j
i

Vj

ViCi

Cj

Figure 3.2: Subproblems in a junction tree.

values for the variables of the subtree whose root is j.

After the nodes in the JT finish exchanging messages, each node contains
the costs of the objective function for its variables. Then, each node can locally
assess the values of its variables that optimize the objective function.

Finally, we must be aware of the complexity of GDL in terms of computa-
tion and communication. As to computation, notice that the cost of combining
constraints, performed by each node, is exponential on the arity of the resulting
constraint. Hence, the size of the constraints to send from node to node may be
prohibitively large when GDL operates in communication-constrained scenarios.

3.3.2 Complete GDL-based algorithms

GDL can be adapted to solve DCOPs in a distributed manner, as required by
this type of problems. The first step is to build a JT in a distributed setting,
as described in [Paskin et al., 2005]. In this setting, each node of the resulting
JT represents an agent operating over a subset of variables and constraints of
a DCOP. Each edge represents a communication link used by two agents to
exchange messages containing constraints defined over their shared variables
(the variables in their separator). Figure 3.2 shows agent i and j linked by an
edge in a JT. Observe that removing the edge connecting i and j splits the JT
into two different connected components, each one standing for a subproblem of
the very same DCOP. Thus, we say that the i-subproblem involves every cost
function in the component containing i after the edge is removed. Subproblems
i and j are coupled by a set of variables they share, namely their separator
(Sij = Vi ∩ Vj). By exchanging messages, subproblems i and j aim at agreeing
on the value of their shared variables.

Recall from Section 3.3.1 that the basic GDL operation only involves the
exchange of constraints. After the execution of the two passes required by the
fully-serial all-vertices GDL (henceforth referred as cost propagation phase), each
node has complete knowledge of the global objective function for the variables
in the node. Thus, each node can locally compute the assignment of variables
that minimizes the objective function. Nonetheless, since it might be the case
that two optimal solutions x1 and x2 (with the same cost) exist, some agents
might choose x1 while others choose x2. This would lead to assigning different

46 CHAPTER 3. SCALING BY BETTER FILTERING

values to the same variable in different nodes. To prevent such inconsistent
assignments, GDL can be extended with a solution propagation phase aimed
at having the nodes agree on the assignments of shared variables. Solution
propagation requires that the JT root decides the optimal variable assignment
and informs its children in the JT, which in turn inform their own children and
so on. The result of this phase is a coherently optimal solution. This algorithm
was named DCTE in [Brito and Meseguer, 2010a].

Action-GDL [Vinyals et al., 2010b] is a specialized application of GDL to
solve DCOPs. Thus, it optimally solves the problem by performing two phases.
During the first phase, constraints flow from the leaves to the root of a JT. Once
the first phase is over, the second phase starts with the root making a decision
regarding the assignment of values to its variables. Thereafter, the root informs
about its decision to its children, which in turn decide on the assignment of
values to their own variables, and subsequently send their assignments to their
children. The process continues until reaching the leaves, where the last variable
assignments are made.

Likewise DCTE, Action-GDL involves a cost propagation and a solution
propagation phase. However, the cost propagation phase of Action-GDL is one-
way (constraints are sent up the JT from leaves to root), whereas DCTE’s is
two-way (constraints are sent up the tree, and thereafter down the tree). In
fact, Action-GDL can be regarded as the application of GDL to solve the single-
vertex problem (the root of the JT is the only node that computes the objective
function) followed by a solution propagation phase that runs down the JT (from
root to leaves) to make the optimal variable assignments.

We can resort to the operations introduced in Section 3.2 to algorithmically
describe the operation of Action-GDL. At the beginning of the cost propagation,
each leaf node starts by computing the projection of its constraints over the
variables the node shares with its parent. This operation is computed following
Definition 3.5 and the result is sent to the leaf node’s parent. After a node has
received messages from all its children, it combines them with its own constraints
(using the combination operator in Definition 3.2) and projects the resulting
function over the variables shared with its parent. The resulting constraint is
sent to the node’s parent. Once the root has received cost messages from all
its children, it combines them with its own constraints to yield the objective
function. Thereafter, the solution propagation phase starts. The root decides
the best assignment (the minimum cost partial assignment) for its variables.
Then, it broadcasts this assignment to its children, who in turn assess their best
assignments and send them down the tree. The process ends after all leaves
compute their assignments.

3.3.3 Global approximate GDL-based algorithms

A significant drawback of GDL-based complete algorithms is the exponential
size of the constraints exchanged during the cost propagation phase. Therefore,
instead of sending a constraint as a whole, we can alternatively opt for sending
an approximation of the constraint as a lower-arity function [Dechter, 1997], at

3.3. SOLVING DCOPS USING GDL 47

the expense of losing optimality.
Notice that the quality of a DCOP solution is expected to increase as the

arity of these approximations increases. This can serve as the basis to build
algorithms that find better solutions by gradually increasing the arity of the ap-
proximated messages. This is the idea behind the DMCTE(r) algorithm [Brito
and Meseguer, 2010a], that can be seen as a global approximate version of GDL
that produces an approximate solution. With this aim, during the cost propa-
gation phase the nodes in the JT send approximations of the messages that they
would send when running GDL. Given two nodes in the JT sharing n variables
in their separator, a message approximation from i to j takes the shape of a list
of r-arity constraints, where r < n. This list of constraints is a lower bound of
the message (constraint) that GDL would send from i to j.

Unlike GDL, once the cost propagation phase ends up, the nodes in the JT
do not have complete information regarding the objective function. Therefore,
the solutions after the second phase, the solution propagation phase, are not
guaranteed to be optimal. Hence, DMCTE(r) introduces a third phase, the
so-called bound propagation phase. During this phase, each node computes the
costs of both an upper bound (from the decisions made by the node) and a lower
bound of the objective function.

3.3.4 GDL-based algorithms with function filtering

DMCTE(r) can be run iteratively by increasing the arity limit at each iteration.
However, the cost of such approach is larger than directly running DMCTE(r)
considering the highest possible arity. This is true unless there is some way
to exploit the information exchanged by the nodes at previous iterations. With
this aim, Brito and Meseguer introduced the function filtering technique to solve
DCOPs [Brito and Meseguer, 2010a]. Function filtering was originally proposed
in [Sánchez et al., 2005] to solve constraint optimization problems in a central-
ized manner. Function filtering is employed by each node prior to sending cost
messages to filter out (prune) assignments that cannot be part of the optimal
solution. To filter out assignments, a node can resort to the information re-
ceived during a previous iteration. Thus, to decide whether an assignment can
be filtered out or not, a node uses a global upper bound (obtained by the bound
propagation phase during a previous iteration) along with the lower bound of the
constraint to send. Thus, a node can safely filter out an assignment whenever
its lower bound is larger than the global upper bound.

From the discussion above, there is the issue of computing lower bounds
at each node. Henceforth, consider that the DMCTE(r) algorithm is run with
an increasing value for r over a DCOP such as the one depicted in Figure 3.2.
During the r-th iteration of the algorithm, agent i sends to agent j a message
that we note as Mr

i→j and receives from j another message that we note as
Mr
j→i. According to the description of DMCTE(r) above, each message contains

a list of constraints over the variables of the separator shared between agents
i and j, namely Sij . Next, during the (r + 1)-th iteration, the message that i
will compute to send to j, Mr+1

i→j , can exploit the information contained in the

48 CHAPTER 3. SCALING BY BETTER FILTERING

message received from j during the last iteration, namely Mr
j→i.

Notice that each constraint fi in the outgoing message fi ∈ Mr+1
i→j readily

specifies a minimum cost for each of its possible assignments. That is, each
constraint fi, with scope Si, specifies some cost c(si) for each possible assignment
si as shown in Equation (3.3). In the previous iteration r, agent i received
from j the message Mr

j→i, specifying that the minimum cost of si in the j-
subproblem is c′. This cost is simply the sum of the costs specified in each of
the constraints within the message, as shown in Equation (3.4). These two costs
can be added to obtain a lower bound on the cost of si, because they represent
two costs for disjoint parts of the DCOP (the subproblem containing node i
and the subproblem containing node j). If this lower bound on the cost of si,
namely lbi(si), exceeds the upper bound on the global cost of the optimal solution
(obtained by node i during the bound propagation phase), the assignment si
cannot be extended to an optimal solution and can thus be eliminated from fi.
Formally, we compute the lower bound for each assignment si of each function
fi as:

lbi(si) = c(si) + c′(si) , (3.2)

where

• c(si) is a lower bound on the contribution of the i-subproblem, computed
as

c(si) = fi(si) . (3.3)

• c′(si) is a lower bound on the contribution of the j-subproblem, assessed
as

c′(si) =
∑

g∈Mr
j→i

g[Si](si) . (3.4)

Therefore, we say that Mr
j→i filters each constraint fi ∈ Mr+1

i→j , and name

the process function filtering.2

This approach defines the DIMCTEf algorithm [Brito and Meseguer, 2010a],
and has been shown very effective to assess the optimal solution of a DCOP
while maintaining a reasonable consumption of resources (especially memory
and communication). In some cases, this allows solving DCOPs that DCTE is
unable to solve because it runs out of memory.

3.4 Two-sided filtering

In this section we aim at tightening the one-sided lower bound described above.
With tighter lower bounds, the algorithm will be able to prune more assign-

2Strictly speaking, we refer to this technique (presented in [Sánchez et al., 2005]) as one-
sided function filtering, to differentiate with the two-sided function filtering technique that we
describe later on.

3.4. TWO-SIDED FILTERING 49

ments, hence reducing the communication and computation overhead even fur-
ther. Moreover, notice that the effects of filtering accumulate exponentially.
That is, filtering out an assignment at iteration r means that there are expo-
nentially less assignments to consider at iteration r + 1. As a result, we expect
the algorithm to be able to cope with larger problems that could not be handled
before.

To this end, we now describe the so-called two-sided filtering technique, which
improves on the one-sided filtering described above. Consider that agent i has
already received Mr

j→i from agent j. After that, it intends to send a set of con-

straints Mr+1
i→j , summarizing the cost information in the i-subproblem, to agent

j. Since no constraint appears in both the i-subproblem and the j-subproblem,
we can assess a lower bound for the complete problem by adding a lower bound
of each of them. Notice that the one-sided lower bound in Equation (3.2) already
assesses the summary of the costs of the j-subproblem from Mr

j→i. Likewise, it

assesses the cost in the i-subproblem by considering each constraint fi ∈Mr+1
i→j .

However, each constraint fi is considered separately. As a result, it is miss-
ing some of the information that agent i has about the i-subproblem. Namely,
the other constraints fj ∈ Mr+1

i→j may also contain some known costs for the
assignments in fi which are not taken into account by one-sided filtering.

The key idea of two-sided filtering is to also consider such costs when assessing
the contribution of the i-subproblem to the lower bound of each assignment.
Hence, two-sided filtering computes c(si) in Equation (3.3) by also accumulating
the minimum costs specified by the other constraints in Mr+1

i→j . Formally, two-
sided filtering computes the lower bound of each assignment si of each function
fi ∈Mr+1

i→j as:

lbi(si) = c′′(si) + c′(si) , (3.5)

where

• c′′(si) is a lower bound on the contribution of the i-subproblem, computed
as

c′′(si) =
∑

f∈Mr+1
i→j

f [Si](si) . (3.6)

• c′(si) is a lower bound on the contribution of the j-subproblem, assessed
as

c′(si) =
∑

g∈Mr
j→i

g[Si](si) . (3.7)

Observe that there is no double counting of costs because no cost function ap-
pears in both the i-subproblem and the j-subproblem, and each constraint in
the messages is only considered once. Hereafter, we refer to the lower bound in
Equation (3.5) as two-sided lower bound. The name stems from the symmetrical
use of both subproblems.

50 CHAPTER 3. SCALING BY BETTER FILTERING

Given

x y g(x, y)
a a 3
a b 4
b a 3
b b 3

,

x y f1(x, y)
a a 5
a b 2
b a 8
b b 6

,

x z f2(x, z)
a a 4
a b 3
b a 5
b b 2

, UB=10

One-sided Two-sided
x y f1 ./ f2[{x, y}] = c′′ f1 + c′ c′′ + c′

a a 5 3 8 5 + 3 8 + 3 7
a b 2 3 5 2 + 4 5 + 4
b a 8 2 10 8 + 3 7 10 + 3 7
b b 6 2 8 6 + 3 8 + 3 7

Figure 3.3: Example of one-sided vs. two-sided filtering. Tuples ticked off (7)
are the ones being filtered out.

To further illustrate the differences between one-sided and two-sided bounds,
consider the following example. Say that agent i has received a message Mr

j→i
containing a single constraint g as shown in Figure 3.3. Furthermore, agent
i knows that the cost of the optimal solution is smaller than or equal to 10
(UB = 10). Now agent i wants to send functions Mr+1

i→j = {f1, f2} to agent j
(also shown in Figure 3.3). Consider that it starts by sending constraint f1. At
this point, the agent employs some form of filtering to try to remove suboptimal
assignments from f1 before sending it.

When using the one-sided lower bound in Equation (3.2), the computed
contribution of the i-subproblem is c = f1(si). After adding this cost to the
contribution of the j-subproblem (c′ = g[{x, y}] = g), the agent realizes that
assignment 〈x = b, y = a〉 is suboptimal and can be filtered out as shown in
Figure 3.3.

Alternatively, the agent can compute the two-sided lower bound using Equa-
tion (3.5). In this case it assesses the lower bound on the contribution of its
own subproblem as c′′ = f1 ./ f2[{x, y}]. Figure 3.3 shows that, in this example,
two-sided filtering realizes that, in fact, assignment 〈x = a, y = b〉 is the only
feasible one.

This example illustrates the potential advantages of two-sided filtering.
Nonetheless, such advantages come at the expense of some computational over-
head. Namely, assessing the i-subproblem contribution using Equation (3.6)
takes time O(d|Si|) (the number of assignments in fi), where d is the maximum
domain size of the functions in Si. In contrast, computing the i-subproblem
contribution for the two-sided lower bound takes time O(md|Si|), where m is
the number of functions in the message to send Mr+1

i→j . Hence, it remains to be
seen whether the gains from filtering more assignments surpass the additional
computational cost or not. To this end, the following section presents an em-
pirical evaluation where we compare both approaches to determine whether it is
worth performing two-sided filtering, or it is generally better to stick to one-sided
filtering instead.

3.4. TWO-SIDED FILTERING 51

3.4.1 Empirical evaluation

In this section we empirically compare the performance of DIMCTEf when us-
ing one-sided filtering and two-sided filtering. For each experiment, we track
the amount of communication used by the algorithm (i.e., the total number
of bytes) along with the total amount of serial computation (i.e., the num-
ber of non-concurrent constraint checks). Moreover, we performed signed rank
tests [Wilcoxon, 1945] on all results to ensure that differences between methods
are statistically significant (α = 0.01).

As explained in Section 3.3.1, the JT’s treewidth is one of the most important
indicators of problem hardness for GDL-based algorithms. Hence, we segmented
our experiments according to this parameter, and ensured that all algorithms
use the very same JT when solving the same problem instance. These JTs were
generated using the Distributed Junction Tree Generator algorithm described
in [Vinyals et al., 2010b]. Given a DCOP instance, we generated a JT with as
many nodes as variables. The Distributed Junction Tree generator algorithm
is initialized assigning one variable to each node. After enforcing the running
intersection property, other variables may appear in a node, but no variable may
disappear. Then, the JT has as many nodes as variables, fulfilling the common
assumption of one agent per variable.

In our first experiment we used the meeting scheduling and sensor networks
datasets [Maheswaran et al., 2004b] from the USC DCOP repository [Yin, 2008].
Unfortunately, these problems are of low treewidth, and hence are easy to solve
for the GDL with function filtering algorithm. Therefore, we obtained similar
results for both one-sided and two-sided filtering, with only marginal gains for
two-sided filtering.

As a consequence, we decided to design new datasets harder than those typ-
ically used in the DCOP literature. We characterized each scenario by three
parameters: number of variables, variables’ domain size, and treewidth. For
each scenario, we generated 100 problems by: (1) randomly drawing problem
structures following an Erdös-Rényi G(n, p) model [Bollobas, 2001]; (2) select-
ing those structures having the treewidth requested for the scenario; and (3)
randomly drawing costs from a N (0, 1) distribution.

First, we ran an experiment to evaluate the savings as the treewidth increases.
We generated scenarios with 100 variables of domain 8, and treewidths ranging
from 6 to 9. Figure 3.4 shows that two-sided filtering reduces, with respect
to one-sided filtering, the amount of communication required by a median of
26% on the easier problems (treewidth 6). Furthermore, it achieves even better
results on the harder problems (a median of 52% less communication on the
problems of treewidth 9).

Next, we designed an experiment to measure the trend of both filtering styles
as the variables’ domain sizes increase. Thus, we generated scenarios with 100
variables, treewidth 9 and domain sizes ranging from 2 to 8. Once again, two-
sided filtering achieves significant communication savings for all the experiment’s
problems. Further, as the domain increases, so do the savings with respect to
one-sided filtering: starting with a narrow 8% reduction for the binary variables

52 CHAPTER 3. SCALING BY BETTER FILTERING

0.0

0.2

0.4

0.6

0.8

1.0

T
o
ta

l
b
y
te

s
1e9 Communication

6 7 8 9
Tree width

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

T
o
ta

l
N

C
C

s

1e10 Computation

Figure 3.4: One-sided vs two-sided filtering results. Increasing treewidth, con-
stant domain 8 and 100 variables.

0.0

0.2

0.4

0.6

0.8

1.0

T
o
ta

l
b
y
te

s

1e9 Communication

2 3 4 5 6 7 8
Variable's domain

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

T
o
ta

l
N

C
C

s

1e10 Computation

Figure 3.5: One-sided vs two-sided filtering results. Increasing domain size,
constant treewidth 9 and 100 variables.

3.5. IMPROVING UPPER BOUNDS 53

256 384 512 640 768 896 1024
Maximum node memory (Mb)

0

10

20

30

40

50

60

70

A
d
d
io

n
a
l
so

lv
e
d
 p

ro
b
le

m
s

(%
) Memory-constrained problem solving

Figure 3.6: Additional problems solved by two-sided filtering w.r.t one-sided
filtering when agents have limited memory.

set, and reaching a 52% reduction for the toughest scenario (domain size 8). Fur-
thermore, note that in all but the easiest experiments (the ones with variables’
domains 2 to 4), two-sided filtering performs up to 15% less non-concurrent con-
straint checks. This effectively answers our concerns, indicating that performing
two-sided filtering is actually worth it in the vast majority of cases. That is, the
savings from filtering more assignments surpass the computational overhead of
two-sided filtering with respect to one-sided filtering.

Because the size of the constraints to exchange is the main limiting factor
of GDL-based algorithms, this suggests that two-sided filtering can aid to solve
problems that are too hard for one-sided filtering. Therefore, we re-ran the
hardest set of problems (domain size 8, treewidth 9), but now limiting the maxi-
mum amount of memory available for each agent. Figure 3.6 shows that, indeed,
two-sided filtering solves as much as 67% more problems than one-sided filtering
when the agents have limited memory.

3.5 Improving upper bounds

In the previous section we focused on finding purely algorithmic improvements
to compute better lower bounds. However, the global upper bound is also im-
portant in the filtering process because it determines the cutoff cost over which
assignments may be filtered. Hence, in this section we now focus on trying to
improve such upper bound.

Recall that the cost of any complete assignment is an upper bound on the cost
of the optimal solution. Therefore, a reasonable approach to find better upper
bounds is to explore multiple candidate solutions at the same time instead of a
single one. Hence, in the following we first introduce different approaches that
allow us to perform such exploration. Furthermore, the proposed approaches
are able to compute many solutions in parallel without requiring more messages
than to compute a single solution. Afterwards, we experimentally evaluate these

54 CHAPTER 3. SCALING BY BETTER FILTERING

novel approaches, showing that the benefits of providing the filtering process
with better upper bounds can outweigh the cost of computing them on some
occasions.

3.5.1 Centralized exploration

The simplest approach to propagating multiple assignments is to perform the
very same procedure as DMCTE(r) does, but with multiple assignments instead.
This is, the root node begins by choosing the best m assignments for its variables,
and subsequently sends them to its children. Thereafter, each child extends each
assignment by choosing its best cost extension (according to its knowledge), and
relays them to its own children. The solution propagation phase terminates once
each leaf node has received (and extended) its assignments.

Then, agents need to calculate the cost of each solution. With this aim, there
is a third phase where: (1) the cost of each assignment is aggregated up the tree;
and (2) the best assignment and its cost (the new global UB) are sent down
the tree. Firstly, each leaf node i evaluates the cost of each assignment in its
problem’s stake Ci, and sends the resulting costs to its parent. Subsequently,
once a parent node j receives the costs of each assignment from its children, it
aggregates them with the costs in its own problem stake Cj . Thereafter, it sends
the resulting costs up the tree. After the root has received and aggregated the
costs from all its children, it can readily identify the best assignment (the one
with lowest cost). Finally, the root sends the best assignment along with its cost
down the tree.

The main advantage of this method lays in its simplicity. However, its main
drawback is that it offers limited exploration capabilities because: (1) it can-
not propagate more than k candidate solutions, where k stands for all possible
assignments for the root’s variables; and (2) when a node finds several good
extensions for a candidate solution, it is enforced to choose only one of them.
For instance, say that an agent receives assignment 〈x = a〉 from its parent,
and has to choose a value for variable y. According to its knowledge, extension
〈x = a, y = a〉 costs 1, and so does extension 〈x = a, y = b〉. Because centralized
exploration forces the agent to extend each received assignment exactly once,
extension 〈x = a, y = b〉 must be discarded. This restriction implies that the
root is the only node able to explore new candidate solutions, whereas other
nodes simply exploit them.

3.5.2 Distributed exploration

To overcome the limited exploration capabilities of centralized exploration, we
need mechanisms allowing any node to explore new assignments.

However, we still need to somehow limit the amount of assignments to ex-
plore. Notice that, in the centralized exploration method above, the number of
assignments to explore is effectively limited by the m initial assignments cho-
sen by the root agent. Likewise, we now impose the restriction that each agent
cannot consider more than m assignments. Furthermore, we enforce nodes to

3.5. IMPROVING UPPER BOUNDS 55

extend each received assignment at least once. However, we allow each agent to
extend any partial assignment received from its parent multiple times.

Consequently, after a node receives a set of assignments A, it needs to decide
the number of new assignments to explore ne, which cannot exceed nmax =
m− |A|. With this aim, we propose that an agent employs one of the following
strategies:

Greedy exploration. An agent always extends as many assignments as pos-
sible, namely ne = nmax. This approach is similar to the centralized ex-
ploration strategy above, but overcomes its impossibility to explore more
than k solutions.

Stochastic exploration. An agent chooses the number of assignments to ex-
tend ne from a binomial distribution B(nmax, p), where p ∈ (0,1] is the
ratio of assignments to extend. Intuitively, larger p values favor exploita-
tion, whereas lower p values favor exploration.

Notice that it is possible that the number of extensions requested ne is larger
than the number of possible extensions (specially when using greedy explo-
ration). In that case the agent will communicate every possible extension. The
process to calculate the cost of each solution is analogous to the one described
for centralized exploration. The difference lies in the aggregation of costs up
the tree. Although an agent may extend a parent’s assignment multiple times,
during the bound propagation phase the agent sends up only the cost of the best
extension of each assignment out of the different extensions it has tried. In this
manner, the parent never needs to know which assignments have been extended
multiple times by its children.

Using these mechanisms, the agents can consider a large number of assign-
ments without a hefty computation and communication overhead. Nonetheless,
it remains to be seen whether the overhead is offset by the gains from check-
ing more candidate solutions and thus having possibly better upper bounds. In
the following section we strive to answer this question by empirically evaluating
the novel multiple solution exploration techniques presented here against the
state-of-the-art single-solution upper bound computation.

3.5.3 Empirical evaluation

To assess the performance of GDL with two-sided function filtering and the
tighter upper bounds obtained by propagating multiple solutions, we ran a num-
ber of experiments on the same scenarios we used in Section 3.4.1. Specifically,
we assessed the communication and computation savings obtained by: (1) cen-
tralized exploration; (2) greedy distributed exploration; and (3) stochastic dis-
tributed exploration. Regarding the stochastic case, we empirically observed
that different exploration ratios (different values for p), do not lead to very sig-
nificant differences when filtering. Here we set p=0.1 because it provided slightly
better results.

56 CHAPTER 3. SCALING BY BETTER FILTERING

One-sided
Two-sided

Centralized
Greedy

Stochastic (p=0.1)

0.0

0.2

0.4

0.6

0.8

1.0

T
o
ta

l
B

y
te

s

1e9 Communication

6 7 8 9
Tree width

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
o
ta

l
N

C
C

s

1e10 Computation

Figure 3.7: Multiple solution exploration results: increasing treewidth, constant
domain 8 and 100 variables.

3.5. IMPROVING UPPER BOUNDS 57

Note that, the harder the problem, the cheaper to propagate multiple solu-
tions with respect to the cost propagation phase. Hence, we ran our experiments
with different numbers of propagated solutions, and found that propagating 1024
solutions achieved the best overall results on our problems. This is, propagating
less than 1024 solutions slightly decreased the computation and communication
used when solving the easier problems, but significantly increased when solv-
ing the harder ones. Likewise, propagating more solutions led to no additional
savings on harder problems, while increasing costs on easier ones.

Figure 3.7 shows the evolution of the median results as the treewidth of the
problems increases. On the one hand, centralized exploration achieves between
1 and 4% extra communication savings on top of two-sided filtering. On the
other hand, both greedy and stochastic exploration obtain similar results (with
stochastic being very slightly better). Nonetheless, they clearly outperform cen-
tralized exploration, consistently saving a median 20% communication cost, for
a grand total of up to 72% savings when compared to the state-of-the-art one-
sided filtering. Figure 3.8 displays very similar trends as the variables’ domain
grows. Centralized exploration provides a low reduction in communication with
respect to two-sided filtering, whereas greedy and stochastic exploration strate-
gies obtain up to 24% extra savings.

It is important to note that both greedy and stochastic exploration further
reduce the number of non-concurrent constraint checks by as much as 24%. Fur-
thermore, the reduction of computational effort goes up to 32% once multiple so-
lutions propagation strategies are combined with two-sided filtering. Figure 3.9a
reveals the effect of this reduction on the number of problems that can be solved
when nodes have limited memory. Specifically, using two-sided filtering with
distributed exploration helps solve up to 75% more problems than one-sided
filtering in the most restricted scenarios.

Finally, we also experimented with the meeting scheduling problems from
the USC DCOP repository. Unlike what we observed with two-sided filtering, in
this case performing multiple solution exploration actually worsened the results
by as much as 15% in communication costs and 20% in computation costs. That
is, on easier problems, the overhead of performing multiple solution exploration
(with any of the above methods) is larger than the gains obtained by having
tighter upper bounds. In fact, we even experimented by seeding the function
filtering procedure with the optimal cost (the best possible upper bound) at the
beginning of the algorithm. With these problems, the results were discouraging:
even with the optimal upper bound obtained at no cost, the efficiency of the
algorithm did not improve significantly. The explanation for such results is that,
on easy problems, the lower bounds computed at the first iterations are not tight
enough to perform any filtering. In contrast, the lower bounds computed at later
iterations are already good enough to filter most assignments even with a looser
upper bound. As a consequence, any effort to tighten the upper bound in this
situation is actually futile.

58 CHAPTER 3. SCALING BY BETTER FILTERING

One-sided
Two-sided

Centralized
Greedy

Stochastic (p=0.1)

0.0

0.2

0.4

0.6

0.8

1.0

T
o
ta

l
B

y
te

s

1e9 Communication

2 3 4 5 6 7 8
Variable's domain

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
o
ta

l
N

C
C

s

1e10 Computation

Figure 3.8: Multiple solution exploration results: increasing domain size, con-
stant treewidth 9 and 100 variables.

3.6. CONCLUSIONS 59

256 384 512 640 768 896 1024
Maximum node memory (Mb)

0

10

20

30

40

50

60

70

80
A

d
d
io

n
a
l
so

lv
e
d
 p

ro
b
le

m
s

(%
) Memory-constrained problem solving

(a) Additional problems solved when agents have limited memory (w.r.t. one-sided
filtering).

Figure 3.9: Experimental results when tightening the upper bound.

3.6 Conclusions

Questions addressed in this chapter:
Q. 1. Can we identify application characteristics that provide cues as to which

solving algorithm is better for that application?
Q. 2. Can we improve the resource scalability of DCOP algorithms for which this

scalability is a limitation?

The broad analysis performed in Section 2.3 identified the GDL-based family
of algorithms as one of the most promising approaches for optimal DCOP solving.
The worst case complexity bound on the problem’s treewidth (instead of on the
total number of decisions to make) readily answers our Question 1, showing that
these algorithms are an excellent fit for a number of easily identifiable problems.
Hence, in this chapter we focused on GDL with function filtering [Sánchez et al.,
2005] because it stands as the most advanced state-of-the-art variant among the
family of GDL-based algorithms.

Accordingly, we presented a number of techniques to increase the scalability
of GDL with function filtering. Recall that function filtering is a technique that
reduces the size of cost functions by filtering out assignments that cannot be
extended into an optimal solution. As a consequence, the size of the constraints
that agents need to exchange during the algorithm execution can be largely
reduced. Such reductions provide two significant benefits. On the one hand,
smaller constraints imply that agents have to compute and communicate less
information, thus reducing the computational requirements and execution time
of the algorithm. On the other hand, the size of the constraints is the major
limiting factor of the GDL algorithm. That is, in the worst case, agents running

60 CHAPTER 3. SCALING BY BETTER FILTERING

a GDL algorithm have to compute a constraint of dt assignments, where t is the
treewidth of the JT. Now, if function filtering manages to significantly reduce
the number of assignments required within that function, then the algorithm
will scale to larger problems with larger treewidths. As a result, a potential
approach to answer Question 2 for the GDL with function filtering algorithm is
to improve the filtering quality.

As explained in Section 3.3.4, the effectiveness of function filtering heavily
depends on the quality of the computed lower and upper bounds. Therefore, in
this chapter we improved the effectiveness of state-of-the-art function filtering
by providing techniques to assess tighter lower and upper bounds.

First we presented a novel lower bound computation method, the so-called
two-sided filtering bound. Two-sided filtering improves the quality of the lower
bounds computed during the filtering process by taking into account more infor-
mation than the previous state-of-the-art one-sided filtering method described
in [Brito and Meseguer, 2010b]. Our experiments showed that in the worst case,
when solving easy problems such as the meeting scheduling problems from the
USC DCOP repository, two-sided filtering does not provide significant advan-
tages yet it does not worsen the algorithm’s performance either. In contrast,
experiments with harder problems showed that two-sided function filtering can
lead to significant reductions in the amount of resources required to optimally
solve DCOPs. Namely, two-sided filtering achieved reductions of up to 52% less
communication and 15% less computation in the toughest problems.

Next we introduced several techniques to compute better upper bounds. Be-
cause the cost of each explored solution can be readily used as an upper bound for
the filtering process, our techniques are all based on exploring multiple solutions
instead of a single one. We empirically evaluated these novel techniques, showing
that they can further improve the efficiency of GDL with function filtering. Used
in combination with two-sided filtering, distributed stochastic exploration can
reduce up to 72% on communication costs and up to 32% on computational costs
on the hardest problems. Unfortunately, we have also found out that in easier
problems, such as the meeting scheduling ones from the USC DCOP Repository,
the overhead of exploring multiple solutions is not compensated by the marginal
benefits obtained in the filtering process.

Finally, these algorithmic improvements to the filtering process also obtain a
significant memory reduction, allowing agents to solve up to 75% more problem
instances given the same resource constraints. As a consequence, we increased
the range of problems that can be optimally solved by GDL-based algorithms,
positively answering our Question 2.

Chapter 4

Scaling by resource
trade-offs

4.1 Introduction

In the previous chapter we introduced a number of techniques to improve the
effectiveness of function filtering, and hence increase the scalability of the GDL
with function filtering algorithm. All those techniques are purely algorithmic im-
provements aimed at lowering the amount of resources required by the algorithm.
However, there is another, more indirect approach to increase the practical scal-
ability of GDL-based algorithms. In actual-world settings, DCOP algorithms
must be executed by the agents in some application domain. Moreover, the
agents’ computation and communication capabilities may greatly differ between
applications. Hence, another way to improve the applicability of a DCOP al-
gorithm is to enable agents to trade-off their computation and communication
resources to better match the algorithm to their particular capabilities.

For instance, consider two applications widely used in the DCOP litera-
ture: meeting scheduling and sensor networks. In a meeting scheduling scenario,
agents represent meeting participants and are actually programs running on their
personal computers. Hence, the agents’ computation capabilities are those of a
typical desktop machine, and their communication capabilities range from those
of a company LAN to broadband internet connections. In contrast, agents in a
sensor network are the wireless sensor network nodes. These nodes employ em-
bedded processors which are significantly slower than desktops. However, their
communication capabilities are even more stringent. On the one hand, they must
employ small radios that provide high-latency and low bandwidth connections.
On the other hand, these devices typically operate on battery power, and hence
must try to reduce energy usage as much as possible. Because using radios is
the most expensive operation energy-wise, in such applications it is preferable
to perform more computation in exchange for reduced communication.

Therefore, in this chapter we direct our efforts at devising ways to adjust the

61

62 CHAPTER 4. SCALING BY RESOURCE TRADE-OFFS

algorithm’s computation and communication usage for particular applications.
Notice that, in the previous chapter, we realized that the quality of the lower
bounds computed during the algorithm’s execution has a much larger impact on
its performance than the quality of the upper bounds. Moreover, we studied how
to compute the tightest possible lower bounds given the message that an agent is
about to send and those it received in the previous iteration. Nonetheless, we did
not explore how exactly such outgoing messages are computed. On this matter,
Rollon et al. [Rollon and Dechter, 2010] introduced a scheme for the definition
of message computation strategies, and studied how those strategies affected
the approximate and centralized MCTE algorithm. However, because MCTE
is a centralized algorithm, such scheme is designed to produce computationally
efficient strategies while ignoring potential communication costs. Furthermore,
MCTE does not employ filtering because it is a single-iteration approximate
algorithm.

Hence, our initial contributions in this chapter are:

• We port the scheme in [Rollon and Dechter, 2010], which we name bottom-
up approximations, to the DIMCTEf (distributed GDL with function fil-
tering) algorithm.

• We then develop a novel scheme, called top-down approximations. This
new scheme explicitly aims at the development of communication-efficient
message computation strategies instead of computation-efficient ones. As
a result, top-down approximation strategies are particularly suited for
communication-constrained applications. Additionally, we present the
brute-force and the zero-tracking decomposition strategies as particular
realizations of this framework.

• We empirically evaluate the overall computation time and communication
costs of all these strategies on several experiments. The results show that
DIMCTEf employing top-down approximations achieves much larger com-
munication savings with respect to classical GDL than bottom-up ones.
Furthermore, zero-tracking decomposition achieves such savings while still
being competitive in computational effort with respect to current state-
of-the-art approximation methods [Dechter and Rish, 1997; Rollon and
Dechter, 2010].

These contributions are already a significant step towards answering our
Question 2 in the introduction, because they significantly increase the scalabil-
ity of GDL on communication-constrained applications. Nevertheless, all these
strategies are basically all-or-nothing approaches, where we can either heavily
favor the computational cost or the communication cost, but not seek some
balance between them to match the application at hand. Thus, in the remain-
der of this chapter we aim at finding out how to combine strategies to realize
such trade-off between computation and communication costs. With this aim
we begin by performing an in-depth analysis of how the different GDL-based
approaches introduced in Section 3.3 compute their messages. We observe that

4.1. INTRODUCTION 63

each algorithm implements differently some trade-off between computation and
communication. However, to the best of our knowledge there has not been any
study in the literature that analyzes which strategies are more adequate depend-
ing on the resources available in different application domains.

Against this background, we then make the following further contributions:

• Based on a thorough analysis of the GDL-based DCOP algorithms in the
literature, we abstract a general cost message computation model that
considers limits on the usage of resources. We show that our general scheme
effectively captures the aforementioned algorithms as particular instances.
Our general scheme is intended to help design new message computation
methods that can effectively trade off communication and computation
according to a user’s requirements.

• Based on our general scheme, we identify three “families” of message com-
putation methods that are expected to yield different resource trade-offs,
tailored to cope with the specific resource availabilities on different appli-
cations.

• Finally, we provide empirical guidelines to select the most appropriate
message computation method depending on an application’s available re-
sources. Furthermore, our empirical analysis identifies one of our novel
methods as the best available one for computationally constrained scenar-
ios, and another one as the best for heavily communication-constrained
scenarios.

The remainder of this chapter is structured as follows. In Section 4.2 we
first introduce the problem of computing GDL messages as approximations of
the constraint that Action-GDL would compute. Then, we present the so-called
bottom-up approximations framework to compute messages within a strict com-
munication bound. We also introduce the novel top-down approximations, that
heavily favor reducing the amount of communication, and empirically compare
both approaches. Thereafter, in Section 4.3 we provide a detailed analysis of
how current GDL-based algorithms compute their messages, and introduce our
novel message computation scheme that generalizes all those algorithms. Af-
terwards, in Section 4.4 we show how this novel scheme can be used to derive
novel GDL-based algorithms that provide different trade-offs between computa-
tion and communication costs. Additionally, we present an extensive empirical
evaluation that serves as a guideline to highlight which methods work better on
different application types, characterized by the communication and computa-
tion capabilities of the involved agents. Finally, in Section 4.5 we draw some
conclusions and explain how the obtained results help us answering our research
questions in the introductory chapter.

64 CHAPTER 4. SCALING BY RESOURCE TRADE-OFFS

4.2 Communication-efficient message approxi-
mation strategies

In this section we take a closer look at how GDL-based algorithms compute mes-
sages during the cost propagation phase. First we describe how classical GDL
algorithms (Action-GDL, DMCTE) compute such messages. Next we review
the message approximation scheme introduced in [Rollon and Dechter, 2010],
which aims to find computationally-efficient lower-bound approximations to the
messages computed by Action-GDL. Afterwards we present a novel scheme de-
signed to produce strategies to compute communication-efficient approximations
instead of computation-efficient ones. We also present two novel strategies within
such scheme, the brute-force and zero-tracking decomposition strategies.

During the cost propagation phase, a GDL agent’s task is to propagate con-
straints along the Junction Tree. These constraints represent lower bounds on
the costs contained in the subproblem of the sending agent (the slice of the
JT rooted at that agent). In classical GDL, an agent i computes and sends
the tightest possible lower bound to its parent j by simply combining all the
constraints received from its children with its own constraints Ci, and then pro-
jecting the result to the variables on the separator with its parent Sij . Formally,
the message computed by agent i for agent j is:

mi→j = (m̂→i ./Ci)[Sij] , (4.1)

where m̂→i is the combination of all messages received by agent i except the
one from j, namely:

m̂→i = ./
k∈N(i)\{j}

mk→i ,

where N(i) is the set of neighbors of node i in the JT.
However, recall from Section 3.2.2 that computing the tightest lower bound of

a set of constraints is an exponentially costly operation. Hence, the approximate
algorithm DMCTE(r) relaxes this phase by sending a tight lower bound instead
of the tightest lower bound, so that less information needs to be computed and
sent.

DMCTE(r) [Brito and Meseguer, 2010a] is an extension of the centralized
MCTE(r) algorithm. However, notice that MCTE(r) has no communication
costs because it is centralized. Therefore, the r bound in MCTE(r) is a pure
computation bound. Namely, the algorithm cannot compute constraints of more
than r variables. In contrast, being a distributed algorithm, DMCTE(r) does
have communication costs. Hence, it uses a different interpretation of the r
bound. Specifically, r is a bound on the maximum number of variables involved
in the constraints sent between agents, but the algorithm can compute con-
straints of any arity. That is, agents in DMCTE(r) can compute constraints
of any number of variables, but can only communicate constraints of at most r
variables.

Now consider an agent operating in DMCTE(r). Eventually, it will receive
messages from all its children in the JT. Then, the agent combines this infor-
mation with its own, projects the result over the variables in the separator,

4.2. COMMUNICATION-EFFICIENT APPROXIMATIONS 65

and finally sends the result to its parent. Nevertheless, since the agent is now
constrained by the arity limit r, it can not send the tightest lower bound and
it has to compute an approximation. Furthermore, notice that the tighter the
computed lower bounds, the better the results of DMCTE(r) given a fixed pa-
rameter r. Hence, our goal is to find a lower bound as tight as possible while
communicating only constraints of at most r variables. With this aim, we first
introduce some further definitions.

Definition 4.1. Given a constraint f with scope V , we say that a set of con-
straints F is a V -lower bound of f if and only if the combination of F under V
is a lower bound of f .1 That is, if and only if ./(F [V]) ≤ f .

This definition is useful because it allows us to speak about a set of constraints
as a lower bound of the exact constraint that classical GDL would compute as
shown in Equation (4.1).

Observation 4.1. By definition, the projection of F under V is a V -lower bound
of the combination of F over V . That is, F [V] is necessarily a V -lower bound
of (./F)[V]. Furthermore, the set containing the single constraint (./F)[V] is
the tightest V -lower bound of F .

However, since we also need to consider the r arity communication limit, we
introduce a more refined definition:

Definition 4.2. Given a constraint f with scope V , a set of constraints F is an
(r,V)-lower bound of f if and only if F is a V -lower bound of f , and the arity
of each function in F [V] is smaller than or equal to r. That is, if and only if

|sc(g)| ≤ r for all g ∈ F [V] .

Given these definitions, we can now precisely describe the message (anal-
ogous Equation (4.1)) that an agent must compute during the operation of
to DMCTE(r). Namely, the message that agent i computes for agent j in
DMCTE(r) is an as tight as possible (r,Sij)-lower bound of the constraint set
F = Mĵ→i ∪ Ci, where

• Mĵ→i =
⋃

k∈N(i)\{j}
Mj→i is the set of all constraints contained in all mes-

sages i has received from its neighbors except from j.

• Ci is the set of constraints that represents agent i’s own stake in the prob-
lem.

Finally, this allows us to formalize the idea of a message approximation strategy
as a procedure to compute DMCTE(r) messages, namely:

Definition 4.3. A message approximation strategy is a procedure that receives
as input a set of constraints F , a set of variables V , and an arity limit r. Then
its goal is to find an as tight as possible (r,V)-lower bound for the combination
of F over V .

1Recall from Section 3.2.3 that the combination of F under V is the combination of the
independent projections of each function f ∈ F over V .

66 CHAPTER 4. SCALING BY RESOURCE TRADE-OFFS

4.2.1 Bottom-up approximations

As explained before, some algorithms for this task have already been proposed
in the literature [Dechter and Rish, 1997; Rollon and Dechter, 2010]. Hence, we
now review them to fit them into a common framework which we call bottom-up
approximation methods.

Informally, the fundamental idea behind bottom-up approximations is the
following. If we combine any pair of functions from a set that is a V -lower
bound, the result is another V -lower bound, most times tighter than the former
one. Thus, given an initial (r,V)-lower bound F we can improve it by simply
combining pairs of constraints in F so long as the result is also an (r,V)-lower
bound.

To realize this idea, we first extend Observation 4.1 to take the r-arity com-
munication limit into account:

• (./F)[V], the combination of F over V , is the tightest possible V -lower
bound. Also, it is an (r′,V)-lower bound of F where r′ = |sc(./F)| ≥ |V |.

• F [V], the projection of F under V , is a looser V -lower bound of F . More-
over, it is also an (r′′,V)-lower bound, where r′′ is the maximum number
of variables of V in the scope of a single constraint fi ∈ V . That is, r′′ is
typically smaller than r′ and can be assessed as

r′′ = max
fi∈F

|sc(fi) ∩ V | ≤ |V | .

Next we introduce two further definitions that allow us to compute (r,V)-
lower bounds that lie between those two above in terms of bound tightness and
r-arity communication limit.

Definition 4.4. For any fa, fb ∈ F , the combination of fa and fb in F , noted
Ffa ./ fb , is the set of constraints that results from replacing fa and fb by fa ./ fb,
namely

Ffa ./ fb = (F \ {fa, fb}) ∪ {fa ./ fb} .
Definition 4.5. Two constraints fa and fb are (r,V)-combinable if and only
if the combination of {fa, fb} over V is a constraint of arity smaller than or
equal to r. That is, any fa and fb such that |(sc(fa) ∪ sc(fb)) ∩ V | ≤ r are
(r,V)-combinable.

At this point we can accurately describe the bottom-up approximations in-
tuition above. To ease the explanation, notice that for a given message approxi-
mation, the set of variables V is fixed to Sij . Thus, we write r-lower bound and
tightest bound without explicitly mentioning V .

Algorithm 1 shows the pseudocode for bottom-up approximations. Since by
Observation 4.1 we know that F is a lower bound of the combination of F over
V , a bottom-up algorithm starts from the original set of constraints F . At each
iteration, the algorithm: (1) selects a pair of r-combinable constraints fa and fb
from the current set of constraints; and (2) updates the set of constraints to the

4.2. COMMUNICATION-EFFICIENT APPROXIMATIONS 67

Algorithm 1 Bottom-up approximation(F, V, r)

1: (found, (fa, fb))← selectCombinablePair(F, V, r)
2: while found do
3: F ← Ffa ./ fb
4: (found, (fa, fb))← selectCombinablePair(F, V, r)
5: end while
6: return F

F = {f1(x, t), f2(y, t), f3(z, t)}
V = {x, y, z}
r = 2

x t f1

a a 2
a b 1
b a 3
b b 2

,

y t f2

a a 4
a b 1
b a 2
b b 2

,

z t f3

a a 0
a b 2
b a 0
b b 1

Figure 4.1: Example functions to approximate.

combination of fa and fb in F , that is Ffa ./ fb . Since Ffa ./ fb is also an r-arity
lower bound and it is at least as good as F , the iterations are likely to improve
the lower bound. When no more pairs of r-combinable constraints are found,
the algorithm returns the approximation represented by the last F .

Hence, the difference between bottom-up approximation strategies lies on
how to select which pair of r-combinable constraints to combine next. That is, on
how each particular strategy implements the selectCombinablePair function
in Algorithm 1. In the following we describe the most notable strategies from
this scheme.

Scope-based partitioning

Scope-based partitioning (SCP) is the most common bottom-up strat-
egy [Dechter and Rish, 1997; Brito and Meseguer, 2010b]. Basically, it tries
to combine as many constraints as possible by choosing the two highest arity
functions at each iteration, so long as they are r-combinable.

More in detail, the r-combinable pairs are selected as follows. First, the
set of functions F is sorted decreasingly by arity and each function in the list
is marked as non-finished. At each iteration, SCP takes the first non-finished
element f1 of F and the element fi of F closer to the head such that f1 and fi
are r-combinable. It removes them from F and inserts its combination at the
head of the list. When there is no function fi r-combinable with f1, it marks f1

as finished. The algorithm proceeds until all functions are marked as finished.

Figure 4.2a depicts how SCP would compute an approximation for the ex-
ample in Figure 4.1. Since all functions in F have the same arity (two), they are
readily sorted. Hence, SCP would merge the two leftmost ones, and send the

68 CHAPTER 4. SCALING BY RESOURCE TRADE-OFFS

third one independently, resulting in the approximation:

F ′ = {(f1 ./ f2)[xy], f3[z]} =


x y f1 ./ f2[xy]
a a 2
a b 3
b a 3
b b 4

,
z f3[z]
a 0
b 0


The main advantage of SCP is the low computational complexity that results

from its simplicity. The algorithm performs a nested scanning through the list of
constraints. During this scanning process, the algorithm computes up to |F |− 1
constraint combinations. To determine the maximum arity of these functions,
consider that J is the joint domain of all constraints in F . Then, the number
of variables that do not appear in V is |J \ V |. Since the arity limit is r,
the maximum arity of each merged constraint is |J \ V | + r. As a result, the
complexity of the algorithm is O(|F | exp(|J \ V |+ r)).

Content-based partitioning

A major advantage of scope-based partitioning is its small computational over-
head. Nonetheless, its main drawback is that it does not consider the information
within each function. For instance, consider again the previous example. We
showed that scope-based partitioning would produce partition F ′ above. How-
ever, notice that there are further approximations that satisfy the r-bound.

Content-based partitioning techniques guide the bottom-up approximation
by consulting the functions’ contents in addition to their scopes. In general,
content-based partitioning tries to assess which pair of r-combinable functions
yield the largest improvement.

In [Rollon and Dechter, 2010] Rollon and Dechter present a framework for
content-based partitioning that implements the general approach outlined in
Algorithm 1. Given an r-lower bound F , content-based partitioning provides the
mechanism for selecting the best r-combinable pair of constraints f1, f2 ∈ F such
that the approximation represented by Ff1 ./ f2 is better than the approximation
represented by F . At each iteration, the technique: (1) generates every pair of r-
combinable constraints fa, fb ∈ F ; (2) measures the gain obtained by combining
fa and fb; and (3) selects the pair that maximizes the gain.

Notice that the advantage of combining two constraints before sending them
is that they will be projected together. Hence, the gain can be calculated based
on the difference between projecting together or projecting separately, which can
be computed as:

f = (fa ./ fb)[V]− (fa[V] ./ fb[V]).

Therefore, the gain function is a metric that takes a constraint f as its input.
Rollon and Dechter present two such functions.

Firstly, the local relative error (LRE) metric, which is equivalent to the
averaged 1-norm of f , assesses the gain as the sum of costs of all assignments in
f divided by the total number of assignments in the constraint.

4.2. COMMUNICATION-EFFICIENT APPROXIMATIONS 69

./

{xy}

{z}

f2(y, t) f3(z, t)

f(x, y, t)

f(x, y) f(z)

f1(x, t)

(a) Bottom-up

./
{xyz}

./

{xy}

{xz}

./-

-

f2(y, t) f3(z, t)f1(x, t)

f0[xy]

f1[xz]

f0(x, y, z)

f1(x, y, z)

0

(b) Top-down

Figure 4.2: Examples of approximation strategies. Constraints in a double-lined
box are the ones finally sent.

Secondly, the local maximum relative error (LMRE) metric, which is equiv-
alent to the ∞-norm of f , assesses as gain the maximum cost among all assign-
ments in f .

The downside of content-based decomposition is that, in the worst case, the
algorithm performs up to |F | − 1 selections, computing |F | − 1 differences for
each selection. Hence, the complexity of the algorithm is O(|F |2 exp(|J \V |+r)),
which is significantly larger than the complexity of SCP.

4.2.2 Top-down approximations

Bottom-up approximation methods focus on lowering computational costs, while
we primarily focus on reducing communication costs. With this aim, we propose
a new approach to generate approximations based on: (1) initially computing
the tightest lower bound, and; (2) subsequently decomposing it into lower arity
output functions. Figure 4.2b represents the process of building a top-down
approximation of the example in Figure 4.1. As a first step, f1, f2 and f3 are
combined over {x, y, z} to produce f0, the constraint to approximate. After that,
the decomposition process starts. Firstly, consider that we select S0 = {x, y}
out of all possible subsets of {x, y, z} with arity two. Secondly, f0 is projected
to S0 to produce f0[xy], and this constraint is subtracted from f0 to obtain
f1 (namely f1 = f0 ./(−f0[xy])).2 Therefore, f0 is decomposed as f0[xy] ./ f1,
where f0[xy] can be regarded as a constraint ready to be communicated and f1

as the remainder after communicating f0[xy]. The process continues searching
for a decomposition for this remainder.

The main advantage of top-down methods is that they can compute approx-
imations that bottom-up methods cannot, and hence should be able to produce

2We define the “−” operator as a function that negates the costs of a constraint. It is easy
to see that f ./ −f is the null constraint (a constraint whose costs are all 0).

70 CHAPTER 4. SCALING BY RESOURCE TRADE-OFFS

Algorithm 2 Top-Down Approximation(F, V, r).

1: f ← (./F)[V]
2: F ′ ← ∅
3: (found, f ′)← selectBestLowerBound(f ,r)
4: while found do
5: F ′ ← F ′ ∪ {f ′}
6: f ← f ./(−f ′)
7: (found, f ′)← selectBestLowerBound(f ,r)
8: end whilereturn F ′

more accurate results. Unlike bottom-up methods, which start from an initial
set of input constraints and proceed by deciding which ones to join, top-down
methods start from the constraint to approximate and proceed by successively
extracting the best lower-bound constraint of the desired arity. While such
constraint is already part of the decomposition, the process continues by fur-
ther decomposing the result of subtracting the extracted constraint from the
function to approximate. In general a top-down approximation method is an
iterative procedure that at each step i transforms a constraint to approximate
f i into: (i) a lower-bound constraint f i[Si] whose arity is smaller than or equal
to r; and (ii) a new constraint to approximate f i+1. At each step, the selected
lower-bound constraint f i[Si] is added to the set of output constraints, and the
new constraint to approximate is computed as follows:

f i+1 = f i ./ (−f i[Si]). (4.2)

When the iterative process terminates, the following set of constraints stands
for the resulting decomposition of f :

F = {f0[S0], f1[S1], . . . , fn[Sn]}.

More in detail, a general top-down approximation method works as outlined
in Algorithm 2. First, it computes the constraint to approximate (f) by combin-
ing the input constraints in F over V . After that, it uses some heuristic to select
the best lower-bound constraint f ′ of arity at most r. Finally, f ′ is added to the
set of output constraints and subtracted from f to produce the new constraint
to approximate. This process is repeated until no lower-bound constraint of ar-
ity at most r provides additional information. In the ramainder of the section
we introduce two top-down approximation methods that implement the general
method outlined in Algorithm 2.

Brute force decomposition

In order to determine the most informative lower-bound constraint, a first ap-
proach is to consider every possible projection over r variables from V.3 Then,

3Note that discarding functions whose arity is lower than r does not reduce the space of
representable functions.

4.2. COMMUNICATION-EFFICIENT APPROXIMATIONS 71

we can readily use the gain functions from content-based partitioning in Sec-
tion 4.2.1 such as LRE and LMRE to rank the lower-bound constraints and
select the most informative one.

This procedure has, however, a high computational cost. At the first it-
eration, it must compute

(|V |
r

)
constraints and evaluate them, each requiring

exp(|V |) operations. At each following iteration, the number of constraints to
compute decreases by one (the selected lower-bound constraint is never com-
puted again, but all others have to be reevaluated because f i is different from

f i−1). Hence, its worst case time complexity is O
((|V |

r

)2 · exp(|V |)).

Zero-tracking decomposition

The main disadvantage of brute force decomposition is its high computational
cost. Here we introduce zero-tracking decomposition, a top-down approximation
method that aims at dodging this burden to reduce the computational cost.

Zero-tracking decomposition uses the zero norm of the extracted constraints
as the heuristic to assess its quality. The zero norm of a function is simply the
number of elements in the domain whose image is not zero. Intuitively, if a
function is only composed of zeros, it communicates no information whatsoever.
The larger the number of non-zero entries in a function, the more informational
it is considered to be.

The reduction in computational cost comes from realizing that, at each it-
eration, there is a way to compute the zero norms of each possible projection
directly from the results of the previous iterations. That is, we can assess how in-
formative each projection is without actually computing it. Therefore, we avoid
the need to recompute every possible r-arity lower-bound at each iteration, sig-
nificantly reducing the computational cost of the decomposition process.

In what follows we detail the operation of the zero-tracking method when
applied to the example in Figure 4.1. Let S = {S ⊆ V such that |S| = r} be

all subsets of V of r variables. Let p = |S| =
(|V |
r

)
be the number of possible r-

arity lower-bounds and q = dr the number of assignments for each r-arity lower
bound.4 First, the algorithm allocates a boolean table Zeroes of p rows and q
columns. Each entry [S, s] in Zeroes encodes whether the value for assignment
s of the projection of f (the lower-bound to approximate) over S is zero or not.
That is, Zeroes[S, s] is true whenever f [S](s) is zero. Hence, all entries are
initialized to false. Additionally, it allocates a vector ~c of p integers to count the
number of non-zero assignments for r-arity lower bound. Since ~c counts non-zero
values, it is initialized to the number of assignments in each projection (q above).
At the top of Figure 4.3a we show (for iteration i=0) table Zeroes and vector
~c after initialization. Next, the tightest lower bound (./F)[V] is calculated by
combining all the initial constraints and projecting the result over {x, y, z}. The
result is shown in Figure 4.3b as f0.

4For simplicity of exposition we assume that all variables are defined over the same domain
d, but the algorithm works fine otherwise.

72 CHAPTER 4. SCALING BY RESOURCE TRADE-OFFS

i = 0 aa ab ba bb
xy
xz
yz

~c
4
4
4

i = 1 aa ab ba bb
xy X
xz X
yz X

~c
3
3
3

i = 2 aa ab ba bb
xy X X
xz X X
yz X X X X

~c
2
2
0

i = 3 aa ab ba bb
xy X X X X
xz X X X X
yz X X X X

~c
0
0
0

(a) Zeroes tracking table and
counter vector

x y z f0 f1 f2 f3

a a a 4 2 0 0
a a b 2 0 0 0
a b a 4 2 0 0
a b b 3 1 0 0
b a a 5 3 1 0
b a b 3 1 1 0
b b a 5 3 1 0
b b b 4 2 1 0

(b) Per iteration remainders

f0[∅] = 2

f1[yz] =

y z
a a 2
a b 0
b a 2
b b 1

f2[xz] =

x z
a a 0
a b 0
b a 1
b b 1

(c) Selected lower bounds

Figure 4.3: Zero-tracking decomposition example.

4.2. COMMUNICATION-EFFICIENT APPROXIMATIONS 73

Notice that, at this point, our example f0 constraint does not have any zero.
Hence, to introduce some zeroes, the algorithm first subtracts from f0 its mini-
mum value (which amounts to the projection of f0 over the empty set). In the
example, this subtraction yields the constraint f0[∅], shown at the top of Fig-
ure 4.3c. Subsequently, it calculates the next remainder f1 using Equation (4.2).

After calculating the remainder f1 (the new constraint to approximate), the
algorithm proceeds to update the Zeroes table along with the ~c counter. Back
to our example, notice that f1 contains a single assignment with zero cost v =
〈x = a, y = a, z = b〉. Then, the algorithm calculates the projection of v to each
row S and sets cell [S,v[S]] to true in the Zeroes table. In the example, the
cell for row xy and column aa is set to true in the Zeroes table. Moreover, the
counter for row xy decreases to record that there is one less non-zero assignment.
Figure 4.3a (i=1) shows the state of both the Zeroes table and the counter
vector after iteration i=1. In general, for each new zero cost assignment v′, the
algorithm checks the Zeroes table cell at row S and column v′[S]. If the cell is
false, it is set to true to indicate that the cost of the r-arity lower bounds for the
tuple will be zero from iteration i onwards. Moreover, the value of the counter
of non-zero assignments for the extracted constraint, ~c(S), decreases by one.

Once the Zeroes table and counters are updated, there are two possible cases:

• If all counters’ values are zero, it means that the cost for all assignments
of all subsequent r-arity lower bounds will be zero. Therefore, since it is
not possible to extract more information using any r-arity constraints,
the algorithm terminates and returns the list of extracted constraints,
{f0[∅], f1[S1], . . . , fm[Sm]}, as the resulting r-lower-bound.

• Otherwise, the r-arity constraint with more non-zero tuples is selected as
the best to be extracted, and the algorithm continues.

In the example in Figure 4.3, all candidate r-arity constraints (see the rows
in table Zeroes at iteration i=1) contain 3 non-zero tuples. Thus, at the next
iteration (i=2), the algorithm can randomly choose the projection of f1 over
any pair of variables. Say that the algorithm chooses S1 = {yz}. Therefore, the
selected r-arity lower bound is f1[yz], and hence the new remainder f2 can be
computed. After updating the Zeroes table, there are still two counters larger
than zero, as shown in Figure 4.3a (i=2). In our case, the algorithm selects f2[xz]
(discarding f2[xy]), calculates the new remainder f3, and updates the Zeroes
table to yield the table in Figure 4.3a (i=3). At this point, since all counters are
zero, the algorithm terminates to return the following set of selected constraints
as the resulting decomposition:

F ′ = {f0[∅], f1[yz], f2[xz]}.
On the one hand, notice that the whole procedure —shown in Algorithm 3—

never calculates a projection unless it is going to be returned as part of the result-
ing decomposition. Furthermore, since the maximum number of constraints in
a decomposition is

(|V |
r

)
, the worst case complexity of calculating the decompo-

sition is O
((|V |

r

)
· exp(|V |)

)
. On the other hand, the algorithm has to maintain

74 CHAPTER 4. SCALING BY RESOURCE TRADE-OFFS

Algorithm 3 ZeroDecomposition(F, V, r).

1: initialize(Zeroes, ~c)
2: f ← (./F)[V]
3: F ′ ← ∅
4: (f ′, gain)← (f [∅], 1)
5: while gain > 0 do
6: F ′ ← F ′ ∪ {f ′}
7: f ← f ./(−f ′)
8: (f ′, gain)← selectBestLowerBound(f ,r,Zeroes,~c)
9: end whilereturn F ′

10:

11: function selectBestLowerBound(f ,r,Zeroes,~c)
12: for all new v s.t. f(v) = 0 do // new zeroes in f
13: for all S ∈ S do // subsets of r variables
14: if not Zeroes(S,v[S]) then
15: ~c(S)← ~c(S)− 1
16: Zeroes(S,v[S])← true
17: end if
18: end for
19: end for
20: S∗ ← arg maxS∈S ~c(S)
21: return f [S∗] , ~c(S∗)
22: end function

the zeroes table, which also has a cost. Note that function selectBestLower-
Bound only processes the assignments that are zero in the current iteration and
were not zero in the previous one.5 This means that to maintain the table, each
assignment will be processed at most once. Since for each assignment we mark
each possible r-arity lower-bound, the time complexity of maintaining the table

is O
((|V |

r

)
exp(|V |)

)
, and thus does not increase the overall time complexity.

4.2.3 Empirical evaluation

In this section we evaluate the performance of the different approximation strate-
gies on the DIMCTEf algorithm. For each experiment, we present both the
communication savings and increase in overall computational cost with respect
to standard GDL (DCTE). We choose to track these measures because they
are the key ones in constrained environments. For instance, consider a wireless
sensor networks setting. Since running out of battery disables a node, battery
consumption is probably the most important figure to consider. Therefore, both
communication and computation costs are important because they directly de-
termine battery consumption. We estimate the overall computational cost by

5New zeros can be detected at no cost while computing the combination in line 7.

4.2. COMMUNICATION-EFFICIENT APPROXIMATIONS 75

adding the processing times incurred by each node, while ignoring communica-
tion times. Similarly, the overall communication cost can be easily determined
by adding the number of bytes of all sent messages.

Because GDL’s communication and computation is mainly determined by the
maximum clique size of the computed Junction Tree, experiments are segmented
by this parameter. Consequently, both GDL and all DIMCTEf approaches use
the same JTs generated by the DJTG algorithm [Vinyals et al., 2010b], like
in Section 3.4.1. Additionally, notice that the parallelism degree is roughly
the same for all algorithms, because it mainly depends on the computed JT.
As a consequence, since DIMCTEf always communicates less information than
DCTE, the relative increase in real solving time between GDL and DIMCTEf
would be lower than the relative increase in overall computation shown in this
paper.

Since DIMCTEf removes assignments, it generates sparse constraints. Send-
ing sparse constraints can lead to communication savings, but only if the im-
plementation uses a special codification to transmit them. However, exploring
the codification of sparse constraints is not one of the objectives of this work.
Hence, we simply set a special value as cost for the filtered assignments, and
compressed the messages. Specifically, we chose an Arithmetic Encoder [Cleary
and Witten, 1984] with a Partial Prediction Matching model of 8 bytes. This
compression method is known to achieve good compression ratios, so long as its
input contains repeated values. The downside is that compressing has a high
computational cost, which is considered as part of our overall cost. Regarding
DCTE, compression hurts because the overall computation increases by an order
of magnitude, while communication savings are practically negligible. Therefore,
we report GDL results without compressing (following the idea of presenting re-
sults for each algorithm in its best possible condition). Likewise, although we
tried both the LRE and LMRE metrics for both content-based partitioning and
brute-force decomposition, we only report the best results obtained.

As in Sections 3.4.1 and 3.5.3, we conducted tests with the sensor networks in-
stances from [Maheswaran et al., 2004b], but they were very easy for GDL-based
algorithms in general (5 maximum clique variables).6 As a result, all strategies
achieved basically the same results, requiring 3 times less communication while
maintaining the same computation cost as standard GDL.

Next, we designed an experiment to measure the methods’ trends as the
variables’ arity increases. The experiment is composed of 35 problems of 20
variables for each domain size,7 with a random structure of densities ranging
from p=0.1 to p=0.3, where p is the probability of appearance for all edges.
Constraints’ costs are taken from a normal distribution N (0, 1), and then each
constraint is made positive by adding its minimum value to each relation. Results
in Figure 4.4a show that top-down approximation methods perform significantly
better than bottom-up approximations in the communication front, with nearly

6The maximum number of clique variables in a JT is equal to its treewidth plus one. Thus,
5 maximum clique variables amounts to a treewidth of 4.

7We introduce less variables than in Section 3.4.1 because top-down methods are more
expensive computationally, and the experiments would take too much time otherwise.

76 CHAPTER 4. SCALING BY RESOURCE TRADE-OFFS

2 3 4 5
Variables' domain size

0

20

40

60

80

100

120

S
a
v
in

g
s

w
rt

 G
D

L

Overall communication savings

2 3 4 5
Variables' domain size

0

20

40

60

80

100

120

R
a
ti

o
 w

rt
 G

D
L

Overall computation cost

(a) Increasing domain size, constant max-
imum clique variables of 10.

2 3 4 5 6 7 8 9 10
Maximum clique variables

0

20

40

60

80

100

120

S
a
v
in

g
s

w
rt

 G
D

L

Overall communication savings

2 3 4 5 6 7 8 9 10
Maximum clique variables

0

10

20

30

40

50

60

70

80

R
a
ti

o
 w

rt
 G

D
L

Overall computation cost

(b) Increasing maximum clique variables,
constant domain size of 5.

Figure 4.4: Performance evaluation of approximation strategies on random
graphs.

constant savings between two and three times better. As expected, the brute
force approach is more expensive computationally than other methods (up to
100 times slower than GDL in the worst case). Nevertheless, zero-tracking’s
overall computation cost is just 24% larger (13 times that of GDL at most)
than that of the content-based approach (10.5 times GDL), whereas its savings
are 189% larger (110.5 times less bytes sent for zero-tracking against 38.3 times
for content-based). Moreover, zero-tracking’s savings in communication increase
almost 10 times faster than the computational cost.

Then, we conducted a second experiment that measures the trends when
the problems’ maximum clique variables increases. Consequently, it contains
problems of 20 variables of arity 5 for each maximum clique variables, also with
random structures between p=0.1 and p=0.3, and normal costs. Figure 4.4b
shows that the communication savings increase exponentially for all methods,
yet zero-tracking grows at a much faster rate than the others while keeping the
computational cost under control.

Finally, the third experiment measures the impact of structure in the prob-
lems’ constraint graph. Thus, it contains lattice-structured problems of 25 and
36 variables, leading to JTs of 8 and 10 maximum clique variables.8 Once again,
top-down approximation methods achieve the largest communication savings. In
particular, zero-tracking decomposition requires up to 612 times less bytes than

8It is known that a JT of at most n+ 1 clique variables can be built for any n× n lattice
graph [Diestel, 2000]. However, the DJTG algorithm was unable to construct such trees.

4.2. COMMUNICATION-EFFICIENT APPROXIMATIONS 77

8.0 10.0
Maximum clique variables

0

10

20

30

40

50

60

R
a
ti

o
 w

rt
 G

D
L

Overall computation cost

(a) Maximum clique variables variation in lattice-structured problems.

Figure 4.5: Performance evaluation of approximation strategies on lattice-
structured graphs.

78 CHAPTER 4. SCALING BY RESOURCE TRADE-OFFS

GDL in 25% of the clique size 8 problems, while being only 44 times slower.
In summary, top-down approximations result in large communication savings.

Additionally, zero-based decomposition remains competitive in computational
effort with respect to state-of-the-art approximation methods. Hence, we have
effectively improved the scalability of GDL with function filtering for heavily
communication constrained applications such as wireless sensor networks.

4.3 A general workflow for computing messages

In Section 4.2 we focused on heavily communication-constrained scenarios, and
were able to improve the scalability of GDL with function filtering for those
kind of applications. This is already a step towards answering our Question 2 in
the introductory chapter, but disregards one fundamental aspect of it: ideally
we should be able to tradeoff the different kinds of resources depending on the
application. Instead, up to now we have strategies that are tuned for either
communication or computation constrained scenarios, but not to find the right
balance between them. Hence, our objective in the remainder of this chapter is
to coin mechanisms that allow us to perform such tradeoff tuning.

A sensible approach to achieve this goal is to try to combine the aforemen-
tioned message approximation strategies to come up with new ones. However,
notice that each GDL-based algorithm we reviewed in Section 3.3 implements
the cost message computation in its particular way. Therefore, these partic-
ularities may also help at designing a more flexible cost message computation
approach that can be tuned to the specific characteristics of different application
domains. Therefore, we now present an outline for message computation that
comprises the manner in which all current GDL-based algorithms compute their
messages. Notice that, while very similar to the description of an approxima-
tion strategy in Definition 4.3, this scheme is more general because: (i) it does
not make any assumptions about the semantics of the r parameter; and (ii) it
explicitly incorporates function filtering.

Figure 4.6 shows our general outline, which we detail in what follows. Con-
sider an agent i that is about to send a message to agent j, its parent in the JT.
Agent i has received a number of messages from its children in the JT. Addition-
ally, agent i has its own stake on the problem represented as a set of constraints
Ci. Then, the agent joins all these sets into a single set F , put together in Fig-
ure 4.6 as the input constraints F = {f1, . . . , fn}. Then, agent i must compute
the message for agent j, which is a set of (output) constraints F ′ = {f ′1, . . . , f ′m}.
This set of constraints must be a V -lower bound (see Definition 4.1) of the input
constraints, where V = Sij are the separator variables between agents i and j
in the JT.

Additionally, some of the algorithms in Section 3.3 require an input param-
eter r that determines the maximum arity of the constraints to be computed
by the message computation task. Finally, some algorithms enable the message
computation task to exploit the information contained in the message sent by
agent j to agent i in the previous iteration. This information can be regarded

4.3. A GENERAL WORKFLOW FOR COMPUTING MESSAGES 79

Approximation
method

Iteration
counter

Separator
variables

Last received
message

Input
constraints

Output constraints
(message to send)

Vr

[f1 . . . fn]

[u1 . . . uk]

[f 0
1 . . . f 0

m]

Figure 4.6: Outline of the cost message computation task.

as a further input to the task of computing messages, and thus we represent it
as the set of constraints U = {u1, . . . , uk} in Figure 4.6.

In the following we first analyze how each algorithm described in Section 3.3
implements the cost message computation task. Thereafter, we abstract a gen-
eral scheme for computing cost messages that comprises all current GDL-based
algorithms as particular instances. Based on this novel general scheme, in Sec-
tion 4.4 we propose new algorithms to solve DCOPs that can effectively trade
off communication and computation according to a user’s requirements.

4.3.1 Complete GDL-based algorithms

Figure 4.7 shows how the message computation task is implemented by the
complete GDL-based algorithms (CTE, DCTE, and Action-GDL) described in
Section 3.3.2. The first operation that all these algorithms perform is the combi-
nation of all input constraints (using the operation in Definition 3.2) to produce
a single function f . Thereafter, function f is projected over the separator’s
variables (using the operation in Definition 3.5) to yield an output constraint
f ′, the message that will be finally sent. Notice that the output constraint is
exactly the combination of the input constraints over the separator’s variables,
and hence the tightest possible V -lower bound.

On the one hand, recall that the advantage of this message computation
approach is that it produces the optimal message [Aji and McEliece, 2000].9

However, recall also that the complexity of combining all the input constraints
is exponential on the number of constraints’ variables. Hence, the message com-
putation task can become prohibitively expensive depending on the size of the
problem.

4.3.2 Approximate GDL-based algorithms

The method used to compute cost messages by the centralized MCTE(r) is
very similar to the one used by the complete GDL-based algorithms analyzed
above. Compare the implementation of MCTE(r) in Figure 4.8 with the one in
Figure 4.7. The main difference lays on how the input constraints are combined.

9This is why these algorithms obtain the optimal solution after a single cost propagation
iteration.

80 CHAPTER 4. SCALING BY RESOURCE TRADE-OFFS

Separator
variables

V

Input
constraints

[f1 . . . fn]

f [] Output constraint
(message to send)

f 0./

Figure 4.7: CTE/DCTE/Action-GDL’s message computation method.

In this case, the combination is computationally bounded by the r parameter,
namely the maximum arity of the constraints that the combination operator
can compute. Thus, prior to their combination, the set of input constraints
is first partitioned into groups of constraints while ensuring that no group has
more than r different variables. As a result, applying the combination over each
group produces a set of m constraints {g1, . . . , gm} whose arity is limited by r.
In a second step, each of these functions is independently projected over the
separator variables (V), and the resulting set of constraints forms the outgoing
message {f ′1, . . . , f ′m}. This set of constraints is also a V -lower bound of the
combination of the input constraints over the separator’s variables. However, it
is not necessarily the tightest lower bound anymore because of the independent
projections. Therefore, because the messages are not optimal and MCTE(r)
runs a single cost propagation iteration, this algorithm obtains an approximate
solution.

Separator
variables

V

Input
constraints

[f1 . . . fn]

[] Output constraints
(message to send)

Iteration
counter

r

[f 0
1 . . . f 0

m]./
[g1 . . . gm]

Figure 4.8: MCTE(r)’s message computation method.

4.3.3 GDL with function filtering

Next we analyze the IMCTEf algorithm, the first version of GDL with function
filtering, as presented in [Sánchez et al., 2005]. The algorithm runs multiple
iterations of the cost propagation phase. Specifically, each iteration runs with
an increasing r bound, which limits the arity of the computed cost messages
to r. Each iteration increases the value of the r bound employed by the last
iteration, thus yielding better solutions. IMCTEf keeps on running iterations
until the problem is solved optimally. The IMCTEf algorithm was the first one

4.3. A GENERAL WORKFLOW FOR COMPUTING MESSAGES 81

to introduce the function filtering operation, which filters out assignments that
are known to be suboptimal.

Figure 4.9 depicts the message computation scheme implemented by IM-
CTEf. Notice that the filtering operation is performed after the projection over
the constraints resulting from the combination of the input constraints. This is
because filtering prior to projecting would yield the same results at the expense
of a larger computational cost (more assignments would have to be considered).
Notice also that the filtering operation employs a set of constraints u1, . . . , uk
received during the previous iteration, and that contain information on bounds
for the different assignments over V .

Input
constraints

[f1 . . . fn]

Output constraints
(message to send)

Iteration
counter

r

[f 0
1 . . . f 0

m]

Last received
message

[u1 . . . uk]

Separator
variables

V

[]

filter./
[g1 . . . gm] [g01 . . . g0m]

Figure 4.9: IMCTEf message computation method. Parameter r is a computa-
tion bound.

Recall from Section 3.3.4 that function filtering was initially intended to re-
duce the computational effort required to solve constraint optimization problems
(COPs) in a centralized manner. Later on, the work in [Brito and Meseguer,
2010a] applied function filtering to DCOPs with the aim of reducing the amount
of communication required to solve them. As presented, these works employ the
one-sided filtering strategy in Equation (3.2), but our two-sided improvement in
Equation (3.5) can be used interchangeably in all cases.

As shown in Figure 4.10, DIMCTEf uses almost the same method than IM-
CTEf to compute messages. However, it changes the semantics of the r bound.
While IMCTEf uses r as a computation bound, DIMCTEf employs it as a com-
munication bound. Likewise IMCTEf, DIMCTEf also partitions the input con-
straints into disjoint groups, but this partitioning considers only the separator
variables. Notice that, after combining the functions in each group, the projec-
tion operation removes all variables that are not in the separator. Therefore,
by considering only the separator variables in the combination operation, the
method is limiting the maximum number of variables that each output con-
straint can contain.

In Section 4.2.2 we introduced the idea of decomposing a constraint into
lower-arity ones to further reduce the communication requirements of DIMCTEf.
That is, we split a large n-ary constraint into a set of smaller r-arity ones, where
n > r, which represent it as accurately as possible. This operation allows us
to define a new message computation method, the so-called Top-down GDL,
as outlined in Figure 4.11. Top-down GDL first computes the combination of
input messages to subsequently split the resulting function into a set of r-arity

82 CHAPTER 4. SCALING BY RESOURCE TRADE-OFFS

Input
constraints

[f1 . . . fn]

Output constraints
(message to send)

Iteration
counter

r

[f 0
1 . . . f 0

m]

Last received
message

[u1 . . . uk]

Separator
variables

V

[]

filter./
[g1 . . . gm] [g01 . . . g0m]

Figure 4.10: DIMCTEf message computation method. Parameter r is a com-
munication bound.

functions that satisfy the communication bound requirement.

Input
constraints

[f1 . . . fn]

Last received
message

[u1 . . . uk]

Separator
variables

V

[]

split

Iteration
counter

r

Output constraints
(message to send)

[f 0
1 . . . f 0

m]
filter./

g g0 g00

Figure 4.11: Top-down GDL message computation method. Parameter r is a
communication bound.

4.3.4 Analysis

The purpose of this section is to yield a scheme for message computation
that generalizes and encompasses the message computation schemes introduced
above. Before that, we turn our attention to the way the algorithms analyzed
so far operate. We observe that while MCTE(r) and IMCTEf focus on minimiz-
ing the computational effort, DIMCTEf and Top-down GDL focus on reducing
communication even at the expense of an increase in computation. With this
aim, the r parameter is employed as either a computation or communication
bound over different operations of the message computation task. On the one
hand, MCTE(r) and IMCTEf employ the r parameter as a computation bound
over the combination of input functions. On the other hand, DIMCTEf and
Top-down GDL employ the r parameter as a communication bound over differ-
ent operations: DIMCTEf uses it as a bound over the combination operation
of the input constraints (r is the maximum number of separator variables that
can appear in the combination of any input constraints); Top-down GDL uses
it as a limit on the output of the split operation. 10 Table 4.1 summarizes how
the bound parameter r affects the message computation task in the algorithms
analyzed above.

10Observe that these two interpretations of parameter r are not independent because the
computation bound limits the communication bound.

4.3. A GENERAL WORKFLOW FOR COMPUTING MESSAGES 83

Algorithm Parameter r
Maximum size of any constraint

computed by i sent from i to j

CTE,
no parameter d|J| d|V |DCTE,

Action-GDL
MCTE(r),

computation bound dmin(|J|,r) dmin(|V |,r)
IMCTEf
DMCTE(r),

communication bound d|J|−max(0,|V |−r) dmin(|V |,r)
DIMCTEf

Top-down GDL communication bound d|J| dmin(|V |,r)

Table 4.1: Effect of r parameter on the message computation task of GDL-based
algorithms (J is union of scopes of all constraints in F , d is the maximum domain
size of the variables in J , and |V | ≤ |J |).

Now we are ready to offer a scheme for the message computation task that
generalizes the message computation methods analyzed so far, as shown in Fig-
ure 4.12. According to this scheme, the input functions are first combined in
groups, similarly to what MCTE(r) and DIMCTEf do. However, the combina-
tion operation is performed by a new combine operator that can use two bounds
at the same time: (i) the computation bound employed by MCTE(r) over the
total number of variables; and (ii) the communication bound employed by DIM-
CTEf over the number of variables of the separator. Henceforth, we shall refer to
these two bounds as merge computation bound (BMC) and merge transmission
bound (BMT) respectively. As a result, this new combination operator allows
us to limit both computation and communication. After the combination step,
the resulting list of constraints is projected over the separator’s variables and
filtered according to the last received message. Finally, the filtered constraints
are split into smaller ones, whose size is limited by yet another communication
bound, the so-called split transmission bound (BST).

Input
constraints

[f1 . . . fn]

Last received
message

[u1 . . . uk]

Separator
variables

V

[]

split

Output constraints
(message to send)

[f 0
1 . . . f 0

m]
filter

Computation
bound

Communication
bound

BMC BMT

Communication
bound
BST

./
[g1 . . . go] [g01 . . . g0o] [g001 . . . g00o]

Figure 4.12: General scheme for message computation.

Notice that this general message computation scheme incorporates three
bounds (BMC , BMT , and BST) to limit the amount of computation and commu-
nication. Table 4.2 shows how these bounds have to be set to yield the message
computation methods analyzed above. By setting a bound to infinity, we are

84 CHAPTER 4. SCALING BY RESOURCE TRADE-OFFS

Algorithm BMC BMT BST

CTE, DCTE, Action-GDL ∞ ∞ ∞
MCTE(r), IMCTEf r ≥ r ≥ r
DMCTE(r), DIMCTEf ∞ r ≥ r
Top-down GDL ∞ ∞ r

Table 4.2: Settings of the general message computation scheme to implement
message computation methods of GDL-based algorithms.

putting no limit to that dimension. Thus, if BMC and BMT are both set to
infinity, there is no limit on the maximum amount of variables (and separator
variables) to combine. In contrast, setting BST to infinity means that there is
no limit on the number of variables of the constraints going through split, and
hence any input constraint will be output unchanged.

In general, notice that each setting of the general scheme’s bounds results
in a new message computation method. However, for design purposes, we must
first understand the relationships that hold between the three bounds.

• First, consider that the merge transmission bound is set to a larger value
than that of the merge computation bound, namely BMT > BMC . Now,
recall that both BMT and BMC represent limits on the maximum number
of variables that an output function can have. However, BMT refers to the
maximum amount of separator variables, whereas BMC refers to the max-
imum amount of variables of any kind. Therefore, the output constraints
will never contain more than BMC separator variables disregarding BMT ’s
value.

• Second, something similar happens between BMT and BST . As we have
just seen, BMT is the maximum number of separator variables. Also,
remember that the combined constraints are then projected over those
separator variables. This operation eliminates all the non-separator vari-
ables. Therefore, the constraints received by the split operation will never
contain more than BMT variables. As a consequence, if BMT < BST , the
constraints received by the split operation are necessarily smaller than the
limit, and the split operation will simply output them unchanged.

For instance, consider the method resulting from setting 〈BMC = r,BMT =
r,BST = r〉 and the method resulting from setting 〈BMC = r,BMT =∞, BST =
∞〉. Both message computation methods are equivalent. In general, it makes
no sense to consider bound settings such that BMT > BMC or BMT < BST .
Therefore, we can safely impose the following relationship between bounds when
designing a new message computation method: BMC ≥ BMT ≥ BST .

In this section we have presented a general scheme for message computation.
As Table 4.2 shows, the general scheme can be set to implement all message com-
putation methods in the literature. But more importantly, the general scheme

4.4. TRADING OFF COMPUTATION AND COMMUNICATION 85

in Figure 4.12 also opens the possibility of designing new message computa-
tion methods. In fact, designing a new message computation method amounts
to deciding which operators to employ and how to set their computation and
communication bounds. Hence, in the following section we explore these pos-
sibilities, presenting multiple methods designed to cater the needs of different
application domains.

4.4 Trading off computation and communication

As explained above, we can derive new message computation methods by choos-
ing different policies to set the bounds in the general scheme in Figure 4.12.
Furthermore, we have discussed the relationships between bounds that a set-
ting must fulfill. In this section we aim at designing new message computation
methods that trade off computation and communication. More precisely, in Sec-
tions 4.4.2 to 4.4.4 we identify three “families” of message computation methods
that are expected to yield different trade-offs. Before that, in Section 4.4.1 we
introduce a way of parametrizing the bounds that we must set when designing
a new message computation method. Notice that in this section we solely fo-
cus on the design of message computation methods, putting off their empirical
evaluation until Section 4.4.5.

4.4.1 Parametrizing bounds

The purpose of introducing a parametrization is twofold. First, we aim at low-
ering the number of parameters to set, which is currently three (namely, the
number of bounds). Second, we aim at reducing the space of values for bound
settings so that we avoid settings that lead to the very same message computa-
tion method.

We start by identifying the lowest value that the least dominant bound (BST)
can take on. Since the message computation methods involving bounds are all
iterative, and r is the iteration counter, r is precisely the lowest value BST can
take. Next, to set BMT we must recall from Section 4.3.4 that the relationship
BMT ≥ BST must hold: if BMT ’s value is smaller than BST ’s, the resulting mes-
sage computation method is the same than when they are exactly equal; other-
wise, if BMT ’s value is larger than BST ’s, the bound setting does define different
message computation methods. Hence, we define BMT = BST + δ1 = r + δ1,
where δ1 ≥ 0 is the first parameter of the new parametrization. Analogously,
since BMC ≥ BMT must hold, using the same line of reasoning we define
BMC = BMT + δ2 = r + δ1 + δ2, where δ2 ≥ 0 is also a new parameter. To
summarize, we define:

BMC = r + δ1 + δ2,

BMT = r + δ1,

BST = r

86 CHAPTER 4. SCALING BY RESOURCE TRADE-OFFS

Algorithm δ1 δ2
Expected resource usage

Computation Communication

MCTE(r), IMCTEf 0 0 Low High11

DMCTE(r), DIMCTEf 0 ∞ Low-Medium Medium-High
Top-down GDL ∞ — High Low

Table 4.3: Parameter settings to obtain the message computation methods in the
literature from our general message computation scheme in Figure 4.12. When
δ1 =∞, parameter δ2 can take any value.

where δ1 and δ2 are non-negative integers. Setting values for 〈δ1, δ2〉 defines a
bound setting, and hence a new message computation method. Table 4.3 shows
how to set these parameters to yield the algorithms analyzed from the litera-
ture. Notice that we do not consider the message computation methods of CTE,
DCTE, and Action-GDL. However, we are not interested in those algorithms
because they are not iterative, and hence unable to consider any computation
versus communication trade-off.

Now we are ready to yield different message computation methods by pro-
viding the appropriate settings for 〈δ1, δ2〉.

4.4.2 Bounded Bottom-up message computations

Based on the classification in Section 4.2, bottom-up methods are those that
avoid computing any constraint that can not be sent without splitting. In terms
of our general scheme, bottom-up methods are those that do not employ the
split operation. Looking back at the scheme in Figure 4.12, this means that
the merge transmission bound BMT must be lower than or equal to the split
transmission bound BST . According to our new parametrization, this whole
family of methods can be characterized by the tuple 〈0, δ2〉. In other words, this
family includes all the methods for which δ1 = 0.

Notice that this family includes both IMCTEf and DIMCTEf, as shown in
Table 4.3. Furthermore, these methods represent the two most extreme mes-
sage computation methods within the bounded bottom-up message computation
family. Now, recall that IMCTEf and DIMCTEf use a very similar scheme to
compute their messages. In fact, the only difference between them lays in the
semantics associated to the r bound. Essentially, IMCTEf focuses on limiting
the amount of computation performed by the nodes. In contrast, DIMCTEf
concentrates on bounding the amount of communication. Therefore, this fam-
ily of algorithms bounds the amount of both computation and communication.
Furthermore, they do so by avoiding to combine constraints when the result is
expected to be large. Hence, in general they should not incur in large computa-
tion costs.

11Note that MCTE(r) and IMCTEf are centralized algorithms and have no communication
costs. Hence, this is the expected communication cost of our distributed implementation, not
of the original algorithms.

4.4. TRADING OFF COMPUTATION AND COMMUNICATION 87

Consequently, these computation methods can be expected to produce mes-
sages that require a small amount of computation, but are relatively inaccurate.
Because of this inaccuracy, we can expect the algorithm to perform more itera-
tions of the cost propagation phase, resulting in an increase in communication.
As a result, we expect methods from this family to end up being reasonably
good when the communication costs are relatively low with respect to the com-
putational costs.

4.4.3 Bounded Top-down message computations

Recall that top-down methods are those that begin by computing constraints
larger than what can be sent, and then proceed to compute an approximation in
terms of lower arity constraints. In our general scheme, top-down methods are
those that do not employ a merge transmission limit (BMT) in the combination
operator. Without this bound, the responsibility of complying with the itera-
tion limit r is delegated to the split operation. Using our parametrization in
Section 4.4.1, this whole family of message computation methods can be charac-
terized by the tuple 〈δ1, 0〉. In other words, this family includes all the methods
for which δ2 = 0.

Obviously, this family includes both IMCTEf and Top-Down GDL algo-
rithms, as shown in Table 4.3. In this case, we combine the computational
bound offered by IMCTEf with the communication bound given by the Top-
Down GDL algorithm. Notice that this is similar to what bottom-up message
approximations did, but this time the communication bound is enforced by the
split operation rather than during the combination. Furthermore, observe that
avoiding to combine constraints is computationally much cheaper than comput-
ing the combination to subsequently split it. Hence, top-down message approxi-
mations are expected to produce messages that require more computation than
bottom-up methods, but which at the same time are more accurate. As a con-
sequence, the algorithm employing a bounded top-down message computation
method is expected to require less cost propagation iterations, resulting in fewer
communication costs. Therefore, we expect methods in this family to achieve
their best results when the communication costs are large in comparison with
computation costs.

4.4.4 Bounded Mixed message computations

The message computation families above included those methods that combined
the computational bound BMC with one of the communication bounds, be it
either BMT or BST . Hence, those methods do not employ all the computation
and communication limits available in the general scheme in Figure 4.12. In this
section we propose to produce new methods by providing settings that enable
all bounds at the same time. According to our parametrization in Section 4.4.1,
this amounts to set δ1 and δ2 to values greater than 0.

Employing two different communication limits at the same time may seem
redundant at first. Nonetheless, there is a clear reason to do it if we consider

88 CHAPTER 4. SCALING BY RESOURCE TRADE-OFFS

how message computation methods differently handle these limits. As explained
above, the merge transmission bound BMT avoids combining some constraints.
This is computationally cheap, but yields inaccurate results. Conversely, the
split transmission bound BST is employed when computing a combination of
constraints (namely, the exact constraint) to subsequently split it into smaller
ones. Hence, complying with BST is computationally expensive but produces
more accurate results. As a result, it is possible that combining both mechanisms
to limit the communication actually delivers better results than employing only
one of them.

Due to the larger variability among methods from this family, the perfor-
mance of mixed message computations is difficult to predict as a whole. On the
one hand, we expect these methods to perform similarly to the bottom up ones
when δ1 is close to zero. On the other hand, their results should be close to
those of the top-down methods when δ2 approaches zero. However, it is hard to
predict the performance of a message computation method when both δ1 and δ2
grow larger than zero.

4.4.5 Empirical evaluation

In the previous section we have identified a number of families of message com-
putation methods, and we have set some expectations on their results. Here we
evaluate these methods to discover the parameter settings for which they offer
the best computation-communication tradeoffs.

Empirical Settings

Recall that our objective is to empirically determine the best method given
some ratio of communication costs against computation costs. With this aim,
we measure both the computation and communication efforts that each method
requires to optimally solve the problems. Specifically, the amount of computation
is measured using non-concurrent constraint checks (NCCCs) [Meisels et al.,
2002], whereas the total amount of bytes sent between the nodes is used as the
communication cost metric.12 With these measures we can compute a combined
effort metric

e = NCCCs + α · bytes ,

where α is a ratio between the cost of sending a byte and the cost of performing
an NCCC. For instance, a large α value indicates a domain that is heavily
communication constrained (e.g. a sensor network). Conversely, a small α value
represents a domain where communication is relatively inexpensive. In fact,
notice that we can characterize the desired tradeoff for an application domain
by specifying its α value because, given that value, the method that obtains
the lowest combined effort e is the one that is expected to perform best in that
domain.

12Effort measures combining computation and communication have already been proposed
in DCOP literature [Chechetka and Sycara, 2006; Yeoh et al., 2008].

4.4. TRADING OFF COMPUTATION AND COMMUNICATION 89

Application
Memory Network Time

Estimated α
access time latency per byte

Meeting Scheduling (LAN) 100ns - 1ns 1µs 10ns 101 - 103

Meeting Scheduling (WAN) 100ns - 1ns 100µs 1µs 103 - 105

Sensor networks 100ns - 1ns 1ms 10µs 104 - 106

Table 4.4: Alpha values depending on application domain.

Now there is the issue of selecting values for α depending on an application’s
features. Although finding an accurate α value is difficult, we can still make
reasonable estimations. For instance, consider again the meeting scheduling
and sensor networks application domains, which are widely used in the DCOP
literature [Petcu and Faltings, 2005b; Brito and Meseguer, 2010b; Vinyals et al.,
2010b]. Regarding computation costs, the time of an NCCC is essentially the
time of a main memory access, which is around 10−7s with current technology. If
we consider CPU caches, this number changes: the first access to main memory
is “expensive” but subsequent accesses are “cheap”, and hence the access time
can drop down to 10−9s. Regarding communication costs, the time to send a
message is usually dominated by the network latency. Hence, sending a packet on
a LAN takes around 10−4s, whereas on a WAN it takes around 10−2s. Likewise,
the time to send a packet through a wireless link (such as those of a sensor
network) hovers around 10−1s. However, messages contain cost tables, which
vary in size. Assuming an average of around 100 bytes per message, the actual
time taken to send each byte is about two orders of magnitude lower than the
network’s latency. Table 4.4 summarizes these costs, grouped by three example
application domains. Using these costs, we compute each α value by dividing the
memory access time by the time required to send a byte. As a result, the value
of α for these domains ranges from 101 to 106. In our experiments, we widened
this range a bit to account for the fact that these are all approximations.

Likewise in Section 3.4.1, we segmented our experiments by the treewidth
of the JT constructed by the DJTG algorithm. This allows us to observe the
methods’ performance when the JT’s treewidth increases, as an indicator of their
scalability. Similarly, we experiment on problems with an increasing variable
domain size, which is also a key hardness and scalability measure. As a con-
sequence, our experiments are characterized by just two parameters: treewidth
and variable’s domain size.

Each experiment consists of 100 DCOP problems, to ensure that we obtain
significant results. Each of these problems has 40 variables, and a structure
generated by a random graph generator with densities ranging from p=0.1 to
p=0.3. Notice that, like in Section 3.4.1, these randomly generated structures
do not necessarily lead to JTs with the desired treewidth. Hence, we generated
as many structures as needed until we obtained 100 for which we were able to
construct a JT with the intended target treewidth. Finally, as in our previous
experiments, the constraints’ costs are taken from a normal distribution N (0, 1),
and then made positive by adding its minimum value to each constraint.

90 CHAPTER 4. SCALING BY RESOURCE TRADE-OFFS

0,0 0,1 0,2 0,inf

10-1 100 101 102 103 104 105 106 107

alpha

tw.4

tw.5

tw.6

tw.7

tw.8

Best algorithms

(a) increasing treewidth, fixed domain size 7

10-1 100 101 102 103 104 105 106 107

alpha

d.2

d.3

d.4

d.5

d.6

d.7

d.8

Best algorithms

(b) increasing domain, fixed treewidth 7

Figure 4.13: Evaluation of bounded bottom-up message computation methods
(δ1 = 0, increasing δ2).

Notice that, even if we restrict the evaluation to methods with small δ1 and
δ2 values, there are a wide range of methods to evaluate. Therefore, we start
by comparing methods within each family separately. Thereafter, we will select
only the best methods of each family and compare them to obtain the best ones
overall.

Empirical Results

Here we discuss the results obtained from 13200 experiment executions (100 in-
stances × 12 algorithms × 11 scenarios). As described before, each instance has
40 variables, which is unusually large in the optimal DCOP literature. Each exe-
cution considers 80 different α values, ranging from 10−1 (meaning that sending
ten bytes is as expensive as performing a single NCCC) to 107 (meaning that
sending a single byte is ten million times costlier than computing one NCCC).
This captures a wide range of scenarios, from those where communication is
extremely cheap such as LAN or inter-processor communication to those where

4.4. TRADING OFF COMPUTATION AND COMMUNICATION 91

communication is very expensive such as in sensor network inter-communication.

Figure 4.13 shows the results obtained by methods in the bounded bottom-up
family. Specifically, Figure 4.13a shows the best performing algorithms depend-
ing on the α value for the experiments with fixed variable domain size (7) and an
increasing treewidth. For instance, the uppermost horizontal bar (tw.8) shows
the method obtained by setting 〈δ1 = 0, δ2 = 1〉 is one of the best methods
for α values from 10−1 up to 104.2. However, the method obtained by setting
〈δ1 = 0, δ2 = ∞〉 is equally as good when α lies between approximately 103.4

and 104.2. This is, the horizontal bar corresponding to an experiment is divided
between multiple methods when their combined effort e is not 5% worse than
the best one.

We draw three main conclusions from Figures 4.13a and 4.13b:

• It is beneficial to increase δ2 when the communication cost rises, as ex-
pected from the results in Section 4.2.3.

• Message computation methods with a larger δ2 scale worse in commu-
nication than in computation. This can be seen because, as either the
treewidth or the domain size increases, methods with larger δ2 values do
not outperform the others until larger α alpha values.

• In all cases, the novel message computation method obtained by setting
〈δ1 = 0, δ2 = 1〉 performs equally as well or even better than the one
obtained by setting 〈δ1 = 0, δ2 = 0〉. This is because the latter one was
designed specifically for the centralized case, where communication is ir-
relevant (the lowest possible cost).

Why we do not report higher values of δ2? Remember that the whole pro-
cess is an iterative loop where parameter r is incremented at each iteration,
performing function filtering. When r reaches the treewidth of the instance, it
computes the optimum cost. Also, function filtering may save some of the last
iterations if it filters out all suboptimal solutions before r reaches the treewidth.
The algorithm always begins with r = 2 (because this is the size of the problems’
constraints). At the first iteration, if δ2 = 3, the algorithm would compute func-
tions of size d5. As a result, there is no difference between δ2 = 3 and δ2 =∞ for
all problems of treewidth lower than or equal to 4. Likewise, there would be no
difference between δ2 = 7 and δ2 =∞ for problems of treewidth ≤ 8. That is, as
we increase the value of δ2, the algorithm behaves more and more like δ2 =∞.
As r grows with iterations, real bounds in the size of intermediate join functions
also grow (in this case the exponent bound is r + 0 + δ2). Moreover, notice
that the treewidth identifies the maximum number of variables on a node of the
JT, but most nodes do not have as many variables. As a result, the effect of
larger δ2 values is less noticeable as we approach the treewidth bound, because
most nodes already compute the exact same messages with lower δ2 values. In
our tests, algorithms with δ2 values larger than 2 were not significantly different
than the results of δ2 =∞ in any occasion.

92 CHAPTER 4. SCALING BY RESOURCE TRADE-OFFS

0,0 1,0 2,0 inf,inf

10-1 100 101 102 103 104 105 106 107

alpha

tw.4

tw.5

tw.6

tw.7

tw.8

Best algorithms

(a) increasing treewidth, fixed domain size 7

10-1 100 101 102 103 104 105 106 107

alpha

d.2

d.3

d.4

d.5

d.6

d.7

d.8

Best algorithms

(b) increasing domain, fixed treewidth 7

Figure 4.14: Evaluation of bounded top-down message computation methods
(increasing δ1, δ2 = 0).

Next we compare the message computation methods in the top-down message
computation family. Figure 4.14 displays the results obtained by methods in this
family on the same experiments and using the same format as before. In fact,
the results are also similar, but this time regarding an increase of δ1 instead
of an increase of δ2. That is, methods with higher δ2 value are better when
the communication costs are high, but they also scale worse when either the
number of variables or the treewidth increase. However, a closer inspection
reveals an important difference: choosing δ2 at one of the extremes (either 0
or ∞) almost always yields better results than choosing any other δ2 value.
Therefore, unlike the bottom-up family, the method obtained by setting 〈δ1 =
1, δ2 = 0〉 is consistently worse than the one obtained by setting 〈δ1 = 0, δ2 = 0〉.

Finally, we compare the results obtained by message computation methods
in the mixed family with the best ones obtained above. First of all, the novel
bottom-up method obtained above by setting 〈δ1 = 0, δ2 = 1〉 outperforms all
other methods when communication is cheap. Furthermore, Figure 4.15 shows
that this algorithm’s results improves as problems get harder, be them in the tree

4.5. CONCLUSIONS 93

0,1
0,2

0,inf
1,1

1,2
2,1

2,2
inf,inf

10-1 100 101 102 103 104 105 106 107

alpha

tw.4

tw.5

tw.6

tw.7

tw.8

Best algorithms

(a) increasing treewidth, fixed domain size 7

10-1 100 101 102 103 104 105 106 107

alpha

d.2

d.3

d.4

d.5

d.6

d.7

d.8

Best algorithms

(b) increasing domain, fixed treewidth 7

Figure 4.15: Evaluation of best overall algorithms.

width or in the variables’ domain size. However, as communication increases,
there is a range where no algorithm is a clear winner (considering also the ones
in the mixed family). For instance, there are up to six different message compu-
tation methods obtaining very similar values when α is in the [103, 104] range.
Finally, when communication becomes very expensive (α ≥ 105), the results
obtained by setting 〈δ1 =∞, δ2 =∞〉 are always equally as good or better than
those of any other method. In fact, these results are in line with those reported
in Section 4.2.3, and reflect the fact that such method was specifically designed
for communication constrained scenarios.

4.5 Conclusions

Questions addressed in this chapter:
Q. 2. Can we improve the resource scalability of DCOP algorithms for which this

scalability is a limitation?

94 CHAPTER 4. SCALING BY RESOURCE TRADE-OFFS

After identifying the family of GDL algorithms as a promising approach for
optimal DCOP solving, the previous chapter developed purely algorithmic im-
provements that allowed us to solve larger scale problems whatever the agents’
capabilities are. In contrast, in this chapter we focused on improving the scal-
ability of GDL-based algorithms by taking into account the specific capabilities
of agents from different application domains.

First we noted that the key task defining the requirements of GDL-based
algorithms is that of computing messages during the cost propagation phase.
Furthermore, we observed that most message computation approaches in the
literature were designed to minimize the computational cost of the algorithm,
disregarding its communication requirements. Hence, we first unified these ap-
proaches in what we named the bottom-up approximation scheme.

Next we have taken the completely opposite stance, and developed the top-
down approximation scheme. This scheme is specifically designed to reduce the
algorithm’s communication requirements, disregarding the computational ones.
Moreover, we presented two particular realizations of this scheme: (i) the brute-
force decomposition strategy, a naive implementation with high computational
cost; and (2) the zero-tracking decomposition strategy, which greatly reduces the
amount of computation. We empirically evaluated the performance of all these
strategies, showing that top-down approximations always achieve larger commu-
nication savings than bottom-up ones. In fact, zero-tracking decomposition does
so while keeping the computational cost at bay. As a result, we increased the
scalability of GDL with function filtering algorithms for heavily communication
constrained application domains.

This was a significant step towards answering Question 2 posed in the intro-
ductory chapter, but the issue of adapting the algorithms’ requirements for ap-
plications where agents have more balanced resource capabilities still remained.
Hence, we have then introduced a general scheme for cost messages computation
that encompasses all current techniques used by the different GDL-based algo-
rithms. Actually, we have shown that all the existing approaches in the literature
can be obtained as specific instances of our general schema by conveniently set-
ting the values for computation and communication bounds. Furthermore, this
scheme allowed us to design novel message computation methods, represent-
ing novel combinations of previously existing strategies plus our novel top-down
decompositions.

We have also extensively evaluated both previously existing message compu-
tation methods and the new message computation methods obtained from our
general scheme by considering a continuum of communication to computation
costs. Such evaluation provides guidelines to select the most appropriate mes-
sage computation method depending on an application’s available resources.
From this analysis, we observed that the novel method obtained by setting
〈δ1 = 0, δ2 = 1〉 is the best one when communication costs are cheap with
respect to computational costs (e.g. meeting scheduling on a LAN). In contrast,
the method obtained by setting 〈δ1 = ∞, δ2 = ∞〉 appears as the best method
for heavily communication-constrained domains (e.g. wireless sensor networks).

4.5. CONCLUSIONS 95

More importantly, our empirical guidelines can be used to find out the most
appropriate message computation method for applications whose resource avail-
ability is not heavily skewed towards neither communication nor computation
(e.g. meeting scheduling on a WAN). Therefore, by allowing the designer to
adapt the algorithm to the specific capabilities of the agents in her application,
we effectively increased the scalability of GDL-based algorithms.

Part II

Approximate solving

Chapter 5

Scaling on dynamic
applications

5.1 Introduction

Chapters 3 and 4 focused on DCOP applications where it was feasible to find
optimal solutions. We identified the GDL-based class of algorithms as a family
that scales well with certain types of problems, and further extended their ap-
plicability. However, at some point the problems grow large enough that they
cannot be optimally solved anymore. Additionally, there exist other, densely
interconnected problems (with large treewidths) to which our previous results
do not apply. In those cases, the scale at which optimal solving becomes im-
practical is even smaller. The DCOP community realized these limitations long
ago, and researchers have tried to tackle the issue by introducing approximate
algorithms. These algorithms provide hopefully good solutions in shorter time
and using fewer resources than optimal algorithms.

Nonetheless, as introduced in Section 1.1, scale is typically not the only issue
in larger and more complex application domains. Particularly, there is another
issue which has been less studied in the DCOP literature: dynamism. That
is, most larger-scale coordination problems arise in dynamic situations, where
both the world’s conditions and the agents themselves are continuously evolving.
In the second part of this dissertation (Chapters 5 and 6) we focus precisely on
those dynamic applications of larger scale where optimal solving is not an option.

As noticed in [Scerri et al., 2005; Khanna et al., 2009], the bulk of DCOP-
related research focuses on static problems that are completely specified at the
beginning of the solving process. However, there exist several DCOP works
that do consider dynamism. Some of those aim to minimize the overhead of
optimally re-solving the problem after each change and/or at fixed time intervals.
That is, they strive to maintain as much state as possible between subsequent
optimal solving steps [Petcu and Faltings, 2007b; Khanna et al., 2009; Yeoh
et al., 2011]. For instance, in [Yeoh et al., 2011] the authors define how the

99

100 CHAPTER 5. SCALING ON DYNAMIC APPLICATIONS

pseudotree and the bounds computed by ADOPT should be updated (instead
of entirely recomputed) given the changes between steps. Unfortunately, these
approaches suffer the scale limitation of optimal solving algorithms. Hence, they
are not fit for the applications we want to explore in the remainder of this work.

Additionally, other works build on DCOPs, but specialize the model and
the algorithms to handle particular application domains [Zivan et al., 2009].
Moreover, they do not provide the means (neither datasets nor simulation plat-
forms) to let other researchers develop and compare new algorithms for their
application. Furthermore, a few researchers have employed DCOPs to deal with
the RoboCup Rescue Simulation challenge [Scerri et al., 2005; Kleiner et al.,
2013]. However, the RoboCup challenge represents a fairly complex application
domain involving heterogeneous teams of agents that must coordinate between
them. Due to the lack of basic understanding about DCOPs in dynamic set-
tings, we argue that it is better to start by tackling simpler but realistic enough
problems where it is easier to build such understanding. Hence, we defer dealing
with such complicated applications to Chapter 6 and focus on a simpler but
realistic problem here.

Consequently, in this chapter we begin by introducing a novel realistic ap-
plication, the Limited-range Online Routing Problem (LORP). In the LORP, a
number of UAVs have to coordinate to service requests as quickly as possible.
New requests can be introduced by human operators at any time, and the UAVs
must adapt accordingly. What makes this problem particularly challenging is
that the UAVs employ limited-range wireless radios to communicate, and hence
a UAV can only communicate with those that are relatively near at that point
in time.

Afterwards we situate this problem within the multi-agent coordination lit-
erature at large, without restricting ourselves to DCOP-related works. Then we
propose an approach to tackle the LORP based on iteratively taking snapshots
of the current situation and making decisions based on them. Two fundamental
aspects for such approach to be successful are that: (i) the snapshots must be
built and represented in a decentralized manner; and (ii) the decision making
process must operate within strict time constraints. This allows for quick loops
of assessment, decision and action that are particularly suited to highly dynamic
application domains.

Then we realize this approach by formalizing the snapshots as DCOPs and
solving them using the approximate, GDL-based Max-Sum algorithm introduced
in Section 2.2.2. This technique provides two significant advantages: (i) using
DCOPs means that the problem is represented as a single global utility function,
and hence the collective behavior of the UAVs is easier to predict and reason
about than when it emerges from the definition of individual behaviors; and (ii)
we can draw results from the extensive Max-Sum literature, including its theo-
retical properties (e.g.: convergence and quality guarantees [Weiss and Freeman,
2001; Vinyals, 2011]), and encouraging experimental results [Rogers et al., 2011].

Notice that, as explained in Section 2.3, Max-Sum’s major caveat is that it
incurs on some exponential costs. For instance, [Delle Fave et al., 2012b] intro-

5.1. INTRODUCTION 101

duces a Max-Sum based solution for a problem similar to the LORP. However,
that solution has two major drawbacks. Firstly, UAVs require an operator to
facilitate their coordination, meaning that no coordination is possible outside
of an operator’s communication range. Secondly, the algorithm’s requirements
scale exponentially on the number of UAVs. In contrast, our solutions employ
DCOPs with binary variables and Tractable Higher-Order Potentials (THOPS),
a recent development from the graphical models community [Tarlow et al., 2010]
that enables us to avoid the algorithm’s exponential costs.

We present an initial development of this solution assuming that the cost
of servicing each request is independent of other requests assigned to the UAV.
Thereafter, we introduce a second solution where UAVs adjust their estimations
on the cost of servicing a task depending on their workload, with a slight incre-
ment in complexity. As a result, UAVs using this solution are better equipped
to dynamically capture and exploit the distribution of incoming requests.

To summarize, the contributions of this chapter are the following:

• We introduce the Limited-range Online Routing Problem as a highly-
dynamic test-bed for the development of multi-agent coordination mecha-
nisms and relate it to current state-of-the-art literature.

• We propose an approach to solve the LORP based on repeatedly taking
distributed snapshots of the problem and making quick decisions based on
that information.

• We show how the LORP can be cast as a sequence of DCOPs, solved using
Binary Max-Sum, thus providing great flexibility to introduce new heuris-
tics without modifying the solving algorithm and avoiding any exponential
costs.

• We capitalize on this advantage by introducing the workload heuristic,
which exploits the dynamic characteristics of the problem to make better
decisions.

• We present an easy-to-use simulation framework for the development and
testing of LORP solving algorithms.

• We empirically evaluate the proposed algorithms, showing that: (i) our ap-
proach allows for effective request allocation in a highly dynamic, commu-
nication constrained domain; and (ii) our workload-based solution achieves
between 6% and 16% lower service times than current state-of-the-art
methods, and its actual performance comes very close to that of centralized
solutions.

The rest of the chapter is organized as follows. First, in Section 5.2 we
describe the LORP in detail, and review current state-of-the-art approaches
to tackle it. Thereafter we present our DCOP-based solutions in Section 5.3,
explaining how the LORP can be encoded as a sequence of DCOPs, and how
these DCOPs can be efficiently solved using Max-Sum. Next, in Section 5.4 we

102 CHAPTER 5. SCALING ON DYNAMIC APPLICATIONS

introduce the MASPlanes simulation platform and the benchmark algorithms
we implemented. Afterwards, we empirically evaluate our proposed solutions in
Section 5.5. Finally, we draw this chapter’s conclusions in Section 5.6 and relate
them to our research questions.

5.2 The Limited-range Online Routing Problem

In this section we present the Limited-range Online Routing Problem. First we
discuss the reasons why the novel LORP is an interesting and realistic application
given the current (and near-future) available technology. Then we intuitively
describe the problem and present a scenario that will serve as a running example
for the remainder of the chapter.

5.2.1 Problem motivation

UAVs are an attractive technology for large-area surveillance [Kingston et al.,
2008]. Today, there are readily available UAVs that are reasonably cheap, have
many sensing abilities, exhibit a long endurance and can communicate using
radios. Several applications can be efficiently tackled with a team of such UAVs:
power line monitoring, fire detection, and disaster response among others [Cox
et al., 2005].

UAVs have traditionally been controlled either remotely or by following
externally-designed flight plans. Requiring human operators for each UAV im-
plies a large, specialized and expensive human workforce. Likewise, letting UAVs
follow externally prepared plans introduces a single point of failure (the plan-
ner) and requires UAVs with expensive (satellite) radios to maintain continuous
communication with a central station. While these constraints are acceptable in
some application domains such as military operations, other applications require
more flexible techniques. For instance, consider a force of park rangers tasked
with the surveillance of a large natural park. Upon reception of an emergency
notification, the rangers must assess the situation as quickly as possible. With
this aim, they could deploy a team of UAVs to continuously fly throughout the
park. Thereafter, they could issue requests for their UAVs to check certain lo-
cations. To maintain the cost-effectiveness of the approach, such UAVs cannot
employ expensive communication devices. Thus, the UAVs would have limited
communication ranges, oftentimes significantly smaller than the park’s exten-
sion. Notice that, in this setting, neither human remote control nor centralized
planning is feasible due to such communication constraints.

In this scenario, a possibility would be to deploy the planes with a fixed mis-
sion, so that they just go to the desired location(s), perform any required checks
and fly back to some base. However, this approach is grossly unequipped to
handle the dynamism of the problem. That is, during a critical situation (e.g.,
when there is an actual fire in the park), the rangers will receive many reports,
and will quickly run out of UAVs to handle them. A possibly better approach
involves UAVs that can act autonomously and can coordinate between them.

5.2. THE LIMITED-RANGE ONLINE ROUTING PROBLEM 103

operator

⇢1

⇢2

⇢3

⌧1

⌧3

⌧2

Figure 5.1: Example Limited-range Online Routing Problem scenario.

Such UAVs may keep flying around the park and coordinate to attend requests
as the rangers introduce them, thus hopefully improving the UAVs’ effective-
ness. However, the autonomous operation and coordination of UAVs is an open
research question receiving increasing attention. It involves challenges ranging
from low-level operational details of flight control to high level coordination be-
tween UAVs [National Research Council, 2006]. In this work we assume that
low level control can be handled entirely by the UAVs’ auto-pilot systems, and
focus on high-level coordination challenges instead.

There are two main approaches to enable such coordination in the literature,
each best suited for a different kind of UAV missions. On the one hand, the
objective in exploratory missions is to collect accurate information and keep it
updated. Hence, the first approach focuses on shared information collection, fu-
sion and maintenance techniques to fulfill these missions [Zlot et al., 2002]. On
the other hand, some applications involve specific tasks that the UAVs should
carry. For instance, requests introduced by the rangers can be considered as
tasks to be performed by the UAVs. Hence, coordination between UAVs in this
context implies making decisions about which UAV should conduct each task.
Unfortunately, as explained in Section 5.2.3, most state-of-the-art multi-agent
task allocation mechanisms cannot be employed in such settings, particularly due
to the communication range limitation. Hence, we must identify the characteris-
tics and particular challenges of these applications and define the Limited-range
Online Routing Problem (LORP) to capture them.

5.2.2 Example scenario

Recall our example scenario above, where a force of park rangers have acquired
a fleet of unmanned UAVs to help them monitor a large natural park. The force
intends to request its UAVs to check certain locations when alerts are received,
or as part of their routine surveillance plans. In turn, UAVs are expected to
fulfill these requests as quickly as possible. Specifically, UAVs should try to
minimize the average request service time, where service time is the amount of
time passed between the issue of a request by an operator and the arrival of a

104 CHAPTER 5. SCALING ON DYNAMIC APPLICATIONS

UAV to the request’s location.1 A common approach to this kind of problems is
to adopt a centralized strategy: UAVs’ routes are planned at a central station,
which is in charge of commanding them. There, the central station guaran-
tees cooperation between UAVs. However, if the natural park is significantly
larger than the UAVs’ communication ranges, performing centralized planning
is unfeasible because the resulting plan cannot be effectively transmitted to the
UAVs. Figure 5.1 represents a snapshot of what the rangers’ scenario may look
like at some point in time. In this example, the force owns three UAVs labeled
ρ1, ρ2, and ρ3. The communication range of each UAV is drawn as a dotted
circle around it. By inspecting these circles, we observe that UAVs ρ1 and ρ2

can communicate between them. Moreover UAV ρ3 can communicate with the
rangers’ operator. However, there is no way for UAVs ρ1 and ρ2 to communicate
neither with UAV ρ3 nor with the operator. The scenario contains three targets
represented by the black circles labelled with τ1, τ2, and τ3. A solid line linking a
UAV with a target indicates that the UAV is aware of that target. For instance,
UAV ρ1 and UAV ρ2 know that targets τ2 and τ3 exist, but they are not aware
of target τ1. Given this scenario, a centralized planner would probably send
UAV ρ1 to targets τ3 and τ1, UAV ρ2 to target τ2, and leave ρ3 idle. However,
this plan of action can never be computed nor implemented when assuming that
UAVs have limited communication range, because there is simply no way for ρ1

to discover τ1 at this particular point in time.
As illustrated by this example, the only reasonable strategy to achieve UAV

cooperation with limited communication range is to make the UAVs directly
coordinate between themselves in a decentralized manner. The LORP itself
does not specify how agents should represent and relay information about which
requests are pending and/or completed, nor which messages can be exchanged.
Hence, it is part of a LORP solution to define a specific model and an algorithm
that allows agents to make specific decisions. Therefore, in the next section we
explore a broad range of multi-agent coordination approaches from the literature
and why those methods can or cannot be employed to deal with the LORP.

5.2.3 Related work

Although there is no extensive literature about solving highly dynamic problems
using DCOPs, there exists a vast body of research related to multi-agent (and/or
multi-robot) task allocation. Due to its similarity with the LORP, we focus
mainly on the multi-robot routing problem [Lagoudakis et al., 2005]. In this
problem a number of robots (or agents) have to visit a number of waypoints in
the minimum possible time.

By far, the largest amount of such works focuses on market-based allocation
mechanisms (e.g., [Dias and Stentz, 2000; Gerkey and Mataric, 2002; Dias et al.,
2006]), where tasks are allocated to agents using auctions. The precursor in this
area is the auction algorithm [Bertsekas, 1988], an iterative distributed algorithm
to optimally solve the classic assignment problem [Kuhn, 1955]. The assignment

1We assume that a request is serviced as soon as a UAV reaches its location.

5.2. THE LIMITED-RANGE ONLINE ROUTING PROBLEM 105

problem is a static task allocation problem where several tasks can be allocated
to a number of agents. Each agent has a different cost for performing each task,
and can only be assigned to a single task. Then, the objective is to find the
allocation that minimizes the total cost incurred after assigning all tasks.

Nonetheless, on most actual-world applications there may be more tasks than
agents. If the cost for a robot to perform two tasks is simply the addition of the
costs of performing each task separately, then the above algorithm still yields an
optimal allocation. However, in routing problems the cost of visiting multiple
waypoints depends on the relative positions between those waypoints. Hence,
the auction algorithm is not optimal in this case, and can lead to arbitrarily bad
solutions [Gerkey and Matarić, 2004].

A first step to mitigate this problem is introduced in [Gerkey and Mataric,
2002]. Instead of performing an iterative auction, the idea here is to perform a
parallel single-item auction for each task. These auctions can be resolved in a
single round. Afterwards, tasks are continuously re-auctioned, but with agents’
bids updated to account for the new state of the world. This approach, de-
scribed as the Parallel Single-Item (PSI) auctions mechanism in [Koenig et al.,
2010], improves the robustness of the system and equips it to handle changing
conditions and/or the introduction of new tasks. Although PSI auctions cap-
ture some task inter-dependencies by reallocating tasks when conditions change,
another possibility is to explicitly consider them. In the Sequential Single-Item
auctions [Koenig et al., 2006] method, agents perform an iterative auction where
a single task is assigned at each iteration. After each round, agents update their
bids according to the tasks they already got in previous iterations, hence tak-
ing into account the synergies between tasks. This approach even has quality
guarantees in static domains [Lagoudakis et al., 2005], but is not well-suited for
dynamic domains because it requires both an arbitrary number of communica-
tion cycles and global communication.

An entirely different approach to task allocation is to employ consensus al-
gorithms [Alighanbari and How, 2005; Li et al., 2010] to let agents maintain
consistent information about the system’s state. After reaching consensus, each
agent can independently compute its plan using a deterministic algorithm, and
the resulting plans are guaranteed to be consistent with each other. The main
advantage of these algorithms is that they have been shown to converge even
on time-varying network topologies. However, the time required to reach such
convergence is unbounded and they cannot converge during network partitions.
Hence, consensus-based works typically strive to either guarantee network con-
nectedness [Mosteo et al., 2008] or minimize the impact of such a potentially
large decision making time. For instance, [Ren and Beard, 2008] presents a
UAV coordination model for fire perimeter tracking, where UAVs reach a con-
sensus on which section of the perimeter is to be monitored by each UAV. When
the conditions change, the UAVs keep monitoring their section until a new con-
sensus is eventually reached. Because the fire perimeter is unlikely to evolve
very rapidly, the previous assignment works relatively well even if it takes a long
time to reach a new consensus.

106 CHAPTER 5. SCALING ON DYNAMIC APPLICATIONS

Finally, some researchers have tried to combine the advantages of market-
based mechanisms (quick decisions) with those of the consensus-based ones
(eventual consistency). Along these lines, Choi et al. [2009] introduced the Con-
sensus Based Bundle Algorithm (CBBA), which directly reaches a consensus on
(an auction-based) solution. Nonetheless, this approach still suffers from the low
resilience to network disconnections.

As explained in the previous section, LORP scenarios are highly dynamic and
involve very rapid changes in the communication network topology, including fre-
quent disconnections. Hence, consensus-based approaches are not particularly
well suited for this domain. Moreover, among all the aforementioned market-
based mechanisms, it turns out that only the simpler auction-based approaches
(such as PSI) can be employed for the LORP due to the lack of global commu-
nication. Therefore, PSI auctions serves as the state-of-the-art benchmark any
new algorithms for the LORP should outperform.

5.3 Coordinating UAVs in the LORP

After studying the LORP’s characteristics, we advocate for a solution approach
where UAVs make quick decisions based solely on local information, where the
neighbors of a UAV are those UAVs with which it can directly communicate at
a given point in time. Thus, in this section we begin by introducing an approach
that allows us to treat a LORP as a distributed request allocation problem. This
approach can be realized by any task allocation model and algorithm that meets
the approach’s constraints.

Consequently, we then introduce a first realization of this approach that
models the task allocation problem as a binary DCOP, assuming independence
between requests. Thereafter we show how Max-Sum can be used to solve such
DCOP. Furthermore, we show that, thanks to the DCOP being binary, we can
actually avoid the exponential costs typically attached to the Max-Sum algo-
rithm. Finally we exploit the results in [Tarlow et al., 2010] to develop a more
sophisticated model where UAVs take into account their own workload when
evaluating the cost to service a request with only a slight increase in computa-
tional costs.

5.3.1 An aproach based on task ownership transfers

Notice that, unlike our example scenario in Figure 5.1, the LORP is a highly
dynamic problem where UAVs constantly move and new requests can be intro-
duced at any time. As a result, any approaches to deal with the LORP must
try to make quick decisions. On the one hand, a long decision-making process
would lead to arbitrarily bad decisions being made. That is, a decision that was
good when the decision making process started may end up being arbitrarily
bad if the process itself took too long (during which the scenario’s conditions
kept evolving). On the other hand, making complex decisions (such as long term
plans for each UAV) is futile, because there is a high probability for such plans

5.3. COORDINATING UAVS IN THE LORP 107

to eventually become invalid. Likewise, operating in a decentralized manner in-
troduces an additional challenge: how to spread and maintain a consistent view
of the system between agents. For instance, a LORP solution must specify how
UAVs notify others of newly introduced requests, as well as of already serviced
ones.

In our approach we deal with these issues by defining three simultaneous
main processes:

1. At any time, an operator may introduce a new request by notifying a single
UAV in its range, which becomes the request’s owner. So long as a UAV is
the owner of a request, it is responsible for the eventual servicing of that
request. However, ownership of a request may be transferred to another
UAV as explained next. Since there is exactly one owner of each request
at a particular point in time, this guarantees a consistent (yet distributed)
view of the system by the UAVs.

2. Concurrently, UAVs run cycles of a request reallocation process. The real-
location process is a sequential process with three phases. First, the UAVs
construct a snapshot of the current situation by broadcasting their location
and the requests they currently own. Next, the UAVs run some decentral-
ized request allocation algorithm based on the collected information. This
phase may take several communication rounds between neighboring UAVs,
and ends with specific decisions on which plane should own each request.
Finally, the decisions are executed by exchanging the requests’ ownership
between planes. When a full reallocation cycle finishes, the UAVs start a
new one with updated information.

3. Meanwhile, each UAV flies towards the nearest task it owns or tries to get
in range of the closest operator if it does not own any request. When a
UAV reaches the location of a request it owns, the request is considered
serviced and removed from the system.

We argue that this approach is particularly well suited for the LORP. First,
the ownership concept frees the allocation algorithms from having to maintain
consistent situational awareness because only the current owner of a request may
decide to allocate it to another UAV. Additionally, by enforcing short allocation
cycles the UAVs can make decisions quickly and reconsider them as the situation
evolves.

5.3.2 Coordination using Independent Valuations

In this section we show how a snapshot of a LORP problem can be encoded as a
binary DCOP, assuming that requests are independent between them (i.e, that
the cost for a UAV to service two requests is the same as the sum of costs of
servicing them separately). Thereafter, we use Max-Sum to let UAVs compute
an allocation in a distributed and efficient manner.

108 CHAPTER 5. SCALING ON DYNAMIC APPLICATIONS

2

0

7

2

4

1

6
5

0

x1

ρ3

c1

c2

c3

x2 x3
ρ1 ρ1
ρ1

ρ1

ρ2
ρ2

ρ2ρ2

x2 x3
ρ1 ρ1
ρ1

ρ1

ρ2
ρ2

ρ2ρ2

x3

x2

x1

Figure 5.2: Naive DCOP encoding of the example in Figure 5.1.

Problem Encoding as a binary DCOP

Prior to encoding our problem, some notation is in place. Henceforth, Let R =
{τ1, . . . , τm} be a set of requests, P = {ρ1, . . . , ρn} be a set of UAVs, r and p be
indexes for requests and UAVs respectively, Rp ⊆ R be the set of requests that
UAV ρp can service, and Pr ⊆ P be the set of UAVs that can service request
τr. A straightforward encoding of the requests-to-UAVs allocation as a DCOP
Ω = 〈A,X,D,C,m〉 is:

• A contains one agent per UAV in P , namely A = {ρ1, . . . , ρn}.

• X contains one variable xr per request τr. The domain of each variable
xr ∈ X is the set of UAVs that can service the request, namely Pr.

• D = {Pr | xr ∈ X} is the set of all domains of all variables.

• C contains one constraint cp per UAV ρp. This constraint evaluates the
cost of servicing all combinations of requests ρp can attend. Hence, the
scope of each constraint cp, namely Xp = sc(cp), is the set of all variables
that have ρp in their domain.

• m maps each variable xr to the current owner of the corresponding request
τr.

Solving the DCOP problem Ω amounts to finding the combination of request-
to-UAV assignments x∗ that satisfies

x∗ = arg min
x

∑
p∈P

cp(x[Xp]) .

Figure 5.2 shows an encoding of the motivating example in Figure 5.1. There
is a variable for each request. The domain of x1 is the set of UAVs that can ser-
vice request τ1. This is effectively the set of all UAVs that are in communication
range of the owner of τ1. Hence, the domain of x1 is just {ρ3}. Likewise, the
domain of x2 and x3 is {ρ1, ρ2} because both UAVs can fulfill the corresponding
requests. Next, we introduce a constraint cp for each UAV ρp. Because ρ3 can
only service τ1, the scope of the constraint c3 is x1. As a result, c3 is a unary

5.3. COORDINATING UAVS IN THE LORP 109

0
2

0
2

5
0

1
0

x2

x2x3

x3

c23 c22

c13 c12

ρ1
ρ2

ρ1
ρ2

ρ1
ρ2

ρ1
ρ2

7

x1

ρ3

x2

x1

c31

x3

Figure 5.3: Independent valuations encoding of the example scenario.

constraint that specifies the cost for UAV ρ3 to service τ1, namely the distance
between ρ3 and τ1 (hereafter δpr will be employed as a shorthand for the distance
between ρp and τr). The scope of c2 is {x2, x3}, because UAV ρ2 can service
both τ2 and τ3. Hence, c2 specifies four costs for ρ2:

1. 0 if both requests are allocated to ρ1.

2. 2 = δ23 if τ2 is allocated to ρ1 and τ3 is allocated to ρ2.

3. 2 = δ22 if τ2 is allocated to ρ2 and τ3 is allocated to ρ1.

4. 4 = δ22 + δ23 if both requests are allocated to ρ2.

Finally, the costs of c1 are similarly computed. From the costs shown in Fig-
ure 5.2, we can now compute the optimal assignment x∗ = 〈x1 = ρ3, x2 =
ρ2, x3 = ρ1〉.

The problem of this encoding is that it scales poorly. First, notice that the
cp constraints do not exploit the fact that we assume independence between re-
quests. Therefore, the number of assignments in cp is the product of the domain
sizes of each of the variables in its scope. As a result, cp grows exponentially
larger with respect to the number of requests that UAV ρp can service.

However, we can exploit the independence between requests by decomposing
each cost constraint cp into smaller cost constraints, each one evaluating the
cost of servicing a single request. That is, thanks to that independence between
requests, we can represent cp as a combination of cost constraints cpr, one per
variable in the scope of cp, such that

cp(xp) =
∑
xr∈Xp

cpr(xr) .

With this transformation, the number of values to specify the cost of servicing
a set of requests scales linearly with respect to the number of requests. Moreover,
the new encoding represents exactly the same problem than before.

Figure 5.3 represents the same example in Figure 5.2, but using this new
encoding. Notice that for each UAV we specify the cost of servicing a given
request when the request is assigned to that UAV, or 0 when it is allocated to
another UAV.

110 CHAPTER 5. SCALING ON DYNAMIC APPLICATIONS

F 0
T 2

F 0
T 2

T 5
F 0

T 1
F 0

T

F
0

T

F
F
T

T

F

0

F
T 0

0
7T

F

s3

s2

s1

u23 u22

u13 u12 u31

z23 z22

z13 z12
z31

1

1

z13z23

z12 z22

T

F
0

T

F
F
T

T

F

0
1

1

z31
1

z23

z13

z12

z22

z31

Figure 5.4: Binary independent valuations encoding of the example scenario.

However, even this improved encoding suffers from redundancy. To see how,
consider another UAV ρ4 is in the communication range of both ρ1 and ρ2. Since
this UAV would be eligible to serve requests τ2 and τ3, the domain of x2 and x3

would become {ρ1, ρ2, ρ3}. As a result, UAV ρ1 would have to extend its cost
constraint c12 to include a new assignment where τ2 is assigned to ρ4, whose
cost is obviously 0.

In practice, the cost for UAV ρ1 depends only on whether a request is al-
located to it or not, disregarding which other UAV got it in the latter case.
Therefore, we must aim at an encoding such that each cost constraint cpr con-
tains only two values: δpr if τr is allocated to ρp, or 0 otherwise. With this
aim, we now convert all variables in X to binary variables. That is, we replace
each original variable xr ∈ X by a set of binary variables zpr, one per UAV
in Pr. Previous cpr constraints now generate upr constraints on these binary
variables. In addition, for each request r, the variables zpr are linked through a
selection constraint sr to ensure that a request can be only serviced by a single
UAV. Formally, we re-encode the naive DCOP above into a new binary DCOP
Ω′ = 〈A,Z,D′, C ′,m′〉, where

• Z is the set of all binary variables zpr, one for each UAV ρp and request
that UAV can service τr ∈ Rp. The domain of each variable zpr is the
set Dpr = {true, false}, where true means that request τr is allocated to
UAV ρp and false means that it is not.

• D′ is the set containing all Dpr = {T,F} binary domains.

• C ′ = U + S is the set containing all cost constraints upr ∈ U and all
selection constraints sr ∈ S.

• Function m′ maps each variable zpr to UAV ρp.

For instance, consider variable x2 from our example, whose domain is
{ρ1, ρ2}. We create two binary variables z12 and z22. Intuitively, z12 taking
value T (also known as z12 being active) means that request τ2 is assigned to
UAV ρ1, whereas z12 taking value F (being inactive) means that τ2 is not assigned
to ρ1. Then, a selection constraint s2 guarantees that request τ2 is assigned to

5.3. COORDINATING UAVS IN THE LORP 111

one and only one UAV. In our example, the constraint s2, with scope {z12, z22},
introduces an infinite cost unless exactly one of those two variables is active.
After applying these transformations, Figure 5.4 shows the binary encoding of
the example in Figure 5.3.

Solving the Problem with Max-Sum

Now we optimize the Max-Sum algorithm to run on the encoding shown in
Figure 5.4. As explained in Section 2.2.2, Max-Sum sends messages between the
nodes in the factor graph representation of the problem. Being an algorithm
of the GDL family, the messages these nodes must compute are analogous to
those shown in Equation (4.1) from Chapter 4. However, those messages can be
specialized into the expressions below as shown in Appendix A.

On the one hand, the message from a variable z to a constraint f is simply
the combination of all messages z received from its other neighbors. Namely,

µz→f (z) =
∑

f ′∈N(z)\{f}
µf ′→z(z) (5.1)

where N(z) \ {f} is the set of neighbors of variable z except from f .
However, our factor graph allows for some simplifications. First, notice that

each zpr is only linked to the corresponding cost constraint upr and the selector
constraint sr. That is, each variable has exactly two neighbors. Hence, it is
direct to observe from Equation (5.1) that the message that zpr must send to
upr is exactly the one received from sr, while the message that it must send
to sr is exactly the one received from upr. Because each variable simply relays
messages between the cost constraint and the selection constraint it is linked
to, henceforth we disregard the variables’ messages and instead consider that
constraints directly exchange messages.

On the other hand, the message from a constraint f to a variable z is

µf→z(z) = min
t extension of z

to sc(f)

(
f(t) +

∑
z′∈N(f)\{z}

µz′→f (t[z′])

)
. (5.2)

Observe that the messages sent by a constraint are always defined over a
single variable. That is, in our case, the messages exchanged between a upr cost
constraint and an sr selection constraint refer to assignments on binary variable
zpr. Therefore, one such message must contain two values, one per possible as-
signment to zpr. At this point, we can make a further simplification and consider
sending the difference between the two values. Intuitively, a constraint sending
a message with a single value for a binary variable transmits the difference be-
tween the cost when that variable is active and the cost when that variable is
inactive. In general, we define the single-valued message exchanged between two
constraints as

νf→g = µf→g(T)− µf→g(F) . (5.3)

At this point we can compute the messages sent between our cost and selec-
tion constraints using Equations (5.2) and (5.3).

112 CHAPTER 5. SCALING ON DYNAMIC APPLICATIONS

• From cost constraint to selection constraint. This message expresses the
difference for a UAV ρp between serving request τr or not, therefore

νupr→sr = upr(T)− upr(F) = δpr − 0 = δpr . (5.4)

• From selection constraint to cost constraint. Consider the selection con-
straint sr and the cost constraint upr. From Equation (5.2), we obtain

µsr→upr
(T) = 0, and µsr→upr

(F) = min
ρp′∈Pr\{ρp}

δp′r .

Then we can apply Equation (5.3) to obtain the single-valued message

νsr→upr = − min
ρp′∈Pr\{ρp}

δp′r .

Moreover, this message can be computed efficiently. Consider the pair
〈ν∗, ν∗∗〉 as the two lowest values received by the selection constraint sr.
Then, the message that this constraint sr must send to each cost constraint
upr is

νsr→upr
=

{
−ν∗ νupr→sr 6= ν∗

−ν∗∗ νupr→sr = ν∗
. (5.5)

To summarize, each cost constraint computes and sends messages using Equa-
tion (5.4), whereas each selection constraint computes and sends messages using
Equation (5.5).

Max-Sum operation. Max-Sum is an approximate algorithm in the general
case, but it is provably optimal on trees. Due to how we encode the LORP, the
resulting factor graph always contains a disconnected, tree-shaped component
around each selector constraint sr. For instance, Figure 5.5 shows the optimized
factor graph of our example, and identifies each disconnected component. More-
over, the algorithm is guaranteed to converge after traversing the tree from the
leaves to the root and then back to the leaves again. In our case, the tree-shaped
component for each request is actually a star-like tree, with the selection con-
straint sr at the center, and the corresponding cost constraints upr connected to
it. Hence, we are guaranteed to compute the optimal solution in two steps.

Typically, Max-Sum’s decisions are made according to the costs seen by the
variable nodes after running the algorithm. However, we have no variables in
our graph anymore because we eliminated them. As a consequence, we have to
make the decisions at either the selector nodes or at the cost nodes. The best
option is to let the selectors choose, because it guarantees that the same task
is never simultaneously assigned to two different UAVs. Furthermore, because
the decisions are made by the selector nodes, there is no need for the second
Max-Sum iteration (messages from selector to cost constraints) anymore.

Notice that, after our refinements, the only remaining Max-Sum nodes are
the cost constraints upr and a selection constraint sr for each request. Hence,

5.3. COORDINATING UAVS IN THE LORP 113

s1(z31)

u31(z31)

around s1

star graph

s2(z11, z12)

u22(z22)

u12(z12)

around s2

star graph

s3(z13, z23)

u23(z23)

u13(z13)

around s3

star graph

Figure 5.5: Optimized graph for Max-Sum execution assuming independent task
valuations.

the UAVs can execute the algorithm distributedly by letting each plane ρp run
the cost constraints upr as well as the selection constraints of those requests it
currently owns. Moreover, a UAV only needs to know its neighbors’ requests to
build the logical nodes it must run. Thus, the whole graph can also be built
distributedly based only on each UAVs’ local information.

Max-Sum runs on our example as follows. First, each leaf cost constraint
upr must send its cost to the root of its tree, sr. That is, UAV ρ1 sends 1 to s3

(within UAV ρ2), and 5 to s2 (within itself). Likewise, UAV ρ2 sends 2 to s2 and
2 to s3, whereas UAV ρ3 sends 7 to s1. Thereafter, the selector nodes sr decide
by choosing the UAV whose message had a lower cost. Hence, s3 (running within
UAV ρ2) decides to allocate τ3 to ρ1, s2 allocates τ2 to ρ2, and s1 allocates τ1 to
ρ3. At this point the owner of each request knows whether a request should be
reallocated or not and to whom, so we can use it to implement the reallocation
phase of our approach described in Section 5.3.1.

5.3.3 Coordination using Workload-based Valuations

In realistic scenarios, requests do not appear uniformly across time and space.
Instead, when some emergency occurs, requests should be concentrated around
the problematic area, hereafter referred to as hot spot. Our hypothesis is that
the assumption of independence between requests may be too strong in this
case. That is, such assumption can lead to unbalanced allocations, where some
UAVs (the ones closer to the hot spot) are overloaded while others remain idle.
Therefore, we now show that it is possible to relax this assumption while keeping
an acceptable time complexity for Max-Sum. With this aim, we introduce a new
factor for each UAV: a penalty that grows as the number of requests assigned
to that UAV increases. Formally, let Zp = {zpr such that τr ∈ Rp} be the set of
variables encoding the assignment to UAV ρp. Let ηp be the number of requests
assigned to UAV ρp, namely ηp = |{zpr ∈ Zp such that zpr is active}|. The

114 CHAPTER 5. SCALING ON DYNAMIC APPLICATIONS

workload factor for UAV ρp is then

wp(Zp) = k · (ηp)α , (5.6)

where k ≥ 0 and α ≥ 1 are parameters that can be used to control the fairness
in the distribution of requests (in terms of how many requests are assigned to
each UAV). Thus, the larger the α and the k, the fairer the request distribution.

The direct assessment of Max-Sum messages going out of the workload factor
takes O(N · 2N−1) time, where N = |Zp|. Interestingly, the workload factor is
a particular case of a cardinality potential as defined by Tarlow et. al. [Tarlow
et al., 2010]. A cardinality potential is a factor defined over a set of binary vari-
ables (Zp in this case) that does only depend on the number of active variables.
That is, it does not depend on which variables are active, but only on how many
of them are active. As described in [Tarlow et al., 2010], the computation of
the Max-Sum messages for these potentials can be done in O(N · logN) time.
Thus, using Tarlow’s result we can reduce the time to assess the messages for the
workload factors from exponential in the number of variables to linearithmic.

To further speedup the algorithm and reduce message exchanges, we can
add the workload factor and the cost factors that describe the cost for UAV
ρp to service each of the requests. In Lemma B.2 we prove that if we have a
procedure for determining the Max-Sum messages going out of a factor over
binary variables, say f , we can reuse it to determine the messages going out of
a factor h which is the sum of f with a set of independent costs, one for each
variable.

Algorithm 4 process(w′p) . All undefined values are ∞
1: for r ∈ Rp do . Incorporate incoming messages
2: I[r] = νsr→w′

p
+ cpr(1)

3: end for
4: Pos, I′ = sorted(I) . Pos are the reverse indices, and I’ the sorted list
5: cs = 0
6: for i = 0 to |I′| do . Compute cumulative sums
7: CS0[i] = cs+ wp(i)
8: CS−[i] = cs+ wp(i− 1)
9: CS+[i] = cs+ wp(i+ 1)

10: cs = I′[i] + cs
11: end for
12: for i = 0 to |I′| do . Compute cumulative mins
13: M+[i] = min(CS+[i],M+[i− 1])
14: ML[i] = min(CS0[i],ML[i− 1])
15: MR[i] = min(CS0[|I′| − i],MR[|I′| − i+ 1])
16: M−[i] = min(CS−[|I′| − i],M−[|I′| − i+ 1])
17: end for
18: for r ∈ Rp do . Compute and send messages
19: i = Pos[r]
20: ξ0 = min(ML[i− 1],M−[i+ 1]− I′[i])
21: ξ1 = min(M+[i− 1],MR[i+ 1]− I′[i])
22: νwp→sr = ξ1 − ξ0 + cpr(1)
23: send(νwp→sr)

24: end for

5.4. THE MASPLANES TOOLKIT 115

Thus, we can define a single factor that expresses the complete cost of a UAV
when assigned a set of requests, which amounts to the sum of the independent
costs for each of the requests assigned plus the workload cost for accepting that
number of requests. Formally the cost factor for UAV ρp is

w′p(Zp) = wp(Zp) +
∑
τr∈Rp

upr(zpr) . (5.7)

Algorithm 4 defines how to assess the messages flowing out of the cost factor
w′p. It is obtained by composing Lemma B.2 with the algorithm described in
[Tarlow et al., 2010] for cardinality potentials.2 The algorithm is basically a
dynamic programming procedure for computing minimizations over cumulative
sums, which can be done in a few linear passes. The complexity is dominated
by the initial sort operation, and hence the O(N · logN) runtime.

Summarizing, by introducing workload valuations that do not only depend
on each individual request, but also on the number of requests, we have shown
that it is possible to relax the assumption of independence between valuations
with a very minor impact on the computational effort required to assess the
messages (from linear to linearithmic). In the next section we show that this
relaxation provides significantly better allocations in terms of minimizing the
service time across requests.

5.4 The MASPlanes toolkit

In the remainder of this chapter we want to empirically evaluate our DCOP-
based solutions for the LORP. Being a novel problem, there exist no development
and testing tools for LORP solving approaches and algorithms. Hence, in this
section we first describe MASPlanes, the simulation environment we developed
and open-sourced to compare the different coordination mechanisms identified
and proposed in this chapter. Thereafter we introduce the state-of-the-art meth-
ods provided by MASPlanes, which serve as a baseline to test new approaches
for the LORP.

5.4.1 Simulation environment

Most current UAV simulators are mainly designed for the development of low-
level flight control and coordination techniques [Jang et al., 2005; Rasmussen
et al., 2005; Garcia and Barnes, 2010]. They employ highly accurate physics
and component models to produce as accurately as possible simulations. These
are very complex simulators that require significant specific knowledge and do-
main expertise. Furthermore, being built for such a specialized purpose they do
not emphasize the decoupling of their different components. As a consequence,

2The algorithm description provided in [Tarlow et al., 2010] is inaccurate. However, the
authors own implementation of the algorithm is correct. It does not match the description in
[Tarlow et al., 2010] and is closer to the description provided by Algorithm 4.

116 CHAPTER 5. SCALING ON DYNAMIC APPLICATIONS

Figure 5.6: MASPlanes graphical user interface.

it is largely impractical to adapt them to perform more specialized problem-
specific experiments under varying assumptions. Additionally, they are very
computationally demanding, making their usage impractical to conduct the large
number of experiments required to asses the behavior of a novel coordination
algorithm. Happe and Berger [Happe and Berger, 2010] identified these issues
and developed the CoUAV simulator. However, they focused on the problem of
cooperative search and exploration instead of dynamic task allocation, so their
simulator is not applicable to our problem domain.

Due to the aforementioned limitations, we developed MASPlanes [Pujol-
Gonzalez et al., 2014b], an easy-to-use simulation environment specifically geared
towards testing coordination methods for the LORP. The MASPlanes environ-
ment has two main components: the problem generator and the simulator.

The problem generator allows to randomly generate problem instances based
on a wide number of parameters (e.g.: number, speed and communication range
of the UAVs, frequency and spatial distribution of the incoming requests among
others). Users define a scenario by fixing these parameters, and then they can
generate as many problem instances of that scenario as required. A problem
instance completely defines the characteristics of each participating UAV, as well
as all requests that will be introduced during the simulation. As a consequence,
we can compare the performance of different UAV coordination mechanisms on
the very same dynamic situations.

5.4. THE MASPLANES TOOLKIT 117

MASPlanes performs step-based simulations, a common simulation technique
in the multi-agent community [Railsback et al., 2006]. Currently, the simulator
assumes that UAVs move at a constant speed and that they fly at different
heights (so there is no need to actively avoid collisions). The main loop of
the simulator is straightforward. First, the kernel initializes all participating
agents. Thereafter, a step is performed every 100 ms, where each agent is given
the opportunity to receive, compute, act and send messages. Messages sent at
some step are not delivered until the next one. The simulator keeps performing
steps until all requests have been introduced into the system and serviced by the
UAVs. After that, the simulator reports statistics about the requests’ servicing
time, distances travelled by the UAVs and total run time.

There are two main agent types within the system: operators and UAVs.
Operators are in charge of requesting UAVs to check some locations. Hence,
during the initialization procedure, operator agents load the list of requests they
will introduce from the problem definition. This list specifies each location that
must be visited and when to introduce the request. When the time comes, an
operator introduces a request into the system by sending a message to one of the
UAVs within its communication range. If no UAV is reachable by the operator
at that particular point in time, the operator keeps the request until some UAV
enters its range and then delivers it.

The basic UAV agents provided by the platform implement our approach
from Section 5.3.1, but without performing any request reallocation procedure.
Thus, users can extend these basic UAV agents to implement the coordination
algorithm of their choice. To illustrate that, the framework includes a collection
of state-of-the-art coordination algorithms, both centralized and distributed as
detailed below.

At run-time, the user selects which coordination mechanism to test and can
monitor the resulting behavior of the UAVs through the simulator’s GUI shown
in Figure 5.6. This allows the algorithm designer to observe the emergent behav-
iors resulting from her algorithm, providing valuable insight on how it operates
in practice. Finally, the simulator can also run in batch mode, where it sim-
ply runs the simulation until the end and reports statistics about that particular
problem instance solved with the specified coordination mechanism and settings.

5.4.2 Benchmark algorithms

Comparing the performance of LORP coordination methods against the current
state-of-the-art is tricky because, as explained in Section 5.2.3, most current
methods cannot cope with the requirements of our problem domain. There-
fore, MASPlanes also implements a relaxed version of the problem to compare
against those methods that cannot actually be employed to solve the LORP. In
this relaxation, the allocation is performed by a central agent that has no com-
munication restrictions. Furthermore, the centralized allocation procedure used
by the centralized agent is considered to be instantaneous. That is, there is no
delay at all introduced by the allocation procedure, whatever its computational
cost may be. The only constraint that such central planner enforces is that a

118 CHAPTER 5. SCALING ON DYNAMIC APPLICATIONS

Algorithm 5 GreedyAllocation(P,R, V,A)

1: while R 6= { } do
2: // Choose the request-to-UAV allocation with minimum cost
3: 〈τ∗, ρ∗〉 = arg minτ∈T,ρ∈R,τ∈V [ρ] evaluate(r, A[ρ])
4: A[ρ∗] = insert(τ∗, A[ρ∗])
5: R = R \ {ρ}
6: end while

UAV can not be assigned to a request whose existence is unknown by that UAV.
Additionally, MASPlanes also provides two readily-available request allocation
algorithms to make decisions using this relaxed problem that we describe next.

First, the c-hungarian algorithm runs the Hungarian method [Kuhn, 1955]
to compute allocations. This method optimally solves the assignment problem
in O(n3) time. However, recall that the LORP is not an assignment problem
because: (i) unassigned requests have to be performed later on; (ii) the cost of
servicing a request changes depending on the order in which they are serviced;
and (iii) new requests may be introduced at any future time. Also notice that the
solutions obtained using this method correspond to those that would be found
by the auction algorithm [Bertsekas, 1988]. Aside from the actual procedure,
the only difference between these methods is that the auction algorithm may
be distributed, at the expense of additional delays caused by communications.
Hence, the results obtained by this method represent an upper bound on the
best results that a distributed auction algorithm would obtain.

Second, the c-greedy method represents a straightforward sequential greedy
algorithm as presented in Algorithm 5. Initially, the central agent considers that
no request is allocated to any UAV. Then it computes the best allocation (the
allocation with minimum cost) of a single task to a single UAV. Subsequently, the
algorithm keeps finding the best possible allocation of a single request to some
UAV, but taking into account the previously allocated requests. The process
ends when all requests have been assigned to some UAV. This procedure can
be seen as a centralized version of the Sequential Single Item [Koenig et al.,
2010] auctions mechanism. Hence, this solution represents an upper bound of
the results we would be able to achieve while using SSI auctions if we were
somehow able to use them. Because we want to minimize the average service
time, the c-greedy algorithm employs the recommended BidMinPath bidding
rule from [Lagoudakis et al., 2005] as the evaluate() function in Algorithm 5.
Finally, notice that this method is also equivalent to the SGA method presented
in [Choi et al., 2009]. This implies that, as proven in that work, the decisions
obtained by c-greedy are equivalent to the allocation that would be obtained
by the Consensus-Based Bundle Algorithm (CBBA) in the ideal case of a static
network structure. Thus, c-greedy also represents an upper bound on the quality
of the CBBA if we were able to employ it.

For completeness, we also implemented centralized versions of our algorithms:
c-independent , which represents our solution using independent valuations; and
c-workload , which uses workload valuations as detailed in Section 5.3.3.

5.5. EMPIRICAL EVALUATION 119

Method is the ideal implementation of if we disregard

c-hungarian Auction algorithm CD, SA

c-greedy
CBBA CD, ND, SA
SSI auctions CD, ND, SA

c-independent
PSI auctions CD, SA
Independent valuations CD, SA

c-workload Workload valuations CD, SA

d-independent
PSI auctions -
Independent valuations -

d-workload Workload valuations -

Table 5.1: Relationship of the implemented algorithms with other state-of-the-
art approaches. CD, DN and SA stand for Communication Delays, Network
Dynamicity (changes in the communication network) and Situational Awareness
(knowledge mismatches between agents) respectively.

All these centralized algorithms serve as baselines to assess the performance
of the actually distributed solutions. Obviously, the distributed solutions imple-
mented in MASPlanes include our DCOP-based solutions d-independent (using
independent valuations) and d-workload (using workload valuations). Addition-
ally, we implemented the distributed state-of-the-art PSI method, and discovered
an interesting connection: the PSI method and our d-independent method are
functionally equivalent. This can be seen by following the example execution in
Section 5.3.2, but interpreting it as if the selector constraints opened an auction
for their task, and the cost constraints bid for the corresponding requests. In
other words, we have found out that running Max-Sum over an optimized model
that assumes independence between requests is exactly the same as running the
well-known PSI auctions method. Due to this surprising match, in the follow-
ing section we only report results about c-independent and d-independent , but
these represent also the results obtained by the centralized and distributed PSI
methods respectively.

To summarize, Table 5.1 presents the algorithms we implemented in MAS-
Planes and their relationship with other state-of-the-art approaches. Under the
assumptions presented in that table, the algorithm’s decisions would match those
that we obtain in our evaluation. However, this does not necessary imply that
the algorithms cannot work without such assumptions. For instance, CBBA can
operate on a dynamic network, but would obtain worse results than those of
c-greedy .

5.5 Empirical evaluation

In the last section we introduced the MASPlanes simulation toolkit and the al-
gorithms we implemented to benchmark our proposed DCOP-based approaches.
Therefore, in this section we explore the behavior of our novel approaches under

120 CHAPTER 5. SCALING ON DYNAMIC APPLICATIONS

Figure 5.7: Example of hot spots
distribution of requests.

100 101 102 103 104

k

1.00

1.12

1.26

1.41

1.58

1.78

2.00

α

115

120

125

130

135

140

145

150

155

A
vg

.s
er

vi
ce

ti
m

e
(s

)

Figure 5.8: Parameter exploration in the hot
spots scenarios.

different conditions to asses how they fare against the current state-of-the-art
solutions. First, we aim to validate the hypothesis that different spatial distribu-
tions of the incoming requests may favor some methods over others. Thereafter,
in Section 5.5.2 we thoroughly explore the behavior of our proposed algorithms
on a wide range of scenarios.

5.5.1 Effects of the spatial distribution of requests

Because our hypothesis about hot spots is independent of whether the algo-
rithms can or cannot work in a distributed manner, we start by comparing all
algorithms using their idealistic (centralized) implementation. Thereafter, we
compare the results of c-independent and c-workload with their actually appli-
cable d-independent and d-workload distributed counterparts.

Empirical settings

We prepared two scenarios that represent a time-span (T) of one month. Dur-
ing that time, 10 UAVs with a communication range of 2 km survey a square
field of 100 km2. We assume that the UAVs always travel at a cruise speed of
50 km/h. In these scenarios, a single operator submits requests at a mean rate of
one request per minute. However, we introduce four crisis periods during which
the rate of requests is much higher. To accomplish this, the requests submission
times are sampled from a mixture of distributions. The mixture contains four
normal distributions Ni(µi, 7.2 h) (one per crisis period) and a uniform distri-
bution for the non-crisis period. The µi means themselves are sampled from a
uniform distribution U(T).

The two scenarios differ on the spatial distribution of requests. In the uniform
scenario, requests are uniformly distributed along space, whereas the hot spot
scenario models a more realistic setting where crisis requests are localized around
hot spots. These spatial hot spots are defined as bivariate Gaussian distributions

5.5. EMPIRICAL EVALUATION 121

c-hungarian c-independent c-greedy c-workload

340

360

380

400

420

440

A
vg

.s
er

vi
ce

ti
m

e
(s

)

(a) uniform scenario

120

140

160

180

200

A
vg

.s
er

vi
ce

ti
m

e
(s

)

(b) hot spots scenario

Figure 5.9: Effects of the spatial distribution of requests. Error bars show the
standard error of the mean.

with randomly generated parameters. Figure 5.7 depicts an example of such
scenario, where colored dots stand for requests. The scattered dots correspond to
non-related requests, whereas related requests form dot clouds around their hot
spot. Finally, the strong dot represents the operator, and the circle surrounding
it shows the operator’s communication range.

To use the c-workload method we have to set values for the k and α param-
eters. Hence, we performed an exploration on the space of these parameters to
determine which values are suitable to the hot spot scenarios. Figure 5.8 shows
the results we obtained after this exploration. The colors correspond to the me-
dian of the average service time that we obtained after running the algorithm
in 30 different scenarios for each (k, α) pair. For instance, when k = 102 and
α = 1.12 the algorithm achieved a median average service time of 137 s. Observe
that the algorithm exhibits a smooth gradient for any fixed value of α or k.
Hence, good combinations of k and α can be found by fixing one parameter to
a reasonable value and performing a descent search on the other one. For in-
stance, we chose k = 1000, and found the best corresponding α to be 1.36 with
0.01 precision. We also conducted a similar exploration in the uniform scenario.
However, the results were similar for k values between 102 and 105, and α values
between 1.01 and 1.68. Therefore, we use the same values than in the hot spot
scenario.

Results

Next we ran all centralized algorithms on a new set of 30 new problems of
each scenario to ensure that the parameters were not overfitted. Figure 5.9a
shows the average service time (time since the request is generated until it is
serviced) achieved by the different algorithms in the uniform scenario. The best
performing algorithm is c-independent , with c-workload being just 1% worse.
Despite the small difference, all results are found significant by the (paired,
nonparametric) Wilcoxon signed rank test [Wilcoxon, 1945] with p = 0.01. The

122 CHAPTER 5. SCALING ON DYNAMIC APPLICATIONS

c-independent d-independent c-workload d-workload

340

360

380

400

420

440

460

A
vg

.s
er

vi
ce

ti
m

e
(s

)

(a) uniform scenario

110

120

130

140

150

160

A
vg

.s
er

vi
ce

ti
m

e
(s

)

(b) hot spots scenario

Figure 5.10: Impact of distributed solving.

worst algorithm is clearly c-hungarian, taking nearly 16% more time on average.

These results contrast with those of the hot spot scenario. As shown in
Figure 5.9b, c-workload rises as the best method in this case, taking 10% less
time than c-greedy and 14% less time than c-independent . Interestingly, this
means that both c-workload and c-greedy are able to capture and exploit the
underlying spatial distribution of requests, whereas c-independent works very
well when the requests are uniformly distributed but is not well equipped to
handle other, more realistic distributions. Finally, c-hungarian’s results show
that completely disregarding the dynamism of the problem leads to overall bad
decisions.

At this point, it is clear that the underlying spatial distribution of tasks has
different effects on the varying methods. However, we must check whether such
differences still hold in the actually applicable distributed versions. Hence, we
ran the same scenarios, but this time using d-independent and d-workload to
compare their results with the respective idealized cases. Figure 5.10 shows the
results obtained on both scenarios. Notice that the differences persist, with d-
independent achieving insignificantly (p = 0.01) better results than d-workload
in the uniform scenario while being significantly worse in the hot spots one. In
fact, d-workload turns out to be equally as good as c-independent in the uniform
scenario according to the Wilcoxon test.

Aside from confirming our hypothesis about the spatial distribution of re-
quests, this experiment also provides an idea about the cost of distributed solv-
ing. Specifically, it shows that there’s a 20% time increase between the dis-
tributed methods and their idealized counterparts in the uniform scenario, and
between 6% ({c,d}-independent) and 13% ({c,d}-workload) in the hot spots one.
The lower overhead in the hot spots scenario is due to requests being closer be-
tween them, giving the planes more opportunities to coordinate.

5.5. EMPIRICAL EVALUATION 123

5.5.2 Exploring d-workload’s behavior

In the previous section we presented results on two scenarios that differed only on
the spatial distribution of requests. However, it is still unclear how d-workload
will perform in other scenarios. Hence, in this section we aim at providing a
better insight on the behavior of d-workload under varying scenario’s character-
istics.

Empirical settings

To this end, we chose a number of scenario’s characteristics and prepared a full
factorial experiment to evaluate their impact on the different algorithms. To
capture a wide range of scenarios yet keep the number of experiments within a
reasonable number, we selected the following four characteristics:

• Load. Defines the overall amount of requests per UAV. To keep things
simple, we always introduce a total of 43, 200 requests (1 req/min on av-
erage), so the load is controlled solely by varying the number of available
UAVs.

• Spread. Captures how spatially spread the requests are between them.
In scenarios with low spread, the requests tend to be clustered together
around hotspots. In high-spread scenarios, the tasks are scattered around
a larger area. We control the spread of the scenario by defining a hostspot-
radius. In the problems of that scenario, approximately 90% of the tasks
of each hotspot will be within hotspot-radius distance from the hotspot
center. Such distribution is achieved by sampling from an Inverse Wishart
distribution with 2.5 degrees of freedom and a scale matrix experimentally
adjusted to produce locations within the desired hotspot radius.

• Communication range. Represents the UAVs’ (and operator) commu-
nication ranges.

• Time distribution sharpness. Specifies how constant is the rate at
which requests are introduced. Because we keep a constant number of tasks
for all scenarios, sharpness can be defined fully in terms of the number of
crises. In high sharpness scenarios, there is a single short and highly active
crisis period. In contrast, low sharpness scenarios contain nine different
crisis periods of moderate activity, but no highly active period.

The chosen values for each feature are detailed in Table 5.2. For the char-
acteristics not described here we employed the values reported in Section 5.5.1.
Namely, the scenarios represent a full month of simulated time, with planes that
move at a constant speed of 50 km/h on a square area of 100 km2.

Once again, we must decide the k and α values to use in our d-workload
method. From the previous results, we know that a good value for α can be
found for any reasonable k value. Therefore, we fixed k = 1000 and explored
on the α parameter. We generated an example problem from each of the above

124 CHAPTER 5. SCALING ON DYNAMIC APPLICATIONS

Feature Parameter (Low, Mid, High)

Load number of planes 20, 10, 5
Spread hotspot-radius 1 km, 3 km, 6 km
Communication range communication range 1 km, 2 km, 3 km
Time distribution sharpness number of crises 9, 3, 1

Table 5.2: Problem dimensions explored and their values

1.0 1.2 1.4 1.6 1.8 2.0
alpha

2750
2800
2850
2900
2950
3000
3050

m
ea

n
se

rv
ic

e
ti

m
e α exploration

1.0 1.2 1.4 1.6 1.8 2.0
alpha

1800
1850
1900
1950
2000
2050
2100
2150

m
ed

ia
n

se
rv

ic
e

ti
m

e

Figure 5.11: Exploration of α values.

81 scenarios, and ran d-workload with k = 1000 and α = [1.01, 1.02, .., 2] on
each of them. Figure 5.11 shows the mean and median average request service
times obtained for each α value. In those graphs we observe a (somewhat rough)
gradient, as expected by the previous results. Overall, the best α value is 1.25,
with a median service time of 276.9 s, and a mean service time of 183.1 s.

Results

After choosing the k and α values, we are ready to compare all algorithms in the
different scenarios. With this aim, we generated 30 problems of each scenario
(for a total of 2430 problems). On each of these problems we evaluate the per-
formance of: (i) d-independent , which represents both the state-of-the-art PSI
auctions method as well as our DCOP-based solution with independent valua-
tions; (ii) c-greedy , that came up as the best existing centralized method; (iii)
d-workload , which is our novel algorithm; and (iv) c-workload , which represents
a bound on the best performance achievable by our novel d-workload mechanism.

Figure 5.12 shows the main effects plots of each characteristic, with the results
of each algorithm represented as a percentage of the average service time with
respect to that of c-greedy . Albeit sometimes small, the differences between
all methods are deemed significant by the Wilcoxon signed-rank test with p =
0.01. Each plot shows the effect of the studied characteristic averaged across

5.5. EMPIRICAL EVALUATION 125

d-independent c-workload d-workload

Low Mid High
−10

−5

0

5

10

15

20

25

30

A
vg

.s
er

vi
ce

ti
m

e
(%

ov
er

c-
gr

ee
dy

)

(a) Load

Low Mid High
−10

−5

0

5

10

15

20

25

30

A
vg

.s
er

vi
ce

ti
m

e
(%

ov
er

c-
gr

ee
dy

)
(b) Spread

Low Mid High
−10

−5

0

5

10

15

20

25

30

A
vg

.s
er

vi
ce

ti
m

e
(%

ov
er

c-
gr

ee
dy

)

(c) Communication range

Low Mid High
−10

−5

0

5

10

15

20

25

30
A

vg
.s

er
vi

ce
ti

m
e

(%
ov

er
c-

gr
ee

dy
)

(d) Time distribution sharpness

Figure 5.12: Main effects plots (percentage w.r.t. c-greedy).

the levels of all other characteristics. For instance, the Low point for d-workload
in Figure 5.12a represents the average service time of d-workload between all
problems with a Low load, whatever their spread, communication range and
sharpness levels are.

Figure 5.12a shows that the higher the load, the worse d-workload compares
to c-greedy . However, notice that c-workload displays an opposite behavior, be-
coming better than c-greedy when there are more tasks per plane. This may
seem counterintuitive at first, but has an easy explanation: recall that we con-
trol the load by varying the number of available planes. Hence, the higher the
load, the less planes involved in the experiment. As a consequence, d-workload ’s
performance degrades not because there are more tasks, but because the planes
are more spread and have less opportunities to coordinate. Moreover, d-workload
approaches c-greedy ’s results when the number of planes increases (reading the
graph from right to left), almost catching up to it despite operating in a dis-
tributed manner.

Figure 5.12b shows that, unsurprisingly, d-workload achieves comparatively

126 CHAPTER 5. SCALING ON DYNAMIC APPLICATIONS

worse results than c-greedy as the spatial distribution of requests becomes
sparser. This is due to two reasons. First, because the more spread requests
are, the more UAVs will fly apart, and the lower chances to coordinate because
of the communication range limit. Second, because workload methods exploit
the spatial correlation between requests: if requests are more spread, this means
that there is a lower spatial correlation between them, and hence the workload
heuristic becomes worse. Finally, the previous section showed that d-independent
works comparatively better when the requests are uniformly distributed. This
works at its favor when the spread increases. However, being distributed mech-
anism it is also negatively affected by the first reason above. As a consequence,
the relative performance of d-independent varies unpredictably when the spread
changes.

In Figure 5.12c we can observe that, as the communication range increases,
the distributed methods’ results approach those of the centralized ones. This is
because, as the communication range grows, the UAVs have more opportunities
to coordinate. There is an exception in the case of d-independent and a high
communication range. In this case, a larger communication range actually wors-
ens the results, because it causes the planes to stay very spread out, thus dealing
much worse especially in the low spread scenarios. In contrast, d-workload ends
up achieving very close (less than 1% worse) results to those of c-greedy in the
largest range we tested, even though it is not large enough to allow for global
communication.

Finally, Figure 5.12d also shows some interesting behaviors. On the one
hand, d-independent becomes better as the sharpness increases. This is because
UAVs that coordinate with this method tend to evenly split the covered space
between them. Hence, the more requests there are at the same time, the better
its outcome. In contrast, c-greedy and d-workload try to be more clever than
that, which pays off better when there are less requests than when the system
is overloaded. This is even more noticeable with the workload-based methods.
Recall that the main strength of such methods is to prepare for future requests.
However, high sharpness scenarios reward better plans for the current requests
than better predictions about the future.

Given that the only state-of-the-art method that satisfies all our problem’s
constrains is d-independent , these graphs show a very interesting figure: d-
workload outperforms d-independent on all scenarios, lowering the average ser-
vice time between 36 s (16%) and 18 s (6%). Hence d-workload comes up as
the method of choice for the LORP. Moreover, in our experiments d-workload
closes between 25% and 100% of the gap existing between d-workload and the
state-of-the-art centralized c-greedy algorithm.

5.6 Conclusions

Questions addressed in this chapter:
Q. 3. Can the DCOP framework handle dynamic problems? And if so, how?

Q. 4. Can we develop modeling techniques that benefit certain DCOP algorithms?

5.6. CONCLUSIONS 127

In this chapter we turned our attention to larger-scale, dynamic applications
where optimal solving is not an option anymore. While the literature about
approximate DCOP solving is pretty extensive, their application to dynamic
application domains has been much less studied. In fact, although there exist
a few works about DCOPs for dynamic applications, we noticed that there is a
significant lack of tools and testbeds for their development.

Hence, we first introduced the Limited-range Online Routing Problem as a
relatively simple but realistic and highly dynamic application domain for the
development of multi-agent coordination mechanisms. Then we studied the in-
trinsic issues that methods pursuing to deal with the LORP must overcome.
As a result, we identified the need for quick loops of assessment, decision and
action to deal with highly-dynamic problems such as the LORP. Additionally,
we identified the robotics community as the most significant source of studies
about dynamic multi-agent coordination applications. Therefore, we surveyed
their current state-of-the-art and identified which methods can and cannot be
employed for the LORP, thus setting the benchmarks for our work on it.

Next we introduced a LORP solving approach based on repeatedly taking
distributed snapshots of the situation and making quick decisions based on them.
Moreover, we argue that DCOPs are particularly well suited for this approach
because both the model and the solving algorithms are inherently distributed.
This answers our Question 3 in the introductory chapter, but also introduces
some limitations. Namely, the approach is only suitable for local approximate
algorithms that do not require any global state and can make decisions quickly
enough.

Among the local approximate algorithms introduced in Section 2.2, we chose
to employ Max-Sum because of its theoretical guarantees and encouraging ex-
perimental results. The major caveat of Max-Sum is that, in its standard form,
agents take exponential time to compute their messages. As a consequence, we
presented an initial solution assuming independence between requests. Using a
clever encoding of this model as a binary DCOP, we showed that it is possible
to overcome the Max-Sum exponentiality in some cases. Moreover, we discov-
ered that this solution functionally mimics the operation of the state-of-the-art
decentralized parallel single-auctions approach.

One of the advantages of using a DCOP model is that it is easily extensible by
simply modifying and/or adding more constraints. Furthermore, we showed that
by favoring the use of Tractable Higher Order Potentials, we heavily benefit the
efficiency of the Max-Sum algorithm, hence addressing Question 4. Specifically,
here we demonstrated that it is possible to introduce new constraints to repre-
sent the workload of each UAV with only a slight increase in complexity. As a
result, we obtained a more refined model that maintains the large computational
benefits.

To evaluate our novel approaches we also introduced the MASPlanes simula-
tion toolkit, a simulation environment designed to compare coordination mech-
anisms for the LORP. MASPlanes fills the need for tools and testbeds for the
development of DCOP-based solutions for dynamic applications by providing:

128 CHAPTER 5. SCALING ON DYNAMIC APPLICATIONS

(i) a problem generator able to generate problem instances of varying scenario
conditions; (ii) a simulator that enables researches to visualize and evaluate their
algorithms; and (iii) a number of readily-implemented state-of-the-art central-
ized and distributed methods to serve as benchmarks.

Finally, we empirically evaluated our novel DCOP-based methods using
MASPlanes. The evaluation shows that this improved version is always as good
or better than the state-of-the-art single-item auctions approach, achieving an
average of 12% (and up to 17%) lower service times. Moreover, its performance
comes close (just 5% worse service times on average) to that of the state-of-the-
art centralized approaches, which can not be implemented in the real-world be-
cause of the communication range limit. Therefore, our DCOP-based approach
using Max-Sum and workload valuations is the method of choice for decentral-
ized coordination in the LORP, where global communication is not possible.

Chapter 6

Scaling on the design front

6.1 Introduction

In Chapter 5 we tackled the highly-dynamic Limited-range Online Routing Prob-
lem using DCOPs. In this regard, we have shown that DCOP-based solutions
are competitive with the current state-of-the-art multi-agent dynamic coordi-
nation literature. Additionally, we determined that local approximate DCOP
algorithms are the only ones that can be employed in such dynamic application
domains. In particular, we identified the Max-Sum algorithm as a promising ap-
proach to deal with dynamic task allocation problems. Nevertheless, the LORP
is a relatively simple problem where all agents are homogeneous and perform
the same tasks.

In contrast, many practical applications involve agents with different ca-
pabilities that must still cooperate in dynamic and unpredictable environ-
ments [Schurr et al., 2005]. Therefore, our goal in this chapter is to develop
methodologies allowing us to transfer the techniques and results from Chapter 5
to more complex problems. Furthermore, we aim to put those in practice by
developing models for a particular application domain: the RoboCup Rescue
Simulation (RCS) [Skinner and Ramchurn, 2010], where heterogeneous teams
of agents (i.e., police patrols, fire brigades and ambulances) must join forces to
mitigate damages to a city after a natural disaster has taken place.

The coordination problem faced by teams of rescue agents has been success-
fully addressed in the literature from various perspectives and with a wide variety
of solution techniques. Likewise in applications with homogeneous agents, the
most common approaches here are also based on task allocation (e.g. [Nair et al.,
2002; Scerri et al., 2005]). A standard model for the task allocation problem in
the context of rescue agent teams is the Extended Generalized Assignment Prob-
lem [Scerri et al., 2005]. However, such model cannot properly encode synergies
and interferences among agents working on related tasks. For instance, EGAP
cannot express that it is possible for two agents to perform the same task, but
less desirable than letting them perform separate tasks (because otherwise they

129

130 CHAPTER 6. SCALING ON THE DESIGN FRONT

could interfere with each other). Since capturing such synergies is essential for
effective cooperation in rescue missions, other works model the problem as a
coalition formation problem [Ramchurn et al., 2010a,b]. Nonetheless, those ap-
proaches do not scale well in scenarios where the number of possible coalitions
is large.

An interesting alternative is to model the task allocation problem using a
DCOP, as proposed in [Kleiner et al., 2013]. This approach has two significant
advantages. On the one hand, DCOPs are expressive enough to model relation-
ships that EGAP is not able to capture. On the other hand, we can employ
any of the several readily available local approximate algorithms to find good
solutions (allocations). Along the line of this dissertation, we observe that the
GDL-based Max-Sum algorithm has been applied to a significant variety of ap-
plication domains with successful results. Some examples of succesful Max-Sum
applications include UAVs task assignment [Delle Fave et al., 2012b], radar co-
ordination [Kim et al., 2010], and the RoboCup Rescue [Ramchurn et al., 2010b;
Kleiner et al., 2013] itself.

However, as introduced in Section 2.2.2, Max-Sum has a significant caveat: in
its basic form, the algorithm exhibits an exponential complexity in the number
of agents involved in the same factor. Nonetheless, in Section 5.3 we have shown
that it is possible to reduce the computation costs to polynomial time (between
O(n) and O(n log(n))) for some specific types of factors, known as Tractable
Higher Order Potentials (THOPs) [Tarlow et al., 2010]. Notice that not all
DCOP functions can be represented using THOPs. Despite that, our own work
on the LORP as well as works on different domains [Penya-Alba et al., 2012]
indicate that THOPS are expressive enough for several applications. Because a
distinctive feature of THOPs is that they are defined over binary variables, from
now on we refer to using Max-Sum with THOPs as Binary Max-Sum (BMS) to
differentiate it from standard Max-Sum.

While BMS is a promising approach for multi-agent coordination, modeling
problems using only THOPs is not straightforward. This is not a major issue
when tackling simpler problems such as the LORP, but may become a significant
obstacle for more complex problems involving heterogeneous agents. Hence, it
is crucial to devise effective design methodologies for BMS to become more
widespread. In this chapter we take an important step in this direction by using
BMS to enable effective multi-team coordination in the rescue scenario.

Against this background, the main contributions in this chapter are the fol-
lowing:

• We develop a THOP-only model that mimics the single-team firefighters
task allocation model in [Kleiner et al., 2013], hence reducing Max-Sum’s
complexity from exponential to polynomial time.

• We present a methodology that eases the design of THOP-only models for
complex problems involving heterogeneous but interrelated tasks, such as
those faced by rescue teams. Following this methodology, we develop a
THOP-only multi-team coordination model for the police and firefighters
RCS problem.

6.2. PROBLEM DESCRIPTION 131

�1

�2'1

'2

↵2↵1
�3

�4⇢1

⇢2

Figure 6.1: Example RoboCup Rescue Simulation scenario.

• We empirically show that BMS obtains better results than other state-of-
the-art DCOP algorithms (operating on a standard DCOP model), pre-
venting more than twice as much damage to the city.

The remainder of this chapter is organized as follows. Section 6.2 presents
introduces the RoboCup Rescue Simulation problem that we tackle. Section 6.3
describes how the DCOP model to coordinate firefighters from [Kleiner et al.,
2013] can be mapped to a THOP-only model. Section 6.4 presents our method-
ology to handle complex problems involving heterogeneous agents, and develops
a complete model for the police and firefighter forces. Next, Section 6.5 reports
our empirical findings. Finally, Section 6.6 draws this chapter’s key conclusions.

6.2 Problem description

The RoboCup Rescue Challenge Platform [Skinner and Ramchurn, 2010] is a
benchmarking environment that simulates a urban search and rescue scenario
where rescue forces (police patrols, ambulances and fire brigades) must coordi-
nate their actions.

Specifically, police patrols can unblock roads, fire brigades can extinguish
fires, and ambulance agents can rescue trapped civilians. RCS creates a realistic
simulation environment that presents significant aspects of dynamism (e.g., fires
spread across a city), uncertainty (e.g., the behavior of fires is determined by a
number of factors that may not be perfectly sensed or modeled), and issues of
scale (e.g., tens of rescue agents and possibly hundreds of fires, blockades and
civilians in a large urban area) [Kitano et al., 1999]. In this chapter we focus on
the coordination problem of fire brigades, police patrols and their interactions.
Hence, we now identify the main insights on the operation and objectives of
these teams.

Regarding fire brigades, a first element to consider is travel time: the closer a
fire brigade is to a fire, the sooner they will be able to work on it. Moreover, the

132 CHAPTER 6. SCALING ON THE DESIGN FRONT

more fire brigades acting on one fire, the faster they will contain it. However,
beyond a certain number of fire brigades (which depends on the fire size), the
contribution of each additional brigade is less significant. In fact, given a large
enough number of fire brigades, they will completely overpower that fire, making
it useless to assign any new units there.

Another key issue for the fire fighting activity is that fires evolve and spread
over time. A crucial insight on the RCS’s rules of fire spreading is that new
fires are more likely to spread than older ones, whereas older fires are fierier and
hence harder to extinguish. Therefore, fire brigades should prioritize new fires to
prevent them from spreading as much as possible, and only then focus on older
ones. Overall, fire brigades must cooperate to ensure that an adequate number
of agents is allocated to each fire considering fire fieriness and travel time.

Regarding police patrols, the travel time is also the first issue to consider.
However, unlike fires, road blockades do not evolve over time unless some agent is
acting on them. Moreover, in the version of the simulator we employed, multiple
police agents cannot act on the same blockade at the same time. That is, even
if multiple police patrols are assigned to the same blockade, only one of those
patrols can actually work on clearing it. As a result, police patrols should spread
out as much as possible to free roads as fast as they can.

Considering the whole picture, police patrols and fire brigades must coordi-
nate their actions to improve their effectiveness. Namely, police patrols should
focus on blockades that might be far away but are crucial for the fire fighting
activity. In this manner, fire brigades would be able to tackle important fires
even when those are not immediately reachable due to road blockades.

For example, consider the scenario depicted in Figure 6.1, which will serve
as a running example throughout the chapter. In this scenario we have:

• Two police patrols P = {ρ1, ρ2}.

• Two fire brigades A = {α1, α2}.

• Four blockades B = {β1, β2, β3, β4} that prevent agents from transiting
the road they are blocking.

• Two ignition points F = {ϕ1, ϕ2}, which are buildings that are on fire at
the beginning of the simulation.

Now, if we consider the police patrol coordination problem without taking
the fire fighting activity into account, a good allocation for this scenario would be
(ρ1 → β4), (ρ2 → β3) because both agents would work on their closest blockade,
minimizing their travel time and hence maximizing their performance. However,
if we consider the overall goal of the rescue agents including fire fighters, a better
allocation is (ρ1 → β2), (ρ2 → β1). This way the both fire brigade agents α1

and α2 can choose to work on either fire ϕ1 or ϕ2, something they could not do
otherwise.

6.3. SINGLE-TEAM COORDINATION 133

6.3 Single-team coordination

In this section we develop a THOP-only model for the coordination of the fire-
fighters team, disregarding police forces entirely. With this aim, we first present
an improved version of the general DCOP model in [Kleiner et al., 2013]. There-
after we show how this model can be converted to a binary DCOP with THOPs.
This allows us to run BMS instead of Max-Sum, and hence to reduce the com-
plexity from exponential to linearithmic time.

6.3.1 Firefighters DCOP model

Solving the firefighters problem amounts to choosing which fire should each fire
brigade attend next. These decisions can be encoded by a set of decision variables
Y = {ya | a ∈ A}, where each variable ya takes some value in F (e.g., yα1

= ϕ2

means that brigade α1 is assigned to fire ϕ2). Thus, our objective is to assess a
complete assignment y that maximizes the team utility u(y).

In a DCOP model, the team’s utility is expected to be decomposed as a sum
of constraints. In our case, a natural decomposition is to introduce two kinds of
constraints: (i) fire constraints, that specify the gain obtained when firefighters
are allocated to some fire; and (ii) cost constraints, that specify the cost for
agents to reach different fires. Thus, we define the firefighters team utility u(y)
as

u(y) =
∑
f∈F

ef (y)−
∑
f∈F

∑
a∈A

raf (y[ya]), 1 (6.1)

where ef are fire constraints and raf are cost constraints as defined next.

Fire constraints. As explained in Section 6.2, some fires are more relevant
than others. Hence, to asses ef (y), we first compute a value vf for each fire f ,
corresponding to the utility obtained by assigning a single brigade to put it out.
Next, notice that more than one brigade can be assigned to the same fire. A
simple model for ef is to multiply vf by the number of brigades that are assigned
to fire f , namely nf (y). Nevertheless, depending on the fieriness and size of a
fire, there is a threshold tf in the number of fire brigades that can successfully
cooperate on extinguishing it. Thus, we consider that an assignment of fire
brigades to a fire f is penalized when more than tf fire brigades are assigned
to fire f . Moreover, this penalty increases with the number of additional agents
beyond the threshold. Combining all these assessments, ef (y) is calculated as

ef (y) = vf · nf (y)− κ · [max(0, nf (y)− tf)]γ , (6.2)

where κ > 0 and γ ≥ 1 are arbitrary coefficients that control the harshness of
the penalty.

1Recall from Definition 2.5 that y[ya] is the projection of assignment y to ya. That is, an
assignment of the single variable ya to the value that y assigns to variable ya.

134 CHAPTER 6. SCALING ON THE DESIGN FRONT

y1 y2

e1 e2

r12 r11 r21 r22

Figure 6.2: Example factor graph of the firefighters DCOP model. For clarity
reasons we write indices instead of the (proper) elements in the subscripts. For
instance, we write r12 instead of rα1ϕ2

. Cost constraints constraints are depicted
with a grey background, which is darker for blocked fires and lighter for accessible
ones.

Cost constraints. All fire brigades are equally capable in RCS. Thus, the
cost for an agent to reach each a fire only depends on the distance between them
and on whether that fire is reachable or not. As a result, we evaluate the cost of
assigning a brigade to a fire as proportional to the square of the distance between
them.2 Additionally, a blockade may prevent fire brigade a from reaching fire
f . Therefore, we discourage choosing blocked fires by introducing an additional
cost M when a cannot reach f . Consequently, raf is assessed as

raf (ya) =

{
νd2

af +M · oaf if ya = f

0 otherwise
, (6.3)

where daf is the normalized distance between brigade a and fire f , ν ≥ 0 is an
arbitrary coefficient, and oaf is a constant with value 1 when agent a cannot
reach fire f or 0 otherwise.

At this point we can readily formalize the DCOP model as a tuple Ωfire =
〈A, Y,Dfire, Cfire,mfire〉 where:

• A = {α1, . . . , αn} is the set of fire brigade agents involved in the problem;

• Y = {y1, . . . , yn} is the set of variables, one for each agent.

• Dfire = {D1, . . . , Dn} is the set of domains of the variables in Y . Each
domain Di is a set containing all possible fires to which agent αi may be
assigned.

• Cfire is the set containing all fire constraints ef and cost constraints raf .3

• mfire maps each variable ya ∈ Y to the corresponding agent αa ∈ A.

2We normalize distances so that the largest distance between any two points in a scenario
is 1.

3To ease the explanation we depict the cost constraints using positive costs, whereas the
actual values in the DCOP are negative utilities (the same value but negated).

6.3. SINGLE-TEAM COORDINATION 135

Figure 6.2 shows the factor graph of the firefighters DCOP model for our example
in Figure 6.1. In this case we have two variables because there are two firefighters,
two fire constraints because there are two fires, and four (2× 2) cost constraints
specifying the cost for each firefighter to reach each fire.

Now we compute allocations using Max-Sum by instantiating the ef and raf
factors and exchanging messages between them and the variables in Y . However,
recall that computing a factor’s messages in Max-Sum takes exponential time on
the number of variables involved in that factor. Because the ef factors depend
on all of the problem’s variables, running Max-Sum on this model takes an
exponential time on the number of fire brigades. In practice this means that
for most scenarios Max-Sum cannot compute a solution within the time limits
enforced by the RoboCup simulator (1 s).

6.3.2 THOP-only firefighters model

Next we show how to exactly encode the previous model in a binary form and
only using THOPs. As a result, we will be able to run BMS and hence require
polynomial instead of exponential time. The process detailed here is very similar
to how we binarized the LORP model in Section 5.3.2. In general, the procedure
to binarize a standard DCOP model involves two simple steps:

1. Binarize variables. Any non-binary variable with d possible values
(where d > 2) is replaced by d new boolean variables. Then, these re-
placement variables are connected by a new selection constraint whose
purpose is to ensure that one and only one of these boolean variables must
be active.

2. Re-encode constraints. Each original constraint is now connected to
all binary variables corresponding to its original d-ary ones. Notice that a
standard constraint involving k non-binary variables has dk entries. With
boolean variables, the number of entries increases up to 2d×k. These new
entries include all the original ones, which get the same costs, plus some
invalid combinations that get ∞ cost.

Therefore, to binarize our model, we first split each decision variable ya into
a set Za. = {zaf | f ∈ F} of |F | binary variables. Intuitively, variable zaf is
active in a solution whenever agent a is assigned to fire f , and it is inactive
means that agent a is assigned elsewhere. Next, we add a constraint sa(Za.) for
each brigade a to ensure that one and only one of its variables is active at once.
Namely,

sa(za.) =

{
0 if exactly one zaf ∈ za. is active

−∞ otherwise
. (6.4)

With a slight abuse of notation, we now redefine the factors of the DCOP model
to operate over the binary variables in Z instead of the n-ary variables in Y .
Likewise Equation (6.1), the utility function u(z) is split into fire factors ef and

136 CHAPTER 6. SCALING ON THE DESIGN FRONT

r11

s1

e1 e2

r12 r21 r22

s2

z11 z12 z21 z22

Figure 6.3: Example factor graph of the firefighters binary DCOP model.

cost factors raf . The binarized versions of the utility functions in Equations (6.2)
and (6.3) are the following:

ef (z.f) = vf · nf (z.f)− κ · [max(0, nf (z.f)− tf)]γ (6.5)

raf (zaf) =

{
νd2

af +M · oaf if zaf is active

0 otherwise
(6.6)

where Z.f = {zaf | a ∈ A} is the set of variables that relate to fire f and z.f is
an assignment to those variables.

At this point we can represent the entire firefighters coordination problem as
a binary DCOP Ωbin

fire = 〈A,Z,Dbin
fire, C

bin
fire ,m

bin
fire〉 where:

• A = {α1, . . . , αn} is the set of fire brigade agents above;

• Z = {zaf | a ∈ A, f ∈ F} is a set of binary variables, one for each pair of
agent and fire.

• Dbin
fire = {D1, . . . , D|A|×|F |} is the set of domains of the variables in Z,

where each Di is simply {T,F}.
• Cbin

fire is a set including all fire constraints ef , cost constraints raf , and
selection constraints sa.

• mbin
fire maps each variable zaf ∈ Z to the corresponding agent αa ∈ A.

Figure 6.3 shows the factor graph of the binary version of the DCOP model
in Figure 6.2. Obviously, this conversion by itself does not provide any benefit.
However, we can now analyze the constraints and check whether they are THOPs
or not. With this aim, notice that this model is very similar to the workload
valuations model in Section 5.3.3. The only significant difference is that in
Section 5.3.3 we assigned tasks (requests) to agents (UAVs) whereas here we
assign agents (fire brigades) to tasks (fires). Therefore, we can directly match
our constraints here to those in the previous chapter as follows:

• The fire constraints do not depend on the specific brigades attending them,
but only on how many. Hence, a fire constraint fulfills the condition to
be a cardinality potential, and its BMS messages can be computed in
O(N log(N)) time using the procedure in Algorithm 4 (Page 114).

6.4. INTER-TEAM COORDINATION 137

• The selection constraints in Equation (6.4) are exactly like the selection
constraints in the previous chapter, and hence their messages can be com-
puted using Equation (5.5).

• The cost constraints depend only on one variable and their messages are
trivial to compute. Furthermore, we can also combine them with either
the fire or selection constraints using Lemma B.2.

As a result, it is now possible to assess an approximate solution to our problem
by applying BMS to the THOP-only model. Furthermore, the complexity of
each iteration of the algorithm is reduced from the O(|F ||F ||A|) time of Max-
Sum over the DCOP model to O(|F ||A| log |A|) time of BMS on our THOP-only
model.

6.4 Inter-team coordination

In the RoboCup Simulation it is rather unrealistic to think that a single-team can
make its own decisions. In general, teams depend on each other to accomplish
their tasks. Consider again our example in Figure 6.1. We know that fire
brigades alone will try to avoid blocked fires. However, this completely disregards
the fact that police agents will be removing blockades in the meantime, and hence
the fire brigades may be able to reach blocked fires in the near future. Therefore,
to capture the interdependencies between the decisions of the different teams,
we argue that it is necessary to perform inter-team coordination.

Here we present a methodology to enact inter-team coordination that en-
ables multiple teams to make their decisions considering a shared goal. Our
methodology is intended to help the designer build a representation of the com-
plete inter-team coordination problem as a single utility function. This is not
an easy endeavor because, as the number of teams increases, the global utility
function becomes more and more complex, possibly becoming unmanageable by
the designer. To overcome this challenge, our methodology proposes a modular
construction of the global utility function by following the next steps:

1. Define independent coordination models for each team involved in the inter-
team coordination.

2. Identify the coordination objects that capture the interdependencies be-
tween teams. Such objects will serve to create coordination variables,
which are meant to act as interfaces between single-team coordination
models.

3. Extend single-team coordination models to connect them to the coordina-
tion variables.

At the end of this process, the global utility function is readily obtained by
simply adding up the extended single-team coordination models into a single
function. Since, as we show below, the resulting global utility function decom-
poses additively as a sum of functions, the teams involved will be able to apply

138 CHAPTER 6. SCALING ON THE DESIGN FRONT

max-sum to assess their decisions. A distinctive advantage of our methodology is
that, once coordination variables are defined, the designer does not need to con-
sider the whole inter-team coordination problem anymore. That is, each team
independently connects its intra-team coordination model with the coordination
variables. Therefore, our methodology avoids the design complexity explosion.

Next we exemplify the application of our methodology to the coordination
of a team of fire brigades and a team of police forces. To avoid redundancy, we
directly introduce the THOP model in this part.

6.4.1 Define independent coordination models

The first step in our methodology consists in separately defining the coordination
models for each individual team involved in inter-team coordination. In Sec-
tion 6.3 we already introduced a coordination model for a team of fire brigades.
Hence, we just need to develop a coordination model for a team of police forces.

The Police Team Model

Recall from Section 6.2 that police patrols can remove blockades from roads,
freeing the paths for other types of agents to move along. Hence, it is critical that
policemen coordinate between them to remove blockades as quickly as possible.
Therefore, the coordination problem faced by the policemen team is to decide the
assignment of patrols to blockade removal tasks. As in the case of fire brigades
and fires, we encode an allocation of patrols to blockades using a set of binary
variables X = {xpb | p ∈ P, b ∈ B} where xpb is active (takes value T) if patrol
p is assigned to blockade b and inactive otherwise. Obviously, a patrol can not
remove more than one blockade at a time. Also, in the version of RCS we used
multiple patrols cannot work on the same blockade at the same time. As a
consequence, the goal of the police team coordination problem is to compute the
best allocation of patrols to blockades where each patrol is assigned to at most
one blockade and each blockade is not assigned to more than one policemen.4

Similar to fire brigades, the utility of a complete allocation u(x) can be
decomposed in blockade constraints eb and cost constraints rpb, namely

u(x) =
∑
b∈B

eb(x[X.b])−
∑
b∈B

∑
p∈P

rpb(x[xpb]), (6.7)

where X.b = {xpb | p ∈ P} is the set of all variables related to blockade b.
Since all patrols are assumed equally capable in RCS and blockades do not have
distinguishing characteristics, we assign a positive utility vB to attending any
blockade. This utility is obtained whenever some patrol is assigned to remove
that blockade. However, we must also ensure that no more than one patrol

4Notice that we cannot enforce each patrol to be allocated to some blockade. This is
because, after some time, there will be more patrols than blockades in the scenario. As a
consequence, no solution would be feasible at this point if we enforced such constraint.

6.4. INTER-TEAM COORDINATION 139

is assigned to each blockade. Therefore, we define a blockade constraint for
blockade b as

eb(x.b) =


−∞ if nb(x.b) > 1

vB if nb(x.b) = 1

0 otherwise

, (6.8)

where nb(x.b) is the number of patrols assigned to blockade b.
Next, the cost of assigning a patrol p to service blockade b is analogous to

what we did for the fire brigades. First, we introduce a constant opb that is 0
if the blockade is directly accessible to the patrol (no other blockade appears in
the path between p and b), or 1 if the path from p to b is obstructed by some
other blockade. Then the cost is proportional to the square of the distance dpb
between the patrol and the target blockade, with an additional penalty Q if the
path is obstructed:

rpb(xpb) =

{
d2
pb +Q · opb if xpb is active

0 otherwise
. (6.9)

Finally, we still need to prevent the same patrol from being assigned to
several blockades at once. Hence, we add a consistency constraint cpp (with
scope Xp. = {xpb | b ∈ B}) for each police patrol p to guarantee that it does not
get assigned to multiple blockades:

cpp(xp.) =

{
0 if at most one xpb ∈ xp. is active

−∞ otherwise
. (6.10)

With all the necessary constraints properly defined, we can now represent
the police forces coordination problem as the binary DCOP model Ωbin

police =

〈P,X,Dbin
police, C

bin
police,m

bin
police〉 where:

• P = {ρ1, . . . , ρn} is the set of police patrols above;

• X = {xpb | p ∈ P, b ∈ B} is a set of binary variables, one for each pair of
patrol and blockade.

• Dbin
police = {D1, . . . , D|P |×|B|} is the set of domains of the variables in X,

where each Di is simply {T,F}.

• Cbin
police is the set containing all blockade constraints eb, cost constraints

rpb, and consistency constraints cpp.

• mbin
police maps each variable xpb ∈ X to the corresponding agent ρp ∈ P .

Figure 6.4 shows the factor graph of the police forces single-team model for our
running example. Notice that it follows exactly the same structure than the
binary single-team model for the firefighters. The only difference lays on the
actual constraints, which we now identify as being THOPs. First, the reasoning
for the blockade and cost factors is analogous to the fire and cost factors in

140 CHAPTER 6. SCALING ON THE DESIGN FRONT

r12

r11 r21

r22

cp1 cp2

e1 e2 e3 e4

x11 x12 x13 x14 x21 x22 x23 x24

r13

r14 r24

r23

Figure 6.4: Example factor graph of the police forces binary DCOP model.

the previous section. To the best of our knowledge, the consistency constraints
cpp in Equation (6.10) have not been described as THOPs before. Therefore,
in Appendix C we derive an efficient procedure to compute these constraints’
messages in O(|B|) time. As a result, we can now confirm that the binary
single-team model for the firefighters is actually a THOP-only model too.

6.4.2 Identify the coordination objects

At this point we have single team models for both our teams. Hence, we proceed
to the second step in our methodology: to identify the coordination objects.
In our RoboCup example the coordination objects between fire brigades and
policemen are simply the blockades. On the one hand, police forces should
prioritize blockades that are actually preventing fire brigades from performing
their duties. On the other hand, fire brigades would like to know which blockades
will be removed in the near future to make better decisions. Thus, we create a
binary coordination variable cb for each blockade b as a means of representing the
coordination objects relating police patrols and fire brigades. The coordination
variable for a blockade b must become active whenever the blockade is to be
removed in the near future, or inactive otherwise.

In the RCS domain these variables represent everything our police forces and
fire brigades need to know to coordinate with each other. In other words, the
coordination variables can be understood as representing the common language
between our individual teams. Such language is intended to enable the fire
brigades team and the policemen team to exchange information about their
interdependencies regarding blockades.

6.4.3 Extending single-team models

The third step in our methodology is to extend the independent team models
by connecting them to the coordination variables. Hereafter we extend both the
fire brigades team model and the police patrols team model to take coordination
variables into account.

6.4. INTER-TEAM COORDINATION 141

z22

r11

s1

e1 e2

r12 r21 r22

s2

c1 c2 c3 c4

pr111 pr122 pr212

z11 z12 z21

Figure 6.5: Example factor graph of the firefighters interface. For clarity reasons
we write indices instead of the (proper) elements in the subscripts. For instance,
we write pr122 instead of prα1ϕ2β2

.

Extending the fire brigades team model

Fire brigades can modify their utility function provided that they know which
blockades will be removed by police patrols. In particular, the penalty associ-
ated to a blocked fire should be removed whenever police patrols are planning
to remove the blockade that prevents the fire brigade from accessing it. The
interface between the fire brigades model and the coordination variables can be
done by simply adding an additional factor prafb whenever fire brigade a is being
prevented from reaching fire f by blockade b.

prafb(zaf , cb) =

{
M if cb is active and zaf is active

0 otherwise
. (6.11)

The role of this factor is simply to cancel out the penalty in Equation (6.3)
when the blockade b that is preventing fire fighter a to reach fire f is being
attended by some police agent. For instance, in the example in Figure 6.1,
blockade β1 is preventing brigade α1 from reaching fire ϕ1. Therefore, a new
factor prα1ϕ1β1

is required to cancel out the penalty in r11 if blockade β1 is being
attended (and thus cβ1

is active). The full interface for our example problem is
shown in Figure 6.5. Notice that there is no pr constraint connecting variables
cβ3 and cβ4 with the firefighters model, because those blockades are not blocking
any fire brigade from reaching any fire.

Extending the police team model

The internal variables of the police team should be consistent with the semantics
of the coordination variables above. Specifically, a coordination variable cb must
only be active if some police agent is attending blockade b. That is, variable cb
is an indicator of whether any of the variables in X.b are active. We can enforce

142 CHAPTER 6. SCALING ON THE DESIGN FRONT

e1 e2 e3 e4

r12

r11

cp1

r13

r14 r21

r22

cp2

r24

r23

x11 x12 x13 x14 x21 x22 x23 x24

ind1 ind2 ind3 ind4

c1 c2 c3 c4

Figure 6.6: Example factor graph of the police forces interface.

this by adding a new indicator factor indb(cb,x.b) for each blockade, defined as

indb(cb,x.b) =


0 if cb = T and some xpb ∈ x.b is active

0 if cb = F and all xpb ∈ x.b are inactive

−∞ otherwise

. (6.12)

The resulting interface for our example problem is shown in Figure 6.6. No-
tice that the coordination variables shown here are exactly the same ones from
the firefighters interface in Figure 6.5.

The new indicator is not known to be a THOP, but we can derive expressions
for its messages by noticing that it is a composite potential [Tarlow et al., 2010],
where cb defines two partitions depending on whether it is active or not. When
a coordination variable cb is active, the constraint becomes a selector constraint
that yields a utility of 0 when exactly one of the X.b variables is active, or
−∞ otherwise. When cb is inactive, the constraint becomes an AllInactive5

constraint between the variables in X.b. Since the indicator constraint is a
composite potential, and in each of the partitions defined by cb we have a THOP
whose messages can be assessed in linear time, we can efficiently assess the BMS
messages out of this constraint in time O(2 · |B|).

At this point we can easily construct a single DCOP model that represents
the whole problem and allows for inter-team coordination. This results from
combining the single team DCOPs defined above with the coordination variables
and the interface constraints. Namely, the composed DCOP for the full problem
is Ωbin

full = 〈Abin
full, V,D

bin
full, C

bin
full ,m

bin
full〉 where:

• Abin
full = A ∪ P is the set of all fire brigades and police patrols above.

5The messages for the AllInactive constraint are trivial to derive. The messages to all its
variables are simply −∞.

6.5. EMPIRICAL EVALUATION 143

• V = Z ∪ X ∪ {c1, . . . , c|B|} is the set of all variables of the single-team

models Ωbin
fire and Ωbin

police plus the coordination variables.

• Dbin
full = {D1, . . . , D|V |} is the set of domains of the variables in V, where

each Di is simply {T,F}.

• Cbin
full = Cbin

fire ∪ Cbin
police ∪ PR ∪ IND is the set containing the single-team

constraints plus all the interface constraints (i.e., all penalty removal con-
straints PR and all indicator constraints IND).

• mbin
full maps each variable to the corresponding agent.

Since this DCOP has been built as an additive composition of THOP-only
models and interfaces, we can readily apply BMS to solve the inter-team co-
ordination problem. The execution of BMS yields an exchange of information
from team to team regarding coordination variables. Messages from brigades to
patrols represent how much interested brigades are in police forces removing a
blockade, whereas messages from patrols to brigades convey the police team’s
cost of removing a blockade.

6.5 Empirical evaluation

In this section we empirically evaluate the performance of our DCOP-based
task allocation model for the fire and police teams. With this aim, we compare
our Binary Max-Sum (BMS) method with the methods implemented in the
RMASBench [Kleiner et al., 2013] platform, namely the DSA and the Greedy
methods.

DSA is the local-state search approximate DCOP algorithm we introduced
in Section 2.2.1. Being a standard DCOP algorithm, we run DSA over the stan-
dard (non-binary) DCOP models.6 In contrast, the Greedy method represents
a simple greedy allocation where each agent chooses the target that maximizes
its individual utility, without coordinating at all.

We run experiments on the standard scenarios used in the 2013 RoboCup
competition, namely Paris and Kobe. However, we discard the scenarios’ ele-
ments that are irrelevant for our evaluation, i.e., everything but ignition points,
police forces and fire brigades. The simulator works by time steps, where each
step represents a minute of real time. The algorithms have one second to com-
pute an allocation at each step, and the simulation finishes either when all fires
are extinguished or after 300 simulation steps. Additionally, we randomly block
5% of the roads at the beginning of the simulation. Hence, the order in which
police forces remove these blockades may have a noticeable impact on the results,
depending on how well the coordination mechanism works.

After an extensive empirical evaluation, we fixed the utility function’s pa-
rameters to κ=2, γ=1.4, and ν=10, because these provided the overall best

6Although not detailed here, we also developed standard versions for both single-team police
forces and the multi-team models.

144 CHAPTER 6. SCALING ON THE DESIGN FRONT

Algorithm Greedy DSA BMS
Score 5.29±0.79 % 2.94±0.43 % 1.13±0.18 %
NCCCs 0.00±0.00 k 7.51±0.11 k 79.62±0.81 k
Num. Msgs 0.00±0.00 k 91.08±0.92 k 536.31±8.84 k
Total bytes 0.00±0.00 Kb 711.60±7.16 Kb 4189.92±69.03 Kb
CPU time 16.14±0.45 ms 220.91±7.02 ms 726.37±15.09 ms

Table 6.1: Statistics for Greedy , DSA and BMS averaged over 30 runs in the
Paris scenario (agents start acting after 25 iterations).

results for all algorithms. Moreover, the utility of each fire is vf = 4− If , where
If ∈ {1, 2, 3} is the fieriness of fire f as reported by the simulator, and tf is the
area of fire f divided by 100. Intuitively, the fierier a fire is, the longer a building
has been burning, and the less valuable it is to contain. Additionally, we scale
all the utilities of the police forces model by 10−3 to give more relevance to the
fire brigades team than to the police agents team. With the same objective,
we set M = 100, and Q = 50, so that blockades preventing fire brigades from
reaching fires are more important than blockades in the path of police agents.

Regarding the parameters of the algorithms we set the number of maximum
iterations for DSA and BMS to 100. Lowering the number of iterations to
50 slightly decreased the quality of both algorithms, whereas increasing them
to 1000 did not improve the results, wasting resources in both cases. Also,
we experimented with multiple values for the stochastic probability parameter
of the DSA algorithm. The values we employed ranged from 0.1 to 0.9 (in
0.1 increments), and we chose 0.1 because it yielded the best results overall.
Likewise, we used a damping factor [Frey and Dueck, 2007] of 0.9 in the BMS
implementation. Finally, we employed the Anytime framework from [Zivan,
2008] to keep track of the best global solution (assignment) each algorithm found
during all the iterations, and used that as the final result.

The performance of each algorithm is evaluated using the following metrics:

• Score. The score is the main performance metric used by the RoboCup
simulator. It evaluates the percentage of damage suffered by the city, with
100% meaning that it has been completely destroyed.

• NCCCs [Meisels et al., 2002]. NCCCs capture the per-iteration average
amount of non-parallelizable computation performed by the agents.

• Num msgs. Tracks average number of messages sent between all agents
in a single iteration.

• Total bytes. Counts the average number of bytes per iteration sent be-
tween all agents.

6.5. EMPIRICAL EVALUATION 145

Results

Table 6.1 shows the results we obtained on the Paris map with a start time
of 25 simulation steps7 averaged over 30 simulations. BMS achieves the best
score, with only 1.13% of the city damaged. In contrast, more than twice as
many buildings burn down when using DSA, and more than four times with the
Greedy algorithm. This gain in quality comes at a cost though. Greedy agents
obtain the worst results in quality but require no coordination resources. DSA
requires few computational resources and relatively low communication, whereas
BMS computes an order of magnitude more than DSA, and requires substantially
more bandwidth. Nonetheless, taking into account that an iteration of the RCS
represents one minute of real time, all these costs are within an acceptable range.
We also experimented with the closest allocation method described in [Parker
and Gini, 2013]. However, with that method fire agents spend too much time
watering down old fires (which are unlikely to spread), and an average of 49% of
the city gets damaged. This result indicates that our utility function is properly
capturing the characteristics of the problem.

Next we assess the behavior of the different algorithms when the amount
of fire and police agents decreases. Overall, Figure 6.7a shows that BMS coor-
dinated agents achieve significantly better results than DSA and Greedy in all
but the worst conditions. Namely, BMS prevents around 2.5 times more dam-
ages than DSA, and around 4 times more damages than Greedy . This trend
continues when the amount of available police and fire brigades decreases. For
instance, BMS saves 85.4% of the city when there are only 21 fire brigades and
10 police patrols, whereas DSA saves only 62.9% of the buildings and Greedy an
even lower 54%. However, there is a point where there are so few agents that
the situation is helpless and most of the city gets damaged. In this scenario,
we observe this effect when we reduce the resources to 15 fire brigades and 5
police agents. At this point all algorithms obtain fairly similar results, and DSA
becomes the best strategy thanks to its greedy but still coordinated nature.

While Figure 6.7a shows that both DSA and BMS outperform the Greedy
strategy given a sensible number of rescue agents, we cannot be sure wether
this is purely because of the algorithm or thanks to the inter-team coordination.
Therefore, we repeated the above experiments using BMS and DSA, but now
without the inter-team coordination constraints. Figure 6.7b shows the results
we obtained, where “DSA (noteam)” and “BMS (noteam)” represent the cor-
responding algorithms but without the inter-team constraints. The results are
particularly revealing. On the one hand, the algorithms without inter-team coor-
dination perform similarly. BMS provides slightly better results when there are
more agents, but the differences become insignificant (according to a Wilcoxon
signed-rank test with p = 0.01) when the number of agents decreases past 27
fire brigades and 15 police patrols. On the other hand, both algorithms perform
notably better when employing our inter-team coordination constraints, thus
validating our inter-team methodology and the resulting model.

7This means we prevent agents from executing any action before 25 time steps, so that fires
have time to spread.

146 CHAPTER 6. SCALING ON THE DESIGN FRONT

Greedy DSA BMS

(40,25) (33,20) (27,15) (21,10) (15,5)
Number of (Fire brigades, Police forces)

0

10

20

30

40

50

60

70
%

 o
f

d
a
m

a
g
e
d
 c

it
y

(a) Comparison of coordinated teams using different algo-
rithms

DSA DSA (noteam) BMS BMS (noteam)

(40,25) (33,20) (27,15) (21,10) (15,5)
Number of (Fire brigades, Police forces)

0

10

20

30

40

50

60

70

80

90

%
 o

f
d
a
m

a
g
e
d
 c

it
y

(b) Coordinated teams vs Independent teams (ITs)

Figure 6.7: Performance comparison when decreasing the agent resources. Re-
sults are averaged over 30 runs and error bars represent the standard error of
the mean.

6.6. CONCLUSIONS 147

Furthermore, the gains from inter-team coordination are clearly larger for
BMS than for DSA. This difference has a simple explanation. Notice that the
inter-team constraints require an agent (especially police patrols) to temporarily
worsen its own individual outcome (by attending a farther blockade) to realize
the inter-team gains (to allow a firefighter to reach a more important fire). Now
recall that DSA, like all other local-state search approximate algorithms detailed
in Section 2.2, is essentially a greedy algorithm. In contrast, Max-Sum is the
only known local-state DCOP algorithm that does not operate in a greedy man-
ner. Therefore, the Max-Sum algorithm (and BMS by extension) is intrinsically
better equipped to exploit these coordination situations where some temporary
individual sacrifice must be made to achieve a greater outcome.

Finally, we conducted similar experiments in the 2013’s Kobe scenario. The
observed trends are the same, but the differences between algorithms are tighter
because the problem is easier: in Kobe there is only one fire focus and the map
is small and much easier to navigate.

6.6 Conclusions

Questions addressed in this chapter:
Q. 1. Can we identify application characteristics that provide cues as to which

solving algorithm is better for that application?
Q. 5. Can we ease the modeling of complex scenarios as DCOPs?

In the previous chapter we showed that DCOP-based solutions are a compet-
itive approach to tackle multi-agent coordination in dynamic problems. More-
over, we identified local-state approximate algorithms as the algorithms of choice
in such settings. In particular, we identified Max-Sum (and more precisely BMS)
as a promising algorithm to deal with dynamic multi-agent task allocation prob-
lems. However, there are a number of concerns that were not answered in that
chapter.

First and foremost, a notable caveate of BMS is that it significantly increases
the modeling complexity. This poses a significant barrier to the adoption of
BMS, especially for more complex application domains involving heterogeneous
agents, emphasizing our Question 5 in the introduction. Therefore, in this chap-
ter we provided actionable methodologies to help in designing binary DCOP
(and hopefully THOP-only) full-problem models without incurring on any design
complexity explosion. Specifically, our methodology allows for a compositional
approach to the modeling task: first, the designer develops standard and isolated
models for the different functional areas (i.e., teams of homogeneous agents) of
the application. Then we showed how any standard DCOP models can be easily
binarized. Finally, the individual models are combined into a full-problem model
by identifying the application’s inter-team coordination points as coordination
variables and independently interfacing each model with those variables.

Another outstanding issue in Chapter 5 is that, although we showed that
BMS is competitive with other state-of-the-art non-DCOP approaches, we did

148 CHAPTER 6. SCALING ON THE DESIGN FRONT

not compare BMS with other local-state approximate DCOP algorithms. Using
the methodology presented in this chapter we built an inter-team coordination
model for the RoboCup Rescue Challenge, which allowed for such comparison.
The experiments with fire brigades and police agents show that BMS teams
employing inter-team coordination are significantly more effective than uncoor-
dinated teams. Moreover, the evaluation shows that BMS achieves up to 2.5
times better results than other state-of-the-art DCOP algorithms.

Finally, our work on the LORP suggested that dynamic task allocation prob-
lems are a good fit for the BMS algorithm. Nonetheless, we needed more ap-
plications to solidify this hypothesis. Hence, the inter-team coordination model
presented here and the good empirical results we obtained are an important
support for this idea. Furthermore, there are two key observations that further
back up this conjecture: (i) Recall that BMS’s gains are only realized when the
model’s constraints are THOPs. However, we have seen that some typical task
allocation restrictions (such as “two agents should attend this task simultane-
ously” or “this task should be performed before that other task”) can actually
be modeled using THOPs; and (ii) being the only local-state DCOP algorithm
that is not intrinsically greedy, the algorithm is better equipped to handle typi-
cal task allocation situations where an agent must temporarily sacrifice its own
utility to eventually achieve a greater outcome. As a result, we argue that this
answers our Question 1 by identifying dynamic task-allocation problems as a
good fit for the BMS algorithm.

Chapter 7

Conclusions and future
work

In this chapter we first summarize the work developed during this dissertation.
Then we draw the most notable conclusions attained from it, and finally present
some lines for future research.

7.1 Summary

This work revolved around enabling and scaling effective multi-agent coordi-
nation techniques. Among the several approaches to multi-agent coordination,
we centered on the DCOP framework for two main reasons. Firstly, because
despite being one of the simplest approaches to multi-agent coordination, the
DCOP model can represent a vast number of coordination situations. Secondly,
because the framework supports the development of generic algorithms to solve
those problems. Moreover, the algorithms may ensure that the optimal solu-
tion is found, but they may also trade-off solution quality for execution speed,
providing the flexibility required to fit many different practical applications.

Given the flexibility of this approach, there have been both a large number
of proposed applications with varying requirements (e.g., meeting scheduling,
wireless sensor networks, traffic light control) and an equally vast array of solving
algorithms of different characteristics (e.g., DPOP, ADOPT, DSA, Max-Sum).

Therefore, we started in Chapter 2 by reviewing the DCOP framework and
showing how it can be used to model an example multi-agent coordination prob-
lem. Next we introduced the Generalized Distributive Law and showed how
its fundamental ideas can help solve DCOPs. Finally, we surveyed the DCOP
literature, identifying the major algorithms and classifying them according to
both their solving approach and especially by their scalability/quality charac-
teristics. As a result, we identified three broad classes of algorithms: (i) optimal
algorithms, that guarantee the maximum solution quality but incur on expo-
nential costs and hence scale poorly; (ii) global-state approximate algorithms,

149

150 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

that have lower costs and scale better but cannot guarantee optimality. Fur-
thermore, those algorithms can oftentimes provide quality guarantees on the
solutions found, at the expense of maintaining some logical global state among
all agents. As a consequence, their scalability is still limited and tend to not
handle failures gracefully; and (iii) local-state approximate algorithms, that pro-
vide fast solutions and are more robust to message and/or agent failures, but
provide weak or no quality guarantees at all.

This classification readily provides a solid guideline to assess which algo-
rithms are better suited for the different kinds of applications where DCOPs
may be employed. Furthermore, it allowed us to identify the Generalized Dis-
tributive Law as the core idea shared by most inference algorithms, even by those
that were developed before the GDL idea itself was widely known. Against this
background, we worked on both complete and approximate DCOP solving, with
three common underlying focal points:

• To exploit GDL to efficiently solve DCOPs.

• To improve the scalability of current algorithms and thus allow for larger-
scale DCOP solving.

• To adapt the solving models and/or algorithms to the application’s char-
acteristics.

Due to the fundamental differences on their objective and requirements, we
divided the remainder of the dissertation in two major blocks: a first one dedi-
cated to optimal solving using GDL-based algorithms, and a second part dedi-
cated to approximate solving using the local-state approximate version of GDL,
commonly known as Max-Sum.

Optimal solving

The first GDL-based algorithm was introduced a relatively long time ago [Petcu
and Faltings, 2005b], and researchers have since been proposing new techniques
to improve their efficiency [Petcu and Faltings, 2005a, 2007a; Vinyals et al., 2009;
Brito and Meseguer, 2010a]. One of the most promising among those techniques
is known as function filtering [Sánchez et al., 2005; Brito and Meseguer, 2010b].
Therefore, this part of the dissertation focused on improving the efficiency and
scalability of the GDL with function filtering algorithm.

In Chapter 3 we first introduced the GDL with function filtering algorithm
itself. Recall that the central idea behind function filtering is to iteratively build
more accurate representations of the problem in the form of lower-bound con-
straints, while detecting and removing suboptimal assignments in the process.
Initially the problem is represented with coarse constraints over few variables,
that are small and provide loose lower bounds on the problem. Then, at each
subsequent iteration agents exchange larger constraints defined over more vari-
ables, representing tighter lower bounds. Meanwhile, the lower bounds collected
in the previous iteration are combined with the best known solution to detect

7.1. SUMMARY 151

and prune out suboptimal assignments. This pruning reduces the size of the
constraints required to represent the problem at the current level of accuracy,
and hence the number of solutions to consider in the subsequent iterations.

This simple description of the algorithm already points out the three key
operations that influence the algorithm’s performance, namely:

• How to assess which assignments can or cannot be filtered.

• How to compute the “best known solution”.

• How to compute the algorithm’s messages (lower bound constraints) at
each iteration.

In Chapter 3 we worked on the first two of these operations. Namely, we
identified an opportunity to improve the tightness of the computed lower bounds
with only a minimal increase in computational cost. As a result, the filtering
operation can now prune more assignments and the algorithm operates equally
as well or even better in all the experiments we conducted. Next we turned our
attention to the computation of the best known solution, that also influences the
filtering operation because it serves as the cutoff upper bound. In this regard,
we introduced a scheme to compute multiple upper bounds simultaneously and
presented a couple of techniques that exploit such scheme.

Next, Chapter 4 focused on the last operation: message computation.
First we showed how the message computation during the algorithm’s execu-
tion can be adapted to improve the algorithm’s performance on either heav-
ily communication-constrained or heavily computation-constrained applications.
Building on those results, we then thoroughly analyzed and combined all tech-
niques for message computation from the different GDL-based algorithm vari-
ants. As a result, we presented a framework for message computation that
generalizes all these algorithms through a few parameters. Furthermore, these
parameters allowed us to trade-off between computation and communication
costs, and thus to adapt the algorithm to the different resources available on
different applications.

Approximate solving

Recall that DCOPs are generally NP-Hard. Hence, although in the first part of
the dissertation we were able to increase the scalability of GDL-based algorithms,
at some point the problems become large enough that they simply cannot be op-
timally solved anymore. Thus, the second part of this work involved application
domains that require approximate solving techniques. Particularly, we identi-
fied highly dynamic multi-agent coordination challenges to be amongst the most
promising practical applications of the DCOP framework. In contrast, most lit-
erature about approximate DCOP solving focuses on synthetic (i.e., randomly
generated) and static problems. As a result, we observed that there is a signif-
icant lack of tools and testbeds for the development of DCOP algorithms that
can cope with these promising applications.

152 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Consequently, in Chapter 5 we began by introducing the novel Limited-range
Online Routing Problem (LORP) as an example of large-scale, highly dynamic
scenario. Next we surveyed the multi-agent literature at large, identifying an
extensive body of related work from the robotics community. This allowed us to
establish the state-of-the-art techniques available for this kind of problem, which
served as the baseline to improve upon. Thereafter we introduced MASPlanes,
an open-source simulation environment for the development and testing of LORP
solution techniques, that allows for easy implementation and comparison of the
developed algorithms. Then we showed how the LORP problem can be modeled
as a sequence of DCOP instances, and that this approach can cope with and
exploit the dynamism of the problem. Additionally, we introduced the Tractable
Higher-Order Constraints (THOPs), that combined with a clever encoding of the
problem allowed us to reduce the computation cost of the Max-Sum algorithm
from exponential to polynomial time.

Finally, in Chapter 6 we tackled the RoboCup Rescue Simulation challenge,
where heterogeneous teams of agents (police patrols and fire brigades) must
coordinate to prevent damages to a city after a natural disaster has taken place.
We observed that modeling becomes an issue on this kind of problems involving
heterogeneous agents, and focused on easing that endeavor. With this aim, we
introduced a methodology that exploits the compositional nature of DCOPs
to avoid an explosion in design complexity. Essentially, our approach allows
the designer to focus on the different functional areas of the problem, one at
a time. Then we demonstrated this methodology by developing an inter-team
coordination model for police forces and firefighters. Thereafter we implemented
both standard DCOP and THOP-only variants of the proposed model. Lastly,
we empirically evaluated both models in the RoboCup simulator using several
algorithms, showing the benefits of our inter-team model paired with the Max-
Sum algorithm.

7.2 Lessons learned

In this section we recall our research questions from Section 1.2. At the same
time, we digest the major results we obtained, explaining how these results
allowed us to address our questions.

Optimal solving

Our first research question was intimately related to the intrinsic characteris-
tics of different DCOP solving approaches. Specifically, we posed the following
question:

Q. 1. Can we identify application characteristics that provide cues as to which
solving algorithm is better for that application?

Our survey in Section 2.2 proved to be a valuable tool to answer this question.
Namely, it allowed us to identify inference-based complete algorithms in general,

7.2. LESSONS LEARNED 153

and GDL-based algorithms in particular, as the only optimal algorithms with a
theoretical advantage: their complexity is exponential on the treewidth of the
Junction Tree instead of on the number of variables in the problem. As a result,
these algorithms can scale to large problems so long as their treewidth remains
low.

Nonetheless, such advantage comes at a cost in the form of resource re-
quirements. That is, agents using GDL-based algorithms typically require large
amounts of memory and communication. Therefore, we posed a follow-up ques-
tion to the previous one:

Q. 2. Can we improve the resource scalability of DCOP algorithms where this
scalability is a limitation?

Our work on the GDL with function filtering algorithm is specifically geared
towards answering this question. Recall that function filtering reduces the size of
the constraints computed and sent during the algorithm’s execution. Therefore,
in Chapter 3 we focused on improving the effectiveness of the filtering technique.

With this aim, we first presented the so-called two-sided filtering bound,
that improves the quality of the lower bounds computed during the filtering
process. Our experiments showed that in the worst case, two-sided filtering
does not provide significant advantages but it does not worsen the algorithm’s
performance either. In contrast, experiments with harder problems showed that
two-sided function filtering can lead to significant reductions in the amount of
resources required to optimally solve DCOPs.

Next we introduced several techniques to compute better upper bounds by
exploring multiple solutions instead of a single one. We empirically evaluated
these novel techniques, showing that they can further improve the efficiency of
GDL with function filtering. Used in conjunction with two-sided filtering, our
novel distributed stochastic exploration method significantly reduces the com-
munication and computation costs of the algorithm, especially on the hardest
problems. Unfortunately, we have also learned that in easier problems, such
as the meeting scheduling instances from the USC DCOP Repository, the over-
head of exploring multiple solutions is not compensated by the marginal benefits
obtained in the filtering process.

Finally, our experiments showed that these algorithmic improvements to the
filtering process also obtain a significant memory reduction. As a result, we
were able to extend the range of solvable problems using a limited amount of
memory. That is, our novel techniques enable agents with limited memory to
solve problem instances that they could not solve before.

Devising techniques that lower the amount of resources required by the al-
gorithm directly answers our Question 2. However, there is also a more indirect
approach. In actual-world settings, the agents’ computation and communication
capabilities vary greatly between different application domains. Hence, another
way to improve the applicability of a DCOP algorithm is to adapt the algorithm
to the particular capabilities of the agents in the application at hand. In Chap-
ter 4 we took this indirect route, and strived to tailor the GDL with function

154 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

filtering algorithm for applications with varying characteristics.

Firstly, we noticed that most message approximation techniques in the lit-
erature are designed to minimize the computational cost of the algorithm, dis-
regarding its communication requirements. Hence, we took the completely op-
posite stance, and developed the top-down approximation scheme. This scheme
is specifically designed to reduce the algorithm’s communication requirements,
disregarding the computational ones. Moreover, we presented two particular re-
alizations of the scheme: (i) the brute-force decomposition strategy, which is a
naive implementation with high computational cost; and (2) the zero-tracking
decomposition strategy, which greatly reduces the amount of computation. Our
experiments show that top-down approximations achieve large communication
savings with respect to previous state-of-the-art methods. Therefore, we argue
that top-down approximations in general, and specifically zero-tracking decom-
positions increase the scalability of GDL with function filtering algorithm for
heavily communication constrained application domains.

Nonetheless, the issue of adapting the algorithms’ requirements for appli-
cations where agents have more balanced resource capabilities still remained.
Hence, we then introduced a general scheme for cost message computation that
combines all techniques employed by the different GDL-based algorithms in the
literature. This scheme provided us with the necessary flexibility to design novel
methods that can actually tradeoff between computation and communication
requirements. In fact, our experimental evaluation showed that the one of these
novel methods is the best one when communication costs are cheap with re-
spect to computational costs (e.g. meeting scheduling on a LAN). In contrast,
the method using only zero-tracking decomposition rose as the best method for
heavily communication-constrained domains (e.g. wireless sensor networks).

More importantly, our empirical guidelines can be used to find out the most
appropriate message computation method for applications whose resource avail-
ability is not heavily skewed towards neither communication nor computation
(e.g. meeting scheduling on a WAN). Therefore, by allowing the designer to
adapt the algorithm to the specific capabilities of the agents in her application,
we effectively increased the scalability of GDL-based algorithms.

Approximate solving

In the second part of the thesis we turned our attention to larger-scale problems
where optimal solving is not possible anymore. Nonetheless, we observed that
scale is usually not the only issue on such domains. Particularly, larger scale
coordination applications oftentimes involve agents that can move and operate
within a constantly evolving dynamic environment. In contrast, most DCOP
works assume that the problems to solve are static. As a result, we argued that
an important question to answer before considering the scalability issues in such
scenarios is:

Q. 3. Can the DCOP framework handle dynamic problems? And if so, how?

7.2. LESSONS LEARNED 155

Our work on the Limited-range Online Routing Problem in Chapter 5 identified
the need for quick loops of assessment, decision and action to deal with highly-
dynamic problems. While we do not claim this is the only way to approach such
problems using DCOPs, we proposed a solution based on iteratively taking snap-
shots of the current situation and making decisions based on them. Furthermore,
we identified two basic requirements for this approach to be successful: (i) the
snapshots must be built and represented in a decentralized manner; and (ii) the
decision making process must operate within strict time constraints. Moreover,
DCOPs are particularly well suited for this approach because both the model
and the solving algorithms are inherently distributed. However, the second re-
quirement implies that only local-state approximate algorithms that can make
decisions quickly enough are suitable for this approach.

Consequently, we planned to implement our approach using the Max-Sum
algorithm, which is the local-state approximate version of GDL. Nonetheless,
in its standard form agents take exponential time to compute their messages.
This made us re-consider Question 2 again, asking whether we can improve the
performance of Max-Sum because these exponential costs are a significant com-
putational burden. To answer this question we developed an initial solution
assuming independence between requests. Using a clever encoding of this model
as a binary DCOP, we showed that it is possible to overcome Max-Sum’s ex-
ponentiality in some cases. This result illustrates that, along with the actual
algorithms, modeling plays a crucial role to tackle actual-world applications.
Likewise, it lead us to our next research question:

Q. 4. Can we develop modeling techniques that benefit certain DCOP algo-
rithms?

Fortunately, some recent work from the machine learning community demon-
strated that the computation of Max-Sum messages can be simplified for several
classes of constraints, known as Tractable Higher-Order Potentials (THOPs).
Therefore, we can favor the use of THOPs while modeling and thus guarantee
that Max-Sum will solve our problems efficiently. On this account, we then built
a more refined model using THOPs, that takes the UAV’s workload into account
when making decisions.

Our experiments showed that this improved version is always equally as good
or better than the best previously available state-of-the-art approach. On top
of that, the performance of Max-Sum using this new model comes close to that
of the best centralized approaches, which can only be employed in simulation
(and not in the actual-world) because of the communication range limit. This
confirmed that we found a compelling approach to deal with dynamic prob-
lems using DCOPs, and that modeling the problem using THOPs allowed us to
employ the Max-Sum algorithm to obtain very convincing results.

Nonetheless, developing THOP-only models is significantly more complex
than designing standard DCOP models. Our work showed that this is not an
issue for relatively simple problems such as the LORP. However, it becomes a
palpable setback on more complex application domains, such as those involving

156 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

agents with different aptitudes. This resulted in our next question, namely

Q. 5. Can we ease the modeling of complex scenarios as DCOPs?

Accordingly, in Chapter 6 we presented guidelines to help in designing binary
DCOP models. On the one hand, we explained how standard DCOP models can
be transformed into binary ones. On the other hand, we introduced a method-
ology to model complex scenarios. The key insight of our proposal is to exploit
the additive nature of DCOPs (recall that a DCOP’s utility function is a sum
of constraints). Hence, we proposed to develop full-scale models in three steps.
First, the designer models the different functional areas of the application (e.g.,
the different teams in a rescue setting) independently. Second, she identifies the
coordination objects that form the basis of the necessary interactions between
these areas. Third, she extends each independent model to interface with the
coordination variables.

We also demonstrated our methodology by developing an inter-team coordi-
nation model for the RoboCup Rescue Challenge. Notice that we emphasized the
benefits of this methodology to build THOP-only models (where reducing the de-
sign complexity is most needed), but it can also be employed to build standard
full-problem DCOP models. In fact, we experimented with both coordinated
and uncoordinated fire brigades and police agents, running both Max-Sum over
the THOP-only models and the state-of-the-art DSA over equivalent standard
models. The results validated our methodology, showing that coordinated teams
are vastly more effective than uncoordinated teams.

Finally, notice that we approached both the LORP and the RoboCup Rescue
as dynamic multi-agent task allocation problems and obtained competitive re-
sults for both cases. Hence, we claim that a complementary answer to Question 1
above is that multi-agent dynamic task-allocation problems are a good fit for
the Max-Sum algorithm. Such claim is further supported by two observations.
Firstly, notice that Max-Sum’s efficiency gains introduced in this dissertation
apply only when the applications are modeled using THOP constraints. How-
ever, we have seen that some typical task allocation restrictions (such as “two
agents should attend this task simultaneously” or “this task should be performed
before that other task”) can actually be modeled using THOPs. Secondly, recall
from Section 2.2 that Max-Sum is the only local-state DCOP algorithm that is
not intrinsically greedy. Therefore, the algorithm is inherently better equipped
to handle situations where an agent must temporarily sacrifice its own utility to
eventually achieve a greater global outcome, which is a typical situation in task
allocation problems.

7.3 Future work

While this dissertation has realized significant contributions on scaling GDL-
based algorithms for both optimal and approximate solving, it also opens several
paths for future work. In the following we present some areas where further
research is due.

7.3. FUTURE WORK 157

On GDL with function filtering

Our work on inference-based optimal DCOP solving has produced some inter-
esting results, especially on accounting for the varying resources available to
agents on different application domains. However, there are some paths we did
not explore in this work that might significantly impact the efficiency of these
algorithms.

GDL with function filtering as an approximate algorithm. In this dis-
sertation we focused on the GDL with function filtering algorithm as a com-
plete solving algorithm. However, nothing precludes the usage of this algorithm
(along with all our proposed techniques) as a global-state approximate algo-
rithm. Moreover, although the basics of the algorithm would be the same, there
are some open issues to investigate.

For instance, the direct approach would be to simply stop the algorithm
once: (i) agents run out of resources; or (ii) a certain quality of the solution is
guaranteed (the upper bound is within some approximation ratio of the lower
bound). However, a smarter approach would be to also modify the filtering
operation to prune out assignments that may be better than the current solution
(upper bound), but not by more than the required approximation ratio. That is,
consider a user that requires a solution whose cost is not larger than twice that of
the optimal solution. Then, the filtering process could filter out any assignment
whose lower bound is larger than half the cost of the current solution. As a result,
we expect that significantly more assignments would be pruned, and hence the
algorithm would operate faster and require less resources.

Finer-grained communication and computation bounds. Notice that
the computation and communication bounds employed in our message compu-
tation scheme (in Section 4.3.4) are defined as maximum numbers of variables.
The reason is historical, because filtering was built on top of the MCTE(r) algo-
rithm where the number of variables (and their domain) exactly determines the
size of the exchanged constraints. However, the introduction of function filtering
makes the number of variables an inappropriate ruler: after the filtering process,
the exchanged constraints become sparser. Therefore, the number of variables
is not a good estimation on the size of these constraints anymore. As a conse-
quence, a better approach would be to define the aforementioned bounds based
on the actual number of assignments within the constraints instead. Nonethe-
less, such change would affect the approximation and decomposition methods,
and hence significant further work is required to materialize this idea.

Combine GDL and filtering with search-based algorithms. While we
expect the above improvements to significantly foster the GDL with function
filtering efficiency and scalability, a more ambitious endeavor is to combine these
inference techniques with search-based algorithms. Ideally, this combination
would provide the theoretical guarantees of GDL-based algorithms and their
proven efficiency on low treewidth problems with the efficacy of search heuristics.

158 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

In this regard, the work by Kim et al. [Kim and Lesser, 2014] is a promising
initial step. However, their DJAO algorithm is more a chaining of techniques
than a combination: inference is used as a preprocessor to obtain some initial
bounds for the search, and then a regular search algorithm is executed. In
contrast, a true combination would allow both algorithms to operate in an in-
terleaved manner. More specifically, we envision a search-based algorithm that
would, in an online fashion, employ an approximate version of GDL with func-
tion filtering to compute bounds on the subproblems defined by an and-or search
tree [Marinescu and Dechter, 2007].

On dynamic problems, Max-Sum and THOPs

While the first part of the thesis focused on detail-oriented improvements to
proven techniques, the second part has been more explorative. We introduced a
novel problem, we compared DCOP approaches to state-of-the-art methods from
the robotics community, and we imported results from the machine learning
literature. As a result, the potential for future extensions is broader on this
front. In the following we describe three major directions of research that we
expect to produce significant and fruitful research.

More complex variants of the LORP. The Limited-range Online Routing
Problem as presented in this dissertation represents a realistic fundamental co-
ordination challenge to tackle. Furthermore, we consider the MASPlanes toolkit
to greatly ease the barrier to entry to conduct research on it. However, in its
current incarnation, the LORP is admittedly simple on the coordination aspect.

In contrast, the domain represented by the LORP admits many variations
that would make it a further challenge. For instance, it would be reasonable
for some requests to have higher priority than others, or even consider requests
having associated deadlines. Likewise, it would be interesting to consider that
UAVs may perform different kinds of tasks (e.g. taking a picture, transmitting an
alert message, streaming a video). Also, there could be different kinds of UAVs
with varying capabilities, or even terrestrial autonomous vehicles to coordinate.

Some may argue that the RoboCup Rescue Challenge already fits that role.
However, the RCS is actually two challenges in one. Obviously, one challenge
is the coordination part. However, and more importantly, RCS is a significant
modeling challenge. That is, the simulation is so complex and the uncertainty
so high, that the main issue in RCS is the development of actual models of the
problem more than the coordination part. Additionally, the simulator and its
operation do not help the cause. On the one hand, the whole system (which
is a composition of several applications) is huge, and hence it is notably hard
to master. On the other hand, running simulations is slow and requires lots of
resources, making the modeling task even harder to handle.

Deal with Max-Sum convergence and communication issues. In the
latter part of thesis we have successfully applied Max-Sum (and Max-Sum with
THOPs, also known as BMS) to two different domains. Despite our eventual

7.3. FUTURE WORK 159

success, in the process we have had to deal with two known issues of the algo-
rithm:

• Lack of convergence. Unlike some other algorithms such as DSA, Max-Sum
is not guaranteed to converge unless the factor graph is a tree. On some
problems, such as in the LORP, this is not a major issue. Even though
the algorithm may not converge, it ends up cycling through several good
states. Thus, in these cases it is enough to stop the algorithm after some
time and extract a solution. However, in other cases the algorithm ends up
cycling through notoriously bad states [Weiss and Freeman, 2001]. Several
works, including our own in Section 6.5, employ rather tricky approaches
to deal with this issue (e.g., damping the messages, adding noise to the
inputs) [Tarlow et al., 2011]. Although these devices do help, there are
many cases where they do not solve the issue. Thus, other researchers
have proposed heuristic post-processing techniques that to try to recover
good solutions even when the algorithm does not converge [Zivan and
Peled, 2012; Mostafa et al., 2014]. Unfortunately, such heuristics may end
up finding arbitrarily bad solutions. As a result, there is an interesting
research space on coming up with ways to avoid this problem that are
sound and robust unlike all these current approaches.

• Communication overhead. Another issue of Max-Sum is that it sends large
amounts of (very small) messages, as evidenced in Table 6.1. However,
during our work above we noticed that many of those messages carry es-
sentially duplicated information. That is, in many occasions, an agent
sends either the same or very slightly modified messages to those it sent
in the previous iteration of the algorithm. Therefore, we expect a careful
study of this fact to reveal opportunities for large reductions in the num-
ber of messages required by Max-Sum. Furthermore, it is likely that even
some computation can be avoided too.

Explore THOPs as a coordination language. In this dissertation we have
shown the large impact that THOPs have on the Max-Sum algorithm. Further-
more, we demonstrated that some typical coordination interactions (e.g., “two
agents must collaborate to perform this task”) can be modeled using THOPs.
However, we only presented a few cases that arose in our example application
domains. In contrast, it is likely that a large variety of interactions can actually
be modeled as THOPs and thus exploit the benefits of BMS. Regrettably, the
current path to realize these benefits is notably tortuous, and involves several
challenges. First, the researcher must identify those opportunities. Then, she
must find the appropriate constraints to represent the interaction. Finally, she
needs to demonstrate that those constraints are THOPs and devise simplified
computation algorithms for their messages.

As a result, we consider future research on easing the above path to have a
large potential. In particular, we envision a catalog of coordination interactions.
Such a catalog would provide readily available THOP-only representations for

160 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

each interaction, and the corresponding algorithms to efficiently compute their
Max-Sum messages. Furthermore, this inventory would then allow us to create
a language to specify coordination situations. In combination with the method-
ologies presented in this work, such a language would considerably simplify the
modeling of many applications. Additionally, it would enable us to provide read-
ily implemented, efficient Max-Sum solutions straight from the problem specifi-
cation. In fact, we already made the first steps in this direction by detailing a
few THOPs [Pujol-Gonzalez et al., 2013a], and open sourcing a reference BMS
implementation including them [Pujol-Gonzalez and Penya-Alba, 2014].

Appendix A

Max-Sum as a GDL
algorithm

In this appendix we show the equivalence of the messages computed by the
GDL algorithm and the messages typically employed to describe the Max-Sum
algorithm.

First we recall the context for the GDL message computation formula in
Equation (4.1). In this context, the agent/node i has a set of constraints Ci
that represent its stake in the problem. Additionally, the separator Sij is the
set of variables shared between node i and node j. Then, in the canonical GDL
algorithm from [Aji and McEliece, 2000], the message sent from node i to node
j is computed as shown in Equation (4.1). Namely,

mi→j = (m̂→i ./Ci)[Sij] , (A.1)

where m̂→i is the combination of messages received by node i from all its neigh-
bors in the JT except from j itself. That is

m̂→i = ./
k∈N(i)\{j}

mk→i ,

where N(i) is the set of neighbors of node i.
From this equation we want to derive the expressions for the Max-Sum mes-

sages as shown in Equations (5.1) and (5.2). Remember that the major difference
between the canonical GDL algorithm and Max-Sum is that the former operates
on a junction tree whereas the latter operates on a factor graph.1 Therefore, we
make the following observations.

Observation A.1. The factor graph is a bipartite graph of factor and variable
nodes. Thus, we can differentiate between messages sent from variable nodes to
factor nodes and vice versa.

1In an abuse of notation, we write f to represent both a factor node of the factor graph
and the constraint it represents. Likewise, we write v to refer to both a variable node and the
variable it represents.

161

162 APPENDIX A. MAX-SUM AS A GDL ALGORITHM

Observation A.2. In Max-Sum, variable nodes in the factor graph do not
contain any constraint. Therefore, the stake in the problem Cv of a variable
node v is always an empty set. In contrast, the stake of the problem Cf = {f}
of a factor f is a single element set containing the constraint it represents.

Observation A.3. Because variable nodes always involve exactly one variable,
the separators Svf = Sfv = {v} between a variable node and a factor node is
always a set of exactly one variable: the variable represented by the variable
node.

Given Observation A.1, we now proceed by independently deriving the mes-
sages from factor nodes to variable nodes and the messages from variable nodes
to factor nodes.

From variable nodes to factor nodes. Because of Observation A.2, we
know that Ci in Equation (A.1) is always empty for these messages. Hence, we
can simplify the message to

mv→f = mf̂→v[Svf] .

By Observation A.3 and Definition 3.5, this is the same as

mv→f (v) = min
t extension of v

mf̂→v(t) . (A.2)

At this point we focus on the scope of mf̂→v. Notice that this constraint is
simply an aggregation of the constraints received by v:

mf̂→v = ./
f ′∈N(v)\{f}

mf ′→v .

From Equation (A.1), each message mf ′→v within this aggregation must have
been projected over the corresponding separator Sf ′v. However, from Observa-
tion A.3 we know that all separators Sf ′v are {v}, independently of the specific
factor f ′. As a consequence,

sc(mf̂→v) =
⋃

f ′∈N(v)\{f}
sc(f ′) = {v} .

Now, given that the scope of mf̂→v is {v}, the only possible extension of an

assignment v to the scope of mf̂→v is v itself. Therefore, Equation (A.2) can
be rewritten as

mv→f (v) = min
v
mf̂→v(v) .

Furthermore, it is obvious that the min operator does nothing at this point, and
hence can be safely removed. Additionally, we can expand mf̂→v and apply Def-
initions 3.1 and 3.2 to obtain the canonical expression of the Max-Sum messages
sent from variables to factors, namely

mv→f (v) =
∑

f ′∈N(v)\{f}
mf ′→v(v) = µv→f (v) .

163

From factor nodes to variable nodes. These messages are easier to derive
because there are fewer optimizations we can make. First, by ?? A.2?? A.3, and
expanding mf̂→v in Equation (A.1) we get

mv→f =

(
f ./

(
./

v′∈N(f)\{v}
mv′→f

))
[v] .

Likewise above, we now focus on the scope of the combination. As introduced
in Definition 3.1, the scope of a combination is the union of the scopes of each
combined constraint. Hence,

sc

(
f ./

(
./

v′∈N(f)\{v}
mv′→f

))
= sc(f) ∪

⋃
v′∈N(f)\{v}

sc(mv′→f)

Now, by Observation A.3, we know that the scope of a message from any variable
node v′ to the factor node f is the variable itself, namely sc(mv′→f) = {v′}.
Moreover, due to how the the factor graph is constructed, a variable node v′

only sends messages to factor nodes whose constraint depends on that variable.
Therefore, the scope of the incoming messages must be a subset of the scope
of the factor node’s constraint. Formally, sc(mv′→f) ⊆ sc(f) for any variable
v′. As a consequence, the scope of the combination is actually the scope of the
factor node’s constraint,

sc

(
f ./

(
./

v′∈N(f)\{v}
mv′→f

))
= sc(f) .

Finally, we can expand the combination and projection above to obtain the
classical expression of the Max-Sum message sent by factor nodes to variables
nodes:

mf→v(v) = min
t extension of v

to sc(f)

(
f(t) +

∑
v′∈N(f)\{v}

mv′→f (t[v′])

)
= µf→v(v) .

Appendix B

Addition of independent
valuations

Lemma B.1. Let f(x1, . . . , xn) be a factor over binary variables x1, . . . , xn. To
simplify the notation, let the variables’ domain be {0, 1}, where xi = 1 means
that the variable is active. Let g(xi) = γi ·xi be another factor defined only over
variable xi. Let h(x1, . . . , xn) = f(x1, . . . , xn) + g(xi) be the factor obtained by
adding factors f and g. Let νk be the real-value message received from neighbor
k. Then, from Equation (4.1) we get

µf→xj (xj , ν1, . . . , νn) = min
t extension of xj

to X

f(t) +
∑

xk∈X\{xj}
νk · t[xk]

 (B.1)

and the corresponding real-valued message

νf→xj
(ν1, . . . , νn) = µf→xj

(1, ν1, . . . , νn)− µf→xj
(0, ν1, . . . , νn) (B.2)

Then we have that

νh→xj
(ν1, . . . , νn) =

{
νf→xj (ν1, . . . , νi + γi, . . . , νn) j 6= i

νf→xj (ν1, . . . , νi + γi, . . . , νn) + γi j = i
(B.3)

Proof. by the definition in Equation (B.1), we observe that

µh→xj
(xj , ν1, . . . , νn) = min

t extension of xj

to X

h(t) +
∑

xk∈X\{xj}
νk · t[xk]

 =

= min
t extension of xj

to X

f(t) + γixi +
∑

xk∈X\{xj}
νk · t[xk]


165

166 APPENDIX B. ADDITION OF INDEPENDENT VALUATIONS

First we take the case where i 6= j, and obtain

µh→xj (xj , ν1, . . . , νn) =

= min
t extension of xj

to X

f(t) + (νi + γi)xi +
∑

xk∈X\{xi,xj}
νk · t[xk]

 =

= µf→xj
(xj , ν1, . . . , νi + γi, . . . , νn) .

From here, the case where j 6= i of Equation (B.3) follows from directly applying
Equation (B.2).

Now we assume that i = j, and obtain

µh→xj (xj , ν1, . . . , νn) = min
t extension of xj

to X

f(t) + γjxj +
∑

xk∈X\{xj}
νk · t[xk]

 =

= γjxj + min
t extension of xj

to X

f(t) +
∑

xk∈X\{xj}
νk · t[xk]

 =

= γjxj + µf→xj (xj , ν1, . . . , νn) =

= γjxj + µf→xj (xj , ν1, . . . , νj + γj , . . . , νn)

where the last equality comes from the fact that νj is not taken into account
when assessing µf→xj

. Now, the expression in Equation (B.3) for the case i = j
follows directly from applying the definition in Equation (B.2).

In terms of the Max-Sum algorithm, this means that if we can efficiently
compute the messages flowing out of f , we can also efficiently compute the
messages flowing out of h.

Lemma B.2. Let f be a factor over binary variables Y = {y1, . . . , yn}. Let
g(y) =

∑n
i=1 γi · y[yi] be another factor defined as the addition of a set of n

independent factors, one over each variable yi. Let h(y) = f(y) + g(y) be the
factor obtained by adding f and g. From Equation (4.1), the outgoing message
from f to some variable yj is assessed as

µf→yj (yj , ν1, . . . , νn) = min
t extension of yj

to Y

f(t) +
∑

yk∈Y \{yj}
νk · t[yk]

 ,

and the corresponding real-valued message is

νf→yj (ν1, . . . , νn) = µf→yj (1, ν1, . . . , νn)− µf→yj (0, ν1, . . . , νn) .

Then, we can assess the outgoing message from h to yj as

νh→yj (ν1, . . . , νn) = νf→yj (ν1 + γ1, . . . , νn + γn) + γj .

Proof. Direct by iterative application of Lemma B.1 to each of the independent
factors that compose g.

Appendix C

The AtMostOne constraint
is a THOP

In this appendix we derive an efficient procedure to compute Max-Sum’s mes-
sages of an AtMostOne binary constraint. An AtMostOne constraint f is simply
a constraint ensuring that no more than one variable among those in its scope
is active at the same time. Namely, the constraint has scope X = {x1, . . . , xn}
and (for maximization problems) it is defined as

f(x) =

{
0 if at most one xi ∈ x is active

−∞ otherwise
.

From Equation (5.2), we know that the generic Max-Sum message from a
constraint f to some variable xi is

µf→xi
(x) = max

t extension of x
to X

(
f(t) +

∑
xj∈X\{xi}

µxj→f (t[xj])

)
.

There are two key insights to efficiently compute the messages of the AtMo-
stOne factor above. On the one hand, given the definition of the constraints,
notice that the only valid extensions t are those that have no more than 1 ac-
tive variables. On the other hand, because BMS nodes exchange single-valued
messages (as explained in the Chapter 5), the inactive utility of all incoming
messages is 0. Hence, the outgoing messages for each possible value of x are:

• For xi = T, no more variables can be active. That is, the only valid
extension t is the one where all other variables x′ ∈ X \ {xi} are inactive.
Therefore, by directly considering the only valid extension we obtain

µf→xi
(T) = 0 +

∑
xj∈X\{xi}

µxj→f (F) = 0 + 0 = 0.

167

168 APPENDIX C. THE ATMOSTONE CONSTRAINT IS A THOP

• For xi = F, the only valid extensions t are: (i) t0, where all variables xj
are inactive; or (ii) tj ∈ T , where each tj is an extension where the single
variable xj ∈ X \ {xi} is active. Hence, we consider these two options
separately:

(t0) : 0 +
∑

xj∈X\{xi}
µxj→f (F) = 0 + 0 = 0 ;

(ti) : max
tj∈T

(
0 + µxj→f (T)

)
= max

tj∈T
νxi→f = max

xj∈X\{xi}
νxj→f ,

And now, using the associativity of the max operation, we combine both
these options to obtain

µx→f (F) = max
xj∈X\{xi}

(
max

(
0, νxj→f

))
As a result, the real valued outgoing message from this constraint f to each of
its neighboring variables xi ∈ X is

νf→xi
= µf→xi

(T)− µf→xi
(F) = − max

xj∈X\{xi}

(
max

(
0, νxj→f

))
.

Finally, we observe that all outgoing messages can be computed in two simple
linear passes. In the first pass, we compute the two maximum values ν∗ and ν∗∗

among all incoming messages νxi→f . Thereafter, in the second pass we assess
the outgoing real-valued message for each variable xi as:

νf→xi
=

{
−max(0, ν∗) if νxi→f 6= ν∗

−max(0, ν∗∗) if νxi→f = ν∗
.

Hence, the BMS messages for an AtMostOne constraint can be computed in
linear time, and this constraint is a THOP.

Bibliography

Aji, S. M. and McEliece, R. J. (2000). The generalized distributive law. IEEE
Transactions on Information Theory, 46(2):325–343.

Ali, S., Koenig, S., and Tambe, M. (2005). Preprocessing techniques for accel-
erating the dcop algorithm adopt. In Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems, pages 1041–
1048. ACM.

Alighanbari, M. and How, J. P. (2005). Decentralized task assignment for un-
manned aerial vehicles. In IEEE Conference on Decision and Control, pages
5668–5673. IEEE.

Atlas, J. and Decker, K. (2007). A complete distributed constraint optimization
method for non-traditional pseudotree arrangements. In Proceedings of the 6th
international joint conference on Autonomous agents and multiagent systems,
page 111. ACM.

Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein, S. (2002). The
complexity of decentralized control of markov decision processes. Mathematics
of operations research, 27(4):819–840.

Bertsekas, D. P. (1988). The auction algorithm: A distributed relaxation method
for the assignment problem. Annals of operations research, 14(1):105–123.

Bollobas, B. (2001). Random Graphs. Cambridge University Press.

Bowring, E., Pearce, J. P., Portway, C., Jain, M., and Tambe, M. (2008). On
k-optimal distributed constraint optimization algorithms: New bounds and
algorithms. In Proceedings of the 7th international joint conference on Au-
tonomous agents and multiagent systems-Volume 2, pages 607–614. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems.

Brito, I. and Meseguer, P. (2010a). Cluster tree elimination for distributed
constraint optimization with quality guarantees. Fund. Informaticae, 102:263–
286.

Brito, I. and Meseguer, P. (2010b). Improving dpop with function filtering. In
AAMAS, pages 141–148.

169

170 BIBLIOGRAPHY

Chapman, A. C., Rogers, A., and Jennings, N. R. (2011). Benchmarking hybrid
algorithms for distributed constraint optimisation games. Autonomous Agents
and Multi-Agent Systems, 22(3):385–414.

Chechetka, A. and Sycara, K. (2006). No-commitment branch and bound search
for distributed constraint optimization. In Proceedings of the fifth international
joint conference on Autonomous agents and multiagent systems, pages 1427–
1429. ACM.

Choi, H.-L., Brunet, L., and How, J. P. (2009). Consensus-based decentralized
auctions for robust task allocation. IEEE Transactions on Robotics, 25(4):912–
926.

Cleary, J. and Witten, I. (1984). Data compression using adaptive coding and
partial string matching. Communications, IEEE Transactions on, 32(4):396
– 402.

Cox, T. H., Nagy, C. J., Skoog, M. A., Somers, I. A., and
Warner, R. (2005). Overview of the civil UAV assessment doc-
ument. http://www.nasa.gov/centers/dryden/pdf/111760main_UAV_

Assessment_Report_Overview.pdf (accessed September 24, 2014).

Dechter, R. (1997). Mini-buckets: A general scheme for generating approxima-
tions in automated reasoning. In Proc. IJCAI-97, pages 1297–1303.

Dechter, R. (2003). Constraint processing. Morgan Kaufmann.

Dechter, R., Kask, K., and Larrosa, J. (2001). A general scheme for multiple
lower bound computation in constraint optimization. In Proc. CP-01, pages
346–360.

Dechter, R. and Rish, I. (1997). A scheme for approximating probabilistic in-
ference. Proceedings of Uncertainty in Artificial Intelligence (UAI’97), pages
132–141.

Delle Fave, F., Farinelli, A., Rogers, A., and Jennings, N. R. (2012a). A method-
ology for deploying the max-sum algorithm and a case study on unmanned
aerial vehicles. In IAAI 2012: The Twenty-Fourth Innovative Applications of
Artificial Intelligence Conference.

Delle Fave, F. M., Rogers, A., Xu, Z., Sukkarieh, S., and Jennings, N. R. (2012b).
Deploying the max-sum algorithm for decentralised coordination and task
allocation of unmanned aerial vehicles for live aerial imagery collection. In
Robotics and Automation (ICRA), 2012 IEEE International Conference on,
pages 469–476. IEEE.

Delle Fave, F. M., Stranders, R., Rogers, A., and Jennings, N. R. (2011).
Bounded decentralised coordination over multiple objectives. In The 10th
International Conference on Autonomous Agents and Multiagent Systems-
Volume 1, pages 371–378. International Foundation for Autonomous Agents
and Multiagent Systems.

http://www.nasa.gov/centers/dryden/pdf/111760main_UAV_Assessment_Report_Overview.pdf
http://www.nasa.gov/centers/dryden/pdf/111760main_UAV_Assessment_Report_Overview.pdf

BIBLIOGRAPHY 171

Dias, M. B. and Stentz, A. (2000). A free market architecture for distributed
control of a multirobot system. In 6th International Conference on Intelligent
Autonomous Systems (IAS-6), pages 115–122.

Dias, M. B., Zlot, R., Kalra, N., and Stentz, A. (2006). Market-based multirobot
coordination: A survey and analysis. Proceedings of the IEEE, 94(7):1257–
1270.

Diestel, R. (2000). Graph Theory {Graduate Texts in Mathematics; 173}.
Springer-Verlag Berlin and Heidelberg GmbH & Company KG.

Estrin, D., Govindan, R., Heidemann, J., and Kumar, S. (1999). Next century
challenges: Scalable coordination in sensor networks. In Proceedings of the
5th annual ACM/IEEE international conference on Mobile computing and
networking, pages 263–270. ACM.

Farinelli, A., Rogers, A., Petcu, A., and Jennings, N. R. (2008). Decentralised
coordination of low-power embedded devices using the max-sum algorithm. In
Proceedings of the 7th international joint conference on Autonomous agents
and multiagent systems-Volume 2, pages 639–646. International Foundation
for Autonomous Agents and Multiagent Systems.

Fioretto, F., Campeotto, F., Da Rin Fioretto, L., Yeoh, W., and Pontelli, E.
(2014). GD-GIBBS: a GPU-based sampling algorithm for solving distributed
constraint optimization problems. In Proceedings of the 2014 international
conference on Autonomous agents and multi-agent systems, pages 1339–1340.
International Foundation for Autonomous Agents and Multiagent Systems.

Fitzpatrick, S. and Meertens, L. (2003). Distributed coordination through anar-
chic optimization. In Distributed Sensor Networks, pages 257–295. Springer.

Frey, B. and Dueck, D. (2007). Clustering by passing messages between data
points. Science, 315(5814):972–976.

Garcia, R. and Barnes, L. (2010). Multi-uav simulator utilizing x-plane. In Se-
lected papers from the 2nd International Symposium on UAVs, Reno, Nevada,
USA June 8–10, 2009, pages 393–406. Springer.

Gerkey, B. P. and Mataric, M. J. (2002). Sold!: Auction methods for multirobot
coordination. IEEE Transactions on Robotics and Automation, 18(5):758–768.

Gerkey, B. P. and Matarić, M. J. (2004). A formal analysis and taxonomy of
task allocation in multi-robot systems. The International Journal of Robotics
Research, 23(9):939–954.

Gershman, A., Meisels, A., and Zivan, R. (2009). Asynchronous forward bound-
ing for distributed cops. Journal of Artificial Intelligence Research, 34(1):61.

Gutierrez, P., Lee, J. H., Lei, K. M., Mak, T. W., and Meseguer, P. (2013).
Maintaining soft arc consistencies in bnb-adopt+ during search. In Principles
and Practice of Constraint Programming, pages 365–380. Springer.

172 BIBLIOGRAPHY

Gutierrez, P. and Meseguer, P. (2010). Saving redundant messages in bnb-adopt.
American Conference on Artificial Intelligence (AAAI-10), pages 1259–1260.

Gutierrez, P., Meseguer, P., and Yeoh, W. (2011). Generalizing adopt and bnb-
adopt. In Proceedings of the Twenty-Second international joint conference on
Artificial Intelligence-Volume Volume One, pages 554–559. AAAI Press.

Happe, J. and Berger, J. (2010). CoUAV: a multi-UAV cooperative search path
planning simulation environment. In Proceedings of the 2010 Summer Com-
puter Simulation Conference, pages 86–93. Society for Computer Simulation
International.

Hatano, D. and Hirayama, K. (2013). Deqed: an efficient divide-and-coordinate
algorithm for dcop. In Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence, pages 566–572. AAAI Press.

Hirayama, K. and Yokoo, M. (1997). Distributed partial constraint satisfaction
problem. In Principles and Practice of Constraint Programming-CP97, pages
222–236. Springer.

Jang, M.-W., Reddy, S., Tosic, P., Chen, L., and Agha, G. (2005). An actor-
based simulation for studying UAV coordination. A Parametric Model for
Large Scale Agent Systems, page 323.

Jensen, F. V. and Jensen, F. (1994). Optimal junction trees. In Proceedings
of the Tenth international conference on Uncertainty in artificial intelligence,
pages 360–366. Morgan Kaufmann Publishers Inc.

Junges, R. and Bazzan, A. L. (2008). Evaluating the performance of dcop algo-
rithms in a real world, dynamic problem. In Proceedings of the 7th interna-
tional joint conference on Autonomous agents and multiagent systems-Volume
2, pages 599–606. International Foundation for Autonomous Agents and Mul-
tiagent Systems.

Katagishi, H. and Pearce, J. P. (2007). Kopt: Distributed dcop algorithm for
arbitrary k-optima with monotonically increasing utility. In Ninth DCR Work-
shop.

Khanna, S., Sattar, A., Hansen, D., and Stantic, B. (2009). An efficient algo-
rithm for solving dynamic complex dcop problems. In Web Intelligence and
Intelligent Agent Technologies, 2009. WI-IAT’09. IEEE/WIC/ACM Interna-
tional Joint Conferences on, volume 2, pages 339–346. IET.

Kiekintveld, C., Yin, Z., Kumar, A., and Tambe, M. (2010). Asynchronous
algorithms for approximate distributed constraint optimization with quality
bounds. In Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: volume 1-Volume 1, pages 133–140. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems.

BIBLIOGRAPHY 173

Kim, Y., Krainin, M., and Lesser, V. (2010). Application of max-sum algorithm
to radar coordination and scheduling. In Workshop on Distributed Constraint
Reasoning.

Kim, Y. and Lesser, V. (2014). DJAO: A Communication-Constrained DCOP
algorithm that combines features of ADOPT and Action-GDL. In Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence. AAAI Press.

Kingston, D., Beard, R. W., and Holt, R. S. (2008). Decentralized perime-
ter surveillance using a team of UAVs. IEEE Transactions on Robotics,
24(6):1394–1404.

Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou, A.,
and Shimada, S. (1999). Robocup rescue: Search and rescue in large-scale
disasters as a domain for autonomous agents research. In Systems, Man, and
Cybernetics, 1999. IEEE SMC’99 Conference Proceedings., volume 6, pages
739–743. IEEE.

Kleiner, A., Farinelli, A., Ramchurn, S., Shi, B., Maffioletti, F., and Reffato, R.
(2013). Rmasbench: benchmarking dynamic multi-agent coordination in ur-
ban search and rescue. In Proceedings of the 2013 international conference on
Autonomous agents and multi-agent systems, pages 1195–1196. International
Foundation for Autonomous Agents and Multiagent Systems.

Koenig, S., Keskinocak, P., and Tovey, C. A. (2010). Progress on agent coordi-
nation with cooperative auctions. In Fox, M. and Poole, D., editors, AAAI,
volume 10, pages 1713–1717.

Koenig, S., Tovey, C., Lagoudakis, M., Markakis, V., Kempe, D., Keskinocak,
P., Kleywegt, A., Meyerson, A., and Jain, S. (2006). The power of sequential
single-item auctions for agent coordination. In Proceedings of the National
Conference on Artificial Intelligence, volume 21, page 1625. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999.

Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. (2001). Factor graphs
and the sum-product algorithm. Information Theory, IEEE Transactions on,
47(2):498–519.

Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval
research logistics quarterly, 2(1-2):83–97.

Kumar, A., Petcu, A., and Faltings, B. (2007). H-dpop: Using hard constraints
to prune the search space. In IJCAI’07-Distributed Constraint Reasoning
workshop, DCR’07, pages 40–55.

Lagoudakis, M. G., Markakis, E., Kempe, D., Keskinocak, P., Kleywegt, A. J.,
Koenig, S., Tovey, C. A., Meyerson, A., and Jain, S. (2005). Auction-based
multi-robot routing. In Robotics: Science and Systems.

174 BIBLIOGRAPHY

Li, Z., Duan, Z., Chen, G., and Huang, L. (2010). Consensus of multiagent
systems and synchronization of complex networks: a unified viewpoint. IEEE
Transactions on Circuits and Systems I: Regular Papers, 57(1):213–224.

Maheswaran, R. T., Pearce, J. P., and Tambe, M. (2004a). Distributed algo-
rithms for dcop: A graphical-game-based approach. In ISCA PDCS, pages
432–439. Citeseer.

Maheswaran, R. T., Tambe, M., Bowring, E., Pearce, J. P., and Varakantham,
P. (2004b). Taking dcop to the real world: Efficient complete solutions for
distributed multi-event scheduling. In Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems-Volume 1,
pages 310–317. IEEE Computer Society.

Marinescu, R. and Dechter, R. (2007). Best-first and/or search for graphical
models. In Proceedings of the National Conference on Artificial Intelligence,
volume 22, page 1171. Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999.

Meisels, A., Kaplansky, E., Razgon, I., and Zivan, R. (2002). Comparing perfor-
mance of distributed constraint processing algorithms. In AAMAS-02 DCR
workshop, pages 86–93, Bologna, Italy.

Modi, P. J., Shen, W.-M., Tambe, M., and Yokoo, M. (2005). Adopt: asyn-
chronous distributed constraint optimization with quality guarantees. Artifi-
cial Intelligence, 161(1-2):149–180.

Mostafa, H., Pal, P., and Hurley, P. (2014). Message passing for distributed
qos-security tradeoffs. The Computer Journal, 57(6):840–855.

Mosteo, A. R., Montano, L., and Lagoudakis, M. G. (2008). Multi-robot routing
under limited communication range. In IEEE International Conference on
Robotics and Automation, pages 1531–1536. IEEE.

Nair, R., Ito, T., Tambe, M., and Marsella, S. (2002). Task allocation in the
robocup rescue simulation domain: A short note. In RoboCup 2001: Robot
Soccer World Cup V, pages 751–754. Springer.

National Research Council, S. (2006). Decadal Survey of Civil Aeronautics:
Foundation for the Future. The National Academies Press.

Nguyen, D. T., Yeoh, W., and Lau, H. C. (2013). Distributed Gibbs: a memory-
bounded sampling-based DCOP algorithm. In Proceedings of the 2013 in-
ternational conference on Autonomous agents and multi-agent systems, pages
167–174. International Foundation for Autonomous Agents and Multiagent
Systems.

Okimoto, T., Joe, Y., Iwasaki, A., Yokoo, M., and Faltings, B. (2011). Pseudo-
tree-based incomplete algorithm for distributed constraint optimization with
quality bounds. In Principles and Practice of Constraint Programming–CP
2011, pages 660–674. Springer.

BIBLIOGRAPHY 175

Ottens, B., Dimitrakakis, C., and Faltings, B. (2012). DUCT: An Upper Confi-
dence Bound Approach to Distributed Constraint Optimization Problems. In
AAAI.

Parker, J. and Gini, M. (2013). Teams to exploit spatial locality among agents.
Spatial Computing 2013 colocated with AAMAS, page 73.

Paskin, M., Guestrin, C., and McFadden, J. (2005). A robust architecture for
distributed inference in sensor networks. In Proceedings of the 4th interna-
tional symposium on Information processing in sensor networks, page 8. IEEE
Press.

Pearce, J. P. and Tambe, M. (2007). Quality guarantees on k-optimal solu-
tions for distributed constraint optimization problems. In Proceedings of the
20th international joint conference on Artifical intelligence, pages 1446–1451.
Morgan Kaufmann Publishers Inc.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plau-
sible inference. Morgan Kaufmann.

Pecora, F. and Cesta, A. (2007). Dcop for smart homes: A case study. Compu-
tational Intelligence, 23(4):395–419.

Penya-Alba, T., Cerquides, J., Rodriguez-Aguilar, J. A., and Vinyals, M. (2012).
A Scalable Message-Passing Algorithm for Supply Chain Formation. In Pro-
ceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, pages
1436–1442.

Petcu, A. and Faltings, B. (2005a). Approximations in distributed optimization.
In Principles and Practice of Constraint Programming-CP 2005, pages 802–
806. Springer.

Petcu, A. and Faltings, B. (2005b). A scalable method for multiagent constraint
optimization. In IJCAI’05 Proceedings of the 19th International Joint Con-
ference on Artificial intelligence, pages 266–271.

Petcu, A. and Faltings, B. (2006). ODPOP: an algorithm for open/distributed
constraint optimization. In Proceedings of the National Conference on Arti-
ficial Intelligence, volume 21, page 703. Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999.

Petcu, A. and Faltings, B. (2007a). Mb-dpop: A new memory-bounded algo-
rithm for distributed optimization. In IJCAI, pages 1452–1457.

Petcu, A. and Faltings, B. (2007b). Optimal solution stability in dynamic, dis-
tributed constraint optimization. In Proceedings of the 2007 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology, pages 321–327.
IEEE Computer Society.

176 BIBLIOGRAPHY

Pujol-Gonzalez, M. (2010–2014a). GDLFiltering: a GDL with function filtering
DCOP solver. http://github.com/kilburn/GDLFiltering.

Pujol-Gonzalez, M. (2013–2014b). MASPlanes simulator for the development
of distributed coordination algorithms. https://github.com/MASPlanes/

MASPlanes.

Pujol-Gonzalez, M., Cerquides, J., Escalada-Imaz, G., Meseguer, P., and
Rodriguez-Aguilar, J. A. (2013a). On binary max-sum and tractable hops.
11th European Workshop on Multi-agent Systems (EUMAS 2013), 1113.

Pujol-Gonzalez, M., Cerquides, J., Farinelli, A., Meseguer, P., and Rodriguez-
Aguilar, J. A. (2014a). Binary max-sum for multi-team task allocation in
robocup rescue. International Joint Workshop on Optimisation in Multi-Agent
Systems and Distributed Constraint Reasoning (OptMAS-DCR).

Pujol-Gonzalez, M., Cerquides, J., and Meseguer, P. (2014b). MASPlanes: A
multi-agent simulation environment to investigate decentralised coordination
for teams of UAVs (demonstration). In The 13th International Conference on
Autonomous Agents and Multiagent Systems, pages 1695–1696. International
Foundation for Autonomous Agents and Multiagent Systems.

Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., and Rodriguez-Aguilar, J. A.
(2011a). Communication-constrained dcops: Message approximation in gdl
with function filtering. In The 10th International Conference on Autonomous
Agents and Multiagent Systems-Volume 1, pages 379–386. International Foun-
dation for Autonomous Agents and Multiagent Systems.

Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., and Rodriguez-Aguilar, J. A.
(2011b). Improving function filtering for computationally demanding dcops.
Workshop on Distributed Constraint Reasoning at IJCAI 2011, pages 99–111.

Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., and Rodriguez-Aguilar, J. A.
(2011c). Two-sided function filtering. 11th Workshop on Preferences and Soft
Constraints, pages 104–112.

Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., Rodŕıguez-Aguilar, J. A., and
Tambe, M. (2013b). Engineering the decentralized coordination of UAVs with
limited communication range. In Advances in Artificial Intelligence - 15th
Conference of the Spanish Association for Artificial Intelligence, CAEPIA,
volume 8109 of Lecture Notes in Computer Science, pages 199–208. Springer.

Pujol-Gonzalez, M., Kleiner, A., Farinelli, A., Ramchurn, S., Shi, B., Maffioletti,
F., and Reffato, R. (2012–2014c). RMASBench: Multi-agent coordination
benchmark. https://github.com/MASPlanes/MASPlanes.

Pujol-Gonzalez, M. and Penya-Alba, T. (2013–2014). Binary max-sum java
library. http://binarymaxsum.github.io/.

http://github.com/kilburn/GDLFiltering
https://github.com/MASPlanes/MASPlanes
https://github.com/MASPlanes/MASPlanes
https://github.com/MASPlanes/MASPlanes
http://binarymaxsum.github.io/

BIBLIOGRAPHY 177

Railsback, S. F., Lytinen, S. L., and Jackson, S. K. (2006). Agent-based sim-
ulation platforms: Review and development recommendations. Simulation,
82(9):609–623.

Ramchurn, S. D., Farinelli, A., Macarthur, K. S., and Jennings, N. R.
(2010a). Decentralized coordination in robocup rescue. The Computer Jour-
nal, 53(9):1447–1461.

Ramchurn, S. D., Polukarov, M., Farinelli, A., Truong, C., and Jennings, N. R.
(2010b). Coalition formation with spatial and temporal constraints. In Pro-
ceedings of the 9th International Conference on Autonomous Agents and Mul-
tiagent Systems: volume 3-Volume 3, pages 1181–1188. International Founda-
tion for Autonomous Agents and Multiagent Systems.

Rao, A. S., Georgeff, M. P., et al. (1995). Bdi agents: From theory to practice.
In ICMAS, volume 95, pages 312–319.

Rasmussen, S. J., Mitchell, J. W., Chandler, P. R., Schumacher, C. J., and
Smith, A. L. (2005). Introduction to the multiuav2 simulation and its ap-
plication to cooperative control research. In American Control Conference,
2005. Proceedings of the 2005, pages 4490–4501. IEEE.

Ren, W. and Beard, R. (2008). Cooperative fire monitoring with multiple UAVs.
In Distributed Consensus in Multi-vehicle Cooperative Control, Communica-
tions and Control Engineering, pages 247–264. Springer London.

Rogers, A., Farinelli, A., Stranders, R., and Jennings, N. R. (2011). Bounded
approximate decentralised coordination via the max-sum algorithm. Artificial
Intelligence, 175(2):730–759.

Rollon, E. and Dechter, R. (2010). New mini-bucket partitioning heuristics for
bounding the probability of evidence. In AAAI, pages 1199–1204.

Sánchez, M., Larrosa, J., and Meseguer, P. (2005). Improving tree decomposition
methods with function filtering. In Proc. IJCAI-05, pages 1537–1538.

Scerri, P., Farinelli, A., Okamoto, S., and Tambe, M. (2005). Allocating tasks
in extreme teams. In Proceedings of the fourth international joint conference
on Autonomous agents and multiagent systems, pages 727–734. ACM.

Schurr, N., Marecki, J., Scerri, P., Lewi, J. P., and Tambe, M. (2005). Pro-
gramming Multiagent Systems, chapter The DEFACTO System: Coordinating
Human-Agent Teams for the Future of Disaster Response, page 296. Springer.

Silaghi, M. C. and Yokoo, M. (2006). Nogood based asynchronous distributed
optimization (adopt ng). In Proceedings of the fifth international joint confer-
ence on Autonomous agents and multiagent systems, pages 1389–1396. ACM.

Silaghi, M.-C. and Yokoo, M. (2007). Dynamic dfs tree in adopt-ing. In Pro-
ceedings of the 22nd national conference on Artificial intelligence, volume 1,
pages 763–769. AAAI Press.

178 BIBLIOGRAPHY

Skinner, C. and Ramchurn, S. (2010). The robocup rescue simulation platform.
In Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems: volume 1-Volume 1, pages 1647–1648. International
Foundation for Autonomous Agents and Multiagent Systems.

Stefanovitch, N., Farinelli, A., Rogers, A., and Jennings, N. R. (2011). Resource-
aware junction trees for efficient multi-agent coordination. In The 10th Inter-
national Conference on Autonomous Agents and Multiagent Systems-Volume
1, pages 363–370. International Foundation for Autonomous Agents and Mul-
tiagent Systems.

Stranders, R., Delle Fave, F. M., Rogers, A., and Jennings, N. (2011). U-gdl:
A decentralised algorithm for dcops with uncertainty. In Proceeding of the
AAMAS workshop on Optimization of Multi-Agent Systems.

Stranders, R., Tran-Thanh, L., Fave, F. M. D., Rogers, A., and Jennings, N. R.
(2012). Dcops and bandits: exploration and exploitation in decentralised coor-
dination. In Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems-Volume 1, pages 289–296. International Foun-
dation for Autonomous Agents and Multiagent Systems.

Sultanik, E., Modi, P. J., and Regli, W. C. (2007). On modeling multiagent task
scheduling as a distributed constraint optimization problem. In IJCAI, pages
1531–1536.

Tambe, M., Bowring, E., Jung, H., Kaminka, G., Maheswaran, R., Marecki, J.,
Modi, P. J., Nair, R., Okamoto, S., Pearce, J. P., et al. (2005). Conflicts in
teamwork: Hybrids to the rescue. In Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems, pages 3–10.
ACM.

Tarlow, D., Givoni, I. E., and Zemel, R. S. (2010). HOP-MAP : Efficient Message
Passing with High Order Potentials. In International Conference on Artificial
Intelligence and Statistics, volume 9, pages 812–819.

Tarlow, D., Givoni, I. E., Zemel, R. S., and Frey, B. J. (2011). Interpreting
graph cuts as a max-product algorithm. arXiv preprint arXiv:1105.1178.

Vinyals, M. (2011). Exploiting the structure of Distributed Constraint Optimiza-
tion Problems to assess and bound coordinated actions in Multi-Agent Systems.
Ph.D. Thesis.

Vinyals, M., Pujol, M., Rodriguez-Aguilar, J. A., and Cerquides, J. (2010a).
Divide-and-coordinate: Dcops by agreement. In Proceedings of the 9th Inter-
national Conference on Autonomous Agents and Multiagent Systems: volume
1-Volume 1, pages 149–156. International Foundation for Autonomous Agents
and Multiagent Systems.

BIBLIOGRAPHY 179

Vinyals, M., Rodriguez-Aguilar, J. A., and Cerquides, J. (2009). Generalizing
dpop: Action-gdl, a new complete algorithm for dcops. In Proceedings of The
8th International Conference on Autonomous Agents and Multiagent Systems-
Volume 2, pages 1239–1240. International Foundation for Autonomous Agents
and Multiagent Systems.

Vinyals, M., Rodŕıguez-Aguilar, J. A., and Cerquides, J. (2010b). Constructing a
unifying theory of dynamic programming dcop algorithms via the generalized
distributive law. JAAMAS, pages 1–26.

Vinyals, M., Rodriguez-Aguilar, J. A., and Cerquides, J. (2010c). Divide-and-
coordinate by egalitarian utilities: Turning dcops into egalitarian worlds. In
Workshop 25: Optimisation in Multi-agent Systems, page 33.

Vinyals, M., Rodŕıguez-Aguilar, J. A., and Cerquides, J. (2010d). Egalitarian
utilities divide-and-coordinate: Stop arguing about decisions, let’s share re-
wards!. In ECAI, pages 1025–1026.

Vinyals, M., Shieh, E., Cerquides, J., Rodriguez-Aguilar, J. A., Yin, Z., Tambe,
M., and Bowring, E. (2011). Quality guarantees for region optimal dcop
algorithms. In The 10th International Conference on Autonomous Agents
and Multiagent Systems-Volume 1, pages 133–140. International Foundation
for Autonomous Agents and Multiagent Systems.

Weiss, Y. and Freeman, W. T. (2001). On the optimality of solutions of the max-
product belief-propagation algorithm in arbitrary graphs. IEEE Transactions
on Information Theory, 47(2):736–744.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics,
1:80–83.

Yeoh, W., Felner, A., and Koenig, S. (2008). BnB-ADOPT: An asynchronous
branch-and-bound DCOP algorithm. In Proceedings of the 7th international
joint conference on Autonomous agents and multiagent systems-Volume 2,
pages 591–598. International Foundation for Autonomous Agents and Multi-
agent Systems.

Yeoh, W., Varakantham, P., and Koenig, S. (2009). Caching schemes for dcop
search algorithms. In Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems-Volume 1, pages 609–616. Inter-
national Foundation for Autonomous Agents and Multiagent Systems.

Yeoh, W., Varakantham, P., Sun, X., and Koenig, S. (2011). Incremental
dcop search algorithms for solving dynamic dcops. In The 10th International
Conference on Autonomous Agents and Multiagent Systems-Volume 3, pages
1069–1070. International Foundation for Autonomous Agents and Multiagent
Systems.

Yin, Z. (2008). USC dcop repository.

180 BIBLIOGRAPHY

Zhang, W., Wang, G., Xing, Z., and Wittenburg, L. (2005). Distributed stochas-
tic search and distributed breakout: properties, comparison and applications
to constraint optimization problems in sensor networks. Artificial Intelligence,
161(1):55–87.

Zivan, R. (2008). Anytime local search for distributed constraint optimization.
In Proceedings of the 7th international joint conference on Autonomous agents
and multiagent systems-Volume 3, pages 1449–1452. International Foundation
for Autonomous Agents and Multiagent Systems.

Zivan, R., Glinton, R., and Sycara, K. (2009). Distributed constraint optimiza-
tion for large teams of mobile sensing agents. In Web Intelligence and Intel-
ligent Agent Technologies, 2009. WI-IAT’09. IEEE/WIC/ACM International
Joint Conferences on, volume 2, pages 347–354. IET.

Zivan, R. and Peled, H. (2012). Max/min-sum distributed constraint opti-
mization through value propagation on an alternating dag. In Proceedings
of the 11th International Conference on Autonomous Agents and Multiagent
Systems-Volume 1, pages 265–272. International Foundation for Autonomous
Agents and Multiagent Systems.

Zlot, R., Stentz, A., Dias, M. B., and Thayer, S. (2002). Multi-robot explo-
ration controlled by a market economy. In IEEE International Conference on
Robotics and Automation., volume 3, pages 3016–3023.

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Challenges
	Contributions
	On optimal solving
	On approximate solving

	Guide to the thesis

	Background and related work
	Background
	The DCOP model
	Example application: meeting scheduling
	DCOP representations
	The Generalized Distributive Law

	Related work
	Search-based algorithms
	Inference based algorithms
	Sampling-based algorithms
	Scalability analysis of current DCOP algorithms

	Summary

	I Optimal solving
	Scaling by better filtering
	Introduction
	Background for optimal DCOP solving
	Minimizing DCOPs
	Operations between constraints
	Computing lower bounds

	Solving DCOPs using GDL
	The GDL algorithm
	Complete GDL-based algorithms
	Global approximate GDL-based algorithms
	GDL-based algorithms with function filtering

	Two-sided filtering
	Empirical evaluation

	Improving upper bounds
	Centralized exploration
	Distributed exploration
	Empirical evaluation

	Conclusions

	Scaling by resource trade-offs
	Introduction
	Communication-efficient approximations
	Bottom-up approximations
	Top-down approximations
	Empirical evaluation

	A general workflow for computing messages
	Complete GDL-based algorithms
	Approximate GDL-based algorithms
	GDL with function filtering
	Analysis

	Trading off computation and communication
	Parametrizing bounds
	Bounded Bottom-up message computations
	Bounded Top-down message computations
	Bounded Mixed message computations
	Empirical evaluation

	Conclusions

	II Approximate solving
	Scaling on dynamic applications
	Introduction
	The Limited-range Online Routing Problem
	Problem motivation
	Example scenario
	Related work

	Coordinating UAVs in the LORP
	An aproach based on task ownership transfers
	Coordination using Independent Valuations
	Coordination using Workload-based Valuations

	The MASPlanes toolkit
	Simulation environment
	Benchmark algorithms

	Empirical evaluation
	Effects of the spatial distribution of requests
	Exploring d-workload's behavior

	Conclusions

	Scaling on the design front
	Introduction
	Problem description
	Single-team coordination
	Firefighters DCOP model
	THOP-only firefighters model

	Inter-team coordination
	Define independent coordination models
	Identify the coordination objects
	Extending single-team models

	Empirical evaluation
	Conclusions

	Conclusions and future work
	Summary
	Lessons learned
	Future work

	Max-Sum as a GDL algorithm
	Addition of independent valuations
	The AtMostOne constraint is a THOP

