
MONOGRAFIES DE L’INSTITUT D’INVESTIGACIÓ
EN INTEL·LIGÈNCIA ARTIFICIAL

Number 49

Bio-inspired Mechanisms for
Self-organising Systems

Bio-inspired Mechanisms for
Self-organising Systems

Jose Luis Fernandez-Marquez

Foreword by Josep Lluis Arcos

2012 Consell Superior d’Investigacions Cient́ıfiques
Institut d’Investigació en Intel·ligència Artificial

Bellaterra, Catalonia, Spain.

Series Editor
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Foreword by
Josep Lluis Arcos
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Volume Author
Jose Luis Fernandez-Marquez
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

c© 2012 “CSIC Press”
ISBN: 978-84-00-09602-1
ISBN online: 978-84-00-09603-8
NIPO: 723-12-167-7
NIPO online: 723-12-168-2
DL: B.31910-2012

All rights reserved. No part of this book may be reproduced in any form or by
any electronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the
IIIA, Institut d’Investigació en Intel·ligència Artificial, Campus de la Universitat
Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

To my family

Contents

Foreword xiii

Abstract xv

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 5
1.3 Book structure . 7

2 Bio-inspired design patterns 9
2.1 A Model to Describe Bio-Inspired Design Patterns 10
2.2 Pattern Scheme . 13
2.3 Basic Patterns . 15

2.3.1 Spreading Pattern . 15
2.3.2 Replication Pattern . 17
2.3.3 Aggregation Pattern . 18
2.3.4 Evaporation Pattern . 20
2.3.5 Repulsion Pattern . 22

2.4 Composed Patterns . 25
2.4.1 Gradient Pattern . 25
2.4.2 Digital Pheromone Pattern 27
2.4.3 Gossip Pattern . 29

2.5 Top Layer Patterns . 30
2.5.1 Morphogenesis Pattern . 30
2.5.2 Quorum Sensing Pattern 32
2.5.3 Chemotaxis Pattern . 33
2.5.4 Flocking Pattern . 35
2.5.5 Foraging Pattern . 37

2.6 Summary . 39

3 Dynamic Optimisation 41
3.1 Background . 42

3.1.1 Particle Swarm Optimisation 43
3.1.2 PSO in Dynamic Environments 44

vii

3.1.3 PSO in Noisy functions 45
3.2 Evaporation Mechanism . 46

3.2.1 Evaporation Mechanism 47
3.2.2 mQSOE . 48
3.2.3 Dynamic Evaporation . 50

3.3 Experiments . 51
3.3.1 Experimental framework 51
3.3.2 Determining the evaporation factor 53
3.3.3 Subtraction versus multiplication as evaporation operator 54
3.3.4 Independence of peak heights and peak shifts 55
3.3.5 mQSO versus mQSOE . 56
3.3.6 Filtering noise in mQSO 57
3.3.7 Dynamic Evaporation . 59

3.4 Conclusions . 62

4 Hovering Information in Spatial Computing 67
4.1 Introduction . 68
4.2 Background . 69
4.3 Hovering Information Concept 71

4.3.1 Hovering Information . 71
4.3.2 Anchor Areas . 71
4.3.3 Assumptions . 73

4.4 Hovering Information Algorithms 73
4.4.1 Replication with Broadcast 73
4.4.2 Replication with Attractor Point 74
4.4.3 Cleaning . 74
4.4.4 Repulsion . 74
4.4.5 Broadcast Repulsion . 76
4.4.6 Attractor Point Repulsion 78

4.5 Simulation Results . 78
4.5.1 Metrics . 79
4.5.2 Indoor Scenario . 81
4.5.3 Outdoor Scenario . 83
4.5.4 Analysis of algorithms . 83

4.6 Conclusions . 91

5 Detecting Diffuse Event Sources in Noisy WSN Environments 93
5.1 Introduction . 93
5.2 Related Work . 95
5.3 Sleep/Wake Modes . 96
5.4 Our Approach . 97

5.4.1 Sensors . 98
5.4.2 Mobile Agents . 99

5.5 Experiments . 101
5.5.1 Varying the number of sensors in WSN 103
5.5.2 Quality of Convergence 103

viii

5.5.3 Varying the Noise Factor 104
5.5.4 Varying Local Exploration 104
5.5.5 Varying Global Exploration 105
5.5.6 The Exploration Cost . 106
5.5.7 Tolerance to WSN failures 106

5.6 Conclusions . 107

6 Conclusions and Future Work 109
6.1 Publications related to this research 111

A Hovering Information 123

ix

List of Figures

2.1 Design Patterns . 10
2.2 Relevant entities of the biological and computational models. . . 11
2.3 Model . 12
2.4 Diffusion in science . 23
2.5 Repulsion . 24
2.6 Chemotaxis Pattern . 35
2.7 Metric distance Model - Movements 37

3.1 mQSOE algorithm (mQSO extended with the evaporation mech-
anism) . 49

3.2 Slow Adaptation Behavior . 50
3.3 mQSODE algorithm (mQSO extended with dynamic evaporation

equations) . 52
3.4 Varying Evaporation Factor . 54
3.5 Multiplicative versus subtractive evaporation 55
3.6 Evaporation performance when decreasing the peak height 56
3.7 mQSOE performance when changing severity 57
3.8 Comparing the offline error when introducing different noise

thresholds . 59
3.9 T1 - Noise free Environment . 60
3.10 Average Maxima - Noise-free environment 61
3.11 Average Means - Noise-free environment 62
3.12 Average Minima - Noise-free environment 63
3.13 Standard Deviation - Noise-free environment 64
3.14 T1 - Noisy Environment . 64
3.15 Average Minima - Noisy Environment 65
3.16 Average Maxima - Noisy Environment 65
3.17 Average Means - Noisy Environment 66
3.18 Standard Deviation - Noisy Environment 66

4.1 Amorphous Areas . 72
4.2 Repulsion . 75
4.3 Broadcast Repulsion Steps . 77
4.4 Survivability and Accessibility - Indoor scenario 81
4.5 Survivability and Accessibility STD - Indoor scenario 82

xi

4.6 Messages and Memory - Indoor scenario 82
4.7 Messages and Memory STD - Indoor scenario 83
4.8 Survivability and Accessibility - Outdoor scenario 83
4.9 Messages and Memory - Outdoor scenario 84
4.10 Accessibility and Memory - Scalability Indoor scenario 85
4.11 Messages - Scalability in Indoor scenario 85
4.12 Accessibility - Varying the repulsion interval 86
4.13 Memory and Messages - Varying the repulsion interval 86
4.14 Accessibility - steps 0 to 1000 - Indoor Scenario 88
4.15 Accessibility with zoom - Indoor Scenario 88
4.16 Accessibility - steps 0 to 1000 - Outdoor Scenario 89
4.17 Accessibility with zoom - Outdoor Scenario 89
4.18 Faults - Initialisation Phase . 90

5.1 Low Power Listening (taken from [Na et al., 2008]) 97
5.2 Snapshot of a noisy scenario . 102
5.3 Performance Results . 104

6.1 Design Patterns . 110

A.1 Broadcast, Attractor Point, Broadcast Repulsion and Attractor
Point Repulsion . 125

A.2 Attractor Point Repulsion - Convergence - Steps 126
A.3 Attractor Point Repulsion - nodes in area fail - Steps 127
A.4 Broadcast - convergence - Steps 128
A.5 Broadcast - Nodes in Area Fail - Steps 129
A.6 Amorphous Shape 5 . 130
A.7 Broadcast Simulation Steps in scenario ’5’ 131
A.8 Broadcast Repulsion Simulation Steps in scenario ’5’ 132

xii

Foreword

This monograph reports several contributions on the design of self-organizing
systems able to work in open, dynamic, and partially known environments.
Specifically, the approach presented in this monograph explores the capabilities
of bio-inspired mechanisms to deal with open scenarios. Bio-inspired mecha-
nisms have been successfully applied to a variety of problems, but there was a
lack of a uniform description framework able to systematize the existing mech-
anisms. I want also to stress that the research presented in this monograph is
the result of an international collaboration with the University of London and
the University of Geneva.

The work presented raises a number of challenging topics. First, it proposes
a computational model to describe the existing literature in a uniform frame-
work. Moreover, existing mechanisms are described as software design patterns.
The use of design patterns provides a way to distinguish the building blocks of
each mechanism, to identify those that are common in different mechanisms,
and to facilitate their re-usability in new combinations. Moreover, this mono-
graph reports the use of some of these building blocks to provide solutions to
open problems such as the optimization in dynamic and noisy environments,
algorithms for Spatial Computing, or sensor networks. Regarding optimization
problems in dynamic and noisy environments, it contributes by improving the
performance of an state of the art algorithm by introducing evaporation-based
mechanisms. Concerning spatial computing, repulsion and replication mecha-
nisms are proposed to improve algorithms for Hovering Information. Finally,
spreading and repulsion mechanisms are applied in sensor networks to localize
dynamically changing diffuse events.

Bellaterra, November 2012

Josep Lluis Arcos
IIIA - CSIC

xiii

Abstract

Nowadays, emergent technologies are providing new communication devices (e.g.
mobile phones, PDS’s, smart sensors, laptops) that form complex infrastructures
that are not widely exploited due to their requirements such scalability, real-time
responses, or failure tolerance. To deal with these features, a new software ten-
dency is to provide entities in the system with autonomy and pro-activity and to
increment the interaction between them. This betting on incrementing interac-
tion and decentralising responsibilities over entities, so-called self-organisation,
provides systems with better scalability, robustness, and reduces the computa-
tion requirements of each entity.

Biological systems have been adopted as a source of inspiration for Self-
Organising systems. Since long, Self-organisation has been studied in biology
showing a rich variety of collaborative behaviours, presenting interesting char-
acteristic such as, scalability or failure tolerance. Nowadays, self-organising sys-
tems are applied to Multi-Agent Systems (MAS). A variety of self-organising,
bio-inspired mechanisms have been applied in different domains, achieving re-
sults that go beyond traditional approaches. However, researchers usually apply
these mechanisms in an ad-hoc manner. In this way, their interpretation, defini-
tion, boundary and implementation typically vary among the existing literature,
thus preventing these mechanisms from being applied clearly and systematically
to solve recurrent problems.

This book provides a complete catalog of bio-inspired mechanisms for self-
organising systems. The mechanisms presented are described using a software
design pattern structure identifying when and how to use each pattern and
describing the relation between the different mechanisms. This catalog of mech-
anisms is a step forward to engineering self-organising systems providing a sys-
tematic way to develop self-organisation systems. The effectiveness and generali-
sation the mechanisms presented in this book are demonstrated in three different
domains: Dynamic Optimisation, Spatial Computing, and Sensor networks.

xv

Acknowledgements

I would like to especially thank Giovanna Di Marzo for being available when I
needed some help and for assisting me during my research stays in London. I
would also like to thank the following: Josep Lluis Arcos, my thesis supervisor,
thanks a lot for guiding me to light and giving me the chance to make my
thesis; Juan Antonio Rodriguez for his assistance throughout my research; all my
colleagues at the IIIA for always collaborating and offering me their assistance;
and last but not least, thanks also to Arminder Deol, for helping me with the
biological issues and my English presentations.

Quiero agradecer también a toda mi familia, a quienes dedico este libro,
especialmente a mis padres por su apoyo incondicional en todos mis planes y
por estar ah́ı siempre que los necesito.

Especial agradecimiento a Martha por su paciencia y comprensión, por su
ayuda y por haberme apoyado en todo momento.

Gracias a Laura por haberme realizado la portada, por su esfuerzo y por
su paciencia intentando entender este trabajo. Gracias a Dani Polak por haber
estado ah́ı dá tras d́ıa. Gracias a Nuria, por facilitarme acceso a art́ıculos de
investigación y ayudarme en la maquetación de este libro. Gracias a Maŕıa
por acompañarme en “el viaje”, y por hacer feliz a las personas que le rodean.
Gracias a Abraham, por sus valiosas opiniones y las interesantes conversaciones
que hemos tenido en Londres.

Y finalmente agradecer a todos mis amigos y compañeros de escalada por los
grandes momentos que hemos pasado juntos.

xvii

Chapter 1

Introduction

1.1 Motivation

Today’s software applications increasingly rely on wireless devices – such as,
PDAs, laptops, mobile phones or sensors – interacting each other on top of novel
infrastructures (e.g. sensor networks, ad-hoc networks). As time goes by, the
number of these devices in daily life increases continuously providing powerful
infrastructures that are not widely exploited due to current software limitations
(scalability, realtime requirements, or failure tolerance). Moreover, devices are
becoming smaller, making possible new infrastructures such as smart sensor net-
works, smart materials, self-reconfiguring robots, collaborative unmanned aerial
vehicles, or self-assembling nanostructures that were science fiction until now.
These new structures allow the implementation of a wide range of new appli-
cation and services, such as, rescue applications (search of survivor or ad-hoc
communication infrastructures), disaster prevention (toxic clouds monitorisa-
tion, Earthquake and tsunami detection, or forest fires monitorisation) or act in
favor of the environment (pollution sources detection, acoustic sources detection,
oil’s leaks on the oceans or traffic light control).

Such infrastructures are characterised by a great deal of openness (the num-
ber of entities in the system can change), large scale (thousands of nodes),
dynamism (the network topologies are changing along the time), and unpre-
dictability (environment changes, failures, or new entities joining), which cannot
be coped with traditional or centralized approaches to system design or engi-
neering.

To deal with these features, a new software tendency is to provide entities
in the system with autonomy and pro-activity and to increment the interac-
tion between them. This betting on incrementing interaction and decentralising
responsibilities over those entities provides systems with better scalability, ro-
bustness, and reduces the computation requirements of each entity. Moreover, by
increasing the interaction the system reduces the computation power required
by each entity. Moreover, it also permits to reduce, even more, the devices’

1

2 Chapter 1. Introduction

sizes making possible new structures commented above. According to this new
paradigm, so-called Self-Organising Multi-Agent Systems, the desired goal or be-
haviour emerges from the local interactions rather than from a centralised entity.
Moreover, the intelligence resides in the interactions among the agents and not
in each individual model (i.e. intelligence is collective). Thus, in spite of indi-
vidual agents being simple (i.e. while they work individually), the agents can
overtake the individual limitations and achieve complex tasks in a collaborative
manner.

Self-Organisation in computer science is described as follows:

“A system described as self-organizing is one in which elements interact in
order to achieve dynamically a global function or behavior.” (Carlos Gershenson
2007)

Biological systems have been adopted as a source of inspiration for Self-
Organising systems. Biological self-organising systems are present in the nature
in a wide range of pattern formation processes, such as, fish swimming in coor-
dinated schools, flocking behaviour in birds, patterns on seashells, synchronous
fireflies flashing, etc. . . . In all of them the desired behaviour emerges from the
coordination between the individuals using only local interactions, and local
knowledge. A more general definition of Self-organising system is:

“Self-organization systems are physical and biological systems in which pat-
tern and structure at the global level arise solely from interactions among the
lower-level components of the system. The rules specifying interactions among
the systems’s components are executed using only local information, without ref-
erence to the global pattern.” (Scott Camazine 2006)

Since long, Self-Organisation has been mainly discussed in physics and
biology. Nowadays, self-organising systems are applied to Multi-Agent Sys-
tems (MAS) to achieve robustness, failure tolerance, scalability and adapt-
ability. A variety of self-organising, bio-inspired mechanisms have been ap-
plied in different domains, achieving results that go beyond traditional ap-
proaches [Mamei et al., 2006]. However, researchers usually apply these mecha-
nisms in an ad-hoc manner. In this way, their interpretation, definition, bound-
ary, and implementation typically vary among the existing literature preventing
these mechanisms from being applied clearly and systematically to solve recur-
rent problems.

Two main challenges appear when Self-Organising mechanisms are applied in
MAS: (1) to control the emergent behaviour of the system from the local inter-
actions and local knowledge of the environment avoiding uncontrolled emergent
behaviours, and (2) engineering self-organising MAS in a systematic way. These

1.1. Motivation 3

challenges are addressed by self-organising systems engineering.
The idea of engineering self-organising systems in computer science has at-

tracted different researchers recently. Nagpal et al. [Nagpal, 2004] presented a
set of biologically-inspired primitives that describe how organising principles
from multi-cellular organisms may apply to large scale multi-agent systems.
Those primitives have emerged as part of the Amorphous Computing project
[Abelson et al., 2000a], which is focused on developing programming methodolo-
gies for systems composed of vast numbers of locally-interacting and identically
programmed agents. That work was motivated by new emerging technologies
such as MEMS (micro-electronic mechanical devices), which enable to create tiny
computing and sensing elements that can be embedded into materials, structures
or the environment. Some envisioned applications are: reconfigurable robots
or structures composed of millions of identical modules that self-assemble into
different shapes to achieve different tasks, smart environments where the sen-
sors are embedded into the walls, or armies of ants-like robots that can achieve
complex tasks in a collaborative way. That work was a first attempt towards
assembling a catalog of primitives for large scale multi-agent control, where the
desired behaviour emerges from the local interaction and coordination between
agents. Moreover, the primitives are interesting from the application point of
view and it was a step forward for engineering self-organising systems. However,
those primitives are not presented together with an implementation process or
by taking into consideration the different scenarios where the primitives can be
applied. Thus, it is difficult to use them in a systematic way.

Mamei et al. [Mamei et al., 2006] presented a review on the state of the art
of nature-inspired self-organising mechanisms in computer science and proposes
a taxonomy to classify those self-organising mechanisms found in the literature.
As previous works, the mechanisms are described together with the biological
process they were inspired from. Moreover, they add the different domains that
can be addressed with each mechanism. That work was the most complete
catalog at that time, and certainly it was a step forward for engineering bio-
inspired self-organising systems. Even when these descriptions can drive the
implementation of the mechanisms, they are far away from being considered as
set of mechanisms that can be applied in a systematic manner. However, that
work motivates to go further and propose new questions:

• Which are the problems that those mechanisms can solve?

• What solution contributes each pattern?

• What are the main trade-offs to consider in the implementation?

To answer those questions and make the self-organising mechanisms
applicable more systematically, different authors have focused on proposing
descriptions of self-organising mechanisms under the form of software design
patterns. Software design patterns was proposed by [Gamma et al., 1995],
[Buschmann et al., 1996] and [Lind, 2003] for object oriented software. In
software engineering, a pattern design describes a reusable solution for a

4 Chapter 1. Introduction

commonly occurring problem. Focusing on self-organising mechanisms, the
idea of the design pattern structure makes it easy to identify the problems that
each mechanism can solve, the specific solution that it brings, the dynamics
among the entities and the implementation. Thus, self-organising systems can
be designed more systematically.

In [Babaoglu et al., 2006], based on the existing software design patterns,
they proposed a conceptual framework for transferring knowledge from biology
to distributed computing. The mechanisms proposed in that paper are described
using some problems that are solved with each pattern, the solution that each
pattern provides and the biological process where it was inspired. Another rel-
evant idea presented in [Babaoglu et al., 2006] paper is the distinction between
basic patterns and composite patterns. However, they presented only one com-
posite pattern (chemotaxis) and it was not really presented as a composition, it
was an extension or application using one basic pattern.

Following the idea proposed by [Babaoglu et al., 2006], i.e. some patterns
are composed by basic ones. Gardelli et al. [Gardelli et al., 2007] propose a set
of basic design patterns for Self-Organising Multi-Agent Systems that can be
combined to create a well known mechanism. The idea related with the ba-
sic patterns is to get a deeper understanding of the systems dynamics and also
improve the controlability. The basic patterns properly combined produce new
complex patterns and make easy to adapt the existing patterns to a new prob-
lems. As far as we know, [Gardelli et al., 2007] was the first to decompose a
complex pattern into basic ones. Specifically, the Stigmergy Pattern was de-
composed in evaporation, aggregation, and diffusion patterns. The stigmergy
pattern is a coordination mechanism, based on indirect communication where
the agents are mobile and communicate each other by modifing variables that
are located in the environment. The name of stigmergy comes from the greek
stigma (mark, sign) ergon (work, action) and contains the idea that the agents
leave the marks in the environment that stimulate the behaviour of other agents.
The stigmergy was first time used to describe the ants behaviour and is in the
Ants Colony Optimisation (ACO) algorithm where the stigmergy has been more
fruitful.

The decomposition process consists on identifying the internal mechanisms
existing in a complex mechanism and on observing the contribution that these
internal mechanisms provide to the complex one. In this example the stigmergy
pattern is decomposed in evaporation, diffusion, and aggregation patterns. In
[Gardelli et al., 2007], they keep the idea to use design patterns as conceptual
framework to describe self-organising mechanisms.

The patterns proposed in [Gardelli et al., 2007] paper are all related with
the ant colonies behaviour. The model provided presents too many constraints
to be generalised and the examples of usage are not related to engineered self-
organising systems. Thus, it is still an open question if basic patterns can be used
isolated in self-organising systems and if basic patterns can be used to compose
other self-organising patterns different than the pattern where they come from.

1.2. Contributions 5

Another interesting work where a set of mechanisms are presented as design
patterns is presented in [De Wolf and Holvoet, 2007], where they discussed an
extended catalogue of mechanisms as design patterns for self-organising emergent
applications. The patterns are presented in detail and can be used to system-
atically apply them for engineering self-organising systems. However, relations
among the patterns are missed, i.e. the authors do not describe how patterns
can be combined to create new patterns or adapted to tackle different problems.
Moreover, in the paper one of the mechanisms proposed is applied to a case
study, “A packet delivery service”, but not compared with existing approaches.

Based on the set of mechanisms proposed in [Mamei et al., 2006], Sudeikat
et al. [Sudeikat and Renz, 2008] discuss how intended MAS dynamics can be
modeled and refined to decentralised MAS designs, proposing a systematic design
procedure that is exemplified in a case study. Until now the only research focus
to decompose complex patterns in basic ones was done by [Gardelli et al., 2007]
as we commented before. The decomposition of complex patterns has not widely
exploited and it is still an open issue. Thus, some of the questions that this book
tries to answer are:

1. Can other complex patterns be decomposed?

2. Can the basic patterns be used isolated and make contributions in known
problems?

3. Can the basic patterns be used to compose several complex patterns?

None of those papers have implemented the patterns to solve existing problems
and have demonstrated the contribution of the patterns in different existing
problems. Although, Self-Organising mechanisms described as design patterns
provide useful descriptions that help to clarify the definitions of these mecha-
nisms. These efforts are still fragmented: no clear catalogue of these patterns is
provided, interpretations vary among authors, or the relations among patterns
and their precise boundaries are not described. Moreover, they are far away for
being applied systematically.

1.2 Contributions

In this book, we focus on modeling bio-inspired mechanisms for engineering self-
organising systems by design patterns, arguing that some mechanisms can be
described in terms of basic ones, i.e. fundamental mechanisms that can be used
alone or as a part of more complex patterns. This decomposition of the self-
organising mechanisms permits the identification of their exact boundaries, the
relations they have with basic mechanisms, and to use them to compose new
mechanisms or adapt them to acquire the desired behaviour. Every pattern is
provided with a detailed description of the problem that it focus on, the corre-
sponding solution that each pattern provides, and their behaviors (interaction
dynamics and algorithmic behavior). Unlike the existing works, the basic pat-
terns proposed in this book have demonstrated to be able to compose more than

6 Chapter 1. Introduction

one pattern allowing, in this way, to easily create new composed patterns in a
systematic way. On the other hand, this book presents the generality of some
of these patterns by applying them to different areas such as, dynamic optimi-
sation, spatial computing, or sensor networks. The use of these basic patterns
has improved the performance in the different areas compared with the existing
techniques, demonstrating their general purpose.

Structuring mechanisms as design patterns allows a better support to create
new mechanisms and to adapt existing ones to solve new problems. Moreover,
this structure also allows a clear identification and separation of the mechanisms
appropriate to each pattern.

To evaluate the performance of the proposed patterns, this book focuses on
three different domains where the patterns are applied: (1) Dynamic and Noisy
Optimisation, (2) Spatial Computing, and (3) Sensor Networks. The goal of
this book is to propose general-purpose self-organising patterns and to show
how these patterns can be applied to existing problems making contributions to
different fields.

The main contributions of this book are the following:

• A set of complex bio-inspired self-organising mechanisms are presented as
design patterns for engineering self-organising systems. These patterns are
generalised and classified from their existing applications in the literature.

• Complex bio-inspired design patterns are decomposed in basic patterns.
Basic patterns are presented also as design patterns that can be combined
to create new patterns or to adapt the existing patterns to resolve new
problems.

• We propose a model where bio-inspired patterns can be defined. The model
covers a wide set of applications found in the literature.

• Some of the patterns proposed in this book have been implemented, mak-
ing contribution in different communities. The communities and their
contributions based on the pattern are:

– Dynamic Optimisation: Adaptation of Particle Swarm Optimisation
for working in noisy and dynamic environments. The existing Particle
Swarm Optimisation algorithm has been extended with the Evapora-
tion Pattern improving its performance in dynamic and noisy optimi-
sation.

– Spatial Computing: New set of algorithms for infrastructureless spa-
tial storage of information. These new algorithms exploit mobile de-
vices located in the environment. In these algorithms the agents de-
cide when to replicate and collaborate between them to ensure the
information coverage in a specified area.

– Sensor Networks: Multi Mobile Agent approach to locate diffuse event
sources using a Wireless Sensor Network infrastructure. Locating
and tracking of diffuse event sources problem is proposed as a new

1.3. Book structure 7

interesting problem with important application in real word domains.
The mechanism used to tackle this new problem has demonstrated to
achieve a good performance and presents good tolerance in front of
sensor network failures and noisy and dynamic environments

1.3 Book structure

This book is organised as follows:

• Chapter 2: Bio-inspired design patterns.

The goal of this chapter is to provide a complete catalog of bio-inspired
mechanisms existing in the literature, their relation, their boundaries and
the problem that each mechanism is focused on. Specifically, we ana-
lyze bio-inspired self-organising mechanisms existing in the literature and
present these mechanisms as design patterns that can be applied in a sys-
tematic manner to engineer self-organising systems. The patterns are clas-
sified and the relations between them are identified. To describe the dy-
namics and interactions between the entities participating in each pattern,
a computational model is proposed.

• Chapter 3: Dynamic Optimisation.

In this chapter the Evaporation Pattern, proposed in Section 2.3.4, is incor-
porated to the Particle Swarm Optimisation (PSO) algorithm to deal with
dynamic and noisy optimisation problems. The new algorithm proposed
is compared to the existing version without evaporation. Benchmark re-
sults are provided, demonstrating that the evaporation mechanism allows
the PSO algorithm to improve its performance in dynamic optimisation
problems, mainly, when the fitness function is subjet to noise.

• Chapter 4: Hovering Information in Spatial Computing.

In this chapter we define and analyse a collection of algorithms based on
the Replication Pattern (Section 2.3.2) and the Repulsion Pattern (Sec-
tion 2.3.5), for persistent storage of information at specific geographical
zones exploiting the resources of mobile devices located in these areas.
This proposed application is an example of problem difficult to trackle
with traditional approaches due to the large number of nodes and real
time requirements. Performed experiments and study of algorithms’ pa-
rameter are analysed.

• Chapter 5: Detecting Dynamically Changing Diffuse Event Sources in
Noisy WSN Environments.

This chapter proposes and evaluates the use of the Chemotaxis Pattern ap-
plied in sensor networks for localizing dynamically changing diffuse events.
Aimed in reducing the power consumption of the sensors, mobile agents col-
laborate to find diffuse event sources in dynamic and noise environments.

8 Chapter 1. Introduction

The goal is to locate the diffuse event sources using a minimum number
of messages and sensors’ reads. Conducted experiments demonstrate that
the proposed approach is able to find the sources even in presence of noise,
using an aceptable number of messages and sensors’ read.

• Chapter 6: Conclusions and Future Work. Main conclusions and open
research lines are detailed in this Chapter.

Chapter 2

Bio-inspired design patterns

The goal of this chapter is to analyze bio-inspired self-organising mechanisms
existing in the literature and present these mechanisms as design patterns that
can be applied in a systematic manner in engineering self-organising systems.
Many bio-inspired self-organising mechanisms have been proposed in the litera-
ture making important contributions in decentralised and distributed application
domains. However, the knowledge and experience on how and when to use them
is spread across the corresponding literature, becoming very difficult to apply
those mechanisms in a systematic manner.

In order to provide a way to use systematically those mechanisms, in this
chapter the self-organising mechanisms are presented using a software design
pattern structure. In software engineering, a design pattern describes a reusable
solution for a commonly recurring problem. The design pattern structure mainly
provides when to apply, how to apply and what are the results and trade-off of
applying the pattern.

We analyze the relation between the mechanisms existing in the literature
to understand how they work and facilitate their adaptation or extension to
tackle new problems. As result, we have classified the patterns in three layers.
In the bottom layer are the basic mechanisms that can be used individually or
to compose complex patterns. In the middle layer there are the mechanisms
composed by combinations of bottom layer mechanisms. Composed Patterns
involve a single agent creating a distributed structure. The top layer contains
complex patterns that show different ways to exploit the basic and composed
mechanisms proposed in the bottom and middle layer. The exploitation is carried
out by adding a set of policies (i.e. set of rules), thus, top level patterns can
be described as a mechanism + a set of policies. In this book the policies are
explained together with the pattern dynamics.

Figure 2.1 shows the different patterns described in this book and their rela-
tion. The arrows indicate how the patterns are composed. A discontinuous arrow
indicates that it is optional (e.g. the Gradient Pattern can use evaporation, but
the evaporation is not necessary to implement gradients).

In order to make easy to understand how the patterns work, we propose a

9

10 Chapter 2. Bio-inspired design patterns

To
p

La
ye

r

M
idd

le
La

ye
r

Bo
tto

n
La

ye
r

ForagingFlocking

GossipDigital Pheromone

MorphogenesisQuorum Sensing

ReplicationEvaporation AggregationRepulsion

Gradients

Chemotaxis

Spreading

Figure 2.1: Design Patterns

model that covers a wide range of self-organising systems. Each pattern be-
haviour (dynamics and relation between the entities) is described based on the
proposed model.

2.1 A Model to Describe Bio-Inspired Design
Patterns

This section presents the computational model we use to describe the dynamics
of the patterns and the relations between the different entities involved in each
pattern. The model proposed is clearly inspired by biology, but adapted to
engineering self-organising systems.

In biological systems, used as inspiration for self-organising mechanisms, two
main entities can be observed: (1) the organisms that collaborate in the bio-
logical process (e.g. ants, fish, bees, cells, virus, etc.) and (2) the environment,
a physical space where the organisms are located. The environment provides
resources the organisms can use (e.g. food, shelter, raw material) and events
that can be observed by the agents and can produce changes in the system (e.g.
toxic clouds, stormy thunder, or a fire). Organisms can communicate with each
other, sense from the environment and act over the environment. Moreover, or-
ganisms are autonomous and proactive and they have partial knowledge of the
world. The environment is dynamic and acts over the resources and over the
organisms (e.g. it can kill organisms, destroy resources, change the topology of
the space where the organisms live, change the food location, remove food, add
new food, etc.). The communication between the organisms can be direct (e.g.
dolphins sending ultra-sounds through the water, or beavers emitting sounds to
alert about a predator presence, etc.) or indirect using the environment to de-

2.1. A Model to Describe Bio-Inspired Design Patterns 11

Organisms

Environment

Environment

Software Agents

Infrastructure
Host Agents, memory, sensors, actuators...

Infrastructural Agents

(a) Biological Model (b) Computational Model

Figure 2.2: Relevant entities of the biological and computational models.

posit information that other agents can sense (e.g. pheromones in ant colonies,
morphogens in the specialisation of cells, etc).

The biological model may be summarised in two layers: organisms and en-
vironment, see Figure 2.2 (a). To create a computational model inspired by the
biological model, the computational model adds a new layer in addition to the
two existing layers (i.e. Software Agents that corresponds to organisms layer in
the biological model and environment), Figure 2.2(b). This new layer, called the
infrastructure layer, is necessary because in an engineered system, the software
agent must be hosted in a device with computational power that provides the
agents with the ability to interact with the environment (i.e. sensing the envi-
ronment through sensors or acting in the environment through actuators), and
to communicate with other agents. Moreover, in our computational model the
environment can not act over the information, thus the infrastructure contains
also part of the environment implementation.

The entities proposed in the computational model are: (a) the agents which
are pro-active software entities, (b) the infrastructure, which contains hosts with
computational power, sensors and actuators; and (c) the environment, the space
where the infrastructure is located. Events are phenomena of interest that ap-
pear in the environment that can be sensed by the agents exploting sensors in
host’s devices. Each agent needs a host to be executed, to communicate with
other agents, to sense events or to act in the environment. Thus, the infras-
tructure provides the agents with all the necessary tools to simulate organisms’
behavior and a place where information can be stored and possibly read by other
agents. In most of the biological processes, the environment plays a key role,
due to its ability to act over the entities present in the system (e.g. spreading
and removing chemical signals in the environment). To tackle this ability, each
host in the infrastructure has a software embedded in it, called Infrastructural
Agent (IA). Both IA’s and agent’s behaviours must be designed to follow self-
organising patterns. IAs play an important role when agents can move freely
over hosts. For instance, IAs may be responsible for managing information de-

12 Chapter 2. Bio-inspired design patterns

Environment

H1IA1

H2IA2

H3IA3

H4IA4
H5IA5

H6IA6

A1

A2

A4
A3

En
vir
on
me
nt

Inf
ra
str
uc
tur
e

Ag
en
ts

Figure 2.3: Model

posited in hosts by the agents or spread information over other hosts. In other
cases, IA is a software embedded into a middleware providing built-in features
(e.g. evaporation of digital pheromones).

Figure 2.3 shows the different layers of the computational model and their
corresponding interactions. The top layer represents software agents in the sys-
tem. Agents use the infrastructure layer to host themselves, communicate with
each other, sense and act with the environment, and to deposit information that
other agents can read. There are two variants in the model: when agents can
move freely over the hosts (e.g. mobile agents) or when they are coupled to the
host (e.g. swarm of robots). The separation between the agents layer and the
infrastructure enables to cover a large variety of scenarios.

Table 2.1 summarises the different kinds of systems that can be modeled
with this approach. On the one hand, software agents may be mobile or coupled
with hosts. On the other hand the infrastructure may be fixed (i.e. stationary
hosts) or mobile. Mobile hosts may be controlled by the agents (e.g. a robot) or
not (e.g. PDA’s movements under the control of its owner). This last scenario
is typical of pervasive systems where several mobile devices, such as, PDAs,
laptops or mobile phones are located in a common physical space (e.g a shopping
mall, a museum, etc.), forming what is usually referred to as an opportunistic
infrastructure, where the nodes move according to the movements of the user
carrying them, and the agents freely jump from one node to another. An example
of this architecture is the Hovering Information Project presented in Chapter 4.
Sensor networks are a good example of systems where agents are mobile and hosts

2.2. Pattern Scheme 13

Mobile Agents Mobile Hosts Known Application
no no Sensor Networks
no yes - controlled Swarm Robotics
yes no Sensor Networks
yes yes - uncontrolled Pervasive Scenarios

Table 2.1: Application Examples - different kinds of agents and hosts and cor-
responding known systems.

are not. Additionally, sensor networks are also representative of systems where
not only hosts but also agents are static, as reported in [Vinyals et al., 2011].

To summarise, the entities used in the computational model are:

• Agents: autonomous and pro-active software entities running in a host.

• Infrastructure: the infrastructure is composed by a set of connected
Hosts and Infrastructural Agents. A Host is an entity with computational
power, communication capabilities, sensors and actuators. Hosts provide
services to the agents. An Infrastructural Agent is an autonomous and
pro-active entity, acting over the system at the infrastructure level. Infras-
tructural agents may be in charge of implementing those environmental
behaviors present in nature, such as diffusion, evaporation, aggregation,
etc.

• Environment: The Environment is the space where the Infrastructure
is located. An Event is a phenomenon of interest that appears in the
Environment and that may be sensed by the Agents using the sensors
provided by the Hosts.

2.2 Pattern Scheme

In software engineering, a design pattern describes a reusable solution for
a commonly recurring problem. Software design patterns were proposed by
[Gamma et al., 1995], [Buschmann et al., 1996] and [Lind, 2003] for the devel-
opment of object-oriented software. The goal of using a software design pattern
scheme to describe self-organising mechanisms is to provide a systematic way to
apply these mechanisms in engineering self-organising system. The description
of a pattern and its relation with other patterns makes easy to decide when and
how to apply a mechanism and how to adapt or compose the mechanism to deal
with new problems.

Many bio-inspired self-organising mechanisms have been proposed in liter-
ature. These mechanisms allow to achieve a good performance when coping
with the openness, unpredictability, and dynamism inherent to today’s decen-
tralised and distributed application domains. However, the knowledge and expe-
rience on how, when, and where to use them is spread across the corresponding

14 Chapter 2. Bio-inspired design patterns

Name The pattern’s name.
Aliases Alternative names used for the same pattern.
Problem Which problem is solved by this pattern and situations

where the pattern may be applied.
Solution The way the pattern can solve the problems.
Typical Case Domain where the mechanism is usually applied.
Inspiration Biological process that inspires the design pattern.
Forces Prerequisites for using the pattern and aspects of the

problem that led the implementation including parameters
(trade-offs).

Entities Entities that participate in the pattern and their responsi-
bilities.

Dynamics How do the entities of the pattern collaborate to achieve the
goal. Typical scenario describing the run-time behavior of
the pattern.

Environment Environment requirements to apply the pattern. Infras-
tructure needed.

Implementation/
Simulation

Hints of how the pattern could be implemented. Including
parameters that must be tuned.

Known Uses Examples of application where the pattern has been applied
successfully.

Consequences Effect on the overall system design.
Related Patterns Reference to other patterns that solve similar problems, can

be combined with this pattern or present conflicts with this
pattern.

Table 2.2: Description fields

literature. This issue motivated us to focus on novel researches targeted at
proposing a scheme similar to those presented in [De Wolf and Holvoet, 2007]
and [Gardelli et al., 2007] to describe design patterns in self-organising systems.

To describe patterns, we use the scheme shown in Table 2.2, which is based
on the scheme proposed in [Gardelli et al., 2007] and extended with some ideas
from [De Wolf and Holvoet, 2007]. In addition to the Gardelli scheme we add
Inspiration, the biological process where a mechanism is inspired, Solution, how
the mechanism solves the problem, and Typical case, the domain where the
mechanism has been usually applied. Adding the biological process that inspires
the design pattern makes easy to understand the motivation and properties of
the pattern.

2.3. Basic Patterns 15

2.3 Basic Patterns

Basic Patterns are used to compose more complex patterns on the middle layer
(Section 2.4) and on the top layer pattern (Section 2.5). These patterns de-
scribe basic mechanisms that have been used isolated in the literature making
important contributions to self-organising systems.

2.3.1 Spreading Pattern

The Spreading Pattern is a basic pattern for information diffusion/dissemination.
The Spreading Pattern progressively sends information over the system using
direct communication among agents. The spreading of information allows the
agents to increment the global knowledge of the system by using only local
interactions.

Aliases: spreading is also known as diffusion, dissemination, flooding, broad-
cast, epidemic spreading and propagation.

Problem: agents’ reasoning suffers from the lack of knowledge about the
global system.

Solution: a copy of the information (received or held by an agent) is sent to
neighbours and propagated over the network from one node to another. Infor-
mation spreads progressively over the system and reduces the lack of knowledge
of the agents while keeping the constraint of the local interaction.

Typical Case: an agent wants to communicate an information to all the
agents in the system.

Inspiration: spreading appears in important biological processes, such as,
Quorum Sensing, Morphogenesis, Chemotaxis, and patterns of animal coats (e.g.
stripes). For instance, when bacteria (e.g. salmonella [Bassler, 2002]) want to
attack an organism, the bacteria wait until the density of bacteria is enough
to defeat the defenses of the host organism. Each bacterium has only local
sense of the system. However, bacteria need to have global knowledge in order
to coordinate the attack. To increase the global knowledge of each bacterium,
each one spreads a chemical substance called autoinducer. The concentration of
autoinducer in the environment (i.e. host body) is an estimation of the density of
bacteria. When the autoinducer goes beyond a threshold, the bacteria execute a
coordinated attack. This example shows how sometimes to achieve a coordinated
task, the individuals (in this case the bacteria) need information that come
beyond the local knowledge of the individuals.

Forces: if spreading occurs with high frequency, the information spreads
over the network quickly but the number of messages increases. A quick spread
is desired when the environment is changing continuously and the agents must
know the new values and adapt themselves. It may happen that the information
is only interesting for agents close to the source. In that case, information spread
only up to a determined number of hops, reducing the number of messages.
Another way to reduce the number of messages is to determine the number of
neighbouring nodes that receive the information. It has been demonstrated that

16 Chapter 2. Bio-inspired design patterns

it is not necessary to send the information to all the neighbouring nodes in order
to ensure that every node has received the information [Birman et al., 1999].

Entities-Dynamics-Environment: The entities involved in the spreading
process are the hosts, agents, and infrastructural agents. The spreading process
is initiated by an agent that first spreads the information. When information
arrives to the neighbouring hosts, infrastructural agents re-send the informa-
tion. The process continues even when all the hosts in the system have the
information. Following our model, the spreading process is initiated by agents
and the information is re-sent by infrastructural agents. However, the Spreading
Pattern can be implemented in a system where agents are not mobile. In these
cases, agents are embedded in the hosts and could be the agents responsible for
re-sending the received information.

The dynamics is usually extended to avoid infinite loops and waste duplicated
deliveries (e.g. when one agent receives the same information it has sent before,
the agent does not resend that information).

Implementation: the most common technique used to spread information
is Broadcast. Broadcast is a transmission technique where the information is sent
from one node to multiple receiving nodes, avoiding to send the same informa-
tion node by node. The broadcast implementation avoids the MAC identification
phase. As a consequence, the messages necessary to establish communication are
avoided, but the sender does not receive a confirmation from the receiving nodes
(i.e. a sender can not guarantee that the receiving nodes have received the infor-
mation). When the Broadcast is used iteratively (also called flooding) to spread
information over a network, the Broadcast Stormy Problem [Tseng et al., 2002]
appears. Thus, a straightforward broadcast by flooding will result in serious
redundancy, contention, and collisions. Large scale networks where the radius of
nodes overlap, emphasise the Broadcast Stormy Problem. It makes impossible to
apply Broadcast in many cases. To solve the Broadcast Storm Problem, an op-
timised broadcast can be implemented. The optimised broadcast may be imple-
mented following different schemes: probabilistic, counter-based, distance-based,
location-based, and cluster-based schemes. The best performance is achieved
with location-based which avoids redundant rebroadcasts without compromis-
ing reachability. Location-based schemes assume that all nodes known their
position and a MAC identification phase. Even when the MAC identification
phase increments the number of messages used for establishing communication,
optimised Broadcast is recommended [Tseng et al., 2002].

Known uses: the Spreading mechanism has been applied to several appli-
cations: from Swarm motion coordination, to coordination in games, to problem
optimisation, etc. For more information about known applications see related
patterns and their known uses.

Consequences: when the Spreading Pattern is applied, the agents in the
system receive information beyond their local context. There is an increment
in the network load. This increment becomes extreme when the environment is
very dynamic and agents must keep updated information as soon as possible.

Related Patterns: the Spreading Pattern is used by the Morphogene-

2.3. Basic Patterns 17

sis Pattern (Section 2.5.1), the Quorum Sensing Pattern (Section 2.5.2), the
Chemotaxis Pattern (Section 2.5.3), the Gossip Pattern (Section 2.4.3), and the
Gradient Pattern (Section 2.4.1).

2.3.2 Replication Pattern

The idea of replication is to give software agents the ability to replicate
themselves. The replicas are exactly the same and execute the same func-
tionality or offer the same services. The name replication pattern has been
used before to define the action of copying information [Babaoglu et al., 2006,
Gardelli et al., 2007]. For information replication, see Spreading Pattern (Sec-
tion 2.3.1). We propose to restrict the use of the Replication Pattern to the copy
of software agents. Thus, we differentiate between the spreading mechanism used
to spread information over the environment or the replication mechanism used to
increase the number of agents in the system according to system requirements.
An example to clarify this difference is the following. Let A be an agent that is
giving services in a MANET network. Due to a high number of requests, A can
not answer the request dealing with system requirements. In that case, A can
decide to replicate itself and use in this way the resources of another node in the
MANET. Notice that this example is completely different from one agent inside
a MANET informing all the nodes about a specific information, and then, the
agent sends a broadcast message to all the nodes in the MANET.

Aliases: duplication, redundacy.
Problem: the number of software agents necessary to achieve a given task is

not known or must change along the time to satisfy the system requirements. The
high dynamicity in the environment can kill agents and they need to be created
again.

Solution: Agent replication permits to create new agents in the system in a
completely autonomous and decentralised manner. Also, the replication permits
to create new agents in specific locations.

Typical cases: The replication pattern is used typically in networks and
decentralised applications to improve the accessibility time and coverage in a
scalable way, highly dynamic environments and ad-hoc infrastructures. Replica-
tion deals with accessibility problems and provides reliability and fault-tolerance.

Inspiration: Replication exists in nature as a mechanism to ensure sur-
vivability, robustness, and security. An example of survivability are viruses.
Viruses use the cell structure to replicate themselves and to ensure their sur-
vivability. Human cells are an example of robustness, owning a local copy of
the DNA for recovering from minor mutations. Other examples are epidemic
spreading [Bailey, 1975] and the proliferation process in the immune system
[Janeway et al., 2001].

Forces: Increasing the number of replicas in a system, the system becomes
more robust and the accessibility time decreases. However, the memory required
and the number of messages sent increase. Thus, the number of replicas in
the system must be enough to satisfy the system requirements (accessibility,
survivability, memory usage, etc.) using the minimum number of agents.

18 Chapter 2. Bio-inspired design patterns

Entities-Dynamics-Environment: Entities involved in the replication
process are agents and the hosts in the environment. The agents decide when to
replicate and a replica consists in a copy of itself that moves to in one host in the
environment. The copies are not modified during the replication process. Repli-
cation can be executed periodically or can be decided by each agent following
local policies. Thus, local policies determine when and where replicating.

Implementation: Different kinds of replication algorithms exist in the liter-
ature. For cases of copies, a simple broadcast sends a copy to all the neighbours
(Chapter 4). For serving requests with high performance, services are replicated
under request and create replica close to the destination [Jamjoom et al., 1999],
reducing latency. Basically, the idea is the same, that is, to create a copy of an
agent among the network increasing the number of agents.

Known uses: Some applications where the replication has been used are:

• Hovering Information [Fernandez-Marquez et al., 2011], where mobile
agents use the replication to offer a direct access to the information for
all the nodes inside an area.

• In grid computing [Bell et al., 2003], where the local copy of services are
replicated over the network to reduce the network latency.

• Replication of services in sensor networks to reduce the latency and the
bandwidth [Jamjoom et al., 1999].

Consequences: When agents have the ability to replicate themselves, in most
cases the system acquires the self-healing property, becoming more robust in
front of hardware or software failures. On the other hand, replication makes
possible to adapt the number of agents necessary to deal with the system’s
requirements.

Related Patterns: The replication pattern is not related to other patterns.
It is a basic pattern that can be perfectly applied isolated or combined with
other patterns.

2.3.3 Aggregation Pattern

The Aggregation Pattern is a basic pattern for information fusion. The dissem-
ination of information in large scale MAS may produce network and memory
overload, thus, the necessity of synthesizing information. This excess of infor-
mation is deposited by the agents or taken from the environment using hosts’
sensors. The Aggregation Pattern reduces the amount of information in the sys-
tem and produces meaningful information. Aggregation Pattern was proposed
in [Gardelli et al., 2007].

Alias: information fusion.

Problem: excess of information produced by the agents may produce network
and memory overloads. Information must be distributively processed to reduce
the amount of information and to assess meaningful information.

2.3. Basic Patterns 19

Solution: aggregation consists in locally applying an aggregation operator
to process the information and to synthesize macro information. This operator
can take many forms such as filtering, merging, aggregating, or transforming.

Inspiration: in the nature, the aggregation (sum) of ants’ pheromones al-
lows colony to find the shortest path to the food and to discard longer paths
(e.g. two pheromone scents together create an attractive field bigger than a
single pheromone scent). In nature, aggregation is a process performed by the
environment. Even when there are no agents present in the system, the envi-
ronment keeps doing the aggregation process.

Forces: aggregation applies on all the information available locally or only on
part of that information. The parameter involved is the amount of information
that is aggregated; it relates to the memory usage in the system. This pattern
is not repetitive (i.e. there is no frequency involved). The pattern applies only
once, even though it can be repeatedly invoked from within another pattern.

Entities-Dynamics-Environment: aggregation is executed either by
agents or by infrastructural agents. In both cases, the agents aggregate the
information that they access locally. The information comes from the environ-
ment or from other agents. Information that comes from the environment is
typically read by sensors (e.g. temperature, or humidity). According to the
model presented in Section 2.1, aggregation is executed by an agent that re-
ceives information from the host where the agent is residing. Such host is either
a sensor reading information from the environment or a communication device
receiving information from neighbouring hosts. The aggregation may be applied
by any agent that receives information independently of the underlying infras-
tructure The aggregation process is not repetitive and finishes when one agent
executes the aggregation function.

Implementation: available information takes the form of a stream of
events. Aggregation of information can take various forms: from a sim-
ple operator (e.g. max, min, or avg) like in ACO, to more complex opera-
tors (e.g. Kohonen Self-organising Map to aggregate sensor data in clusters
[Lee and Chung, 2005]). Aggregation operators are classified into four different
groups [Chen and Kotz, 2002]:

(1) Filter : operator that selects a subset of the received events (e.g. a sensor
taking 10 measures per second, but the application processes only 1 per
second)

(2) Transformer : operators changing the type of the information received (e.g.
GPS coordinates transform into countries where the positions are located)

(3) Merger : operators that unify all information received and output the in-
formation received as a single piece of information (e.g. the input is the
position of many sensors and the output is the corresponding tuple of
positions);

(4) Aggregator : this operator applies a specific operation (e.g. max, min, or
avg) to one or more incoming inputs; input and output types may be
different.

20 Chapter 2. Bio-inspired design patterns

Known uses: aggregation has been used in ACO algorithms
[Dorigo and Di Caro, 1999], where aggregation is used to create higher con-
centrations when two or more pheromones are close to each other. In
[Parunak et al., 2002] the aggregation is also used in digital pheromones for au-
tonomous coordination of swarming UAVs. Moreover, aggregation has been used
in information fusion, which studies how to aggregate individual belief bases into
a collective one [Grégoire and Konieczny, 2006], or for truth-tracking in MAS
[Pigozzi and Hartmann, 2007].

Consequences: aggregation increases the efficiency in networks by reducing
the number of messages and thus, increasing battery life. Moreover, aggrega-
tion provides a mechanism to extract macro-information in large-scale systems,
such as extracting meaningful information from data reads obtained from many
sensors. Then, the amount of memory used by the system is reduced.

Related Patterns: The aggregation pattern is used by the Digital
Pheromone Pattern (Section 2.4.2) and the Gossip Pattern (section 2.4.3). Its
combination with the Evaporation Pattern and the Spreading Pattern has been
fruitful in a wide range of different applications.

2.3.4 Evaporation Pattern

Evaporation is a basic pattern to reduce the relevance of information along time.
Thus, recent information becomes more relevant than information processed
time ago. Evaporation deals with dynamic environments where the information
used by agents can become outdated. In real world scenarios, the information
usually changes along time and its detection or prediction is usually costly or
even impossible. Thus, when agents have to modify their behaviours taking into
account information from the environment, information gathered recently must
be more relevant than information gathered a long time ago.

Evaporation was proposed as a design pattern for self-organising multi-agent
systems in [Gardelli et al., 2007]. Prior to its introduction as a pattern in
[Gardelli et al., 2007], evaporation has been used in different applications, usu-
ally related to Ant Colony Optimisation [Dorigo, 1992].

Aliases: Penalisation, degradation, decay, depletion.

Problem: Outdated information can not be detected or its detection involves
a cost that needs to be avoided.

Solution: Evaporation is a mechanism to periodically reduce the relevance
of information along time. Thus, recent information becomes more relevant than
older information.

Typical cases: The idea of evaporation is related to decision-making in
dynamic environments. Typical cases involve agents that are driving their be-
haviour by taking into account information from dynamic environments. The
information taken may become outdated and may misguide the agent’s decision
making. Evaporation permits to take into account information acquired in the
past, but its relevance in the decision making process is lower than information
received recently.

2.3. Basic Patterns 21

Inspiration: Evaporation is present in the nature. For instance, in ant
colonies [Deneubourg et al., 1983], when ants deposit pheromones in the envi-
ronment, these pheromones attract other ants and drive their movements from
the nest to the food and vice-versa. Evaporation acts over the pheromones re-
ducing their concentration along the time until they disappear. This mechanism
allows the ants to find the shortest path to the food, even when environment
changes occur (such as, new food locations or obstacles in the path). Ants can
find the new shortest paths by forgetting the old paths. As time goes by, evap-
oration decreases the intensity of the pheromones in the environment. Thus,
pheromones added recently are more relevant for the ants decision making.
That is, pheromones deposited recently are more attractive than pheromones
deposited a long time ago.

Forces: Evaporation is controlled by the evaporation factor parameter (i.e.
how much the information is evaporated) and the evaporation frequency param-
eter (i.e. frequency of evaporation execution). Their influence is as follows:

• A higher evaporation factor leads to a faster evaporation of the information
relevance. However, the same effect could be also achieved by increasing
the evaporation frequency.

• The evaporation factor and evaporation frequency must be set accordingly
to the dynamics of the environment. Then, if the evaporation is too fast,
we may lose information. However, if the evaporation is too slow the
information may become outdated and misguide the agents’ behaviour.
Regarding memory usage, a higher evaporation factor releases memory,
but also reduces the information available in the system.

• Exploration versus exploitation: When the evaporation is applied to collab-
orative search or optimisation algorithms, changing the evaporation factor
the system varies the balance between exploration and exploitation. A high
evaporation rate reduces the agents’ knowledge about the environment,
increasing the exploration, and producing fast adaptation to environment
changes due to the higher exploration. However, a higher evaporation fac-
tor decreases the performance when no environment changes occur due to
an excess of exploration that is not required.

Entities-Dynamics-Environment: Evaporation can be applied to any in-
formation present in the system. Periodically the relevance of this information
decays over time. We distinguish two cases. In the first case, there is only
one entity, an agent that encapsulates the information and decays the relevance
itself. In the second case, the information is deposited by one agent in one
host and infrastructural agents interact with the host to decay the informa-
tion’s relevance. There are no specific infrastructural requirements for using the
evaporation mechanism.

Implementation: The Evaporation Pattern is executed by agents that need
to update the relevance of its internal information, or by infrastructural agents
that change the relevance of the information deposited in the environment. In

22 Chapter 2. Bio-inspired design patterns

both cases the evaporation is directly applied to quantifiable parameters or,
if the parameter is not quantifiable, to a quantifiable attribute that indicates
its relevance. Then, evaporation is applied to the relevance attribute, i.e, the
relevance of the unquantifiable parameter depends on its relevance attribute.
The evaporation is applied periodically.

As it was explained before, when the dynamics of the environment is unknown
(i.e. frequency of changes), it is difficult to decide the best evaporation factor or
term. In Chapter 3 we propose a dynamic evaporation rate for dynamic problem
optimisation using a multi-swarm particle optimisation approach. Each particle
in the swarm adjusts its evaporation factor at time t depending on the local
knowledge of the environment. The dynamic evaporation rate helps to tune the
evaporation parameter when no knowledge about the environment dynamicity
is known a priori.

Known uses: Evaporation has been used mainly in Dynamic Optimisa-
tion Problems. Examples of algorithms that use evaporation are Ant Colony
Optimisation (ACO) [Dorigo and Di Caro, 1999], QSOE (Quantum Swarm Op-
timisation Evaporation) presented in Chapter 3, and [Weyns et al., 2007] where
evaporation is performed using a parameter called freshness associated to the
information.

Consequences: Evaporation enables adaptation to environment changes.
However, the use of evaporation in static scenarios may lead to a decrease of
performance, due to the loss of information associated with this mechanism. In
static environments, all the information taken is useful and it has no sense its
evaporation because it never becomes outdated. The Evaporation Pattern adds
to the system the ability to self-adapt to environment changes and increases the
tolerance to noise, as shown in Chapter 3.

Related Patterns: The Evaporation Pattern is used by higher level pat-
terns, such as, the Digital Pheromone Pattern (Section 2.4.2) or the Gradient
Pattern (Section 2.4.1).

2.3.5 Repulsion Pattern

The Repulsion Pattern is a basic pattern for motion coordination in large scale
MAS. The Repulsion Pattern enables the agents to get a uniform distribution
in a specific area or to avoid collisions between them. Agents can adapt their
position when the desired area changes or when some nodes disappear.

Problem: agents’ movements have to be coordinated in a decentralised man-
ner to achieve a uniform distribution and to avoid collisions between them.

Solution: The Repulsion pattern creates a repulsion vector that guides
agents to move from a high concentration of agents to regions with lower concen-
tration. Thus, after few iterations agents achieve a more uniform distribution in
the environment.

Typical Case: To create a uniform distribution inside a required area, even
when the area is moving or is changing the shape through time, i.e. pattern
formations.

2.3. Basic Patterns 23

Figure 2.4: Diffusion in science

Inspiration: The repulsion mechanism appears in a wide range of biological
self-organising processes, such as, the diffusion process in physical science, the
flocking of birds or schools of fishes. The diffusion process, for example, describes
the spread of particles through random motion from regions of higher concen-
tration to regions of lower concentration. For instance, Figure 2.4 represents the
different steps of the diffusion process. First, a concentration of ink is deposited
in the glass of water, step (a). We observe the initial state where the particles
are all around in one corner of the glass. The corner with the particles, therefore,
contains a higher concentration of ink’s particles. Second, the particles begin
to move in the diffusion process, from regions of higher concentration to regions
of lower concentration, step (b). The concentration of the particles in this step
is higher the closer the particles are to the corner. Finally, we observe how the
diffusion process has randomly moved around all the particles inside the water,
producing a uniform random distribution of the particles. At this point the
different ink’s concentrations disappear. Inside a container, the particles reach
a uniform distribution after the diffusion process. However, in an open space,
the diffusion process spreads the particles until the concentration is so low that
it is considered negligible. As Figure 2.4 shows, the diffusion process finishes
when the system reaches an even concentration. That is, when the concentra-
tion gradient becomes zero. After that, particles reach a uniform distribution.
The Repulsion Pattern focuses on getting a uniform distribution, while the Gra-
dient Pattern (Section 2.4.1) is focused on the dissemination of the information
through the environment. Even when both of them are inspired by the same
biological process, the applications and implementations are completely differ-
ent. In [Cheng et al., 2005] the repulsion mechanism was presented as inspired
by gas theory. The gas theory also produces a diffusion where the time to reach
a uniform concentration is shorter than that of the diffusion process.

Forces: The main parameters involved in the repulsion pattern are the re-
pulsion frequency (i.e. how frequent the repulsion is applied) and the repulsion
radius (i.e. how strong the repulsion is). The increment of the repulsion fre-
quency involves a faster spreading of the agents and faster adaptation when
the formation (or area) desired changes. However, it increases the number of
messages, because the repulsion pattern requires information about the position

24 Chapter 2. Bio-inspired design patterns

Figure 2.5: Repulsion

of neighbours. The repulsion radius should be limited to the communication
range of agents, because it makes no sense to move to one location where the
concentration of agents is unknown. Thus, the movement of one agent in each
repulsion step must be limited to its communication range.

Entities-Dynamic-Environment: The repulsion can be applied to sys-
tems whose agents are fixed in hosts (e.g. robotic swarms) or to software agents
that freely move in a network composed by hosts. In both cases the dynamics
between them is the same. When repulsion is applied, the agent that executes
the repulsion sends a position request to all the neighbouring agents. After the
agent receives neighbours’ replies, it calculates the desired position and moves to
that position. When the environment is not continuous, as in the mobile agents
case, the agent moves to the host closest to the desired position. In this case the
position request must be sent also to the hosts. To apply the Repulsion Pattern,
agents should know their positions.

Implementation: To reach a uniform distribution, the repulsion pattern
uses an equation that calculates a repulsion vector between the particles that is
inversely proportional to the distance between them. The repulsion equation is
implemented as follows: Let R be the repulsive radius; di the distance between
a given node and neighbouring node i; ~p the position of the given node and ~pi
the position of the neighbouring node i. Then, the position p and the movement
vector ~m are given by:

pt+1 = pt + ~m (2.1)

~m =
∑
i

~p− ~pi
di

(R− di) (2.2)

Figure 4.2 shows how agent 1 is repelled by agents 2 and 3 when it applies

2.4. Composed Patterns 25

the repulsion mechanism. In Figure 4.2(a) the agent 1 executes the equation 2.2
to create the repulsion vector. In Figure 4.2(b) the agent 1 moves by following
the repulsion vector. Notice that Repulsion Pattern can be only implemented
when agents directly communicate.

Known uses: The repulsion pattern has not been proposed before.
However, several applications have used the repulsion mechanism, such as
swarm robotics for pattern formation [Cheng et al., 2005], where the sys-
tem achieves shape formation by simultaneously allowing agents to disperse
within the defined 2D shape. In Particle Swarm Optimisation (PSO) repul-
sion coordinated the position of explorer particles in a multi-swarm approach
[Fernandez-Marquez and Arcos, 2009b]. The Hovering Information Project
(Chapter 4) uses repulsion to coordinate the position of pieces of information to
ensure the accessibility to this information using minimum memory.

Consequences: Repulsion does not involve replication, i.e. during the re-
pulsion process no new agents are created. Repulsion is a continuous process
that produces a uniform distribution of the agents in the system. Even when
the agents are uniformly distributed in the environment, the repulsion mecha-
nism continues working, producing a self-adaptation process when the number of
agents change (i.e. self-repairing formation in swarms of robots) or environment
changes occur.

Related Patterns: The repulsion mechanism is used by the Flocking Pat-
tern (Section 2.5.4).

2.4 Composed Patterns

From the composition of some low level patterns, several mechanisms are ana-
lyzed in this section. Composed patterns can be used isolated or extended by
other high level patterns. Low level patterns can be easily combined in many
ways to deal with new problems. However, in this section we present those that
have been widely used in the literature.

2.4.1 Gradient Pattern

The Gradient Pattern is an extension of the Spreading Pattern where the in-
formation is propagated in such a way that it provides an additional informa-
tion about the sender’s distance: either a distance attribute is added to the
information; or the value of the information is modified such that it reflects its
concentration: higher values (i.e. higher concentration) meaning the sender is
closer, such as in ants’ pheromone. Additionally, the Gradient Pattern uses the
Aggregation Pattern to merge different gradients created by different agents.
Here again, different cases apply: either only the information with the shortest
distance to the sender is kept, or the concentration of the information increases.

Aliases: The Gradient Pattern is a particular kind of computational fields.
Problem: Analogously to the Spreading Pattern (Section 2.3.1), the Gradi-

ent Pattern tackles the lack of global knowledge to estimate the consequences of

26 Chapter 2. Bio-inspired design patterns

the actions performed by agents beyond their communication range. Moreover,
Gradient Pattern deals with the problem of knowing the information source lo-
cation/distance.

Solution: Information spreads from the location it was initially deposited
and aggregates when it meets other information. During spreading, additional
information about the sender’s distance and direction is provided: through a
distance value (incremented or decremented); or by modifying the information
to represent its concentration (concentration is lower when information is further
away from the sender). When one agent receives the gradient information, it also
knows the direction and the distance (i.e. hops’ number or concentration value)
where the information comes from. During the aggregation process, an aggre-
gator operator keeps only the pair (information, distance) with the highest (or
lowest) distance value, or it modifies the concentration.

Typical Case: Coordination of agents’ behaviour depending on the infor-
mation of other agents (e.g. position, direction), including agents beyond their
communication range.

Inspiration: Gradients appear in a lot of biological processes. The most
known are the quorum sensing, the morphogenesis and the chemotaxis processes.
In all of these processes, gradients permit to communicate biological entities (e.g.
cells, bacteria, etc.) through keeping the constraint of local interaction. For
instance, in the bacteria quorum sensing, the bacteria hosted by one organism
wait to achieve a sufficient number of bacteria to attack together. The way
these bacteria communicate each other is using a substance called autoinducer
that creates a gradient. More details about these biological processes can be
found in the Quorum Sensing Pattern (Section 2.5.2), Morphogenesis Pattern
(Section 2.5.1) and Chemotaxis Pattern (Section 2.5.3).

Forces: High frequencies of gradient update involve a network overload.
However, the adaptation to environmental changes is faster. Lower updating
frequencies reduce the network overload, but can produce wrong values when
environment changes occur. There is also a trade-off between the diffusion radius
(number of hops) and the load in the network. A higher diffusion radius brings
information further away from its source, providing a guidance also to distant
agents. However, it involves an increment in the load and may overwhelm the
network [Beal, 2009].

Entities-Dynamic-Environment: The entities that act in the Gradient
Pattern are agents, hosts and infrastructural agents. Analogously to the Spread-
ing Pattern, when a gradient is created the agent spreads the information to its
neighbours (i,e. hosts controlled by agents or infrastructural agents). We distin-
guish two: (1) the neighbours forwarding the received information modifying the
distance attribute by incrementing or decrementing its value, (2) the neighbours
forwarding the aggregation of multiple gradients that are locally present.

Implementation: agents start the process by sending information (with a
counter added equal to zero) to all neighbours (i.e. hosts controlled by agents
or infrastructural agents). When a host receives information, the infrastruc-
tural agent increments the counter embedded into the information by one and

2.4. Composed Patterns 27

it forwards the information again to all the neighbours.

When a host receives the same information repeated, only one of the in-
formation copies received, stay stored in the host and is forwarded (usually the
information with the minimum counter). Thus, the value of the counter increases
as one moves away from the source agent (reflecting the distance to the source).
Taking into account that the information about the gradient stay in the network,
stored in the hosts, the number of hops can provide different information.

Notice that this pattern can be applied without hosts and infrastructural
agents, just with agents (e.g swarms of robots). Moreover, this basic implemen-
tation is not self-healing. Thus, if a gradient source disappears the gradients are
not automatically updated. To solve this problem, the Gradient Pattern can be
combined with the Evaporation Pattern. This combination is known as active
gradients. In actives gradients, evaporation decreases the values of gradients
along the time. Then, changes in the networkv(either topology or agents’ move-
ments) are prevented. However, the number of messages in the network increases.
Other self-healing variants are proposed in [Beal et al., 2008, Viroli et al., 2011].

Known uses: Gradient Pattern has been used in problems, such as, coor-
dination of swarm of robots, coordination of agents in video games, or routing
in sensor networks. The gradient is used in higher level patterns, such as, Mor-
phogenesis Pattern, Chemotaxis Pattern or Quorum Sensing Pattern. Thus,
more details about known uses and their referenced papers are provided in these
sections.

Consequences: The Gradient Pattern adds extra information (counter) to
the information. This extra information can be used to limit the number of hops
the information reaches.

Related Patterns: The Gradient Pattern is an extension of the Spreading
Pattern and at the same time is used from higher level patterns, such as the
Morphogenesis Pattern (Section 2.5.1), the Chemotaxis Pattern (Section 2.5.3)
and the Quorum Sensing Pattern (Section 2.5.2).

2.4.2 Digital Pheromone Pattern

The Digital Pheromone Pattern is a swarm coordination mechanism based on
indirect communication. In this pattern, agents deposit digital pheromones in
hosts. A digital pheromone is a mark, that is spread over the environment using
the infrastructure. Then, other agents beyond the communication range can
receive the information generated by digital pheromones. Digital pheromones
are stored in the hosts and stay alive even when agents that deposited digital
pheromones disappear. Digital pheromones can be either identic likewise the
Ant Colony Optimisation Algorithm [Dorigo and Di Caro, 1999], or specialised
for a specific task, likewise swarming vehicle control [Sauter et al., 2005].

Problem: Coordination of agents in large scale environments using indirect
communication.

Aliases: The Digital Pheromone Pattern is also known as Stigmergy or
Pheromone.

28 Chapter 2. Bio-inspired design patterns

Solution: Digital Pheromone provides a way to coordinate agents’ be-
haviours using indirect communication in high dynamic environments. It also
provides simplicity, scalability, and robustness [Sauter et al., 2005].

Typical Case: Swarm robotics where decisions about movements are an
important function (e.g. collaborative search).

Inspiration: The Digital Pheromone Pattern takes inspiration from ant
colonies. Ant colonies are able to find food sources using local interactions and
indirect communication based on pheromones. The colonies present interesting
characteristics desired in computing systems. On the one hand, colonies are
able to adapt to environment changes (such as, new obstacles, new food sources,
food sources that become empty, etc.). On the other hand, colonies are failure
tolerant, in the sense that, even when a high percentage of ants die, colonies are
able to re-organise them-selves and ensure their survival.

Forces: The implementation of the Digital Pheromone Pattern involves the
implementation of the Aggregation, Spreading, and Evaporation pattern. Thus,
the main forces to consider are the following:

Regarding the evaporation, how much evaporation is applied at each iteration
and how frequent the evaporation iteration is applied. See Evaporation
Pattern in (Section 2.3.4) for more details.

The Gradient Pattern is composed by the Aggregation and Spreading Patterns.
Thus, the higher frequently pheromones are spread the higher bandwidth
is used. Also, spreading longer pheromones more information is received
by the agents and also more memory and bandwidth is consumed.

Tuning the parameters depends on the application and may be different for
each digital pheromone. For example, the parameters of a pheromone repre-
senting a plane’s position are different from those that represent an enemy base.
Thus, pheromones representing the plane positions would evaporate faster than
the pheromones representing enemy bases.

Entities-Dynamic-Environment: Agents are the only entities that can
deposit pheromones. Pheromones are deposited in hosts and infrastructural
agents apply spreading, aggregation, and evaporation mechanisms. Thus,
pheromones are spread though the network, aggregated in each host when two
or more pheromones’ information arrive, and evaporated along the time until
disappear. Before a pheromone disappears due to the evaporation mechanism,
it is available in the hosts and can be looked up by agents directly connected.

Implementation: Digital Pheromones are usually implemented by us-
ing multiplicative static evaporation (i.e. the same evaporation factor is
applied periodically over the pheromone’s information). Independently of
the patterns used to implement the Digital Pheromone Pattern, pheromones
can be deposited in hosts, (i.e. following the proposed model), simu-
lated by software [Sauter et al., 2005], or implemented using RFID sensors
[Mamei and Zambonelli, 2007].

Known uses: Digital Pheromones have been used mainly in autonomous co-
ordination of swarming UAVs [Parunak et al., 2002, Sauter et al., 2005]. More-

2.4. Composed Patterns 29

over, applications of digital pheromones can be found in the Ant Foraging Pat-
tern description (Section 2.5.5).

Consequences: As reported in [Sauter et al., 2005], the implementation of
Digital Pheromones for swarm coordination provides to the system: (1) Simplic-
ity: compared with the logic necessary in a centralised approach, (2) Scalability:
the Digital Pheromones work in a totally decentralised manner, i.e. applicable
in large scale MAS, and (3) Robustness: due to decentralisation and the contin-
uous self-organising process the digital pheromones provide, the agents may fail
and the system continues its execution without problems.

Related Patterns: The Digital Pheromone Pattern is composed by the
Evaporation Pattern (Section 2.3.4) and the Gradient Pattern (Section 2.4.1),
which is composed by the Aggregation Pattern (Section 2.3.3) and the Spreading
Pattern (Section 2.3.1). Moreover, the Digital Pheromone pattern is exploited
by the top-layer Foraging Pattern (Section 2.5.5).

2.4.3 Gossip Pattern

The goal of the Gossip Pattern is to obtain an agreement about the value of
some parameters in the system in a decentralised way. All the agents in the
system collaborate to progressively reach this agreement: all of them contribute
with their knowledge by aggregating their knowledge with the others’ knowledge
and by spreading this aggregated knowledge. Gossip was proposed as an Amor-
phous computing primitive mechanism by Abelson et al. [Abelson et al., 2000b].
Gossip is also known as epidemic communication.

Problem: Agents need to reach an agreement with only local perception and
in a decentralised way, in large scale MAS.

Solution: The gossip mechanism combines the aggregation mechanism (Sec-
tion 2.3.3) with the spreading mechanism (Section 2.3.1) to progressively reach
an agreement taking into account the information of all the agents in the sys-
tem. Information is spread to neighbours, where it is aggregated with local
information. Aggregated information is spread further to progressively reach an
agreement.

Inspiration: gossip is inspired from the human social behaviour linked to
spreading rumors. People add their own information to the information received
from other people, increasing their knowledge and spreading this knowledge
further. When the process is repeated several times, people start to share the
same knowledge and finally they reach an agreement.

Forces: the Gossip Pattern is composed by the Spreading and Aggregation
Patterns. Thus, it presents the same tradeoffs. As in spreading, the main
problem of gossip is the network overload that is produced by the continuous
broadcast performed by the agents. To reduce the network overload, optimised
broadcast can be applied (e.g. not all the neighbours receive the information).
The number of neighbours that receive the information is the tradeoff of this
pattern. The more neighbours receiving the information, the more robust the
system becomes in case of failures, but a higher network overload is produced.

30 Chapter 2. Bio-inspired design patterns

Entities-Dynamics-Environment: the entities involved in the gossip
mechanism are agents, infrastructural agents, and hosts. Gossip is a combined
pattern. Thus, the dynamics between the entities is the same as aggregation
and spreading. Analogously to spreading, only an agent can initiate the pro-
cess. When one agent initiates a gossip process, it sends the information (e.g.
parameters and values) to a subset of its neighbours. Agents that receive the
information, aggregate the information received with its own information and
resend the aggregated information to its own neighbours. The same behavior is
produced by infrastructural agents when no agent is hosted in one host and the
host receives an information. The process finishes when the information received
is the same than previously sent, i.e. when an agreement is reached.

Implementation: One interesting example of implementation appears in
[Haas et al., 2006], where a probabilistic gossip is proposed. It was demonstrated
that executing the gossip (broadcast) with a probability between 0.6 and 0.8
is enough to ensure that almost every node gets the message in almost every
execution. This optimisation decrements the number of messages by 35%.

Known uses: Kempe et al. [Kempe et al., 2003] analysed simple gossip-
based protocols for the computation of sums, averages, random samples, quan-
tiles, and other aggregation functions, and demonstrate that this protocol
converges to the agreement faster than the uniform gossip. Norman et al.
[Salazar et al., 2010] propose an aggregation based on an Evolutionary Algo-
rithm. They present a mechanism for coordination in large convention spaces
(finding a common vocabulary in their case). The Evolutionary Algorithm ap-
proach keeps the diversity throughout the agreement process (not 100% of agents
get the same agreement), this feature guarantees that when the scenario changes
the system can quickly achieve a new agreement. It was demonstrated that this
approach is resilient to unreliable communications and guarantees the robust
emergence of conventions.

Consequences: the main advantage of gossip is the robustness: even in the
presence of failures, the pattern is able to assess the agreement.

Related Patterns: the Gossip Pattern is composed by the Spreading Pat-
tern (Section 2.3.1) and the Aggregation Pattern (Section 2.3.3).

2.5 Top Layer Patterns

Top layer patterns are composed or extended patterns from the middle layer or
bottom layer patterns. In this section composed mechanisms are presented as
self-organising design pattern.

2.5.1 Morphogenesis Pattern

The goal of the Morphogenesis Pattern is to achieve (or trigger) different be-
haviours in agents depending on their position in the system. The Morphogenesis
Pattern exploits gradients: positional information is assessed through one or mul-
tiple gradient sources generated by other users. Morphogenesis was proposed as a

2.5. Top Layer Patterns 31

self-organising mechanism in [Mamei et al., 2006, Sudeikat and Renz, 2008]. We
differentiate between the morphogenesis that refers to positional information and
chemotaxis that refers to directional information as proposed in [Nagpal, 2004].
The morphogenesis process in biology has been considered as one inspiration
source for gradient fields.

Problem: In large-scale decentralised systems, agents decide on their roles
or plan their activities based on their spatial position.

Solution: In the Morphogenesis Pattern, specific agents spread morphogenic
gradients over the system. Then, agents calculate their position in the system by
computing their relative distance to the morphogenetic gradient sources. Analo-
gously to the Gradient Pattern, the Morphogenesis Pattern increases the global
knowledge of the agents because they can sense gradients that are beyond their
communication ranges.

Typical Case: The Morphogenesis Pattern is typically used in large scale
MAS where agents use their positions to decide their roles or to plan their
activities.

Inspiration: In the biological morphogenetic process some cells create and
modify molecules (through aggregation) which diffuse (through spreading), cre-
ating gradients of molecules. The spatial organisation of such gradients is the
morphogenesis gradient, which is used by the cells to differentiate the role that
they play inside of the body, e.g. in order to produce cell differentiations. As a
result of the morphogenesis process, multi-celular organisms can develop, from
a single zygote, a complex system of tissues and cell types.

Forces: The forces presented in this pattern are the same of the Gradient
Pattern (Section 2.4.1).

Entities-Dynamic-Environment: The entities involved in the morpho-
genesis process are agents, hosts, and infrastructural agents. At the beginning
some of the agents spread one or more morphogenic gradients, this process is
implemented using the Gradient Pattern. Other agents sense the morphogenetic
gradient in order to calculate their relative positions. Depending on their rela-
tive positions, the agents adopt different roles and coordinate their activities in
order to achieve collaborative goals.

Implementation: An interesting implementation of the morphogenesis gra-
dient to estimate the position is found in [Beal, 2009]. In that paper, a self-
healing gradient algorithm with a tunable trade-off between precision and com-
munication cost is proposed. In [Mamei et al., 2004] the motion coordination of
a swarm of robots is implemented by using both Morphogenesis and Chemotaxis
Patterns (Section 2.5.3).

Known uses: The Morphogenesis Pattern was used in [Bojinov et al., 2000]
to implement control techniques for modular self-reconfigurable robots (meta-
morphic robots). In [Nagpal, 2002] the morphogenesis is used to create a robust
process for shape formation on a sheet of identically programmed agents. In
that paper, it was demonstrated that the gradients are extremely robust against
random death, since there is no fixed hierarchy or centralised control, the system
can not be easily disrupted.

32 Chapter 2. Bio-inspired design patterns

Consequences: The Morphogenesis Pattern provides to the agents a mech-
anism to coordinate their activities based on their relative positions. Like the
other mechanisms previously presented, robustness and scalability are properties
presented by this pattern.

Related Patterns: The Morphogenesis Pattern exploits the Gradient Pat-
tern (Section 2.4.1). Notice that the Morphogenesis Pattern can be combined
with the Digital Pheromone Pattern. In this case, the role and behaviour of the
agents depend on the distances to the pheromones.

2.5.2 Quorum Sensing Pattern

Quorum sensing is a decision-making process for coordinating behaviour and
for taking collective decisions in a decentralised way. The goal of the Quorum
Sensing Pattern is to provide an estimation of the number of agents (or of the
density of the agents) in the system using only local interactions. The number of
agents in the system is crucial in these applications, where a minimum number
of agents is needed to collaborate on specific tasks.

Problem: Collective decisions in large-scale decentralised systems requiring
a number of agents or estimation of the density of agents in a system using only
local interactions.

Solution: The Quorum Sensing Pattern allows to take collective decisions
through an estimation by individual agents of the agents’ density (assessing the
number of other agents they interact with) and by determination of a threshold
number of agents necessary to take the decision.

Typical Case: in large scale MAS, the agents’ density can be a crucial
variable for the decision making, due to the existence of tasks that require a
minimum number of agents.

Inspiration: the Quorum Sensing Pattern is inspired by the Quorum Sens-
ing process (QS). QS is a type of inter-cellular signal used by bacteria to mon-
itor cell density for a variety of purposes. An interesting example of this is
bio-luminescent bacteria (Vibrio Fischeri) that can be found in some species of
squids. This bacteria self-organise their behaviour to produce light only when the
density of bacteria is sufficiently high [Miller and Bassler, 2001]. These bacteria
constantly produce and secrete certain signaling molecules called auto-inducers.
In presence of a high number of these bacteria, the level of autoinducers increases
exponentially (i.e. the higher autoinducer level a bacterium detects, the more
autoinducer produces and secretes).

Another interesting example is given by the colonies of ants (Leptothorax al-
bipennis) [Sahin and Franks, 2002], when the colony must find a new nest site.
A small portion of the ants looks for new potential nest sites and assess their
quality. When they return to the old nest, they wait for a certain period of
time before recruiting other ants (i.e. higher assessments produce lower waiting
periods). Recruited ants visit the potential nest site and make their own assess-
ment about its quality. Recruited ants return to the old nest and repeat the
recruitment process. Because of the waiting periods, the number of ants present
in the best nest will tend to increase. Eventually, the ants in this nest will sense

2.5. Top Layer Patterns 33

that the rate at which they encounter other ants in that nest has exceeded a
particular threshold, indicating that the quorum number has been reached.

Forces: the Quorum Sensing Pattern uses gradients, thus it presents the
same parameters that the Gradient Pattern (Section 2.4.1). Additionally, it is
necessary to determine the threshold that triggers the collaborative behaviour.
Quorum sensing provides an estimation of the density of agents in the system
(i.e. beyond the local knowledge of the agents). However, this pattern is not a
solution to calculate the number of agents necessary to carry out a collaborative
task (i.e. to identify the threshold value).

Entities-Dynamic-Environment: The entities involved in the Quorum
Sensing Pattern are the same that in the Gradient Pattern (Section 2.4.1). That
is, agents, hosts, and infrastructural agents. The concentration is estimated by
the aggregation of the gradients.

Implementation: There is not a specific implementation for the Quorum
Sensing Pattern. However, biological systems presented above give us some
ideas about how to implement the pattern. Two different ways to implement
the Quorum Sensing Pattern may be proposed: (1) to use the Gradient Pattern
to simulate auto-inducers where gradient concentrations provide agents with an
estimation of the agents’ density (i.e. like in bioluminiscent bacteria); or (2)
likewise ant systems, agents’ density can be estimated through the frequency
to which agents are in a communication range. The use of gradients provides
better estimations than the use of frequencies. However, it is more expensive
computationally and it requires more network communications.

Known uses: Britton et al. [Britton and Sack, 2004] present an interesting
example of the use of the Quorum Sensing Pattern: quorum sensing is used to
increase the power saving in Wireless Sensor Networks. The quorum sensing
permits to create clusters based on the structure of the observed parameters of
interest, and then only one node for each cluster sends the information on behalf
of the quorum. Another known example is the coordination of Autonomous
Swarm Robots [Sahin and Franks, 2002].

Consequences: Each agent can estimate the density of nodes or other
agents in the system using only local information received from neighbours,
even when the system is really large and there agents do not have an identifier
(i.e. are anonymous).

Related Patterns: The Quorum Sensing Pattern depending on its imple-
mentation uses the Gradient Pattern (Section 2.4.1).

2.5.3 Chemotaxis Pattern

The Chemotaxis Pattern provides a mechanism to perform motion coordina-
tion in large scale systems. The Chemotaxis mechanism was proposed by
[Nagpal, 2004] in 2004. Analogously to the Morphogenesis Pattern, the Chemo-
taxis Pattern exploits the Gradient Pattern (Section 2.4.1): agents identify the
gradient direction in order to decide the direction of their next movements.

Problem: decentralised motion coordination in large scale systems aiming
at detecting sources or boundaries of events.

34 Chapter 2. Bio-inspired design patterns

Solution: Agents locally sense the gradient information, they then follow
the gradient in a specified direction: they follow higher gradient values, lower
gradient values, or equipotential lines of gradients.

Typical Case: Chemotaxis has been mainly used as a gradient based ap-
proach to Locate diffuse event contours and diffuse event sources.

Inspiration: In biology, chemotaxis is the phenomenon in which single
or multicellular organisms direct their movements according to certain chem-
icals present in their environment. Some examples in nature where chemo-
taxis appears are: leukocyte cells moving towards a region of a bacterial in-
flammation or bacteria migrating towards higher concentrations of nutrients
[Wolpert et al., 2007].

It is important to note that in biology, chemotaxis is also a basic mechanism
of morphogenesis. It guides cells during development so that they will be placed
in the final right position. In this paper, we refer to terms chemotaxis and mor-
phogenesis in a slightly different manner: chemotaxis for motion coordination
following gradients, and morphogenesis for triggering specific behaviour based
on relative positions determined through a gradient.

Forces: The Chemotaxis Pattern presents the same forces as the involved
in the Gradient Pattern (Section 2.4.1).

Entities-Dynamic-Environment: The concentration gradient guides the
agent’s movement in three different ways, as shown on Figure 2.6: (1) Attractive
Movement, when agents change their positions following higher gradient values;
(2) Repulsive movement, when agents follow lower gradient values, producing
an increment in the distance between the agent and the gradient source; and (3)
Equipotential movement, when agents follow a specific gradient value or gradient
values between a minimum and a maximum threshold.

Implementation: Chemotaxis can be implemented in two different ways.
On the one hand, the system can use gradients existing in the environment
to coordinate the agent’s positions or directions. For example, Ruairi et al.
[Ruaiŕı and Keane, 2007] use attractive and equipotential movements to detect
the contour of diffuse events using a multi-agent approach over a sensor network
infrastructure. In this study, agents move over the sensor network following the
gradient created by the diffuse event sources (existing in the environment), and
when the agent reaches a gradient threshold, it follows equipotential movements
to detect the contour of diffuse events.

On the other hand gradient fields could be generated by the agents. As an
example, Mamei et al. [Mamei and Zambonelli, 2005] uses a gradient-based ap-
proach to coordinate the position of bots in the Quake 3 Arena video game. In
this video game there is one agent controlled by the user (the prey) and a set
of agents called bots (predators) trying to trap the agent controlled by the user.
Each agent spreads a gradient in the system, thus the bots are repulsive between
each other and attractive towards the agent driven by the user. Using gradi-
ents, the emerging behaviour of the bots is to attack the target from different
directions.

Known uses: [Mamei et al., 2004] use Chemotaxis to coordinate the posi-

2.5. Top Layer Patterns 35

Agents

Maximum Gradient

Attractive Movement

Repulsive Movement

Equipotencial
Movement

Figure 2.6: Chemotaxis Pattern

tions in swarms of simple mobile robots. In that paper, chemotaxis is imple-
mented as follows: robots change the direction randomly when they detect that
they are not following the gradient in their preferred direction. Notice that in
that paper the mechanism used is called morphogenesis, despite of the actual
use of the Chemotaxis Pattern. We adopted the name Morphogenesis to refer
to positional information and Chemotaxis to directional information, following
[Nagpal, 2004].

Consequences: The implementation of Chemotaxis Pattern analogously to
the Morphogene Pattern produces an increment of the network load due to the
spreading of gradients over the network. Using the Chemotaxis Pattern, agents
can coordinate its movements even when they do not know about their position
or the neighbouring positions.

Related Patterns: The Chemotaxis Pattern extends the Gradient Pattern
(Section 2.4.1).

2.5.4 Flocking Pattern

Flocking is a kind of self-organising behaviour of a herd of animals of similar
size and body orientation, often moving in masse or migrating in the same
direction and with a common group objective. The Flocking Pattern is able to
control dynamic pattern formations and move agents over an environment while
keeping the formation and interconnections between them. Different disciplines
have been interested in the emergent behaviour of flocking, swarming, schooling
and herding. Several examples can be found in [Olfati-saber, 2006]. The forces
that drive the flocking behaviour were proposed in 1986 by Craig W. Reynolds
[Reynolds, 1987]. They are known as Reynolds rules: (1) Flocking Centering,
(2) Obstacle Avoidance and (3) Velocity Matching. The Flocking Centering rule

36 Chapter 2. Bio-inspired design patterns

captures the intuition that individuals try to keep close to nearby flockmates
because they always try to move toward the flocking center. Obstacle avoidance
rule pursues collision avoidance with nearby flockmates. Velocity matching is
related to the ability to move the flocking with all the individuals at the same
speed.

Problem: Dynamic swarming pattern formation.
Solution: The flocking Pattern provides a set of rules for moving the agents

over the environment while keeping the formation and interconnections between
them.

Typical case: Motion coordination of large scale MAS, mainly, 3-D simu-
lations.

Inspiration: This pattern is inspired by the behaviour of a group of birds
when they are foraging or flying and in the schooling of fish when they are
avoiding a predator attack or foraging. For example, in a school of fishes when
they are under a predator attack the movement of the first fish that senses the
predator presence produces a fast movement alerting the other fishes by the
waves of pressure sent though the water. The schooling of fish can change its
formation in order to avoid a predator attack, recovering the initial formation
after the attack. Analogously, the birds fly in flocking and they split the flocking
in presence of one obstacle. When birds overtake the obstacle, they join together.

Forces: Parameters such as, avoidance distance, maximum velocity and
maximum acceleration must be tuned to achieve the desired visualisation. How-
ever, regarding the typical case, as far as we know these parameters are inde-
pendent.

Entities-Dynamic-Environment: The entities participating in the Flock-
ing Pattern are only agents using direct communication. Basically, agents sense
the position of their neighbours and keep constant a desired distance. When
the distance is changed due to external perturbations, each agent responds in a
decentralised way to control the distance and to recover the original formation.

Implementation: Details about the algorithm and theory can be found in
[Olfati-saber, 2006]. Here we present some basic concepts about the algorithm
and the implementation. Analogously to the free-flocking algorithm presented
in [Olfati-saber, 2006], each agent’s motion is control by the equation 2.3

~ui =

 g

i

+

 d

i

+

 γ

i

(2.3)

Where
ffl g
i

is a gradient based term that represents the flock centering and
obstacle avoidance (rules 1 & 2).

Figure 2.7 represents how two agents that are communicated each other
change their behaviour following the first term. In (a) agents are attracted,
because they are allocated in attractive zones. In (b) they repel each other
because they are too much close. Finally, in (c) they are in the neutral zone
where the term becomes zero. When all the agents in the flocking are allocated

in the neutral area, they form a stress-free structure.
ffl d
i

is a velocity consen-
sus/alignament term that represents the velocity matching rule (rule 3). Finally,

2.5. Top Layer Patterns 37

(a) Attraction (b) Repulsion (c) Equilibrium

Figure 2.7: Metric distance Model - Movements

ffl γ
i

is the navigational feedback term that drive the group to the objective.

Known uses: The first application of the Flocking Pattern was model-
ing animal behaviour for films. Specifically, it was used to generate crowds
which move more realistically. Flocking has also been used to control the be-
haviour of Unmanned Air Vehicles (UAVs) [Crowther and Riviere, 2002], Au-
tonomous mobile robots [Hay, 2002, Jadbabaie et al., 2003], Micro or Minia-
ture Aerial Vehicles (MAV) [Nardi et al., 2006] and Mobile Sensor Networks
[La and Sheng, 2009a, La and Sheng, 2009b].

Consequences: Flocking tries to generalise the behaviour of flocking, inde-
pendently of individuals (birds, penguins, fish. . .). Its behaviour does not de-
pends on the methods used for the generation of agents’ trajectories. The Flock-
ing Pattern provides robustness and self-healing properties in front of agents’
failures and communication problems.

Related Patterns: The Flocking Pattern extends from the Repulsion Pat-
tern (Section 2.3.5). In fact, repulsion can be seen as a simplification of the
Flocking Pattern. Both of them are gradient based, but not in the sense of
the Gradient Pattern, because the Gradient Pattern uses diffusion to send the
information beyond its communication range. However, it is an open possibility
to use the Flocking Pattern with Gradients, when it may exist more than one
role on agents in the flocking and it is desired to keep them in a formation even
when they are not directly communicated. This case can fit a squadron of UAV’s
where some of them must be allocated in the perimeter of the formation because
they have special devices. In this case, UAV’s with special devices can used the
Gradient Pattern to communicated with the other UAV’s with spacial devices
using the flock as a network infrastructure to spread the gradient.

2.5.5 Foraging Pattern

Foraging is the activity where a set of ants collaborate to find food. The Foraging
Pattern is a decentralised collaborative search pattern. Mainly, the Foraging
Pattern has been used in optimisation and swarm robotics.

Alias: Ant Foraging, Ant Colony Optimisation, Ant System

Problem: Decentralised search and optimisation problems.

Solution: The Foraging Pattern provides rules to explore the environment

38 Chapter 2. Bio-inspired design patterns

in a decentralised manner and exploit resources.
Typical Case: Foraging Pattern is mainly applied to optimisation problems.
Inspiration: The Foraging Pattern is inspired by the Ant Colony Foraging

behaviour. In ant colonies, ants self-organise their behaviour to find food close
to the nest. The ant colonies use stigmergy communication, i.e. ants modify the
environment through depositing a chemical substance called pheromones. This
pheromone drives the behaviour of other ants in the colony. The pheromone
concentrations are used to recluit other ants. Following the highest pheromone
concentration, ants find the shortest path from the nest to the food, and they
can adapt this path when obstacles appear or when the food is depleted.

Forces: Each ant has a probability to follow gradients or not. When one
ant is not following the gradients, the ant walks randomly over the environment
looking for new sources. When the probability of exploration is high, ants can
adapt fastly to environmental changes. Whereas, a low exploration provides a
fast convergence, i.e. most of the ants follow the path to the source. Due to the
lack of exploration, when the source is depleted the ants spend too much time
to find new sources. The Ant Foragin Pattern present also the same forces as
the Digital Pheromone Pattern (Section 2.4.2).

Entities-Dynamic-Environment: The entities involved in the Foraging
Pattern are the same as the Digital Pheromone Pattern (Section 2.4.2), and
interact in the same way. When one agent senses the presence of a digital
pheromone decides to follow the gradient or to move randomly.

Implementation: according to some random probability, agents either fol-
low scouts (are recruited to exploit food), or perform some random search. In
the case of ants, scouts deposit pheromones in their environment, that are later
sensed by other ants to find food sources.

Known uses: The Foraging Pattern has been mainly applied
as Ant Colony Optimisation (ACO) [Dorigo, 1992] in applications such
as, scheduling [Martens et al., 2007, Blum, 2005], vehicle routing problems
[Toth and Vigo, 2002, Secomandi, 2000, Bachem et al., 1996], or assignment
problems [Lourenço and Serra, 1998].

Consequences: The system achives high quality performance in NP-Hard
search problems.

Related Patterns: Foraging Pattern is composed by the Digital Pheromone
Pattern (Section 2.4.2). Thus, the Foraging Pattern uses Evaporation (Sec-
tion 2.3.4), Spreading (Section 2.3.1), and Aggregation (Section 2.3.3) patterns.

2.6. Summary 39

2.6 Summary

Table 2.3 summarises the problems that each pattern presented in this book
solves.

40 Chapter 2. Bio-inspired design patterns

Pattern’s Name Problem
Spreading Agents’ reasoning suffers from the lack of knowledge about the

global system.
Replication The number of software agents necessary to achieve a task is not

known or must change along time to satisfy the system require-
ments. The high dynamicity in the environment can kill agents
and they need to be created again.

Aggregation Excess of information produced by the agents may produce net-
work and memory overloads. Information must be distributively
processed to reduce the amount of information and to assess mean-
ingful information.

Evaporation Outdated information can not be detected or its detection involves
a cost that needs to be avoided.

Repulsion Agents’ movements have to be coordinated in a decentralised man-
ner to achieve a uniform distribution and to avoid collisions be-
tween them.

Gradients Agents suffer from lack of global knowledge that prevent them to
know the consequences of their action beyond their communica-
tion range. Moreover, The agent behaviour not only depends on
the information of other agents, also on the position or direction
of other agents.

Digital Pheromone Coordination of agents in large scale environments using indirect
communication.

Gossip Agents need to reach an agreement with only local perception and
in a decentralised way.

Morphogenesis In large-scale decentralised systems, agents decide on their roles
or plan their activities based on their spatial positions.

Quorum Sensing Collective decisions in large-scale decentralised systems requiring
a number of agents or estimation of the density of agents in a
system using only local interactions.

Chemotaxis Decentralised motion coordination in large scale systems aiming
at detecting sources or boundaries of events.

Flocking Dynamic swarming pattern formation.
Foraging Decentralised search and optimisation problems.

Table 2.3: Patterns Table

Chapter 3

Dynamic Optimisation

In this chapter the Evaporation Pattern, proposed in section 2.3.4, is incorpo-
rated to the Particle Swarm Optimisation (PSO) algorithm to deal with dynamic
optimisation problems.

The goal of dynamic optimisation is to minimise or maximise a target func-
tion that changes along time. Many real-time decision problems, such as dynamic
scheduling problems and dynamic vehicle routing problems, can be formulated
as a dynamic optimisation problem.

When the size of the problems is very high, finding a solution with traditional
optimisation algorithms requires days of execution, i.e. traditional algorithms
are not feasible for dynamic optimisation. Meta-heuristics algorithms are able
to find feasible solutions within a reasonable computation cost, demonstrating
its applicability to solve dynamic optimisation problems.

A successful family of meta-heutistic algorithms are population-based al-
gorithms. Most distinguished algorithms inside this subset are: Evolutionary
Algorithms (EA), Ant Colony Optimisation (ACO), and Particle Swarm Opti-
misation (PSO). In all of them, the desired behaviour emerges from the interac-
tions between individuals. The coordination of individuals’ movements over the
search space is considered a self-organising process.

To solve real-world optimisation problems, several uncertainty issues have to
be considered. As it was described in [Jin and Branke, 2005], uncertainty issues
can arise from four different origins: the evaluation of the fitness function may
be subject to noise; the design variables may be subject to perturbations; the
fitness function may be only approximated; or the optimum of the problem may
change over time. In this chapter we are interested in addressing optimisation
problems when i) the problem may change over time (dynamic environments)
and ii) the evaluation of the fitness function is subject to noise.

Particle Swarm Optimisation is a population-based algorithm, where a set
of particles initially spread over the search space, iteratively collaborate each
other to improve the candidate solution. Particle Swarm Optimisation (PSO)
has been proved as an efficient mechanism for static functions. Since 2001 when
Parsopoulos and Vrahatis [Parsopoulos and Vrahatis, 2001] showed that PSO

41

42 Chapter 3. Dynamic Optimisation

could track slowly moving optima without any changes at all, several authors
have proposed different variants to improve the performance of PSO in dynamic
environments.

Specifically, in order to improve the original PSO to deal with dynamic en-
vironments, two main problems have to be addressed [Blackwell, 2007]: the out-
dated memory problem (due to the environment dynamism) and the diversity
loss problem (due to particles’ convergence). The outdated memory problem is
related to the storage of the best position found. When a change in the environ-
ment occurs, the best solution found may become obsolete and may misguide
the particle’s search. The diversity loss problem appears when the swarm has
converged and an environment change occurs. If the peak where the swarm
converged disappears or changes its location, the low velocity of the particles
inhibits the tracking and the particles may oscillate around a false attractor.

As we will describe in the next section, several variants of the PSO algo-
rithm have been proposed to deal with the diversity problem. In the existing
approaches, the outdated memory problem is easily solved by re-evaluating pe-
riodically the best positions found. This solution has been proved sufficient in
environments when the fitness function is not subject to noise.

Regarding to the evaluation of fitness functions that are subject to noise, the
main challenge appears when particles try to detect changes in the environment.
The noise associated to the evaluation of the fitness function makes this detection
difficult. [Parsopoulos and Vrahatis, 2001] presented some experimental results
showing that PSO is somehow noise tolerant. However, some detected changes
may be false and some real changes may not be detected.

The goal of this research is to demonstrate that the evaporation mechanism,
proposed as a basic design pattern for self-organising systems, is a contribution
to improve the performance of PSO algorithms in dynamic and noisy environ-
ments. Specifically, we propose an extension of the Multi Quantum Swarm Opti-
misation (mQSO) algorithm [Blackwell and Branke, 2006] that incorporates an
evaporation mechanism to improve the convergence of PSO in dynamic multi-
modal environments when the evaluation of the fitness function is subject to
noise. Moreover, the evaporation mechanism proposed avoids the continuous
detection of changes in the environment.

This chapter is organised as follows. Next section briefly reviews the research
related to our problem. Section 3.2 describes how the evaporation mechanism
has been used and how it is incorporated into the existing mQSO algorithm.
Section 3.3 reports experiments demonstrating the contribution of the evapora-
tion mechanism. Finally, in Section 3.4 we draw some conclusions and set paths
to future research.

3.1 Background

This section presets the state of the art of PSO in dynamic and noisy optimisa-
tion to understand the contribution of applying the evaporation mechanism to
existing PSO approaches.

3.1. Background 43

PSO was proposed aiming to produce a collaborative intelligence behavior
by borrowing the analogy of social interaction, rather than purely individual
cognitive abilities. The movements of each particle are based on the combination
of both a cognitive and a social model. The cognitive model drives each particle
to its best position so far. The social model drives each particle to the best
position found by particles belonging to its neighbourhood.

3.1.1 Particle Swarm Optimisation

In PSO, each particle has a position ~pi and a velocity ~vi. Initially, the set
of particles is randomly distributed in the search space with a random initial
velocity. The position and velocity of each particle are modified iteratively.
The movement of the particles is determined by combining some aspect of its
experience, its best position found~bi, with social information, the best position of
its neighbours ~g. At each algorithm iteration, all particles evaluate the objective
function at its current location (fitness value) fu(~pi).

Since 1995 when James Kennedy and Eberhart proposed the PSO algo-
rithm, some extensions and optimisations of their parameters have been realised
[Poli et al., 2007]. One of them, the constriction coefficients, has been well ac-
cepted by the community. The constriction coefficients control the convergence
of the particles and allow an elegant and well-explained method for preventing
explosion, ensuring convergence and eliminating the arbitrary Vmax parameter.
Using contriction coefficients, the movement of each particle follows the next two
equations:

~pi = ~pi + ~vi (3.1)

~vi = χ(~vi + ~U(0, φ1)(~bi − ~pi) + ~U(0, φ2)(~g − ~pi)) (3.2)

where:

• ~pi is the current position of the particle i;

• ~vi is the velocity of the particle i;

• χ is the constant multiplier that ensures the convergence;

• ~bi is the best position found by the particle i;

• ~g is the global best solution found by the particles; and

• ~U(0, φi) represents a vector of random numbers uniformly distributed in
[0, φi].

The velocity of particles is composed of two components: the cognitive part
~U(0, φ1)(~bi − ~pi) that drives the particles to its best position found, and the

social part ~U(0, φ2)(~g − ~pi) that drives the particles to the best position found
by the swarm.

44 Chapter 3. Dynamic Optimisation

3.1.2 PSO in Dynamic Environments

Optimisation in dynamic environments is a challenging problem for PSO. Dif-
ferent extensions of PSO have been proposed to improve its adaptiveness in
dynamic environments. Extensions (see [Poli et al., 2007] for an overview) pro-
pose solutions such as resetting the position of particles frequently or using a
multi-swarm model.

Diversity loss has been addressed either by introducing randomisation, repul-
sion, dynamic networks, or multi-populations [Blackwell, 2007]. An important
contribution was to keep the diversity along the algorithm execution, instead
of resetting the position of particles whenever a change in the environment oc-
curs. That is, introducing the notion that not all the particles tend to reach
the optimal position. some particles are continuously exploring the search space
while other are converging to the peaks. These explorer particles have been
implemented in different ways.

In [Fernandez-Marquez and Arcos, 2009b] we proposed an exploration mech-
anism based on heterogeneous swarms that combine attractive and repulsive
particles. Repulsive particles keep a formation that allows a continuous explo-
ration of the search space, whereas attractive (PSO) particles collaborate to
improve the solution. The mechanism maintains the diversity property allowing
the swarm to self-detect the changes of the environment.

Charged Particle Swarm Optimisation [Blackwell and Bentley, 2002] (CPSO)
use repulsion between a subset of swarm particles, to avoid the convergence of
the whole swarm. Quantum Swarm Optimisation [Blackwell, 2007] (QSO) uses
the notion of a cloud of particles, that are randomly positioned around the swarm
attractor. Both methods have been tested in a multi-swarm context and QSO
has shown a higher performance.

The Collaborative Evolutionary-Swarm Optimisation (CESO)
[Lung and Dumitrescu, 2007] is a hybrid approach that also uses two dif-
ferent sets of particles to preserve the diversity. Specifically, the diversity is
maintained using crowding techniques. The performance of CESO is higher
than QSO but the mechanism to detect changes in the environment is the same.

Recently, [Du and Li, 2008] have proposed MEPSO (Multi-strategy Ensem-
ble Particle Swarm Optimisation). MEPSO outperforms other approaches
but for unimodal environments where changes have high severity. To detect
changes, MEPSO uses re-evaluation. Moreover, when a change is detected a
re-randomisation is performed.

The outdated memory problem has been tackled by setting best positions as
their current positions or by re-evaluating best positions to detect the changes
in the environment (increasing the computation cost) and then resetting the
memory of the particles. Most of these existing approaches assume that either
the changes are known in advance by the algorithm or that they can be easily
detected. These hypotheses are not feasible in many real problems due to the
presence of noise and its unpredictable nature.

3.1. Background 45

Multi Quantum Swarm Optimisation (mQSO)

Multi Quantum Swarm Optimisation (mQSO) is an algorithm proposed for deal-
ing with multi-modal dynamic problems. mQSO divides the swarm in a number
of subswarms with the goal of exploiting different promising peaks in parallel.
The multiswarm approach, increases the diversity and decreases the probability
to finalise the search in a local optimum.

Moreover, each swarm consisted of two different kind of particles: i) PSO
particles that try to reach a better position by following the standard PSO algo-
rithm and ii) quantum particles that orbit around the subswarm attractor within
a radius rcloud to keep the diversity along the algorithm execution. Quantum
particles address the diversity loss problem. The position of quantum particles
is calculated with the following equation:

~pi ∈ Bn(rcloud) (3.3)

where Bn denotes the d-dimensional ball of the swarm n centered on the swarm
attractor ~gn with radius rcloud.

The idea of mQSO is that each swarm reaches one peak and tracks it along
the algorithm execution. To ensure that two swarms are not exploiting the same
peak, an exclusion mechanism is proposed as a form of swarm interaction. The
exclusion mechanism uses a simple competition rule among swarms that are
close (at most at distance rexcl) to each other. The winner is the swarm with
the best fitness value at its swarm attractor. The loser swarm is expelled and
reinitialised in the search space.

When there are more peaks than swarms, not all peaks can be tracked by
swarms. Because of the changes in the environment, any local maximum may
become a global maximum. Thus, whenever this new optimum is not tracked
by any swarm, the performance of the system decreases. To prevent this, an
anti-convergence operator is applied whenever all swarms have converged, i.e.
when for all swarms the max distance found betweem 2 particles is less than
rconv. At that moment, anti-convergence expels the worst swarm from its peak
by reinitializing the particles of the swarm. As a result, there is at least one
swarm watching out for new peaks.

mQSO was proved as a good mechanism in multi-peak dynamic environ-
ments. The dynamicity is expressed by small changes applied to the peak loca-
tions, heighs, and widths.

3.1.3 PSO in Noisy functions

Noisy fitness functions have been addressed by different researches and are a key
issue in real-world problems. Different authors have demonstrated that noisy fit-
ness functions are not a handicap for PSO effectiveness in static environments. In
2001, Parsopoulos and Vrahatis studied the behaviour of PSO when a Gaussian
distributed random noise is added to the fitness function. They demonstrated
that PSO remained effective in the presence of noise.

46 Chapter 3. Dynamic Optimisation

In 2005, [Pugh et al., 2005] proposed the Noise-resistant variant, where each
particle takes multiple evaluations of the same candidate solution to assess a
fitness value. It was demonstrated that noise-resistant PSO has a better per-
formance than the original PSO. The disadvantage of this approach is that in
order to improve the confidence of a fitness value, multiple evaluations have to
be performed.

In [Bartz-Beielstein et al., 2007] the stagnation effect is analyzed for additive
and multiplicative noise sources. Bartz-Beielstein et al propose the use of a
statistical sequential selection procedure, together with PSO, to improve the
accuracy of the function estimation and to reduce the number of evaluations of
samples. Moreover, the authors show that the tuning of PSO parameters is not
enough to eliminate the influence of noise.

Another proposal for reducing the number of re-evaluations is Partitioned
Hierarchical PSO [Janson and Middendorf, 2006]. PH-PSO organises the neigh-
bourhood of the swarm in a dynamic tree hierarchy. This organisation allows
the reduction of the number of sample evaluations and can be used as a mecha-
nism to detect the changes in noisy and dynamic environments. In PH-PSO, the
mechanism used to detect the changes is based on the observation that changes
occur within the swarm hierarchy.

3.2 Evaporation Mechanism

As we have described in the previous section, there is some evidence that PSO
is able to deal with noisy environments but many of the current PSO extensions
for dynamic multi-modal problems have not been tested in noisy environments.
The main drawback of the current proposals is that they continuously check
for changes in the environment. This strategy of continuously checking, cannot
be directly applied when the result of the evaluation of a specific position is
subject to noise. Noise provides different values in each evaluation of a given
point. These differences maybe misinterpreted as environment changes causing
the continuously resetting of the memory of particles.

A possible solution to deal with noisy environments is to incorporate a filter
that tries to minimise the problem of receiving different fitness values each time
a specific position is requested. In addition of the issue of determining the best
threshold for the filter in unknown environments, we will show in the experiments
section that the use of noise filters is not the best solution.

An alternative approach to deal with noise is to consider that the confidence
on a given fitness value degrades with the time. Our proposal is to extend
the mQSO algorithm with an evaporation mechanism (Section 2.3.4) that will
avoid to continuously check up on changes in the environment and, as a second
beneficial consequence, will improve the performance of mQSO in noisy fitness
evaluation problems.

3.2. Evaporation Mechanism 47

3.2.1 Evaporation Mechanism

To solve the outdated memory problem when changes in the environment are not
known in advance or they cannot be detected due to the noisy fitness function,
we claim that a mechanism for continuously forgetting is better than a periodical
resetting approach and even better than the use of an ad-hoc threshold to filter
the noise in the fitness function. Moreover, a continuous mechanism avoids the
assumption that changes can be predicted or detected in some way.

We propose to use the evaporation mechanism presented as design pattern
for self-organising systems (Section 2.3.4) to reduce the fitness value along time
of the best position found by each particle. This mechanism will penalise op-
tima that were visited a long time ago. Thus, evaporation provides an au-
tomatic dissipation mechanism over the information taking into account the
acquisition time. The idea of evaporation is not new, as it was presented in
the Evaporation Pattern description (Section 2.3.4). ACO systems use evap-
oration in pheromone trails as a mechanism to achieve a signal degradation
[Garnier et al., 2007] and to self-adapt to environment changes. Moreover, in
[Fernandez-Marquez and Arcos, 2008], some preliminary results were shown us-
ing an evaporation factor in unimodal dynamic environments.

Different approaches can be used as evaporation factors. The main ap-
proaches are the use of either a subtractive or a multiplicative factor. A subtrac-
tive factor will decrease, at each particle iteration, the fitness value in a constant
factor ν following the equation:

sni = sni − ν (3.4)

where given a particle i belonging to the swarm n, the fitness value of the best
position found ~pni is stored at sni (best solution).

Analogously, a multiplicative factor will decrease the fitness value by multi-
plying it with a constant α following the next equation:

sni = sni × α (3.5)

where α is an evaporation factor such that α ∈ (0, 1) and × is the multiplier
operator.

In the experiments section we show that with the subtractive factor mQSO
achieves lower errors. Nevertheless, multiplicative factors can be used achieving
also good performance results. Then, we incorporated a subtractive factor ν.
Specifically, at each algorithm step, each particle evaluates the fitness of its
current position and updates sni either, to the current fitness when it is higher
than sni, or applying the evaporation equation. That is:

48 Chapter 3. Dynamic Optimisation

if (fu(~pni) > sni) then
sni = fu(~pni);
~bni = ~pni;

else
sni = sni − ν

end

(3.6)

where fu is the fitness function and ~pni is the current position of the particle i
of swarm n.

3.2.2 mQSOE

In this section we introduce the new algorithm called multi Quantum Swarm
Optimisation Evaporation (mQSOE). In this new algorithm the exisitng mQSO
has been extended with the evaporation mechanism. The main advantages of this
extension (mQSOE) are twofold: i) it avoids the false change detection produced
by the noisy fitness function; and ii) because it has not to check for environment
changes, it saves evaluations of the fitness function. Thus, the savings can be
used to improve the algorithm performance.

The modification of the mQSO algorithm is simple: the test for environ-
mental changes is eliminated and the evaporation equation (3.4) is added when
updating the particle and swarm attractors. Figure 3.1 presents the mQSO algo-
rithm extended with the evaporation mechanism. At the beginning, the particles
of all swarms are randomly initialised. Given a particle i of a swarm n, ~vni is
the velocity of the particle, ~pni is the position of the particle, ~bni is the position
of the best fitness found by the particle, and sni is the fitness value of the best
position ~bni. Once the particles are initialised, the best positions ~gn and fitness
values sn of the swarms are calculated.

In the main loop, the first step is to apply the anti-convergence operator
when all swarms have converged. A swarm has converged when the maximum
distance found between its particles is lower than the rconv parameter. Anti-
convergence operator resets the worst swarm. As we presented before, anti-
convergence operator ensures that at least one swarm is ever exploring the search
space to detect new peaks that may become important.

Next to the anti-convergence operator, the exclusion operator is applied. The
exclusion operator detects when two swarms have converged to a close position
and then resets the worst of them. Two swarms are too close when the distance
between their attractors is lower than rexcl.

After applying all operators, the particles are moved according to the equa-
tions defined for their type: PSO particles are updated following the standard
PSO equations (3.2) and (3.1) while QSO particles are randomised according
(3.3). Finally, after updating the particle’s position, the best position found by

the particle ~bni and the best fitness found sni is also updated. The evaporation
mechanism is applied to this step according to (3.6).

3.2. Evaporation Mechanism 49

//Initialisation
foreach particle ni do

Randomly initialise ~vni, ~pni;
~bni = ~pni;
sni = fu(~pni);

end
foreach swarm n do

~gn = argmax{fu(~pni)}
sn = max{fu(~pni)}

end
repeat

//Anti-convergence
if all swarms have converged then

//randomise worst swarm
RandomiseSwarm(worst swarm)

end
//Exclusion
foreach pair of swams n, m do

if swarm attractor ~gn is within rexcl of ~gm then
if (sn ≤ sm) then

RandomiseSwarm(n)
else

RandomiseSwarm(m)
end

end

end
foreach swarm n do

foreach particle i of swarm n do
//Update particle
Apply equations (3.2) (3.3) depending on particle type.
if (fu(~pni) > sni) then

sni = fu(~pni)
~bni = ~pni

else
//Apply evaporation factor
sni = sni − ν

end
//Update attractor

~gn = ~bni such as i has max{sni}
sn = max{sni}

end

end

until number of function evaluations;

Figure 3.1: mQSOE algorithm (mQSO extended with the evaporation mecha-
nism)

50 Chapter 3. Dynamic Optimisation

Figure 3.2: Slow Adaptation Behavior

3.2.3 Dynamic Evaporation

As it is shown later on in the experimental section, mQSOE (mQSO + Evapo-
ration) achieves a better performance than the original algorithm mQSO when
the fitness function is subject to noise. However, when the fitness function is not
subject to noise, mQSO achieves a slightly better performance than mQSOE.
To solve this issue, we propose a new evaporation mechanism able to improve
mQSOE in both scenarios (in noise free scenarios and in noisy scenarios).

Studying the behavior of mQSOE, we observed that a high evaporation fac-
tor produces a fast adaptation (fast response after environment changes occur),
but particles can not reach a good solution in the optimisation process (bad
convergence), because particles may not use their cognitive part. That is, par-
ticles forget the best position found very fast and are not capable of reaching
good solutions. Contrarily, a low evaporation factor achieves a fast and effective
convergence, but adaptation is very low. Figure 3.2 exposes the slow adaptation
observed in mQSOE-mult and mQSOE-sub compared with mQSO using envi-
ronment change detection. We observe that, even when both approaches achieve
the same performance, the delay introduced by evaporation produces negative
consequences when the frequency of changes increases.

To solve this problem, we propose a dynamic evaporation factor using only
the particle’s local information, i.e. its velocity and the difference between the
fitness of its best position found and the fitness of its current position (i.e a
gradient-based policy). The particle’s velocity presents the following charac-
teristics: (1) the velocity module is very high before converging, and (2) the
velocity module decreases when particles are close to the convergence point.

3.3. Experiments 51

On the other hand, when particles have converged and an environment change
occurs, the gradient becomes high. Thus, the intuition is that the evaporation
factor must be high when the velocity module is slow (indication of convergence)
and the gradient is high. Moreover, the evaporation factor must be low when the
particle’s velocity is high, contributing to the swarm convergence. Specifically,
dynamic evaporation is implemented using the following equations:

sni = sni ∗ αdyn (3.7)

αdyn = 1−
(sni−fitness(~pni)

smax
+ |~Vni|
|~Vmax|

)

2
(3.8)

where αdyn is the dynamic evaporation factor, sni the fitness value of the best

position found, smax the maximum fitness reachable, |~Vni| is the velocity module

of the particle, |~Vmax| the maximum velocity module of the particles. Both
maxima are used to normalise the evaporation factor. Notice that when a new
best position is found, the evaporation is not applied until next iteration, (see
algorithm 3.3).

Analogously to mQSOE, mQSODE (dynamic evaporation) extends the origi-
nal mQSO adding the dynamic evaporation mechanism. The modification of the
mQSO algorithm is simple: the test for changes is eliminated and the dynamic
evaporation equation (3.4) is added when updating the particle’s memory.

Figure 3.3 summarises the mQSO algorithm extended with dynamic evapo-
ration equations (i.e. evaporation mechanism). The evaporation mechanism is
applied according to (3.7) and (3.8). The detailed description of the different
algorithm steps was presented in the previous section.

3.3 Experiments

The goal of the experiments is to analyze the effect of the evaporation mecha-
nism by comparing with the standard mQSO algorithm. Previously to compare
both algorithms, we performed experiments to determine the best value for the
subtraction factor ν; we compared the performance of using a subtractive or
a multiplicative factor; and we analyzed the independence of the evaporation
factor with respect to the peak heights and the peak shifts (severity).

To evaluate the performance of the evaporation mechanism and to com-
pare mQSOE with mQSO, we have used the Moving Peaks Benchmark (MPB)
[Branke,]. MPB is a benchmark developed to compare dynamic optimisation
algorithms by modeling problems less complex than the real world but more
complex than a simple simulation. MPB allows the design of search spaces that
change over time (in the height, width and location of peaks).

3.3.1 Experimental framework

The settings for MPB parameters correspond to MPB’s scenario 2 with 10 peaks.
Specifically, we used a 5-dimensional search space with dimension ranges from 0

52 Chapter 3. Dynamic Optimisation

// Initialisation
foreach particle ni do

Randomly initialise ~vni, ~pni;
~bni = ~pni;
sni = fu(~pni);

end
foreach swarm n do

~gn = argmax{fu(~pni)}
sn = max{fu(~pni)}

end
repeat

// Anti-convergence
if all swarm have converged then

// Remember to randomise worst swarm
randomiseSwarm(worst swarm);

end
// Exclusion
foreach pair of swams n, m do

if swarm attractor ~gn is within rexcl of ~gm then
if (sn ≤ sm) then

randomiseSwarm(n);
else

randomiseSwarm(m);
end

end

end
foreach swarm n do

foreach particle i of swarm n do
// Update particle
Apply equations (3.2) (3.3) depending on particle type.
if (fu(~pni) > sni) then

sni = fu(~pni)
~bni = ~pni

else
// Apply evaporation factor
Equations (3.7), (3.8)

end
// Update attractor

~gn = ~bni such as i has max{sni}
sn = max{sni}

end

end

until number of function evaluations;

Figure 3.3: mQSODE algorithm (mQSO extended with dynamic evaporation
equations)

3.3. Experiments 53

Params values Params values
movrand random num. of peak 10

num. of dimensions 5 minheight 30
maxheight 70 stdheight 50
minwidth 0.1 maxwidth 12
stdwidth 0.0 mincoordinate 0

maxcoordinate 100 vlength 1
height severity 7.0 width severity 1.0

use basis function true correl. lambda true
eval per change 5000 peak function cone

Table 3.1: Standard settings for MPB

to 100. The peak function used is a cone and the maximum distance that one
peak moves is 1. Table 3.1 summarises all the MPB settings.

A run consisted of 100 peak changes in a random direction (correlation co-
efficient = 0). All peaks changed every 5000 steps (function evaluations) their
height (height ∈ [30, 70]), width (width ∈ [1, 12]), and position (vLenght = 1).
Results are based on averages over 50 runs with uncorrelated peak changes.

The performance of the algorithms has been assessed using the offline error
measure. Offline error is the average over, at every point in time, the error of
the best solution found since the last change of the environment. This measure
is always greater or equal to zero and would be zero in perfect tracking.

To aggregate noise to the fitness function, we modified MPB such as the
fitness function incorporates a noise factor γ in the following way:

fitness(~p) = MPBfitness(~p) +
2 ∗ θ − 1

2
∗ γ (3.9)

where θ generates a uniform random number between [0..1] and γ varies between
0 and 30 depending on the experiment.

The parameters of mQSO and mQSOE are the same, except the evapora-
tion factor ν that only exists in mQSOE. We used 100 particles grouped in 10
different swarms. Each swarm has 10 particles, 5 PSO and 5 QSO. The param-
eters rexcl and rconv were set to 31.5 following the authors’ recommendations
[Blackwell and Branke, 2006]. The standard PSO parameters have been settled
following [Blackwell, 2007], χ = 0.729843788, φ1 = 2.05, and φ2 = 2.05.

3.3.2 Determining the evaporation factor

The first experiments conducted aimed at determining the best evaporation fac-
tor ν and to analyze the dependency of this factor with respect to the noise level
γ. We performed experiments by varying γ from 0 to 30 and varying ν from 0
to 30.

The best results were achieved for low values of ν. Thus, we focused our
analysis for values of ν ranging from 0 to 4. Figure 3.4 shows the offline er-

54 Chapter 3. Dynamic Optimisation

Figure 3.4: Varying Evaporation Factor

ror when varying the noise level and the evaporation factor. The vertical axis
represents the offline error, and the horizontal axis the noise level. First, as it
was predictable, the error increases when the noise increases. Second, the best
performance is achieved with low evaporation values (lower than 1), but with a
minimum evaporation (values like 0.1 behave also bad).

Our decision was to choose ν = 0.5. This decision was motivated by two
main reasons: it presents a good performance (best performances are achieved for
ν ∈ [0.4, 0.9]) and it presents the smoothest behavior. Moreover, the experiments
show that all values of ν follow the same behavior when the noise level increases.
Thus, the best evaporation value is not changing with the noise level, i.e. the
evaporation factor is independent of the noise level.

3.3.3 Subtraction versus multiplication as evaporation op-
erator

The goal of these experiments was to compare the performance of a subtraction
operator with the performance of a multiplier operator. Specifically, we com-
pared the best result achieved in the previous experiments (ν = 0.5) with mQ-
SOE where the evaporation mechanism was substituted by the equation (3.5).
We performed experiments by varying α from 0 to 1.

Figure 3.5 compares the error of the subtractive operator with the error of
best multiplicative factors. To achieve errors similar to the subtractive operator,

3.3. Experiments 55

Figure 3.5: Multiplicative versus subtractive evaporation

the values of α must be close to 1. The best performance of a multiplicative
factor is achieved with α = 0.989. Specifically, the results are similar to the
best subtractive operator but the subtractive operator has a smother behavior
and achieves lower errors. Nevertheless, as a conclusion we have to say that
both operators can be used as evaporation mechanisms because the performance
difference is not significative.

3.3.4 Independence of peak heights and peak shifts

The goal of these experiments is to analyze the dependency of the evaporation
factor with respect to the heights of the peaks and the distance of the peak
movements (severity). All the previous experiments were conducted with peak
heights from 30 to 70 and with a severity of 1.

We analyzed the performance of the evaporation factor with lower peak
heights. Specifically we repeated the experiments with height ∈ [10..30]. Fig-
ure 3.6 shows the results obtained. Notice that the offline error is lower because
the worst error is now also lower. Also, the offline error difference among the
different factors decreases. Nevertheless, ν = 0.5 is still the best value indicating
that the evaporation factor is not dependent of the peak heights.

To compare the performance of mQSOE with reported results of mQSO, we
set the severity parameter to 1. Nevertheless, we conducted experiments varying
the severity parameter to analyze the performance of mQSOE. Since we have
previously analyzed the performance of the evaporation factor with different

56 Chapter 3. Dynamic Optimisation

Figure 3.6: Evaporation performance when decreasing the peak height

noise levels, in these experiments the noise level was set to zero. Figure 3.7
shows that the error increases when the severity increases but it affects to all
the evaporation settings with the same proportion. Thus, ν = 0.5 presents also a
competitive behavior and the experiments corroborate the independence of the
evaporation factor with respect of the severity.

3.3.5 mQSO versus mQSOE

Finally, we are ready to compare the offline error of mQSO versus our mQSOE.
The goal of the experiment is to study the behaviour of both algorithms regarding
the increment of noise in the evaluation of the fitness function. As in the previous
experiments, γ varied from 0 (no noise) to 30 (approx. 23% of noise).

Table 3.2 shows that when the noise level increases, the performance of both
algorithms decreases (as expected). Moreover, in presence of noise mQSOE
demonstrates better performance than the original mQSO. However, in the ab-
sence of noise mQSO reaches a better performance than using evaporation. The
reason is that environment changes are instantly detected by mQSO because it is
constantly re-evaluating swarm attractors. However, the evaporation mechanism
is a little bit slower but more robust in presence of noise.

The bad performance of mQSO with noisy fitness functions is produced be-

3.3. Experiments 57

Figure 3.7: mQSOE performance when changing severity

cause the algorithm confuses noise with changes in the environment and, con-
sequently, it is continuously re-initialisating the particle’s memory. That is, at
each algorithm iteration the best position found (~bni) is changed to the current
position degrading the search mechanism.

3.3.6 Filtering noise in mQSO

In order to avoid the continuously resetting of mQSO, we experimented with
the incorporation of a noise filter into the original mQSO. Specifically, we used a
threshold value β to determine whether a change observed in the environment is
effectively considered a real change. Then, a change in the environment is only
considered when the difference between the stored fitness value and the current
evaluation is higher than this threshold. Thus, we add the condition (3.10) in
the function that checks for a change.

if β < |sni − fu(~pni)| then
changeProduced = true

else
changeProduced = false

end

(3.10)

where β is the ad-hoc threshold that controls the tolerated noise.
The goal of this experiment is to analyze the performance of mQSO modified

with (3.10). Two different values for the threshold were analyzed: β = 15 and

58 Chapter 3. Dynamic Optimisation

γ mQSO mQSOE
0 2.206 ± 0.529 2.462 ± 0.620
3 3.397 ± 0.727 2.763 ± 0.600
6 3.581 ± 0.640 2.993 ± 0.562
9 4.107 ± 0.526 3.156 ± 0.554
12 4.468 ± 0.475 3.125 ± 0.472
15 5.094 ± 0.765 3.326 ± 0.661
18 5.397 ± 0.652 3.427 ± 0.534
21 6.090 ± 0.670 3.568 ± 0.514
24 6.603 ± 0.822 3.683 ± 0.668
27 6.985 ± 0.618 3.713 ± 0.564
30 7.609 ± 1.015 3.923 ± 0.419

Table 3.2: Average of offline error (± Std. Dev.) achieved by mQSO and
mQSOE introducing different noise levels

β = 30. The first value is a threshold that corresponds to the middle noise level.
The second one is the highest noise level.

Figure 3.8 shows how the use of a noise threshold (β > 0) improves the
performance of the original mQSO in presence of noise. However, noise filters
produce a lower performance when the fitness function is not subjected to noise.
This decrement is caused because the algorithm confuses small environment
changes with noise.

It can be observed that mQSO with β = 15 presents the best performance
when γ = 15. Nevertheless, this behavior is not robust and decays for other
values of γ. This result is not surprising because when β and γ share the same
value, the noise threshold is correlated with the error in the fitness evaluation.
That is, when β and γ are 15, we ensure that the noise is never confused with
a change in the environment. Nevertheless, as Figure 3.8 shows, for γ values
different than β the offline error grows. The reason is because when γ is lower
than β, noise is confused with environment changes and produces a memory
resetting when it is not necessary. On the other hand, when γ is higher than
β, it increases the probability of not detecting the changes in the environment,
preventing the peak tracking.

For β = 30, environment changes are treated as noise. Thus, most of the
changes in the environment are not detected and, consequently, the memory of
the particles is not re-initialised. As a consequence, swarms are not able to track
the peaks.

Comparing the performance of mQSO with noise filters and mQSOE, mQ-
SOE presents a more robust behavior. mQSOE is not achieving the best per-
formance at all the different noise levels: without noise the standard mQSO
presents the lowest error; and mQSO extended with a noise filter presents the
best performance when the noise level in the fitness function is the same that the
noise threshold at mQSO. However, the noise threshold cannot be fixed because

3.3. Experiments 59

Figure 3.8: Comparing the offline error when introducing different noise thresh-
olds

in real problems the noise level is never static. Even setting the threshold in
mQSO, with the noise level value that the fitness function has (best case, but
not feasible in real world), mQSOE achieve similar performance.

Summarizing, mQSOE is demonstrated as a good solution for dealing with
dynamic environments where the evaluation of the fitness function is subject
to noise. Moreover, the evaporation mechanism does not require an explicit
checking of changes.

3.3.7 Dynamic Evaporation

In this final experiment the goal was to demonstrate the higher performance
of the proposed mQSODE when the fitness function is not subjected to noise.
As it was presented, the main problem of using evaporation is the decrease
of performance in this situation. Moreover we show how dynamic evaporation
presents the same performance as mQSOE algorithm in presence of noise.

Performance when the fitness function is noise-free

Figure 3.9 shows the comparison between multiplicative and substractive evapo-
ration (mQSOE), the original mQSO, and the dynamic evaporation (mQSODE).
The results are calculated with the small step change type. Horizontal axis repre-
sents the simulation steps and vertical axis represents the relative error averaged

60 Chapter 3. Dynamic Optimisation

Figure 3.9: T1 - Noise free Environment

Type Description Type Description
T1 Small Step T2 Large Step
T3 Random T4 Chaotic
T5 Recurrent T6 Recurrent with noise

Table 3.3: Types of Changes

over 60 runs. Constant-based evaporation methods (mQSOE-mult and mQSOE-
sub) present a delay after the environment changes, due to the slow evaporation
process, as we presented in the previous section. The dynamic evaporation
mechanism is able to act after a change with similar speed than mQSO (that is
detecting environment changes). The faster reaction of our approach when envi-
ronment changes occur allows a better convergence. Notice that, in Figure 3.9,
if the system increases the frequency of changes, mQSOE-sub and mQSOE-mult
cannot reach convergence due to the slow reaction when an environment change
occurs. However, mQSODE and mQSO may converge and present a better
performance when the frequency of changes increases.

Figure 3.10 summarises average maxima (the average of worst convergences)
for each algorithm when different change types are applied (types of changes
are described in Table 3.3). mQSODE presents a better performance than the
constant-based evaporation mechanisms and the standard mQSO.

But mQSODE is not only presenting the best performance in the worst cases,
it is also the best according to average means, i.e. the average of all convergences
realised after changes, for the majority of change types. Figure 3.11 presents

3.3. Experiments 61

Figure 3.10: Average Maxima - Noise-free environment

the results of mQSODE for average means. The performance of mQSODE is
achieved because its faster reaction to environment changes by adjusting the
evaporation factor depending of the local state of the particle.

Figure 3.12 represents the average of the best cases. Regarding this measure,
the original mQSO presents a better performance than our approach, i.e., even
though mQSODE presents a better performance than mQSO in average, mQSO
is able to reach some best results. However, the behaviour of mQSO is not as
robust as the mQSODE. Figure 3.13 exposes how the mQSO algorithm presents
a higher standard deviation than mQSODE.

In noise free environments the dynamic evaporation mechanism improves the
existing algorithms (mQSOE-sub and mQSOE-mult). Moreover, the problem re-
ported for those algorithms, i.e. the decreasing of performance when the fitness
function is not subjected to noise, has been solved for the new approach. mQ-
SODE presents similar results than the standard mQSO, that does not use the
evaporation, for two reasons: a close reaction time when an environment change
occurs, and the fact that mQSO uses fitness function evaluations that mQSODE
can use in the optimisation process.

Performance in presence of noise

Figure 3.14 shows how mQSODE solves the problem of slow adaptation after
a change and moreover, achieves a similar performance than the mQSOE-mult
and mQSOE-sub algorithms.

mQSODE presented a higher performance than the other (see Figure 3.17).
Moreover, mQSODE achieves a clear higher performance than the others in
the average, worst, and lower standard deviation. We consider this result a

62 Chapter 3. Dynamic Optimisation

Figure 3.11: Average Means - Noise-free environment

big success, to achieve a low standard deviation, because it highlights a robust
behavior in the optimisation process. Our proposal presents slightly lower results
than mQSOE-sub and mQSOE-mult regarding the average best. Nevertheless,
this difference is not statistically significant.

3.4 Conclusions

In this chapter we show how we have applied an evaporation mechanism to
deal with optimisation problems when the problems change over time (dynamic
environments) and the evaluation of the fitness function is subject to noise. We
have incorporated the evaporation mechanism as an extension of mQSO, a well
known algorithm for dynamic multimodal problems. Nevertheless, the solution
proposed in this research is general and can be incorporated to other existing
algorithms that detect the changes in the environment by re-evaluating swarm
attractors.

We have shown that the evaporation mechanism applied to Particle Swarm
Optimisation is robust to different simulation conditions such as the peak
heights, the severity, and the level of noise. Furthermore, we reported experi-
ments that introduce the possibility of using either subtractive or multiplicative
evaporation (mQSOE) factors and also a dynamic evaporation (mQSODE).

Experiments have shown that the performance of the proposed mQSOE ex-
tension outperforms the standard mQSO when the fitness evaluation is noisy.
Moreover, mQSODE (dynamic evaporation) achieves a better performance than
mQSOE (fixed evaporation) and better than mQSO when the fitness function
is not subject to noise. Also, we have shown that the detection of changes

3.4. Conclusions 63

Figure 3.12: Average Minima - Noise-free environment

when noise is present is not a trivial issue. Specifically, we have shown how the
introduction of noise filters is not able to outperform mQSOE nor mQSODE.

Moreover, the evaporation mechanism has an additional benefit: the effort
avoided in re-evaluating swarm attractors can be used to achieve a better per-
formance by spending them on the swarm’s convergence.

One of the research questions proposed in this book was: can the basic mech-
anisms extracted by decomposition of complex mechanisms be applied isolated
and make contributions to other communities?

In this work we demonstrate that a basic mechanism as the evaporation
can make important contribution and can be used isolated. Even when the
evaporation was extracted from the pheromone pattern which is composed by
aggregation, spreading and evaporation. It has been demonstrated that the
evaporation can work without the presence of aggregation or spreading.

64 Chapter 3. Dynamic Optimisation

Figure 3.13: Standard Deviation - Noise-free environment

Figure 3.14: T1 - Noisy Environment

3.4. Conclusions 65

Figure 3.15: Average Minima - Noisy Environment

Figure 3.16: Average Maxima - Noisy Environment

66 Chapter 3. Dynamic Optimisation

Figure 3.17: Average Means - Noisy Environment

Figure 3.18: Standard Deviation - Noisy Environment

Chapter 4

Hovering Information in
Spatial Computing

In this chapter we define and analyse a collection of algorithms based on the
Replication Pattern (Section 2.3.2) and the Repulsion Pattern (Section 2.3.5),
for persistent storage of information at specific geographical zones exploiting the
resources of mobile devices located in these areas. The proposed algorithms are
implemented and tested inside the Hovering Information Project 1.

Hovering Information is a mobile computing paradigm where pieces of self-
organising information are responsible to find their own storage on top of a
dynamic set of mobile devices. In Hovering Information a piece of information
is deposited in the environment. Its goal is to serve the information to all other
devices in a fixed geographical area. Thus, a piece of information deposited
in the environment must ensure its survivability by replicating it-self to other
devices. Moreover, the information and its replica must self-organise their posi-
tions to cover the fixed geographical area using the minimum number of replicas.
The Replication Pattern provides robustness and fault-tolerance to the system,
while repulsion provides a decentralised motion coordination where information
reaches a uniform distribution inside a determined area. The proposed system
provides a persistent storage (and access) of information at specific locations
on top of a volatile (mobile and uncontrolled) storage media. By persistent we
mean that the data must be stored and accessible at a fixed geographical area for
the duration required by the application. Contrarily to other approaches of data
dissemination, our approach uses a viral programming model. Data performs an
active role in the storage process. It acts as a virus or a mobile agent finding
its own storage and relocating when necessary. We consider geographical areas
of any shape and size. Simulation results show that our algorithms are scalable
and converge quickly, even though none of them outperform the others in all
performance metrics considered.

1http://www.dcs.bbk.ac.uk/∼dimarzo/projects/HoverInfo.html

67

68 Chapter 4. Hovering Information in Spatial Computing

4.1 Introduction

Spatial computing builds on the Amorphous Computing con-
cept [Abelson et al., 2007] by considering physical geographical zones as
computing elements (e.g. geographical zones able to process tasks, collaborate
with each other in order to produce some specific result), while making
abstraction of underlying computational devices (i.e. sensors, mobile phones or
robots).

Amorphous Computing considers computational particles dispersed irregu-
larly in an environment, communicating locally with each other. They form what
is referred to as an amorphous computer. Particles are programmed identically
but may store different values. Particles are all similar and generally stationary.
Mobile particles considered so far are either swarms of robots or self-assembling
robots. Primitives for programming amorphous computing take inspiration from
self-organising natural systems and corresponding applications show a high level
of robustness to particle errors.

Our goal is to provide a spatial memory service for mobile users applications,
where both stationary and mobile devices provide memory storage. A spatial
memory is a set of (active) geographical zones (of any shape, possibly overlap-
ping) each acting as a memory cell able to store any kind of information. This
memory would constitute a base service for the Spatial Computing paradigm.
For instance, a Spatial Search and Rescue service could coordinate an emer-
gency service to rescue survivors of a natural disaster by exploiting data about
survivors’ position and data about rescue team availability, both stored in such
a memory. Additionally, data can change while it is replicating (e.g. to create
gradient fields) or different pieces of data can self-aggregate to create new data.

The challenge is to provide persistent storage (and retrieval) of information
at specific locations on top of a volatile (mobile and uncontrolled) storage me-
dia. By persistent we mean that the data must be stored and accessible at a
fixed geographical area for the duration required by the application (from a few
minutes, to several hours or several days).

Our work so far concentrated on persistent storage algorithms using the con-
cept of Hovering Information, thus providing a way of implementing the idea
of Spatial Memory in an infrastructure-free and self-organising way. Hovering
Information is a mobile computing paradigm where pieces of self-organising in-
formation are responsible to find their own storage on top of a dynamic set of
mobile devices. Once deployed, the hovering information service is a location-
based service disseminating geo-localised information generated by and aimed
at mobile users. It supports a wide range of pervasive applications, from urban
security to stigmergy-based systems. A piece of Hovering Information is a geo-
localised information residing in a highly dynamic environment such as a mobile
ad hoc network. This information is attached to a geographical area, called “an
anchor area”. A piece of hovering information is responsible to keep itself alive,
available and accessible to other devices within its anchor area. Hovering infor-
mation uses the Replication Pattern (Section 2.3.2) and the Repulsion Pattern
(Section 2.3.5). The properly use of those patterns in combination with a set of

4.2. Background 69

policies allows the system to replicate strategically a minimum number of hover-
ing information pieces necessary to satisfy the above requirements. It does not
rely on any central server. The appealing characteristics of the hovering infor-
mation concept is the absence of a centralised entity and the active participation
of the information in the storage and retrieval process.

Therefore, this chapter presents a theoretical investigation of new variants
of persistent self-organising storage algorithms. We focus on one single piece
of information replicated into a predefined area and consider only the storage
aspect of the spatial memory problem mentioned above. We evaluate algorithms’
performance by measuring metrics such as number of messages exchanged among
mobile nodes, memory consumption, and accessibility rates.

4.2 Background

Current proposals for location-based services consider data as a passive entity
moved around by the infrastructure intimately linked with the users (publishers
or subscribers). Data is either stored on a fixed infrastructure and delivered to
users when they reach a certain location [Eugster et al., 2005], or for infrastruc-
tureless scenarios, where the publication space moves along with the publisher
and a subscriber space must overlap the publisher space to access the informa-
tion [Eugster et al., 2009]. Other works for data dissemination over MANETs
exploit mobile devices but do not address persistence of the information or do so
for specific scenarios only (e.g. intravehicular networks) [Leontiadis et al., 2009].
Data itself is passive and not self-organising. Tasks of propagating or routing
information are left to the infrastructure (mobile or fixed nodes).

In our work, we consider data as an active self-organising entity acting as a
mobile agent, which decides on its own where to go next and how to be stored.
Data has a life of its own; it is dissociated from the (human) users who pro-
duce and exploit it, and from the mobile devices who act as storage media. In
[Konstantas and Villalba, 2006] the concept of hovering information was intro-
duced. Hovering Information was initially applied to provide persistent storage
algorithms for circular areas and investigated performances for single (identi-
cal) pieces of information [Villalba Castro et al., 2008]. After that, Hovering
Information was also applied to multiple (different) pieces of hovering informa-
tion [Castro et al., 2008]. Initial replication algorithms and their corresponding
simulations took into account wireless characteristics of mobile devices and con-
centrated on circular areas only. Specific issues such as scalability or speed
of convergence were not investigated. Simulations were performed with OM-
NET++2, a simulation tool for wireless devices. Although good for gaining
performance results, these simulations did not provide a satisfactory visualisa-
tion of the propagation of the pieces of information. We decided to revise initial
algorithms and to undergo additional thorough simulations using Repast3, an

2http://www.omnetpp.org/
3http://repast.sourceforge.net/

70 Chapter 4. Hovering Information in Spatial Computing

agent-based simulation tool providing visual simulations still allowing us to col-
lect performance results.

Hovering information and spatial memory are related to different concepts
such as memory, middleware, or dissemination of data. Mainly, the works re-
lated with Hovering Information service are: Location-based publish/subscribe
[Eugster et al., 2009], where the information is available to the subscriber when
the publisher and subscriber communication range are overlapped. Thus,
the publication space moves along with the publisher. Dissemination Ser-
vices [Leontiadis and Mascolo, 2007, Scellato et al., 2008, Datta et al., 2004],
present an interesting starting point for replication algorithms but they
do not offer a solution to ensure the persistence of information. Virtual
Nodes [Dolev et al., 2005], where the GeoQuorum approach proposes the im-
plementation of an atomic shared memory in ad hoc networks. Persistent
Node [Beal, 2003], where, analogously to Hovering Information, data is the ac-
tive entity and storage medium is rather passive towards the data. However,
the Persistent Node approach assumes a no mobile storage medium and Viral
Programming [Butera, 2007].

The novelty of the hovering information service (and later of the spatial mem-
ory) resides in the combination of the above described techniques, in particular
the combination of virtual memory, persistent node (active and moving data)
and viral programming (mobile code). This combination allows to deal with new
problems not addressed before. One example of case study is the presence of
ice on the road. One car detects ice and deposits a piece of information with
an anchor area center in the ice. The piece of information will be alive and
warning other cars before they reach the ice, whereas there is at least one car to
store and serve the information. Notice that the information is an autonomous
entity, its goal is to stay alive in the anchor area, replicate the number of times
necessary to cover the whole anchor area and self-organise their positions to
serve the warning information to all cars in the anchor area, while using the
minimum number of replicas. A detailed studio about the difference between
the hovering information service and related concepts commented above can be
found in [Fernandez-Marquez et al., 2011],

We consider the concept of hovering information as a service: pieces of hov-
ering information come with policies specifying the replication mode (speed and
availability level) and the time to live (garbage collection). For instance, a piece
of hovering information spreading an emergency message should best follow the
broadcast algorithm (even if it is more expensive) because of safety issues, since
all users must be quickly informed. A piece of hovering information carrying
an advertisement message could be cheaper to spread and does not need to be
accessible to everybody in the area. Additionally, pieces of hovering information
may adapt to the environment. For instance, if using a specific algorithm their
target of spreading cannot be achieved because the number of nodes suddenly
drops, they can switch to another algorithm in order to maintain the same level
of service.

The notion of policies allows to switch from one algorithm to another: pieces

4.3. Hovering Information Concept 71

of hovering information use the algorithm that is most appropriate to the type
of information (e.g. emergency information vs advertisement), to the replica-
tion mode (faster vs slower) by changing the repulsion rate, to accessibility rate
threshold (100% of the users in the anchor area must have access to the informa-
tion vs it is acceptable if only 80% of the users have access to the information).

4.3 Hovering Information Concept

4.3.1 Hovering Information

A piece of Hovering Information h is a geo-localised information attached to a
geographical area, called the anchor area. The main goal of h is to self-replicate
among neighbouring mobile nodes in order to maintain itself in the specified
anchor area and make itself accessible to mobile nodes in that area.

A piece of hovering information h is defined as a tuple:

h = (id, A, n, data, policies, size);

where id is the hovering information identifier, A is the anchor area (see
below), n is the mobile node where h is currently hosted, data is the actual data
carried by h, policies are the spreading policies of h, and size is its size.

In this chapter, we do not investigate the active usage of policies for enhancing
adaptation. The policy investigated is the dissemination algorithm applied by
the pieces when they spread in their environment. For the sake of completeness,
we give the full definition of h (inc. policies and size). As we said above, policies
can be used to dynamically change the algorithm at run time.

4.3.2 Anchor Areas

Hovering information spread into indoor or outdoor spaces such as motorways,
pedestrian roads, shopping centers or leisure areas. The shape of the area can
vary from a simple circle centered on a focal point to more elaborated shapes of
any type (regular, irregular, convex or not, etc.).

Anchor areas presented in this chapter do not have any restriction in the
shape, as in previous works [Di Marzo Serugendo et al., 2007] (where anchor
areas were circular). We call these areas amorphous areas. The goal of a piece
of hovering information is to replicate itself in the area in order to be accessible
to nodes in that area (i.e. a piece of information needs to know the anchor area).

Figure 4.1 represents an anchor area with 4 halls connected by 4 corridors.
Nodes can move freely in whatever direction (also outside the corridors), i.e.
the hall and corridors are not delimited by walls. The information must fill the
anchor area, remain located inside it and must not spread outside. In particular,
if a node is located in the center of Figure 4.1 (thus not in a corridor), it may
have access to a replica but should not store one.

This is a typical area for a shopping center and for a piece of information
that must be relevant to people located in the corridors and meeting points, lifts
or stairs (4 corners), but not when they are inside specific shops.

72 Chapter 4. Hovering Information in Spatial Computing

(a) Gradient (b) Binary

Figure 4.1: Amorphous Areas

Binary Matrix and Gradient Matrix

The Amorphous Areas (i.e. anchor areas without a regular shape) are imple-
mented using a matrix. A matrix is a discretisation of the real space where the
nodes reside (i.e. the environment). A piece of information uses the matrix to
know the position of the host inside amorphous area. Given a host position, the
Binary matrix (Figure 4.1(b)) denotes only whether or not a position is inside
the amorphous area. Moreover, the gradient matrix (Figure 4.1(a)) adds gradi-
ents to denote the relevance inside the anchor area, and thus, providing a way to
coordinates the movements of information to more relevant positions inside the
amorphous area. Thus, the Binary Matrix is defined by (matrix ⊂ E x {0, 1})
where 0 represents positions outside of the area and 1 positions inside the area.
The gradient Matrix is defined by (matrix ⊂ E x N). Where E is the whole
environment considered, i.e. the set of all geographic coordinates where mobile
nodes can move. Analogously to the binary Matrix, 0 represent positions out-
side of the area, however, those positions inside the anchor are defined using a
gradient, where higher values represent more relevant positions inside the area
and lower values are located close to the border.

The matrix has the size of the space of the area we consider. For instance,
let us consider a museum area of 300m x 300m. The grid size is 300 x 300:
one point in the matrix refers to one meter in the real word. For the binary
approach, each position in the matrix contains the information bit 0 or 1. A
piece of information, which wants to know if it is in the anchor area, checks its
position and looks in the matrix to know if its position is inside the area (1) or
outside (0). For the gradient area, we use a matrix too, but now the information
in each point is a byte. The 0 value refers to the area outside the anchor area.
The value increases when the replica is inside the anchor area, 2554 being the
inner part of the anchor area (darker shade on the pictures). Thus, the center
of the corridor has a value of 255 and also the center of the halls.

The actual set of coordinates that are in an amorphous area is given by:

A(matrix) = {b ∈ E | ((b, val) ∈ matrix ∧ val 6= 0)}.
4this could be less: 4, 8, 16, etc.)

4.4. Hovering Information Algorithms 73

We consider that the overhead for storing the matrix is neglictible compared
to the actual data (few bits for each square meter).

4.3.3 Assumptions

Pieces of hovering information have the following information (at any point in
time t):

• Knowledge of the anchor area (either a pair A = (a, r), anchor location
and radius; or a binary or gradient matrix);

• Position of the node where it is currently in;

• Position of neighbouring nodes and which of them has the information
already.

We make the assumption that the information itself is more expensive to
spread around than getting information about position and data id stored by
neighbouring nodes. Due to the dynamic nature of the nodes, a hovering infor-
mation service provides a best effort service accommodating imprecise positions
or unexpected movement of nodes.

4.4 Hovering Information Algorithms

In this section different replication algorithms are proposed based on the Repli-
cation Pattern (Section 2.3.2) and Repulsion Pattern (Section 2.3.5). To the ex-
isting replication algorithms in the Hovering Information project, we contribute
with the repulsion mechanisms. The repulsion achieves a better distribution of
the pieces of information, reducing the number of replicas necessary to ensure the
accessibility in the area. This section describes the existing replication mech-
anisms in Hovering Information (Replication with Broadcast and Replication
with Attractor Point) and their extension using the replication mechanism.

4.4.1 Replication with Broadcast

At every simulation step (every second of simulation time) each piece of infor-
mation executes the Broadcast replication algorithm. In a real implementation,
pieces of hovering information would apply the algorithm at a regular interval
(e.g. every second), but not in a synchronous way as it is for the simulations.
In the broadcast algorithm, the replication is triggered when the information is
inside the area (Algorithm 1). Broadcast replicates to all nodes in the commu-
nication range that do not hold a replica. Although this process can be viewed
as a kind of multicast, we prefer to call it broadcast because the effect is to put
a replica in each node. Broadcast spreads data in the neighbourhood (to those
nodes that are not yet storing the information). There is no selection of a subset
of nodes based on their geographical position as in geocast.

74 Chapter 4. Hovering Information in Spatial Computing

pos ← NodePosition();
if (IsInAnchorArea(pos)) then

Broadcast();
end

Algorithm 1: Broadcast Replication Algorithm

Notice that when the replication is implemented using broadcast, it can be
misunderstood with the spreading pattern (Section 2.3.1). However, we defined
it as replication because the replica of information is not only sending an in-
formation, it involves an information service that is created in the destination
node. Replication involves a copy of the agent (i.e. piece of information) and
the replica offers the same services than the original agent. More details about
the differences between Replication and Spreading Patterns are presented in
Section 2.3.2.

4.4.2 Replication with Attractor Point

The Attractor Point algorithm avoids broadcasting to all neighbouring nodes.
At each simulation step, a piece of information replicates only to the Kr nodes in
communication range that present highest level of gradients. Then, the Repli-
cation with Attractor Point needs a gradient matrix to be implemented and
can not be applied with a binary matrix. The algorithm is triggered when the
information is inside the area (Algorithm 2).

pos ← NodePosition();
neigbourNodes ← NodeNeigbours();
if (IsInAnchorArea(pos)) then

selectNodes ← SelectKrHighestGradient(neigbourNodes);
Multicast(selectNodes);

end

Algorithm 2: Attractor Point Replication Algorithm

4.4.3 Cleaning

A piece of hovering information located outside of the amorphous area removes
itself and frees the memory of the node in which it was stored. The cleaning
algorithm ensures that the hovering information pieces stay in the anchor area
and do not spread all over the environment. Additionally, we consider that at
most one replica of the same piece of hovering information is stored in a given
node at a certain point in time.

4.4.4 Repulsion

The repulsion mechanism provides motion coordination to spread the pieces of
information over the anchor area achieving a uniform distribution even the the

4.4. Hovering Information Algorithms 75

Figure 4.2: Repulsion

hosts are moving. The uniform distribution of the pieces of information pro-
duces good accessibility levels while keeping a minimum number of replicas (in
order to use less memory). If two or more replicas are close to each other, one of
them will move away (removing itself from its current location and replicating
further away). Additionally, repulsion enables to easily fill amorphous shapes:
the information spreads along the shape until it fills it. The repulsion mecha-
nism, inspired by Flocking behavior, has been used in self-repairing formation for
swarms of mobile agents [Cheng et al., 2005] and as an exploration mechanism
in multi-swarm optimisation algorithms [Fernandez-Marquez and Arcos, 2009b].
The main difference between our system and the self-repairing formation for
swarms of mobile agents is that pieces of hovering information do not have any
control over the movement of the mobile nodes. Then, hosts produce a non
uniform discretisation of the environment where the pieces of information can
be located. Moreover, the hosts’ movements involve that the available hosts’
position to store a piece of information is changing continuously. Notice that
the repulsion algorithm does not change the number of replicas in the systems.

Figure 4.2(a) shows how a replica creates a repulsion vector inversely pro-
portional to the distance between itself and neighbouring replicas, and how this
replica subsequently moves to another node following the repulsion vector, as
shown in Figure 4.2(b). Contrarily to the previously described Broadcast and
Attractor Point, the replica, which applies the repulsion mechanism, removes
itself from the current node.

Let h be a piece of information, r a replica of h, and n(r) the mobile node
where r is currently located. Using the repulsion mechanism, the desired position
for r at time t+ 1, ~Pd(r)t+1, is calculated as follows:

~Pd(r)t+1 = ~P (r)t + ~R(r)t, (4.1)

76 Chapter 4. Hovering Information in Spatial Computing

pos ← NodePosition();
neigbourNodes ← NodeNeigbours();
if (IsInAnchorArea(pos)) then

CalculateDesirePositionbyRepulsion();
equations (4.1), (4.2)
MoveToNodeClosestDesirePosition();
if (¬ExistPieceOfInformation(neigbourNodes)) then

Broadcast();
end

end

Algorithm 3: Broadcast with Repulsion - Binary matrix

where ~P (r)t is the position of r at time t and ~R(r)t is the repulsion vector at
time t.

~R(r)t =
∑

i∈R(r,t)

~P (n(r))t − ~P (n(i))t
dist(n(r), n(i))

× (rcomm(n(r))− dist(n(r), n(i))) (4.2)

where:

• R(r, t) is the set of replicas of h in communication range of n(r) at time t;

• dist(n(r), n(i)) is the Euclidean distance between the node n(r) and the
node n(i);

• ~P (n(j))t is the position of node n(j) where the replica j is stored at time
t;

• × is the multiplier operator; and

• rcomm is the communication range.

Once the desired position ~Pd(r)t+1 is known, the replica r must choose which
node in its communication range is the closest to the desired position. If the
closest node is itself, then repulsion is not applied. Otherwise r replicates to
the new node and deletes itself from n(r). Basically, these equations produce
a repulsion vector that moves the replica of information to the less dense area
inside its communication range.

4.4.5 Broadcast Repulsion

Broadcast with Repulsion (see Algorithm 3) uses broadcast as a replication algo-
rithm and repulsion to spread away the replicas. A piece of information replicates
to all the neighbours when it is inside the anchor area and there are no other
replicas in the communication range. Moreover, a piece of information executes

4.4. Hovering Information Algorithms 77

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Figure 4.3: Broadcast Repulsion Steps

repulsion when it is inside and there is one o more replicas in the communica-
tion range. Thus, the replication with broadcast creates the replicas necessary
to cover the shape and the repulsion is the responsible of distributing the pieces
of information uniformly over the area. Broadcast Repulsion is applied to the
Binary Matrix, since the broadcast replicates to all the neighbours and does not
use the gradient information.

The main steps of the algorithm are shown in Figure 4.3. At the beginning,
Step 1, the first piece of information is created and the anchor area is defined.
This piece of information executes the broadcast, since there is no other piece of
information in its communication range. Step 2 shows how the nodes that are in
communication range get a copy of the piece of information. At Step 3, the pieces
of information spread away due to the repulsion algorithm. After the repulsion
step, two of the three replicas have no other replica in their communication
range, then they execute the Broadcast algorithm and replicate to all the nodes
in their communication range, Step 4. At Step 5 the pieces of information spread
further due to the repulsion and finally fill the anchor area. Step 6 shows how,
without getting stored in every node, the initial piece of information becomes
available to all nodes in the anchor area (i.e. it “fills” or “covers” the whole
anchor area).

78 Chapter 4. Hovering Information in Spatial Computing

pos ← NodePosition();
neigbourNodes ← NodeNeigbours();
if (IsInAnchorArea(pos)) then

CalculateDesirePositionbyRepulsion();
equations (4.1), (4.2)
MoveToNodeClosestDesirePosition();
if (¬ExistPieceOfInformation(neigbourNodes)) then

selectNodes ← SelectKrHighestGradient(neigbourNodes);
Multicast(selectNodes);

end

end

Algorithm 4: Attractor Point with Repulsion - Gradient Matrix

4.4.6 Attractor Point Repulsion

Attractor Point with Repulsion (see Algorithm 4), analogously to the broadcast
repulsion, uses replication, and repulsion to spread away the replicas. However,
In Attractor Point with Repulsion, instead of replication to all nodes in the
communication range, a piece of information replicates to the Kr neighbour-
ing nodes with higher level of gradients when it is inside the anchor area and
no other replicas are present in the communication range. The use of gradi-
ent provides a better location of the new replicas created. Analogously to the
Broadcast Repulsion algorithm, a piece of information executes repulsion when
it is in the anchor area and no more replicas are present in the communication
range. Then, the algorithm behaviour is similar to the Broadcast Repulsion,
but, Attractor Point repulsion reduces the number of replicas created in each
replication process. The Attractor Point Repulsion needs the gradient matrix to
choose the Kr nodes with highest gradient.

4.5 Simulation Results

We conducted diverse simulations involving the algorithms described above for
different scenarios. For each algorithm, the performances are measured and
compared against a collection of metrics. We used the Recursive Porous Agent
Simulation Toolkit (REPAST)5, a Java environment for agent simulations. In
addition to performance measures, it provides an event scheduler to simulate
concurrency and a two-dimensional agent environment that we used to visu-
alise the nodes and the spreading of the pieces of hovering information in the
environment.

Although the WLAN 802.11 standard provides communication ranges up
to 70m for indoors and 250m for outdoors, most authors (e.g. [Roth, 2003])
consider that this is too high for realistic situations, and propose smaller values.

5http://repast.sourceforge.net/

4.5. Simulation Results 79

Blackboard 1200m x 700m
Mobility Model Random Way Point

Nodes speed 1m/s to 2m/s
Communication Range 40m or 80m
Replication Time (TR) 1s

Repulsion Time 10 s
Cleaning Time (TC) 1s

Table 4.1: Scenario’s Settings

We defined two scenarios: The indoor scenario where the communication range
is 40 meters and the outdoor scenario where the communication range is 80
meters. The anchor area used is presented in Figure 4.1 and the mobility model
used for the nodes is Random Way Point. This mobility pattern, in contrast
to other patterns like Random Direction or Random Walk, creates the highest
density of nodes at the center of the environment. By locating the anchor area
at the center, a similar concentration of nodes across our different experiments
is ensured, i.e. we can infer meaningful conclusions. The goal of the simulations
is to compare Attractor Point (AP), Broadcast (BB), Attractor Point Repulsion
(APR) and Broadcast Repulsion (BBR) in the different scenarios proposed where
the goal is to ensure high accessibility levels with a minimum number of messages
and a minimum number of nodes actually storing the information.

Table 4.1 summarises the parameter settings for the scenarios simulated.
For each experiment, we executed 50 runs, each run spending 1000 simulation
seconds. The results presented are the average over these 50 runs. For the
simulations, we used a synchronous model, i.e. we measured the metrics by
analysing mobile devices activity (e.g. how many times they received, replicated,
discarded data) during a specific period of time.

4.5.1 Metrics

To measure the performance of each algorithm in the different scenarios pro-
posed, we defined a collection of metrics focused on: the survivability of pieces
of information, the accessibility of information in the anchor area, the number
of messages sent, and the memory used (i.e. number of replicas). To define
the metric we use the following notation: HoverInfot = (Nt,Ht) is a Hovering
Information System at time t. Nt is the set of nodes present in the system at
time t. Ht is the set of pieces of hovering information and any replica present
in the system at time t. Since we consider only one piece of information in this
work, Ht stands for h and all its replicas (same identity and data but stored at
different nodes). Note that h itself is just a specific replica.

80 Chapter 4. Hovering Information in Spatial Computing

Survivability

A piece of hovering information is alive at some time t if there is at least one
node hosting a replica r of this information. The survivability of h at time t is
given by the boolean value:

sv(t) =

{
1 if ∃r ∈ Ht, n(r) ∈ Nt
0 otherwise.

The survivability along a period of time is defined as the ratio between the
amount of time during which the hovering information has been alive and the
overall duration of the observation. Specifically, the survivability of h between
time tc (creation time of h, always 0 in this work) and time t is given by:

SV (t) =
1

t− tc

t∑
τ=tc

sv(τ).

Accessibility

A piece of hovering information h is accessible by a node n at some time t if
the node is able to get this information, i.e. if it exists a node m being in
communication range of the interested node n containing a replica of h. Let
n ∈ Nt be a mobile node, the accessibility of h for n at time t is given by the
boolean value:

ac(n, t) =

{
1 if : ∃r ∈ Ht, n(r) : in AC(n)

0 otherwise.

where, AC(n) is the area in communication range of node n.

The accessibility of h at time t is given by:

AC(t) =
S(

⋃
r∈Ht

AC(n(r)) ∩A)

S(A)

where S(X) denotes the surface area of X, AC(n(r)) is the area of communica-
tion of the node n storing replica r, and A is the anchor area.

Messages

A message is sent each time a replica self-replicates to another node. Let
msg(n, t) be the number of messages sent by node n between 0 and t, the number
of messages sent at time t is given by:

MSG(t) =
∑
n∈Nt

msg(n, t)

4.5. Simulation Results 81

(a) (b)

Figure 4.4: Survivability and Accessibility - Indoor scenario

Memory

The memory that the system uses at time t is the total number of replicas in
the system at time t: |Ht|. Then, the Rate of Memory used at time t is:

MEM(t) =
1

t− tc

t∑
τ=tc

|Hτ |

4.5.2 Indoor Scenario

In indoor scenarios the communication range of the nodes is set to 40m. The
anchor area considered is the one shown in Figure 4.1 (4 corridors and 4 corners),
localised in a bi-dimensional space of 1200m by 700m, and the minimum number
of nodes is above 200.

Figure 4.4 shows survivability and accessibility rates of the four algorithms
considered in this section. Broadcast and Attractor Point outperform their re-
spective variants with repulsion since more nodes store the data. However, this
outperform in the accessibility produces an increment in the number of replicas,
as shown in figure 4.6(b).

Figure 4.5(a) shows the standard deviation (STD) related to survivability.
We may observe how STD is going down when the number of nodes increases.
That is, the probability of failure decreases when the number of nodes increase.
When the number of nodes is higher than 600, the STD tends to 0, i.e. at least
600 nodes are necessary to ensure the survivability of the hovering information
along the simulation. Figure 4.5(b) shows the STD related to accessibility. The
best STD is achieved when the number of nodes in the system is enough to
ensure the survivability of the hovering information during the whole simulation.
Notice that in both above mentioned figures an “accidental” increase of the STD
may be observed at 550 and 600 nodes, because one of the 50 runs failed to
reach survivability. This effect is also visible in Figure 4.4(a), a small drop in
survivability for 550 and 600 nodes.

82 Chapter 4. Hovering Information in Spatial Computing

(a) (b)

Figure 4.5: Survivability and Accessibility STD - Indoor scenario

(a) (b)

Figure 4.6: Messages and Memory - Indoor scenario

Figure 4.6(a) shows that Broadcast employs much more messages and storage
memory than the other algorithms. It is clearly outperformed by the rest.

Figure 4.7(a) shows the STD of messages achieved by the different algorithms
in the amorphous area. Except Broadcast that presents a high STD, the rest of
the algorithms present an STD lower than 10%. Figure 4.7(b) shows the STD
related to memory. All the algorithms reach a STD for memory lower than 8%
when the system has enough number of nodes to sustain the data. Here again,
we observe that the same runs that affected the STD in Figures 4.5(a) and (b)
affect also Figures 4.7(a) and (b) for 550 and 600 nodes. As it occurs in all the
STD figures presented in this work, a low number of nodes involves an unstable
survivability, producing an increment in the STD.

The Attractor Point with Repulsion outperforms its variant without repul-
sion for both the number of messages and the memory storage. This result is
motivated by the fact that the repulsion variant replicates only when there is no
other replica in the communication range.

4.5. Simulation Results 83

(a) (b)

Figure 4.7: Messages and Memory STD - Indoor scenario

4.5.3 Outdoor Scenario

In the outdoor scenario, the communication range is set to 80 meters. Figure 4.8
shows survivability and accessibility rates for the outdoor scenario. Because of
the increased communication range, both rates are better for all algorithms.
Broadcast and Attractor Point still outperforming (even though slightly) the
repulsion variants for accessibility rates.

(a) (b)

Figure 4.8: Survivability and Accessibility - Outdoor scenario

Analogously to the indoor scenario, Broadcast is clearly outperformed by
the other three algorithms for both the number of messages sent around and
the memory used. To facilitate the understanding, the messages for Broadcast
are not included in Figure 4.9. Attractor Point (both variants) presents similar
levels of messages whereas the repulsion variant is using less memory.

4.5.4 Analysis of algorithms

This section investigates scalability issues, the impact of the repulsion rate on
the results, cases where a newly created piece of information does not succeed

84 Chapter 4. Hovering Information in Spatial Computing

(a) (b)

Figure 4.9: Messages and Memory - Outdoor scenario

to spread and dies almost immediately, the minimum number of nodes below
which the system cannot work, and a recovering scenario in case of massive
failures of nodes. More extended study about the failures can be found in
[Fernandez-Marquez et al., 2010].

Scalability

In this section we study the behaviour of the algorithms for very large numbers of
nodes (up to 2000). This experiment involves the anchor area of Figure 4.1 and a
communication range of 40m. We varied the number of nodes from 800 to 2000.
Analogously to the other experiments, the Attractor Point and Attractor Point
with Repulsion are using the gradient matrix (Figure 4.1(a)), while the Broadcast
and Broadcast with Repulsion are using the binary matrix (Figure 4.1(b)).

The four algorithms achieved very good accessibility rates due to the very
large number of nodes involved, as shown in Figure 4.10(a). Broadcast and
Attractor point present better accessibility than the variants with repulsion,
since they use also more memory, as shown in Figure 4.10(b). The main point
is that the repulsion variants are scalable regarding memory consumption. The
memory levels remain constant despite the higher number of nodes.

The main drawback of applying repulsion is the high number of messages sent
around when comparing with the variants without repulsion. Attractor Point
(without repulsion) is scalable in terms of messages: the number of messages re-
mains constant even though the number of nodes increases (Figure 4.11(a)).
Broadcast (both variants) is not scalable at all in terms of messages (Fig-
ure 4.11(b)).

To conclude, for large numbers of nodes, Attractor Point scales better in
terms of messages than the Attractor Point with Repulsion, but employs more
memory (up to four times more). The repulsion variant scales in terms of mem-
ory but uses far more messages. It is also worth noting that the Attractor Point
doesn’t use any mechanism to spread the information over the area. The area
gets filled as a result of the movements of nodes. Nodes help the algorithm in

4.5. Simulation Results 85

(a) (b)

Figure 4.10: Accessibility and Memory - Scalability Indoor scenario

(a) (b)

Figure 4.11: Messages - Scalability in Indoor scenario

spreading the information. The repulsion version ensures that the information
spreads over the area, even when the nodes are stationary or less mobile. Broad-
cast (without repulsion) is not scalable and its variant with repulsion must be
preferred.

Repulsion Interval

An important parameter of the repulsion mechanism is the repulsion interval,
i.e. the time between two repulsion executions. When the repulsion interval
is shorter, the number of messages and the accessibility rate increase. When
the repulsion interval is long, the number of messages decreases, but also the
accessibility rate.

In this experiment we computed the accessibility rate, the number of mes-
sages, and the memory usage along 1000 simulation steps, over the average of 50
runs for Broadcast with Repulsion and Attractor Point with Repulsion. For this
experiment we set the number of nodes to 500 and the communication range to
40m. We considered the same anchor area as above.

Figure 4.12 shows that accessibility rates are better with a shorter repulsion

86 Chapter 4. Hovering Information in Spatial Computing

Figure 4.12: Accessibility - Varying the repulsion interval

(a) (b)

Figure 4.13: Memory and Messages - Varying the repulsion interval

interval (every 1s or 2s), because repulsion spreads faster the pieces of informa-
tion over the area. Repulsion adapts quickly to topology changes by moving
around the replicas. When we increment the repulsion interval, repulsion ap-
plies less frequently (every 4s or less), it adapts less quickly to topology changes,
and accessibility rates decrease. For memory consumption, a shorter repulsion
interval causes more nodes to store replicas, while a longer repulsion interval
decreases the memory used. A shorter repulsion rate increases the number of
time repulsion applies, i.e improves the exploration of the space and is able to
find better places wherein to replicate increasing accessibility. The drawback is
a higher memory consumption, as shown in Figure 4.13.

The main issue with a shorter repulsion interval is that the increment in
the number of messages is not proportional to the accessibility rate. In Fig-
ure 4.13(b), we may observe that for short repulsion intervals, the number of
messages increases. This increment is not linear like the accessibility or the
memory values. The gain in accessibility is weak compared to the large number
of additional messages needed to reach that level. Additionally, the repulsion
interval depends on the dynamics of the network. When the network is very
dynamic, i.e. the topology is continuously changing, a short repulsion interval
allows to keep up with the change. For less dynamic networks, a short repul-

4.5. Simulation Results 87

sion interval causes replicas to move around continuously without improving the
performances.

Convergence

In this section our goal is to analyze the velocity of convergence when covering
the whole area for each algorithm. We measure first the convergence at the
initialisation and second we investigate the self-healing property of the system
when, due to an extreme case of nodes failure, a large number of nodes are
disconnected, all at once, and the system has to converge again to fill the area.
Simulations run over the anchor area given by Figure 4.1. We set the number
of nodes to 500 and we measured the accessibility at different simulation steps.
The executions run over 1000 simulations steps and at the 500th simulation step,
nodes in a portion of the area are manually disconnected, forcing the system to
converge again. We performed two sets of simulations: one for the indoor and
another one for the outdoor scenario. We consider that the system has converged
in covering the whole area when the accessibility rate is higher than 0.8. That is,
when 80% or more of the nodes in the anchor area have access to the information.

Indoor Scenario. Figure 4.14 shows that Broadcast provides the best con-
vergence speed. This algorithm reaches the accessibility of 0.8 at the 150th
simulation step. This very fast convergence is due to the fact that the informa-
tion replicates to all the nodes and thus the area gets filled very quickly. The
cost is the high level of messages and memory usage (Figure 4.11). Attractor
Point reaches the accessibility of 0.8 at the 280th simulation step (Figure 4.14).
Broadcast with Repulsion and Attractor Point with Repulsion need more than
500 simulation steps to reach an accessibility of 0.8.

At the 500th simulation step, nodes in a portion of the area are disconnected
and the accessibility suddenly drops. The speed of convergence after the failure
is similar for the four algorithms. As we may see in Figure 4.15(b), the four
algorithms follow the same slope. That is, the time that the MANET takes
to fix the network after the failure, i.e. the time required to repopulate the
area. Whatever the speed of convergence of the algorithm, after a failure in
the network, the speed of convergence is limited by the speed of the nodes in
repopulating the area, i.e. the speed of convergence decreases due to the lack of
nodes to fill the shape.

Outdoor Scenario. With a communication range of 80 meters, the con-
vergence speed increases. Figure 4.16(a) shows that the Broadcast algorithm
reaches 80% of accessibility at the 8th simulation step, Attractor Point at the
65th, Broadcast with Repulsion at the 85th and Attractor Point with Repulsion
at 150th. The more memory an algorithm consumes, the quicker it converges.
When the failure occurs (Figure 4.17(b)) we may observe that the convergence
speed is similar (same slopes).

88 Chapter 4. Hovering Information in Spatial Computing

Figure 4.14: Accessibility - steps 0 to 1000 - Indoor Scenario

(a) Steps 0 - 250 (b) Steps 490 - 700

Figure 4.15: Accessibility with zoom - Indoor Scenario

Faults - Initialisation phase

One of the key issues we encountered was the initialisation of the information,
i.e. the period of time between the creation of a piece of information and the
moment the information covers the whole area. In many cases, due to a lack of
nodes in the neighbourhood or to random movements, the piece of information
cannot replicate and dies before the anchor area is fully covered. We observed
that once the initialisation phase succeeds, i.e. once a large part of the an-
chor area is covered with replicas, the system gains in robustness. Indeed, the
probability that all the replicas leave the anchor area without replicating to
neighbouring nodes is lower than during the initialisation process (when only
one or few replicas are available). During the initialisation phase, the system is
very fragile and sensitive to random movements.

In this experiment we executed each algorithm 5000 times and each run spent

4.5. Simulation Results 89

Figure 4.16: Accessibility - steps 0 to 1000 - Outdoor Scenario

(a) Steps 0 - 250 (b) Steps 490 - 700

Figure 4.17: Accessibility with zoom - Outdoor Scenario

500 simulation seconds, i.e. enough time to ensure that the information was
initialised successfully. Over the 5000 runs, we counted the number of times the
information dies before the end of the run, corresponding to system failures. We
studied the 4 algorithms: Broadcast (BB), Attractor Point (AP), Broadcast with
Repulsion (BR), Attractor Point with Repulsion (APR). The number of failures
is reported in Table 4.2 (Indoor and Outdoor scenarios) and Figures 4.18(a),
4.18(b).

The indoor case is clearly more sensitive to initial conditions than the outdoor
case because of the shorter communication range. The likelihood that random
conditions prevent a piece of information to replicate to neighbouring nodes
is higher in indoor scenarios. Outdoor, the repulsion variants fail to initialise
more frequently than their counterpart without repulsion. Indoors, failures are
comparable among the four algorithms. Finally, the more the nodes in the
environment, the less the risk of failure during the initialisation phase.

Broadcast and Attractor Point ensure a good survivability rate. They also
present a better convergence speed. The price is a higher level of memory storage.
Broadcast with Repulsion and Attractor Point with Repulsion present a very
low use of memory. For this reason, the best option is to use algorithms like
Broadcast or Attractor Point during the initialisation of the system. Later,

90 Chapter 4. Hovering Information in Spatial Computing

Indoor Scenario Outdoor Scenario
Nodes Number BB AP BR APR BB AP BR APR

100 3780 3799 3897 3900 1646 1716 2088 2194
200 1738 1757 2009 2028 195 213 267 350
300 791 811 998 1012 12 34 48 65
400 354 368 472 509 0 7 9 24
500 147 160 226 244 0 1 0 5
600 64 69 102 123 0 0 1 1
700 27 32 37 50 0 0 0 2
800 14 16 21 27 0 0 0 1
900 5 6 11 13 0 0 0 2
1000 2 2 6 7 0 0 0 3

Table 4.2: Init Test in Indoor and Outdoor Scenarios (amorphous()

(a) Indoor (b) Outdoor

Figure 4.18: Faults - Initialisation Phase

the information could switch to Broadcast with Repulsion or Attractor Point
Repulsion in order to keep the use of memory low.

Faults - Critical mass of nodes

We focus here on analyzing the minimum number of nodes that the system needs
in order to keep the information alive (survivable) during the whole simulation
time. In this experiment we started with a large number of nodes, 600, in order to
ensure the correct initialisation of the system (and to avoid initialisation failures
discussed above). At every 15000 simulation seconds, one node is removed at
random. As time goes by, the probability of failure increases (i.e. the probability
of the information failing to survive). Once all replicas have disappeared from
the system, we count the remaining number of nodes in the system. We run each
algorithm 50 times and we present the average and deviation (Table 4.3). This
information provides the minimum number of nodes below which the system is
not viable. We observe that the repulsion variants need more nodes than their
variants without repulsion. Experiments with another shapes have demonstrated

4.6. Conclusions 91

Indoor Scenario Outdoor Scenario
Algorithm Nodes Number Std. Dev. Nodes Number Std. Dev.

BB 167.63 7.86 93.83 5.12
AP 169.02 7.86 98.92 5.02
BR 185.83 10.35 111.98 6.61

APR 186.20 10.63 116.18 6.79

Table 4.3: Nodes limit in Indoor and Outdoor Scenarios

that small anchor areas emphasise this difference.

4.6 Conclusions

This chapter proposes a viral programming approach to perform persistent stor-
age of data at specific spatial locations on top of mobile computing devices. The
main goal is to make the data accessible to a maximum number of users inside
a required area, without flooding all nodes with the data, and without sending
a prohibitive number of messages among the nodes (i.e. using the minimum
number of replicas and messages sent).

We investigated four algorithms, Broadcast, Attractor Point, and their re-
spective variants with Repulsion (to avoid replicating at nearby locations). All
the algorithms proposed implement the replication pattern and two of them com-
bine the replication with the repulsion to get a better distribution of the pieces
of information in the area. Results show that Broadcast converges very quickly,
but needs high levels of memory and employs more messages than the Attractor
Point. The variants with Repulsion consume less memory and their memory
consumption is scalable, but the number of messages among nodes is very high.
Attractor Point (without repulsion) does not outperforms the other algorithms
for all metrics, but reaches high levels of accessibility even for low number of
nodes in the area, converges rather quickly in covering the whole area, employs
less messages, and slightly more memory than its variant with Repulsion.

For anchor areas both indoor and outdoor, Attractor Point (both versions)
is clearly the best options. Specifically, for higher availability rates (above 95%)
Attractor Point should be preferred whereas for acceptable lower availability
rates (80%) and less memory storage, Attractor Point with Repulsion is the best
option.

In the Appendix, we provide some simulation images using different anchor
areas for all the algorithms analysed in this chapter. Pictures show how the dis-
tribution of pieces of information improve when repulsion is used, and how the
repulsion variants use less memory (number of nodes storing pieces of informa-
tion) than the variants without repulsion. Moreover, we provide some simulation
images for these algorithms when the nodes fail in a sub-area. The images show
the faster refill after the failure.

We may see how the convergence speed varies for these algorithms. The

92 Chapter 4. Hovering Information in Spatial Computing

Attractor Point with Repulsion takes more time to spread replicas over the
whole area (280 seconds of simulation time), while Broadcast quickly fills the
shape (at the 18th simulation second already). The difference in the number of
nodes storing a replica (darker dots) is also clearly visible.

Notice that the Random Way Point model, used for the simulations, is such
that the nodes are most of the time in the middle of the environment. So, when
an anchor area is on the border of the environment, the system will not work
well because of a lack of nodes. Alternatively, if the mobility model does not
follow the Random Way Point model (e.g. Random Walk), the density of the
nodes may not be guaranteed in the anchor area, and results will not be the
same as those reported here.

Finally, the Repulsion and Replication Patterns implemented in the different
algorithms reached a good performance in terms of robustness and adaptability
in front of environmental changes.

Chapter 5

Detecting Diffuse Event
Sources in Noisy WSN
Environments

This chapter proposes and evaluates the use of the chemotaxis Pattern applied
in sensor networks to localise dynamically changing diffuse events. Localizing
dynamically changing diffuse event sources in real environments is still an open
problem in Wireless Sensor Networks (WSN). The dynamism of the environment,
the energy limitations of the sensors, and the noise associated to the sensors’
measurements pose a challenge that a realistic solution has to deal with.

We propose a decentralised mobile agent approach to detect diffuse event
sources in dynamic and noisy environments, using a Wireless Sensor Network
infrastructure. In the search process, the agents’ motion coordination is based
on the Chemotaxis Pattern (Section 2.5.3). The chemotaxis pattern exploits the
gradient created in the environment by the diffuse events, following a distributed
and decentralised algorithm based on local interactions and local knowledge
of the environment. Reported experiments show that our approach efficiently
adapts in tracking the event sources as they appear, is scalable, and robust to
noise and failures.

5.1 Introduction

The localisation of diffuse event sources and plumes is a problem that appears
in a wide range of real applications such as toxic gas detection, detection of
underwater leaks, or detection of acoustic and heat sources. Diffuse events are
huge phenomena that can spread in a 2D or 3D space without a regular shape.
A diffuse event consists of one source and its plume. The source is the focus of
the event whereas the plume is the area or space the diffuse event covers. Plume
sizes and shapes are constantly changing due to the environment dynamism that

93

94 Chapter 5. Detecting Diffuse Event Sources in Noisy WSN Environments

acts over them (the wind, obstacles, . . .).

In some scenarios, the source is fixed and does not vary with time, while
the plume varies constantly. A recent example is provided by the eruption of
the Eyjafjallajökull volcano in Iceland. The source is well known and somehow
fixed, while the changing ash plume is the main point of concern. In other
scenarios, the sources themselves vary (in location and number) over time and it
is imperative to detect all of them as quickly as possible. For instance, in 2002
the Prestige tanker was damaged and began losing its cargo during a storm. The
Prestige was carrying approximately 81.000 tons of oil. The oil spread over the
sea near the Spanish and Portuguese coasts. Due to the wind and sea currents
and the way the tanker sank, the oil split into several disjoint spots. The different
spots of oil moved over the sea and continued splitting into new spots, rendering
the recuperation of the oil and the cleaning process difficult. Ultimately, this
accident lead to a huge ecological disaster, the oil spills stretching on more than
1000 km. The detection and tracking of the spots was a difficult task that could
have been addressed with the use of sensor networks. Another real example of
dynamically changing diffuse event sources are the bush fires in Australia in 2009.
Because of the wind, embers were blown ahead of the fire front, new spot fires
then started where the embers landed. In this particular example, the presence
of smoke complicated the localisation of the main fire focuses. Infrared vision
sensors, as used in the project Spread1 have been used to localise hot temperature
spots and to predict fire movements, thus demonstrating the usefulness of sensors
in tracking fires. In scenarios where sources are dynamically changing, localizing
as soon as possible all diffuse event sources is crucial (e.g. to avoid the spreading
of toxic gas and possible large disasters). We consider that the sensor network
and the localisation of diffuse event sources may play a key role in these kind of
scenarios.

So far, approaches exploiting WSN, have essentially concentrated on de-
tecting plumes using centralised algorithms [Ruaiŕı and Keane, 2007], on de-
tecting a single source (global optimum) in static and noise-free environ-
ments [Blatt and III, 2006, Ermis and Saligrama, 2006], or detecting multiple
sources with sensors well distributed in the environment and following a cen-
tralised strategy [Weimer et al., 2009]. More generally, regarding the detec-
tion of static diffuse event sources in non-noisy environments, Ruair et al.
[Ruaiŕı and Keane, 2007] demonstrated that existing algorithms for target track-
ing do not scale well when they are applied to the localisation of diffuse events.
These algorithms require that each sensor reports the data to the sink when
it reads a sensor value higher than a threshold. Since diffuse events can cover
large areas, a large number of sensors would try to report the data to the sink,
producing a network overload.

To the best of our knowledge, the problem of detecting dynamically changing
diffuse event sources in noisy WSN environments has not been addressed before.
Our work focuses on the detection of diffuse event sources in dynamic and noisy
environments. The main task is to detect not only the main event source (i.e.

1http://www.algosystems.gr/spread/index.html

5.2. Related Work 95

location of the global optimum given for instance by the highest temperature
or the highest density of oil) but also any residual event sources that may be-
come new principal events (i.e. local optima becoming global optima). Thus,
the goal is to detect all event sources dynamically appearing over time in the
system. Additionally, any realistic solution to the problem has to deal with the
imprecision related to sensors’ measurements and the noise introduced by the
environmental changes (e.g. weather conditions or ocean currents).

To track diffuse event sources, we consider sensor networks covering large
areas created by a vast number of connected devices spread randomly in the en-
vironment. Despite the improvement in the technology, which has made possible
the development of ultra-small fully autonomous and communicating sensors,
one of the most important requirements in a WSN remains the design of energy-
efficient algorithms able to extend the network lifetime [Vinyals et al., 2011].
A quick detection of dynamically changing diffuse event sources in large sens-
ing areas requires decentralised self-organising approaches able to adapt to the
dynamicity of the environment, robust to noise, and that scale without being
greedy on energy consumption. This work proposes a decentralised multi-agent
approach, based on the Chemotaxis Pattern, exploiting local interactions among
sensors. Analogously with the chemotaxis process in bacteria (i.e swimming to-
wards the highest concentration of food molecules), the mobile agents coordinate
their movements towards the highest concentration of gradients. Thus, mobile
agents move by hopping among the sensors until they reach a diffuse event source.

The chapter is organised as follows. First, we discuss related work. Then,
we briefly explain the lower power listening mode assumed in this work for
the sensors. Next, we describe our model and approach. Then, we report on
simulations and discuss the performance of our approach in terms of messages
sent, number of sensors’ measurements, and resilience to noise and failures. We
also performed a study on the impact of the parameters used.

5.2 Related Work

Localisation of diffuse event sources differs from target tracking
[Yang et al., 2006] and environment monitoring [Corkill et al., 2007]. These
related problems are concerned either with the prediction of object movements
or with the creation of a model to monitor the changes in a specific area. We
assume that diffuse events are phenomena whose behavior is unpredictable
because of two main reasons: the environment dynamism and the high latency
that WSN require to track objects. Moreover, the appearance of diffuse events
cannot be predicted by any model.

The problem of localizing diffuse event plumes in a WSN has been addressed
by Ruair et al. [Ruaiŕı and Keane, 2007] who propose a MAS approach to map
the contours of large diffuse events. Agents are distributed over a WSN playing
different roles: an agent playing the leader role and operating on one sensor,
and multiple agents playing the member role and operating on sensors adjacent
to the location of the leader agent. Agents change their role by following a

96 Chapter 5. Detecting Diffuse Event Sources in Noisy WSN Environments

gradient-based strategy, with the aim of covering an event’s contour (plume).
The proposed mechanism can be adapted to deal with multiple sources, but it
has not been demonstrated to be enough for dynamic and noisy environments.

Blatt et al. [Blatt and III, 2006] and Ermis et
al. [Ermis and Saligrama, 2006] proposed different algorithms to detect
and localise sources that emit acoustic waves. They consider static and
noisy-free environments, and their goal is to assess the global optimum value
avoiding the local optima of the acoustic signals.

When the cost of the sensors is expensive, sensors are allocated strategically
and a centralised solution produces really good results [Weimer et al., 2009].
When the data sampling periods are much larger than the communication time,
a centralised approach for detection and localisation is feasible. Indeed, the
time required to coordinate the nodes is smaller than the sampling time. This
solution however does not scale to a large number of non expensive sensors spread
randomly over the space, since we cannot assume that all nodes are sampling at
each period.

Finally, as the main studies in dynamic multi-modal optimisation have
demonstrated [Blackwell, 2007, Lung and Dumitrescu, 2007], in highly dynamic
environments detecting only the global optimum is not sufficient because the di-
versity of the exploration is a required feature. A current trend in dynamic multi-
modal optimisation is to localise most of the best local optima to guarantee a fast
adaptation to environmental changes [Fernandez-Marquez and Arcos, 2009a],
thus, when a local optimum becomes to global optimum is quickly found.

5.3 Sleep/Wake Modes

The required life time of sensors for environment monitoring can reach several
years. In order to achieve this requirement, a sensor must be in sleep mode most
of the time. A sensor consumes energy while it takes measurements, is computing
or while it is communicating (sending or listening for data). Communication
is the most energy consuming activity of the sensor [Croce et al., 2008]. The
energy used in the communication device, even in idle listening is three orders
of magnitude higher than when the node in the sleep mode.

Different proposals to deal with energy efficiency at the MAC layer in sensor
networks communication have been presented. Two main approaches can be
identified [Na et al., 2008]. On the one hand, the synchronised listening (SL)
approach causes sensors to turn on and off their radio at regular intervals; sensors
must be synchronised to communicate with each other. The synchronisation
has an extra cost and sensors cannot send data when they need to, they have
to wait for the wake up events to do so. On the other hand, the low power
listening (LPL) approach allows sensors to send information when they want.
The only requirement is, for the sender, to send a large preamble data in order
to synchronise with other sensors in communication range. Potential receiving
sensors wake up asynchronously to detect and synchronise with any detected
preamble.

5.4. Our Approach 97

Figure 5.1: Low Power Listening (taken from [Na et al., 2008])

We consider that in emergency scenario like forest fires, or a gas leaks, a
sensor should not wait until the next wake up period, but the sensor must be
able to send the information in a short period of time. Therefore in this work we
assume the LPL approach. The Low Power Listening (LPL) approach reduces
the idle listening time, by incorporating a duty cycle in the physical layer. This
approach is motivated by the idea that most of the time sensors do not need to
communicate, because interesting events rarely occur. Basically, LPL increments
the size of the data sent by the transmitter and reduces the cost from the receiver.
Figure 5.1 shows how the receiver wakes up asynchronously and checks whether
there is a preamble or not. If the preamble is detected, the receiver continues
listening until it receives the data, otherwise it turns off the radio until the next
cycle T . LPL can be applied to those devices where switching the radio on/off
takes little time. Recently, further improvements have been realised in both
approaches (SL, LPL) [Na et al., 2008].

5.4 Our Approach

The aim of our approach is to localise the diffuse event sources as soon as possible,
minimizing sensors’ measurements and communication. Diffuse events appear
and disappear over time. Basically, the idea is to find those sensors closest to
diffuse events. One of the contributions of this algorithm is that the search of
the diffuse event sources is executed in a decentralised way, by collaboration.
This proposal produces better scalability when diffuse events spread over a huge
number of sensors. Once we find the sources, the number of sensors that report
the information about the diffuse event sources localisation is very low compared
with the traditional tracking algorithms used in sensor networks, where every
sensor that samples a value higher than a fixed threshold sends the information
to the sink.

We assume a WSN where the sensors are spread randomly over a 2-
dimensional space. All sensors are identical and reactive. Over the WSN there
is a middleware that permits a set of agents to move from one sensor to another
and have access to the sensor data and sensor communication devices. All agents
run the same algorithm and agents have only access to local information. Com-
munication between agents is only allowed when they reside in adjacent sensors,
that is, a hop-by-hop communication protocol is not assumed. Sensors only
communicate with other sensors when an agent hosted in some sensor requires

98 Chapter 5. Detecting Diffuse Event Sources in Noisy WSN Environments

information.
We propose a distributed and decentralised approach based on a mobile MAS

where agents freely move over the sensor network to localise the sources of diffuse
events that are randomly appearing and disappearing along the time. Moreover,
agents are responsible for monitoring the localised events once the source is
reached. They are responsible for requiring measures from the sensors.

Our approach pursues a number of active agents lower than the number of
sensors, as we show later on. As a consequence, a low number of environment
measurements are performed. Because we cannot control the number of active
diffuse events, we include a mechanism to control the number of mobile agents
that live in the WSN. This mechanism controls the number of agents in the
WSN in a decentralised way and without additional communication cost.

To deal with energy constraints, we use a GPS-free algorithm where our
main goals are to reduce the number of sensors’ measurements and the band-
width used. The GPS-free approach reduces WSN cost [Savvides et al., 2001]
and works either in indoor or underwater environments with high energy con-
straints.

Our approach performs two different explorations: (1) a global exploration
thanks to the random generation of new agents on the WSN; and (2) a local
exploration that drives agents to the sources. Global exploration is required to
continuously monitor new diffuse events as they appear. We consider that the
system converges when, for each active event, there is an agent located at the
sensor nearest its source (i.e. all event sources are monitored).

To ease the discussion, we use the notion of mobile agents. However, to
further reduce computation and communication costs, the actual movement of
the agents can be replaced by moving a token (instead of a whole agent). In
that case, each sensor hosts a stationary agent and the movement would consist
in sending a token among the sensors until the token reaches the diffuse event
source. The mobile agent approach has the advantage of providing a simpler
design of the system’s behaviour. In addition, we are also considering to extend
the functionalities of mobile agents, such as monitoring both the plume and
the source applying flocking techniques. In these cases, a token-based approach
would not appropriately capture that swarm behaviour.

5.4.1 Sensors

Sensors are responsible for creating agents. Sensors provide an infrastructure to
host agents allowing the agents to access their data and communication devices.
Sensors are most of the time in the sleep state, that is, with the wireless com-
munication turned off and using low energy. Sensors do not know their position,
i.e. no global position system is assumed. Sensors are identical and they run the
same software. Transmission collisions are handled by lower MAC layer proto-
cols and are not considered in this work. Sensors follow the Low Power Listening
(LPL) mode described in Section 5.3 and no multi-hop protocol is assumed. Sen-
sors are reactive to agents request. No proactive behavior is assumed from the
sensor side. Every Tw ticks, a sensor creates an agent with probability Pa. It

5.4. Our Approach 99

if (timeElapsed(Tw)) then
if (Random() < Pa) then

CreateAgent()

end

end
if (sensorReadRequestEvent()) then

sendSensorData()
end

Algorithm 5: The Sensor Algorithm

is important to note that the creation of an agent does not change the commu-
nication state, if the sensor is in the sleep state, it will stay so until it switches
to the awake state because of a communication request (i.e. data received from
a nearby sensor or sent on request of the agent). The Pa parameter controls
the number of agents that are created across the whole environment. A high Pa
value implies a high global exploration and also a higher cost, i.e. an increment
on the sensors’ measurements and on the number of messages sent. Moreover,
sensors send data measurements when they receive data requests. These are sent
by an agent to a neighbour sensor when it performs local exploration. The sensor
algorithm is sketched in Algorithm 5. For simplicity purposes, we do not show
the change of communication state (sleep to awake to sleep again). The sensor
is always in the sleep mode, except when it sends or receives data.

5.4.2 Mobile Agents

Mobile Agents are responsible to actively track diffuse event sources and moni-
tor them once they have reached the source. Mobile Agents use the WSN as an
infrastructure that enables them to move over the space, to obtain sensor data,
and to communicate with other sensors or agents using the sensors’ communi-
cation devices. The agent procedure has to deal with uncertain data (mistaken
measurements) and with a weak infrastructure that can fail at any time (sensors
can break down, sensor data may contain noise, and communications can fail).

The goal is to design a robust agent algorithm that allows agents to monitor
diffuse events with a high performance. The agents decide when a sensor must
read a sensor data or when a sensor must communicate its sensor data to a
neighbour sensor. Sensors are managed by the agents, i.e. they are not proactive.

To deal with the requirements, low number of sensor reads and low number
of communication messages, the number of active agents must be considerably
lower than the number of sensors. We consider the following policies: (1) when
an agent is created, it first checks whether another agent exists in another sensor
within its communication range, the agent with a higher creation timestamp
finishes its execution; and (2) when two different agents reach the same sensor,
only one of them continues its execution (i.e. two agents cannot coexist at the
same sensor).

100 Chapter 5. Detecting Diffuse Event Sources in Noisy WSN Environments

if (agentsInNeighbourhood()) then
exit()

end
while (true) do

sensorData = readSensor()

if (sensorData <= 0) then
exit()

end
neighbours = selectAdjNodes (ns)
requestReads (neighbours)
bestSensor = selectBestSensor (neighbours)
if (bestSensor.data > sensorData) then

moveToSensor(bestSensor)
if (existAgentInSensor ()) then

exit()

end

end

end

Algorithm 6: The Agent Algorithm

The intuition is that when agents are created, they try to reach the closest
diffuse event source by following the shortest path according to a gradient-based
strategy. Specifically, each agent uses the sensor data of the neighbouring sensors
to guide its movements and finally find the source. Following Algorithm 6, when
an agent is created, it first checks if there is another agent placed in one of the
adjacent sensors. If that is the case, the most recent agent finishes its execution.
Otherwise, it reads the sensor data and checks if a given event plume is detected.
If nothing is detected (the measured value is too low), it finishes its execution.
When an event is detected, the execution continues by choosing ns adjacent
sensors and sending a sensor data request to the selected ns sensors. When all
the answers are received, the agent selects the best sensor. That is, the sensor
providing the highest sensor data read (e.g. highest gas concentration or highest
temperature). If the data of the best neighbour sensor is higher than the data
the agent has measured on its host sensor, the agent migrates to the selected
sensor. After migrating, if another agent is already hosted at that sensor, the
migrating agent finishes its execution. Otherwise, the main loop starts again
(reading the sensor data of the host sensor).

When an agent reaches the source of a diffuse event (i.e. when it does not
move between consecutive reads), it continuously monitors the event until an
environment change occurs (i.e. it sends the information to the sink). An event
source may disappear or change its location. When it disappears, the data
obtained from the sensor becomes zero and the agent finishes its execution.
When an event source changes its position (i.e. the event moves slightly), the
requests to the neighbour sensors will guide the agent to the new source location.

5.5. Experiments 101

Parameters Values Parameters Values
movrand random num. of peak 1-3

num. of dimensions 2 minheight 30
maxheight 100 stdheight 50
minwidth 0.1 maxwidth 5.0
stdwidth 0.0 mincoordinate 0

maxcoordinate 100 peak function cone

Table 5.1: Standard settings for MPB

5.5 Experiments

The goal of this section is to demonstrate the performance of our approach in
simulated scenarios and to perform a study of the impact of the parameters of
our proposal. Specifically, we analyze the performance of our approach when the
number, i.e. density, of the sensors changes; when local and global exploration
vary; or when the system is subject to different noise levels. Moreover, we
measure the exploration cost and we study the robustness of our approach in
front of network failures.

The simulation has been implemented using REPAST
[Samuelson and Macal, 2006] to model sensors and agents, and the Mov-
ing Peaks Benchmark (MPB) [Branke,] to model environment changes (diffuse
events). MPB is a benchmark created to compare dynamic function optimi-
sation algorithms, providing a fitness function changing along the time. The
function is composed by different peaks (cones) that change in width, height and
position. These peaks are used as diffuse events in our simulation. Analogously
to Chapter 3, MPB is modified to aggregate noise to the sensor reads, thus, the
fitness function incorporates a noise factor γ in the following way:

SensorV alue(~p) = MPBV alue(~p) + (2 ∗ θ − 1) ∗ γ (5.1)

where θ generates a uniform random number between [0..1] and γ, the noise
factor, varies between 0 and 10 depending on the experiment.

A simulation is a run of TS = 2 × 105 ticks, where an environment change
occurs at each tc = 200 ticks. That is, a simulation holds 1000 environment
changes. In each environment change diffuse events change the position, in-
tensity, and size. The results reported are the averages of these 1000 changes.
Simulations take place in a rectangular space of 103 × 103 square meters where
1000 sensors are distributed randomly. The number of diffuse events vary from
1 to 3 with a radius of the plume ranging from 30 to 5000 meters and the fre-
quency of an agent creation event is Tw = 20 ticks. From the results reported
later, the probability of creating an agent Pa = 0.5% and the number of nearby
sensors receiving a data request from an agent ns = 3, (table 5.1 summarises
the configuration of MPB).

Figure 5.2 shows an example of a simulated scenario, where the sensors are

102 Chapter 5. Detecting Diffuse Event Sources in Noisy WSN Environments

Figure 5.2: Snapshot of a noisy scenario

spread over the space and 3 diffuse events are active. Gray blurred regions
represent the diffuse events perceived with noise, i.e. event plumes do not form
a continuous space. Small filled points represent the sensors. Gray filled points
represent sensors not hosting agents. White filled points represent sensors with
a hosted agent. Circles represent communication range of sensors hosting an
agent that has detected an event; ns sensors within the circle will receive the
data requests.

In the simulations we use the number of data sensor reads and the number
of messages sent as an estimation of the cost to reach convergence, i.e. when
all diffuse event sources of a given scenario have been detected. These values
are measured for each environment change: from the tick a new scenario arises
until convergence is reached (all events sources detected). We consider a failure
of the system if the system cannot reach convergence before a new change in the
environment (200 ticks), i.e. at least one of the sources has not been detected.
Once the system has reached convergence, agents continue exploring and moni-
toring events. At that moment agents are ready to send the sensor data to the
sink. The cost of sending the information to the sink depends on the routing
algorithm used and it is not addressed in this work. Thus, the monitoring reads
and routing messages are not counted here, because they depend on the routing
algorithm and on external parameters such as the desired monitoring frequency.
Our counting of reads and messages stops when agents reach event sources. We
performed an additional experiment to measure the number of sensor data reads
and messages when no diffuse events are present, i.e. the cost of the global
exploration.

5.5. Experiments 103

Sensor Number Reads Msgs Failures Adj. avg.
500 311.30 518.82 35.5% 9.2
1000 397.38 651.64 15.2% 18.76
2000 681.67 1115.48 5.8% 37.09
4000 1222.37 1998.11 4.6% 74.94
8000 2339.69 3816.25 3.2% 149.7175

Table 5.2: Varying Sensor Number without Noise

5.5.1 Varying the number of sensors in WSN

This first experiment had two goals: (1) to demonstrate that the complexity of
our approach grows linearly with the WSN size (i.e. our approach is scalable) and
(2) to demonstrate the adaptability or our approach to different WSN densities.
The different densities used in this simulation have been established following
[Intanagonwiwat et al., 2002]. In this experiment the number of sensors varies
from 500 to 8000 and noise is not applied to sensor data reads.

The first observation is that, when the density of sensors increases, the num-
ber of failures decreases, i.e. agents are able to find better paths to navigate
toward event sources (see Table 5.2). Notice that the number of failures reaches
a 35% only when the number of sensors is low (500). This percentage of fail-
ures can be reduced by incrementing the Pa probability or by reducing the Tw
interval, as we will present in the next experiment. The number of consumed
resources varies according to the size and location of the diffuse events. Fast
convergences are reached with only 15 sensor reads whereas hard scenarios re-
quire more than 1000 reads. Notice that difficult scenarios are those where the
diffuse events have overlapping areas or where at least one of the diffuse events
is covered by a low number of sensors (small diffuse event). Notice that we
consider convergence only when all the event sources of a scenario are located.

The results achieved in this first simulation show that our approach is able
to find all the diffuse event sources with a probability of 85% when the number
of reads is ∼ 40% the number of sensors, and the number of messages is ∼ 60%
the the number of sensors (line 2 of Table 5.2). The number of messages and
reads grows linearly with the number of sensors, while the number of failures
decreases (good scalability).

5.5.2 Quality of Convergence

In the experiments we analyzed the average of the number of reads and the
average of the number of messages the approach needs to reach convergence.
Figure 5.3(a) shows how, for most of the scenarios, our approach is able to
reach convergence in less than 200 reads. The black line on the top of the bars
shows the standard deviation over 5 runs where each run has 3000 environment
changes. More precisely, 1300 convergences of a total of 3000 are assessed with
less than 200 reads, while 450 scenarios require more than 800 reads or do not

104 Chapter 5. Detecting Diffuse Event Sources in Noisy WSN Environments

(a) Reads histogram (b) Msgs histogram

Figure 5.3: Performance Results

converge at all. Figure 5.3(b) shows that similar results are obtained for the
number of messages: 30% of the convergences are reached with less than 200
messages.

5.5.3 Varying the Noise Factor

The goal of these experiments was to evaluate the performance of our proposal in
the presence of different noise levels. Specifically, the noise factor γ varied from
0 to 10. Notice that when the environment is subject to noise, the plume does
not follow a monotonous decrease when moving away from the source. Table
5.3 shows how, when the noise factor increases, the performance of the system
decreases (in terms of reads). However, when the noise level is equal to or
lower than 4, the percentage of failures decreases. The explanation is that noise
introduces a stochastic behaviour that increases the exploration in the search.
This increment in the exploration increases the number of reads and messages,
but produces a better convergence (less percentage of failures). Notice also that
our algorithm is robust to noise. Indeed, even when the noise factor is ±10%
the algorithm is able to reach convergence, that is to detect the optimum sensor
for all the diffuse events in 75% of the scenarios.

5.5.4 Varying Local Exploration

In this experiment we studied the performance of the algorithm when we vary
local exploration in a noise-free environment. Local exploration is controlled
by the number of sensors that an agent uses to decide its next location (ns).
In Table 5.4, we may observe that even when we increase to 10 the number of
requested sensors, the number of failures is not significantly decreasing. The rea-
son behind this result is that increasing local exploration is not enough to detect
all the diffuse event sources. Specifically, global exploration is the main factor of
failures. As expected, the number of messages and sensor reads increases when
local exploration is higher. From the results of this experiment (see Table 5.4),
we set the parameter ns = 3.

5.5. Experiments 105

γ Reads Msgs Failures
0% 397.38 651.64 15.2%
±2% 547.70 907.64 13.4%
±4% 698.31 1160.37 15.1%
±6% 776.21 1291.31 18.6%
±10% 878.73 1461.43 25.1%

Table 5.3: Varying the noise factor γ

ns Reads Msgs Failures
1 446.41 625.68 15.4%
2 425.96 663.72 16.7%
3 397.38 651.64 15.2%
4 435.79 740.80 12.6%
5 517.21 903.14 14.1%
6 525.74 934.45 14.4%
10 752.18 1391.42 13.1%

Table 5.4: Varying the ns parameter

Pa Tw Reads Msgs Failures
0.2 20 322.30 538.29 37.7%
0.5 20 397.38 651.64 15.2%
1 20 484.01 783.83 4.5%
5 20 654.21 1024.92 5.0%

Table 5.5: Varying Agent Creation Probability, Pa

5.5.5 Varying Global Exploration

In the previous experiment we observed that, even increasing local exploration,
the number of failures is not reduced. Thus, the goal of this experiment is to
reduce system failures by increasing global exploration and to measure the cost
associated to this strategy. Global exploration is controlled by the frequency
(Tw) of the sensors to create agents and by the probability (Pa) to actually do
so. Both parameters can increase or decrease the number of agents that are
exploring the space at the same time. We performed an study assessing the
contribution of these parameters to the global exploration ratio, the relation
between the global exploration ratio and system failures, and the cost of the
exploration when reducing system failures.

Table 5.5 shows how, when the exploration rate increases due to an increased
probability Pa of creating an agent, the number of failures decreases. However,
the price is an increment of the number of reads and messages. Similar results are
found when the frequency Tw is increased (see Table 5.6). In both experiments
we are increasing the number of agents that explore the WSN. As a conclusion
of the results, Pa and Tw can be used to customize our approach depending of
the search priority. This trade-off between the quality of the results and the cost
can be used to control the priority of the search process. Emergency situations
will tend to increase the exploration cost. Notice that even when we reduce the
percentage of failures to 0.3%, the number of reads and messages present good
results. Indeed, the algorithm is able to find the sensor closest to the event with
654 reads in an environment with 1000 sensors.

Experimental results have demonstrated that, even in the presence of a high

106 Chapter 5. Detecting Diffuse Event Sources in Noisy WSN Environments

Pa Tw Reads Msgs Failures
0.5 5 576.26 920.21 1.8%
0.5 10 488.36 790.16 4.4%
0.5 20 397.38 651.64 15.2%
0.5 50 307.75 513.11 38.5%

Table 5.6: Varying Frequency, Tw

Noise Reads Msgs
0% 49.28 0±0
±2% 100.22 108.74
±5% 99.46 107.87
±10% 101.78 111.05

Table 5.7: The Exploration Cost

noise level, the number of failures is reduced by incrementing the global explo-
ration. For instance, increasing Pa to 2% and the noise level to 10% the number
of reads is 1190 and the number of messages is 1947 whereas the number of fail-
ures is 162 (16.2%), i.e. same number of failures achieved without noise. Thus,
the global exploration level can reduce the number of failures produced by the
lack of sensors in the WSN or by the presence of noise.

5.5.6 The Exploration Cost

The goal of these experiments was to measure the exploration cost when no
diffuse events are present in the system (most frequent case). Specifically, we
tested our approach when different noise levels are applied. Notice that noise is
acting as false plumes that temporarily drive agents through the WSN. Table 5.7
shows how, when the noise level increases from 0% to ±2%, the exploration cost
increases by 50%. Thus, we may conclude that noise increments the exploration
cost. However, this increment remains constant even when we increment the
noise to ±5%, or even to ±10%. Thereby, the performance of our approach does
not depend on the noise level.

5.5.7 Tolerance to WSN failures

Finally, we analyzed the robustness of our approach when sensors fail. To that
purpose, a probability of failure was added to each sensor. Sensor failures are
simulated as follows: just before Tw a percentage of sensors are declared broken
down (state is off). Then, those sensors cannot be used until the next Tw interval,
where the sensors may continue to be broken or have become fixed. In Table
5.8 we may observe that the increment in the sensor failures involves a decrease
of system convergences. However, when exploration is increased (e.g. increasing

5.6. Conclusions 107

Failure Prob. Reads Msgs Failures
0% 449.91 740.33 13.7%
5% 455.76 751.13 15.1%
10% 409.97 675.38 16.9%
20% 422.26 697.46 19.6%
40% 463.55 772.60 30.7%

Table 5.8: Failure Tolerance

the probability of agent creation from 0.5 to 2.0) the system is able to decrease
the failures to 47 (with an average of reads of 705 and messages of 1145). Thus,
we may conclude that our approach reaches the convergence even with a high
probability of sensor failures.

5.6 Conclusions

In this chapter, we have proposed a new approach, based on the Chemotaxis
Pattern using Mobile Multi-Agent technology, to detect diffuse event sources
in dynamic and noisy environments working on a wireless sensor network in-
frastructure. To our knowledge, this problem has not been addressed before.
Our approach proposes a distributed and decentralised algorithm based on local
interactions and local knowledge of the environment. Different strategies have
been designed to guarantee a low number of agents maintaining the performance
of the system.

We studied the performance of our proposal on different scenarios: changing
the density of the sensors; varying local and global exploration ratios; applying
noise to the data that sensors gather; and subjecting sensors to failures. Experi-
mental results have shown that the presence of noise, sensor failures, and the lack
of sensors diminish the performance of our approach. However, it has been de-
tailed how this degradation can be alleviated by increasing the exploration level.
Increasing the exploration level involves a reasonable rise on the cost to reach
the convergence. Importantly, in our approach the cost of global exploration
does not depend on the noise level. Because our approach is not introducing
any assumption on the sensor positions, we plan to explore its capabilities in
scenarios like underwater applications or 3-Dimension spaces.

Chapter 6

Conclusions and Future
Work

Aimed of contributing to the engineering self-organising systems, this book
presents a catalog of bio-inspired self-organising mechanisms used in large scale
Multi-Agent Systems (MAS). The mechanisms presented in this book are spread
over the literature and applied in ad-hoc way. Even when those mechanisms have
achieved relevant contributions in different fields, when and how to apply these
mechanisms is still an open issue. We classify and identify each mechanism using
a design pattern structure. Thus, the mechanisms can be applied (composed or
adapted) easily to solve existing self-organising problems in large scale MAS.

Complex mechanisms have been decomposed, identifying their internal ba-
sic mechanisms. These basic mechanisms have been presented also as design
patterns, providing a complete catalog of mechanisms organised in three dif-
ferent layers, Figure 6.1. In the bottom layer, basic mechanisms that can be
easily combined to create composed mechanisms or can be used isolated. In the
middle layer, existing composed patterns, with contributions well known in the
literature. The top layer presents high level mechanisms that exploit the basic
and composed mechanisms proposed in the bottom and middle layer in different
ways. In Figure 6.1, Patterns’ names distinguished with bigger size are those we
have implemented and exploited to demonstrate their contribution in different
fields.

To describe the interactions and dynamics between the entities involved in
each pattern, we proposed a general computational model that can be applied to
model a wide range of existing multi-agent applications. Some of the proposed
mechanisms described in this book have been applied to three different domains:

1. In dynamic optimisation where the existing Particle Swarm Optimisation
algorithm has been extended with the Evaporation Pattern improving its
performance in dynamic and noisy optimisation.

2. In Spatial Computing, where a new infrastructureless storage system is

109

110 Chapter 6. Conclusions and Future Work

To
p

La
ye

r

M
idd

le
La

ye
r

Bo
tto

n
La

ye
r

ForagingFlocking

GossipDigital Pheromone

MorphogenesisQuorum Sensing

ReplicationEvaporation AggregationRepulsion

Gradients

Chemotaxis

Spreading

Chemotaxis

Repulsion Evaporation
Replication

Figure 6.1: Design Patterns

proposed based on Mobile Multi-Agent Systems using a high dynamic mo-
bile network. In this system the agents decide when to replicate and col-
laborate between them to ensure the information coverage in a specific
area. In this domain, the Replication Pattern and the Repulsion Pattern
are applied together. This composition of basic patterns shows how the
basic patterns are easily used to compose new patterns or adapt existing
patterns.

3. In sensor networks, the location and tracking of diffuse event sources prob-
lem is proposed as a new interesting problem with important application
in real word domains. The Chemotaxis Pattern, used to tackle this new
problem has demonstrated to achieve a good performance and presents
good tolerance in front of sensor network failures and noisy and dynamic
environments.

This book is a step forward to engineering self-organising systems. The
mechanisms proposed in this book achieve a desired emergent behaviour from
the local interactions. However, even when these mechanisms can be applied
systematically to solve existing problems, it is necessary to have a good expe-
rience to adapt the different parameters of each mechanism. The adaptation
of parameters to optimise the performance of each mechanism is still an open
issue. Moreover, even when these mechanisms lead engineers to implement self-
organising systems. The engineering of self-organising systems is not yet widely
exploited and nowadays is a promising open field. Thus, we could summarise
the future work as follows:

• To describe a design process for engineering self-organising systems using
the proposed patterns. Basically the main steps in the design process

6.1. Publications related to this research 111

would be: (1) to identify the problems and requirements of the system; (2)
to select the patterns from the proposed catalog that solve these problems;
(3) to compose the selected patterns as composed mechanisms; and (4) to
add the policies for the proper development of the application.

• The study of self-adaptation of each pattern parameters and policies, in
order to optimise the performance of each pattern automatically when they
are applied in different domains.

• To tackle new existing problems with the mechanisms proposed in this
book.

6.1 Publications related to this research

The work presented in this book has been published in several international
conferences and journals. Specifically, the relation of these publications with the
book chapters in the following:

• Chapter 2: Bio-inspired design patterns.

– Description and Composition of Bio-Inspired Design Patterns: the
Gradient Case. In Proceedings of the 3rd Workshop on Bio-Inspired
and Self-* Algorithms for Distributed Systems (BADS 2011). (To
appear).

– Description and Composition of Bio-Inspired Design Patterns: the
Gossip Case. In Proceedings of the 8th IEEE Conference and Work-
shops on Engineering of Autonomic and Autonomous Systems (EASe
2011). (To appear).

• Chapter 3: Dynamic Optimisation.

– Adapting particle swarm optimisation in dynamic and noisy environ-
ments. In Proceedings of IEEE Congress on Evolutionary Computa-
tion (CEC 2010), pages 765-772.

– An evaporation mechanism for dynamic and noisy multimodal opti-
misation. In Proceedings of the 10th Genetic and Evolutionary Com-
putation Conference (GECCO 2009), pages 17-24.

– Evaporation as a self-adaption mechanism for PSO. In Brueckner, S.
Robertson, P., and Bellur, U. editors, In Proceedings of the 2th In-
ternational Conference on Self-Adaptive and Self-Organizing Systems
(SASO 2008), pages 465,466.

• Chapter 4: Hovering Information in Spatial Computing.

– Infrastructureless spatial storage algorithms. ACM Transactions on
Autonomous and Adaptive Systems (TAAS). (To Appear).

112 Chapter 6. Conclusions and Future Work

– Infrastructureless storage in dynamic environments. In Proceedings
of the 25th Symposium On Applied Computing (SAC 2010). ACM,
New York, NY, USA 1334-1338.

• Chapter 5: Detecting Dynamically Changing Diffuse Event Sources in
Noisy WSN Environments.

– Decentralised Approach for Detecting Dynamically Changing Diffuse
Event Sources in Noisy WSN Environments. In Proceedings of the 4th
IEEE International Conference on Self-Adaptive and Self-Organizing
Systems (SASO 2010), pages 257-258.

– Decentralised Approach for Detecting Dynamically Changing Diffuse
Event Sources in Noisy WSN Environments (extended version). In
Proceedings of the 8th European Workshop on Multi-Agent Systems
(EUMAS 2010).

Bibliography

[Hay, 2002] (2002). Self-Organized Flocking with Agent Failure: Off-Line Opti-
mization and Demonstration with Real Robots.

[Abelson et al., 2000a] Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy,
G., Thomas F. Knight, J., Nagpal, R., Rauch, E., Sussman, G. J., and Weiss,
R. (2000a). Amorphous computing. Commun. ACM, 43(5):74–82.

[Abelson et al., 2000b] Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy,
G., Thomas F. Knight, J., Nagpal, R., Rauch, E., Sussman, G. J., and Weiss,
R. (2000b). Amorphous computing. Commun. ACM, 43(5):74–82.

[Abelson et al., 2007] Abelson, H., Beal, J., and Sussman, G. j. (2007). Amor-
phous computing. Technical Report MIT-CSAIL-TR-2007-030, Computer Sci-
ence and Artificial Intelligence Laboratory, MIT.

[Babaoglu et al., 2006] Babaoglu, O., Canright, G., Deutsch, A., Caro, G. A. D.,
Ducatelle, F., Gambardella, L. M., Ganguly, N., Jelasity, M., Montemanni,
R., Montresor, A., and Urnes, T. (2006). Design patterns from biology for
distributed computing. ACM Trans. on Autonomous and Adaptive Sys, 1:26–
66.

[Bachem et al., 1996] Bachem, A., Hochstättler, W., and Malich, M. (1996).
The simulated trading heuristic for solving vehicle routing problems. Discrete
Appl. Math., 65:47–72.

[Bailey, 1975] Bailey, N. T. (1975). The mathematical theory of infectious dis-
eases and its applications / norman t.j. bailey.

[Bartz-Beielstein et al., 2007] Bartz-Beielstein, T., Blum, D., and Branke, J.
(2007). Metaheuristics. Progress in Complex Systems Optimization, chap-
ter Particle Swarm Optimization and Sequential Sampling in Noisy Environ-
ments. Springer.

[Bassler, 2002] Bassler, B. L. (2002). Small talk. cell-to-cell communication in
bacteria. Cell, 109(4):421–424.

[Beal, 2003] Beal, J. (2003). Persistent nodes for reliable memory in geograph-
ically local networks. Technical Report AI Memo 2003-011, Artificial Intelli-
gence Laboratory, MIT.

113

114 Bibliography

[Beal, 2009] Beal, J. (2009). Flexible self-healing gradients. In SAC ’09: Proceed-
ings of the 2009 ACM symposium on Applied Computing, pages 1197–1201,
New York, NY, USA. ACM.

[Beal et al., 2008] Beal, J., Bachrach, J., Vickery, D., and Tobenkin, M. (2008).
Fast self-healing gradients. In SAC ’08: Proceedings of the 2008 ACM sym-
posium on Applied computing, pages 1969–1975, New York, NY, USA. ACM.

[Bell et al., 2003] Bell, W., Cameron, D., Carvajal-Schiaffino, R., Millar, A.,
Stockinger, K., and Zini, F. (2003). Evaluation of an economy-based finle
replication strategy for a data grid. In 3rd IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid (CCGrid), pages 661 – 668.

[Birman et al., 1999] Birman, K. P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu,
M., and Minsky, Y. (1999). Bimodal multicast. ACM Transactions on Com-
puter Systems, 17:41–88.

[Blackwell, 2007] Blackwell, T. (2007). Particle swarm optimization in dynamic
environments. In Yang, S., Ong, Y.-S., and Jin, Y., editors, Evolutionary
Computation in Dynamic and Uncertain Environments, volume 51 of Studies
in Computational Intelligence, pages 29–49. Springer.

[Blackwell and Bentley, 2002] Blackwell, T. and Bentley, P. (2002). Dynamic
search with charged swarms. Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’02), pages 19–26.

[Blackwell and Branke, 2006] Blackwell, T. and Branke, J. (2006). Multi-
swarms, exclusion, and anti-convergence in dynamic environments. IEEE
Transactions on Evolutionary Computation, 10(4):459–472.

[Blatt and III, 2006] Blatt, D. and III, A. O. H. (2006). Energy-based sensor
network source localization via projection onto convex sets. IEEE Transac-
tions on Signal Processing, 54(9):3614–3619.

[Blum, 2005] Blum, C. (2005). Beam-aco: hybridizing ant colony optimization
with beam search: an application to open shop scheduling. Computers &
Operations Research, 32(6):1565–1591.

[Bojinov et al., 2000] Bojinov, H., Casal, A., and Hogg, T. (2000). Multiagent
control of self-reconfigurable robots. In In Proceedings of International Con-
ference on Multiagent Systems, pages 143–150.

[Branke,] Branke, J. The moving peaks benchmark website. www.aifb.uni-
karlsruhe.de/ jbr/movpeaks/.

[Britton and Sack, 2004] Britton, M. and Sack, L. (2004). The secoas project:
development of a self-organising wireless sensor network for environmental
monitoring. In 2nd International Workshop on Sensor and Actor Network
Protocols and Applications, Boston.

Bibliography 115

[Buschmann et al., 1996] Buschmann, F., Meunier, R., Rohnert, H., Sommer-
lad, P., and Stal, M. (1996). Pattern-oriented software architecture: A system
of patterns. John Wiley & Sons.

[Butera, 2007] Butera, W. (2007). Text display and graphics control on a
paintable computer. In SASO ’07: Proceedings of the First International
Conference on Self-Adaptive and Self-Organizing Systems, pages 45–54, Wash-
ington, DC, USA. IEEE Computer Society.

[Castro et al., 2008] Castro, A. A. V., Di Marzo Serugendo, G., and Konstantas,
D. (2008). Hovering information - self-organising information that finds its
own storage. In Proceedings of the 2008 IEEE International Conference on
Sensor Networks, Ubiquitous, and Trustworthy Computing (sutc 2008), pages
193–200, Washington, DC, USA. IEEE Computer Society.

[Chen and Kotz, 2002] Chen, G. and Kotz, D. (2002). Solar: A pervasive-
computing infrastructure for context-aware mobile applications. Technical
report, Department of Computer Science, Dartmouth College Hanover, NH,
USA 03755.

[Cheng et al., 2005] Cheng, J., Cheng, W., and Nagpal, R. (2005). Robust and
self-repairing formation control for swarms of mobile agents. In Proceedings
of the Twentieth National Conference on Artificial Intelligence, pages 59–64,
Menlo Park, California. AAAI Press.

[Corkill et al., 2007] Corkill, D. D., Holzhauer, D., and Koziarz, W. (2007). Turn
Off Your Radios! Environmental Monitoring Using Power-Constrained Sensor
Agents. In First International Workshop on Agent Technology for Sensor
Networks (ATSN-07), pages 31–38, Honolulu, Hawaii.

[Croce et al., 2008] Croce, S., Marcelloni, F., and Vecchio, M. (2008). Reducing
power consumption in wireless sensor networks using a novel approach to data
aggregation. The Computer Journal, 51:227–239.

[Crowther and Riviere, 2002] Crowther, B. and Riviere, X. (2002). Flocking of
autonomous unmanned air vehicles. In Proceedings of the 17th Bristol UAV
Conference.

[Datta et al., 2004] Datta, A., Quarteroni, S., and Aberer, K. (2004). Au-
tonomous gossiping: A self-organizing epidemic algorithm for selective in-
formation dissemination in mobile ad-hoc networks. In IC-SNW’04, Interna-
tional Conference on Semantics of a Networked World, LNCS, pages 126–143.

[De Wolf and Holvoet, 2007] De Wolf, T. and Holvoet, T. (2007). Design pat-
terns for decentralised coordination in self-organising emergent systems. In
Proceedings of the 4th international conference on Engineering self-organising
systems, ESOA’06, pages 28–49, Berlin, Heidelberg. Springer-Verlag.

116 Bibliography

[Deneubourg et al., 1983] Deneubourg, J., Pasteels, J., and Verhaeghe, J.
(1983). Probabilistic behaviour in ants: A strategy of errors? Journal of
Theoretical Biology, 105(2):259 – 271.

[Di Marzo Serugendo et al., 2007] Di Marzo Serugendo, G., Villalba Castro, A.,
and Konstantas, D. (2007). Dependable requirements for hovering informa-
tion. In Supplemental Volume - The 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN’07), pages 36–39.

[Dolev et al., 2005] Dolev, S., Gilbert, S., Lynch, N. A., Shvartsman, A. A., and
Welch, J. L. (2005). Geoquorums: implementing atomic memory in mobile
ad hoc networks. Distrib. Comput., 18:125–155.

[Dorigo, 1992] Dorigo, M. (1992). Optimization, Learning and Natural Algo-
rithms. PhD thesis, Politecnico di Milano, Italy.

[Dorigo and Di Caro, 1999] Dorigo, M. and Di Caro, G. (1999). The ant colony
optimization meta-heuristic, pages 11–32. McGraw-Hill Ltd., UK, Maiden-
head, UK, England.

[Du and Li, 2008] Du, W. and Li, B. (2008). Multi-strategy ensemble particle
swarm optimization for dynamic optimization. Inf. Sci., 178:3096–3109.

[Ermis and Saligrama, 2006] Ermis, E. and Saligrama, V. (2006). Detection and
localization in sensor networks using distributed FDR. In Proceedings of the
Conference on Information Sciences and Systems (CISS-06), Princeton, New
Jersey, USA.

[Eugster et al., 2009] Eugster, P., Garbinato, G., Holzer, A., and Luo, J. (2009).
Effective location-based publish/subscribe in manets. In IEEE International
Conference on Pervasive Computing and Communications (PerCom’09).

[Eugster et al., 2005] Eugster, P. T., Garbinato, B., and Holzer, A. (2005).
Location-based publish/subscribe. In Proceedings of the Fourth IEEE Inter-
national Symposium on Network Computing and Applications, pages 279–282,
Washington, DC, USA. IEEE Computer Society.

[Fernandez-Marquez and Arcos, 2008] Fernandez-Marquez, J. L. and Arcos, J.-
L. (2008). Evaporation as a self-adaptation mechanism for pso. In Proceedings
of the 2008 Second IEEE International Conference on Self-Adaptive and Self-
Organizing Systems, pages 465–466, Washington, DC, USA. IEEE Computer
Society.

[Fernandez-Marquez and Arcos, 2009a] Fernandez-Marquez, J. L. and Arcos,
J. L. (2009a). An evaporation mechanism for dynamic and noisy multimodal
optimization. In Proceedings of the 11th Annual conference on Genetic and
evolutionary computation, GECCO ’09, pages 17–24, New York, NY, USA.
ACM.

Bibliography 117

[Fernandez-Marquez and Arcos, 2009b] Fernandez-Marquez, J. L. and Arcos,
J. L. (2009b). Keeping diversity when exploring dynamic environments. In
SAC ’09: Proceedings of the 2009 ACM symposium on Applied Computing,
pages 1192–1196, New York, NY, USA. ACM.

[Fernandez-Marquez et al., 2010] Fernandez-Marquez, J. L., Arcos, J. L., and
Di Marzo Serugendo, G. (2010). Infrastructureless storage in dynamic envi-
ronments. In Proceedings of the 2010 ACM Symposium on Applied Computing,
SAC ’10, pages 1334–1338, New York, NY, USA. ACM.

[Fernandez-Marquez et al., 2011] Fernandez-Marquez, J. L., Di Marzo Seru-
gendo, G., and Arcos, J. L. (2011). Infrastructureless spatial storage algo-
rithms. ACM Transactions on Autonomous and Adaptive Systems (TAAS).

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of reusable Object-Oriented Software.
Addison-Wesley, Reading, Mass.

[Gardelli et al., 2007] Gardelli, L., Viroli, M., and Omicini, A. (2007). Design
patterns for self-organizing multiagent systems. In Wolf, T. D., Saffre, F., and
Anthony, R., editors, 2nd International Workshop on Engineering Emergence
in Decentralised Autonomic System (EEDAS) 2007, pages 62–71, ICAC 2007,
Jacksonville, Florida, USA. CMS Press, University of Greenwich, London,
UK.

[Garnier et al., 2007] Garnier, S., Gautrais, J., and Theraulaz, G. (2007). The
biological principles of swarm intelligence. Swarm Intelligence, 1(1):3–31.

[Grégoire and Konieczny, 2006] Grégoire, E. and Konieczny, S. (2006). Logic-
based approaches to information fusion. Information Fusion, 7:4–18.

[Haas et al., 2006] Haas, Z. J., Halpern, J. Y., and Li, L. (2006). Gossip-based
ad hoc routing. IEEE/ACM Transaction Networking., 14(3):479–491.

[Intanagonwiwat et al., 2002] Intanagonwiwat, C., Estrin, D., Govindan, R.,
and Heidemann, J. (2002). Impact of network density on data aggregation in
wireless sensor networks. In Proceedings of the 22nd International Conference
on Distributed Computing Systems (ICDCS’02), ICDCS ’02, pages 457–458,
Washington, DC, USA. IEEE Computer Society.

[Jadbabaie et al., 2003] Jadbabaie, A., Lin, J., and Morse, A. S. (2003). Coor-
dination of groups of mobile autonomous agents using nearest neighbor rules.
IEEE Transactions on Automatic Control, 48(6):988–1001.

[Jamjoom et al., 1999] Jamjoom, H., Jamin, S., and Shin, K. (1999). Self-
organizing network services. In University Michigan.

[Janeway et al., 2001] Janeway, C., Travers, P., Walport, M., and Shlomchik, M.
(2001). Immunobiology - The immune system in health and disease. Garland
Publishing.

118 Bibliography

[Janson and Middendorf, 2006] Janson, S. and Middendorf, M. (2006). A hierar-
chical particle swarm optimizer for noisy and dynamic environments. Genetic
Programming and Evolvable Machines, 7(4):329–354.

[Jin and Branke, 2005] Jin, Y. and Branke, J. (2005). Evolutionary optimization
in uncertain environments - a survey. IEEE Transactions on Evolutionary
Computation, pages 303–316.

[Kempe et al., 2003] Kempe, D., Dobra, A., and Gehrke, J. (2003). Gossip-
based computation of aggregate information. In Proceedings of the 44th An-
nual IEEE Symposium on Foundations of Computer Science, FOCS ’03, pages
482–, Washington, DC, USA. IEEE Computer Society.

[Konstantas and Villalba, 2006] Konstantas, D. and Villalba, A. (2006). To-
wards hovering information. In Proceedings of the First European Conference
on Smart Sensing and Context (EuroSSC 2006), pages 161–166.

[La and Sheng, 2009a] La, H. M. and Sheng, W. (2009a). Flocking control of
a mobile sensor network to track and observe a moving target. In ICRA’09:
Proceedings of the 2009 IEEE international conference on Robotics and Au-
tomation, pages 3586–3591, Piscataway, NJ, USA. IEEE Press.

[La and Sheng, 2009b] La, H. M. and Sheng, W. (2009b). Moving targets track-
ing and observing in a distributed mobile sensor network. In ACC’09: Pro-
ceedings of the 2009 conference on American Control Conference, pages 3319–
3324, Piscataway, NJ, USA. IEEE Press.

[Lee and Chung, 2005] Lee, S. and Chung, T. (2005). Data aggregation for wire-
less sensor networks using self-organizing map. In Kim, T., editor, Artificial
Intelligence and Simulation, volume 3397 of Lecture Notes in Computer Sci-
ence, pages 508–517. Springer Berlin / Heidelberg.

[Leontiadis et al., 2009] Leontiadis, I., Costa, P., and Mascolo, C. (2009). Per-
sistent content-based information dissemination in hybrid vehicular networks.
In Proceedings of the 2009 IEEE International Conference on Pervasive Com-
puting and Communications, pages 1–10, Washington, DC, USA. IEEE Com-
puter Society.

[Leontiadis and Mascolo, 2007] Leontiadis, I. and Mascolo, C. (2007). Oppor-
tunistic spatio-temporal dissemination system for vehicular networks. In Mo-
biOpp ’07: Proceedings of the 1st international MobiSys workshop on Mobile
opportunistic networking, pages 39–46, New York, NY, USA. ACM Press.

[Lind, 2003] Lind, J. (2003). Patterns in agent-oriented software engineering.
In Proceedings of the 3rd international conference on Agent-oriented software
engineering III, AOSE’02, pages 47–58, Berlin, Heidelberg. Springer-Verlag.

[Lourenço and Serra, 1998] Lourenço, H. R. and Serra, D. (1998). Adaptive
approach heuristics for the generalized assignment problem. Technical report,

Bibliography 119

Economic Working Papers Series No.304, Universitat Pompeu Fabra, Dept.
of Economics and Management.

[Lung and Dumitrescu, 2007] Lung, R. I. and Dumitrescu, D. (2007). A collab-
orative model for tracking optima in dynamic environments. IEEE Congress
on Evolutionary Computation (CEC), pages 564–567.

[Mamei et al., 2006] Mamei, M., Menezes, R., Tolksdorf, R., and Zambonelli,
F. (2006). Case studies for self-organization in computer science. Journal of
Systems Architecture, 52:443–460.

[Mamei et al., 2004] Mamei, M., Vasirani, M., and Zambonelli, F. (2004). Ex-
periments of morphogenesis in swarms of simple mobile robots. Journal of
Applied Artificial Intelligence, 18:903–919.

[Mamei and Zambonelli, 2005] Mamei, M. and Zambonelli, F. (2005). Motion
coordination in the quake 3 arena environment: A field-based approach. In
Weyns, D., Parunak, H. V. D., and Michel, F., editors, Environments for
Multi-Agent Systems, volume 3374 of Lecture Notes in Computer Science,
pages 264–278. Springer Berlin / Heidelberg.

[Mamei and Zambonelli, 2007] Mamei, M. and Zambonelli, F. (2007). Perva-
sive pheromone-based interaction with rfid tags. ACM Transactions on Au-
tonomous and Adaptive Systems, 2.

[Martens et al., 2007] Martens, D., De Backer, M., Vanthienen, J., Snoeck, M.,
and Baesens, B. (2007). Classification with ant colony optimization. IEEE
Transactions on Evolutionary Computation, 11:651–665.

[Miller and Bassler, 2001] Miller, M. B. and Bassler, B. L. (2001). Quorum
sensing in bacteria. Annual Review of Microbiology, 55(1):165–199.

[Na et al., 2008] Na, J., Lim, S., and Kim, C.-K. (2008). Dual wake-up low
power listening for duty cycled wireless sensor networks. EURASIP Journal
on Wireless Communications and Networking, 2008:46:1–46:11.

[Nagpal, 2002] Nagpal, R. (2002). Programmable self-assembly using
biologically-inspired multiagent control. In Proceedings of the first interna-
tional joint conference on Autonomous agents and multiagent systems: part
1, AAMAS ’02, pages 418–425, New York, NY, USA. ACM.

[Nagpal, 2004] Nagpal, R. (2004). A catalog of biologically-inspired primitives
for engineering self-organization. In Engineering Self-Organising Systems,
Nature-Inspired Approaches to Software Engineering. Volume 2977 of Lecture
Notes in Computer Science, pages 53–62. Springer.

[Nardi et al., 2006] Nardi, R. D., Holl, O., Woods, J., and Clark, A. (2006).
Swarmav: A swarm of miniature aerial vehicles. In Proceedings of the 21st
Bristol International UAV Systems Conference.

120 Bibliography

[Olfati-saber, 2006] Olfati-saber, R. (2006). Flocking for multi-agent dynamic
systems: Algorithms and theory. IEEE Transactions on Automatic Control,
51:401–420.

[Parsopoulos and Vrahatis, 2001] Parsopoulos, K. E. and Vrahatis, M. N.
(2001). Particle swarm optimizer in noisy and continuously changing envi-
ronments. Artificial Intelligent and soft computing, pages 289–294.

[Parunak et al., 2002] Parunak, H., Purcell, M., and Connell, R. (2002). Digital
pheromones for autonomous coordination of swarming uavs. In Proceedings
of First AIAA Unmanned Aerospace Vehivales, Systems, Technologies, and
Operations Conference (AIAA). American Institute of Aeronautics and As-
tronautics.

[Pigozzi and Hartmann, 2007] Pigozzi, G. and Hartmann, S. (2007). Aggrega-
tion in multi-agent systems and the problem of truth-tracking. In Proceedings
of the 6th International Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS 07), 1418 May 2007, Honolulu, Hawaii, USA, pages
674 – 676.

[Poli et al., 2007] Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle
swarm optimization. an overview. Swarm Intelligence, 1:33–57.

[Pugh et al., 2005] Pugh, J., Martinoli, A., and Zhang, Y. (2005). Particle
swarm optimization for unsupervised robotic learning. proceedings of IEEE
swarm intelligence symposium(SIS), pages 92–99.

[Reynolds, 1987] Reynolds, C. W. (1987). Flocks, herds, and schools: A dis-
tributed behavioral model. In SIGGRAPH ’87: Proceedings of the 14th an-
nual conference on Computer graphics and interactive techniques, pages 25–34,
New York, NY, USA. ACM.

[Roth, 2003] Roth, J. (2003). The critical mass problem of mobile ad-hoc net-
works. In Proceedings of IADIS International Conference e-Society, pages
243–250. IADIS Press.

[Ruaiŕı and Keane, 2007] Ruaiŕı, R. M. and Keane, M. T. (2007). An energy-
efficient, multi-agent sensor network for detecting diffuse events. In IJCAI’07:
Proceedings of the 20th international joint conference on Artifical Intelligence,
pages 1390–1395. Morgan Kaufmann Publishers Inc.

[Sahin and Franks, 2002] Sahin, E. and Franks, N. R. (2002). Measurement of
Space: From Ants to Robots. In International Workshop Biologically-Inspired
Robotics, pages 241–247, Bristol, UK.

[Salazar et al., 2010] Salazar, N., Rodriguez-Aguilar, J. A., and Arcos, J. L.
(2010). Robust coordination in large convention spaces. AI Communications,
23(4):357–372.

Bibliography 121

[Samuelson and Macal, 2006] Samuelson, D. and Macal, C. (2006). Agent-based
simulation comes of age. OR/MS Today, (4):34–38.

[Sauter et al., 2005] Sauter, J. A., Matthews, R., Van Dyke Parunak, H., and
Brueckner, S. A. (2005). Performance of digital pheromones for swarming
vehicle control. In Proceedings of the fourth international joint conference
on Autonomous agents and multiagent systems, AAMAS ’05, pages 903–910.
ACM.

[Savvides et al., 2001] Savvides, A., Han, C.-C., and Strivastava, M. B. (2001).
Dynamic fine-grained localization in ad-hoc networks of sensors. In Proceed-
ings of the 7th annual international conference on Mobile computing and net-
working, MobiCom ’01, pages 166–179, New York, NY, USA. ACM.

[Scellato et al., 2008] Scellato, S., Mascolo, C., Musolesi, M., and Latora, V.
(2008). Epcast: Controlled Dissemination in Human-Based Wireless Networks
Using Epidemic Spreading Models. In Bio-Inspired Computing and Commu-
nication: First Workshop on Bio-Inspired Design of Networks, BIOWIRE
2007 Cambridge, UK, April 2-5, 2007 Revised Selected Papers, pages 295–
306, Berlin, Heidelberg. Springer-Verlag.

[Secomandi, 2000] Secomandi, N. (2000). Comparing neuro-dynamic program-
ming algorithms for the vehicle routing problem with stochastic demands.
Computers and Operations Research, 27(11-12):1201–1225.

[Sudeikat and Renz, 2008] Sudeikat, J. and Renz, W. (2008). Engineering
environment-mediated multi-agent systems. chapter Toward Systemic MAS
Development: Enforcing Decentralized Self-organization by Composition and
Refinement of Archetype Dynamics, pages 39–57. Springer-Verlag, Berlin, Hei-
delberg.

[Toth and Vigo, 2002] Toth, P. and Vigo, D. (2002). Models, relaxations and
exact approaches for the capacitated vehicle routing problem. Discrete Applied
Mathematics, 123(1-3):487–512.

[Tseng et al., 2002] Tseng, Y.-C., Ni, S.-Y., Chen, Y.-S., and Sheu, J.-P. (2002).
The broadcast storm problem in a mobile ad-hoc network. Wireless Networks,
8(2/3):153–167.

[Villalba Castro et al., 2008] Villalba Castro, A., Di Marzo Serugendo, G., and
Konstantas, D. (2008). Hovering information - self-organising information that
finds its own storage. In Proceedings of International IEEE Conference on
Sensor Networks, Ubiquitous and Trustworthy Computing (SUTC’08), pages
193–200.

[Vinyals et al., 2011] Vinyals, M., Rodriguez-Aguilar, J. A., and Cerquides, J.
(2011). A survey on sensor networks from a multiagent perspective. The
Computer Journal, 54:455–470.

122 Bibliography

[Viroli et al., 2011] Viroli, M., Casadei, M., Montagna, S., and Zambonelli, F.
(2011). Spatial coordination of pervasive services through chemical-inspired
tuple spaces. ACM Transactions on Autonomous and Adaptive Systems. To
Appear.

[Weimer et al., 2009] Weimer, J., Sinopoli, B., and Krogh, B. (2009). Multi-
ple source detection and localization in advection-diffusion processes using
wireless sensor networks. In Proceedings of the 2009 30th IEEE Real-Time
Systems Symposium, RTSS ’09, pages 333–342, Washington, DC, USA. IEEE
Computer Society.

[Weyns et al., 2007] Weyns, D., Holvoet, T., and Helleboogh, A. (2007). An-
ticipatory vehicle routing using delegate multi-agent systems. In Intelligent
Transportation Systems Conference, 2007. ITSC 2007. IEEE, pages 87 –93.

[Wolpert et al., 2007] Wolpert, L., Jessell, T., Lawrence, P., Meyerowitz, E.,
Robertson, E., and Smith, J. (2007). Principles of Development. Oxford
University Press, Oxford, 3rd edition.

[Yang et al., 2006] Yang, L., Feng, C., Rozenblit, J. W., and Qiao, H. (2006).
Adaptive tracking in distributed wireless sensor networks. In Proceedings of
the 13th Annual IEEE International Symposium and Workshop on Engineer-
ing of Computer Based Systems, pages 103–111, Washington, DC, USA. IEEE
Computer Society.

Appendix A

Hovering Information

This appendix provides additional information about experiments we performed
regarding Hovering Information (Chapter 4). Specifically, some simulation im-
ages using different anchor areas. Figure A.1 shows how the different algorithms
proposed can cover a simple circle anchor area. Small gray nodes represent nodes
that have not access to the information, circular white filled nodes represent
nodes with information access, and circular gray filled nodes are storing a piece
of information. In the figure we may observe how the Attractor Point Repulsion
algorithm uses less nodes storing the information than the others. Moreover,
the repulsion variants achieve a better distribution of the piece of information
inside the shape. Similar results are achieved with the different anchor areas.

Figure A.2 shows three steps of the Attractor Point Repulsion Algorithm.
In Step 1 one piece of information is deposited in one node. In step 2, the
replication and repulsion located new replicas following the shape. In this way, in
few iterations more than half of the anchor area is covered. In step 3, the anchor
area is completely covered. It may be observed how the number of replicas used
to cover the anchor area is really low compared with the number of nodes located
inside the anchor area. Moreover, it may be observed a uniform distribution
of pieces of information over the anchor area. Figure A.3, is a continuation
of the previous simulation, where nodes inside a sub-area are eliminated from
the environment. Steps 4, 5 and 6 show how the Attractor Point Repulsion
can refill the anchor area even in presence of node failures. Similar results
were achieved by the other algorithms proposed. Figures A.4 and A.5 show the
same experiment than figures A.2 and A.3 but instead of using Attractor Point
Repulsion, the algorithm used is broadcast. Comparing the simulation steps of
different algorithms, we may observe that the Broadcast algorithm achieved a
faster convergence than the Attractor Point Repulsion algorithm. However, the
number of replicas used by the Broadcast algorithm is higher than replicas used
by the Attractor Point Repulsion. Regarding the recovering time after node
failures, both algorithms present similar performance, because both algorithms
need to wait until the network is recovered from the failure.

Figures A.7 and A.8 show three different steps of the simulation using the

123

Broadcast algorithm and the Broadcast Repulsion algorithms respectively. The
anchor area used in both simulations is showed in Figure A.6. Broadcast simula-
tion compared with Broadcast Repulsion simulation used more pieces of informa-
tion to cover the shape. However, analogously to previous simulation, without
repulsion the algorithm can cover the area using less number of iterations.

Broadcast Attractor Point

Broadcast Repulsion Attractor Point Repulsion

Figure A.1: Broadcast, Attractor Point, Broadcast Repulsion and Attractor
Point Repulsion

Step 1 (1st simulation second)

Step 2 (122th simulation second)

Step 3 (280th simulation second)

Figure A.2: Attractor Point Repulsion - Convergence - Steps

Step 4 (500th simulation second)

Step 5 (613th simulation second)

Step 6 (669th simulation second)

Figure A.3: Attractor Point Repulsion - nodes in area fail - Steps

Step 1 (1th simulation second)

Step 2 (6th simulation second)

Step 3 (18th simulation second)

Figure A.4: Broadcast - convergence - Steps

Step 4 (500th simulation second)

Step 5 (563th simulation second)

Step 6 (605th simulation second)

Figure A.5: Broadcast - Nodes in Area Fail - Steps

Figure A.6: Amorphous Shape 5

Step 1 (1th simulation second)

Step 2 (18th simulation second)

Step 3 (563th simulation second)

Figure A.7: Broadcast Simulation Steps in scenario ’5’

Step 1 (1th simulation second)

Step 2 (50th simulation second)

Step 3 (589th simulation second)

Figure A.8: Broadcast Repulsion Simulation Steps in scenario ’5’

Monografies de l’Institut d’Investigació en
Intel·ligència Artificial

Num. 1. J. Puyol, MILORD II: A Language for Knowledge-Based Sys-
tems.

Num. 2. J. Levy, The Calculus of Refinements, a Formal Specification
Model Based on Inclusions.

Num. 3. Ll.Vila, On Temporal Representation and Reasoning in
Knowledge-Based Systems.

Num. 4. M. Domingo, An Expert System Architecture for Identification
in Biology.

Num. 5. E. Armengol, A Framework for Integrating Learning and Prob-
lem Solving.

Num. 6. J. Ll. Arcos, The Noos Representation Language.
Num. 7. J. Larrosa, Algorithms and Heuristics for Total and Partial

Constraint Satisfaction.
Num. 8. P. Noriega, Agent Mediated Auctions: The Fishmarket

Metaphor.
Num. 9. F. Manya, Proof Procedures for Multiple-Valued Propositional

Logics.
Num. 10. W. M. Schorlemmer, On Specifying and Reasoning with Special

Relations.
Num. 11. M. López-Sánchez, Approaches to Map Generation by means of

Col-laborative Autonomous Robots.
Num. 12. D. Robertson, Pragmatics in the Synthesis of Logic Programs.
Num. 13. P. Faratin, Automated Service Negotiation between Autonomous

Computational Agents.
Num. 14. J. A. Rodriguez-Aguilar, On the Design and Construction of

Agent-mediated Electronic Institutions.
Num. 15. T. Alsinet, Logic Programming with Fuzzy Unification and Im-

precise Constants: Possibilistic Semantics and Automated De-
duction.

Num. 16. A. Zapico, On Axiomatic Foundations for Qualitative Decision
Theory A Possibilistic Approach.

Num. 17. A. Valls, ClusDM: A Multiple Criteria Decision Method for
Heterogeneous Data Sets.

Num. 18. D. Busquets, A Multiagent Approach to Qualitative Navigation
in Robotics.

Num. 19. M. Esteva, Electronic Institutions: from Specification to Devel-
opment.

Num. 20. J. Sabater, Trust and Reputation for Agent Societies.

Num. 21. J. Cerquides, Improving Algorithms for Learning Bayesian Net-
work Classifiers.

Num. 22. M. Villaret, On Some Variants of Second-Order Unification.
Num. 23. M. Gómez, Open, Reusable and Configurable Multi-Agent Sys-

tems: A Knowledge Modelling Approach.
Num. 24. S. Ramchurn, Multi-Agent Negotiation Using Trust and Per-

suasion.
Num. 25. S. Ontañon, Ensemble Case-Based Learning for Multi-Agent

Systems.
Num. 26. M. Sánchez, Contributions to Search and Inference Algorithms

for CSP and Weighted CSP.
Num. 27. C. Noguera, Algebraic Study of Axiomatic Extensions of Trian-

gular Norm Based Fuzzy Logics.
Num. 28. E. Marchioni, Functional Definability Issues in Logics Based on

Triangular Norms.
Num. 29. M. Grachten, Expressivity-Aware Tempo Transformations of

Music Performances Using Case Based Reasoning.
Num. 30. I. Brito, Distributed Constraint Satisfaction.
Num. 31. E. Altamirano, On Non-clausal Horn-like Satisfiability Prob-

lems.
Num. 32. A. Giovannucci, Computationally Manageable Combinatorial

Auctions for Supply Chain Automation.
Num. 33. R. Ros, Action Selection in Cooperative Robot Soccer using

Case-Based Reasoning.
Num. 34. A. Garćıa-Cerdaña, On some Implication-free Fragments of

Substructural and Fuzzy Logics.
Num. 35. A. Garćıa-Camino, Normative Regulation of Open Multi-agent

Systems.
Num. 36. A. Ramisa Ayats, Localization and Object Recognition for Mo-

bile Robots.
Num. 37. C.G. Baccigalupo, Poolcasting: an intelligent technique to cus-

tomise music programmes for their audience.
Num. 38. J. Planes, Design and Implementation of Exact MAX-SAT

Solvers.
Num. 39. A. Bogdanovych, Virtual Institutions.
Num. 40. J. Nin, Contributions to Record Linkage for Disclosure Risk

Assessment.
Num. 41. J. Argelich Romá, Max-SAT Formalisms with Hard and Soft

Constraints.
Num. 42. A. Casali, On Intentional and Social Agents with Graded Atti-

tudes.
Num. 43. A. Perreau de Pinnick Bas, Decentralised Enforcement in Mul-

tiagent Networks.

Num. 44. I. Pinyol Catadau, Milking the Reputation Cow: Argumenta-
tion, Reasoning and Cognitive Agents.

Num. 45. S. Joseph, Coherence-based Computational Agency.
Num. 46. M. Atencia, Semantic Alignment in the Context of Agent Inter-

action.
Num. 47. M. Vinyals, Exploiting the Structure of Distributed Constraint

Optimization Problems to Assess and Bound Coordination Ac-
tions in MAS.

Num. 48. D. Villatoro, Social Norms for Self-policing Multi-agent Systems
and Virtual Societies.

Num. 49. J. L. Fernandez-Marquez, Bio-inspired Mechanisms for Self-
organising Systems.

