
Exact and Heuristic Approaches
for Solving String Problems from

Bioinformatics

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Naturwissenschaften

by

Marko Djukanovic, MSc
Registration Number 01652659

to the Faculty of Informatics

at the TU Wien

Advisor: Günther Raidl, Ao.Univ.Prof. Dipl.-Ing.Dr.techn.
Second advisor: Christian Blum, Ph.D., senior research scientists

The dissertation has been reviewed by:

Paola Festa Vladimir Filipović

Vienna, 24th December, 2020
Marko Djukanovic

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Marko Djukanovic, MSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 24. Dezember 2020
Marko Djukanovic

iii

Acknowledgements

First and foremost I want primary to thank my advisor Günther Raidl who gave me the
opportunity to do these doctoral studies. I am grateful for the fruitful collaboration,
suggestions, his patience and enthusiasm to teach, and for his guidance towards this point.
Moreover, I want to express my deep gratitude to my co-advisor Christian Blum who was
always there to help me with long and serious discussions and revising my manuscripts.
I was quite pleased to visit you in Barcelona and to stay there for a few months. This
visit initiated studying new research topics that led to common publications. I want
to emphasize that this thesis was funded by the Doctoral Program Vienna Graduate
School on Computational Optimization (VGSCO), Austrian Science Foundation Project
No. W1260-N35. The VGSCO organized many interesting courses from the wide area of
optimization, which increase my level of expertise significantly. Also, I express gratitude
to the many events organized by VGSCO, such as the workshops and excellent retreats.
Many thanks go to my former and current colleagues at the Algorithms and Complexity
Group for the friendly environment, the nice discussions from which I learned a lot and
spread my viewpoints. Also, many thanks to the external reviewers of my thesis, Paola
Festa and Vladimir Filipović, for their time and effort invested to evaluate this thesis.

Last but not least, the greatest thanks go to my family: my wife Jovanka, my parents, and
my sister Marina for their ongoing support, encouragement that gave me the confidence
and motivation to overcome all obstacles and made this work possible.

v

Abstract

This thesis provides several new algorithms for solving prominent string problems from
the literature, most of these being variants of the well-known longest common subsequence
(LCS) problem. Given a set of input strings, a longest common subsequence is a string
of maximum length that can be obtained from each input string by removing letters, i.e.,
which is a common subsequence of all input strings. This is a combinatorial optimization
problem, which can be solved efficiently for two strings but is N P–hard and challenging
to solve in practice for the general case of an arbitrary set of input strings. The LCS
problem and related string problems make relationships among strings explicit and
provide a range of important measures which serve for detecting similarities between
molecules of various structures, for example. Finding similarities between molecules plays
an important role in bioinformatics helping in understanding complex biological processes,
identifying important motifs and clusters of molecules that possess similar behaviors.
Other important applications lie, for example, in text processing. The Unix command
diff and the Git version-control system are some examples where finding common text
patterns quickly is important. String problems have attracted attention for more than
50 years due to their computational hardness, and various methods were derived and
successfully applied.

The current work primarily focuses on N P–hard variants of string problems, where
previous exact approaches are of limited practical value, and therefore many heuristic
methods had been suggested. On the one side, more effective exact approaches are
proposed here, but on the other side also more effective heuristic methods that scale to
large problem instances of practical interest. Moreover, we consider in particular also
anytime algorithms that are in principle exact but can be terminated early and then yield
promising approximate solutions.

Besides the basic LCS problem, we consider here the following important variants: the
longest common palindromic subsequence problem, the arc-preserving LCS problem, the
longest common square subsequence problem, the repetition-free LCS problem, and the
constrained LCS problem.

Concerning heuristic approaches, we propose a general beam search framework in which
also many previously described methods can be expressed. A rigorous experimental
evaluation and comparison were done. In particular, new state-of-the-art results were
obtained on various benchmark sets utilizing a novel heuristic guidance that approximates

vii

the expected solution length of three different string problems. This guidance can more
effectively lead the search towards promising search regions of the search space than
formerly used functions. For solving the longest common square subsequence problem, in
particular, we propose a hybrid of a Reduced Variable Neighborhood Search method and
a Beam search technique.

Concerning exact techniques to solve the string problems, two kinds of methods are
presented in this thesis: (i) pure exact methods based on A∗ search and (ii) anytime
algorithms that build upon the A∗ search framework. An effective A∗ search is obtained
primarily by utilizing an efficiently calculable and at the same time comparably tight upper
bound function for the length of real optimal common subsequence. Besides exhibiting
an excellent performance on the general LCS problem, experimental results indicate that
this A∗ search is also able to outperform all previously published more specific exact
algorithms for the special cases of the longest common palindromic subsequence problem
and the constrained longest common subsequence problem with two input strings.

Concerning anytime algorithms, we first make use of the already derived A∗ search
framework in the way that classical A∗ iterations are interleaved with beam search runs.
The iterations are performed on the same state graph to avoid unnecessary expansions
of redundant nodes in the search. This hybrid is able to meaningfully tackle large-sized
problem instances that cannot be solved exactly with the A∗ search and yields, after
early termination, also upper bounds in addition to the heuristic solutions. In order to
improve the convergence of the hybrid, we further suggest another anytime algorithm
variant in which the beam search part is replaced by a major iteration of the Anytime
Column Search. The effectiveness of the two hybrids is experimentally compared on the
basic LCS problem and the longest common palindromic subsequence problem. New
state-of-the-art results are produced and better final optimality gaps were obtained by
the latter hybrid, in comparison to a several state-of-the-art anytime algorithms from
the literature. Optimality gaps obtained in practice for the considered string problems
are, to the best of our knowledge, compared and reported for the first time in literature.

As an alternative exact approach, we further consider the transformation of LCS problem
instances into Maximum Clique (MC) problem instance on the basis of so-called conflict
graphs. In this way, state-of-the-art MC solving approaches can be utilized for solving
the LCS problem instances. One of the best exact and one of the best heuristic MC
solvers from the literature are used for this purpose. Due to the complexity of the
transformation, the size of the conflict graph grows quickly in the LCS problem instance
size. To address this issue, we present a conflict graph reduction technique based on
suboptimality checks by making use of the best available lower and upper bounds of the
problems. The high effectiveness of the reduction is demonstrated on the repetition-free
LCS problem and the longest arc-preserving subsequence problem. In conjunction with
the general-purpose mixed integer linear programming solver Cplex, new state-of-the-art
results are obtained on a wide range of benchmark instances. Some of the real-world
longest common arc-preserving problem instances were solved exactly for the first time
in the literature by applying this new technique.

Kurzfassung

In dieser Arbeit werden neue Algorithmen zur Lösung bedeutender Stringprobleme aus
der Literatur präsentiert, die meisten davon Varianten des wohlbekannten longest common
subequence (LCS) Problems. Bei einer Menge von Eingabestrings ist eine longest common
subequence ein String von größter Länge, der durch das Löschen einzelner Zeichen aus
jedem der Eingabestrings erzeugt werden kann. Einen solchen zu finden ist ein kombinato-
risches Optimierungsproblem, welches zwar effizient für zwei Eingabestrings gelöst werden
kann, im allgemeinen Fall einer beliebigen Anzahl von Strings aber ein NP-schweres
Problem darstellt. Die Lösungen solcher LCS- und verwandter Stringprobleme zeigen
Zusammenhänge zwischen Strings explizit auf und können beispielsweise als Maße zur
Erkennung von Ähnlichkeiten von Molekülen unterschiedlicher Strukturen verwendet
werden. Letzteres spielt eine wichtige Rolle in der Bioinformatik um komplexe biologische
Prozesse zu verstehen, durch das Erkennen von Strukturmotiven und Clustern von Mole-
külen mit ähnlichem Verhalten. Eine andere Anwendung besteht in der Textverarbeitung.
Das Unix Kommando diff und das Versionierungssystem Git sind Beispiele, bei denen das
schnelle Auffinden gemeinsamen Textmuster wichtig ist. Stringprobleme erregen bedingt
durch ihre rechnerische Schwere seit mehr als 50 Jahren Aufmerksamkeit, in denen eine
Vielzahl von Methoden entwickelt und erfolgreich angewandt wurden.

Die derzeitige Forschung befasst sich primär mit NP-schweren Problemvarianten, bei
denen bisherige exakte Verfahren begrenzten praktischen Wert haben und daher viele
heuristische Methoden entwickelt wurden. In dieser Arbeit werden einerseits effektivere
exakte Verfahren, andererseits effektivere heuristische Methoden vorgeschlagen, welche
und zu großen Probleminstanzen von praktischem Interesse gut skalieren. Darüber hinaus
betrachten wir anytime Algorithmen welche zwar prinzipiell exakte Verfahren sind aber
frühzeitig abgebrochen werden können und dann eine näherungsweise optimale Lösung
liefern.

Neben dem grundlegenden LCS Problem betrachen wir folgende wichtige Varienten davon:
das longest common palindromic subsequence Problem, das arc-preserving LCS Problem,
das longest common square subsequence Problem, das repetition-free LCS problem und
das constrained LCS.

Auf der heuristischen Seite schlagen wir ein allgemeines beam search Gerüst vor, in
welchem viele bisherige Ansätze ausgedrückt werden können. Eine umfassende experi-
mentelle Evaluierung und Vergleiche wurden durchgeführt. Besonders hervorzuheben

ix

sind neue führende Resultate auf verschiedenen Benchmark-Instanzen dreier unterschied-
licher Stringprobleme, welche mit einer neuartigen guidance Heuristik, die erwartete
Lösungslänge approximiert, erzielt wurden. Diese guidance lenkt die Suche effektiver in
vielversprechendere Bereiche des Suchraums als bisher verwendete Funktionen. Speziell
für das longest common square subsequence problem schlagen wir einen hybriden Ansatz
bestehend aus einer reduzierten variablen Nachbarschaftssuche und einer beam search
vor.

Bezüglich exakter Methoden werden zwei Arten von Methoden in dieser Arbeit präsentiert:
(i) rein exakte Methoden basierend auf der A∗-Suche und (ii) anytime Algorithmen
basierend auf der A∗-Suche. Durch eine effizient berechenbare und zugleich enge obere
Schranke für die Länge von optimalen common subsequences erhalten wir eine effektive A∗-
Suche. Abgesehen von einer exzellenten Performance auf dem allgemeinen LCS Problem
zeigen experimentelle Resultate, dass diese A∗-Suche auch bisher publizierte Resultate
spezifischerer exakter Algorithmen für die Spezialfälle des longest common palindromic
subsequence Problems und des constrained longest common subsequence Problems mit
zwei Eingabestrings übertrifft.

Als anytime Algorithmus verwenden wir das bestehende Gerüst der A∗-Suche und
Verschränken diese mit beam search Läufen. Diese werden auf dem selben Zustandsgraphen
wie die A∗-Suche durchgeführt um redundante Expansionen von Knoten zu vermeiden.
Dieser hybride Ansatz vermag große Probleminstanzen welche nicht exakt gelöst werden
können in Angriff zu nehmen und liefert zusätzlich zu einer heuristische Lösung auch
eine obere Schranke. Um die Konvergenz zu verbessern, schlagen wir zusätzlich einen
anytime Algorithmus vor, bei dem der beam search Teil durch eine Hauptiteration einer
Anytime Column Search ersetzt wird. Die Effektivität beider hybriden Ansätze wird
experimentell auf dem klassischer LCS Problem und dem longest common palindromic
subsequence Problem analysiert. Mit dem zweiten Ansatz finden wir neue führende
Resultate und bessere Optimalitgarantien in Vergleich zu anderen state-of-the-art anytime
Algorithmen aus der Literatur. Nach bestem Wissen wurden diese Optimalitgarantien
für die betrachteten Stringprobleme zum ersten Mal verglichen und in der Literatur
berichtet.

Als einen alternativen exakten Ansatz betrachten wir weiters die Transformation von
LCS Probleminstanzen in maximum clique (MC) Probleminstanzen basierend auf dem
sogenannten Konfliktgraphen. Dadurch können state-of-the-art MC Lösungsansätze
verwendet werden um LCS Probleminstanzen zu lösen. Zu diesem Zwecke wird einer der
besten exakten und einer der besten heuristischen MC Lösungsverfahren aus der Literatur
verwendet. Die Größe des Konfliktgraphen wächst, der Komplexität der Transformation
geschulde rapide an. Um dies abzumildern, präsentieren wir eine Reduktionstechnik für den
Konfliktgraphen basierend auf Suboptimalitäts-Überprüfungen mittels der verfügbaren
besten unteren und oberen Schranken einer Probleminstanz. Die hohe Effektivität dieses
Ansatzes wird anhand des repetition-free LCS Problems und des longest arc-preserving
subsequence Problems demonstriert. In Verbindungen mit dem CPLEX, einem Solver für
ganzzahlige lineare Programme erlangen wir neue state-of-the-art Ergebnisse für einem

breiten Bereich von Benchmark-Instanzen. Einige praktische Benchmark-Instanzen des
longest common arc-preserving Problems wurden mit Hilfe dieser Technik in der Literatur
zum ersten Mal exakt gelöst.

Contents

Abstract vii

Kurzfassung ix

Contents xiii

1 Introduction 1
1.1 Structure of the Thesis . 6
1.2 Preliminaries . 8

2 Methodology 11
2.1 Exact Methods . 12
2.2 Heuristic Methods . 26
2.3 Anytime Algorithms . 35

3 The Longest Common Subsequence Problem 43
3.1 Introduction . 44
3.2 State Graph for the LCS Problem . 48
3.3 A General Beam Search Framework for the LCS Problem 48
3.4 A∗ Search Framework . 55
3.5 Anytime Algorithms to Solve the LCS Problem 56
3.6 Computational Studies . 61
3.7 Conclusions . 80

4 The Longest Common Palindromic Subsequence Problem 83
4.1 Introduction . 84
4.2 A Greedy Heuristic for the LCPS Problem 85
4.3 A∗ Search for the LCPS Problem . 87
4.4 Approximating the Expected Length of an LCPS for Random Strings 93
4.5 Anytime Algorithms to Solve the LCPS Problem 96
4.6 Experimental Results . 100
4.7 Conclusions . 113

5 The Longest Common Square Subsequence Problem 115

xiii

5.1 Introduction . 115
5.2 Algorithms for Solving the LCSqS Problem 116
5.3 Computational Experiments . 118
5.4 Conclusions . 122

6 Application of Maximum Clique Solvers to Solve LCS Problems 123
6.1 Introduction . 123
6.2 Considered problems and transformations 124
6.3 Conflict graph reduction . 130
6.4 Experimental evaluation . 132
6.5 Conclusions . 144

7 The Constrained Longest Common Subsequence Problem 145
7.1 Introduction . 146
7.2 A Fast Heuristic for the m–CLCS Problem 147
7.3 State Graph for the m–CLCS Problem 148
7.4 A∗ Search for the m–CLCS Problem 150
7.5 Beam Search for the m–CLCS Problem 154
7.6 Experimental Evaluation . 157
7.7 Conclusions . 167

8 Conclusions and Future Work 169

A LCS Problem: Supplementary Material 173
A.1 The Full Anytime Results . 173
A.2 Improvements of A∗+ACS Over Other Approaches 175

B LCPS Problem: Supplementary Material 179
B.1 Constraint Programming model for the LCPS Problem 179
B.2 Anytime plots of the algorithms that show the evolution of the obtained

sol. quality . 180
B.3 Anytime plots of the algorithms that show the evolution of the obtained

gaps . 186
B.4 The 2–LCPS Approaches from Literature: details of our re-implementations 188

C Application of Max-Clique Solvers to Solve LCS problem: Supple-
mentary Material 197
C.1 Numerical Results after graph reduction 197

D CLCS Problem: Supplementary Material 201
D.1 A short overview over the Algorithms Used for Comparison 201
D.2 Tuning of β and kbest parameters for different Beam Search Configurations 203
D.3 The Numerical Results on the Remaining m–CLCS Benchmark Sets . 204

List of Algorithms 207

Bibliography 209

CHAPTER 1
Introduction

In bioinformatics, strings are used for representing important biological molecules, such
as DNA, RNA, and proteins. Finding similarities between molecular structures plays an
important role in understanding biological processes. Such similarities can be expressed
by considering subsequences that are common for all strings of a given set of input strings.
A subsequence of string s is any sequence of characters obtained by deleting zero or more
characters from s. In particular, a common measure of similarity can be obtained by
considering the longest common subsequence (LCS) problem [128] which is a well-known
(discrete) optimization problem stated as follows. Given a set of input strings, we aim
at finding a longest possible subsequence that is common for all strings. For example,
for the strings {abbbcaab,abcccaa}, an LCS is abcaa. At the first glance, this looks
like a simple problem, but it is computationally challenging to solve in general since it
belongs to the class of N P–hard problems if an arbitrary set of input strings is given as
an input. Only for a small number of input strings, the LCS can be solved efficiently in
polynomial time, for example, by dynamic programming [128]. The LCS problem has
many applications not only in molecular biology [96], but also in data compression [155],
pattern recognition, file plagiarism check, text editing [112], among others.
In literature, there exists about a dozen of well-studied variants of the LCS problem that
arise from practice, which have mostly been introduced within the last two decades. We
will be considering some of the most important variants within this thesis. They are
introduced in the next paragraphs. All these problem variants consist of the inclusion of
additional constraints into the basic LCS problem. In that way, structurally different
problems are obtained. In many cases, these problems are practically even more chal-
lenging to solve and ask for the development of algorithms that are different from those
of the existing ones for the LCS problem literature.
The longest common palindromic subsequence (LCPS) problem [38] asks for a longest
common subsequence that is at the same time a palindrome. A string is a palindrome
if it is equal to its reverse string. For instance, if we are given two strings s1 =

1

1. Introduction

dabcbacbab, s2 = abbcccbad, an LCPS is abcba. Palindromic subsequences are
especially interesting in the biological context. Palindromic motifs are found in many
genetic instructions such as DNA sequences. In the context of a research project on genome
sequencing, it was discovered that many of the bases on the Y-chromosome are arranged
as palindromes [117]. Biologists believe that identifying palindromic subsequences of
DNA sequences may help to understand genomic instability [36, 159].

The repetition-free longest common subsequence (RFLCS) problem [2] asks for a longest
common subsequence that has no character occurring more than once in the subsequence.
For example, given two strings s1 = dabcbacbab, s2 = abbcccbad, an RFLCS is
the sequence cba. The RFLCS problem appears for example when one deals with the
molecules that come from different origins and the size of the alphabet is usually large
(that is, much larger than it is the case of RNA, DNA molecules, and proteins). Another
application is concerned with the gene duplication process which plays an important
role in detecting similarity between molecules. The problem of gene duplication in the
gene rearrangement domain is sparsely considered in literature, due to its difficulty. A
similarity measure introduced for the RFLCS problem takes into account the concept of
exemplar genes. Sankoff [150] proposed the exemplar model, which consists of identifying
the exemplar representative in each genome for each family of duplicated genes. From the
side of biology, it would mean that the exemplar may correspond to the original copy of
the gene, which later created all other copies. In literature, it is proven that the RFLCS
problem with two input strings is already APX –hard, which implies N P–hardness of
the problem itself.

Given a pattern string P in addition to the input strings, the constrained longest common
subsequence (CLCS) problem [162, 5, 49] asks for a longest common subsequence that
also has a pattern string P as its subsequence. As an example, given two strings
s1 = dabcbacbab, s2 = abbcccbad and pattern P=aca, the CLCS is the sequence
abcba. An application scenario of the CLCS problem pertains to the identification
of the homology between two biological sequences which have a specific or putative
structure in common [162]. Studying genomes of various species has shown that some
segments are constrained in the lineage. Roughly, around 8% of the human genome
consists of sequences that are conserved in other eutherian mammals [145]. A higher
proportion of sequences conserved reflects a lower divergence between species. Generally,
the length of a CLCS can be used as a similarity measurement for molecules when one
takes into account a common specific segment that arises from some structural properties
of the compared molecules. A concrete example can be found in [35]. It deals with the
comparison of seven RNase sequences so that the three active-site residues, HKH, form
part of the solution. This pattern is responsible, in essence, for the main functionality of
the RNase molecules such as catalyzing the degradation of RNA sequences. Furthermore,
constrained sequences find applications in other areas, for instance, in communication or
magnetic recording [37].

The longest common square subsequence (LCSqS) problem, described by Inoue et al. [91],
asks for the longest common subsequence which is a square at the same time. String

2

Figure 1.1: Example of an RNA molecule and its corresponding arc-annotation shape.

s is a square iff there exists string s� such that s = s� · s�, where “·” denotes the string
concatenation. For example, if we are given s1 = dabcdab, s2 = adbdccdad, LCSqS is
the sequence dada. The LCSqS is used as a measure of similarity between disjunctive
parts of each of the molecules. It can give a better insight into the internal similarity of
the compared molecules rather than just considering an LCS.

The longest common arc-preserving subsequence (LAPCS) problem [97, 62] differs struc-
turally from the aforementioned problems. An arc-annotated string is a tuple (s, Ps),
where s is a string over some alphabet Σ and Ps is a set of arcs linking pairs of positions
of string s. More specifically, if (x, y) ∈ Ps, it means that there is an arc in sequence
s between the character at position x and the character at position y. Now, for two
arc-annotated strings (s1, Ps1) and (s2, Ps2), the LAPCS problem seeks for a longest
common subsequence between sequences s1 and s2 such that all arcs are preserved in the
common subsequence. We say that arcs are preserved in the common subsequence s̃ iff for
each arc presented in s̃ there is an arc between the same characters in both arc-annotated
input strings. If there is no restriction between the appearances of two different arcs
in each of the input strings, the problem is provenly N P–hard (even for just two input
strings). However, if we add restrictions, such as no two arcs may share endpoints, and
arcs in both arc-annotated input strings may not cross, the problem becomes much
easier to solve—it is even polynomially solvable. For more about the other restricted
variants of the LAPCS problem, see [97]. In this thesis, we are mostly interested in
solving the general LAPCS problem where no restrictions between two arcs occur in the
given arc-annotated input strings. The LAPCS problem has applications in comparing
RNA and DNA molecules where there might exist arcs between nucleogenus bases, that is,
arcs between adenine (A) and thymine (T) or arcs between guanine (G) and uracil (U)
(cytosine (C) in DNA, respectively). An example of encoding an arc-annotated sequence
from an RNA sequence is given in Figure 1.1. An example of a LAPCS problem instance
can be found in Figure 1.2.

In the literature related to these string problems, there is a lack of exact approaches; a
partial exception being the case of the classical LCS problem. This could be explained

3

1. Introduction

(s1, P1) : A G C U G G C C G U (s2, P2) : A U G G A C G C G U

LAPCS: A U G G C G U

Figure 1.2: Example of an LAPCS instance. The characters of the solution are highlighted
in each of the arc-annotated input strings.

by the two following facts. First, the theoretical worst-case complexity bound to solve
these problems is high, which might indicate that chances are low to construct reasonably
fast exact approaches. Secondly, obtaining a reasonably “good” heuristic solutions was
already sufficient to detect similarity between molecules in practice. In this thesis, we
aim to provide various techniques to tackle small-to-middle sized problem instances of
the considered problems exactly and large-sized problem instances heuristically, in more
effective ways. The next paragraphs and Table 1.1 give an overview of the algorithms
developed for the considered problems.

For solving the classical LCS problem, we propose a general beam search (BS) framework
(GBSF) by collecting the main ideas from the heuristic approaches that had been
introduced in the last decades (like pruning and filtering) and incorporating them as
components of the framework. Further, we derive a novel state-of-the-art guidance
heuristic which approximates the expected length of an LCS under the assumption that
all input strings are random. This heuristic guidance shows clear benefits as it can guide
the search towards more promising regions even for real-word benchmark sets. It was able
to deliver new best results on many considered instance classes. Moreover, the general
search framework is introduced to overcome an issue with the earlier literature where a
lack of a fair systematic comparison was noticed. The main conclusions derived from this
research are: If the main goal is to produce high-quality solutions within a short time
interval, then it is sufficient to apply the BS framework with a high beam width. For
solving the LCS problem exactly, we further propose a novel A∗ search framework. The
A∗ search is a well-known exact algorithm that is effective for various problems in the field
of Artificial Intelligence which relate to pathfinding tasks on large weighted graphs [79].
The approach is based on efficiently calculable and reasonably tight upper bounds and
carefully chosen data structures necessary to obtain an efficient search. Our A∗ search
can solve more LCS instances to proven optimality than the best known exact techniques
from the literature. In order to tackle large-sized problem instances, we develop two novel
hybrids that belong to the class of anytime algorithms: (i) a combination of A∗ and GBSF
(A∗+BS), and (ii) a hybrid of A∗ and Anytime Column Search (A∗+ACS) [165] utilizing
the same filtering as GBSF. The idea of A∗+BS is to interleave classical iterations of A∗

with GBSF that starts from the carefully selected not-yet-expanded node as its root node.
In this way, A∗ iterations are engaged for improving current dual bounds of the problem
while the task of GBFS executions is to possibly improve current primal bounds. If both

4

bounds match, optimality is proven. A∗+ACS hybrid is constructed in a way that after
several classical A∗ iterations, a major iteration of ACS is performed. The ACS search is
guided by a novel search guidance which approximates the expected length of an LCS
on random strings. A∗+ACS hybrid can deliver high-quality solutions within a shorter
time, it has better convergence and delivers smaller remaining gaps for the LCS problem
in comparison to some other state-of-the-art anytime algorithms from earlier literature.
Thus, it can be arguably considered to be a new state-of-the-art algorithm for the LCS
problem. Rigorous experimental studies concerning the LCS problem are presented in
Chapter 3.

The LCPS problem with an arbitrary set of input strings as input is addressed for the first
time in [56]. We first propose a greedy heuristic to derive LCPS solutions of reasonable
quality in a short runtime. Further, more sophisticated approaches are applied. First,
the general search framework for the LCPS problem is proposed. Further, an extension
of the previously mentioned beam search framework is presented towards the LCPS
problem. Further, an efficient A∗ search is developed to tackle small-to-middle sized
problem instances exactly. However, performing the A∗ search was mostly limited to
instances of smaller sizes. In order to improve the performance of A∗, a few anytime
algorithms [185] have also been constructed. Again, a hybrid of A∗ search and BS
(A∗+BS) is considered as well as an improved hybrid one combining A∗ and Anytime
Column Search (A∗+ACS). These two hybrids differ from the same hybrids developed for
the LCS problem in several details such as the node’s structure and upper bounds utilized.
A∗+ACS is able to significantly outperform the results of A∗+BS hybrid. The search
guidance that approximates the expected length of an LCS on random strings is extended
towards the LCPS and incorporated to guide the search of the ACS component in the
A∗+ACS hybrid. Moreover, a rigorous experimental study on the well-studied LCPS
problem with two input strings (2–LCPS) is also conducted. They show the benefits of
the proposed A∗ search also on this more specific case. These exhaustive computational
studies show that A∗ needs significantly less time to prove optimality than the best
known specialized approaches for the 2–LCPS problem in the literature. The studies
concerning the LCSPS problem are presented in Chapter 4.

In order to solve the LCSqS problem, two heuristic algorithms are developed: (i) a Ran-
domized Local Search (RLS) [148], and (ii) a hybrid of a (Reduced) Variable Neighborhood
Search (VNS) [133] and a BS heuristic. The latter is able to produce better solutions
than the RLS approach. VNS is responsible for ensuring better diversification whereas
BS approach is responsible more on exploitation. The studies concerning the LCSqS
problem are presented in Chapter 5.

Concerning the RFLCS and LAPCS problems, a new approach based on a transformation
of a problem instance (of the considered string problems) into a Maximum Clique
(MC) problem instance is proposed. More precisely, an instance is transformed by
deriving conflict graph, and a solution of an MC on the complement of the conflict graph
corresponds to a solution of the original RFLCS or LAPCS, respectively. State-of-the-art
exact and heuristic solvers are utilized to solve the MC problem on the derived conflict

5

1. Introduction

graphs, and, in that way, to solve the original string problem instances. As a consequence,
many RFLCS and LAPCS problem instances are solved for the first time in the literature.
However, the main limitation of the transformation was the size of the conflict graphs
because their size grows exponentially in the instance size. To deal with the issue, we
propose a reduction of the number of vertices of the conflict graphs based on suboptimality
checks which make use of lower and upper bounds. The reduction is effective primarily
when applying the MILP solver Cplex. The MILP–based approach is able to solve
significantly more instances to proven optimality in case of both, RFLCS and LAPCS
problem, than the two MC solvers included in the experimental evaluation. The studies
concerning the RFLCS and LCSPS problem are presented in Chapter 6.

Concerning the CLCS problem, in order to obtain CLCS solutions of reasonable quality as
quickly as possible, we developed a greedy method. For obtaining high-quality solutions,
we extend the mentioned GBSF for the LCS problem towards the CLCS problem. This
GBSF differs from the same framework developed for the LCS problem in several details
such as the node’s structure and additional data structures utilized to ensure an efficient
search. Further, we consider an efficient A∗ search to solve the CLCS problem exactly.
The efficiency of the A∗ search is proven by comparing it to the specialized algorithms
for the 2–CLCS problem, that is well-studied in the literature. A∗ search is able to prove
optimality for all considered (practical and random) benchmarks within one-to-two order
of magnitude shorter runtimes than the best approaches from the literature. To guide the
search of the GBSF, two effective heuristic search guidances are developed: (i) probability-
based heuristic, and (ii) an extension of the approximate expected length calculation
from the LCS towards the CLCS for random strings. Beam search guided by the two
heuristics tends to be the most effective in solving the large-sized problem instances in
comparison to some other search guidances used in our experimental evaluation. The
details of the studies concerning the LCSPS problem are presented in Chapter 7.

1.1 Structure of the Thesis
The rest of the thesis is organized as follows. Chapter 2 reviews basic techniques used
to develop of our algorithms. In Chapter 3 the methods to solve the longest common
subsequence problem are presented. Chapter 3 is based on the two published papers:

• M. Djukanovic, G. R. Raidl, and C. Blum. A Beam Search for the Longest Common
Subsequence Problem Guided by a Novel Approximate Expected Length Calculation.
Proceedings of LOD 2019 – the 5th International Conference on Machine Learn-
ing, Optimization and Data Science (Giuseppe Nicosia, Panos Pardalos, Giovanni
Giuffrida, Renato Umeton, Vincenzo Sciacca, eds.), volume 11943 of LNCS, pages
154–167, Springer.

• M. Djukanovic, G. R. Raidl, and C. Blum. Finding Longest Common Subsequences:
New anytime A∗ search results. Applied Soft Computing, 95:106499, 2020.

6

1.1. Structure of the Thesis

In Chapter 4 the methods to solve the longest common palindromic subsequence problem
are described. This chapter is based on the two published papers:

• M. Djukanovic, G. Raidl, and C. Blum. Exact and heuristic approaches for the
longest common palindromic subsequence problem. In Proceedings of LION 12 – the
12th International Conference on Learning and Intelligent Optimization, volume
11353, pages 199–214. Springer, 2018.

• M. Djukanovic, G. R. Raidl, Christian Blum, Anytime algorithms for the longest
common palindromic subsequence problem. Computers & Operations Research.
Volume 114:104827, 2020.

Chapter 5 presents two heuristic methods to solve the longest common square subsequence
problem and is based on the paper:

• M. Djukanovic, G. R. Raidl, and C. Blum. A Heuristic Approach for Solving the
Longest Common Square Subsequence Problem. In Proceedings of EUROCAST
2019 – the 17th International Conference on Computer Aided Systems Theory
(Roberto Moreno-Díaz, Franz Pichler, Alexis Quesada-Arencibia, eds.), volume
12013 of LNCS, pages 429-437, 2019, Springer.

Chapter 6 describes a relation between the Maximum-Clique (MC) problem and variants
of the longest common subsequence problems which are then solved via the most efficient
(exact and heuristic) MC solvers from the literature. The content of this chapter mainly
follows the published paper:

• C. Blum, M. Djukanovic, A. Santini, H. Jiang, C.-M. Li, F. Manyà, G. R. Raidl.
Solving longest common subsequence problems via a transformation to the maximum
clique problem. Computers & Operations Research. Volume 125:105089, 2021.

In Chapter 7 we study the generalized constrained longest common subsequence problem.
This chapter is based on the following papers:

• M. Djukanovic, C. Berger, G. R. Raidl, C. Blum, An A∗ search algorithm for the
constrained longest common subsequence problem. Information Processing Letters.
166:106041, 2020.

• M. Djukanovic, C. Berger, G. R. Raidl, and C. Blum. On Solving a Generalized
Constrained Longest Common Subsequence Problem. In Proceedings of OPTIMA 20
– the 11th International Conference Optimization and Applications, volume 12422
of LNCS, pages 55–70, 2020, Springer.

7

1. Introduction

Finally, Chapter 8 concludes this thesis with a summary of the key findings and an
outlook on future research directions.

Further details on the re-implementations of some algorithms from the literature and
extended computational results are provided in Appendices A–D.

1.2 Preliminaries
We give some preliminaries and notations that are commonly used within this thesis.
By S = {s1, . . . , sm} we denote a set of m input strings over a (finite) alphabet Σ. The
notation used throughout the thesis is listed:

• For strings s, we denote its length by |s|.
• The j-th letter of a string s is denoted by s[j], j = 1, . . . , |s|.
• By s[j, j�], j ≤ j�, we denote the substring of s starting at the j-th position and

ending at position j�; the notation refers to the empty string ε if j > j�.

• By n = maxsi∈S |si| we denote the maximum input string length for set S.

• By |s|a we denote the number of occurrences of letter a ∈ Σ in string s, and by
|s|A = #

a∈A |s|a we denote the total number of occurrences of letters from set
A ⊆ Σ in string s.

• The reverse string of string s is denoted by srev; note that if srev = s then s is a
palindrome; for example, madam is a palindrome.

• The concatenation of two strings s1 and s2 is denoted by s1 · s2 and is obtained by
appending string s2 to string s1.

• For pL ∈ Nm, by S[pL], pL
i ∈ {1, . . . , |si|} we denote the set S[pL] := {si[pL

i , |si|] |
i = 1, . . . , m} generated from the initial set of strings S.

8

1.2. Preliminaries

Table 1.1: An overview of the main contributions of the thesis.

Considered
problems

Heuristic approaches Exact approaches

LCS

• a novel GBSF

• a novel expected length
calculation heuristic for
LCS

• an A∗ search

• a novel anytime algo-
rithms A∗+BS and
A∗+ACS

LCPS

• a greedy approach

• the GBSF for LCS ex-
tended towards LCPS
problem

• the expected length calcu-
lation for LCS extended
towards LCPS

• an A∗ search

• the anytime algorithms
A∗+BS and A∗+ACS ex-
tended towards LCPS

LCSqS
• an ILS approach

• a VNS & BS approach
–

RFLCS,
LAPCS

• the instances transformed
into MC instances

• an efficient reduction of
the MC instances pro-
posed

• the reduced MC instances
solved via a state-of-the-
art heuristic MC solver

• the instances transformed
to MC instances

• an efficient reduction of
the MC instances pro-
posed

• the reduced MC instances
solved via Cplex and a
state-of-the-art exact MC
solver

CLCS

• a greedy approach

• the GBSF extended to-
wards CLCS problem

• a probability–based
heuristic

• the expected length calcu-
lation for LCS extended
towards CLCS

• an A∗ search

9

CHAPTER 2
Methodology

In this chapter, we give an overview of the concepts and techniques used throughout
this thesis. This chapter starts by introducing combinatorial optimization problems in a
general way. Section 2.1 describes fundamental exact methods to solve such problems,
emphasizing branch-and-bound, dynamic programming, A∗ search, basic mixed integer
linear programming techniques, a without checking every single feasible solution is an
option. A basic method to deal with this is known as branch-and-bound. It utilizes
bounds lower and upper bounds on achievable solution values, c.f. [132, 118]. If we are
given an instance (Φ, F) of a maximization problem with optimal solution F ∗, a value
p ∈ R is called a primal bound (upper bound) iff F (f∗) ≥ p. Straightforwardly, a value
d ∈ R is called a dual bound (lower bound) iff F (f∗) ≤ d. When one encounters a primal
bound p and dual bound d for which p = d = F (f), f ∈ Φ holds, f is then a proven
optimal solution. Every feasible solution f ∈ Φ provides a primal bound. Dual bounds,
on the other hand, are obtainable by utilizing upper bound heuristics. Note that in the
context of a minimization problem, the primal bound is an upper bound and the dual
bound is a lower bound.

As an example of a COP, consider the 0-1 knapsack problem (0-1 KP) [103]. An instance
of the problem is represented by n items where pi ≥ R+ denotes the profit and wi ∈ R+

the weight of i-th item, for i = 1, . . . , n and a real value W > 0 which denotes the
knapsack capacity. We aim at finding a subset of items with a maximum possible profit
such that the sum of their weights does not exceed the limit of W . Naturally, i-th
item of an 0-1 KP instance is mapped to integer i. The set of feasible solutions can
be represented as any subset of {1, . . . , n} so that the sum of the weights of the items
considered in the solution does not exceed the capacity W . If a subset {1, 2, 4} is a
feasible solution, it means that the first, third, and fourth items are taken in the solution
and that w1 + w3 + w4 ≤ W holds. The objective function F of the problem w.r.t. a

11

2. Methodology

feasible solution f is given by F (f) = #
i∈f pi. Instances of the problem are parametrized

w.r.t. the capacity W .

An optimization problem may be solved by exact methods or heuristic methods. Exact
methods guarantee optimality on found solutions, but their application might not always
be feasible in practice (e.g., due to memory or time limitations). Heuristic methods (also
called approximate methods) compute solutions in affordable time but do not guarantee
to find an optimal solution. Moreover, there are approximation algorithms which are
polynomial–time algorithms that produce a solution which quality is within a factor of
the quality of an optimal solution [98, 176]. An approximation algorithm is in principle
a heuristic that provides quality guarantees.

2.1 Exact Methods
As mentioned above, the main property of exact methods is a guaranty to find an optimal
solution. For COPs that belong to the class of polynomial problems P, there exists
an exact algorithm that is able to solve the problem in a polynomial time. In some
cases, optimal solutions can be directly computed by exploiting problem–specific aspects.
However, the main focus of this thesis are string problems that belong to the class of
N P–hard problems, which are in general computationally hard to solve (as long as
P %= N P). For solving such COPs, it is common to apply enumeration schemes and/or
methods based on the divide-and-conquer principle. As a naive exhaustive enumeration
is usually not applicable in practice, the key idea consists of omitting some solutions
from explicit consideration while still guaranteeing to find at least one optimal solution.

The next sections are organized as follow. An overview of basic tree search algorithms is
given in Section 2.1.1. Afterwards, two basic enumeration schemes are explained: branch-
and-bound in Section 2.1.2 and dynamic programming in Section 2.1.3. Section 2.1.4
describes A∗ search, which is especially effective in path planning on huge weighted graphs
and can also be applied in solving various (discrete) N P–hard problems such as cutting
stock problems, the demand control problems etc., see [169, 33]. In Section 2.1.5, basic
integer linear programming techniques are discussed and the main aspects of constraint
programming in Section 2.1.6, which declaratively express the constraints on the solutions
for given set of decision variables.

2.1.1 Basic Tree Search Algorithms
In the field of combinatorial optimization, it is often effective to apply the principle of the
divide-and-conquer (D&C) for solving problems. This paradigm is based on recursively
partitioning the problem into a series of smaller subproblems until we get simple enough
subproblems which can be trivially solved. These solutions are then combined to get a
solution of the original problem. This mechanism can be represented as a search which
generates a tree, or in the general case, a directed acyclic graph (DAG). Each search
node of the tree represents a corresponding subproblem generated by D&C, or more

12

2.1. Exact Methods

precisely, a partial solution of the main problem. In a general form, nodes are states
which correspond to a (set of) partial solution(s) and remaining subproblems. There
is a transition from node u to another node v iff the solution represented by u may
be extended (by an action) to obtain a solution represented by node v. In essence, a
transition represents a problem-specific transformation, that is, an operation. If there is
a transition from node u to node v, v is called a successor of u. Initializing a root node
of the tree is problem-specific. For example, in the case of the 0-1 knapsack problem, an
initial solution may be given by an empty knapsack, that is, an empty solution {}, which
corresponds to the root node. A transition to the subproblem may correspond to adding
a not-yet-considered item in the current solution, that is, the union of the current partial
solution and a not-yet-considered item. Goal nodes in the tree are those nodes which
cannot produce further (feasible) transitions.

The core idea of tree search algorithms relies on processing nodes of the tree by exploring
all transitions of node v which lead to possibly new nodes that are further used as
candidates to process. The basic difference between each tree search algorithm is the
criterion of choosing the next node to process, see Algorithm 1 (or [6]) and the parameter
strategy.

Algorithm 1 A General Tree Search Algorithm
1: Input: A COP, strategy
2: Output: a solution or failure
3: Initialize: a search tree T with the initial state (root node) of the problem
4: loop
5: if no a node in T whose successors are not-yet-visited then
6: return failure
7: end if
8: choose a node v to process according to strategy
9: if the node v is a goal state then

10: return the corresponding solution associated with node v
11: else
12: encounter successors of v and add them into T
13: mark v as visited
14: end if
15: end loop

In general, tree search algorithms are classified into two groups:

• the search algorithms which use a fixed strategy to methodically traverse the
search tree. Breadth-first and depth-first search algorithms are the well–known such
algorithms. They are in general not suitable for solving complex problems as the
large search space makes them impractical for the given time and memory limits.

13

2. Methodology

• the search algorithms which use the information from a heuristic function to
determine the order in which the nodes are traversed, giving preference to those
nodes that are more likely to reach the required goal (node). A cleaver heuristic
search strategy can ensure that longer paths need not be considered in the succeeding
search iterations. Examples of this kind of search include Beam search as a heuristic
approach and A∗ search as an exact approach. These algorithms are detailed in
Sections 2.2.2 and 2.1.4, respectively.

As an example, we consider the 0-1 knapsack problem and the following instance:

Item 1 2 3
pi 2 3 3
wi 2 2 3

where the capacity of knapsack is W = 5.

Concerning the state graph of the problem, the root corresponds to an empty solution
(which the objective value is equal to 0) is initialized. As transitions from nodes at level
i of the tree, we make a decision either to include i-th item in the respective solutions at
level i or not. At level 1, the following states are included: one which includes item 1 (the
decision x1 = 1) into a solution, and the other which does not (the decision x1 = 0); this
means, the two nodes correspond to the solutions {1} and {}, respectively, are generated
at level 1. For level 2, we have the transitions that consider item 2 to be included or not,
for the two solutions at level 1. Note that at each level of the tree, we check for each
transition if it leads to an unfeasible solution, that is, it the new solution exceeds the
capacity of the knapsack. Only feasible transitions have been generated in the tree. The
complete search tree of the given 0-1 KP instance is given in Figure 2.1.

Breadth-First Search (BFS) algorithm. BFS starts at the root of the state graph and
examines all nodes at one level before examining nodes at the next level. It is guaranteed
to find the goal node (if one exists) with the longest path in terms of the number of
edges from the initial state, so it provides a complete search. A disadvantage of BFS is
its memory consumption since, as always, all nodes of the current level have to be kept
in memory. The search is typically realized respecting FIFO order, that is, maintaining
not-yet-examined nodes in a data structure called queue. BFS finds many applications
such as: finding the shortest path between two nodes, checking the connectivity of a
graph, testing bipartiteness of a graph, computing the maximum flow in a flow network,
etc., see for example [27]. A BFS traversal on the graph in Figure 2.1 is given by
{}, {1}, {}, {1}, {1, 2}, {2}, {}, {1, 3}, {1}, {2, 3}, {2}, {3}, {}.

Depth-First Search (DFS) algorithm. DFS traverses a graph in a depth-ward manner
and uses a stack structure to remember the next vertex to expand. It means that, at
each iteration, a deepest not-yet-processed node is always expanded first. Concerning the
memory requirements of DFS, only a single path from the root node to the current node,

14

2.1. Exact Methods

{}

{1} {}

{1, 2}{1} {2} {}

{1, 3} {1} {2, 3} {2} {3} {}

x1 = 1 x1 = 0

x2 = 1x2 = 0 x2 = 1 x2 = 0

x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0

Figure 2.1: Example of a tree.

and any not-yet-examined nodes on the path are stored in a LIFO queue. Applications of
the DFS algorithm include finding connected components, topological sorting, finding 2-
edge/vertex-connected components, finding 3-edge/vertex-connected components, finding
strongly connected components of a graph, solving games such as the Eight Queens
Puzzle problem, etc., see for example [160]. A DFS traversal on the graph in Figure 2.1
is given by {}, {1}, {1}, {1, 3}, {1}, {1, 2}, {2, 3}, {2}, {2}, {3}, {}, {}.

Iterative Deepening Depth-first Search (IDDFS) [109]. It operates like DFS apart from
that the algorithm imposes a limit on how deep the search traverses. The search
is repeated with an increased depth limit until a goal state is found. IDDFS keeps
advantages of both BFS and DFS. If we continuously increment the depth limit by
one until a solution is found, IDDFS search has the same property as BFS since it
always finds the longest path to a solution. On the other hand, if a DFS approach on
every iteration is used, IDDFS will avoid the memory cost of BFS. For the graph on
Figure 2.1, IDDFS traversal with the initial limit of 1 is given in the following order:
{}, {1}, {}, {1}, {1, 3}, {1}, {1, 2}, {2, 3}, {2}, {3}, {}.

2.1.2 Branch–and–Bound Algorithm
Note that the descriptions of the algorithms are given w.r.t. maximization.

A general exact technique for solving COPs is branch-and-bound (B&B), which enumerates

15

2. Methodology

feasible solutions by making use of upper and lower bound calculation. Its basic idea
was invented about 60 years ago in the context of mathematical programming [115, 134].
It applies the principle of the divide-and-conquer programming paradigm. The B&B
procedure implicitly builds a decision tree such that each node represents a set of
solutions and the root node presents the whole problem itself. The B&B performs
through the search space by continuously executing the operations of branching and
bounding. Branching splits a set of solutions, represented by a node, into multiple
mutually disjoint subsets. Each of the subsets represents a new child node in the decision
tree. Bounding determines a dual bound on the real optimal cost of each subproblem.
A global primal bound is maintained by storing so-far best solution value. Before the
branching of a node is performed, an upper bound is determined for that node. If its
upper bound value is lower than the global primal bound, the node cannot contain
an optimal solution for the original problem instance. Hence, considering such a node
anymore in the search is not a meaningful option, i.e., its set of solutions can be discarded.
The B&B procedure yields an optimal solution if it runs until all feasible solutions are
either checked or discarded. The pseudocode of the B&B is presented in Algorithm 2.

Another way to eliminate nodes from B&B tree, apart from comparing upper bound and
global primal bound, can be established by checking the dominance relation. If the best
descendant of a node v1 is at least as good as the best descendant of node v2, we say
that v1 dominates v2, which results in discarding the node v2 [141] from the search. The
existence of such relations as well as coming up with an efficient procedure to check the
dominance is, in essence, a problem-specific task and the dominance checking is usually
time-consuming. B&B, besides lower and upper bounds, has to define also the rules that
determine which node is considered next in the search. A common strategy is always
picking a node with the largest upper value.

As an exemplary application of the B&B algorithm, we consider the 0-1 knapsack
problem [108]. For a branching rule, we could use partitioning a set of feasible solutions
into a subset where an item is part of all solutions and another subset consisting of the
remaining solutions. For a bounding information, we could first pack all items that are
already fixed by the branching and then the remaining items in decreasing order w.r.t.
their profit–per–weight values. For another applications of B&B strategy, see the one
which solves the LCS problem, introduced in [84].

2.1.3 Dynamic Programming
Dynamic programming (DP) is a powerful mathematical optimization method developed
by Richard Bellman [9] in the late 1950s. It is an exact approach that solves a recursive
formulation of the problem such that it simplifies a COP by breaking it down into
simpler subproblems in a recursive manner. Unlike the divide and conquer paradigm
which combines solutions to obtain an optimal solution, these subproblems are not solved
independently – results of these smaller subproblems are remembered in the memoization
process and reused for the overlapping subproblems. This means that each subproblem is
solved only once and then the result is memorized. Wherever there is a recursive solution

16

2.1. Exact Methods

Algorithm 2 Branch-and-Bound (maximization)
1: Input: a problem instance (Φ,F)
2: Output: an optimal solution
3: Initialize: F ∗ ← 0, AN ← {Φ} // AN is set of active nodes
4: while AN %= ∅ do
5: Select a node v ∈ AN for branching
6: if upper bound of v > F ∗ then // may not be pruned
7: Split a set of solutions repres. v into subsets of sols. v1, . . . , vk // child. nodes
8: for each such vi do
9: if vi is a complete solution then // complete: vi no further partitioning

10: if F (vi) > F ∗ then
11: F ∗ ← F (vi) // a new incumbent found
12: vbest ← vi

13: end if
14: else
15: Add vi to AN

16: end if
17: end for
18: end if
19: Remove v from AN

20: end while
21: return the solution represented by node vbest

formulation that has repeated calls for the same inputs, it can be optimized by DP with
the help of memoization.

In order to solve a COP by means of DP, it is common to detect an optimal substructure
of the problem. We say that a COP has optimal structure iff it can be solved optimally
by breaking it into subproblems and then recursively finding the optimal solutions to the
subproblems. Another key property is that there should be only a polynomial number
of different subproblems that have to be solved. More details and typical methods of
DP can be found in [42]. For the theoretical background of the DP approach, we refer
to [11, 106].

As an example, let us consider the LCS problem with two input strings s1 and s2 solved
by DP [170]. To define an optimal substructure, by M(i, j) we denote the length of an
LCS for two prefix strings s1[1, i] and s2[1, j], 1 ≤ i ≤ |s1|, and 1 ≤ j ≤ |s2|. Let us find
out which subproblems needs to be determined beforehand in order to be able to calculate
M(i, j). If s1[i] = s2[j], i, j ≥ 1, M(i, j) can be calculated by using the information for
the LCS between s1[1, i − 1] and s2[1, j − 1], that is M(i, j) = M(i − 1, j − 1) + 1 holds.
Otherwise, two subproblems must be calculated, i.e. two LCSs {s1[1, i], s2[1, j − 1]}
and {s1[1, i − 1], s2[1, j]}, that are stored in M(i − 1, j) and M(i, j − 1); in that way
M(i, j) = max{M(i − 1, j), M(i, j − 1)}. As a trivial case, we initialize M(i, 0) = 0

17

2. Methodology

and M(0, j) = 0, for i = 0, . . . , |s1| and j = 0, . . . , |s2|. The optimal value of the initial
problem {s1, s2} is then stored in M(|s1|, |s2|). Memoization is done by initializing a
((|s1| + 1) × (|s2| + 1))–dimensional matrix M . Summarizing, the full DP recurrence of
the problem is given as follows:

M(i, j) =
�

1 + M(i − 1, j − 1), for i, j ≥ 1 ∧ s1[i] = s2[j]
max{M(i − 1, j), M(i, j − 1)}, else,

where M(i, 0) = 0 and M(0, j) = 0, i = 0, . . . , |s1| and j = 0, . . . , |s2|. Note that the
memory and time complexity for this DP approach is O(|s1| · |s2|).
This recursion can be extended to solve the constrained LCS problem with two input
strings (2–CLCS) [162]. The optimal substructure is described as follows. By M(i, j, k)
we denote the length of an LCS between s1[1, i] and s2[1, j] w.r.t. P [1, k]. If a[i] =
b[j] = P [k], for computing M(i, j, k) we previously compute M(i − 1, j − 1, k − 1),
and in that case we conclude M(i, j, k) = 1 + M(i − 1, j − 1, k − 1). Otherwise, two
cases are possible: (i) if s1[i] = s2[j], then a subproblem that needs to be considered is
s1[1, i−1], s2[1, j −1] with P [1, k], yielding the recursion M(i, j, k) = 1+M(i−1, j −1, k),
and (ii) if s1[i] %= s2[j], two subproblems have to be computed, yielding the recursion
M(i, j, k) = max{M(i − 1, j, k), M(1, j − 1, k)}. Note that for the memoization we
use a three-dimensional matrix, yielding the complexity to solve 2–CLCS problem to
O(|s1| · |s2| · |P |).

2.1.4 A∗ Search
The algorithm was originally developed by Hart et al. [79] to find a smallest-cost path
from a start node to a goal node in large weighted graphs G = (V, A), where V denotes
set of nodes and A denotes a set of arcs. It is a widely used algorithm in the field of
Artificial intelligence that belongs to the class of informed search methods (uses the
idea of heuristic search) for finding shortest or longest paths. A∗ search makes use of a
specific mechanism to minimize the number of nodes that are required to visit in order
to encounter a proven optimal solution. It works in a best-first-search manner, meaning
that the most promising nodes are always expanded first. For ranking the nodes, A∗

search makes use of an evaluation function f(v) = g(v) + h(v), for v ∈ V (G), where

• g(v) denotes the cost of a so-far best path from the start node to v, and

• h(v) is an estimated cost of an optimal path from v to a goal node (dual bound).

In order to establish an efficient search, A∗ search maintains a list of open nodes storing
those nodes whose successors have not yet been explored. It also maintains a list of all so
far reached nodes. The search procedure keeps the root node r in the open list. At each
iteration, a node v with the maximal f(v)-value is taken from the open list. This node
is expanded by visiting all its successor nodes, which are treated in the following way.

18

2.1. Exact Methods

Algorithm 3 A∗ Search (maximization)
1: Input: A weighted graph G = (V, A), root node r, a goal node t
2: Output: A longest-cost path from root r to t
3: Initialize: open list Q ← {r}
4: while Q %= ∅ do
5: Remove node v with maximal f(v) = g(v) + h(v) from Q
6: if v = t then // complete path found
7: return derive the r − t path
8: else
9: for each successor v� of v do

10: f � ← g(v) + w(v, v�) // w(v, v�): weight of edge vv�

11: if v� visited for the first time ∨ f � > g(v�) then
12: g(v�) ← f �

13: Q ← Q ∪ {v�} // v� inserted in Q if reached for the first time, otherwise
update node v�

14: end if
15: end for
16: end if
17: end while
18: return no path from r to t exists

A successor node v� of a node is updated only if: (i) it has been visited (or expanded)
before and a better path from root node r to v� has been encountered, or (ii) it is visited
for the first time in the search. If any of these two conditions is fulfilled, node v� has been
added in the open list. Unless terminated early (e.g. due to time or memory limitation),
A∗ search stops once a goal node is selected for expansion. Pseudocode of an A∗ search
is provided in Algorithm 3. Since at each step, a node with the highest (if maximizing)
f()–value is extracted, the set of open nodes is realized by means of priority queue
while the data structure to maintain the set of all visited nodes is a problem–specific (a
hash-map is mostly used in applications).

Some theoretical background on A∗ search. For guarantying that a path found
from A∗ search is indeed a longest-cost path, h(v) must be admissible which means
h(v) ≥ h∗(v), ∀v ∈ V (G), where h∗(v) denotes real optimal cost of the path from v to
a goal node. Moreover, if w(v, v�) + h(v�) ≤ h(v), ∀(v, v�) ∈ A(G), where w(v, v�) is the
cost from v to v�, h(v) is called monotonic. A∗ search with monotonic h(v) will never
re-expand already expanded nodes. It is proved that the number of node expansions
required to find a proven optimal path by A∗ search with a monotonic heuristic h(v) is
minimal among all search algorithms that utilize the same heuristic guidance and the
same tie-breaking mechanism [47].

Dijkstra’s shortest path algorithm can be considered to correspond to the special case of
A∗ where h(v) = 0, ∀v ∈ V (G) [45]. On the other hand, Dijkstra and A∗ search can be

19

2. Methodology

seen as a special case of DP [63] with merging DP cells. A∗ search also present a special
case of a generalization of B&B [137].

2.1.5 Integer Linear Programming
An integer linear program (ILP) is a mathematical problem formulation in which all of
the variables are integers while the objective function as well as all constraints are linear
in the variables. Solving an ILP is in general N P–complete [28]. A special case of an ILP
is the 0-1 integer linear program, where all variables are binary. This problem belongs to
the famous 21 (Karp’s) N P–complete problems [64]. A proof of N P–hardness can be
performed by reducing the minimum vertex cover problem to an ILP.

The canonical form of an ILP is given as follows:

z = F (x) = max cTx
s.t.
Ax ≤ b,

x ≥ 0,

x ∈ Zn, (2.1)

where A is a matrix whose entries are all integer values, b ∈ (Rm)T and cT ∈ Rn are
vectors. Model (2.1) can be transformed into a standard form by introducing slack
variables whenever ”≤“ is presented within constraints. Many problems are modeled by
means of an ILP like scheduling problems [111], graph problems [30], telecommunications
networks problems [102], etc. If we replace x ∈ Zn by x ∈ Rn in the model (2.1) , we get
a linear program (LP) also called linear programming relaxation. LPs are in practice
efficiently solved by means of the simplex algorithm [105]. In general, LPs can be solved
in polynomial time by the interior-point method [100].

To solve an ILP, a simple idea would be to solve an LP relaxation of the ILP and round
the values that are obtained. However, it might happen that the rounded solution is
not optimal or it may not even be feasible (violating some constraints). If we assume
that matrix A is unimodular, b has all integer entries, and Ax = b, every feasible corner
solution will be an integral one which means that a solution returned by the simplex
algorithm will be integral. It is quite rare in practice that matrix A is unimodular, in
which case, there exist many exact techniques to solve such ILP.

A valid inequality for an ILP is any constraint that does not eliminate any feasible integer
solution. If the addition of such a valid inequality cuts off the current solution of the
LP relaxation, it is called a cutting plane. Cutting planes serve to eliminate part of the
LP feasible region as well as fractional solutions possibly. The cutting plane method is
an exact algorithm that solves a series of LP relaxations of the original ILP, iteratively
adding linear constraints that navigate the search towards an integer value. The use of
the cutting planes to solve (Mixed) ILP was introduced by Gomory [71] in the 1950s.
The basic strategy of the Gomory cutting plane method consists of the following steps:

20

2.1. Exact Methods

1. use simplex algorithm to solve the LP relaxation of the ILP problem, let xrelax be
an optimum of the relaxation; if the solution is unbounded or unfeasible, the status
is reported;

2. if the values of xrelax are all integer, an optimal solution is found;

3. otherwise, iteratively determine and add Gomory cutting planes to the relaxation.

A gomory cut is generated at each iteration as follows:

• when the simplex method solves the relaxation, we obtain"
i,j

a∗
ijxj = b∗

j , (2.2)

where formula (2.2) refers to the (matrix) tableau obtained in the last iteration of
the dual simplex method utilized to solve the relaxation.
Select any constraint with non-integer b∗

i , for some i ∈ {1, . . . , j};

• the selected constraint in 2.2 is rewritten by using fractional part f∗
ij = a∗

ij − �a∗
ij�

and fi = b∗
i − �b∗

i �, i.e "
ij

f∗
ijxj − f∗

j = �b∗
j� −

"
i,j

�aij�xj

• add a new constraint #
ij fijxj − fj ≥ 0 to the current simplex tabelau (as a row);

• repeat above steps (using dual simplex) until all b∗
j ’s are integers.

Choosing a constraint in (2.2) may be a heuristic decision; for example one can choose
the common strategy is to select non-integer b∗

i with the largest f∗
i = b∗

i − �b∗
i � (fraction)

value.

Another algorithm, which is frequently effective in solving ILP, is the LP-based B&B
method which performs branching over a variable with a fractional value obtained
as optimal solutions of the relaxation. The idea of the B&B is already discussed in
Section 2.1.2 and consists of dividing the original problem into a series of sub-problems.
Many of these subproblems will not be solved in the case when an upper bound of the
optimal solution of the considered subproblem is smaller than the current best solution
(obtained directly by a heuristic search). For the ILP problem, the relaxation is an upper
bound on the optimal solution. The B&B to solve the ILP uses the same procedure as in
Section 2.1.2 where the specific aspects are resolved in the following way (see [177]).

1. Each node relates to an LP relaxation and its solution; let for each node v, the
related LP relaxation be denoted by LPv and its solution by x∗

v = (x∗
v,1, . . . , x∗

v,n);
if x∗

v is an integer vector, B&B checks if a new best lower bound has obtained, and
if an optimal solution has found.

21

2. Methodology

2. At the root node we solve the LP relaxation of the original ILP;

3. The branching of each node v is performed in the following way:

• select i ∈ {1, . . . , n} with the largest fractional part f∗
i = x∗

v,i−�x∗
v,i� for branching;

• generate two new successor nodes vL and vR of node v. Node vL corresponds to
an LP relaxation obtained by adding the constraint

xi ≥ �x∗
i �

into the relaxation LPv of node v, and node vR corresponds to an LP relaxation
obtained by adding constraint

xi ≤ �x∗
i � − 1

into the relaxation LPv of nde v;

4. the common strategy to select the next node to be expanded is choose a node with
the largest UB value among not-yet-expanded nodes.

For the following ILP problem

max z = F (z) = 100x1 + 150x2

s.t.
15x1 + 30x2 ≤ 200,

8000x1 + 4000x2 ≤ 40000,

x1, x2 ≥ 0, x1, x2 ∈ Zn, (2.3)

Figure 2.2 shows a B&B to solve it.

The combination of B&B and the cutting plane method in practice works much better in
many applications than the cutting algorithms alone. This hybrid method is known as
branch and cut (BnC) [131]. The BnC method solves the LP relaxations of the original
problem using the regular simplex algorithm [138]. These LPs are generated by splitting
the problem into multiple subproblems using B&B that are then solved, recursively.
During the search, cutting planes that are violated by the obtained solution of the
relaxation are detected and then added to the original LP. Nowadays, all commercial
ILP solvers, like Cplex, use cutting methods in one way or another (as BnC). For more
advanced techniques to solve ILP such as Benders decomposition, column generation, and
Dantzig-Wolfe decomposition, we refer to [129].Currently, the best known commercial
ILP solvers used in the literature are Cplex [43] and Gurobi [125].

22

2.1. Exact Methods

Figure 2.2: A working example of the B&B for an ILP, downloaded from here.

As an example for an ILP model, we consider the well-known maximum independent set
(MIS) problem on graph G = (V, A), which is modeled by the following ILP model:

max
"
v∈V

(2.4)

s.t.
xu + xv ≤ 1, (u, v) ∈ V × V, u %= v, (2.5)
xu ∈ {0, 1}, u ∈ V. (2.6)

If x∗ denotes an optimal solution of the above ILP, the set V � = {u | x∗
u = 1} ⊆ V

denotes a MIS on graph G.

We now define an ILP model for the RFLCS problem which plays an important role in
the methodology of solving the problem. For each match between input strings s1 and
s2, one decision variable is generated. That is, for all s1[i] = s2[j], we assign one decision
variable zij ∈ {0, 1}. By /(zij) we denote the letter assigned by the variable zij . Further,
we say that there exists a conflict between two different decision variables zij and zkl iff

((i ≤ k) ∧ (j ≥ l)) ∨ ((i ≥ k) ∧ (j ≤ l)) ∨ /(zij) %= /(zkl).

With zij ≺ zkl, we denote that the two variables are in conflict. Let Z denotes the set of
all decision variables of an instance, and Za := {z ∈ Z | /(z) = a}, a ∈ Σ. Now, an ILP

23

http://web.tecnico.ulisboa.pt/mcasquilho/compute/_linpro/TaylorB_module_c.pdf

2. Methodology

model for the RFLCS problem can be presented by the following model:

max
"
z∈Z

z (2.7)

s.t."
z∈Za

z ≤ 1, ∀a ∈ Σ, (2.8)

z� + z�� ≤ 1, z� ≺ z��, z�, z�� ∈ Z, (2.9)
z ∈ {0, 1}, z ∈ Z. (2.10)

Equation (2.8) ensures that repetition-free constraint is fulfilled and Equation (2.9)
ensures that the feasible solution refers to a common subsequence (CS). The objective
function maximizes the length of CS which does not have letters that appears more than
once in the subsequence.

2.1.6 Constraint Programming
We mainly follow [167] to give a short overview on this paradigm.

Constraint Programming (CP) is a general framework to model and solve Constraint
Satisfaction Problems (CSPs). A CSP is a triple (X, D, C) where X = {x1, . . . , xp}
represents a set of variables, D = D1 × . . . × Dp respective (finite) domains of variables
and C = {C1, . . . , Cq} set of constraints. A constraint Ci = (S, R) is a tuple where
S ⊆ X (scope) are variables induced into constraint Ci and R ⊆ D (relation) are tuples
satisfying Ci.

Given a CSP X, a solution of X is an assigning x1 "→ a1, . . . , xp "→ ap such that ai ∈ Xi

and all constraints Ci are satisfied (i = 1, . . . , p). Related problems ask for finding
all solutions or finding a best solution w.r.t. an objective function of a (combinatorial)
constraint optimization problem. CP is a solving paradigm which provides a very flexible
modelling language, close to natural language. This paradigm can be described as a
combination of constraint propagation and tree search. Constraint propagation is a
reduction of variable domains by logic deductions based on the constraints. Constraint
propagation makes the domains consistent with each constraint. At each search state,
specific constraint propagation algorithms are applied. The solution process of a CP
includes three basic steps (Algorithm 4):

• domain filtering in which inconsistent values from the domains of the variables are
removed based on individual constraints.

• constraint propagation which propagates the (restricted) domains through the
constraints, by re-evaluating them until there are no more changes in the domains.
A basic propagation procedure for a constraint C is given in Algorithm 5.

• search which implicitly enumerates all possible variable-value combinations; the
search tree is kept to a smallest possible size due to domain filtering and constraint

24

2.1. Exact Methods

Algorithm 4 A General Constraint Programming Scheme (for CSP)
1: Create model of a COP
2: while ¬ (solved ∨ infeasible) do
3: Remove-inconsistent-values //constraint propagation
4: Select-decision-variable // values distribution
5: Select-value-for-variable
6: end while

Algorithm 5 Constraint Propagation
1: Input: C: constraint, Xc: variables, Dc: domain
2: for all x ∈ Xc do
3: for all a ∈ Dc do
4: find solution to C with x = a
5: if no such solution exists then
6: Dc ← Dc \ {a}
7: end if
8: if Xc = ∅ then
9: return false

10: end if
11: end for
12: end for
13: return true

propagation. Some of the most used search strategies include back and forward
checking, variable and value ordering, B&B, etc.

Concerning mixed ILP, we are used to formulating problems as a set of linear inequalities.
In CP we describe substructures (so-called global constraints), combining them in various
combinators. For example, the sequencing constraints are rather messy in MIP, but
straightforward and intuitive in CP. So, CP models are usually much more intuitive
than MIP models. CP offers the user many kinds of global constraints, which makes
modeling simple, easy and natural to interpret. One of the most used global constraints
for modeling is alldifferent(x) = ∧(i,j)| i �=jxi %= xj . A global constraint is a combinatorial
structure that is made as a combination of elementary constraints. It serves as an
expressive building block for modeling a problem. A global constraint utilizes powerful
algorithms from Artificial Intelligence, Operational Research, Graph theory etc., to ensure
effective search. As a good receipt for modeling, it is always a good strategy to identify
possibly global constraints in the model. For more about global constraints, see [147, 7].

Well known Constraint Programming Solvers are IBM ILOG CP Optimizer [114], MiniZ-
inc [139], GeCode [151], Prolog [41], and Choco [143]. MiniZinc is a more general CP
modeling language that can be applied in conjunction with different solvers.

25

2. Methodology

As an example, we generate a CP model for the graph coloring problem which is given
as follows. Given is a graph G = (V, A) and K ∈ N. In order to do coloring of graph
G, to each vertex v ∈ V we need to assign a number (color), denoted by col(v) such
that the coloring is valid. A coloring of graph is valid iff for each edge e = (vivj) ∈ A,
col(vi) %= col(vj). The problem aims at finding a valid coloring of graph G with uses a
minimal number of colors (bounded by K). A CP model is given by:

vars X : xi for each vi ∈ V ;
domains D : Di = {1, . . . , K};
constraints Cij : xi %= xj , ∀e = (vivj) ∈ A;

x0 = max{xi | i ∈ V } (2.11)
objective: min x0 (2.12)

Note that the above model can be additionally improved (by breaking symmetries).

2.2 Heuristic Methods
The main purpose of heuristic methods relies on providing good solutions in short time.
In contrast to exact methods, the produced solutions might not be optimal and usually, no
performance guarantee is provided by heuristics. Heuristics are applied either to generate
a solution that could serve as promising starting solutions of an exact method (e.g., to
prune suboptimal components) or they are the only practically applicable methods due
to the difficulty of the considered problem instances.

We start by describing constructive heuristics in Section 2.2.1 which return feasible
solutions in polynomially many steps w.r.t. the instance size. An extension of the idea of
the constructive heuristics is given by the Beam Search heuristic, which is discussed in
Section 2.2.2. Section 2.2.3 describes local search that provides a mechanism of finding
possibly better solutions by performing a series of small changes. The concept of locally
optimal solutions, which are solutions that cannot be improved anymore by local search,
is described here. In order to also escape from local optimal solutions and cover the
whole search pace better, the development of metaheuristics is motivated.

Metaheuristics present problem independent frameworks that deal with difficult problem
instances for which an application of exact algorithms is hardly possible. Metaheuristics
cover a wide range of ideas on how to efficiently search through a set of feasible solutions
to reach a (near-) optimal solution. Each of the metaheuristics defines their own mecha-
nisms for intensification and diversification. Intensification refers to the ability to obtain
high-quality solutions within each (explored) region of the search. Intensification denotes
the process of exploration of similar solutions to a considered solution to achieve improved
solutions. It is typically realized using local search or extensions thereof. Diversification
generally refers to the ability to visit distant regions of the search space w.r.t. current
position in the search. It is applied when the possibilities for improving solutions are
(almost) exhausted by moving the focus of the search to new (possibly not-yet-explored)

26

2.2. Heuristic Methods

regions.

In the last few decades, a large variety of different metaheuristics have been proposed;
for an overview, see [158, 69]). A few metaheuristics used in the course of our work are
discussed here. The iterated greedy algorithm is described in Section 2.2.4. Section 2.2.5
explains the idea of the general variant of variable neighborhood search which is primarily
based on local search utilizing multiple neighborhood structures and shaking steps that
are responsible for the intensification and diversification of the algorithm, respectively. For
other prominent metaheuristics, we refer to simulated annealing (SA) [168], tabu search
(TS) [67], genetic algorithm (GA) [154], particle swarm optimization (PSO) [101], ant
colony optimization (ACO) [59], etc. SA models the process of heating a material while
slowly decreasing the temperature to decrease the defects, that is, to minimize the system
energy. TS makes use of the search history (tabu list) for diversification by remembering
already visited solutions discovered by local search and, in that way, avoiding to visit the
explored regions of the search space over again within a limited time. SA and TS are
both based on local search. GA algorithm is inspired by the process of natural selection.
It maintains a set of solutions that is called a population. At each iteration, the algorithm
chooses some solutions (individuals) of the population. Each individual is then modified
(that is, recombined and possibly randomly mutated to hopefully obtain better solutions)
to generate a new population for the next iteration. PSO is inspired by reproducing
observed behaviors of animals in their natural habitats, such as birds flocking or fish
schooling. PSO maintains a population of candidate solutions (particles) and moving
the particles around in the search space according to some rules based on the particles’
positions and velocities. Each movement of a particle is influenced by its local best-known
position but is also guided toward the best-known positions in the search-space w.r.t. all
particles. This pushed the swarm towards the best solution. The inspiration of ACO
metaheuristic comes from the behavior of ants for finding shortest paths. GA, PSO, and
ACO belong to the population-based metaheuristics. Our descriptions of the methods
mainly follow the textbook [19].

2.2.1 Constructive Heuristics
A Constructive Heuristic (CH) aims at producing a solution in typically short runtimes.
It starts with an empty solution which is iteratively extended until no further extensions
is possible. CH is called a greedy heuristic (GH) iff at each iteration, the decision of which
extension to perform among all possible extensions is based on some greedy criterion.
The choice of the greedy criterion has the main impact on the performance of the method.
A pseudocode of the CH is given in Algorithm 6.

As an example of CH, we consider the well–known traveling salesman (TSP) problem.
In the beginning, we initialize sP as an empty path. We extend the path by repeatedly
adding an edge of minimal cost determined from those edges that link not-yet-visited
cities (those which are not yet on the path that presents sP) with those that are already
visited, that is, included in sP .

27

2. Methodology

Algorithm 6 Constructive Heuristic
1: Input: an instance of a COP
2: Output: A (feasible) non-expandable solution (or reporting that no feasible solution)
3: sP ← () // partial solution set to empty solution
4: while Extend(sP) %= ∅ do
5: Select component e ∈ Extend(sP) // w.r.t. some greedy criterion g
6: Extend sP by e
7: end while

Concerning our string problems, the LCS problem with m input strings S = {s1, . . . , sm}
is solved by the Best–Next heuristic (BNH), which is a greedy heuristic, proposed
in [65]. First, note that the solution components of the problem are letters from the
alphabet Σ. Extending a partial solution sP by some letter a refers to the operation
of concatenation, that is, appending a character to partial solution sP . Letter a has
to be a feasible extension, that is, sP · a must be also a common subsequence for all
input strings. The BNH initializes an empty string sP := ε as a starting solution. It also
initializes the left pointers pL

i = 1, for all 1, . . . , m, assigning those pieces of input strings
for which feasible extensions of current sP are determined, that is, feasible letters are
checked from the set of strings S[pL] = {si[pL

i , |si|] | i = 1, . . . , m}. For the components
that can feasibly extend current solution sP we choose those characters that appear in
all strings from S[pL] are. We denote such set of letters by Extend(sP). For each feasible
letter a ∈ Extend(sP), it makes sense to consider those letters at the positions of the first
occurrences of letter a in strings si[pL

i , |si|], i = 1, . . . , m, denoted by pL
i,a, i = 1, . . . , m.

At each iteration of BNH, we choose a letter a∗ ∈ Extend(sP) which minimizes the
(greedy) criterion

g(a, pL) =
m"

i=1

pL
i,a − pL

i + 1
|si| − pL

i + 1
, a ∈ Extend(sP),

and then we do the extension sP := sP · a∗ and update the current left pointers pL
i :=

pL
i,a∗ + 1, i = 1, . . . , m. The above steps are repeated until Extend(sP) = ∅, returning sP

as a final solution. Note that some letters from Extend(sP) might dominate other ones,
which can then be filtered out from the set. For the details, see [65].

2.2.2 Beam Search
In essence, Beam Search (BS) is an incomplete version of BFS, in which at each level
a subset of most β nodes is selected and further processed. The pseudocode of BS is
presented in Algorithm 7. It includes a (weighted) graph G, beam width β, starting node
r and heuristic h as an input; heuristic h serves for valuating the nodes of G. BS is a
heuristic search algorithm that maintains a collection of nodes, called beam B, at each
level of the search. At each iteration of a BS, the successor nodes of any node from B

28

2.2. Heuristic Methods

Algorithm 7 Beam Search
1: Input: G: a (weighted) search graph, r: starting node, β: beam width, h: search

heuristic
2: Output: a path from r node with approximate (possible optimal) to a goal node
3: B ← {r}
4: Pv ← ∅;
5: costbest ← 0
6: while B %= ∅ do
7: Vext ← ∅
8: for each v ∈ B do
9: if v is a goal node then

10: Pv ← derive the r − v path
11: if cost of path Pv > costbest then // new incumbent has reached?
12: Pbest ← Pv

13: costbest ← cost of path Pv

14: end if
15: else
16: Vext ← Vext ∪ Successors(v) // add children of v
17: end if
18: end for
19: B ← Reduce(Vext, h, β) // β > 0 best nodes for the new beam
20: end while

are visited and among them (up to) β > 0 most promising nodes w.r.t. their h–value are
selected to generate a beam of the next level (Reduce() procedure in Algorithm 7). The
above steps are repeated until beam B is empty. The longest path from the root node to
a goal node, encountered during the search, is stored as the incumbent solution. The
longest path is, afterwards, returned as an output of BS.

As we said, BS is performed in a limited breadth-first-search manner. It can be considered
as optimization of BFS which reduces its memory requirements. For the performance of
BS, two facts play a major role

• the value of beam width β, and

• the choice of heuristic h.

The choice of h is usually a problem specific task, whereas the right choice of β involves
advances techniques for tuning parameters and is usually dependent on the instance size.
Note that BS with β = 1 corresponds to a constructive heuristic with h = g.

The worst-case time scenario of BS occurs when the heuristic h leads the search towards
the maximum depth of the graph G. The worst-case time, in that case, is O(|B| · d · h̃),
where d is the maximum depth of any path in G which starts from root r and h̃ is the

29

2. Methodology

time complexity of h calculation. The worst-case memory complexity is also O(|B| · d).
The linear memory consumption allows BS to search deeply into huge search spaces and
eventually find solutions that other search algorithms can hardly reach. BS has found
success in a wide range of optimization problems proving its effectiveness; such examples
include problems from the domain of job scheduling problems, speech recognition, vision,
planning, machine learning etc., see, for example [107, 66, 140, 113].

As an example of performing a BS, we consider the TSP and the following instance:

City 1 2 3 4
1 - 5 12 8
2 5 - 8 2
3 12 8 - 8
4 8 2 8 -

In order to apply a BS, we first define a node’s structure and the neighborhood relation.
Due to simplicity, we do not think about memory optimization of the BS or breaking
symmetries in the search, but just give the main focus on illustrating a working example
of a BS.

Each node v refers to a set Tv ⊆ {1, . . . , c} of nodes which are included in the tour, where
c is the number of cities in the respective instance. The order of nodes in the set is
preserved. For example, if v = {1, 2, 3}, it means that we link city 1 with 2, and city 2
with 3 and obtain the respective path. Note that in this way the number of such nodes
in the search is bounded by O(n!). A goal node is any node for which |Tv| = c. There is
an edge between two nodes v1 and v2 iff Tv2 = Tv1 .push_back({c1}) and Tv2 = Tv1 + 1,
for some city c1. It means that visiting the successor nodes of node v correspond to
appending the path that indicates node v by a new city (which is not already on the
path).

It remains to define an upper bound on the length of an optimal tour. We use here the
simple Nearest-Neighbor (NN) heuristic due to ease of demonstration and computing the
bounds in our working example. The heuristic works as follow for specific node v. We
start at the latest added city of Tv and travel to the nearest not-yet-scheduled vertex. We
keep continuing the process until all vertices that are not in Tv are included, returning
to the leading city (in this case the city labeled by 1). This procedure produces a valid
Hamiltonian cycle, which is at least as long as the minimum cycle. For the other more
complex upper bounds on the TSP, we refer the reader to [4]. In our example, h(v) will
indicate the sum of the path assigned by the node and the value obtained by the NN
heuristic.

2.2.3 Local Search
Local search is a technique that aims at producing a series of improvements of solution
quality starting from a given solution. In this section, we first introduce the concepts of

30

2.2. Heuristic Methods

BS Steps

Iteration 1

Iteration 2

Iteration 3

{1} h(v) = ·

{1, 2}h(v) = 5 + 22 {1, 3} h(v) = 12 + 18 {1, 4} h(v) = 8 + 22

{1, 2, 3}
h(v) = 13 + 16

{1, 2, 4}
h(v) = 7 + 20

{1, 3, 2}
h(v) = 20 + 10

{1, 3, 4}
h(v) = 20 + 7

{1, 2, 4, 3}h(v) = 27 {1, 3, 4, 2}
h(v) = 27

2 4

34

3

2 4

33 2

Figure 2.3: The example above shows the BS state graph generated by a working BS on
the above instance set. The blue lines denote best paths (solutions) obtained by BS. The
gray nodes are nodes kept in the beams of respective level.

neighborhoods and local optimal solutions which are the basic terms of local search. We
mainly follow the book by Papadimitriou and Steiglitz [141].

Given a solution x of a considered COP instance (Φ, F), a neighborhood N (x) defines a
set of feasible solutions (points) that are close to x w.r.t. some measure. More formally, a
neighborhood presents a map N : Φ "→ 2Φ, where each feasible solution x ∈ Φ is mapped
to a subset of feasible solutions, called neighbors of x. A neighborhood function can be
defined by means of a collection of operator functions Δ : Φ "→ Φ such that

x� ∈ N (x) ⇐⇒ ∃δ ∈ Δ, δ(x) = x�.

A natural choice in many applications is the k-exchange neighborhood: x and x� are
neighbors iff they differ in at most k solution components. As an example, for TSP
problem a 2-exchange neighborhood is a natural choice where solution components are
edges in the given graph.

A solution x of a problem instance (Φ, F) is locally optimal w.r.t. a neighborhood N
iff F (x) ≤ F (x�) (F (x) ≥ F (x�)), for all x� ∈ N (x), in the case we are minimizing
(maximizing). A globally optimal solution is that solution which is locally optimal w.r.t.
any neighborhood. Note that not every local optimum is globally optimal.

Pseudocode of local search w.r.t. minimization is given in Algorithm 8. The algorithm
assumes an instance and a neighborhood as an input. At each iteration, local search
improves current solution if a solution in the neighborhood of x is found with a better cost.
The algorithm terminates if the current solution is locally optimal w.r.t. neighborhood N .
Local search implements a walk through the neighborhood graph. There are two basic

31

2. Methodology

Algorithm 8 Local Search (maximization)
1: Input: an instance of a COP, neighborhood N
2: while {x� & N (x) | F (x�) > F (x)} %= ∅ do
3: x ← choose x� ∈ N (x) if F (x�) > F (x) holds
4: end while

strategies of choosing solutions for replacing incumbent solution under an assumption
that there is more than one solution with better cost value. These strategies are: (i)
the first improvement and (ii) the best improvement strategy. The first improvement
rule accepts a first (chosen) solution from the neighborhood with a better cost as a
new incumbent whereas the later strategy checks all solutions from the neighborhood
and a locally optimum solution is taken as a new incumbent. However, finding the
best solution in a neighborhood requires enumerating all solutions in the neighborhood.
Hence, performing the best improvement strategy might be too expensive. However, in
practice, it frequently happens that applying the best improvement strategy yields a
local optimum in a few iterations of the local search.

2.2.4 Iterated Greedy

One straightforward way to improve over the generation of a single greedy solution is to
apply the repeated calls of a greedy heuristic in order to generate a variety of different
candidate solutions from which we choose the best one. This makes sense only if the
greedy heuristic is not fully deterministic, that is, when additional randomization of
the construction process is utilized. However, repeated construction of solutions may
have disadvantages. Constructing a full solution can be time-consuming and the initial
construction steps may require a significant amount of time when compared to later
construction phases. One more disadvantage of such approach is that no information is
pursued from one solution construction to another one, that is, the repeated construction
never uses the knowledge gained from previously constructed solutions. A method
that deals with the issues and allows arbitrary time to generate different solutions by
constructive heuristics is called iterated greedy (IG) [156].

The pseudocode of IG is presented in Algorithm 9. IG assumes an instance of the
considered problem and an initial solution (usually obtained from the same greedy
heuristic applied in the reparation phase of IG) as the input. The algorithm starts
by (randomly) destructing some components of the incumbent solution. That solution,
denoted by s�, is repaired using a greedy constructive heuristic up to the completion.
Note that the destruction phase controls the diversification of the algorithm. The
obtained complete solution is (optionally) improved by local search (see more about this
technique in Section 2.2.3) which further boosts the performance of IG (to control the
intensification). If the acceptance criterion is fulfilled, the obtained solution is being
accepted as a new incumbent solution. The simplest criterion would be accepting those
solutions with a better cost. If an early convergence is required, the diversification of IG

32

2.2. Heuristic Methods

Algorithm 9 Iterated Greedy (IG)
1: Input: an instance of a COP, initial solution s
2: Output: (an improved) solution s
3: while ¬ some termination criterion has met do
4: s� ← Destroy solution s
5: s� ← Construct complete solution from s�

6: s� ← Apply local search at s� // optionally
7: if s� accepted then
8: s ← s�

9: end if
10: end while
11: return s;

could be reinforced by using the acceptance criterion from SA [168], where accepting a
worse solution is also a possibility. The above steps are repeated until some termination
criterion has reached (e.g. time limit or the maximum number of iterations allowed
between two improvements).

2.2.5 Variable Neighborhood Search
One way of extending the local search technique is given with Variable Neighborhood
Descent (VND) presented by Algorithm 10, where more than one neighborhood is
considered. The method relies on the observation that a locally optimal solution w.r.t.
some neighborhood might be improved by considering different neighborhoods. VND
algorithm consists of systematically changing the neighborhoods. VND assumes a
sequence of neighborhood N VND

1 , . . . , N VND
pmax as an input. It starts by performing the

local search w.r.t. neighborhood N VND
1 (as in Algorithm 8). When a locally optimal

solution is reached for neighborhood N VND
1 , the successor neighborhood (N VND

2) is
considered next. We perform a local search for the neighborhood N VND

2 and if a locally
optimal solution yields a new incumbent, we move down the search to neighborhood
N VND

1 , otherwise, we go to the next neighborhood until all neighborhood structures are
examined.

The General Variable Neighborhood Search (GVNS) [78] is a metaheuristic that uses
neighborhoods for both, intensification and diversification strategy. It performs the
procedure of systematically changing neighborhoods as already discussed for the VND in
Section 2.2.3. Its pseudocode is given in Algorithm 11. The GVNS is a generalization
of the basic VNS [133]. (G)VNS is built upon the following observations: (i) a locally
optimal solution w.r.t. one neighborhood does not need to be a locally optimal for another
neighborhood, (ii) a global optimum is a local optimum w.r.t. all possible neighborhoods,
and (iii) frequently local optimum w.r.t. one or more neighborhoods are close to each
other.

The input of the GVNS assumes: (i) an initial solution s that is often obtained as

33

2. Methodology

Algorithm 10 Variable Neighborhood Descent (VND)
1: Input: an instance of a COP, neighborhoods N VND

1 , . . . , N VND
pmax , pmax ≥ 1

2: p ← 1
3: while p ≤ pmax do
4: if

�
x� & N VND

p (x) | F (x�) > F (x)
�

%= ∅ then
5: x ← choose x� ∈ NVND

p (x) if F (x�) > F (x) holds
6: p ← 1
7: else
8: p ← p + 1
9: end if

10: end while

an outcome of a greedy constructive heuristic, (ii) a set of shaking neighborhoods
{N1, . . . , Npmax}, and (iii) a set of local search neighborhoods {N VND

1 , . . . , N VND
qmax }. The

set of shaking neighborhoods serves to control diversification and the set of local search
neighborhoods serves to control intensification of the method. At each major iteration a
solution s� is randomly selected from the first shaking neighborhood w.r.t. incumbent
solution s. Then, a VND method has been performed w.r.t. solution s� and the set of
local search neighborhoods, returning a solution denoted (again) by s�. If a new solution
s� is better than s, it has been replaced by s� and the above steps are repeated by the
shaking neighborhood N1, otherwise the iteration proceeds by using the next (shaking)
neighborhood. The major iteration ends when a random solution s� picked from Npmax

after performing a VND step, was worse than current incumbent s. If a termination
criterion of the GVNS has not yet been reached, the next major iteration has been
performed with the starting (shaking) neighborhood N1 by repeating the above steps.
Otherwise, the algorithm terminates by returning so-far best solution.

The performance of the GVNS is sensitive w.r.t. (i) the choice of the neighborhood
structures, which is problem-specific, and (ii) the order of neighborhoods. Usually, the
order among neighborhoods is established w.r.t. the cardinality of used neighborhoods.
It is common in practice that the shaking neighborhoods are much larger than the
local search neighborhoods. The motivation behind this fact is that randomly sampled
solutions should have a strong ability to jump over unexplored regions of Φ.

Note that a basic VNS metaheuristic is derived from the GVNS if instead of VND step,
a single local search w.r.t. a single neighborhood is performed. The reduced VNS (RVNS)
is extracted from the GVNS if only the step of selecting random points from the shaking
neighborhoods is performed without any local search. RVNS is useful in large problem
instances, where applying local search technique is too costly.

34

2.3. Anytime Algorithms

Algorithm 11 GVNS metaheuristic
1: Input: initial solution s of a COP’s instance, neighborhoods N1, . . . , Npmax and

N VND
1 , . . . , N VND

qmax
2: Output: (improved) solution s
3: while ¬ (termination criterion has met) do
4: p ← 1
5: while p ≤ pmax do
6: s� ← pick random point from Np(s) // shaking phase
7: s� ← VND

�
s�, N VND

1 , . . . , N VND
qmax

�
8: if F (s�) > F (s) then
9: s ← s�

10: p ← 1
11: else
12: p ← p + 1 // use next (VNS) neighborhood
13: end if
14: end while
15: end while
16: return s

2.3 Anytime Algorithms

In this section, we describe the class of algorithms called anytime algorithms and give
the details over two important algorithms that belong to this class: Anytime Pack Search
described in Section 2.3.1 and Anytime Column Search described in Section 2.3.2. They
are important pieces in our experimental evaluations.

The next paragraph mainly follows the text from [185] and [186, 187].

In the field of intelligent systems it becomes undesirable, and sometimes infeasible,
to find the optimal action in each situation due to the complexity of reasoning. The
problem is then facilitated to find intelligent systems which make rational decisions after
performing the right amount of thinking. It is widely accepted that successful systems
must provide a trade-off between decision quality and computational requirements of
decision-making. The term ayntime algorithms was initially introduced by Dean and
Boddy [46], Horvitz [83] and others in late 1980s in the context of the work on time-
dependent planning. Nowadays, the following definition of the anytime algorithms is
widely accepted: an algorithm belongs to the class of anytime algorithms iff it fulfills
the following properties: (i) it is able to return high-quality solutions at almost any
time when terminated, (ii) it gradually improves solution quality as computation time
increases, and (iii) if enough resources is ensured, it is able to prove optimality. Hence,
anytime algorithms offer a trade-off between resource consumption and output quality. An
anytime algorithm may also be named an “interruptible algorithm”. Anytime algorithms
play also important role in the field of Artificial Intelligence where usually to solve the

35

2. Methodology

problems the algorithms take a longer time to complete results. Quality of anytime
algorithms can be measured in several ways: certainty, accuracy and specificity, see [185].

Many existing programming techniques produce useful anytime algorithms. Examples
can be found in iterative deepening search, variable precision logic, randomized tech-
niques, etc. [185]. In the literature, various anytime algorithms are proposed. Based on
the construction, anytime algorithms are divided into two groups, A∗–based anytime
algorithms and BS–based anytime algorithms.

Concerning A∗–based approaches, Hansen et al. [77] and Hansen and Zhou [76] proposed
Anytime Weighted A∗ which makes use of the heuristic function weighted by a constant
factor w > 0, i.e, f(v) := g(v) + w × h(v) (g and h keep the same meaning as in A∗

search), in order to achieve a quick convergence to a heuristic and usually sub-optimal
solution. The authors showed that an obtained solution is an w-approximation if heuristic
h is admissible. A generalization of this idea, called Anytime Restricted A∗ (ARA∗),
was presented in [124]. The main idea is to exchange the constant weight w of Anytime
Weighted A∗ with a linearly decreasing sequence of weights, one for each algorithm
iteration. The value of the initial weight has—in general—a significant impact on the
convergence of ARA∗. Since choosing appropriate weights in ARA∗ is a problem specific
task, Berg et al. [166] proposed Anytime Non-Parametric A∗ (ANA∗), eliminating the ad-
hoc parameters involved in ARA∗ by adapting the greediness of the search as path quality
improves. Aine et al. [3] proposed Anytime Window A∗ (AWA∗), in which the nodes
from the open list within one of the levels of depth from a range defined by the window
size are expanded, converging to a sub-optimal solution at each iteration. The window
size is adapted at each iteration to produce improved solutions. A memory-bounded
version of AWA∗ was proposed by Vadlamudi et al. [163].

Beside the A∗–based anytime approaches, the literature offers BS–based algorithms,
extended to be anytime algorithms. Most of these algorithms work on the principle of
initially performing a single beam search to get reasonably good, suboptimal (heuristic)
solutions, and then initializing the beam of subsequent BS runs with nodes which were
pruned in previous iterations (see, for example, [182, 183]). However, the literature does
not provide a work offering a comprehensive comparison of these algorithms. Recently,
Vadlamudi [164] presented Anytime Pack Search (APS), showing that it outperforms
anytime algorithms such as ANA∗ and AWA∗. This study considers problems from
various domains. APS maintains a global priority queue Q. At each iteration, the β
most promising nodes from Q are picked and used as an initial beam for the current
run of beam search. Note that the nodes for the initial beam may be from different
levels of the search tree. When performing the beam search at each iteration, the pruned
nodes are being added to Q. In the same paper, the authors proposed a version of APS,
called Anytime Progressive Pack Search (APPS), which aims at improving the anytime
behaviour of APS. This is done by increasing the size of the initial beam (β) dynamically
during the search process using a step size parameter each time when no better solution
has been found. Otherwise, the beam size is reset to the initial value of β. Experimental
results show that APPS can achieve better anytime behaviour than APS.

36

2.3. Anytime Algorithms

2.3.1 Anytime Pack Search
This section mainly follows the paper [164].

Anytime Pack Search (APS) quickly produces solutions of reasonable quality and improves
them over time by focusing the exploration on a limited set of most promising nodes in
each iteration. The main iteration of the algorithm consists of exploring a pack (of size
K) of most promising not-yet expanded nodes, their K most promising children, and the
K most promising children of these children, and so on, until the bottom level is reached.
The process is repeated in each iteration with the most promising nodes that are chosen
from the set of not-yet-expanded nodes. The effort of APS in a given iteration can be
controlled/estimated by the parameter K. APS tends to improve the existing solution or
improve the bound on the optimal solution (or both), in each iteration when admissible
heuristics are utilized. Note that APS is a complete algorithm.

APS details. The pseudocode of APS is given in Algorithm 12. It takes a search graph
G, a starting state node r and the size of pack K (parameter of the APS) as input. This
parameter can be controlled by the user and it serves for determining the frequency at
which solutions are attempted to be produced by APS. The set of not-yet-expanded nodes
Q might be realized utilizing a priority queue whose nodes are prioritized according to
some (heuristic) evaluator h; at the beginning we have Q := {r}. At each major iteration,
(up to) best K nodes have been popped up from Q and stored into beam B. All successor
nodes of each node from B are generated and stored in the set of extensions Vext. If the
goal nodes are encountered, complete paths are generated which costs are then compared
to the cost of the current best (complete) path. In the case when a better path is found,
a new incumbent has reached. At each level of the major iteration, up to K > 0 best
nodes from Vext are popped up for a new beam B. Concerning the remaining nodes from
Vrest = Vext \ B, we check for each such node v if (i) v has never been visited before,
or (ii) a new best r–v path encountered. If any of these two conditions is fulfilled, v is
stored in Q, otherwise, it has been omitted from further search. Afterwards, nodes from
B are expanded repeating the steps until beam B is empty. The major iteration of APS
is repeated until no unexpanded nodes are left in the search, that is, Q = ∅.

Computational experiments from the literature showed that the APS significantly out-
performs other anytime approaches concerning both, solution quality and gaps quality
on a wide range of problems such as the sliding-tile puzzle problem, travelling salesman
problem, and single-machine scheduling problem. An interesting variant of the APS
algorithm is called Anytime progressive pack search (APPS). It may further improve the
convergence of the APS algorithms in a time-bounded manner. The value of pack size K
is set to INIT and is increased at each major iteration of APS by STEP units while it
is less than the value of BOUND (INIT, STEP and BOUND are three parameters of the
APPS).

2.3.2 Anytime Column Search
This section mainly follows the paper [165].

37

2. Methodology

Algorithm 12 APS Algorithm
1: Input: G: a (weighted) search graph, K > 0: pack size, r: start node, h: heuristic

to prioritize nodes in Q
2: Output: a best path from r to a goal node in graph G
3: Initialize: open list Q ← {r}, costbest ← 0 // not-yet-expanded nodes
4: Pbest ← ∅
5: while Q %= ∅ do
6: B ← Pop up to most promising K nodes from Q
7: Vext ← ∅
8: for each v ∈ B do
9: if v is a goal node then

10: if the cost of r − v path > costbest then
11: Pbest ← derive the new best path r − v
12: costbest ← the cost of path Pbest
13: end if
14: else
15: Vext ← Vext ∪ Successors(v) // Successors(v): returns all succ. of v
16: end if
17: end for
18: B ← pop (up to) K most promising nodes from Vext
19: Vrest ← Vext \ B // remaining nodes
20: for each v ∈ Vrest do
21: if v not yet visited then
22: Q ← Q ∪ {v}
23: end if
24: if a r − v with better cost found then
25: Q ← Q ∪ {v} // node v is re-opened
26: Update the (best) cost of r − v path
27: end if
28: end for
29: end while
30: return Pbest

Anytime Column Search (ACS) is a complete algorithm which guarantees to produce
an optimal solution when terminates. It takes the column-width β > 0 as a parameter.
The basic idea is to explore up to β (column-width) number of most promising not-yet-
expanded nodes at each level of the state graph and repeat this procedure until the open
lists of all levels become empty. The concept of the algorithm fits well with anytime
objectives such as finding an initial solution quickly and improving it over time. Visually,
the set of nodes expanded in each iteration form a column (see Figure 2.4), and the whole
algorithm can be interpreted as a sliding window moving from left to right. When an
admissible heuristic is utilized, the best solution obtained in the anytime manner can be

38

2.3. Anytime Algorithms

Algorithm 13 ACS Algorithm
1: Input: G: a (weighted) search graph, β > 0: column-width, open lists Qi, i =

0, . . . , max_depth, r: start node, h: heuristic to guide search
2: Output: a best path from r to a goal node in graph G
3: Initialize: open list Q0 ← {r}, Qi ← ∅, i = 1, . . . , max_depth, costbest ← 0
4: Pbest ← ∅
5: while ∃ Qi %= ∅ do
6: for i ← 0 to max_depth do
7: B ← pop up β nodes from Qi

8: for each v ∈ B do
9: if v is a goal node then

10: if the cost of r − v path > costbest then
11: Pbest ← derive the path r − v
12: costbest ← the cost of path Pbest
13: end if
14: else
15: Vext ← Vext ∪ Successors(v)
16: end if
17: end for
18: for each v ∈ Vext do
19: if v /∈ Qi+1 then
20: Add v to Qi+1
21: else if a new best cost of r − v path found
22: Move node v to Qi+1
23: Update new (best) cost of r − v path
24: end if
25: end for
26: end for
27: end while
28: return Pbest

used to cut off nodes which yield suboptimal solutions (admissible pruning).

ACS details. Pseudocode 13 presents the algorithmic steps of the ACS algorithm. At each
level i, 1 ≤ i ≤ max_depth, a single open list Qi (as priority queue) is maintained to
keep not-yet-expanded nodes at different levels. These nodes are sorted w.r.t. heuristic h.
At each major iteration, (up to) β most promising nodes at each level have been expanded
starting with depth 0 (root node r) till the maximum allowed depth (max_depth). Each
next major iteration start from the first level where still not-yet-expanded nodes exists,
i.e., its priority queue Qi is non-empty. The algorithm terminates when the priority
queues of all levels are empty, i.e., no not-yet-expanded nodes in the search.

Note that in the above description of the algorithm’s details, we do not assume that the

39

2. Methodology

Figure 2.4: An illustration for a working ACS (β = 2).1

heuristic used in the search is admissible. Also, as the goal nodes we usually consider
complete nodes. Saying that node v is complete means that v has no successor nodes.
From the experimental studies on the sliding-puzzle problem, traveling salesman problem,
and robotic arm trajectory planning problem [165], the efficacy of the ACS is checked and
proven in comparison to some other state-of-the art anytime algorithms from literature.

40

2.3. Anytime Algorithms

1The figure borrowed from [165].

41

CHAPTER 3
The Longest Common
Subsequence Problem

This chapter addresses the prominent classical longest common subsequence problem which
has many applications in bioinformatics since it provides a basic measure of similarity
between molecular structures. Moreover, specific algorithms developed for this problem
can also be used in the Unix command diff as well as the version control system Git. In
the course of this work, we have developed a general search framework, a generalized BS
framework with a novel heuristic guidance which approximates the expected length of an
LCS problem. Furthermore, we developed an exact A∗ search and two anytime algorithms
to tackle large-sized LCS problem instances. The algorithms are rigorously tested on a
wide range of different random and practical benchmark sets that are commonly used in
the literature within the last 20 years.

This chapter is based on the following two papers.

• The conference paper published in the Proceedings of the 5th International Confer-
ence on Machine Learning, Optimization, and Data Science (LOD 2019) [55]. This
paper describes a generalized beam search framework to solve the LCS problem. A
novel heuristic guidance based on the expected length calculation of an LCS has
been derived. Numerous state-of-the-art results were obtained in relatively short
runtimes utilizing the new guiding function into the proposed BS. We emphasize
that this paper has been nominated for the best paper award of the conference.

• The extended version of this work has been published in the Applied Soft Computing
journal (IF=5.472) [58]. In this publication we have extended our studies for the
LCS problem towards considering A∗–based anytime algorithms. A novel hybrid
A∗+ACS has been proposed to solve the LCS problem which was able to further
boost the quality of the solutions on a wide range of benchmark sets. Moreover,

43

3. The Longest Common Subsequence Problem

for those instances where optimality could not be proven, we reported optimality
gaps for the first time in the literature for this kind of problems. More precisely,
the best gaps were mainly derived by our hybrid A∗+ACS in comparison to a few
state-of-the-art anytime algorithms from the literature.

3.1 Introduction
Given a set of m input strings S = {s1, . . . , sm}, the longest common subsequence (LCS)
problem [128] aims at finding a subsequence of maximal length which is common for all
the strings in S. LCS problem provides a popular similarity measure in computational
biology. Well-known similarity measures in the context of computational biology include,
besides the LCS length, the Levenshtein distance which calculates the minimum number
of single-character edits (insertions, deletions or substitutions) required to change one
sequence into the other. Another example is the Damerau-Levenshtein distance [120]
which adds transpositions to the three edit operations that are already considered in
the Levenshtein distance. Finally, it is also worth to mention the Canberra distance
(used, for example, to analyze the gut microbiome in different disease states), and the
Google distance [184]. Well-known similarity measures for sentences and/or texts include
metrics such as the Euclidean, the Manhattan and the Minkovski distance [146]. The
soft cosine measure [153] considers similarities between pairs of features, and the Jaccard
similarity [110] is defined as the size of the intersection divided by size of the union of two
sets. Finally, well-known measures of similarity for time series include Dynamic Time
Warping (DTW) [144], the matrix-based Euclidean distance (GMED), and matrix-based
dynamic time warping (GMDTW) [181], among others. Recently, many approaches from
the field of deep learning and machine learning have been developed to derive measures
of similarities that take the semantic meaning of the compared sentences into account.
These include deep architecture Match–SRNN [171] that utilizes a spatial recurrent
neural network to generate the global interaction between two sentences, the Word Order
Similarity [92] which is defined as the normalized difference of word order between two
sentences and the Latent Semantic Analysis (LSA) [116]. However, we focus here on
the efficient calculation of the LCS measure. Apart from applications in computational
biology [96], this problem appears, for example, also in data compression [155, 8], text
editing [112], and the production of circuits in field-programmable gate arrays [24].
Concerning exact approaches for the LCS problem, an integer linear programming model
has been proposed in [18]. It is, however, not competitive as it cannot be applied to any
of the commonly used benchmark instances due to too many variables and constraints in
the model. Dynamic programming approaches are reasonable for small m and small n,
but they also quickly run out of memory for larger instances and then typically return
only weak solutions, if at all. Chen et al. [31] proposed the parallel FAST_LCS search
algorithm, which is based on producing a special successors table to obtain all the identical
pairs and their levels. Successor nodes are derived in parallel. Pruning operations are
utilized to reduce the computational effort. While the algorithm is effective for a small
number of input strings, it also struggles for larger m. Wang et al. [173] proposed another

44

3.1. Introduction

parallel algorithm called QUICK-DP, which is based on the dominant point approach
and employs a fast divide-and-conquer technique to compute the dominant points. More
recently, Li et al. [123] suggested the Top_MLCS algorithm, which is based on a directed
acyclic layered-graph model (called irredundant common subsequence graph) and parallel
topological sorting strategies used to filter out paths representing suboptimal solutions.
Moreover, the authors showed that the earlier dominant-point-based algorithms do not
scale well to larger LCS instances, and Top_MLCS significantly outperforms them. In
addition to the sequential Top_MLCS, also a parallel variant was proposed. Another
parallel space efficient algorithm based on a graph model, called the Leveled-DAG, was
described by Peng and Wang [142]. It eliminates all the nodes in the layered graph that
do not contribute to the construction of the LCS, and thus keeps only the nodes from
the current level and some previously generated ones. In the experimental comparison,
Leveled-DAG and Top_MLCS solved the same number of benchmark instances to
proven optimality, but Leveled-DAG consumed less memory. Despite these recent
advances, solving practically relevant instances to proven optimality remains a substantial
challenge in terms of memory and computation time, even when utilizing many parallel
threads. The existing exact methods are therefore frequently not applicable in practice.
Concerning the anytime approaches, two anytime algorithms have been proposed in
the literature so far to solve the LCS problem: Pro-MLCS [180] and SA-MLCS [179].
Both algorithms are based on the dominant point method [172], which features a special
distance measure dist for heuristic guidance and a specific multi-dimensional data
structure for checking the dominance relation of already explored nodes during the search.
Algorithm Pro-MLCS iteratively extends a fixed number of nodes at each level in a
level-by-level manner and is similar to anytime column search, see Section 2.3.2. On the
other side, SA-MLCS applies an iterative beam widening strategy in successive iterations
to reduce space requirements. It differs from Pro-MLCS in the data structures utilized
to maintain open nodes. A specific priority queue is realized for SA-MLCS which stores
those nodes whose children have not all been expanded, further exploited in the algorithm
to make use of the search information from previous iterations to improve efficiency of
the SA-MLCS. Last but not least, [179] describes another memory bounded variant of
SA-MLCS, called SLA-MLCS. A weakness of all these approaches is that they are not
able to provide an upper bound on the solution quality and therefore no quality guarantee
in case of early termination. Moreover, neither in [180] nor in [179] enough details are
provided concerning the multi-dimensional data structure for checking dominance. This
made it, unfortunately, impossible to re-implement the algorithms with all their details,
and source code is not provided by the authors. However, in the experimental section of
this work we consider the distance measure dist as an alternative heuristic guidance
and we also build upon anytime column search.

Another branch of work concerns of approximation algorithms. In [95], a simple Long Run
(LR) algorithm was proposed that finds an LCS consisting of a single letter, with a |Σ|-
approximation ratio. Bonizzoni et al. [23] developed the so-called Expansion Algorithm
(EA), which is also a |Σ|-approximation algorithm. EA generally outperforms the LR
algorithm. Tsai and Tsu [161] introduced an improvement of the EA algorithm. Finally,

45

3. The Longest Common Subsequence Problem

two additional approximation algorithms—Enhanced Long Run (ELR) and Best-Next
for Maximal Available Symbols (BNMAS)—were proposed in [85].

Concerning heuristic approaches to solve the LCS problem, a break-through in terms of
both, computation time and solution quality was achieved by the Beam Search (BS) of
Blum et al. [16]. This algorithm is an incomplete tree search which relies on a solution
construction mechanism based on the Best–Next heuristic and exploits bounding
information using a simple upper bound function to prune non promising solutions. The
algorithm was able to outperform all existing algorithms at the time of its presentation.
Later, Wang et al. [174] proposed a fast A∗-based heuristic utilizing a new DP-based upper
bound function. Mousavi and Tabataba [135] proposed a variant of the BS which uses a
probability-based heuristic and a different pruning mechanism. Moreover, Tabataba et
al. [157] suggested a hyper-heuristic approach which makes use of two different heuristics
and applies a beam search with a low beam width first to make the decision about
which heuristic to use in a successive BS with a higher beam width. This approach was,
at that moment, state-of-the-art for the LCS problem. Recently, a chemical reaction
optimization [93] was also proposed for the LCS and the authors claimed to achieve new
best results for some of the benchmark instances. We gave our best to re-implement
their approach but were not successful due to many ambiguities and mistakes found
within the algorithm’s description and open questions that could not be resolved from
the paper. The authors of the paper also were not able to provide us the original
implementation of their approach or enough clarification. Therefore, we exclude this
algorithm from further consideration in our experimental comparison. In conclusion, the
currently best performing heuristic approaches to solve also large LCS problem instances
are thus based on BS guided by different heuristics and incorporate different pruning
mechanisms to omit nodes that likely lead to weaker suboptimal solutions. More detailed
conclusions are, however, difficult as the experimental studies in the literature are limited
and partly questionable: On the one hand, in [157, 16] mistakes in earlier works have
been reported, whose impact on the final solution quality are not known. On the other
hand, the algorithms have partly been tested on different LCS instance sets and/or the
methods were implemented in different programming languages and the experiments
were performed on different machines.

Our contributions to the heuristic solving are as follows. To resolve these computational
issues, we proposed a general beam search framework from where we extract all known
BS-based methods from the literature in order to compare rigorously and more fairly
the methods on all sets of existing benchmark instances. Furthermore, we derive a novel
heuristic function for guiding BS that computes an approximate expected length of an
LCS.

Our contributions to the exact solving of the LCS problem are as follows. We first
propose an exact A∗ search for the LCS problem. This A∗ search is shown to be
effective for solving small-sized problem instances, but as one may expect it has serious
scalability issues similar to other exact methods in terms of time and memory requirements
when considering larger instances. We therefore extend this A∗ search by applying two

46

3.1. Introduction

alternative hybrid search strategies, turning the original A∗ search into effective anytime
algorithms for finding an LCS. Both follow the idea of interleaving traditional A∗ search
iterations with heuristic search—either BS or anytime column search [165]—and they are
labeled A∗+BS and A∗+ACS, respectively. The A∗ framework ensures completeness
and provides upper bounds at any time, while the embedded heuristic search iterations
rely on the expected length calculation heuristic and are responsible for producing a first
approximate solution quickly and improving it over time. Most importantly, the heuristic
search iterations also operate on the shared list of open nodes of A∗ search in order to
avoid redundant node expansions.

3.1.1 Some Basic Concepts

A string s is called a (valid) partial solution to S, if and only if s is a subsequence of
each string in S, that is, a common subsequence of S.

Any subproblem of S is defined on the basis of a so-called left position vector p ∈ Nm, with
1 ≤ pi ≤ |si| for i = 1, . . . , m. In particular, for a given p = (p1, . . . , pm), subproblem
S[p] concerns the substrings si[p, |si|] for all i = 1, . . . , m. In other words, S[p] contains
the right part of each string from S starting from the position indicated in the left
position vector p. Note that the original problem S can be denoted by S[p = (1, . . . , 1)].
Given a (partial) solution s to S—that is, a string s that is a common subsequence
of S—a subproblem S[p] is induced by defining p in the following way. For each
i = 1, . . . , m, pi is determined such that si[1, pi − 1] is the minimal-length string among
all substrings si[1, p], p = 1, . . . , |si|, that contain s as a subsequence. For example, given
S = {abcaac, acbaba} and the partial solution s = aca, the induced subproblem S[p]
is defined by left position vector p = (5, 5). Note that there is potentially more than
one partial solution inducing the same subproblem, respectively, the same left position
vector. In the example above, partial solution s� = aba, for example, induces the same
subproblem and the same left position vector as partial solution s = aca. Moreover,
partial solutions inducing the same subproblem and the same left position vector may
have different lengths. Considering again the example from above, substring s�� = aa
induces the same subproblem and the same left position vector as s and s�.

The rest of the chapter is organized as follow. Section 3.2 a state graph of the problem is
described. In Section 3.3 a generalized beam search framework has been derived and also
a novel search guidance. Also, existing heuristic approaches are expressed by means of
this framework. Section 3.4 describes an A∗ framework to solve the LCS problem. In
Section 3.5 two anytime algorithm are proposed. Section 3.6 gives a detailed experimental
comparisons between both, exact and heuristic approaches. Finally, Section 3.7 sketches
some directions for promising future work.

47

3. The Longest Common Subsequence Problem

3.2 State Graph for the LCS Problem
The state graph that is used by all BS variants known in the literature so far, and
which will also be used by the A∗ search proposed in this section, is a directed acyclic
graph G = (V, A), where a node v = (pL,v, lv) ∈ V represents the set of partial solutions
that (i) have the same length lv and that (ii) induce the same subproblem denoted
by S[pL,v] and left partition vector pL,v. An arc a = (v1, v2) ∈ A between two nodes
v1 %= v2 ∈ V —carrying label /(a) ∈ Σ—exists, if and only if the following two conditions
are fulfilled:

1. lv2 = lv1 + 1

2. The partial solution inducing v2 is produced by appending /(a) to the partial
solution inducing v1.

The root node r of G corresponds to the original problem S, which is induced by the
empty partial solution denoted by ε. In technical terms, r = ((1, . . . , 1), 0). In order to
derive the successor nodes of a node v ∈ V , we first determine the subset Σv ⊆ Σ of letters
that can be used to feasibly extend the partial solutions represented by v. Obviously, Σv

consists of all letters a ∈ Σ that appear at least once in each string of S[pL,v]. For each
letter a ∈ Σv, the position of the first occurrence of a in si[pL,v

i , |si|] is denoted by pL,v
i,a,

i = 1, . . . , m. Set Σv may frequently be reduced by identifying dominated letters: We say
that letter a ∈ Σv dominates letter b ∈ Σv if and only if pL,v

i,a ≤ pL,v
i,b for all i = 1, . . . , m.

Dominated letters can safely be ignored since they always lead to suboptimal solutions.
Let Σnd

v ⊆ Σv be the subset of those letters that are non-dominated. Graph G contains
for each letter a ∈ Σnd

v a successor node v� = (pL,v’, lv + 1) of v, where pL,v’
i = pL,v’

i,a + 1,
i = 1, . . . , m. A node v that has no successor node—that is, when Σnd

v = ∅—is called
a non-extensible node. Now, note that any path from the root node r to any node in
v ∈ V represents the feasible partial solution obtained by collecting and concatenating
the labels of the traversed arcs1. Any path from r to a non-extensible node represents a
common subsequence of S that cannot be further extended, and any longest path from r
to a non-extensible node represents an optimal solution to problem instance S.

3.3 A General Beam Search Framework for the LCS
Problem

In the literature for the LCS problem, the so-far leading algorithms to approach larger
instances heuristically are all based on Beam Search (BS). Recall that it is an incomplete
tree search which expands nodes in a breadth-first search manner. A collection of nodes,

1We emphasize that it is not necessary to store actual partial solutions s in the nodes. A longest
path to any node in the graph starting from the root node and the respective partial solution can be
efficiently derived in a backward manner by iteratively identifying a predecessor in which the lv-value
always decreases by one.

48

3.3. A General Beam Search Framework for the LCS Problem

Algorithm 14 A Generalized BS framework (GBSF) for the LCS problem
1: Input: an instance (S, Σ), heuristic function h to evaluate nodes; upper bound

function ubprune to prune nodes; parameter kbest to filter nodes (non-dominance
relation check); β: beam size (and others depending on the specific algorithm)

2: Output: a feasible LCS solution
3: B ← {r}
4: slcs ← ε
5: while B %= ∅ do
6: Vext ← ExtendAndEvaluate(B, h)
7: Update slcs if a complete node v with a new largest lv value reached
8: Vext ← Prune(Vext, ubprune) // optional
9: Vext ← Filter(Vext, kbest) // optional

10: B ← Reduce(Vext, β)
11: end while
12: return slcs

called the beam, is maintained. Initially, the beam contains just the root node r. In
each major iteration, BS expands all nodes of the beam in order to obtain the respective
successor nodes at the next level. From those, the β > 0 most promising nodes are
selected to become the beam for the next iteration, where β is a strategy parameter called
beam width. This expansion and selection steps are repeated level by level until the beam
becomes empty. We will consider several ways to determine the most promising nodes
to be kept at each step of BS in Section 3.3.1. The BS returns the partial solution of a
complete node with the largest lv value discovered during the search. The main difference
among BS approaches from the literature is the heuristic functions used to evaluate LCS
nodes for the selection of the beam and pruning mechanisms to recognize and discard
dominated nodes. A general BS framework for the LCS is shown in Algorithm 14.

Procedure ExtendAndEvaluate(B, h) derives and collects the successor nodes of all
v ∈ B and evaluates them by heuristic h, generating the set of extension nodes Vext
ordered according to non-increasing h-values. Prune(Vext, ubprune) optionally removes
any dominated node v for which lv + ubprune(v) ≤ |slcs|, where ubprune(·) is an upper
bound function for the number of letters that may possibly still be appended, or in other
words an upper bound for the LCS of the corresponding remaining subproblem, and
|slcs| is the length of the so far best solution. Filter(Vext, kbest) is another optional
step. It removes nodes corresponding to dominated letters as defined in Section 3.2,
but in a possibly restricted way controlled by the parameter kbest in order to limit the
spent computing effort. More concretely, the dominance relationship is checked for each
node v ∈ Vext against the kbest most promising nodes from Vext. Last but not least,
Reduce(Vext, β) returns the new beam consisting of the β best ranked nodes in Vext.

49

3. The Longest Common Subsequence Problem

3.3.1 Estimators for Evaluating Nodes
In the literature, several different functions are used for evaluating and pruning nodes,
i.e., for h and ubprune. In the following we summarize them.

Fraser [65] used as upper bound on the number of letters that might be further added to a
partial solution leading to a node v—or in other words the length of an LCS of the induced
remaining subproblem S[pL,v]–by UBmin(v) = UBmin(S[pL,v]) = mini=1,...,m(|si| − pL,v

i +
1).

Blum et al. [16] suggested the upper bound UB1(v) = UB1(S[pL,v]) = #
a∈Σ ca, with ca =

mini=1,...,m |si[pL,v
i , |si|]|a, which dominates UBmin. The upper bound UB1 guarantees

|Σ| performance ratio, that is, UB1(S)
LCPS ≤ |Σ|, for any instance (S, Σ) [84]. While UB1 is

efficiently calculated using smart preprocessing in O(m · |Σ|), it is still a rather weak
bound. The same authors proposed the following ranking function Rank(v) to use for
heuristic function h. When expanding a node v, all the successors v� of v are ranked either

by UBmin(v�) or by g(v, v�) =
�

m"
i=1

pL,v’
i − pL,v

i − 1
|si| − pL,v

i

�−1

. If v� has the largest UBmin(v�)

(or g(v, v�)) value among all the successors of v, it receives rank 1, the successor with the
second largest value among the successors receives rank 2, etc. The overall value Rank(v)
is obtained by summarizing all the ranks along the path from the root node to the node
corresponding to the partial solution. Finally, the nodes in Vext are sorted according to
non-increasing values Rank(v) (i.e., smaller values preferable here).

UBcomp
2 bound for the LCS problem is based on the standard DP procedure for calculating

the LCS of two input strings; see, for example, [174]. More specifically, this algorithm for
determining the LCS of two strings si and sj consists in filling a (|si|+1)×(|sj |+1) matrix
Mij , whose entries Mij [x, y] finally correspond to the lengths of the longest common
subsequence for si[x, . . . , |si|] and sj [y, . . . , |sj |] with x = 1, . . . |si| + 1, y = 1, . . . , |sj | + 1.
Hereby, all entries with x = |si| + 1 or y = |sj | + 1 are set to zero. The content of all
other entries is determined with the following recursive formula:

Mij [x − 1, y − 1] =
�

Mij [x, y] + 1, if si[x] = sj [y]
max{Mij [x, y − 1], Mij [x − 1, y]}, otherwise.

The so-called complete upper bound UBcomp
2 (v) for a node v ∈ V —that is, for the

subproblem S[pL,v] of still relevant substrings—can now be computed as

UBcomp
2 (v) := min

1≤i<j≤m

�
Mi,i+1[pL,v

i , pL,v
i+1]

�
. (3.1)

UBcomp
2 can be calculated efficiently in time O(m) by creating appropriate data structures

in preprocessing. By combining the two upper bounds we obtain the so far tightest
known bound UB(v) = min(UB1(v), UBcomp

2 (v)) that can still efficiently be calculated
in O(m · |Σ|) time. This bound will serve in Prune() of our BS framework, since it can
filter more non-promising nodes than when UB1 or UB2 are just individually applied.

50

3.3. A General Beam Search Framework for the LCS Problem

Mousavi and Tabataba [135, 157] proposed two heuristic guidances. The first estimation
is derived by assuming that all input strings are uniformly at random generated and that
they are mutually independent. The authors derived a recursion which determines the
probability P(p, q) that a uniform random string of length p is a subsequence of a string
of length q. These probabilities can be calculated during preprocessing and are stored in
a matrix. For some fixed k, using the assumption that the input strings are independent,
each node is evaluated by H(v) = H(S[pL,v]) = !m

i=1 P(k, |si|−pL,v
i +1). This corresponds

to the probability that a partial solution represented by v can be extended by k letters. The
value of k is heuristically chosen as k := max

�
1,

�
1

|Σ| · minv∈Vext, i=1,...,m(|si| − pL,v
i + 1)

��
.

The second heuristic estimation, the so called power heuristic, is proposed as follows:

Pow(v) = Pow(S[pL,v]) =
�

m
i=1

(|si| − pL,v
i + 1)

�q

· UBmin(v), q ∈ [0, 1).

It can be seen as a generalized form of UBmin. The authors argue to use smaller values
for q in case of larger m and specifically set q = a × exp (−b · m) + c, where a, b, c ≥ 0
are then instance-independent parameters of the algorithm.

3.3.2 Approximate Expected Length Calculation of an LCS Problem
Some of the BS approaches make use of a heuristic guidance function instead of an upper
bound for the selection of the nodes that form the beam of the next iteration. In the
following we briefly describe the one that we introduced in [55]. This heuristic guidance
function is based on a DP recursion by Mousavi and Tabataba [135], which calculates
the probability that any string of length p is a subsequence of a uniform random string
of length q, for 0 ≤ p, q ≤ n, as

P(k, q) =

����
0 if k > q

1 if k = 0
1

|Σ| · P(k − 1, q − 1) + |Σ|−1
|Σ| · P(k, q − 1) else.

(3.2)

Let us assume that these probabilities are stored in a matrix P with elements P[p, q] ∈
[0, 1], 0 ≤ p, q ≤ n.

Concerning related work on the expected length of the LCS, Chvátal and Sankoff [39]
considered the expected length of two random sequences of length n over an alphabet Σ.
The authors derived explicit formulas for small n, and lower and upper bounds for the
so-called Chvátal–Sankoff constants γ|Σ|, for |Σ| > 1, defined as the limits of the ratios
between the expected length and n, as n increases towards infinity. These constants are
still not known so far, but Dančik and Paterson [44] improved the upper bounds for γ2
based on the theory of Markov chains. Dixon [51] considered the case for two binary
strings of different lengths. He conjectured an approximate upper bound for the expected
length under certain additional conditions. Znamenskij [188] came up with the hypothesis
of an accurate formula for the expected length for the case of two random strings of

51

3. The Longest Common Subsequence Problem

different length and an arbitrary alphabet. An empirical indication for the correctness
of this hypothesis is given, and computational experiments showed the precision of the
formula with a high accuracy. A proof for Sankoff and Mainville’s conjecture about the
convergence of γ|Σ| as |Σ| tends toward infinity can be found in [104]. We are not aware
of any previous work on the expected length of a LCS for more than two random strings
or of an LCPS for random strings.

Let X be the random variable corresponding to the length of an LCS for a set S of
randomly generated input strings. Clearly, X can never be larger than the length of the
shortest string in S, denoted by lmax = mini=1,...,m |si|. The expected length of an LCPS
can be expressed as E[X] = #lmax

l=1 l · Pr[X = l] with Pr[X = l] denoting the probability
that this length is l. Furthermore, let Yl ∈ {0, 1} be the random variable indicating if
the strings from S have a common subsequence of length l, l ≥ 0. Observe that the
existence of a subsequence of size l > 1 always implies the existence of subsequences of size
l� = 0, . . . , l − 1. Therefore, it holds that Pr[X = l] = E[Yl] − E[Yl+1] for l = 0, . . . , lmax,
i.e., the probability that there exists a subsequence of size l but no longer one. This
implies that

E[X] =
lmax"
l=1

l · (E[Yl] − E[Yl+1]) =
lmax"
l=1

E[Yl]. (3.3)

In order to approximate E[Yl], it can be first observed that—for an alphabet of size |Σ|—
there are |Σ|l different sequences of length l. Following equation (3.2), the probability
that a specific sequence s of length l is a subsequence of all strings in S is equal to
Pr[s ≺ S] = !m

i=1 P(l, |si|). In the following let us make the simplifying assumption that
for each sequence of length l the event of appearing as common subsequence of S is
independent of the events of the other sequences. Clearly, this does not entirely hold in
reality and an error has been introduced, but it simplifies our considerations to a level
with which we can deal further. The probability that S has any common subsequence of
length l ∈ N can then be approximately expressed as

Ẽ[Yl] = 1 − (1 − Pr[s ≺ S])|Σ|l = 1 −
�

1 −
m

i=1
P(l, |si|)

�|Σ|l

, (3.4)

i.e., the inverse probability of the case that none of the |Σ|l sequences of length l is a
common subsequence of S. Ultimately, the approximate expected length of the LCPS
can be expressed as

Ẽ[X] = lmax −
lmax"
l=1

�
1 −

m
i=1

P(l, |si|)
�|Σ|l

. (3.5)

Calculating Ẽ[X] directly according to equation (3.5) is in practice hardly possible due to
the extremely large power values one obtains for not so small string lengths l. Classical
double precision floating point arithmetic is insufficient for strings with already more

52

3.3. A General Beam Search Framework for the LCS Problem

than about 40 letters. However, the term from the sum on the right-hand side of (3.5)
can be decomposed to

�
1 −

m
i=1

P(l, |si|)
�|Σ|�l/2�

=

������
. . .

�
1 −

m
i=1

P(l, |si|)
�|Σ|p

· · ·
|Σ|p

� �� �

l/p� times

������

|Σ|l mod p

(3.6)

for p ∈ N>0. One could use p = 25, for example, which will yield small enough values for
all intermediate results when using classical double precision floating point arithmetic.

While this decomposition avoids overflows there are other issues when !m
i=1 P (l, |si|)

becomes small due to cancellation effects in the limited precision of classical floating point
arithmetic. In our implementation, it is specifically checked if !m

i=1 P (l, |si|) < 10−10 and
this case is handled in the following different way.

To ease the further considerations, let us define x := !m
i=1 P (l, |si|) and α := |Σ|l; we now

have to calculate (1 − x)α. The numerically problematic situation occurs when x is close
to zero and α is large. To resolve this issue, we make use of the fact that ln(1 − x)/x
can be well approximated for small x by taking the first two terms of the Taylor series
expansion at x = 0, which is −1 − x/2 − o(x). This yields

(1 − x)α = eα·ln (1−x) = eαx· ln(1−x)
x ≈ eαx·(−1− x

2). (3.7)

Here, however, the product αx may still be numerically problematic to calculate, in fact
already the calculation of α = |Σ|l alone may already exceed the limits of a classical
double precision floating point arithmetic. We therefore rewrite

αx = eln (αx) = el·ln |Σ|+ln (x) (3.8)

and check if already l·ln |Σ|+ln (x) is so large that the overall result will be negligibly small.
More specifically in our implementation, we return zero as result if l · ln |Σ| + ln (x) > 300
as then (1 − x)α < e−e300 .

Otherwise, α̃ := αx · (−1 − x
2) is determined. If α̃ is close to zero (i.e., |α̃| < 10−15} in

our implementation), 1 − eα̃ ≈ −α̃ holds, and consequently (3.7) is approximated well by
returning 1 + α̃.

Last but not least, in the remaining case we consider α̃ to be in a reasonable range
so that eα̃ can be calculated in a numerically stable way and this value is returned as
approximate result of (1−x)α. Summarizing the above, whenever x ≤ 10−10, we calculate

(1 − x)α ≈

����
0 if l · ln |Σ| + ln (x) > 300
1 + α̃ if l · ln |Σ| + ln (x) ≤ 300 ∧ |α̃| < 10−15

eα̃ else,

(3.9)

53

3. The Longest Common Subsequence Problem

and for x > 10−10, we determine (1 − x)α safely by applying the decomposition rule (3.6).

In order to determine the approximate expected LCS length Ẽ[X] according to (3.5),
the terms (1 − Ẽ[Yl]) must be calculated for l = 1, . . . , lmax, which requires O(mn)
time. In the case of larger n, this would be inefficient and be a bottleneck of our whole
approach to solving the LCS problem. To reduce this complexity, the values for most
l are interpolated using a divide-and-conquer scheme. This approach exploits the fact
that the sequence of values {Ẽ[Yl]}l=1,...,lmax is monotonically decreasing with values in
the interval [0, 1]. The approach starts by defining the artificial border values Ẽ[Y0] := 1
and Ẽ[Ylmax+1] := 0 and setting l = 0 and l� = lmax + 1. Then it applies the following
recursive principle: If l + 1 < l�, the values for Ẽ[Yl] and Ẽ[Yl�] are known but not yet
some lying inbetween. In this case, if Ẽ[Yl] − Ẽ[Yl�] ≤ ε for some sufficiently small ε
(ε = 10−6 in our implementation), Ẽ[Yl��] is determined for l�� = l + 1, . . . , l� − 1 by
linear interpolation between Ẽ[Yl] and Ẽ[Yl�]. Otherwise, we calculate the middle value
Ẽ[Y�(l+l�)/2�] according to our approximation above and recursively call the procedure for
{Ẽ[Yl], . . . , Ẽ[Y�(l+l�)/2�]]} and {Ẽ[Y�(l+l�)/2�]], . . . , Ẽ[Yl�]}.

Finally, recall that each node v ∈ N of our state graph represents a subproblem S[pL,v],
and we can determine corresponding approximate expected LCS lengths according to
(3.5) and the above described stable and efficient calculation method for these:

EX(v) =
lvmax"
l=1

1 −
�

1 −
m

i=1
P(l, |si| − pL,v

i + 1)
�|Σ|l

, (3.10)

where lvmax = maxi=1,...,m(|si|−pL,v
i +1). Note that EX(v), in contrast to the upper bound

functions from the previous section, does not possess the property of being admissible in
the context of A∗ search.

3.3.3 Expressing Existing Approaches in Terms of the GBSF

All BS-related approaches from the literature can be defined as follows within our GBSF
framework from Algorithm 14.

BS by Blum et al. [16]. The heuristic function h is set to h = Rank−1. Function
Prune(Vext, ubprune) uses ubprune = UB1. Moreover, all nodes that are not among the
µ · β most promising nodes from Vext are pruned. Hereby, µ ≥ 1 is an algorithm-specific
parameter. Finally, with a setting of kbest ≥ β · |Vext| in function Filter(Vext, kbest),
the original algorithm is obtained. Instead of testing this original algorithm, we study
here an improved version that uses ubprune = UB. Moreover, during tuning (see below)
we will consider also values for kbest such that kbest < β · |Vext|. The resulting method is
henceforth denoted by Bs-Blum.

54

3.4. A∗ Search Framework

Heuristic by Wang [173]. h = UB2 is used as heuristic function. Moreover, a priority
queue to store extensions is used instead of the standard vector structure used in the
implementation of other algorithms. Function Prune(Vext, ubprune) removes all those
nodes from Vext whose h-values deviate more than W ≥ 0 units from the priority value
of the most promising node of Vext. Filtering is not used. Instead of h = UB2 (as in
the original algorithm) we use here h = UB, which significantly improves the algorithm
henceforth denoted by Bs-Wang.

BS approaches by Mousavi and Tabataba [135, 157]. The first approach, denoted
by Bs-H, uses h = H, whereas in the second one, denoted by Bs-Pow, h = Pow is used.
No pruning is done. Finally, a restricted filtering (kbest > 0) is applied.

The Hyper-heuristic approach by Mousavi and Tabataba [157]. This approach,
henceforth labeled Hh, combines heuristic functions H and Pow as follows. First, Bs-H
and Bs-Pow are both executed using a low beam width βh > 0. Based on the outcome
of these two executions, either Bs-H or Bs-Pow will be selected as the final method
executed with a beam width β � βh. The result is the best solution found in both
phases.

3.4 A∗ Search Framework
In this section, we set up an efficient A∗ to solve the LCS problem. Our A∗ search for
the LCS problem operates on the state graph G as defined in Section 3.2. In the context
of the LCS, the cost of a path refers to its length, and a path is better the longer it is.
Furthermore, any non-extensible node of the state graph represents a goal node. Good
candidates for h(·) in the context of the LCS are upper bound functions, such as the ones
discussed in Section 3.3.1. They never underestimate the length of the best/longest path
to a goal node and are called admissible in the terminology of A∗ search which guarantees
that an optimal solution is found when a goal node is finally selected for expansion
and the search terminates. Moreover, the proposed upper bounds are monotonic, see
Section 2.1.4. To efficiently retrieve the node with the highest priority in each iteration,
A∗ search maintains all open nodes in a priority queue Q. Additionally, our A∗ search
maintains a hash map N with left position vectors pL,v as keys mapping to the respective
lv-values. By this data structure, we can efficiently recognize already reached left position
vectors.

A∗ search starts with the initialization of Q, that is, Q = {r}. At each iteration, it
expands the top node of Q by generating the respective successor nodes. If its left position
vector is not already present in N , a successor node is added to N and Q. If on the other
side, the successor’s left position vector is already in N , it is checked if the new path to
v is longer than the already known one. If this is the case, the lv-value of v is updated
correspondingly, and the priority of v (used for its ranking in Q) is adapted accordingly.
The algorithm keeps expanding the top nodes of Q until optimality is reached by selecting

55

3. The Longest Common Subsequence Problem

Table 3.1: Overview on the anytime algorithms considered for comparison.

Algorithm Main idea
A∗+BS embeds a generalized BS in A∗ search [?]: the search strategy switches—every δ

regular A∗ iterations—to BS starting from the highest priority node from A∗’s priority
queue

ACS anytime column search [165]: ACS repeatedly iterates over all levels of the state
graph, expanding at each level up to β (column width) most promising nodes

APS anytime pack search [164]: APS maintains a priority queue just like A∗ search;
but instead of expanding only one node in each major iteration, it performs a BS
initialized with a certain number (pack size) of the top-ranked nodes from the priority
queue

APPS anytime progressive pack search [164]: this is a variant of APS in which the pack
size is adapted based on the observed performance of the BS

A∗+ACS our new approach: interleaves δ regular A∗ iterations with single ACS iterations of
column width β

a goal node or either the memory limit or a time limit is exceeded. One potential problem
is that Q typically contains many nodes with the same priority value. These ties are
broken by prioritizing those nodes which are farther away from the root node, i.e., the
ones with higher lv values. Remaining ties are broken with the help of a k-norm of the
remaining string lengths, i.e., each node is evaluated by κ(v) =

�#m
i=1(|si| − pL,v

i + 1)k
� 1

k .
These κ(v)-values can be seen as a rough heuristic indicator for the cost-to-go, nodes with
larger values are expected to be more promising. We used k = 0.5 in our implementation.
A pseudo-code of our A∗ search for the LCS problem is given in Algorithm 15. Note that
an alternative A∗ algorithm was proposed in [173]. However, this simpler algorithm uses
just the weaker upper bound function UB2 to guide the search, does not consider tie
breaking, and has a larger memory footprint.

3.5 Anytime Algorithms to Solve the LCS Problem
The two new anytime algorithms that we present in this work for the LCS problem are
based on the A∗ framework from Section 3.4. Our main idea is to embed efficient heuristic
approaches into the A∗ framework which is repeatedly executed inbetween regular A∗

iterations. Our A∗ anytime variants—apart from providing excellent solutions— can
return proven gaps at almost any time when terminated prematurely.

Before outlining our anytime approaches, Table 3.1 summarizes the main ideas of the
anytime algorithms that are covered in our experimental evaluation.

3.5.1 A∗+BS Approach
Since BS approaches are the state-of-the-art heuristic techniques for the LCS problem
but A∗ search is more promising when it comes to solving smaller instances to proven
optimality, it seems sensible to combine A∗ search with BS into an anytime search method,

56

3.5. Anytime Algorithms to Solve the LCS Problem

Algorithm 15 A∗ for the LCS problem.
1: N : hash map for all reached left position vectors with the lengths of the longest

paths; Q: priority queue with all open nodes
2: pL,r ← (1, . . . , 1)
3: r ← (pL,r, 0)
4: N [pL,r] ← 0
5: Q ← {r}
6: while time and memory limit not exceeded and Q is not empty do
7: v ← Pop the top node from Q
8: Σnd

v ← non-dominated feasible letters concerning subproblem S[pL,v]
9: if Σnd

v = ∅ then // v is a goal node
10: return optimal solution slcs retrieved from v
11: else
12: for all a ∈ Σnd

v do // expand v
13: pL,v’

i ← pL,v’
i,a + 1, i = 1, . . . , m

14: lv
� ← lv + 1

15: if pL,v’ ∈ N then
16: if N [pL,v’] < lv

� then // a better path to the node was found
17: N [pL,v] ← lv

�

18: Update priority value of node v in Q
19: end if
20: else // a new node
21: fv� ← lv

� + UB(v�)
22: Add v� of the priority fv� to Q
23: Add v� to N
24: end if
25: end for
26: end if
27: end while
28: return empty solution ε

denoted by A∗+BS. At the start of A∗+BS, a run of BS with small width is performed
for which the beam is initialized with the root node r. This initial BS run takes place
to obtain a first reasonable approximate solution (and thus a primal bounds) rather
quickly. Then the algorithm proceeds by iteratively applying the following scheme. First,
δ traditional iterations of A∗ search are performed, with δ > 0 being a strategy parameter.
Second, a BS run is applied in which the first beam is initialized with the top node of Q.
The algorithm stops once optimality is proven or a memory limit, respectively time limit,
is exceeded. To avoid redundant recalculations, all the embedded BS calls and the A∗

search act on the same search tree. All non-expanded nodes encountered during a BS
run are used to update the hash map N and are inserted into the priority queue Q (if
not already there). Moreover, if a new best path to some node is encountered within any

57

3. The Longest Common Subsequence Problem

BS iteration, an update of the corresponding node in N is performed by changing the
key to the new lv-value, and the node is then added into the corresponding beam, that
is, the nodes which were already encountered during the search are allowed to be added
into Vext.

A pseudo-code for A∗+BS is provided in Algorithm 16. Parameters β > 0 (beam width
of BS) and δ > 0 (frequency of BS applications) control the balance between BS and
classical A∗ search iterations and thus the emphasis on improving the primal bound
versus the dual bound, respectively. Beam search makes use of a function Filter(Vext,
kfilter) for filtering dominated successor nodes at each step. This procedure works as
follows. Up to kfilter of the most promising nodes are selected from Vext as a reference set.
Then, all other nodes from Vext that are dominated by at least one of these reference
solutions are removed from Vext. If kfilter = 0, no filtering is applied. Moreover, the
employed BS uses the upper bound UB from Section 3.3.1 in order to choose up to β
nodes for the beam of the next step. Finally, note that the A∗ search framework ensures
completeness of the A∗+BS algorithm and provides proven gaps at any time.

The procedure ExpandNode for the expansion of a node and updating the respective
data structures is provided in Algorithm 17 (for now, disregard the lines marked to be
relevant only for A∗+ACS). If the node to be expanded is a goal node, it is checked if it
yields a new best solution. If this is the case, sbest is updated accordingly. Moreover, if
the length of the so-far best solution sbest is greater or equal to the f–value of the top
node in Q, the flag opt is set to true, meaning that the search terminates with proven
optimality of sbest.

3.5.2 A∗+ACS Approach
Nevertheless, after an intensive study of the A∗+BS algorithm, the following shortcomings
of A∗+BS were detected:

1. Even though our new upper bound UB is tighter than the UB1 bound from [54],
it is still far from being a tight bound. Therefore, in case of larger instances the
nodes with the highest priority values in Q—that is, those nodes that are used to
initialize the BS runs—are generally close to the root node of the search tree and
the chance that they are promising starting nodes for BS is rather low.

2. The embedded BS does not ensure that the most promising nodes from each level
of the state graph are included in the beam corresponding to this level, as only
extensions of the starting node of each BS application are considered.

It was observed that these problems lead to the following behaviour. The solution quality
of A∗+BS at a certain time can often be significantly exceeded by a single BS run whose
beam width is chosen such that its computation time is comparable. While the pure
BS is no anytime algorithm and does not provide any lower bound, this observation
nevertheless indicates room for improvement. Moreover, applying a rather large beam

58

3.5. Anytime Algorithms to Solve the LCS Problem

Algorithm 16 A∗+BS for the LCS problem.
1: N : hash map for all reached left position vectors with the lengths of the longest

paths; Q: priority queue of not yet expanded nodes; β > 0: beam width; δ > 0:
number of consecutive A∗ iterations; kfilter ≥ 0: extent of filtering

2: sbest ← ε
3: pL,r ← (1, . . . , 1)
4: r ← (pL,r, 0)
5: N [pL,r] ← 0
6: Q ← {r}
7: opt ← false
8: while not opt and neither memory limit nor time limit exceeded do
9: B ← Pop the β top nodes from Q

10: while B %= ∅ do
11: // perform BS:
12: for all v ∈ B do
13: ExpandNode(v) // see Alg. 17
14: Store respective children of v in Vext
15: end for
16: Filter(Vext, kfilter) // filter dominated nodes from Vext
17: B ← Reduce(Vext, β)
18: end while
19: iter ← 0
20: while iter < δ and neither memory limit nor time limit exceeded do
21: // perform A∗ iteration:
22: v ← get top node from Q
23: Remove v from Q
24: ExpandNode(v) // see Alg. 17
25: iter ← iter + 1
26: end while
27: end while
28: return sbest

width in A∗+BS leads to finding good heuristic solutions early, but afterwards, these
solutions are hardly improved. On the other side, applying a rather small beam width
leads to initial heuristic solutions of lower quality which are improved over time, without,
however, reaching the final solution quality of A∗+BS when using a rather large beam
width.

Therefore, the following potential improvements of A∗+BS are proposed here. First,
the standard BS component is exchanged with a BS version known as Anytime Column
Search (ACS), proposed by Vadlamudi et al. [165]. The most interesting feature of ACS is
that it expands the most promising open nodes at each level of the state graph. Moreover,
the use of the upper bound for guiding ACS is exchanged with the approximation of the

59

3. The Longest Common Subsequence Problem

Algorithm 17 ExpandNode(v).
1: Input: a node v to be expanded; a flag parameter
2: Uses resp. updates: slcs, N, Q and if called from A∗+ACS, Qj , j = 0, . . . , jmax;
3: if Σnd

v = ∅ then // v is a complete node
4: s ← derive the non-extensible solution corresponding to v
5: if |slcs| < |s| then // update best sol.
6: slcs ← s
7: end if
8: else
9: for all a ∈ Σnd

v do // expand v
10: pL,v’

i ← pL,v’
i,a + 1, i = 1, . . . , m

11: lv
� ← lv + 1

12: if pL,v’ ∈ N then
13: if N [pL,v’] < lv

� then // a better path to the node encountered
14: N [pL,v’] ← lv

�

15: Update priority of the corresponding node in Q;
16: if called from A∗+ACS then
17: Move node v� from Qlv to Qlv

�

18: end if
19: end if
20: else // create new node
21: Add v� to N
22: fv� ← lv

� + UB(v�)
23: Add v� with priority fv� to Q
24: if called from A∗+ACS then
25: ev� ← EX(v�)
26: Add v� with priority ev� to Qlv�

27: end if
28: end if
29: end for
30: end if
31: if |slcs| ≥ maxv∈Q f(v) then
32: opt ← true
33: end if

expected length of an LCPS as derived in Section 4.4.

As mentioned above, each BS run in A∗+BS starts from the current top node of Q. This
means that each BS run only deals with extensions of this single node, and consequently
the search space is rather restricted. In particular, many other highly promising nodes at
different levels of the state graph may have already been identified, but they are ignored.
In order to deal with this potential short-coming, we developed an alternative approach
in the line of Section 4.5.3 in which BS runs are exchanged by major iterations of the

60

3.6. Computational Studies

above already mentioned Anytime Column Search (ACS) [165]; this hybrid approach is
henceforth labeled A∗+ACS.

Anytime column search is an iterative algorithm which maintains for each level j of the
state graph a priority queue Qj that stores—in the context of the LCS problem—all
open nodes v with lv = j, j = 0, . . . , jmax, jmax = UB(r). Initially, Q0 contains the root
node r and the other priority queues are empty. Each major iteration of ACS considers
all levels j = 0, . . . , jmax with non-empty queues Qj in turn, and expands β nodes (or
less if Qj is shorter. The procedure terminates with an optimal solution once all priority
queues are empty. Note that ACS in general finds heuristic solutions very quickly since
each major iteration identifies usually at least one non-extensible heuristic solution.

The main idea for combining A∗ with ACS consists again in interleaving classical A∗

iterations with major ACS iterations. Hereby, A∗ keeps working on the basis of priority
list Q and the priority function that utilizes the upper bound function UB(v). In this way,
the whole approach will maintain the completeness of classical A∗ search and maxv∈Q f(v)
always is a true upper bound for the optimal solution value. In contrast to Q, the heuristic
guidance function EX from Section 3.3.2 is used as sorting criterion for the nodes in the
level-specific ACS-queues Qj . Remember that EX is usually a more promising guidance
to find good heuristic solutions, but as it is no valid upper bound, it cannot be used
for proving optimality. Moreover, note that changes made in priority queue Q must be
accompanied by corresponding changes in priority queues Qj and vice versa. To enable a
direct lookup of priority queue entries for a given node, we make use of the corresponding
hash map N .

The pseudo-code of the A∗+ACS is presented in Algorithm 18. Note that at each entry
of the main while loop (lines 8–32), the algorithm first executes one major iteration of
ACS (lines 10–31) and afterwards δ classical A∗ iterations (lines 22–28). Note that, just
like A∗+BS, the algorithm potentially makes use of filtering when case kfilter > 0 during
the major iterations of ACS (line 21). The only difference is that nodes removed from
Vext due to filtering are not only removed from N and Q but also from the corresponding
queue Qj . Parameters β and δ play the same role as in A∗+BS, namely, controlling
the balance between finding good heuristic solutions and improving the dual bound over
time. Finally, A∗+ACS terminates either with a proven optimal solution, or once the
memory limit or the time limit is exceeded, returning the best non-extensible solution
found up to this point.

3.6 Computational Studies
The presented BS framework was implemented in C++ and all experiments were per-
formed in single-threaded mode on an Intel Xeon E5-2640 with 2.40GHz and 16 GB
of memory. A∗ search and other competitor anytime variants are run with 32 GB of
memory and the maximum computation time for each run was limited to 900 seconds.

Benchmark sets. The related literature offers six different benchmark sets for the LCS

61

3. The Longest Common Subsequence Problem

Algorithm 18 A∗+ACS for the LCS problem.
1: N : hash map for all reached left position vectors with the lengths of the longest paths;

Q: priority queue of not yet expanded nodes; Qj : priority queues maintained for
each level j of the state graph; β > 0: a beam width; δ > 0: amount of consecutive
A∗ iterations; kfilter ≥ 0: extent of filtering

2: sbest ← ε
3: pL,r ← (1, . . . , 1)
4: r ← (pL,r, 0)
5: N [pL,r] ← 0
6: Q ← {r}; Q0 ← {r}
7: opt ← false
8: while not opt and neither memory limit nor time limit exceeded do
9: lev ← 0

10: while lev < jmax do
11: // perform ACS iteration:
12: b ← 0
13: Vext ← ∅
14: while Qlev %= ∅ and b < β do
15: v ← get the top node from Qlev
16: Remove v from Qlev and Q
17: ExpandNode(v) // see Alg. 17
18: Store respective children of v in Vext // keep track of nodes for filtering
19: b ← b + 1
20: end while
21: Filter(Vext, kfilter) // filter dominated nodes from Vext
22: lev ← lev + 1
23: end while
24: iter ← 0
25: while iter < δ and neither memory limit nor time limit exceeded do
26: // perform A∗ iteration:
27: v ← top node from Q
28: Remove v from Q and Qlv

29: ExpandNode(v) // see Alg. 17
30: iter ← iter + 1
31: end while
32: end while
33: return sbest

problem. The ES benchmark, introduced by Easton and Singireddy [60], consists of 600
instances of different sizes in terms of the number and the length of the input strings,
and in terms of the alphabet size. A second benchmark consists of three groups of 20
instances each: Random, Rat and Virus. It was introduced by Shyu and Tsai [152]

62

3.6. Computational Studies

for testing their ant colony optimization algorithm. Hereby, Rat and Virus consist of
sequences from rat and virus genomes. The BB benchmark of 80 instances was generated
by Blum and Blesa [13] in a way such that a large similarity between the input strings
exists. Finally, the BL instance set [18] consists of 450 problem instances that were
generated uniformly at random.

3.6.1 Computational Experiments: Heuristic Approaches
The five approaches from the literature as detailed in Section 3.3.3 are compare to our
own approach, labeled Bs-Ex, which uses h = EX, no pruning, and involving restricted
filtering.

The final solution quality produced by any of the considered BS methods is largely
determined by the beam size parameter β. Based on the conducted preliminary experi-
ments, we decided to test all algorithms with a setting aiming for a low computation time
(β = 50) and with a second setting aiming for a high solution quality (β = 600). The
first setting is henceforth called the low-time setting, and the second one the high-quality
setting. Note that when using the same value of β, the considered algorithms expand a
comparable number of nodes. The remaining parameters of the algorithms are tuned
by irace [127] for the high-quality setting. Separate tuning runs with a budget of 5000
algorithm applications are performed for benchmark instances in which the input strings
have a random character (ES, Random, Rat, Virus, BL),2 and for the structured in-
stances from set BB. 30 training instances are used for the first tuning run and 20 for the
second one.

The outcome reported by irace for random instances is as follows. Bs-Blum makes use of
function g(., .) within h = Rank−1. Moreover, µ = 4.0 and kbest = 5 are used. Bs-Wang
uses W = 10. For Bs-H we obtain kbest = 50, for Bs-Pow we get kbest = 100, a = 1.677,
b = 0.054, and c = 0.074. Finally, Hh uses βh = 50, and for Bs-Ex we get kbest = 100.

For the structured instances from set BB irace reports the following. Bs-Blum makes
use of UBmin within h = Rank−1. Moreover, it uses µ = 4.0 and kbest = 1000. Bs-Wang
uses W = 10, Bs-H needs kbest = 100, and Bs-Pow requires kbest = 100, a = 1.823,
b = 0.112, and c = 0.014. Finally, Hh uses βh = 50 and for Bs-Ex kbest = 100. At this
point we want to emphasize that we made sure that the five re-implemented competitor
algorithms obtain equivalent (and often even better) results on all benchmark sets than
those reported in the original papers.

We now proceed to study the numerical results presented in Tables 3.2–3.7. In each table,
the first three columns describe the respective instances in terms of the alphabet size (|Σ|),
the number of input strings (n), and the maximum string length (m). Columns 4–8 report
the results obtained with the low-time setting, while columns 9–13 report on the results of
the high-quality setting. The first three columns of both blocks provide the results of the
best performing algorithm among the five competitors from the literature. Listed are for

2Note that even instance sets Rat and Virus contain sequences that are close to random strings.

63

3. The Longest Common Subsequence Problem

Table 3.2: Results on benchmark set Rat.

low-time, literature low-time, Bs-Ex high-quality, literature high-quality, Bs-Ex
|Σ| n m |sbest| tbest Algo. |sbest| t[s] |sbest| tbest Algo. |sbest| t[s]

4 600 10 201 0.09 Bs-Pow 198 0.22 204 1.18 Bs-Pow *205 3.09
4 600 15 182 0.10 Bs-Pow 182 0.18 184 0.62 Bs-H *185 2.65
4 600 20 169 0.05 Bs-Pow 168 0.15 170 0.94 Bs-Pow *172 2.25
4 600 25 166 0.12 Bs-Pow 167 0.18 168 1.01 Bs-Pow *170 2.71
4 600 40 151 0.04 Bs-H 146 0.15 150 1.02 Bs-Pow 152 1.81
4 600 60 149 0.10 Bs-Pow 150 0.17 151 1.16 Bs-Pow *152 2.27
4 600 80 137 0.05 Bs-H 137 0.17 139 0.67 Bs-H *142 2.47
4 600 100 133 0.07 Bs-Pow 131 0.14 135 0.47 Bs-H *137 2.50
4 600 150 125 0.06 Bs-H 127 0.13 126 0.91 Bs-Pow *129 1.97
4 600 200 121 0.09 Bs-Pow 121 0.17 *123 0.70 Bs-Pow *123 2.65

20 600 10 70 0.09 Bs-H 70 0.37 *71 1.86 Bs-H *71 3.44
20 600 15 61 0.15 Bs-Pow 62 0.28 62 1.40 Bs-H *63 2.55
20 600 20 53 0.12 Bs-Pow 53 0.20 54 1.15 Bs-H 54 2.45
20 600 25 50 0.22 Bs-Wang 50 0.21 51 1.09 Bs-H *52 2.94
20 600 40 48 0.09 Bs-H 47 0.19 49 1.15 Bs-Blum 49 2.97
20 600 60 46 0.09 Bs-H 46 0.20 47 1.61 Bs-Pow 46 2.42
20 600 80 43 0.18 Bs-Blum 41 0.21 *44 1.14 Bs-H 43 2.64
20 600 100 38 0.11 Bs-Pow 38 0.23 39 0.96 Bs-H *40 2.54
20 600 150 36 0.32 Bs-Blum 36 0.14 37 5.11 Bs-Wang 37 2.03
20 600 200 34 0.10 Bs-Pow 34 0.18 34 2.62 Bs-Blum 34 2.74

each instance (or instance group) the (average) solution length, the respective (average)
computation time, and the algorithm that achieved this result. The last two columns of
both blocks present the (average) solution length and the (average) computation time of
our new Bs-Ex. The overall best result of each comparison is indicated in bold font, and
an asterisk indicates that this result is better than the so-far best known one from the
literature. These results allow to make the following observations.

• Concerning the low-time setting of the algorithms, the approaches from the literature
compare as follows. Bs-H and Bs-Pow seem to outperform the other approaches in
the context of benchmarks Rat and Virus, with Bs-Blum and Bs-Wang gaining
some terrain when moving towards the alphabet size of |Σ| = 20. Furthermore, Hh
and—to some extent—Bs-H dominate the remaining approaches in the context
of benchmarks ES and BL. Concerning the structured instances from set BB the
picture is not so clear. Here, the oldest BS approach (Bs-Blum) is able to win
over the other approaches in three out of seven cases.

• The results obtained by Bs-Ex with the low-time setting are comparable to the
best results obtained by the methods from the literature. More specifically, Bs-Ex
produces comparable results for Virus and Rat and is able to outperform the
other approaches in the context of ES and BL. As could be expected, for the BB
instance set, in which the input strings have a strong relation to each other, the EX
guiding function cannot successfully guide the search. This is because EX assumes
the input strings to be random strings, that is, to be independent of each other.

64

3.6. Computational Studies

Table 3.3: Results on benchmark set Virus.

low-time, literature low-time, Bs-Ex high-quality, literature high-quality, Bs-Ex
|Σ| n m |sbest| tbest Algo. |sbest| t[s] |sbest| tbest Algo. |sbest| t[s]

4 600 10 225 0.04 Bs-H 223 0.21 226 0.68 Bs-H *227 2.88
4 600 15 200 0.04 Bs-H 201 0.23 204 0.71 Bs-H *205 2.24
4 600 20 186 0.05 Bs-H 188 0.18 190 0.69 Bs-H *192 2.69
4 600 25 191 0.06 Bs-H 191 0.20 *194 0.68 Bs-H *194 2.20
4 600 40 165 0.04 Bs-H 167 0.17 *170 1.21 Bs-Pow *170 2.24
4 600 60 163 0.04 Bs-H 162 0.27 *166 0.69 Bs-H *166 2.38
4 600 80 157 0.04 Bs-H 158 0.19 159 0.72 Bs-H *163 2.70
4 600 100 153 0.07 Bs-H 156 0.19 158 0.90 Bs-H 158 2.31
4 600 150 154 0.06 Bs-H 154 0.22 156 0.66 Bs-H 156 2.37
4 600 200 153 0.09 Bs-H 152 0.39 *155 1.22 Bs-H 154 2.63

20 600 10 75 0.15 Bs-Pow 74 0.28 *77 2.38 Bs-Pow 76 2.86
20 600 15 63 0.16 Bs-Pow 63 0.24 *64 1.57 Bs-H *64 2.91
20 600 20 59 0.13 Bs-H 59 0.29 60 1.58 Bs-H 60 2.68
20 600 25 55 0.11 Bs-Pow 54 0.20 55 1.10 Bs-H 55 2.65
20 600 40 49 0.08 Bs-H 49 0.20 *50 0.85 Bs-H *50 2.85
20 600 60 47 0.16 Bs-Pow 46 0.19 47 1.43 Bs-Blum *48 3.34
20 600 80 44 0.18 Bs-Blum 46 0.30 46 1.39 Bs-H 46 2.60
20 600 100 44 0.14 Bs-H 44 0.27 44 2.04 Bs-Blum *45 2.33
20 600 150 45 0.11 Bs-H 45 0.24 45 2.94 Bs-Blum 45 2.75
20 600 200 43 0.17 Bs-H 43 0.28 44 1.69 Bs-H 43 3.17

Table 3.4: Benchmark Random. Results are averages over 10 instances per row.

low-time, literature low-time, Bs-Ex high-quality, literature high-quality, Bs-Ex
|Σ| n m |sbest| tbest Algo. |sbest| t[s] |sbest| tbest Algo. |sbest| t[s]

4 600 10 217 0.05 Bs-H 221 0.20 220 0.84 Bs-H 221 2.77
4 600 15 201 0.04 Bs-H 201 0.20 203 0.78 Bs-H *204 2.04
4 600 20 191 0.10 Bs-Pow 191 0.19 192 0.71 Bs-H *193 2.96
4 600 25 184 0.06 Bs-Pow 186 0.18 *187 0.63 Bs-H *187 3.00
4 600 40 172 0.05 Bs-H 173 0.18 173 0.79 Bs-H *175 2.48
4 600 60 165 0.12 Bs-Pow 166 0.17 166 0.77 Bs-H *168 2.34
4 600 80 159 0.04 Bs-H 161 0.20 161 0.83 Bs-H *163 2.32
4 600 100 158 0.05 Bs-H 158 0.19 158 0.68 Bs-H *159 2.18
4 600 150 151 0.06 Bs-H 152 0.21 152 1.05 Bs-H *153 3.00
4 600 200 150 0.07 Bs-H 150 0.24 *151 1.15 Bs-H *151 3.11

20 600 10 61 0.09 Bs-H 62 0.30 62 1.96 Bs-H *63 4.12
20 600 15 52 0.11 Bs-Pow 51 0.24 *53 2.26 Bs-Pow *53 3.71
20 600 20 46 0.08 Bs-H 47 0.26 *48 1.48 Bs-H *48 2.61
20 600 25 44 0.10 Bs-H 43 0.21 44 1.38 Bs-H 44 2.54
20 600 40 38 0.10 Bs-H 38 0.20 38 1.17 Bs-Blum *39 2.58
20 600 60 35 0.08 Bs-H 34 0.19 35 1.32 Bs-H 35 2.54
20 600 80 32 0.15 Bs-Blum 33 0.18 33 1.72 Bs-Blum 33 2.31
20 600 100 31 0.08 Bs-H 31 0.17 *32 1.09 Bs-Pow *32 2.03
20 600 150 29 0.24 Bs-Blum 29 0.23 29 2.27 Bs-Blum 29 2.95
20 600 200 28 0.11 Bs-H 28 0.22 28 1.43 Bs-H 28 3.31

65

3. The Longest Common Subsequence Problem

Table 3.5: Results on benchmark set ES (averaged over 50 instances per row).

low-time, literature low-time, Bs-Ex high-quality, literature high-quality, Bs-Ex
|Σ| n m |sbest| tbest Algo. |sbest| t[s] |sbest| tbest Algo. |sbest| t[s]

2 1000 10 608.52 0.31 Hh 609.80 0.39 614.2 1.42 Bs-Pow *615.06 4.43
2 1000 50 533.16 0.33 Hh 535.02 0.42 536.46 1.05 Bs-H *538.24 4.43
2 1000 100 515.94 0.11 Bs-H 517.38 0.46 518.56 1.33 Bs-H *519.84 4.82

10 1000 10 199.10 0.53 Hh 199.38 0.47 202.72 2.52 Bs-Pow *203.10 5.64
10 1000 50 133.86 0.46 Hh 134.74 0.35 135.52 2.12 Bs-Pow *136.32 3.94
10 1000 100 121.28 0.50 Hh 122.10 0.40 122.40 1.50 Bs-H *123.32 4.32
25 2500 10 230.28 2.33 Hh 223.00 1.57 *235.22 10.45 Bs-Pow 231.12 19.10
25 2500 50 136.6 1.69 Hh 137.90 1.24 138.56 7.23 Bs-Pow *139.50 14.51
25 2500 100 120.3 1.74 Hh 121.74 1.32 121.62 7.29 Bs-Pow *122.88 15.97

100 5000 10 141.86 16.12 Hh 139.82 6.98 *144.90 75.88 Bs-Pow 144.18 91.87
100 5000 50 70.28 9.16 Hh 71.08 4.79 71.32 39.11 Bs-Pow *71.94 53.54
100 5000 100 59.2 8.71 Hh 60.04 4.75 60.06 36.03 Bs-Pow *60.66 53.67

Table 3.6: Results on benchmark BL (averaged over 10 instances per row, |Σ| = 4).

low-time, literature low-time, Bs-Ex high-quality, literature high-quality, Bs-Ex
|Σ| n m |sbest| tbest Algo. |sbest| t[s] |sbest| tbest Algo. |sbest| t[s]

4 100 10 34.0 0.01 Bs-Pow 34.0 0.02 *34.1 0.14 Bs-Pow *34.1 0.39
4 100 50 23.7 0.03 Hh 23.8 0.02 *24.2 0.08 Bs-H *24.2 0.30
4 100 100 21.5 0.03 Hh 21.5 0.02 *22.0 0.23 Bs-Wang *22.0 0.27
4 100 150 20.2 0.03 Hh 20.2 0.02 *20.5 0.12 Bs-Pow *20.5 0.31
4 100 200 19.8 0.01 Bs-H 19.5 0.02 *19.9 0.14 Bs-H *19.9 0.31
4 500 10 182.0 0.24 Hh 181.2 0.25 *184.1 1.03 Bs-Pow 184.0 2.41
4 500 50 138.6 0.21 Hh 139.1 0.19 140.1 0.90 Bs-Pow *141.0 2.13
4 500 100 129.2 0.06 Bs-H 129.7 0.18 130.2 1.01 Bs-Pow *130.8 2.10
4 500 150 124.7 0.07 Bs-H 125.5 0.19 125.9 0.79 Bs-H *126.4 2.38
4 500 200 122.6 0.07 Bs-H 123.0 0.22 123.2 0.83 Bs-H *123.7 2.61
4 1000 10 368.3 0.35 Hh 368.5 0.42 373.2 1.80 Bs-Pow *374.6 5.22
4 1000 50 284.2 0.36 Hh 286.2 0.35 287.0 1.69 Bs-Pow *288.6 4.43
4 1000 100 267.5 0.11 Bs-H 268.8 0.41 269.5 1.36 Bs-H *270.6 4.56
4 1000 150 259.5 0.14 Bs-H 261.2 0.47 261.5 1.38 Bs-H *262.8 5.30
4 1000 200 254.9 0.17 Bs-H 256.0 0.52 256.5 1.81 Bs-H *257.6 6.31

Table 3.7: Results on benchmark set BB (averaged over 10 instances per row).

low-time, literature low-time, Bs-Ex high-quality, literature high-quality, Bs-Ex
|Σ| n m |sbest| tbest Algo. |sbest| t[s] |sbest| tbest Algo. |sbest| t[s]

2 1000 10 662.9 0.33 Hh 635.1 0.44 *676.5 1.16 Bs-H 673.5 5.49
2 1000 100 551.0 0.54 Hh 525.1 0.50 *560.7 2.10 Bs-Pow 536.6 6.05
4 1000 10 537.8 0.43 Hh 453.0 0.48 *545.4 1.73 Bs-H 545.2 6.24
4 1000 100 371.2 0.24 Bs-Pow 318.6 0.53 *388.8 2.86 Bs-Pow 329.5 5.85
8 1000 10 462.6 0.27 Bs-Blum 338.8 0.53 *462.7 7.93 Bs-Blum *462.7 7.90
8 1000 100 260.9 0.87 Bs-Blum 198.0 0.67 *272.1 18.43 Bs-Blum 210.6 8.00

24 1000 10 385.6 0.67 Bs-Blum 385.6 1.04 385.6 13.14 Bs-Blum 385.6 16.24
24 1000 100 147.0 0.66 Bs-Pow 95.8 0.98 *149.5 8.01 Bs-Pow 113.3 12.45

66

3.6. Computational Studies

• Concerning the results obtained with the high-quality setting, the comparison of
the algorithms from the literature can be summarized as follows. For all benchmark
sets (apart from BB) the best performance is shown by Bs-H and/or Bs-Pow. For
benchmark set BB the picture is, again, not so clear, with Bs-Blum gaining some
terrain.

• Bs-Ex with the high-quality setting outperforms the other approaches from the
literature on all benchmark sets except for BB, the latter again due to the strong
correlation of the strings. In fact, in 48 out of 67 cases (concerning benchmarks Rat,
Virus, ES and BL) Bs-Ex is able to obtain a new best-known result. Moreover, in
most of the remaining cases, the obtained result is equal to the so-far best known
one.

• Concerning the run times of the approaches, the calculation of EX is done in
O(m log n) time and, therefore, is a bit more expensive when compared to the
simpler UB, H, or Pow. However, this is not a significant issue since almost all
runs completed within rather short times of usually a few seconds up to less than
two minutes.

• We performed Wilcoxon signed-rank tests with an error level of 5% to check the
significance of differences in the results of the approaches. These indicate that the
solutions of the high-quality Bs-Ex are in the expected case indeed significantly
better than those obtained from the high-quality state-of-the-art approaches from
the literature for all except for the Virus benchmark, where no conclusion can
be drawn, and the BB benchmark, where the Bs-Ex results are significantly worse
due to the strong relationship among the sequences.

Overall, the numerical results clearly show that EX is a better guidance for BS than
the heuristics and upper bounds used in former work, as long as (near-) independence
among the input strings is given. Finally, note that the result for Random and for the
instances with |Σ| > 4 of set BL are not provided due to page limitations. Full results can
be found at https://www.ac.tuwien.ac.at/files/resources/instances/
LCS/LCS-report.zip.

3.6.2 Computational Experiments: Exact Approaches
In the following we first provide a summary of the algorithms that are considered for
the experimental evaluation. These are our two anytime algorithms (i) A∗+BS and
(ii) A∗+ACS, (iii) the APS algorithm from [164], which is one of the state-of-the-art
anytime variants from literature that we implemented for comparison purposes, and
(iv) A∗+ACS-dist which is the variation of A∗+ACS in which the heuristic guidance
function EX is replaced by the dist(·) estimation from Pro-MLCS [180] and SA-
MLCS [179]. Unfortunately, we were not able to do a full comparison to Pro-MLCS
and SA-MLCS as the codes could not be obtained from the authors and the description

67

https://www.ac.tuwien.ac.at/files/resources/instances/LCS/LCS-report.zip
https://www.ac.tuwien.ac.at/files/resources/instances/LCS/LCS-report.zip

3. The Longest Common Subsequence Problem

of the special multi-dimensional tree data structure for determining dominated solutions
is insufficient for a re-implementation. However, A∗+ACS-dist without the classical
A∗ iterations in (i.e., when setting δ = 0) almost corresponds to Pro-MLCS except that
instead of the multi-dimensional data structure from [180], Filter(·, ·) is used for filtering
dominated solutions.

The considered algorithms were evaluated by the quality of the best solutions they
provided and by the percentage gaps, which are calculated at time t > 0 as gap(t) :=
ub(t)−|sbest(t)|

ub(t) · 100%, where sbest(t) denotes the best solution found up to time t and ub(t)
denotes the upper bound on the length of an optimal solution obtained from the f -value
of the top node in Q at time t (or the optimal solution value when already available).

Tuning of the Algorithms’ Parameters

In order to ensure a fair comparison, the parameters of all considered algorithms were
tuned by irace [127]. This tuning took place under the same conditions (computation
time limit: 900 seconds; memory limit: 32 GB) as later the final experimental evaluation.
After conducting some preliminary experiments, we decided to use the following domains
for the values of the parameters for the tuning:

• δ ∈ {0, 1, 10, 50, 100, 500, 1000, 5000, 10000, 20000, 50000},

• kfilter ∈ {0, 1, 10, 50, 100, 500, 1000, 5000, 10000, +∞},

• β ∈ {1, 50, 100, 500, 1000, 5000, 10000, 20000},

Since the parameter pack of APS refers to the beam width of that algorithm, we
chose the same domain for pack and β. As we expected potentially stronger differences
in suitable settings for the dependent instances BB and the quasi-independent other
instances, we decided to apply tuning for these two instance categories separately. We
used 40 additional randomly generated instances for the tuning process aimed for quasi-
independent instances. The budget of irace was set to 5000 optimization runs in this
case. On the other side, we generated 20 additional dependent instances for tuning
purposes, in the same way as reported in [13]. The budget of irace was set to 1000
optimization runs in this second case. In addition to the separation concerning the
instance type—quasi-independent versus dependent—we applied for each instance type
two tuning runs with different aims. One of these tuning runs aimed for final solution
quality, and the other one for small dual gaps. The results of these four tuning runs are
reported in the four sub-tables of Table 3.8.

Concerning the tuning results for the quasi-independent instances, note that a higher
beam size β is necessary when aiming for solution quality. On the other hand, when we
focus on small dual gaps, the amount of A∗ iterations (δ) has to be significantly increased
for all algorithms in comparison. This result appears conclusive when considering that
classical A∗ iterations are primarily important for improving the dual bound. Concerning
the tuning results for the dependent instances, we can also notice the requirement of

68

3.6. Computational Studies

Table 3.8: Tuning results.

(a) Tuning for solution quality on quasi-independent instances.

Parameter
Algorithm A∗+BS A∗+ACS A∗+ACS-dist APS

δ 50 1 100 –
β 500 500 100 –
kfilter 1 1 0 0
pack – – – 500

(b) Tuning for small gaps on quasi-independent instances.

Parameter
Algorithm A∗+BS A∗+ACS A∗+ACS-dist APS

δ 10000 1000 500 –
β 500 1 1 –
kfilter 100 0 0 100
pack – – – 500

(c) Tuning for solution quality on dependent instances.

Parameter
Algorithm A∗+BS A∗+ACS A∗+ACS-dist APS

δ 500 500 100 –
β 1000 1 1 –
kfilter 1000 1 0 1000
pack – – – 1000

(d) Tuning for small gaps on non-indepenent instances.

Parameter
Algorithm A∗+BS A∗+ACS A∗+ACS-dist APS

δ 5000 20000 20000 –
β 1000 50 100 –
kfilter 1000 100 100 5000
pack – – – 1000

a higher value for δ when aiming for small gaps. Rather interesting is the large value
required for β in the case of A∗+BS and APS when aiming for solution quality. In
contrast, the tuning procedure has yielded a lower beam size for algorithms A∗+ACS
and A∗+ACS-dist.

Exact Solving with Classical A* Search

Initial tests indicated that our classical A∗ search is only meaningfully applicable to the
smallest instances of the benchmark sets, that is, the instances with string length n = 100
from set BL. The corresponding results can be found in Table 3.9, in which we compare
the proposed A∗ approach to the exact solver Top_MLCS [123].

69

3. The Longest Common Subsequence Problem

A∗ Top_MLCS

m |Σ| |s| t[s] #opt |s| t[s] #opt
4 20.5 428.33 6 0.0 – 0

10 12 12.7 1.73 10 12.7 5.2 10
20 7.9 0.08 10 7.9 0.28 10
4 0.0 – 0 0.0 – 0

50 12 6.9 0.17 10 6.9 0.46 10
20 3.0 0.06 10 3.0 0.08 10
4 0.0 – 0 0.0 – 0

100 12 5.2 0.08 10 5.2 0.23 10
20 2.1 0.07 10 2.1 0.08 10
4 0.0 – 0 0.0 – 0

150 12 4.7 0.07 10 4.7 0.16 10
20 1.9 0.08 10 1.9 0.08 10
4 0.0 – 0 0.0 – 0

200 12 4.1 0.07 10 4.1 0.18 10
20 1.1 0.06 10 1.1 0.11 10

Table 3.9: Classical A∗ search: average results for benchmark BL, n = 100.

In our comparison we made use of the original implementation of Top_MLCS provided
by the authors3. We remark that Top_MLCS can effectively exploit a parallel hardware
architecture, but we performed it in single threaded mode in order to ensure a fair
comparison with our A∗ approach. Besides the instance characteristics, Table 3.9 lists
average solution lengths |s|, average times t in seconds until proven optimality has been
reached, and the number of instances that could be solved to optimality #opt (out of
ten per line) for both approaches.

From Table 3.9 it can be observed that all problem instances with |Σ| ≥ 12 are solved—by
both algorithms—to proven optimality, and runtimes are typically only a fraction of
a second. However, A∗ needs significantly less time especially for the instances with
|Σ| = 12. Additionally, our A∗ approach solved six (out of ten) instances with |Σ| = 4
and m = 10 to proven optimality4, while Top_MLCS was not able to do so due to
running out of memory. None of the instances with |Σ| = 4 and m ≥ 50 could be solved
to optimality by the two algorithms due to the memory limit.

In summary, A∗ is able to solve 106 instances from the literature to proven optimality.
At this point we would like to stress that the mixed integer linear programming solver
Cplex in version 12.9 applied to the LCS model from [18] could not solve any of these
instances due to a huge number of variables and constraints.

Anytime Algorithms: comparisons. In contrast to the classical A∗ search, the
anytime algorithms are able to yield meaningful results on all problem instances. Re-

3The source code of Top_MLCS can be found at https://github.com/dxslin/mlcs.
4All ten instances with m = 10, n = 100, |Σ| = 4, could be solved by A∗ when increasing the memory

limit to 40GB.

70

https://github.com/dxslin/mlcs

3.6. Computational Studies

member that we aim to compare A∗+BS and A∗+ACS with APS and A∗+ACS-dist.
Additional reason why the Pro-MLCS [180] and SA-MLCS [179] are not considered
in this comparison is because they are not designed for providing gaps upon premature
termination. Moreover, we would like to emphasize that—as observed in [55]—the main
factor for obtaining high quality solutions is the heuristic guidance function. For this
reason we study algorithm A∗+ACS-dist which makes use of the heuristic guidance
function dist(v) = #m

i=1 pL,v
i from Pro-MLCS and SA-MLCS. As already mentioned,

when setting δ = 0 in A∗+ACS-dist, we get reasonably close to the original Pro-
MLCS algorithm. In the following we report on results both concerning the obtained
(average) solution quality and (average) gaps. For improving the readability result tables
for benchmark sets Rat, Virus, ES, and BB are given in the main text, whereas the
tables for Random and BL are provided in Appendix A.1. More specifically, the results
concerning solution quality of the first four data sets can be found in Tables 3.10–3.13,
while the corresponding results concerning the gaps are presented in Tables 3.14–3.17.
The first three table columns indicate the characteristics of the considered sub-groups
of the benchmark sets in terms of |Σ|, m, and n. Subsequently, the results of the four
algorithms are presented. Each of these four blocks consists of four columns listing the
following information: the average solution quality (|s|), the average gaps (gap [%]), the
average time at which the best solution was found (tbest [s]), and the average total runtime
(t [s]). The tables showing the results with the parameter settings aiming for solution
quality have an additional column labeled lit. best that reports the best-known result
from the literature for the respective instance, or instance group (without considering
the results from the current work). Asterisks in the solution quality column indicate
that the best-known result from the literature was beaten. The best result concerning
the comparison of the four algorithms considered in this work is always indicated in
boldface. Note that in tables presenting results obtained with parameter settings aiming
for solution quality, this concerns the columns on the average solution quality. While in
tables presenting results obtained with parameter settings aiming for small gaps, this
concerns the columns listing the average gaps.

71

3. The Longest Common Subsequence Problem

A∗ + BS A∗+ACS APS A∗ + ACS-dist lit. best
|Σ| m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|

4 10 600 197 41.7 2.15 685.6 *206 39.4 130.6 900.0 197 41.0 866.9 900.0 204 39.5 98.2 731.2 205
4 15 600 180 47.8 11.6 735.3 *189 45.5 740.1 900.0 181 47.5 130.3 900.0 186 45.6 75.4 603.1 185
4 20 600 166 43.3 29.5 900.0 *174 41.2 12.3 900.0 167 42.2 420.9 900.0 171 41.0 71.7 776.0 172
4 25 600 166 51.3 74.4 684.2 *173 49.4 38.3 900.0 166 50.4 212.3 900.0 170 49.4 57.6 642.5 170
4 40 600 152 50.0 570.7 900.0 *154 49.7 32.8 900.0 151 49.8 183.0 900.0 150 50.3 6.5 755.4 153
4 60 600 148 55.6 186.4 900.0 *154 54.0 510.3 900.0 148 55.3 129.1 900.0 151 54.4 384.7 893.9 152
4 80 600 136 52.3 190.8 900.0 *144 49.8 427.9 900.0 137 50.9 308.0 900.0 126 55.0 0.6 754.5 142
4 100 600 134 52.0 180.9 900.0 *139 50.7 458.7 900.0 134 51.6 31.9 900.0 132 52.5 421.7 809.7 137
4 150 600 123 44.3 29.9 900.0 *131 41.0 39.2 900.0 124 43.6 89.8 900.0 110 50.2 848.4 900.0 129
4 200 600 121 46.9 20.8 900.0 *126 45.0 288.0 900.0 121 46.8 23.8 900.0 105 53.7 821.4 900.0 123

20 10 600 69 63.1 5.4 900.0 *72 61.3 136.7 900.0 69 61.9 5.0 900.0 *72 59.8 172.7 900.0 71
20 15 600 61 66.8 5.8 900.0 63 65.9 3.8 900.0 61 65.5 44.3 900.1 63 64.2 536.0 900.0 63
20 20 600 52 68.9 6.4 900.0 *55 68.2 7.1 900.0 53 67.5 66.8 900.0 52 68.3 11.2 900.0 54
20 25 600 50 71.4 7.5 900.0 52 70.6 3.4 900.0 51 70.0 34.1 900.0 52 69.4 53.9 900.0 52
20 40 600 49 72.6 185.3 900.1 *50 72.1 138.6 900.0 49 71.7 11.8 900.0 47 72.5 685.8 900.0 49
20 60 600 46 73.7 138.6 900.0 47 73.0 11.5 900.0 46 72.8 15.6 900.0 46 72.3 690.3 900.2 47
20 80 600 44 71.6 367.0 900.1 44 70.5 132.5 900.0 44 70.1 145.4 900.3 42 71.4 638.4 900.0 44
20 100 600 39 75.8 280.6 900.2 40 75.3 6.5 900.0 39 74.5 254.7 900.2 38 74.8 141.9 905.8 40
20 150 600 37 76.0 30.3 900.3 *38 75.5 21.4 900.0 37 74.8 30.8 900.0 37 74.4 844.5 900.0 37
20 200 600 33 75.7 137.1 900.2 *35 74.6 144.7 900.0 34 73.0 499.2 900.2 33 73.6 104.0 900.0 34

Table 3.10: Rat benchmark. Results when aiming for solution quality.

A∗ + BS A∗+ACS APS A∗ + ACS-dist lit. best
|Σ| m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|

4 10 600 223 39.9 879.4 900.4 *228 38.2 80.8 900.0 222 39.3 19.2 826.6 221 39.6 394.2 900.0 227
4 15 600 200 45.2 3.7 900.0 *206 43.7 92.5 900.0 200 44.6 527.2 900.0 201 44.5 578.8 629.3 205
4 20 600 185 45.4 276.2 900.0 *194 42.9 327.6 900.0 185 45.1 61.0 900.0 183 45.9 190.8 609.0 192
4 25 600 190 46.8 185.8 900.0 *196 45.3 128.2 900.0 190 46.3 13.3 856.9 190 46.3 341.5 697.2 194
4 40 600 167 51.3 265.6 900.2 *174 49.6 264.0 900.0 167 50.7 191.4 900.0 152 55.2 246.4 678.0 170
4 60 600 162 52.9 185.0 900.0 *168 51.3 49.8 900.0 162 52.4 74.5 900.0 152 55.3 342.0 729.2 166
4 80 600 156 54.1 9.9 900.1 163 52.3 61.2 900.0 157 53.4 39.6 900.0 137 59.2 407.3 793.4 163
4 100 600 153 55.0 74.7 900.0 *160 53.1 71.5 900.0 153 54.5 79.7 900.0 136 59.5 636.2 872.6 158
4 150 600 152 54.9 19.7 900.0 *157 53.7 40.3 900.0 152 54.6 20.9 900.0 137 59.0 238.9 790.7 156
4 200 600 149 55.5 26.4 900.1 *156 53.6 582.5 900.0 150 54.8 602.6 900.0 133 59.9 310.3 897.3 154

20 10 600 74 60.8 132.2 900.0 77 59.3 14.6 900.0 75 59.0 189.1 900.0 76 58.2 26.7 900.0 77
20 15 600 62 66.7 7.4 900.0 64 65.8 4.0 900.0 63 65.0 32.4 900.0 64 64.2 127.7 900.0 64
20 20 600 58 69.1 7.7 900.1 *61 67.6 28.9 900.0 59 67.8 258.7 900.0 *61 66.5 852.6 900.0 60
20 25 600 53 70.4 7.4 900.1 *56 68.9 82.8 900.0 54 68.8 119.9 900.0 55 68.0 37.0 900.0 55
20 40 600 49 72.9 40.0 900.0 *51 71.8 110.4 902.3 49 71.7 5.1 900.0 49 71.8 118.1 900.0 50
20 60 600 47 73.4 312.9 900.0 48 73.0 6.1 900.0 47 72.2 7.0 900.0 47 72.4 837.4 900.0 48
20 80 600 45 74.6 744.7 900.2 46 74.0 7.1 900.0 45 73.4 8.8 900.1 45 73.4 683.6 900.0 46
20 100 600 44 75.0 97.2 900.1 45 74.6 8.9 900.0 44 74.3 134.1 900.1 44 74.0 880.7 900.0 45
20 150 600 45 75.1 42.6 900.6 *46 74.6 27.7 900.0 45 74.4 48.8 900.3 44 74.7 257.4 900.1 45
20 200 600 43 76.0 60.3 900.2 44 75.1 44.8 900.0 43 75.1 65.0 900.5 43 74.7 110.7 900.1 44

Table 3.11: Virus benchmark. Results when aiming for solution quality.

A∗ + BS A∗+ACS APS A∗ + ACS-dist

|Σ| m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]
4 10 600 198 40.5 354.2 741.0 206 38.0 468.2 900.0 198 40.7 454.1 900.0 204 38.6 315.1 683.5
4 15 600 180 46.9 3.3 900.0 187 44.5 211.8 900.0 181 46.9 7.3 908.2 186 44.6 419.7 713.7
4 20 600 166 42.2 13.9 900.0 173 39.5 384.1 900.0 167 42.2 123.9 902.4 170 40.6 176.4 716.3
4 25 600 165 50.5 116.8 900.0 173 47.4 430.3 900.0 166 50.4 336.5 900.0 170 48.3 393.9 769.8
4 40 600 150 50.0 121.3 900.0 154 48.1 258.3 900.0 151 49.8 18.5 900.0 151 49.2 11.8 771.6
4 60 600 149 54.6 8.1 900.0 153 53.1 215.1 900.0 149 55.0 7.5 900.1 149 54.3 217.8 748.4
4 80 600 136 50.7 205.8 900.0 143 47.6 33.8 900.0 137 50.9 359.9 900.0 127 53.5 11.9 755.2
4 100 600 133 51.6 144.6 900.0 138 49.6 11.8 900.0 134 51.6 37.5 900.0 127 53.6 332.5 900.0
4 150 600 123 44.1 250.9 900.1 131 40.2 519.7 900.0 124 43.6 104.4 900.0 105 52.1 826.2 900.0
4 200 600 121 46.5 22.8 900.0 124 44.9 17.2 900.1 121 46.7 24.4 900.2 102 54.7 124.8 900.0

20 10 600 70 59.8 7.0 900.0 71 59.0 20.9 900.1 70 60.5 7.2 900.0 71 58.7 234.4 900.0
20 15 600 60 65.1 7.8 900.0 63 62.9 5.9 900.1 61 65.3 23.1 900.1 62 63.3 84.6 884.8
20 20 600 53 66.9 358.5 900.1 55 65.2 196.4 900.1 54 67.1 48.4 900.1 52 66.9 114.8 900.0
20 25 600 50 69.7 8.2 900.0 52 68.3 15.0 911.1 51 70.0 42.9 900.2 52 68.1 583.1 900.1
20 40 600 48 71.6 12.6 900.3 49 70.3 137.1 900.0 49 71.8 567.4 900.2 45 72.6 75.4 900.0
20 60 600 45 72.7 18.9 900.4 47 70.3 346.6 900.4 47 72.2 652.4 900.2 45 71.5 509.9 900.1
20 80 600 44 69.4 642.3 900.4 43 69.1 63.4 900.3 44 70.5 65.4 900.2 40 71.2 243.8 900.1
20 100 600 38 74.3 24.1 900.0 40 71.8 175.4 900.3 39 74.5 216.8 900.6 37 73.8 431.1 900.0
20 150 600 37 73.2 31.1 900.7 37 71.5 89.5 900.3 37 74.8 31.3 900.5 34 74.0 612.1 900.2
20 200 600 32 77.1 37.6 900.0 34 70.2 28.1 900.6 35 72.0 433.3 900.1 31 72.8 152.6 900.2

Table 3.14: Rat benchmark. Results when aiming for small gaps.

72

3.6. Computational Studies

A∗ + BS A∗+ACS APS A∗ + ACS-dist lit. best
m n |Σ| |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|
10 1000 2 604.7 23.5 350.8 866.7 *618.9 21.7 323.2 900.4 603.6 23.3 254.7 873.3 615.4 21.8 234.7 760.8 615.1
10 1000 10 195.7 57.9 285.9 891.0 *205.0 55.9 251.3 900.7 195.5 57.5 294.8 888.8 204.1 55.6 230.7 771.9 203.1
50 1000 2 526.6 33.0 287.3 897.5 *540.9 31.2 302.2 900.0 526.9 32.6 264.1 887.4 532.8 31.9 301.2 696.2 538.2
50 1000 10 131.0 71.3 219.88 900.2 *137.5 69.9 158.1 900.0 131.2 71.0 137.5 900.2 134.5 70.2 321.1 867.3 136.3

100 1000 2 509.1 35.1 250.8 900.1 *522.1 33.4 324.6 900.0 509.4 34.8 283.8 900.0 512.5 34.4 274.5 781.6 519.8
100 1000 10 118.8 73.9 217.7 900.2 *124.1 72.7 121.0 900.0 118.9 73.6 175.9 900.1 120.5 73.1 356.0 900.0 123.3
10 2500 25 224.5 72.1 276.4 900.0 235.0 70.7 419.5 900.4 223.9 72.0 263.5 900.0 *236.6 70.4 374.8 897.3 235.2
50 2500 25 132.1 83.3 217.1 900.1 *140.4 82.3 239.8 900.0 132.6 83.1 212.8 900.3 136.5 82.6 368.1 900.0 139.5

100 2500 25 116.8 85.2 268.2 900.6 *123.4 88.1 223.6 900.0 117.0 85.1 350.8 900.7 118.6 84.8 352.7 900.1 122.9
10 5000 100 137.5 84.0 338.2s 900.4 *145.7 84.7 434.3 900.2 136.8 84.1 392.8 901.1 144.6 83.1 340.6 900.1 144.9
50 5000 100 67.4 92.0 355.8 902.8 *72.0 97.6 286.1 900.1 67.6 91.9 432.1 902.7 69.6 91.9 330.6 900.7 71.9

100 5000 100 57.1 93.1 584.4 906.6 *60.8 97.4 515.7 900.1 57.1 93.1 601.9 905.8 57.9 93.6 382.3 901.5 60.7

Table 3.12: ES benchmark. Results when aiming for solution quality (averaged over 50
instances per row).

A∗ + BS A∗+ACS APS A∗ + ACS-dist lit. best
|Σ| m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|

2 10 1000 675.1 16.4 64.9 900.0 676.6 16.5 347.1 900.0 675.7 15.6 57.1 900.0 *676.7 16.4 152.0 885.4 676.5
2 100 1000 561.3 31.2 260.3 900.0 547.1 32.6 497.6 900.0 *563.6 30.6 264.3 900.0 486.7 40.0 464.9 870.0 560.7
4 10 1000 545.2 30.3 13.0 900.0 *545.5 30.7 204.9 900.0 545.2 29.4 13.4 900.0 *545.5 30.5 85.6 798.4 545.4
4 100 1000 389.4 51.1 209.8 900.4 344.3 56.4 503.4 900.0 *390.2 50.9 362.7 900.0 273.6 65.4 291.2 881.0 388.8
8 10 1000 462.7 39.0 17.0 900.0 462.7 39.9 68.4 900.0 462.7 38.0 19.2 900.0 462.7 39.7 16.9 827.2 462.7
8 100 1000 273.1 65.1 143.7 900.1 223.7 71.1 631.7 900.1 *273.4 65.0 179.8 900.1 164.7 78.7 408.7 900.0 272.1

24 10 1000 385.6 42.0 43.8 900.0 385.6 47.0 33.8 900.0 385.6 40.5 35.5 900.0 385.6 46.8 8.5 900.0 385.6
24 100 1000 149.4 79.5 138.0 900.4 117.0 83.5 636.9 900.3 149.4 79.5 145.2 900.4 83.8 88.2 550.2 900.0 149.5

Table 3.13: BB benchmark. Results when aiming for solution quality (averages over ten
instances per row).

A∗ + BS A∗+ACS APS A∗ + ACS-dist

|Σ| m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]
4 10 600 222 38.7 3.0 910.7 228 36.8 637.5 900.0 224 38.1 20.7 826.2 221 38.4 550.5 649.1
4 15 600 200 44.4 48.3 900.0 206 42.5 21.9 900.0 201 44.2 702.0 746.8 200 44.1 333.0 579.2
4 20 600 185 44.9 406.2 900.0 192 42.7 246.2 900.0 186 44.8 139.6 900.0 183 45.4 583.8 592.5
4 25 600 189 46.3 4.8 903.8 196 44.2 850.5 900.0 190 46.3 21.5 900.0 188 46.3 263.9 575.7
4 40 600 166 50.7 13.5 900.0 173 48.4 866.7 900.0 167 50.9 846.3 900.0 152 54.6 338.5 609.3
4 60 600 162 51.9 42.7 900.0 168 49.9 645.2 900.0 162 52.4 85.5 900.0 150 55.2 472.9 757.9
4 80 600 157 53.1 12.3 900.0 163 50.8 114.6 900.0 157 53.4 11.1 900.0 134 59.5 327.0 861.3
4 100 600 153 54.2 14.0 900.0 160 51.5 806.0 900.0 153 54.5 14.5 900.1 133 59.7 715.9 900.0
4 150 600 152 54.4 143.6 900.0 157 52.6 415.1 900.1 152 54.6 802.9 900.1 136 58.9 725.0 900.1
4 200 600 150 54.7 645.8 900.0 155 52.7 415.1 900.2 150 54.8 729.9 900.0 132 59.8 151.7 900.0

20 10 600 74 58.4 27.7 900.0 77 56.5 320.2 900.0 75 58.8 111.8 900.1 76 56.8 255.7 900.0
20 15 600 62 64.8 8.2 900.1 64 62.6 3.1 900.0 63 65.0 30.6 900.1 64 62.6 851.2 900.0
20 20 600 58 67.6 9.0 900.0 60 65.9 33.8 900.0 59 67.8 19.0 900.1 60 65.7 57.5 900.0
20 25 600 53 68.5 9.7 900.0 55 66.7 26.1 901.4 53 69.4 9.6 900.0 55 66.5 690.9 900.1
20 40 600 49 71.3 579.5 900.0 50 70.1 52.2 900.3 49 72.0 25.7 900.2 48 71.1 162.7 900.1
20 60 600 47 72.0 18.5 900.0 48 70.4 107.1 900.2 47 72.5 18.1 900.4 45 72.2 316.6 900.1
20 80 600 45 73.1 283.9 900.0 46 71.4 22.2 900.3 45 73.7 67.1 900.2 44 72.7 736.1 900.0
20 100 600 43 74.1 27.3 900.0 45 72.0 190.9 900.4 44 74.3 113.1 900.2 43 73.3 653.6 900.2
20 150 600 44 76.0 49.4 900.0 45 72.7 48.8 900.0 45 74.6 185.4 900.4 43 73.9 229.3 900.3
20 200 600 43 75.8 65.0 900.0 43 73.3 105.9 900.4 43 75.0 64.9 900.3 42 73.8 236.9 900.1

Table 3.15: Virus benchmark. Results when aiming for small gaps.

73

3. The Longest Common Subsequence Problem

1 2 3 4

A*+ACS
APS

A*+ACS−dist
A*+BS

(a) Benchmark Rat

1 2 3 4

A*+ACS
APS

A*+BS
A*+ACS−dist

(b) Benchmark Virus

1 2 3 4

A*+ACS
A*+ACS−dist

APS
A*+BS

(c) Benchmark ES

1 2 3 4

A*+ACS
A*+ACS−dist

APS
A*+BS

(d) Benchmark Random

1 2 3 4

A*+ACS
A*+ACS−dist

APS
A*+BS

(e) Benchmark BL

2 3

APS

A*+BS

A*+ACS

A*+ACS−dist

(f) Benchmark BB

Figure 3.1: Critical difference plots concerning solution quality.

A∗ + BS A∗+ACS APS A∗ + ACS-dist

n m |Σ| |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]
1000 10 2 606.4 22.8 177.3 881.0 618.1 21.2 427.4 900.0 607.5 22.7 165.9 881.7 614.9 21.6 269.3 818.2
1000 10 10 196.9 56.8 205.9 900.0 204.2 54.9 283.2 900.1 198.0 56.9 205.9 900.0 203.5 55.0 284.6 707.5
1000 50 2 526.4 32.6 300.6 892.9 540.3 30.6 377.0 900.0 526.6 32.7 267.5 900.0 532.6 31.6 349.2 799.5
1000 50 10 130.6 70.9 160.1 900.0 137.1 69.1 294.6 900.3 131.3 71.0 206.1 900.1 133.7 69.8 293.7 836.6
1000 100 2 508.9 34.8 265.1 900.0 521.6 32.9 336.9 900.1 509.4 34.8 297.5 900.0 512.0 34.1 440.7 875.2
1000 100 10 118.6 73.4 112.4 900.1 123.7 71.9 287.4 900.2 119.0 73.6 191.8 900.1 119.6 72.8 378.4 900.0
2500 10 25 226.6 71.5 179.5 900.6 231.5 70.6 576.4 900.1 227.5 71.5 244.3 900.1 235.2 70.1 443.9 900.0
2500 50 25 131.9 83.3 181.1 900.4 139.5 81.9 388.9 900.3 132.4 83.2 261.9 900.4 135.3 82.5 424.6 900.3
2500 100 25 116.5 85.2 221.0 900.6 122.7 84.0 360.3 900.5 117.0 85.1 362.6 900.7 117.6 84.7 405.0 900.2
5000 10 100 138.9 83.8 327.7 901.0 143.4 82.9 643.8 900.8 139.3 83.8 414.2 900.9 143.0 83.0 466.8 900.3
5000 50 100 67.3 92.0 337.6 902.4 71.0 91.3 470.8 903.5 67.5 92.0 411.2 902.6 68.3 91.6 536.0 902.0
5000 100 100 57.0 93.1 575.9 900.0 59.6 92.6 488.6 907.3 57.0 93.1 626.2 905.7 56.2 93.0 518.6 903.4

Table 3.16: ES benchmark. Results when aiming for small gaps (averages over 50 instances
per row).

A∗ + BS A∗+ACS APS A∗ + ACS-dist

|Σ| m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]
2 10 1000 676.7 16.6 155.8 900.3 675.4 16.2 18.1 900.0 674.6 16.2 115.0 900.0 676.7 16.5 63.9 884.6
2 100 1000 547.4 32.6 428.3 900.5 561.8 31.0 357.3 900.0 563.2 30.9 557.2 900.0 486.5 40.1 398.6 864.0
4 10 1000 545.5 30.7 98.4 901.0 545.2 30.0 14.4 900.0 545.2 30.0 60.4 900.0 545.5 30.6 42.1 853.6
4 100 1000 346.5 56.1 507.0 901.0 389.2 50.9 186.7 900.0 389.4 51.1 400.2 900.0 270.2 65.8 487.3 859.6
8 10 1000 462.7 39.8 15.6 900.5 462.7 38.7 18.8 900.0 462.7 38.6 89.6 900.0 462.7 39.6 7.5 900.2
8 100 1000 224.1 71.0 524.3 901.9 273.0 65.1 106.8 900.1 272.9 65.1 388.1 900.1 160.9 79.1 575.0 901.4

24 10 1000 385.6 46.3 1.5 901.1 385.6 41.6 34.1 900.0 385.6 41.2 122.8 900.0 385.6 46.0 1.7 900.8
24 100 1000 120.9 82.9 657.5 908.4 149.4 79.5 138.6 900.4 149.3 79.5 580.9 900.6 80.6 88.6 606.8 910.1

Table 3.17: BB benchmark. Results when aiming for small gaps (averaged over ten
instances per row).

A study of the numerical results allows to draw the following conclusions:

• A∗+ACS generally outperforms the three competitors in terms of solution quality
in the context of instances with quasi-independent input strings (that is, benchmark
sets Rat, Virus, Es, Random and BL). The only exception is benchmark set BB,
in which instances consist of dependent input strings. The reason for this behavior

74

3.6. Computational Studies

1 2 3 4

A*+ACS
A*+ACS−dist

A*+BS
APS

(a) Benchmark Rat

1 2 3 4

A*+ACS
A*+ACS−dist

A*+BS
APS

(b) Benchmark Virus

1 2 3 4

A*+ACS
A*+ACS−dist

A*+BS
APS

(c) Benchmark ES

1 2 3 4

A*+ACS
A*+ACS−dist

A*+BS
APS

(d) Benchmark Random

1 2 3 4

A*+ACS
A*+ACS−dist

A*+BS
APS

(e) Benchmark BL

1 2 3 4

A*+ACS
APS

A*+BS
A*+ACS−dist

(f) Benchmark BB

Figure 3.2: Critical difference plots concerning the obtained gaps.

is clearly that the heuristic guidance function EX() works in general very well
for instances with quasi-independent input strings, while it tends to mislead for
instances with related input strings. Observe in Table 3.13 that the performance of
A∗+ACS and of A∗+ACS-dist strongly decreases, especially when the instances
consist of many input strings (m = 100). A more visual presentation of the results is
provided in Figures A.1–A.4 in Appendix A.2, where the improvement of A∗+ACS
over the three competitors is shows in percent.

• In order to check the statistical significance of differences, Friedman’s test was
performed simultaneously for all four anytime approaches. Given that in all cases
the test rejected the hypothesis that the algorithms perform equally, pairwise
comparisons were performed using the Nemenyi post-hoc test [48]. The outcome
is shown in Figure 3.1 by means of so-called critical difference plots, one for each
benchmark set. In short, each algorithm is positioned in the horizontal segment
according to its average ranking concerning the considered set of instances. Then,
the critical difference (CD) is computed for a significance level of 0.05 and the
performance of those algorithms that have a difference lower than CD are considered
as equal—that is, no difference of statistical significance can be detected. This
is indicated in the graphics by horizontal bars joining the respective algorithms.
Figure 3.1 shows that A∗+ACS produces significantly better results concerning
solution quality for benchmark sets Rat, Virus, and BL. The differences observed
for benchmark sets Random and ES are statistically not significant (despite the
fact that A∗+ACS produces new state-of-the-art results in 13 out of 20, and in 10
out of 12 cases, respectively).

• Just like classical A∗, both A∗+ACS-dist and A∗+ACS are able to prove opti-
mality for the instances of benchmark set BL with n = 100 and |Σ| ≥ 12. This is
indicated by entries with value 0.0 in columns with heading gap [%] (see Table A.2).
However, as expected, more computation time is needed than by A∗.

• A∗+ACS does not only beat the competitors we considered here. It performs also

75

3. The Longest Common Subsequence Problem

very favorably in comparison to purely heuristic state-of-the-art approaches from
the literature. This can be observed by comparing the performance of A∗+ACS
with the last columns in Tables 3.10–3.13 and Tables A.1–A.2 which contain the so
far best known results from the literature5. Overall A∗+ACS was able to obtain
new best-known results in 82 out of 117 cases (table rows).

• For what concerns the performance of the four algorithms with respect to the
produced gaps—see Tables 3.14–3.17 and Tables A.3–A.4 (from Appendix A.1)—
it can be observed that—also in this case—A∗+ACS generally outperforms the
competing algorithms. This is with the exception of benchmark set BB, where
no clear tendency can be identified. The statistical significance of this conclusion
is tested in the same way as done for the case of aiming for solution quality.
The corresponding critical difference plots are shown in Figure 3.2. Moreover,
the improvements of A∗+ACS over the competitors are graphically shown in
Figures A.5–A.8 (Appendix A.2).

• Nevertheless, observe that A∗+ACS-dist often produces better final gaps than
A∗+ACS for instances with a low number of input string. This is the case, for
example, for instances with n = 10 from benchmark set BL; see Table A.4 and
Figure A.5. A possible explanation for this behavior is as follows. On the one
hand, the heuristic guidance function dist(·) performs rather well for instances
with a low number of input strings (that is, a low m-value), which means that
A∗+ACS-dist will not have a major disadvantage with respect to A∗+ACS
in those cases. On the other hand, dist(·) requires less computation time than
the EX function used by A∗+ACS. This implies that A∗+ACS-dist is able to
perform more node expansions than A∗+ACS within the allowed computation
time, which leads to better upper bounds.

Comparison of the Algorithms’ Anytime Behavior

.
So far we have only studied the final results of the algorithms for what concerns solution
quality and gaps. However, in the context of anytime algorithms, another important
aspect to take into account is their anytime behavior. In order to visualize the anytime
behavior of the algorithms, we plot the evolution of the solution quality, respectively the
gaps, over time (either averaged over all problem instances of the same specifications, or
averaged over multiple runs for single problem instances, depending on the benchmark
set). The plots concerning solution quality are shown, for seven representative cases, in
Figure 3.3, while the ones concerning the gaps are shown, for the same seven cases, in
Figure 3.4. In addition to the curves showing the average behavior, these graphics also
contain boxplots—shown every 200 seconds—indicating the variability of the algorithm
performance.

5As the best result for a specific group of instances from the literature we took the maximum average
solution quality among the reported averages (if any) from [16, 135, 55, 157, 18]. Most of best results so
far are from BS-EX [55].

76

3.6. Computational Studies

The following observations can be made concerning the anytime plots on solution quality:

• A∗+ACS generally finds solutions of higher quality than the other algorithms in
early stages of the search process. The main reason for this is clearly the heuristic
guidance function EX() which is utilized in A∗+ACS.

• Notice also that A∗+ACS is able to find improving solutions more frequently than
A∗+BS or APS. For these latter algorithms it seems much harder to find improving
solutions at later stages of the search process. Even though A∗+ACS-dist can be
said to generally outperform APS and A∗+BS, it can not match the performance
of A∗+ACS. It can also be observed that the compared algorithms find improving
solutions in general more frequently when the alphabet size is rather small.

• APS and A∗+BS, which make both use of an embedded BS to find heuristic
solutions, show a similar evolution of solution quality over time. It is noticeable
that a rather large beam size β is required to achieve the best possible anytime
performance within the given computation time.

Concerning the anytime performance of the algorithms with respect to the gaps we can
make the following observations:

• For the smallest ones of the considered instances—that is, the instances from
benchmark set BL with n = 100—A∗+BS shows the best evolution of the obtained
gaps (see Figure 3.4a). This is for the following two reasons: (i) the parameter
values identified by our tuning process allow a significant amount of A∗ iterations,
which is crucial for obtaining a favorable evolution of the gaps, and (ii) near-optimal
solutions are easily obtained for these instances by any of the algorithms.

• Concerning the remaining medium-size and large–size instances, A∗+ACS shows
a better anytime performance concerning the gaps for the Virus, Rat, Random,
and ES benchmarks; see Figures 3.4b–3.4f. This is because the ACS-iterations,
even with a rather low value of β, are still able to find rather high-quality primal
solutions, while a significantly increased number of A∗-iterations (in comparison to
the parameter setting used when aiming for solution quality) provides improved
upper bounds. In this sense, A∗+ACS is an algorithm that is much better balanced
than the competitors.

• In the case of small alphabet sizes, A∗+ACS-dist is not able to keep up with
the performances of the other algorithms (see Figures 3.4c and 3.4d). Mainly
responsible for this is the heuristic function dist(·), which provides a weaker
guidance than in particular EX for finding good primal bounds, especially in the
case of small alphabet sizes.

• APS and A∗+BS show a similar behavior concerning the evolution of the average
gaps over time. The necessity of working with a large beam width (β) hinders

77

3. The Longest Common Subsequence Problem

0.0 200.0 400.0 600.0 800.0

time[s]

32

34

36

38

a
v
g
.
s
o
lu

ti
o
n
 q

u
a
li
ty A*+ACS

A*+BS

APS

A*+ACS-dist

(a) Benchmark set BL: 10 instances with
|Σ| = 4, m = 10, n = 100.

0.0 200.0 400.0 600.0 800.0

time[s]

95.0

97.5

100.0

102.5

105.0

a
v
g
.
s
o
lu

ti
o
n
 q

u
a
li
ty A*+ACS

A*+BS

APS

A*+ACS-dist

(b) Benchmark set BL: 10 instances with
|Σ| = 12, m = 50, n = 1000.

0.0 200.0 400.0 600.0 800.0

time[s]

130

140

150

160

170

s
o
lu
ti
o
n
 q

u
a
li
ty

A*+ACS

A*+BS

APS

A*+ACS-dist

(c) Benchmark set Virus: instance |Σ| = 4,
m = 40, n = 600.

0.0 200.0 400.0 600.0 800.0

time[s]

100

110

120

130

140

s
o
lu

ti
o
n
 q

u
a
li
ty

A*+ACS

A*+BS

APS

A*+ACS-dist

(d) Benchmark set Rat: instance |Σ| = 4,
m = 100, n = 600.

0.0 200.0 400.0 600.0 800.0

time[s]

59

60

61

62

63

s
o
lu
ti
o
n
 q

u
a
li
ty

A*+ACS

A*+BS

APS

A*+ACS-dist

(e) Benchmark set Random: instance |Σ| =
20, m = 10, n = 600.

0.0 200.0 400.0 600.0 800.0

time[s]

505

510

515

520

525

a
v
g
.
s
o
lu

ti
o
n
 q

u
a
li
ty

A*+ACS

A*+BS

APS

A*+ACS-dist

(f) Benchmark set ES: 50 instances with
|Σ| = 2, m = 100, n = 1000.

0.0 200.0 400.0 600.0 800.0

time[s]

480

500

520

540

560

a
v
g
.
s
o
lu

ti
o
n
 q

u
a
li
ty

A*+ACS

A*+BS

APS

A*+ACS-dist

(g) Benchmark set BB: 10 instances with
|Σ| = 2, m = 100, n = 1000.

Figure 3.3: Comparison of the algorithms’ anytime behavior concerning solution quality.

78

3.6. Computational Studies

0.0 200.0 400.0 600.0 800.0

time[s]

10

20

30

40

50
a
v
g
.
g
a
p
s
 [

\%
]

A*+ACS

A*+BS

APS

A*+ACS-dist

(a) Benchmark set BL: 10 instances with
|Σ| = 4, m = 10, n = 100.

0.0 200.0 400.0 600.0 800.0

time[s]

74

76

78

80

a
v
g
.
g
a
p
s
 [

\%
]

A*+ACS

A*+BS

APS

A*+ACS-dist

(b) Benchmark set BL: 10 instances with
|Σ| = 12, m = 50, n = 1000.

0.0 200.0 400.0 600.0 800.0

time[s]

45

50

55

60

65

g
a
p
s
 [

\%
].

A*+ACS

A*+BS

APS

A*+ACS-dist

(c) Benchmark set Virus: instance |Σ| = 4,
m = 40, n = 600.

0.0 200.0 400.0 600.0 800.0

time[s]

45

50

55

60

65

g
a
p
s
 [

\%
].

A*+ACS

A*+BS

APS

A*+ACS-dist

(d) Benchmark set Rat: instance |Σ| = 4,
m = 100, n = 600.

0.0 200.0 400.0 600.0 800.0

time[s]

62

64

66

68

g
a
p
s
 [

\%
].

A*+ACS

A*+BS

APS

A*+ACS-dist

(e) Benchmark set Random: instance |Σ| =
20, m = 10, n = 600.

0.0 200.0 400.0 600.0 800.0

time[s]

32

33

34

35

36

37

a
v
g
.
g
a
p
s
 [

\%
]

A*+ACS

A*+BS

APS

A*+ACS-dist

(f) Benchmark set ES: 50 instances with
|Σ| = 2, m = 100, n = 1000.

0.0 200.0 400.0 600.0 800.0

time[s]

30

35

40

45

a
v
g
.
g
a
p
s
 [

\%
]

A*+ACS

A*+BS

APS

A*+ACS-dist

(g) Benchmark set BB: 10 instances with
|Σ| = 2, m = 100, n = 1000.

Figure 3.4: Comparison of the algorithms’ anytime behavior concerning gaps.

79

3. The Longest Common Subsequence Problem

the evolution of the gap since the search is mainly focused on improving solution
quality and less on improving the upper bound.

3.7 Conclusions
In this chapter we presented heuristic and exact approaches to solve the LCS problem.
Concerning heuristic search, generalized beam search framework has been proposed.
A novel expected length calculation heuristic EX was developed for random strings.
Based on the beam search framework and heuristic EX, we were able to deliver a new
state-of-the-art BS-configuration that outperforms the other heuristic approaches from
the literature. Concerning the exact solving, A∗ search was proposed. This A∗ search
makes use of the combination of the efficient upper bound calculation for the length
of the LCS and is able to solve instances of up to n = 100 and |Σ| ≥ 12 to proven
optimality (106 instances from the literature are solved to optimality), most of them
in a fraction of a second. For larger or more complex instances, however, the exact A∗

search soon either runs out of memory or requires substantially more time. Therefore, we
combined A∗ search with either BS or ACS by interleaving traditional A∗ iterations with
BS runs of small width or single iterations of ACS, respectively. Note that we did this
combination in a way to avoid redundant expansions of the same nodes, i.e., the methods
act on a shared list of open nodes. These anytime algorithms, denoted by A∗+ACS
and A∗+BS either run until optimality is proven or they are terminated prematurely,
in which case a solution of promising quality is returned in combination with an upper
bound. To the best of our knowledge, we report proven optimality gaps for larger LCS
instances for the first time ever in the literature. Our two anytime algorithms were
compared to the well known Anytime Pack Search (APS) and a variant of A∗+ACS
employing the dist heuristic as guidance. All the parameters of the algorithms were
tuned w.r.t. both, solution quality and small gaps by using irace. Our computational
study showed that A∗+ACS performs in most cases significantly better than the other
algorithms concerning solution quality. New best solutions were found by A∗+ACS for
82 different LCS instance groups from the literature (≈ 70% of all instance groups from
the literature), and for the remaining groups, the so far best known results were matched
by A∗+ACS in most cases. Also concerning optimality gaps, A∗+ACS outperforms the
other approaches in most cases or is on par with them. Last but not least, A∗+ACS
usually provides a better anytime behavior in the sense that it earlier produces better
results, and more frequently improves on them over time. Responsible for the success
of A∗+ACS is the careful selection and combination of strategies and components that
proved already successful or promising in earlier works such as pure heuristic beam
searches. The most important aspect is that we use, on the one hand, the upper bound
UB for steering the classical A∗ search iterations and, on the other hand, the separate
heuristic function EX for guiding the ACS iterations. While UB is required to obtain
upper bounds and finally prove optimality, EX approximates the expected LCS length for
unrelated random strings and is, for most of the considered benchmark instances, very
well suited to lead ACS to promising heuristic solutions. The benefits of EX diminish,

80

3.7. Conclusions

however, when instances with strongly related strings are considered, as for example
in benchmark set BB. There, EX tends to become a disadvantage and a classical upper
bound UB for the LCS problem becomes advantageous since it obviously becomes much
tighter than when the input strings are similar.

81

CHAPTER 4
The Longest Common

Palindromic Subsequence
Problem

In this chapter we address the longest common palindromic subsequence problem which
finds applications in bioinformatics and providing a specific measure of similarity between
molecular structures. In the course of this work, on the one hand, we have developed
two heuristic algorithms: (i) a greedy heuristic and (ii) a beam search heuristic guided
by a novel efficient heuristic guidance. On the other hand, the exact approaches were
developed: (i) an A∗ search to tackle the small to middle-sized instances, an (ii) two
anytime algorithms to tackle the large-sized problem instances.

In the course of this work, we have published two scientific papers:

• The conference paper is published in the Proceedings of the 12th Learning and
Intelligent Optimization (LION 12) conference [54]. In this work we have presented a
greedy heuristic, a BS, an A∗ search, and anytime algorithm, called A∗+BS to solve
the LCPS problem. A∗+BS is hybrid of A∗ search and BS. Moreover, the classical
LCPS problem for two input string is studied in this work. Our computational
studies prove that our A∗ search is the new state-of-the-art algorithm for this
problem.

• The extended version of the above conference paper has been published in Computers
& Operations Research journal (IF=3.002) [57]. In this paper we extended our
studies for the LCPS problem published at the conference by (i) providing a
new heuristic guidance that approximates the expected length of an LCPS, and
(ii) developing a hybrid A∗+ACS for the LCPS which outperformed anytime

83

4. The Longest Common Palindromic Subsequence Problem

performance of the aforementioned A∗+BS hybrid w.r.t. the solution as well as
the final gap quality.

4.1 Introduction
Palindromic subsequences are especially interesting in the biological context. In many
genetic instructions, such as for example DNA sequences, palindromic motifs are found.
In the context of the research project on genome sequencing, it was discovered that many
of the bases on the Y-chromosome are arranged as palindromes [117]. A palindrome
structure allows the Y-chromosome to repair itself by bending over at the middle if one
side is damaged. Moreover, it is believed that palindromes are also frequently found in
proteins [70], but their role in the protein function is less understood. Biologists believe
that identifying palindromic subsequences of DNA sequences may help to understand
genomic instability [36, 159]. Palindromic subsequences seem to be important for the
regulation, for example, of gene activity, because they are often found close to promoters,
introns and untranslated regions.

Recall that an important way for the comparison of two or more strings is to find
long common subsequences. In the course of this work, we are interested in a common
palindromic subsequence of a set of (arbitrary) m strings S = {s1, . . . , sm} of maximum
length. For biologists, it is not only of interest to identify the palindromic subsequences
of an individual DNA string, for example, but it is also important to find longest common
palindromic subsequences of multiple input strings in order to identify relationships
among them.

4.1.1 Related Work
The longest common palindromic subsequence (LCPS) problem has so far only been
studied for the case of m = 2 input strings (2–LCPS). Chowdhury et al. [38] propose
two different algorithms: a conventional dynamic programming with time and space
complexity O(n4), and a sparse dynamic programming algorithm with time complexity
O(R2 log2 n log log n+n) and space complexity O(R2), where R is the number of matching
position pairs between the two input strings. Furthermore, Hasan et al. [80] solved the
2–LCPS by making use of a so-called palindromic subsequence automaton (PSA). This
algorithm has a time complexity of O(n + R1|Σ| + R2|Σ| + n + R1R2|Σ|), where R1 and
R2 denote the numbers of states of the two automata constructed for the two input
strings and are bounded by O(n2). Finally, Inenaga and Hyyrö [89] present an algorithm
that runs in O(σR2 + n) time and uses O(R2 + n) space, where σ denotes the number of
distinct characters occurring in both of the input strings.

By reducing the general LCS problem to the LCPS problem in polynomial time, it can be
shown that the LCPS problem with an arbitrary number of input strings is N P-hard. To
the best of our knowledge, no algorithm has been published yet for solving this general
m–LCPS problem, which is henceforth simply called LCPS problem.

84

4.2. A Greedy Heuristic for the LCPS Problem

In this paragraph we point out the main differences between methodologies we used
to solve the LCS problem from one side, and the LCPS problem from another side.
Although we employ, from a conceptual point of view, the same hybrid search strategies
as in Chapter 3 to also solve the LCPS problem, we want to emphasize the significant
differences between the application of the algorithmic concepts to the LCS problem
presented in the last chapter and their application to the LCPS problem described in this
chapter. Note, for example, that the best exact algorithms for the LCS problem for two
input strings (m = 2) require O(n2) time, while the best exact algorithm for the LCPS
problem requires O(n4) time. This already hints that both problems are structurally
quite different from each other. These differences lead to the following differences in the
adaptation of the algorithmic concepts to both problems:

• The search spaces of the two problems (in terms of the definition of the A∗ nodes)
differ. This is due to the fact that in the LCS problem solutions are generated from
left to right, while in the LCPS problem a solution construction starts from the left
and from the right at the same time.

• The upper bound UB1 utilized for the two problems is different.

• The expected length calculation heuristics (EX) for guiding the tree search tech-
niques differ, even though similar ideas are used for their derivation.

• Last but not least, the implementations differ in additional details. For example, to
solve the LCS problem, we make use of an efficient way of filtering the dominated
nodes in BS and ACS iterations (i.e., the restricted filtering) and as well as pruning
of the suboptimal nodes. In terms of time of development of the LCPS project,
this came first and therefore these two aspects have not been considered in this
research.

The rest of the chapter is organized as follow. Section 4.2 a Greedy heuristic to quickly
derive feasible LCPS solutions is given. In Section 4.3 a general search framework and an
A∗ framework to solve the LCPS problem are described. In Section 4.4 a novel expected
length calculation heuristic is derived. Section 4.5 provides two anytime algorithms
to tackle large-sized problem instances. Section 4.6 provides a detailed experimental
comparison between described methods including also studies for the polynomial 2–LCPS
problem. Finally, Section 4.7 sketches some directions for promising future work.

4.2 A Greedy Heuristic for the LCPS Problem
Inspired by the well-known Best–Next heuristic for the LCS problem [65], we present in
the following a constructive greedy heuristic for the LCPS problem. Henceforth, a string
s is called a valid partial solution concerning input strings S = {s1, . . . , sm}, if s · srev or
s · s[1, |s| − 1]rev is a common palindromic subsequence of the strings in S. The greedy
heuristic starts with an empty partial solution s = ε and extends, at each construction

85

4. The Longest Common Palindromic Subsequence Problem

step, the current partial solution by appending exactly one letter (if possible). During
the whole process, the algorithm makes use of pointers pL

i ≤ pR
i that indicate for each

input string si, i = 1, . . . , m, the still relevant substring si[pL
i , pR

i] from which the letter
for extending s can be chosen. The choice of a letter with respect to a greedy criterion is
explained below. At the start of the heuristic, i.e., when s = ε, the pointers are initialized
to pL

i := 1 and pR
i := |si|, referring to the first, respectively, last letter of each string si,

i = 1, . . . , m. In other words, at each iteration the set of relevant substrings denoted
by S[pL, pR] = {si[pL

i , pR
i] | i = 1, . . . , m} forms an LCPS subproblem, and the current

partial solution s is ultimately extended by appending the solution to this subproblem.

One of the questions that remain is how to determine the subset of letters from Σ
that can be used to extend a current partial solution s. For this purpose, let ca :=
mini=1,...,m |si[pL

i , pR
i]|a be the minimum number of occurrences of letter a ∈ Σ in the

relevant substrings with respect to s, and let Σ(pL,pR) := {a ∈ Σ | ca ≥ 1} be the set of
letters appearing at least once in each relevant substring. In principle, any letter from
Σ(pL,pR) might be used to extend s. However, there might be dominated letters in this
set. In order to introduce the domination relation between two letters, we use the first
and last positions at which each letter a ∈ Σ(pL,pR) appears in each relevant substring
si[pL

i , pR
i]:

qL
i,a := min {j = pL

i , . . . , pR
i | si[j] = a}

qR
i,a := max {j = pL

i , . . . , pR
i | si[j] = a}

A letter a ∈ Σ(pL,pR) is called dominated if there exists a letter b ∈ Σ(pL,pR), b %= a, such
that qL

i,b < qL
i,a ∧ qR

i,b > qR
i,a for i = 1, . . . , m. Clearly, it is better to delay the consideration

of dominated letters and select a non-dominated letter for the extension of s. Furthermore,
letters a ∈ Σ(pL,pR) with ca = 1, called singletons, should only be considered when no
other letters remain in Σ(pL,pR), since only one such letter can be chosen as single middle
letter in the final solution. Accordingly, let the set of all non-dominated non-singleton
letters from Σ(pL,pR) with respect to s be denoted by Σnd

(pL,pR). Given a partial solution
s, the selection of the letter to be appended to s and the adaption of the pointers work
as follows:

1. If Σ(pL,pR) is empty, the algorithm terminates with s · srev as resulting common
palindromic subsequence, since no further extension is possible.

2. Otherwise, if Σnd
(pL,pR) is empty, only singletons remain in Σ(pL,pR). The algorithm

terminates with the common palindromic subsequence s · a · srev, where a is the
first singleton from Σ(pL,pR) in alphabetic order.

3. Otherwise, select a letter a ∈ Σnd
(pL,pR) that minimizes the greedy function g(a, pL, pR),

which will be discussed in Section 4.2.1. Ties are broken randomly. Extend the

86

4.3. A∗ Search for the LCPS Problem

current partial solution s and adapt the pointers as follows:

s := s · a (4.1)
pL

i := qL
i,a + 1 i = 1, . . . , m (4.2)

pR
i := qR

i,a − 1 i = 1, . . . , m (4.3)

4.2.1 Greedy Function
The greedy function that is used to evaluate any possible extension a ∈ Σnd

(pL,pR) for
a given partial solution extends the one used in [18] in a straight-forward manner. It
calculates the sum of those fractions of the relevant substrings si[pL

i , pR
i] that will be

discarded from further consideration when appending character a as next letter to the
partial solution:

g(a, pL, pR) :=
m"

i=1

qL
i,a − pL

i + pR
i − qR

i,a

pR
i − pL

i + 1
. (4.4)

The major advantage of this function is its simplicity, as it can be calculated in time
O(m). This function also has some weaknesses: (i) it does not take into account that,
when choosing a specific letter, as a result, more or fewer letters might be excluded from
further consideration, even in cases in which the chosen letter has a good (low) greedy
function value; (ii) it does not take into account that of all singletons at most one can
finally be selected. Instead of improving the above greedy function along these lines, and
thereby increasing its time complexity, we consider it more promising—especially with
the type of algorithm in mind that will be presented in the next section—to develop
upper bound functions for estimating the length of an LCPS. As we will see, these bounds
can also be used as alternative greedy functions to evaluate possible extensions of partial
solutions.

4.3 A∗ Search for the LCPS Problem
Problem-specific aspects in order to realize an A∗ search for a specific problem are
primarily to define (i) the state graph including the root and goal nodes and (ii) the
heuristic function h. This will be done in the following for the LCPS problem.

4.3.1 State Graph
Let pL, pR ∈ Nm be m-dimensional integer valued vectors such that 1 ≤ pL

i ≤ pR
i ≤ |si|

for all i = 1, . . . , m. Given such vectors pL and pR, set S[pL, pR] := {si[pL
i , pR

i] | i =
1, . . . , m} consists of a continuous substring si[pL

i , pR
i] for each input string si, i = 1, . . . , m.

Hereby, pL is called the left position vector and pR is called the right position vector.
Moreover, S[pL, pR] is henceforth called a subproblem of the original LCPS problem.
For the definition of the state graph of the A∗ approach only those subproblems that
are induced by valid partial solutions are considered. More specifically, a valid partial

87

4. The Longest Common Palindromic Subsequence Problem

solution s induces a subproblem S[pL, pR] if and only if the following two conditions
hold:

1. si[1, pL
i − 1] is a minimal string among all strings si[1, x] with 1 ≤ x ≤ pL

i − 1
containing s as a subsequence for all i = 1, . . . , m.

2. si[pR
i + 1, |si|] is a minimal string among all strings si[x, |si|] with pR

i + 1 ≤ x ≤ |si|
containing srev as a subsequence for all i = 1, . . . , m.

In this context, note that the same subproblem may be induced by more than one valid
partial solution. As an example consider S = {abccdccba,baccdccab}, and partial
solutions s = ac and s� = bc. It holds that pL = (4, 4) and pR = (6, 6) in both cases,
and thus, both partial solutions will be represented by a common node in the state graph.
Here, s and s� have the same length, but this need not be the case in general.

The state graph of our A∗ search is a directed acyclic graph G = (V, A) in which
each node corresponds to a unique state v = (pL,v, pR,v) ∈ V and thus also to a
unique LCPS subproblem S[pL,v, pR,v]. For the reason outlined above, a node v may
potentially be induced by multiple valid partial solutions. The special root node r =
((1, . . . , 1), (|s1|, . . . , |sm|)) ∈ V represents the original LCPS problem, which can be said
to be induced by the empty partial solution ε.

An arc (v, v�) ∈ A leading from a node v ∈ V to a node v� ∈ V corresponds to the
extension of a partial solution s inducing v to a partial solution s� inducing v� by one
specific letter a ∈ Σ, i.e., s� = s · a. Any path from the root node r to any node in
V represents a valid partial solution, which is directly given by the sequence of letters
associated with the arcs.

A letter a ∈ Σ is called feasible for a node v ∈ V if it appears at least twice in each
substring of subproblem S[pL,v, pR,v]. Let a, b ∈ Σ be two feasible letters with respect
to node v. Moreover, let v� be the node corresponding to the subproblem induced by
appending a to some feasible partial solution inducing v, and let v�� be the node induced
by appending b to some feasible partial solution inducing v. We say that letter b is
dominated by letter a (or a is dominating b) if and only if pL,v’

i ≤ pL,v”
i ∧ pR,v”

i ≤ pR,v’
i

∀i = 1, . . . , m. Obviously, arcs that correspond to appending dominated letters do not
need to be considered. Therefore, an arc (v, v�) exists in our state graph G if and only if
the letter that is used for obtaining v� from v is (i) feasible and (ii) non-dominated. This
subset of letters with respect to a node v is henceforth denoted by Σnd

v ⊆ Σ. In other
words, each node v ∈ V has an outgoing arc (v, v�) ∈ A for each letter a ∈ Σnd

v . Letters
that do not appear in at least one of the substrings of S[pL,v, pR,v] are called infeasible
letters. Moreover, letters that appear at least once in each substring of S[pL,v, pR,v], and
exactly once for at least one i ∈ {1, . . . , m}, are called singleton letters. Nodes v ∈ V
without any outgoing arcs are goal nodes.

In order to solve the LCPS problem, a longest path in the state graph leading from the
root node r to some goal node has to be identified. In respect to the number of arcs, such

88

4.3. A∗ Search for the LCPS Problem

a longest path represents a longest partial solution s. The corresponding palindromic
subsequence is s · srev, but note that it may still be possible to insert, as the last step, a
singleton letter a ∈ Σ in the middle, yielding the longer palindrome s · a · srev. Thus, we
have to either find a longest partial solution that allows such an extension by a singleton
letter or prove that no other equally long path with a singleton-extension exists, in which
case s · srev is returned as LCPS. To account for this possible insertion of a final middle
element and to represent by the path lengths in our state graph the actual lengths of
resulting palindromes, each arc (u, v) ∈ A gets assigned length

w(u, v) =
�

3 if v is a goal node and S[pL,v, pR,v] contains a singleton letter
2 else.

(4.5)

When referring to the length of a path from now on, we therefore mean the sum of these
lengths of all the arcs forming the path.

During our search—as described in detail below—nodes v ∈ V store as additional
information the length lv of the currently longest path from r to v.1

4.3.2 Upper Bounds for the Length of an LCPS
Remember that A∗ depends on a heuristic function h(v) for estimating the still possibly
length of a longest path from node v ∈ V to some goal node, i.e., for the length of the
LCPS of the subproblem represented by v. This function is generally implemented—in
the context of maximization problems such as the LCPS problem—in terms of an upper
bound in order to ensure admissibility, i.e., the completeness of the A∗ search. In the
following a combined upper bound UB is presented, composed of two individual upper
bounds UB1 and UB2, that is UB(v) = min{UB1(v), UB2(v)} for all v ∈ V . Hereby,
UB1 is based on the UB1 bound from [54], while UB2 is newly developed. In contrast
to [54], an appropriate preprocessing action for speeding up the calculation of UB1 in a
significant way is used.

Let us denote by ca the minimum number of occurrences of a letter a ∈ Σ in the
subproblem represented by a current node v ∈ V , that is, ca := mini=1,...,m |si[pL,v

i , pR,v
i]|a.

A simple upper bound is given by

UB1(v) = UB1(S[pL,v, pR,v]) :=

2 ·
"
a∈Σ

�
ca

2

� + ✶∃a∈Σ|ca mod 2=1. (4.6)

The last term considers the fact that at most one singleton letter can finally be added at
the end of a solution construction, with ✶ denoting the unit step function that yields
one if and only if the condition in the subscript is fulfilled, i.e., there exists a letter in Σ

1In this context we emphasize that it is not necessary to store actual partial solutions s with the
nodes. For any node in the graph, the longest path to it and the respective partial solution can finally be
efficiently derived. This is done in a backward manner by iteratively identifying predecessors in which
the lv-values always decrease by two when lv is even or by three if lv is odd.

89

4. The Longest Common Palindromic Subsequence Problem

with an odd value of ca. In a naive fashion, UB1(v), v ∈ V is calculated in O(mn) time.
However, the repeated calculation of UB1 can be sped up by a preprocessing step that
determines the number of occurrences of each letter in all postfixes of all input strings in
advance. More precisely, the values

ωi,j,a =
$$si[j, |si|]

$$
a

∀i = 1, . . . , m, j = 1, . . . , n + 1, a ∈ Σ. (4.7)

are predetermined. During the actual A∗ search, ca can then be efficiently determined for
a current state v as ca := mini=1,...,m(ω

i,pL,v
i ,a

− ω
i,pR,v

i +1,a
), and UB1 can be calculated

in O(m|Σ|) time.

Although the second upper bound UB2 proposed in [54] is comparably tight, it was
judged to be impractical due to being computationally too expensive. Therefore, in
this section an alternative UB2 bound is proposed, which is based on the standard DP
procedure for calculating the LCS of two input strings; see, for example, [174]. The
so-called complete upper bound UBcomp

2 (v) for a node v ∈ V —that is, for the subproblem
S[pL,v, pR,v] of still relevant substrings can be computed similarly as in the case of the
LCS problem and Equation (3.1), as follows:

UBcomp
2 (v) := min

1≤i<j≤m

�
Mij [pL,v

i , pL,v
j] − Mij [pR,v

i + 1, pR,v
j + 1]

�
. (4.8)

UBcomp
2 is, for the following reasons, indeed an upper bound for the length of an LCPS

of S[pL,v, pR,v]. Let S� = {s�
1, . . . , s�

m} and S�� = {s��
1, . . . , s��

m} be two sets, each one
containing m strings. Moreover, let C = {s�

1 · s��
1, . . . , s�

m · s��
m}. Obviously it holds

that LCS(S�) + LCS(S��) ≤ LCS(C), where LCS(S�) denotes the length of the LCS of
the strings in S�, etc. This immediately implies that LCS(S�) ≤ LCS(C) − LCS(S��).
Moreover, it holds that the length of the LCPS for S� cannot exceed LCS(S�). However,
since the number of strings in S can be large, we replace the complete upper bound
UBcomp

2 with the following final definition of UB2, which is a faster approximation of
UBcomp

2 :

UB2(v) := min
i=1,...,m−1

�
Mi,i+1[pL,v

i , pL,v
i+1] − Mi,i+1[pR,v

i + 1, pR,v
i+1 + 1]

�
. (4.9)

Note that for the efficient evaluation of (4.9), the matrices Mi,i+1, i = 1, . . . , m − 1 have
to be determined in a preprocessing step, which can be achieved in O(mn2) time. The
calculation of UB2(v) for any node v ∈ V then runs in O(m) time.

4.3.3 Details of the A∗ Search for LCPS Problem
A∗ maintains two sets of nodes: N stores all so far reached nodes, while Q, the set of
open nodes, is the subset of nodes in N that have not yet been expanded, i.e., whose
outgoing arcs and respective successors have not yet been considered. Node set N is
realized by means of a hash map in order to be able to efficiently find an already existing
node for a state (pL,v, pR,v), or to determine that no respective node exists yet. The set
of open nodes Q is realized by means of a heap in which the nodes are partially sorted

90

4.3. A∗ Search for the LCPS Problem

Algorithm 19 A* Search for the LCPS Problem
1: Input: an instance (S, Σ)
2: Output: an optimal LCPS solution
3: Create root node r = ((1, . . . , 1), (|s1|, . . . |sm|)) with lr = 0
4: Add r to the initially empty node set N and the set of open nodes Q
5: loop
6: Pop a node v with largest priority f(v) from open nodes Q
7: Determine Σnd

v from pL,v and pR,v

8: if Σnd
v = ∅ then // goal node reached

9: s ← partial solution corresponding to a longest path from r to v
10: if S[pL,v, pR,v] contains a singleton letter a then
11: return palindrome s · a · srev

12: else
13: return palindrome s · srev

14: end if
15: else
16: for a ∈ Σnd

v do // consider successors
17: Compute node v� that results from appending a at node v
18: if S[pL,v’, pR,v’] contains only singleton letters then
19: w(v, v�) ← 3
20: else
21: w(v, v�) ← 2
22: end if
23: if v� %∈ N then
24: Add new node v� with lv

� = lv + w(v, v�) to N and Q
25: else if lv + w(v, v�) > lv

� then // a better path to v�

26: lv
� ← lv + w(v, v�)

27: Update entry for v� in Q with new priority value f(v�) = lv
� + UB(v�)

28: end if
29: end for
30: end if
31: end loop

according to the priority function f(v) = g(v) + h(v) := lv + UB(S[pL,v, pR,v]). In case
of ties, nodes with larger lv are preferred. In case of further ties, they are broken by
considering the distance between the positions pL,v and pR,v as measured by means of
the k-norm, for some k > 0 being a parameter of the algorithm.

The pseudo-code of our A∗ search is shown in Algorithm 19. It starts with the root node
as a unique node in N and Q. At each step, the first node v from Q—that is, the highest
priority node—is chosen and removed from Q. If this node is non-extensible it is a goal
node. In this case, the algorithm derives the actual partial solution corresponding to the
longest path to v and returns with the resulting palindrome. Note that if a singleton

91

4. The Longest Common Palindromic Subsequence Problem

letter remains in S[pL,v, pR,v], it is added as middle letter. Since our priority function is
admissible, cf. [79], it guarantees that an optimal solution has been reached. Otherwise,
node v is extended by considering each possible extension a ∈ Σnd

v . Corresponding arc
costs w(v, v�) are normally two to account for letter a being added twice in the final
palindrome, but three in case only singleton letters remain in S[pL,v’, pR,v’] to additionally
account for a respective final middle letter. For each obtained new state it is checked if a
respective node exists already in N . If this is not the case, a corresponding new node is
added to N and Q. Otherwise, the existing node’s length-value lv

� is updated in case the
new path via v represents a new longest partial solution.
Finally, note that all proposed upper bound functions presented in Section 4.3.2 have the
property of being monotonic (also called consistent), because the upper bound values of
child nodes are always at most as high as the upper bound values of their parents. Due
to monotonicity, no re-expansions of already expanded nodes will be necessary [79].
Deriving the left and the right position vectors and thus the state for each successor v�

of a node v is the computationally most expensive step during the process of expanding
a node v. More specifically, for each string si, i = 1, . . . , m, pL,v’

i (respectively pR,v’
i)

of a child node v� of v, given by expanding a valid partial solution represented by v
by means of a letter a ∈ Σ, is determined as the position of the first occurrence of
a in string si[pL,v

i , pR,v
i] (respectively, the last occurrence of a in string si[pL,v

i , pR,v
i]).

Finding these positions can be done efficiently by establishing during preprocessing a
successor (predecessor) data structure as follows. The successor structure contains a
value Succ[i, j, a] for each i = 1, . . . , m, j = 1, . . . , n, and a ∈ Σ corresponding to the
minimal position p > j such that si[p] = a. If there is no such position, the special value
n + 1 is used. The predecessor structure stores a value Pred[i, j, a] for all i = 1, . . . , m,
j = 1, . . . , n, and a ∈ Σ corresponding to the maximal position p < j such that si[p] = a.
In case of no such position, zero is used here. Both structures can be built in O(m ·n · |Σ|)
time, and by using it all successors of a node can be derived in O(m · |Σ|) time.
Remember that in Section 4.3.1 a dominance relation between two letters a and b for
extending a node v was introduced. Dominated letters are clearly sub-optimal choices
and therefore their further consideration is avoided. This pruning according to dominance
may be generalized: When a new state S[pL,v, pR,v] is obtained, it can be checked if
there is some other already considered node v� ∈ N for which pL,v’

i ≤ pL,v
i ∧ pR,v

i ≤ pR,v’
i

∀i = 1, . . . , m holds and for which lv
� ≥ lv. Such a node v� would dominate v in the

sense that v cannot lead to any better solution, and consequently, node v and the arc
leading to it can be omitted from further consideration. Unfortunately, this generalized
dominance check requires O(|N | · m) time. In practical experiments with our A∗ search,
it turned out that the introduced overhead is substantial and can be dramatic especially
for longer runs when |N | becomes large. Usually the gained reductions in the number
of avoided nodes cannot outweigh this disadvantage. Therefore, we stay here with the
simple dominance checks among the successors of a node.
In the rest of this chapter, we first propose novel heuristic guidance for the LCPS problem
and two variants of search algorithms that build upon the presented A∗ search are

92

4.4. Approximating the Expected Length of an LCPS for Random Strings

investigated. In particular, our goal is to find an algorithm with an improved anytime
behaviour, i.e., which provides a first heuristic solution soon and continuously improving
upon it over time.

4.4 Approximating the Expected Length of an LCPS for
Random Strings

In prior work on beam search algorithms for the LCS problem, Mousavi and Tabataba [135]
noticed that the LCS problem instances generally used in the related literature have
properties close to those of random instances. That is, the probability for a letter a ∈ Σ
to appear at the position i of any of the input strings is (nearly) equal for all letters from
Σ. Based on this observation they derived a heuristic function for guiding their beam
search approach, which led to a new state-of-the-art performance at that time. In other
words, they discovered that their heuristic function guides beam search much better than
the available upper bound functions. However, since their heuristic function is not a
proper upper bound, it cannot be used to prove optimality. In the following, the heuristic
function from [135] is first revisited in the context of the LCPS problem and then build
upon it by deriving an approximation for the expected length of an LCPS for random
strings. This function will later be used in combination with the previous upper bound
to be able to find good heuristic solutions quickly (due to using the heuristic function)
but to possibly prove optimality as well.

Mousavi and Tabataba came up with the recursion which calculates the probability that a
specific string s of length k is a subsequence of a string t of length q, where t is generated
uniformly at random, see Equation (3.2). All probabilities P(k, q) for k, p = 0, . . . , n can
be calculated and stored in O(n2) time during preprocessing. Let us now consider a
node v ∈ V from our state graph. Given P, one can calculate the probability that the
remaining subproblem S[pL,v, pR,v] contains a specific palindrome of length k by

Pr(k, S[pL,v, pR,v]) =
m

i=1
P(k, |si[pL,v

i , pR,v
i]|) =

m
i=1

P(k, pR,v
i − pL,v

i + 1). (4.10)

In fact, Mousavi and Tabataba directly used these probabilities as heuristic function
h(v) to rank in their beam search all successor nodes at a current level for selecting the
most promising ones and filtering out the rest. Higher values of h(v) are preferred in this
ranking. For parameter k, they used at each level of the beam search the same value,
which they determined from the set of all nodes to be compared (Vext) simply by

k := min
v∈Vext, i=1,...,m

��
pR,v

i − pL,v
i + 1

|Σ|

��
.

While this approach can be meaningful in the context of a standard beam search, it
cannot be easily adopted in a more general search like A∗, where at each iteration a
node has to be evaluated efficiently in relation to the potentially huge set of all open

93

4. The Longest Common Palindromic Subsequence Problem

nodes with different distances to the root. Most importantly, there will not be a single
meaningful value for k, and it would not make sense to repeatedly re-evaluate all open
nodes for changing values of k.

Instead, we strive to approximate the real expected length of an LCPS for a set of
strings S = {s1, . . . , sm} under the assumption that the input strings are mutually
independent uniform random strings. Note that this approximation will be used to
evaluate a subproblem S[pL,v, pR,v] represented by a node v ∈ V in an alternative way.

Let X be the random variable corresponding to the length of an LCPS for a set S of
randomly generated input strings. By following the same derivation of the expected
length calculation heuristic in the context of the LCS problem, the expected length of
an LCPS can be expressed as E[X] = #lmax

l=1 l · Pr[X = l] with Pr[X = l] denoting the
probability that this length is l. Furthermore, let Yl ∈ {0, 1} be the random variable
indicating if the strings from S have a common palindromic subsequence of length l,
l ≥ 0. Applying the same reasoning as in Section 3.3.2, it holds that

Pr[X = l] = E[Yl] − E[Yl+1] for l = 0, . . . , lmax,

i.e., the probability that there exists a palindromic subsequence of size l but no longer one.
It further implies that E[X] = #lmax

l=1 = #lmax
l=1 E[Yl]. In order to approximate E[Yl], it can

be first observed that—for an alphabet of size |Σ|—there are |Σ|� l
2 � different palindromes

of length l. This is because the first half and the possible middle element can be assigned
any letters from Σ and the second half must be equal to the reverted first half. In the
following let us make the simplifying assumption that for each palindrome of length l the
event of appearing as common subsequence of S is independent of the events of the other
palindromes. Clearly, this does not entirely hold in reality and we introduce an error.
The probability that S has any common palindromic subsequence of length l ∈ N can
then be approximately expressed as

Ẽ[Yl] = 1 − (1 − Pr[s ≺ S])|Σ|�l/2� = 1 −
�

1 −
m

i=1
P(l, |si|)

�|Σ|�l/2�

, (4.11)

i.e., the inverse probability of the case that none of the |Σ|�l/2� palindromes of length l is
a common subsequence of S. Ultimately, the approximate expected length of the LCPS
can be expressed as

Ẽ[X] = lmax −
lmax"
l=1

�
1 −

m
i=1

P(l, |si|)
�|Σ|�l/2�

. (4.12)

To illustrate the error introduced by the assumed independence, the following special
cases are considered.

• Let S = {s1} and l = |s1|. At most one of the |Σ|�l/2� different palindromes of
length l can be a subsequence of s1 since s1 has to correspond to it. Our calculation
yields

94

4.4. Approximating the Expected Length of an LCPS for Random Strings

Ẽ[Yl] = 1 − (1 − 1/|Σ|l)|Σ|�l/2�
,

while the correct value corresponds to the probability that s1 is palindromic, which is

Ẽ[Yl] = |Σ|�l/2�

|Σ|l = 1/|Σ|
l/2�.

• Let S = {s1} with |s1| ≥ 1 and l = 1. It follows that Ẽ[Yl] = 1 − (1 − 1)|Σ| = 1,
which corresponds to the correct probability for E[Yl].

• Let S = {s1, . . . , sm} with l = |s1| = . . . = |sm|.

Ẽ[Yl] = 1 −
�

1 − 1
|Σ|lm

�|Σ|�l/2�

while
E[Yl] = 1

|Σ|l(m−1)+
l/2� = 1
|Σ|
l·(2m−1)/2� .

Finally, recall that each node v ∈ N of our state graph represents a subproblem
S[pL,v, pR,v], and we can determine corresponding approximate expected LCPS lengths
according to (3.5) and the above described stable and efficient calculation method for
these:

EX(v) =
lvmax"
l=1

1 −
�

1 −
m

i=1
P(l, pR,v

i − pL,v
i + 1)

�|Σ|� l
2 �

, (4.13)

where lvmax = maxi=1,...,m(|si| − pL,v
i + 1). The efficient calculation and the issue with

numeral instabilities of Equation (4.13) are resolved in the same way as in Section 3.3.2.
Note that EX(v), in contrast to the upper bound functions from Section 4.3.2, does not
possess the property of being admissible in the context of A∗ search.

4.4.1 Beam Search for the LCPS Problem
For a pure heuristic way of solving the LCPS problem we apply a Beam Search technique,
where its search is applied on the state graph constructed in Section 4.3.1.

The pseudo-code of our BS is an extension of Algorithm 14 with the following differences:
(i) the LCS nodes are replaced by the LCPS nodes (ii) dominance relation is extended in
the context of for LCPS nodes: given LCPS nodes u, v ∈ V , u dominates v iff u %= v and
pL,u

i ≤ pL,v
i ∧ pR,u

i ≥ pR,v
i for all i = 1, . . . , m, (iii) different upper bounds and heuristics

applied to gude the search, and (iv) the full filtering has been applied, that is, parameter
kbest is set to +∞.

95

4. The Longest Common Palindromic Subsequence Problem

4.5 Anytime Algorithms to Solve the LCPS Problem
Classical A∗ search is targeted towards finding a proven optimal solution in the least
number of expanded nodes, but in general, it yields no meaningful or particularly
promising heuristic solution before it terminates when the target node is selected for
expansion.

When consulting the literature, several attempts can be found at improving the anytime
performance of A∗ search as well as several attempts at using beam search related
algorithms in an anytime fashion. A short overview of these approaches is provided in
Section 2.3.

Before outlining our anytime approaches, Table 3.1 summarizes the main ideas of the
anytime algorithms that are covered in our experimental evaluation in Section 4.6. In
the next two sections, we give the descriptions of the two novel anytime algorithms that
are specifically applied to the LCPS problem.

4.5.1 A∗+BS Hybrid
We already presented the basic idea of this hybrid in Section 3.5.1 in the context of the
LCS problem. The hybrid A∗+BS algorithm embeds a standard beam search into the
A∗ search framework such that, after performing a number of regular A∗ iterations, the
search strategy repeatedly is switched to a BS starting from the node with the highest
priority value from Q. Note that the new nodes discovered by the BS applications are
also incorporated into set N and the priority queue Q, and expanded nodes are removed
from Q. Therefore, the embedded BS might end without delivering any complete solution.
Moreover, for all considered extensions of nodes, the same steps regarding the update of
the nodes in N and Q are performed as in A∗, cf. Algorithm 19. Finally, note that with
beam width β = 1 the embedded BS corresponds to the technique called simple diving.

4.5.2 Tie Breaking
While executing preliminary experiments for A∗, we realized that many ties occur when
ordering the nodes in the priority queue Q with respect to their priorities in π(v). To
guide the search in better ways, we decided to use the length of a represented longest
partial solution as a secondary decision criterion in such cases. This improved the
performance significantly but still suffered from a significant number of ties. In order
to also break these, it turned out to be beneficial to additionally consider the p-norm,
which is for a node v defined as

||v||p =
�

m"
i=1

$$$pR,v
i − pL,v

i

$$$p�1/p

. (4.14)

Given two nodes u %= v with the same priority value and the same maximum length
concerning the represented partial solutions, a node with a lower p-norm is finally
preferred. The inspiration for making use of this norm is that the smallest still relevant

96

4.5. Anytime Algorithms to Solve the LCPS Problem

substrings potentially have a higher impact on the final length of complete solutions
than the larger ones. However, considering only the shortest one of the still relevant
substrings—that is, applying the min norm—could be highly misleading. Therefore, a
p value from (0, 1) appears meaningful. Following further preliminary experiments, we
finally chose p = 0.5 for all experiments.

4.5.3 A∗+ACS Hybrid
As indicated before, ACS is an iterative algorithm that, at each major iteration, expands
nodes with the highest priority values at each level of the state graph [165]. In order to
do so, the algorithm interprets the so far investigated parts of the state graph in a layered
fashion, where level j ≥ 0 contains any node v ∈ N having depth j, i.e., can be reached
from the root node r via j so far known arcs but not more. In our context of the LCPS,
level j thus contains the nodes for which corresponding partial solutions with up to j
letters are known. If a node is updated during the search process because a longer partial
solution—represented by a longer path to this node—is found, the node will change to
the respective higher level. In contrast to the classical A∗ search, ACS maintains an
individual priority list Ql of open nodes for each level j = 0, . . . , jmax, where jmax is
an upper bound for the depth of nodes; in our implementation, jmax = �UB(r)/2� is
used. Initially, Q0 contains the root node and all other priority queues are empty. Each
iteration of ACS considers all the levels j = 0, . . . , jmax with non-empty queues Qi in
turn and expands from each β nodes (or less if Qj becomes empty). ACS terminates with
an optimal solution only when all priority lists become empty. However, ACS finds at
least one complete solution at each major iteration, which favours our goal of producing
heuristic solutions as soon as possible. An algorithm similar to the ACS was proposed
in [99] but presented in a more general form.

The idea is to embed this ACS in our A∗ by interleaving classical A∗ iterations with ACS
iterations. A pseudo-code of this A∗+ACS is presented in Algorithms 20 and 21 and
it has similarity to Algorithm 18, but since there are a lot of minor details on which
they differ, we consider that it would be confusing to explain them with referring to the
latterly mentioned pseudocode. So, we decide to present the pseudocode of A∗+ACS for
the LCPS problem with all detail for ease of reading.

The main algorithmic framework is that of A∗. However, initially and after every batch
of δ > 0 iterations of A∗, the algorithm executes one iteration of ACS. Algorithm 20
maintains in sbest the so far best found complete solution. Each A∗ iteration still expands
a node v from the global open list Q having the largest priority value f(v). In this way,
the whole approach maintains the completeness property of the classical A∗ search and
maxv∈Q f(v) provided by the top element of Q always is an upper bound for the optimum
solution value. In contrast, the level-wise priority queues Qj , j = 0, . . . , jmax, of ACS
make use of the approximate expected value function EX, cf. (4.13), for prioritizing the
nodes. As it is expected to lead the construction of heuristic solutions in substantially
better ways. Note that changes in Q (removals and additions) must be reflected by
corresponding changes in the priority queues Qj , and vice versa. To do this efficiently,

97

4. The Longest Common Palindromic Subsequence Problem

Algorithm 20 A∗+ACS for the LCPS Problem
1: Input: an instance (S, Σ)
2: Output: best found LCPS solution sbest
3: Parameters: ACS column width β, number of A∗ iterations inbetween ACS δ
4: Create root node r = ((1, . . . , 1), (|s1|, . . . |sm|)) with lr = 0
5: Add r to the initially empty node set N and the global set of open nodes Q
6: Initialize per-level priority queues Q0 = {r} and Qi = ∅, j = 1, . . . , jmax
7: optimal ← false
8: sbest ← ε
9: loop // perform an ACS iteration of width β:

10: for j ← 0, . . . , jmax do
11: b ← 0
12: while Qj %= ∅ ∧ b < β do // select and expand next node at level j
13: Pop a node v with the largest EX(v)-value from Qj

14: Remove v also from Q
15: ExpandNode(v)
16: if optimal ∨ time or memory limit reached then
17: return so far best solution sbest
18: end if
19: b ← b + 1
20: end while
21: end for
22: loop δ times // perform δ normal A∗ iterations:
23: Pop a node v with largest priority f(v) from Q
24: Remove v also from Q
lv/2�
25: ExpandNode(v)
26: if optimal ∨ time or memory limit reached then
27: return so far best solution sbest
28: end if
29: end loop
30: end loop

we augment in our implementation the heap data structures for the priority queues by
corresponding hash tables, which enable a direct lookup of the priority queue entries for
given nodes. The actual expansion of a node, which is identical for the ACS as well as the
A∗ iterations, is separately shown in Algorithm 21. It follows the principles already known
from Algorithm 19. When a goal node is reached it is checked if it yields a new best
solution and sbest is updated in this case. At its end, Algorithm 21 always checks if the
length of the so-far best solution is larger than or equal to the current maximum f -value
of Q, in which case the flag optimal is set to true and the main algorithm terminates with
the proven optimal solution sbest. Moreover, A∗+ACS also terminates when reaching a
specified time or memory limit, in which case it returns the best complete solution found

98

4.5. Anytime Algorithms to Solve the LCPS Problem

Algorithm 21 ExpandNode(v)
1: Input: Node v to be expanded
2: Uses/updates: V , N , Q, Q1, . . . , Qlmax, sbest, optimal
3: Determine Σnd

v from pL,v and pR,v

4: if Σnd
v = ∅ then

5: if |sbest| < f(v) then // goal node reached
6: s ← partial solution corresponding to a longest path from r to v
7: if S[pL,v, pR,v] contains a singleton letter a then
8: sbest ← s · a · srev

9: else
10: sbest ← s · srev

11: end if
12: end if
13: else
14: for a ∈ Σnd

v do // consider successors
15: Compute node v� that results from appending a at node v
16: if S[pL,v’, pR,v’] contains only singleton letters then
17: w(v, v�) ← 3
18: else
19: w(v, v�) ← 2
20: end if
21: if v� /∈ N then
22: Calculate EX(v�) and f(v�)
23: Add new node v� with lv

� = lv + w(v, v�) to N , Q, and Q
lv
�
/2�

24: else if lv
�

< lv + w(v, v�) then // a better path to v�

25: Remove v� from Q
lv
�
/2�

26: lv
� ← lv + w(v, v�)

27: Update entry for v� in Q with new f(v�)
28: Add v� in Q
lv

�
/2� with E(v�)

29: end if
30: end for
31: end if
32: if |sbest| ≥ maximum f -value of nodes in Q then
33: optimal ← true
34: end if

up to this point.

In summary, the ACS iterations augment the classical A∗ iterations in order to find
promising heuristic solutions soon and possibly improve them continuously over time.
This counter-balances the pure best-first strategy of A∗. The number of A∗ iterations δ
between the executions of the ACS iterations as well as ACS’s width parameter β control

99

4. The Longest Common Palindromic Subsequence Problem

the balance between providing good heuristic solutions and improving the upper bound
over time.

4.6 Experimental Results
All proposed algorithms as well as algorithms considered in the following for comparison
were implemented in C++ using GCC 4.7.3. All experiments were performed on a cluster
of machines with Intel Xeon E5649 CPUs with 2.53 GHz and a memory limit of 15GB in
single-threaded mode. The maximum computation time allowed for each run was limited
to 15 minutes, i.e., 900 seconds.

The following algorithms are considered in this section: (i) A∗+BS is the A∗/beam
search hybrid (ii) the A∗+ACS algorithm, (iii) the anytime-A∗ variants APS and APPS
from [164] which were implemented for comparison reasons, and (iv) a stand-alone ACS
algorithm—henceforth labelled ACS-ub—using the upper bound UB for prioritizing the
nodes. This last algorithm, whose primary target is producing good heuristic solutions—is
studied for comparison purposes to get an impression about the impact of the novel
heuristic guidance function EX() from Equation (4.13) in our A∗+ACS. The results of
Greedy heuristic 4.2 were inferior w.r.t. the other approaches and their results are
shown by means of an aggregated table 4.4.

We also would like to point out that, during experimentation, it was noticed that the
original APPS performed significantly worse with respect to the obtained solution quality
when the beam width was set back to the initial value each time a new incumbent was
found. Therefore, our implementation applies a purely progressive increase of the beam
width after each BS run.

All considered algorithms will be evaluated by the obtained solution quality and by
the percentage gap, which is calculated at time t > 0 as gap(t) := ub(t)−|sbest(t)|

ub(t) · 100%,
where sbest(t) denotes the best found solution at time t and ub(t) the upper bound
obtained from the f -value of the top node of Q at time t (or the optimal solution
value when already available). In case of ACS-ub, the upper bound is calculated by
ub(t) := maxi=0,...,jmax{f(ui) | Qi %= ∅ ∧ ui is the top node of Qi at time t}.

4.6.1 Benchmark Instances
We use a set of benchmark instances originally provided in [18] for the LCS problem.
This instance set consists of ten randomly generated instances for each combination
of the number of input strings m ∈ {10, 50, 100, 150, 200}, the length of input strings
n ∈ {100, 500, 1000}, and the alphabet size |Σ| ∈ {4, 12, 20}. This makes a total of 450
problem instances. In general, the results of our algorithms will be provided as averages
over the ten instances of each combination. In order to compare the algorithms concerning
the 2–LCPS problem, a new set of larger instances was generated with the instance
generator from [18]. More specifically, for each combination of |Σ| ∈ {4, 12, 20} and
n ∈ {100, 200, 300, 400, 500}, ten instances were created yielding a total of 150 2–LCPS

100

4.6. Experimental Results

instances. These benchmark instances are provided at https://www.ac.tuwien.ac.
at/research/problem-instances/LCPS.

4.6.2 Tuning of the Algorithms’ Parameters
In order to ensure a fair comparison, the tuning tool irace [127] is employed to derive
well-working parameter settings for all five considered algorithms. A∗+BS has the
following parameters: (δ) the number of A∗ iterations performed after each BS run, (β)
the beam width, and (k) the parameter for the k-norm used in tie-breaking. APS has
the following parameters: (pack) the number of nodes taken from the top of the queue in
order to form the initial beam, and (k). APPS has the same parameters as APS and in
addition (step) the amount of increase applied to pack after each BS run. Next, ACS-ub
involves parameter (β), which is the number of expansions at each level of the state
graph, and (k). Finally, A∗+ACS has the parameters: (δ) the number of A∗ iterations
performed after applying an iteration of ACS, (β) the number of expansion allowed at
the same level of ACS, and (k).
The irace tool was applied separately for each algorithm and for each alphabet size.
Analyzing preliminary experiments, it was found that the size of the alphabet has more
influence on the behavior of the algorithms than the lengths of the input strings and
their number. In order to obtain tuning instances, for each |Σ| one random instance for
each combination of m and n was generated. This makes a total of 15 tuning instances
for each alphabet size, and 45 tuning instances in total. The tuning process for each
alphabet size was given a budget of 1000 runs and each run was limited by a run time
limit of 900 seconds and a memory limit of 15 GB.

Tuning for Solution Quality

The first set of tuning experiments was aimed at tuning the algorithm performance with
respect to solution quality, that is, for obtaining the best possible solution quality at
the end of a run. In the following we present the parameter value domains used during
tuning as well as the best configurations for each algorithm as determined by irace. Note
that meaningful ranges for the domains were determined by preliminary experiments.
For parameter k the values {0.1, 0.2, 0.5, 1.0, 2.0} were considered for all algorithms.
The domain of parameter β in A∗+BS and parameter pack in APS and APPS was
{1, 50, 100, 500, 1000, 2000, 5000, 10000, 20000}. In contrast, in the context of
ACS-ub and A∗+ ACS parameter β was given domain {1, 5, 10, 20, 50, 100}. Finally,
δ ∈ {1, 5, 10, 20, 50, 100, 1000} was considered for both A∗+BS and A∗+ ACS, and
step ∈ {1, 5, 10, 50, 100, 200, 500} for APPS. The best configurations as determined by
irace are provided in Table 4.1.

Tuning for Small Gaps

The tuning experiments from the previous section were repeated with the aim of obtaining
small gaps, thus, considering in addition to the final solution quality also the respective

101

https://www.ac.tuwien.ac.at/research/problem-instances/LCPS
https://www.ac.tuwien.ac.at/research/problem-instances/LCPS

4. The Longest Common Palindromic Subsequence Problem

Table 4.1: Tuning results concerning solution quality.

(a) A∗+BS

|Σ| δ β k

4 1 10000 0.5
12 10 2000 0.2
20 20 1000 0.1

(b) APS

|Σ| pack k

4 10000 0.1
12 10000 0.2
20 5000 0.1

(c) APPS

|Σ| pack step k

4 10000 10 0.2
12 10000 10 0.2
20 5000 5 0.1

(d) ACS-ub

|Σ| β k

4 20 0.2
12 20 0.5
20 100 1.0

(e) A∗+ACS

|Σ| δ β k

4 100 10 1.0
12 50 10 1.0
20 100 20 0.1

Table 4.2: Tuning results concerning small gaps.

(a) A∗+BS

|Σ| δ β k

4 20000 500 1.0
12 10000 1000 1.0
20 10000 500 0.5

(b) APS

|Σ| pack k

4 20000 1.0
12 20000 1.0
20 10000 1.0

(c) APPS

|Σ| pack step k

4 20000 500 1.0
12 10000 1000 1.0
20 20000 500 1.0

(d) ACS-ub

|Σ| β k

4 10 0.2
12 1 0.1
20 1 0.5

(e) A∗+ACS

|Σ| δ β k

4 5000 20 1.0
12 10000 10 1.0
20 5000 10 1.0

upper bounds. Naturally one may expect for this case other parameter settings to
be ideal, in particular those putting more emphasize on classical A∗ search iterations.
The parameter domains were chosen as in the previous subsection, with the exception
of the δ parameter in the case of A∗+BS and A∗+ACS and the step parameter in
APPS. These were chosen as δ ∈ {1, 100, 500, 1000, 5000, 10000, 20000, 50000} and step ∈
{1, 10, 50, 100, 500, 1000, 5000}. The best configurations as determined by irace are
provided in Table 4.2. Indeed, it can be observed that the resulting values in particular
for parameter δ, the number of classical A∗ iterations, increase significantly when tuning
for small gaps.

102

4.6. Experimental Results

4.6.3 Computational Results and Comparison
Table 4.3 shows average results of the algorithms over all instance groups with the
parameter settings obtained by tuning for solution quality, while Table 4.5 shows the
results with the settings obtained when targeting small gaps. Note that the results of
APPS are excluded here as it turned out that they are very similar to those of APS.

Each of these tables consists of three sub-tables, one per alphabet size, and they have
the following format. The first two columns indicate the type of problem instances
considered in terms of n and m. Remember that the considered benchmark set consists
of ten problem instances per combination of |Σ|, n and m. Consequently, each table
row provides the results of the four considered algorithms (A∗+BS, APS, ACS-ub, and
A∗+ACS) as averages over the ten respective instances. For each algorithm, column
|s| lists the average final solution quality, column tbest[s] the average time (in seconds)
at which the best solution of a run was found, column t[s] the overall average runtime,
and, finally, column gap[%] the average gap in percent. Note that the overall run time of
an algorithm can only be smaller than 900 seconds (the run time limit) when a proven
optimal solution is found, or in case the memory limit of 15 GB is reached before the
run time limit. The former happens for all algorithms in the context of all instances
with n = 100, thus all considered algorithms are able to prove optimality for all these
instances. The latter happens, for example, in the case of the ten instances with |Σ| = 4,
m = 10 and n = 1000 (see Table 4.3a). Note that the best result in each table row is
marked bold.

The following main observations can be made concerning these results.

• As mentioned already above, all algorithms are able to solve the problem instances
with n = 100 to optimality, this within a fraction of a second. Therefore, in what
follows, we will focus on the instances with n ∈ {500, 1000}.

• A∗+ACS outperforms all other algorithms in terms of solution quality, both when
tuned for solution quality and when tuned for minimizing the gap. In order to
confirm this statistically—at least for the case of tuning for solution quality—
Friedman’s tests was performed simultaneously considering all four algorithms for
the subsets of the benchmark set with different alphabet sizes.2 Given that in all
cases the test rejected the hypothesis that the algorithms perform equally, pairwise
comparisons were performed using the Nemenyi post-hoc test [68]. Obtained
results are shown in Figure 4.1 by means of so-called critical difference plots. Each
algorithm is positioned in the segment according to its average ranking concerning
the considered subset of instances. Then, the critical difference (CD) is computed
for a significance level of 0.05 and the performance of those algorithms that have a
difference lower than CD are regarded as equal—that is, no difference of statistical
significance can be detected. This is indicated in the figures by horizontal bars

2All these tests and the resulting plots were generated using R’s scmamp package [29].

103

4. The Longest Common Palindromic Subsequence Problem

Table 4.3: Average results of the algorithms when tuned for solution quality.

(a) |Σ| = 4.

m n A∗+BS APS ACS-ub A∗ + ACS

|s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%]
100 28.9 1.2 5.3 0.0 28.9 1.0 1.8 0.0 28.9 < 0.1 2.4 0.0 28.9 < 0.1 1.9 0.0

10 500 159.9 13.7 368.7 45.4 159.9 9.5 251.0 44.4 161.2 130.1 415.5 43.5 162.3 61.2 573.6 42.6
1000 323.1 41.0 278.8 47.63 323.3 56.3 269.1 47.3 326.2 146.3 301.3 46.6 330.7 256.1 532.1 45.7
100 21.8 1.3 1.3 0.0 21.8 1.0 1.0 0.0 21.8 < 0.1 0.9 0.0 21.8 < 0.1 0.6 0.0

50 500 130.5 25.2 468.2 54.1 130.5 18.2 346.4 53.1 131.3 111.9 490.2 52.5 132.7 135.0 555.4 51.4
1000 267.9 177.8 576.6 56.0 267.8 83.0 507.1 55.7 268.9 314.7 683.1 55.5 273.0 92.7 722.1 54.5
100 20.1 1.7 1.7 0.0 20.1 1.2 1.2 0.0 20.1 < 0.1 1.2 0.0 20.1 < 0.1 0.8 0.0

100 500 123.5 53.5 616.2 56.3 123.5 64.3 459.4 55.4 124.1 107.3 651.4 54.9 125.1 86.0 688.4 54.0
1000 254.8 123.0 686.2 58.0 254.8 127.9 563.0 57.7 255.4 324.0 744.1 57.6 259.8 199.8 765.8 56.6
100 19.0 2.1 2.2 0.0 19.0 1.4 1.4 0.0 19.0 < 0.1 0.9 0.0 19.0 < 0.1 0.5 0.0

150 500 120.3 128.1 792.7 57.2 120.2 51.8 528.6 56.4 120.7 118.1 736.7 56.1 121.7 67.2 723.8 55.1
1000 249.0 170.3 750.3 58.8 249.0 155.8 580.1 58.6 249.8 337.8 780.8 58.4 253.3 192.7 752.6 57.6
100 18.5 1.8 1.8 0.0 18.5 1.7 1.7 0.0 18.5 0.1 1.1 0.0 18.5 < 0.1 0.7 0.0

200 500 118.0 99.1 843.3 57.9 118.0 74.5 601.5 57.2 118.4 216.6 852.4 56.9 119.5 25.6 778.4 55.9
1000 245.0 287.2 859.9 59.4 244.8 196.2 671.8 59.3 245.4 275.0 884.5 59.1 249.4 238.2 840.9 58.2

(b) |Σ| = 12.

m n A∗+BS APS ACS-ub A∗ + ACS

|s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%]
100 9.6 < 0.1 < 0.1 0.0 9.6 < 0.1 < 0.1 0.0 9.6 < 0.1 < 0.1 0.0 9.6 < 0.1 < 0.1 0.0

10 500 61.5 3.5 453.0 65.1 61.8 15.5 371.4 62.0 62.3 77.1 400.9 61.3 62.4 26.4 649.7 60.6
1000 126.7 6.3 291.3 68.2 127.2 28.2 281.9 67.1 128.7 89.1 309.3 66.6 130.5 115.5 531.3 65.9
100 5.6 < 0.1 < 0.1 0.0 5.6 < 0.1 < 0.1 0.0 5.6 < 0.1 < 0.1 0.0 5.6 < 0.1 < 0.1 0.0

50 500 43.3 5.7 555.7 73.8 43.6 25.2 548.0 70.6 43.8 41.4 580.8 70.4 44.3 96.0 617.5 69.3
1000 91.1 21.5 568.8 76.4 91.7 92.7 714.8 75.3 92.4 246.2 608.9 75.0 93.7 70.2 649.8 74.4
100 4.6 < 0.1 < 0.1 0.0 4.6 < 0.1 < 0.1 0.0 4.6 < 0.1 < 0.1 0.0 4.6 < 0.1 < 0.1 0.0

100 500 39.0 19.2 798.0 75.8 39.0 46.9 829.4 72.8 39.1 35.8 856.4 72.4 39.6 88.0 798.4 71.5
1000 83.9 66.2 879.1 78.0 84.1 147.3 812.9 77.1 84.7 291.2 891.6 76.9 85.9 78.6 871.2 76.3
100 3.8 < 0.1 < 0.1 0.0 3.8 < 0.1 < 0.1 0.0 3.8 < 0.1 < 0.1 0.0 3.8 < 0.1 < 0.1 0.0

150 500 37.0 22.6 900.0 76.8 37.1 68.8 900.0 73.9 37.2 52.8 900.0 73.7 37.6 22.6 881.7 72.8
1000 80.3 44.4 900.0 78.8 80.6 209.3 900.0 78.0 81.0 212.7 900.0 77.9 82.2 51.9 900.0 77.2
100 3.3 < 0.1 < 0.1 0.0 3.3 < 0.1 < 0.1 0.0 3.3 < 0.1 < 0.1 0.0 3.3 < 0.1 < 0.1 0.0

200 500 35.8 60.6 900.0 77.3 36.0 90.8 900.0 74.4 36.0 31.8 900.0 75.0 36.0 0.6 900.0 73.7
1000 78.2 152.1 900.0 79.2 78.4 297.7 900.0 78.5 78.7 273.0 900.0 78.4 80.0 126.8 900.0 77.8

(c) |Σ| = 20.

m n A∗+BS APS ACS-ub A∗ + ACS

|s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%]
100 5.4 < 0.1 < 0.1 0.0 5.4 < 0.1 < 0.1 0.0 5.4 < 0.1 < 0.1 0.0 5.4 < 0.1 < 0.1 0.0

10 500 38.7 9.7 351.4 69.5 38.6 7.7 523.2 65.2 38.9 5.8 319.1 64.6 38.9 1.4 801.9 63.8
1000 79.7 60.3 353.8 74.2 79.9 20.3 500.2 72.9 80.9 75.6 386.2 72.5 81.8 133.4 688.0 71.8
100 2.5 < 0.1 < 0.1 0.0 2.5 < 0.1 < 0.1 0.0 2.5 < 0.1 < 0.1 0.0 2.5 < 0.1 < 0.1 0.0

50 500 25.0 4.3 750.3 76.8 25.0 15.0 900.0 71.2 25.1 23.2 740.1 72.2 25.1 74.9 858.7 71.0
1000 54.4 44.9 768.7 81.5 54.6 46.8 888.0 80.2 55.0 101.8 728.0 80.0 55.6 42.6 881.8 79.5
100 1.3 < 0.1 < 0.1 0.0 1.3 < 0.1 < 0.1 0.0 1.3 < 0.1 < 0.1 0.0 1.3 < 0.1 < 0.1 0.0

100 500 21.8 8.1 900.0 78.6 21.9 26.0 900.0 73.2 22.1 56.3 893.6 73.5 22.1 5.9 900.0 72.7
1000 48.9 62.8 900.0 83.2 48.9 89.9 900.0 82.1 49.1 71.8 899.3 81.9 50.1 110.1 900.0 81.2
100 1.1 < 0.1 < 0.1 0.0 1.1 < 0.1 < 0.1 0.0 1.1 < 0.1 < 0.1 0.0 1.1 < 0.1 < 0.1 0.0

150 500 20.6 8.3 900.0 79.4 20.9 46.5 900.0 74.2 21.0 43.0 900.0 73.7 21.0 8.7 900.0 73.3
1000 46.3 99.6 900.0 84.0 46.6 202.8 900.0 82.8 46.8 139.4 900.0 82.7 47.2 124.9 900.0 82.2
100 1.1 < 0.1 < 0.1 0.0 1.1 < 0.1 < 0.1 0.0 1.1 < 0.1 < 0.1 0.0 1.1 < 0.1 < 0.1 0.0

200 500 19.5 74.0 900.0 80.1 19.5 49.0 900.0 74.8 19.9 65.6 900.0 73.2 20.0 91.3 900.0 73.5
1000 44.8 56.2 900.0 84.4 45.0 190.6 900.0 83.4 45.0 42.7 900.0 83.3 45.7 175.4 900.0 82.7

joining the respective algorithms. The figures show that, for each alphabet size,
A∗+ACS outperforms the other three algorithms with statistical significance.

104

4.6. Experimental Results

Table 4.4: Average improvements (in percent) in final solution quality/length of A∗+ACS
over other algorithms, aggregated over all values for m.

|Σ| n A∗+BS[%] APS[%] ACS-ub[%] Greedy[%]
100 0.00 0.00 0.00 13.13

4 500 1.38 1.40 0.86 12.24
1000 1.95 1.96 1.53 9.58
100 0.00 0.00 0.00 12.00

12 500 1.50 1.09 0.73 14.30
1000 2.58 2.19 1.47 12.47
100 0.00 0.00 0.00 3.34

20 500 1.36 1.03 0.10 18.08
1000 2.25 1.90 1.33 15.35

1 2 3 4

A*+ACS

ACS−ub

A*+BS

APS

|Σ| = 4

1 2 3 4

A*+ACS

ACS−ub

APS

A*+BS

|Σ| = 12

2 3

A*+ACS

ACS−ub

APS

A*+BS

|Σ| = 20

Figure 4.1: Critical difference plots concerning the results of the algorithms tuned for
solution quality. The benchmark instances are split according to alphabet size.

• Furthermore, it can be observed that A∗+ACS outperforms the other three algo-
rithms also concerning the gap. Again, this holds both when tuned for solution
quality and when tuned for minimizing the gap. The corresponding critical dif-
ference plots—concerning the results obtained after tuning for minimizing the
gap—are shown in Figure 4.2. They confirm that A∗+ACS outperforms the other
algorithms with statistical significance. As all algorithms make use of the same
upper bound function, the difference in gaps must be attributed to the fact that
A∗+ACS produces significantly better primal solutions than the other algorithms.

• Concerning the remaining three algorithms, it can be observed that A∗+BS is
generally the weakest algorithm with respect to solution quality. However, this
algorithm usually provides better gaps. This is with the exception of instances with
|Σ| = 20 where A∗+BS also exhibits the weakest performance regarding the gaps.
The best algorithm among A∗+BS, APS and ACS-ub concerning solution quality
is ACS-ub.

Table 4.4 further summarizes the results concerning the final solution quality by showing
the average improvements (in percent) of A∗+ACS over the other algorithms, aggregated
over all values for m. This table also includes the improvements over the simple greedy

105

4. The Longest Common Palindromic Subsequence Problem

Table 4.5: Average results of the algorithms when tuned for small gaps.

(a) |Σ| = 4.

m n A∗+BS APS ACS-ub A∗ + ACS

|s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%]
100 28.9 0.1 1.3 0.0 28.9 1.6 1.9 0.0 28.9 0.0 2.6 0.0 28.9 0.1 2.2 0.0

10 500 158.6 28.4 287.7 43.5 160.3 27.4 335.9 44.2 161.1 144.7 486.8 43.4 162.0 67.7 614.2 42.0
1000 320.2 132.6 351.0 47.2 324.2 36.2 200.6 47.1 326.2 233.4 526.9 46.6 330.0 143.3 542.3 45.4
100 21.8 0.2 0.7 0.0 21.8 1.2 1.2 0.0 21.8 0.0 0.8 0.0 21.8 0.1 0.6 0.0

50 500 129.4 48.6 476.0 52.2 130.9 37.7 341.7 52.9 131.3 147.9 676.8 52.3 132.3 93.7 551.2 50.9
1000 266.2 156.0 605.5 55.4 268.2 123.9 492.4 55.6 268.9 327.3 747.1 55.4 273.0 217.4 560.3 54.1
100 20.1 0.3 0.9 0.0 20.1 1.4 1.4 0.0 20.1 0.0 1.1 0.0 20.1 0.1 0.8 0.0

100 500 122.6 55.0 606.9 54.4 123.7 69.2 438.4 55.2 124.1 139.1 852.3 54.8 124.9 55.3 607.2 53.3
1000 253.8 141.7 675.9 57.4 255.2 195.5 527.0 57.6 255.6 469.6 889.5 57.4 259.5 226.7 672.4 56.2
100 19.0 0.3 0.7 0.0 19.0 1.6 1.6 0.0 19.0 0.0 0.7 0.0 19.0 0.1 0.7 0.0

150 500 119.3 24.8 719.1 55.6 120.5 104.7 500.9 56.3 120.7 161.8 894.1 55.9 121.4 25.3 848.4 54.7
1000 247.9 28.4 743.7 58.3 249.4 481.3 830.0 58.5 249.3 214.9 900.0 58.4 253.0 142.8 720.1 57.2
100 18.5 0.4 0.8 0.0 18.5 1.6 1.6 0.0 18.5 0.1 1.0 0.0 18.5 0.1 0.7 0.0

200 500 117.3 47.7 810.6 56.2 118.0 199.4 672.2 57.1 118.4 267.5 900.0 56.8 119.5 140.8 768.1 55.2
1000 244.3 93.1 831.8 58.8 245.0 377.7 614.5 59.2 245.4 365.6 900.0 59.1 249.4 349.7 802.3 57.8

(b) |Σ| = 12.

m n A∗+BS APS ACS-ub A∗ + ACS

|s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%]
100 9.6 < 0.1 < 0.1 0.0 9.6 < 0.1 < 0.1 0.0 9.6 < 0.1 < 0.1 0.0 9.6 < 0.1 < 0.1 0.0

10 500 61.4 1.2 270.2 60.8 61.8 32.2 402.4 61.9 62.3 68.1 332.5 61.3 62.2 20.0 601.2 59.5
1000 125.7 3.3 338.6 67.0 128.1 70.6 353.7 66.8 128.7 98.2 332.3 66.6 130.0 151.0 592.1 65.3
100 5.6 < 0.1 < 0.1 0.0 5.6 < 0.1 < 0.1 0.0 5.6 < 0.1 < 0.1 0.0 5.6 < 0.1 < 0.1 0.0

50 500 43.1 2.5 426.9 69.7 43.7 38.2 418.7 70.5 43.8 44.1 574.6 70.4 44.1 80.1 621.3 68.5
1000 91.0 76.2 658.4 75.0 91.9 153.1 622.3 75.2 92.3 249.5 736.4 75.1 93.2 74.0 685.5 74.0
100 4.6 < 0.1 < 0.1 0.0 4.6 < 0.1 < 0.1 0.0 4.6 < 0.1 < 0.1 0.0 4.6 < 0.1 < 0.1 0.0

100 500 38.9 4.3 656.2 71.6 39.0 72.4 640.3 72.7 39.1 35.4 804.6 72.6 39.2 35.8 840.1 71.0
1000 83.6 17.5 759.3 76.8 84.3 248.6 696.7 77.0 84.7 287.7 854.4 76.9 85.4 143.9 896.2 75.9
100 3.8 < 0.1 < 0.1 0.0 3.8 < 0.1 < 0.1 0.0 3.8 < 0.1 < 0.1 0.0 3.8 < 0.1 < 0.1 0.0

150 500 37.0 6.5 784.6 72.7 37.1 107.3 762.7 73.7 37.2 49.3 892.7 73.7 37.3 146.8 891.5 72.1
1000 80.1 18.4 839.8 77.7 80.9 329.1 756.2 77.8 81.0 202.6 900.0 77.9 81.7 171.5 900.0 76.9
100 3.3 < 0.1 < 0.1 0.0 3.3 < 0.1 < 0.1 0.0 3.3 < 0.1 < 0.1 0.0 3.3 < 0.1 < 0.1 0.0

200 500 35.6 8.4 867.2 73.5 36.0 140.2 850.0 74.2 36.0 18.1 900.0 74.5 36.0 20.3 900.0 72.9
1000 77.9 26.3 900.0 78.2 78.6 469.9 867.9 78.4 78.8 343.4 900.0 78.3 79.4 117.8 900.0 77.5

(c) |Σ| = 20.

m n A∗+BS APS ACS-ub A∗ + ACS

|s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%]
100 5.4 < 0.1 < 0.1 0.0 5.4 < 0.1 < 0.1 0.0 5.4 < 0.1 < 0.1 0.0 5.4 < 0.1 < 0.1 0.0

10 500 34.4 39.4 457.4 66.8 38.7 15.2 493.4 64.9 38.9 8.2 532.6 64.1 38.9 17.8 581.5 62.4
1000 70.3 96.9 403.1 75.1 80.2 35.3 374.9 72.8 80.9 157.0 580.5 72.2 81.3 115.6 700.3 71.2
100 2.5 < 0.1 < 0.1 0.0 2.5 < 0.1 < 0.1 0.0 2.5 < 0.1 < 0.1 0.0 2.5 < 0.1 < 0.1 0.0

50 500 23.2 44.8 749.8 72.2 25.0 22.3 873.8 70.7 25.1 38.6 900.0 71.8 25.0 6.7 735.4 70.2
1000 50.2 155.7 786.3 80.9 54.8 87.8 654.5 80.2 55.0 115.4 900.0 79.9 55.5 124.3 825.6 79.0
100 1.3 2.9 < 0.1 0.0 1.3 2.9 < 0.1 0.0 1.3 2.9 < 0.1 0.0 1.3 2.9 < 0.1 0.0

100 500 20.4 151.5 900.0 73.7 21.9 46.9 900.0 72.9 22.1 68.5 900.0 73.6 21.9 24.1 900.0 71.6
1000 45.6 197.9 900.0 82.5 49.0 139.7 900.0 81.9 49.0 32.0 900.0 81.8 49.7 73.6 900.0 80.9
100 1.1 4.2 < 0.1 0.0 1.1 2.9 < 0.1 0.0 1.1 2.9 < 0.1 0.0 1.1 2.9 < 0.1 0.0

150 500 19.0 10.0 900.0 74.8 20.9 60.9 900.0 73.4 21.0 79.8 900.0 72.8 20.9 41.7 900.0 72.1
1000 43.2 114.9 900.0 83.3 46.7 244.5 900.0 82.7 46.7 100.4 900.0 82.7 47.0 47.2 900.0 81.8
100 1.1 3.9 < 0.1 0.0 1.1 4.7 < 0.1 0.0 1.1 4.7 < 0.1 0.0 1.1 4.7 < 0.1 0.0

200 500 18.1 52.1 900.0 76.2 19.7 104.0 900.0 74.7 19.9 112.9 900.0 73.9 19.8 288.6 900.0 73.4
1000 42.2 341.8 900.0 83.6 45.0 280.5 900.0 83.3 45.0 48.9 900.0 83.3 45.1 36.6 900.0 82.6

heuristic from [54] (see last table column). Except for the smallest instances with n = 100,
where all anytime variants were able to find proven optimal solutions, the consistent

106

4.6. Experimental Results

1 2 3 4

A*+ACS

A*+BS

ACS−ub

APS

|Σ| = 4

1 2 3 4

A*+ACS

A*+BS

ACS−ub

APS

|Σ| = 12

1 2 3 4

A*+ACS

ACS−ub

APS

A*+BS

|Σ| = 20

Figure 4.2: Critical difference plots concerning the results of the algorithms tuned for
small gaps. The benchmark instances are split according to alphabet size.

1
0

5
0

1
0
0

1
5
0

2
0
0

m

0.1

1.0

10.0

Im
p

r.
 o

f
A

*
+

A
C

S
 [

%
]

|Σ|= 4

A*+BS

ACS-ub

APS

Greedy

1
0

5
0

1
0
0

1
5
0

2
0
0

m

0.1

1.0

10.0

Im
p

r.
 o

f
A

*
+

A
C

S
 [

%
]

|Σ|= 12

A*+BS

ACS-ub

APS

Greedy

(a) Instances with n = 500.
1
0

5
0

1
0
0

1
5
0

2
0
0

m

0.1

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 20

A*+BS

ACS-ub

APS

Greedy

1
0

5
0

1
0
0

1
5
0

2
0
0

m

0.1

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 4

A*+BS

ACS-ub

APS

Greedy

1
0

5
0

1
0
0

1
5
0

2
0
0

m

0.1

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 12

A*+BS

ACS-ub

APS

Greedy

(b) Instances with n = 1000.

1
0

5
0

1
0
0

1
5
0

2
0
0

m

0.1

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 20

A*+BS

ACS-ub

APS

Greedy

Figure 4.3: Average improvements (in percent) in solution quality/length of A∗+ACS
over the other algorithms.

benefits of A∗+ACS are again clearly observable. We can see that the largest differences
occur, in general, for n = 1000 and |Σ| = 20, and the average improvements of A∗+ACS
are up to ≈ 18% over the greedy heuristic and up to 2.58% over the other anytime
algorithms. In addition, the improvements of A∗+ACS are graphically shown for n = 500
and n = 1000 in Figure 4.3; note the logarithmic scaling of the y axes. Figure 4.4 further
presents the improvements of A∗+ACS over the other anytime algorithms concerning
the final gaps.

107

4. The Longest Common Palindromic Subsequence Problem

1
0

5
0

1
0

0

1
5

0

2
0

0

m

0

2

4

6
Im

p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 4

A*+BS

ACS-ub

APS

1
0

5
0

1
0

0

1
5

0

2
0

0

m

0

2

4

6

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 12

A*+BS

ACS-ub

APS

(a) Instances with n = 500.

1
0

5
0

1
0

0

1
5

0

2
0

0

m

0

2

4

6

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 20

A*+BS

ACS-ub

APS
1

0

5
0

1
0

0

1
5

0

2
0

0

m

0

2

4

6

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 4

A*+BS

ACS-ub

APS

1
0

5
0

1
0

0

1
5

0

2
0

0

m

0

2

4

6
Im

p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 12

A*+BS

ACS-ub

APS

(b) Instances with n = 1000.

1
0

5
0

1
0

0

1
5

0

2
0

0

m

0

2

4

6

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 20

A*+BS

ACS-ub

APS

Figure 4.4: Average improvements (in percent) concerning the final gaps of A∗+ACS
over the other algorithms.

4.6.4 The Anytime Performance of the Algorithms

As stated above, apart from the solution quality and the optimality gap finally obtained by
the algorithms when the time limit is reached, another important aspect of their behaviour
concerns the anytime performance. In order to visualize the anytime performance, we
plot the evolution of the solution quality over time (averaged over ten problem instances
of the same type). Figure 4.5 shows these plots for the representative case with m = 50
and n = 1000 considering all three alphabet sizes. In addition to the line plots for
the average behaviour, boxplots indicating the variance are shown every 200 seconds.3
The evolution of the obtained average gaps over time are shown in the same way in
Figure 4.6. Note that information is only plotted concerning complete—in the sense of
non-expandable—solutions. This is the reason why, for instance, the anytime line plot
of APS in the three graphics of Figure 4.5 does not start at time zero. The list of all
anytime plots w.r.t. solution quality and gaps quality are given in Appendix B.2 and
Appendix B.3.

The following observations can be made with respect to the anytime plots on solution
quality.

3We provide the complete set of graphics, concerning all combinations of n and m, as supplementary
material under https://www.ac.tuwien.ac.at/research/problem-instances/LCPS.

108

https://www.ac.tuwien.ac.at/research/problem-instances/LCPS

4.6. Experimental Results

• A∗+ACS outperforms all other approaches during all stages of the search process.
That is, A∗+ACS finds better solutions than the other algorithms already very
early during the search process. Moreover, A∗+ACS does not seem to suffer
as much from early stagnation as A∗+BS. This boost of solution quality can
primarily be attributed to the incorporation of the new approximate expected
length calculation (4.13) as heuristic function, which turns out to be much better
guidance than classical upper bounds. A direct indication for this is obtained when
comparing the anytime plots of A∗+ACS and ACS-ub (which does not make use
of the approximate expected length function).

• APS and A∗+BS, which both make use of embedded BS runs in order to find
good heuristic solutions, show a similar anytime behaviour considering solution
quality. However, a rather large beam size (β) is required in order to obtain the
best possible solution quality at the end of a run. This fact is obviously negative
for the anytime performance of the algorithms, as they perform very few major
iterations. The role of the A∗ iterations is almost irrelevant for A∗+BS.

• ACS-ub not only outperforms A∗+BS and APS concerning the final solution
quality, but it also shows an improved anytime performance when comparing with
the ones of APS and A∗+BS.

When considering the anytime plots concerning the evolution of the gaps, the following
can be observed:

• A∗+ACS produces significantly better gaps when compared to those of the three
other algorithms, over the whole run-time of the algorithms. This means that the
significantly increased number of A∗ iterations (when compared to the parameter
setting aimed for solution quality; see Tables 4.1e and 4.2e) pays off for A∗+ACS.
However, it is also interesting to remark that, even with the parameter setting aimed
for minimizing the gaps, the algorithm still provides a performance concerning
solution quality that outperforms all other approaches.

• Even though A∗+BS uses a number of A∗ iterations that is one order of magnitude
larger than the one used by A∗+ACS, this does not pay off for the former algorithm.
In the case of the instances with |Σ| = 20, for example, A∗+BS shows by far the
worst anytime performance in the comparison.

• ACS-ub and APS show a similar anytime performance concerning the evolution of
the gaps.

• Generally, A∗+ACS shows a very good balance between ensuring good gaps and
providing high-quality heuristic solutions. This can be explained by the use of
both, an improved upper bound function and a strong guidance by our approximate
heuristic, see (4.13).

109

4. The Longest Common Palindromic Subsequence Problem

0 200 400 600 800
time[s]

260

265

270

275
s
o
l.
 q

u
a
li
ty

m= 50, n= 1000, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

85

90

95

100

s
o
l.
 q

u
a
li
ty

m= 50, n= 1000, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

48

50

52

54

56

58

s
o
l.
 q

u
a
li
ty

m= 50, n= 1000, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure 4.5: Evolution of solution quality over time for the exemplary case with m = 50
and n = 1000. The algorithms were tuned for solution quality.

Table 4.6: Overview on the 2–LCPS algorithms from the literature.

Algorithm Main idea
CPSA common palindromic subsequence automata [80]: an automaton accepting a language

consisting of all common palindromic subsequences is constructed for each input
string and its reversal; the longest path in the intersection of the two automata for
both input strings, found by topological sorting, corresponds to an optimal solution

DP dynamic programming [90]: a subproblem for the 2–LCPS problem is specified by
a 4-D vector (i, j, k, l), i, j, k, l ∈ {1, . . . , n}, representing the substrings s1[i, j] and
s2[k, l]

MNDRS minimum depth nested rectangular structures [38]: a sparse DP approach based on
a geometric problem interpretation; a rectangle is associated with each 4D–matching
(hereby, (i, k) is the bottom-left corner and (j, l) is the top-right corner); finding the
longest sequence of nested rectangles yields an optimal solution

4.6.5 Computational Study for the 2–LCPS Problem
As already pointed out in Section 4.1.1, the existing works from the literature on the
LCPS problem primarily consider exact algorithms for the problem variant with only
two input strings (m = 2), that is, the 2–LCPS problem. We implemented all these
approaches—that is, the DP and the MNDRS approaches from [38] and the CPSA

110

4.6. Experimental Results

0 200 400 600 800
time[s]

53

54

55

56

57

58

59

g
a
p
[\

%
]

m= 50, n= 1000, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

74

76

78

80

g
a
p
[\

%
]

m= 50, n= 1000, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

78

80

82

84

86

88

g
a
p
[\

%
]

m= 50, n= 1000, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure 4.6: Evolution of the optimality gaps over time for the exemplary case with
m = 50 and n = 1000. The algorithms were tuned for minimizing the gap.

approach from [80]—for the experimental evaluation. A summary of the main ideas of
the competing approaches is provided in Table 4.6; see also Section 4.1.1 for more details.
Note, however, as some of these approaches are described in the original articles only
from a theoretical point of view, we sometimes had to make our own design decisions
for what concerns, for example, suitable data structures. A detailed description of our
implementations can be found in Appendix B.4. In addition to these three approaches
we tested a basic Constraint Programming (CP) model, detailed in Appendix B.1 in
conjunction with MiniZinc 2.1.5 and its Gecode backbone solver.

Finally, our pure A∗ search as described in Section 4.3 is also considered in the comparison.
Compared to the hybrid A∗–based approaches, pure A∗ search can be expected to require
fewer node expansions to prove optimality.

The five considered approaches were applied once with a computation time limit of
900 seconds and a memory limit of 15 GB to the 150 2–LCPS instances described in
Section 4.6.1. Results are shown in Table 4.7, which lists for each instance group (n, |Σ|)
consisting of ten instances and for each approach the number of instances the method
was able to solve to proven optimality (#opt), the number of instances for which the
method was terminated either due to exceeding the time limit (#te) or the memory limit

111

4. The Longest Common Palindromic Subsequence Problem

Table 4.7: Results for the 2–LCPS instances.

n |Σ| A∗ MNDRS CPSA DP CP
#opt #te #me t[s] #opt #te #me t[s] #opt #te #me t[s] #opt #te #me t[s] #opt #te #me t[s]

4 10 0 0 0.2 10 0 0 0.4 10 0 0 0.4 10 0 0 1.1 10 0 0 15.8
100 12 10 0 0 0.2 10 0 0 < 0.1 10 0 0 0.2 10 0 0 1.1 10 0 0 4.9

20 10 0 0 0.2 10 0 0 < 0.1 10 0 0 0.2 10 0 0 1.1 10 0 0 1.3
4 10 0 0 0.6 10 0 0 8.5 10 0 0 27.4 10 0 0 25.6 0 10 0 −

200 12 10 0 0 0.3 10 0 0 0.2 10 0 0 2.7 10 0 0 20.7 0 10 0 −
20 10 0 0 0.2 10 0 0 < 0.1 10 0 0 0.8 10 0 0 13.7 0 10 0 −
4 10 0 0 5.2 10 0 0 45.7 10 0 0 431.3 10 0 0 61.5 0 10 0 −

300 12 10 0 0 0.3 10 0 0 1.4 10 0 0 22.1 10 0 0 60.9 0 10 0 −
20 10 0 0 0.2 10 0 0 < 0.1 10 0 0 5.9 10 0 0 54.0 0 10 0 −
4 10 0 0 26.6 9 0 1 158.9 0 10 0 − 0 0 10 − 0 10 0 −

400 12 10 0 0 7.9 10 0 0 7.6 10 0 0 154.0 0 0 10 − 0 10 0 −
20 10 0 0 2.9 10 0 0 1.6 10 0 0 31.1 0 0 10 − 0 10 0 −
4 10 0 0 64.9 0 0 10 − 0 10 0 − 0 0 10 − 0 10 0 −

500 12 10 0 0 24.3 10 0 0 17.8 10 0 0 745.0 0 0 10 − 0 10 0 −
20 10 0 0 9.8 10 0 0 4.9 10 0 0 108.2 0 0 10 − 0 10 0 −

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

n

100

101

102

103

ti
m
e
[s
]

>
9
0
0

>
9
0
0

>
9
0
0

>
9
0
0

>
9
0
0

>
9
0
0

>
9
0
0

* **

|Σ|=4

A*

MNDRS

CPSA

DP

CP

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

n

10−2

10−1

100

101

102

103

ti
m
e
[s
]

>
9
0
0

>
9
0
0

>
9
0
0

>
9
0
0

>
9
0
0

* *

|Σ|=12

A*

MNDRS

CPSA

DP

CP

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

n

10−2

10−1

100

101

102

103

ti
m
e
[s
]

>
9
0
0

>
9
0
0

>
9
0
0

>
9
0
0

>
9
0
0

* *

|Σ|=20

A*

MNDRS

CPSA

DP

CP

Figure 4.7: Average computation times of the algorithms for 2–LCPS.

(#me), and the average computation times of all successful runs (or “–” if no run could
prove optimality). The average computation times are also provided in graphical form in
Figure 4.7. Note that the y-axis of these plots uses a logarithmic scaling. Moreover, cases
in which the memory limit was exceeded are marked with a black asterisk, while cases in
which the maximum allowed computation time was exceeded are marked with “>900”.

The obtained results allow to draw the following conclusions:

112

4.7. Conclusions

• Our A∗ approach is the only algorithm that can find all optimal solutions and prove
their optimality both within the time limit and respecting the imposed memory
constraint.

• MNDRS is the second-best algorithm, only starting to fail for instances with |Σ| = 4
and n ∈ {400, 500}. In particular, MNDRS fails due to exceeding the memory limit
due to the data structures it requires.

• CPSA fails for the same problem instance types as MNDRS. However, in contrast
to MNDRS it fails due to exceeding the computation time limit.

• DP is only able to solve problem instances up to n = 300. Starting from n = 400,
the algorithm fails due to the memory limit.

• The CP approach is clearly the weakest one in the comparison. This approach is
only able to solve the problem instances with n = 100. In all other cases, CP fails
due to reaching the computation time limit. In fact, starting from n = 400, CP is
not able to provide any solution within the allowed computation time.

• Concerning the computation time requirements, it can be observed that A∗ and
MNDRS—when able to solve an instance—are the fastest approaches. A∗ has
advantages in the context of instances with |Σ| = 4. For instances with |Σ| = 12
both algorithms require comparable times, and for |Σ| = 12 MDRS is on average
slightly faster. On the other side, CP is by far the most time consuming approach.

Finally, we would like to stress again that A∗ is the only algorithm which was able to
solve all instances to optimality, respecting the time and memory limits. This confirms
that the way of merging the nodes in the state graph of the A∗ search has a crucial
impact on reducing the algorithms’ memory consumption.

4.7 Conclusions
In this chapter we considered the LCPS problem and studied a variety of algorithms
for it. For the exact solving of the problem, we proposed an A∗ search guided by a
more effective upper bound calculation. This algorithm is able to reliably solve LCPS
instances with two input strings to proven optimality in short time, even when the strings
have lengths up to 500 letters. None of the other solution approaches considered here
performed equally consistent.

When it comes to solve the LCPS for a larger number of strings, however, the classical
A∗ search clearly also has its limits due to the complexity of the problem. In this case,
anytime algorithms are particularly interesting for practice, as they deliver promising
heuristic solutions almost immediately, can be expected to continuously improve on them,
and still retain the chance of finishing with proven optimality when the time allows. The
first algorithm of this kind for the LCPS problem was the hybrid A∗+BS, which embeds

113

4. The Longest Common Palindromic Subsequence Problem

beam search in the A∗ framework. As a weakness it has been recognized that calling the
beam search more frequently with lower beam width is usually substantially less effective
than calling it only fewer times with larger beam width. Unfortunately, this property
stays in contrast to the goal of an anytime approach to obtain improved solutions more
continuously.

With A∗+ACS, a clearly superior approach is provided. It replaces the beam search with
iterations of anytime column search, which expands nodes at all levels more uniformly and
therefore leads to a more continuous improvement. Most importantly, we also introduced
a novel heuristic function that represents an approximation for the expected length of the
LCPS. Using this function as guidance within the ACS iterations instead of the classical
upper bound calculation leads to substantially better heuristic solutions. In order to still
obtain quality guarantees and optimality proofs when time allows, classical A∗ iterations
still rely on the (improved) upper bound calculation.

Different parameter settings are suitable for A∗+ACS whether one aims just on pure
heuristic performance or when considering also upper bounds and wanting to minimize
optimality gaps. Detailed parameter tuning for both cases was performed using irace,
and the obtained settings provide a solid basis for reasonable choices when confronted
with new instances. Our computational evaluation and comparison of different A∗-based
anytime approaches for the LCPS clearly show the benefits and superiority of the new
A∗+ACS concerning final solution quality, final remaining optimality gap, as well as the
overall anytime-behavior.

114

CHAPTER 5
The Longest Common Square

Subsequence Problem

The longest common square subsequence (LCSqS) problem, a variant of the longest
common subsequence (LCS) problem, aims at finding a subsequence common to all input
strings that is, at the same time, a square subsequence. A string s is a square iff s = s� · s�

for some string s�. The content of this chapter is based on

• an article published in the Proceedings of the 17th International Conference on
Computer Aided Systems Theory (EUROCAST 2019) conference [56]. So far the
LCSqS was considered only for two input strings. In order to tackle the LCSqS
with an arbitrary set of input strings, this paper proposes two heuristic approaches:
(i) a randomized local search, and (ii) a hybrid of variable neighborhood search
and beam search.

5.1 Introduction
The longest common square subsequence (LCSqS) problem was proposed by Inoue et
al. [91]. The length of the LCSqS can be seen as a measure of similarity between
disjunctive parts of each of the molecules. Therefore, it can give more insight into the
internal similarity of molecules, comparing to the basic variants of the LCS problem. The
information about the internal similarity between parts of the molecules can be obtained
by detecting the length of an LCSqS. Inoue et al. [91] proved that the LCSqS problem is
N P-hard for an arbitrary set of input strings and proposed two approaches for solving
the LCSqS with two input strings: (i) a Dynamic Programming (DP) approach which
runs in O(n6) time, and (ii) a sparse DP-based approach, which makes use of a special
geometric data structure known as multidimensional balanced 3D range trees. It can be
proven that, if m is fixed, the LCSqS is polynomially solvable by DP in O(n3m) time

115

5. The Longest Common Square Subsequence Problem

which is not practical even for small m. To the best of our knowledge, no algorithm has
been so far proposed for solving the LCSqS problem with an arbitrary number m ≥ 2 of
input strings. The highlights of this chapter are as follow:

• A transformation of the LCSqS problem to a series of the standard LCS problems
is described.

• An approach based on a randomized local search (RLS) and a hybrid of a Reduced
Variable Neighborhood Search (RVNS) [133] and a Beam Search (BS) for solving
the LCSqS problem with an arbitrary number of input strings are proposed.

• An approximation of the expected length of an LCS problem is incorporated into the
BS framework to guide its search towards more promising regions where high-quality
LCSqS solutions could be produced.

The rest of the chapter is organized as follows. Section 5.2 gives a basic reduction from
the LCSqS to the series of the LCS problem and two approaches to solve this problem.
Section 5.3 provides computational results, and Section 5.4 gives an overview over this
study and some research questions which might be promising for further consideration.

5.2 Algorithms for Solving the LCSqS Problem
Let us denote by P := {(q1, . . . , qm) : 1 ≤ qi ≤ |si|} ⊂ Nm all possibilities for partitioning
the strings from S each one into two consecutive substrings. For each q ∈ P, we
define the left and right partitions of S by SL,q= {s1[1, q1], . . . , sm[1, qm]} and SR,q =
{s1[q1 + 1, |s1|], . . . , sm[qm + 1, |sm|]}, respectively. Let Sq := SL,q ∪ SR,q be the joint set
of these partitions. Finding an optimal solution s∗

lcsqs to the LCSqS problem can then
be done as follows. First, an optimal LCS s∗

lcs,q must be derived for all Sq, q ∈ P. Let
s∗

lcs = arg max{|s∗
lcs,q| : q ∈ P} Then, s∗

lcsqs = s∗
lcs ·s∗

lcs. Unfortunately, the LCS problem is
already N P–hard [128], and the size of P grows exponentially with the instance size. This
approach is, therefore, not practical. However, we will make use of this decomposition
approach in a heuristic way as shown in the following two sections.

5.2.1 Randomized Local Search Approach
In this section we adapt and iterate Best–Next constructive heuristic (BNH) [65] (see
Chapter 2.2.1) for the LCS problem in order to derive approximate LCSqS solutions in the
sense of a randomized local search (RLS). Pseudocode of the RLS if given in Algorithm 22.
We start with the q =

�
� |s1|

2 �, . . . , � |sm|
2 �

�
and by executing a BNH on the corresponding

set Sq to produce an initial approximate LCSqS solution slcsqs = BNH(Sq)2. At each
iteration, q is perturbed by adding to each qi, i = 1, . . . , m, a random offset sampled
from the discretized normal distribution �N (0, σ2)� with a probability destr ∈ (0, 1),
where the standard deviation is a parameter of the algorithm. BNH is applied to

116

5.2. Algorithms for Solving the LCSqS Problem

Algorithm 22 Randomized Local Search
1: Input: an instance (S, Σ), destruction parameter destr ∈ (0, 1), standard deviation

σ
2: Output: a feasible LCSqS solution
3: q ← qi =

� |si|
2

�
, i = 1, ..., m

4: slcsqs ← ε
5: while tmax exceeded do
6: q) ← perturb q acc. to destr probability defining offset w.r.t. standard distr. σ
7: s ← BNH(Sq�)
8: if 2 · |s| > |sbest| then
9: slcsqs ← s · s

10: q ← q�

11: end if
12: end while
13: return sbest

the resulting string set Sq for producing a new solution. A better solution is always
accepted as new incumbent solution slcsqs. The whole process is iterated until a time
limit tmax > 0 is exceeded. Note that if slcsqs is the current incumbent, only values in
{|slcsqs|/2 + 1, . . . , |si| − |slcsqs|/2 − 1} for qi can lead to better solutions. We therefore
iterate the random sampling of each qi until a value in this range is obtained.

5.2.2 RVNS&BS Approach
As an alternative to the RLS described above we consider a variable neighborhood search
approach [133]. More precisely, we use a version of the VNS with no local search method
included, known as Reduced VNS (RVNS).

For a current vector q ∈ P, we define a move in the k-th neighborhood, k = 1, . . . , m, by
perturbing exactly k randomly chosen positions as above by adding a discretized normally
distributed sampled random offset. Again, we take care not to choose meaningless
small or larges values. We then evaluate q by the following the 3-step process. We first
calculate ubq = 2 · UB(Sq), and if ubq ≤ |slcsqs|, q cannot yield an improved incumbent
solution and q is discarded. Otherwise, we perform a fast evaluation of q by applying
BNH which yields a solution s = (BNH(Sq�))2. If |s| > α · |slcsqs|, where α ∈ (0, 1) is
a threshold parameter of the algorithm, we consider q promising and further execute
BS on Sq, yielding solution sbs = (BS(Sq�

, β))2. Again, the incumbent solution slcsqs
is updated by any obtained better solution. If an improvement has been achieved, the
RVNS&BS always continues with the first neighborhood, i.e. k := 1, otherwise with the
next neighborhood, i.e. k := k + 1 until k = m + 1 in which case k is reset to 1. In
order to improve the performance, we store all partitionings evaluated by BS, together
with their evaluations, in a hash map and retrieve these values in case the corresponding
partitionings are re-encountered.

117

5. The Longest Common Square Subsequence Problem

Algorithm 23 RVNS&BS algorithm for the LCSqS
1: Input: an LCSqS instance, β: beam width, σ: standard deviation, α: a trash-hold

of performing BS
2: Output: a feasible LCSqS solution
3: q ←

�
� |s1|

2 �, . . . , � |sm|
2 �

�
, k-exchange neighborhood structures {Nk}m

k=1
4: s ← BS(q, β) //store partitionings for which BS has been performed
5: C[q] ← 2 · |s|
6: slcsqs ← s · s
7: while tmax is not exceeded do
8: k ← 1
9: while k ≤ m do

10: q� ← perturb k positions randomly from q by a random offset σ //shake
11: ubq� ← UB(q�)
12: if ubq� > |slcsqs| then
13: s ← BNH(q�)
14: if 2|s| > α · |slcsqs| then
15: if q /∈ C then //evaluate node
16: s ← BS(q�, β)
17: C[q�] ← 2 · |s|
18: else
19: fq� ← C[q�] // BS already performed for q�

20: end if
21: end if
22: if 2|s| > |slcsqs| then
23: slcsqs ← s · s
24: q ← q�

25: k ← 1
26: else
27: k ← k + 1
28: end if
29: end if
30: end while
31: end while
32: return slcsqs

5.3 Computational Experiments
The algorithms are implemented in C++ and all experiments are performed on a single
core of an Intel Xeon E5-2640 with 2.40GHz and 8 GB of memory.

We used the set of benchmark instances provided in [18] for the LCS problem. This
instance set consists of ten randomly generated instances for each combination of the
number of input strings m ∈ {10, 50, 100, 150, 200}, the length of the input strings

118

5.3. Computational Experiments

Table 5.1: Selected results for n = 100.
m |Σ| RVNS & BS RLS & BS RVNS+Dive RLS

|s| tbest[s] |s| tbest[s] |s| tbest[s] |s| tbest[s]
10 4 27.08 67.71 26.54 44.94 26.96 51.20 26.42 34.40
10 12 8.24 17.73 8.04 13.59 8.28 19.27 7.70 21.92
10 20 3.84 0.02 4.00 1.66 3.96 0.05 4.00 4.44
50 4 18.54 10.53 18.16 24.12 18.54 45.81 18.04 19.43
50 12 3.90 15.34 3.82 11.01 3.88 5.00 3.80 28.98
50 20 0.20 0.01 0.46 4.77 0.20 0.00 0.40 0.01

100 4 16.14 16.72 16.02 17.95 16.14 8.44 16.00 28.95
100 12 1.60 0.02 2.00 0.10 1.64 6.19 2.00 0.39
100 20 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
150 4 14.34 43.40 14.40 38.22 15.06 85.49 14.28 38.18
150 12 0.40 0.03 2.00 10.47 0.40 0.00 1.94 25.31
150 20 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00
200 4 14.00 4.88 14.00 8.68 14.00 1.36 13.94 24.12
200 12 0.00 0.03 1.58 33.89 0.00 0.00 1.34 60.30
200 20 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.2: Results for n = 500.
m |Σ| RVNS & BS RLS & BS RVNS+Dive RLS

|s| tbest[s] |s| tbest[s] |s| tbest[s] |s| tbest[s]
10 4 156.58 140.99 156.14 146.08 149.78 160.69 149.24 110.09
10 12 58.64 116.44 58.16 126.15 56.16 112.91 56.00 72.37
10 20 35.78 85.44 35.12 48.07 34.54 50.42 34.56 71.16
50 4 124.30 52.66 124.12 160.39 120.32 86.33 120.12 109.37
50 12 38.66 60.86 38.38 60.35 38.04 92.53 38.02 44.35
50 20 21.14 78.62 20.52 34.12 20.64 66.00 20.68 61.19

100 4 115.94 68.28 115.64 116.64 112.34 84.31 111.86 98.60
100 12 34.00 56.69 33.82 124.41 32.54 46.40 33.14 97.40
100 20 18.00 25.46 17.90 86.93 17.38 105.82 17.52 44.17
150 4 112.00 40.02 111.84 105.86 108.78 119.46 107.60 92.53
150 12 31.98 104.70 31.54 105.95 30.42 52.22 30.62 21.20
150 20 16.00 5.24 16.00 8.46 16.00 31.58 16.00 16.52
200 4 109.86 152.67 108.78 102.03 106.22 66.72 104.94 90.66
200 12 30.00 24.29 30.00 47.88 29.26 146.88 29.66 93.29
200 20 14.48 54.76 14.26 35.50 14.04 3.51 14.10 12.82

n ∈ {100, 500, 1000}, and the alphabet size |Σ| ∈ {4, 12, 20}. This makes a total of 450
problem instances. We apply each algorithm ten times to each instance, with a time
limit of 600 CPU seconds.

From preliminary experiments we noticed that the behavior of our algorithms mostly
depends on the length n of the input strings. Therefore, we tuned the algorithms

119

5. The Longest Common Square Subsequence Problem

Table 5.3: Results for n = 1000.
m |Σ| RVNS & BS RLS & BS RVNS+Dive RLS

|s| tbest[s] |s| tbest[s] |s| tbest[s] |s| tbest[s]
10 4 321.14 206.16 320.94 193.50 304.48 186.65 304.34 161.08
10 12 123.88 118.87 123.68 155.13 117.86 151.51 117.88 134.88
10 20 76.84 126.40 76.66 141.40 73.80 118.86 73.72 76.98
50 4 261.52 127.81 260.82 135.14 252.94 131.88 249.84 153.18
50 12 86.02 113.80 85.92 146.46 83.34 132.11 83.98 100.37
50 20 49.78 116.89 49.76 188.74 48.12 54.48 48.70 74.04

100 4 247.20 197.87 246.24 147.54 240.24 109.11 234.36 145.40
100 12 77.38 211.06 77.50 209.02 75.44 137.65 75.28 118.57
100 20 43.34 161.50 43.40 201.43 42.02 17.65 42.28 30.80
150 4 240.00 167.73 239.12 178.24 234.02 127.31 227.02 127.81
150 12 73.76 181.25 73.42 251.89 71.76 121.40 71.36 120.95
150 20 40.02 114.79 40.00 140.61 39.88 121.36 39.96 59.40
200 4 235.50 213.72 234.44 202.34 230.10 135.37 222.66 145.99
200 12 70.76 211.03 70.28 243.41 69.10 144.78 68.30 44.32
200 20 38.04 132.86 38.12 165.15 38.00 59.74 38.02 24.07

separately for instances with string length 100, 500, and 1000. The irace tool [127] was
used for this purpose. For RLS, we obtained destr = 0.2 and σ = 5 (for n = 100),
destr = 0.3 and σ = 10 (for n = 500), and destr = 0.3 and σ = 20 (for n = 1000). For
RVNS&BS, we obtained α = 0.9 and β = 100 (for n = 100), α = 0.9 and β = 200 (for
n = 500), and α = 0.9 and β = 200 (for n = 1000). For σ of the RVNS&BS, irace yielded
the same values as for the RLS. Moreover, EX was preferred over UB as a guidance for
BS.

We additionally include here results for RVNS&Dive, which is RVNS&BS with β = 1. In
this case, BS reduces to a simple greedy heuristic (or dive). This was done for checking
the impact of a higher beam size. Moreover, RLS&BS refers to a version of RLS in
which BNH is replaced by BS with the same beam size as in RVNS&BS. Selected results
are shown in Tables 5.1–5.3. For each of the algorithms, we present the avg. solution
quality and the avg. median time when the best solution was found. From the results we
conclude the following:

• RVNS&BS produces solutions of significantly better quality than the other algo-
rithms on harder instances.

• The rather high beam size is useful for finding approximate solutions of higher
quality.

• Concerning the computation time for harder instances, the times of the RVNS&BS
are usually higher than those of the RLS. It seems harder for BNH to help to
improve solution quality in later stages of the RLS than for the BS in RVNS&BS.

120

5.3. Computational Experiments

1 5 10 20 30
7.0

7.5

8.0

8.5

9.0

A
vg

. s
ol

ut
io

n
qu

al
it

y

Instance: m = 10, n = 100, |Σ| = 12.

1 5 10 20 50 100
121

122

123

124

125

A
vg

. s
ol

ut
io

n
qu

al
it

y

Instance: m = 50, n = 500, |Σ| = 4.

Figure 5.1: The impact of parameter σ on the solution quality of RVNS&BS.

4 12 20
| |

0

2

4

6

8

10

12

14

%
-im

pr
. o

f R
V

N
S&

B
S:

 B
S

gu
id

ed
 b

y
EX

 v
s.

 U
B

n = 500.

4 12 20
| |

0

2

4

6

8

10

%
-im

pr
. o

f R
V

N
S&

B
S:

 B
S

gu
id

ed
 b

y
EX

 v
s.

 U
B

n = 1000.

Figure 5.2: Improvements of solution quality when using EX instead of UB for guiding
BS in RVNS&BS

• From Figure 5.1 we can see that, for smaller instances with larger alphabet sizes,
stronger jumps in the search space are in essence preferred. This is because a small
number of feasible solutions is distributed over the search space, and to find them
it is convenient to allow large, random jumps in the search. When n is larger,
choosing to do larger jumps in the space is not a good option (see the bar plot
on the right). This can be explained by the fact that already the vector q that
is defined by the middle of all input strings (which are generated uniformly at
random) yields a promising solution, and many promising partitions are clustered
around this vector. By allowing larger jumps, we move further away from this
middle vector quickly, which yields usually in weaker solutions.

Figure 5.2 provides box plots showing the relative differences between the quality of the
solutions obtained by RVNS&BS using EX and RVNS&BS using UB (β = 200). The
figure shows a clear advantage of several percent when using EX over the classical upper
bound UB as search guidance.

121

5. The Longest Common Square Subsequence Problem

5.4 Conclusions
This article provides the first heuristic approaches to solve the LCSqS problem for an
arbitrary set of input strings. We applied a reduction of the LCSqS problem to a series of
standard LCS problems by introducing a partitioning of the input strings as a first-level
decision. Our RVNS framework explores the space of partitionings, which are then
tackled by BNH and, if promising, by BS. Hereby, BS is guided by a heuristic which
approximates the expected length of an LCS. Overall, RVNS&BS yields significantly
better solutions that the also proposed, simpler RLS.

122

CHAPTER 6
Application of Maximum Clique

Solvers to Solve LCS Problems

This chapter describes a relation between the well-known Maximal Clique (MC) problem
and the longest common subsequence problem and the variants thereof.

In the course of this work we have published

• an article in the Computers & Operations Research journal (IF=3.002) [17].

In this chapter, we present an unified approach for solving string problems by transforming
an instance of the LCS problem (and three variants thereof) into an MC problem instance,
called a conflict graph. Solving the maximum independent set problem in this conflict
graph corresponds to solving the longest common subsequence on the original LCS
instance. We actually solve MC problem on the complement of the conflict graphs by
means of the best known exact and heuristic MC solvers from literature. A way of
reducing the conflict graphs is also presented and its effectiveness is demonstrated on
various benchmark sets from the literature. We emphasize that the core ides of work
are introduced by C. Blum. The main contributions of the author of this thesis were
related to finding an efficient and effective reduction of the size of conflict graphs, the
implementation of the reduction as well as testing and demonstrating the benefits of the
proposed reduction technique.

6.1 Introduction
It has already been mentioned that the classicl LCS has a variety of applications. Some
real-life applications require additional constraints, motivating the studies of the problems
which are variations of the basic LCS problem. These include the repetition-free longest

123

6. Application of Maximum Clique Solvers to Solve LCS Problems

common subsequence (RFLCS) problem [2], the constrained longest common subsequence
(CLCS) problem [162], and the generalized constrained longest common subsequence
(GCLCS) problem [32]. Others are mentioned in survey papers such as [22] in Chapter 4
the LCPS problem has been considered and in Chapter 5 the LCSqS problem has been
studied. Henceforth, in this chapter we refer to the variants of the classical LCS problem,
in general, as LCS-type problems.

Although LCS-type problems are presented in the literature for almost fifty years, their
computational difficulties cause the research is still active on these topics. In this
chapter we propose the new approach of transforming instances of the classical LCS-type
problems into the instances of the maximal clique (MC) problem [21]. The core idea
of the transformation is to construct, for each LCS instance, a corresponding conflict
graph [119]. Hereby, an independent set in the conflict graph corresponds to a common
subsequence concerning the original LCS instance. Moreover, a maximum independent
set (MIS) in the conflict graphs corresponds to a longest common subsequence of the
LCS instance. Note that finding a MIS in the conflict graph is equivalent to finding a
largest clique on the complement graph of the conflict graph. Therefore, an LCS problem
instance can be solved by finding a largest clique in the complement of the conflict graph.

The advantages of this approach are twofold. First, because of a steady improvement
of the solvers for the MC problem, we have high-performing algorithms at our disposal
that may make solving an MC problem on the complement of the conflict graph faster
than solving the original LCS problem with known exact algorithms. Second, we will
show that our transformation–in addition to the classical LCS problem–can be used to
tackle other LCS-type problems from the literature, thus providing a unified approach
for different LCS-type problems.

In the rest of this chapter, Section 6.2 provides the details of the transformations required
to build the conflict graphs of the LCS-type problems considered in this work. In
Section 6.3, a way to reduce the size of conflict graphs is proposed while in Section 6.4
experimental studies on this approach are reported. Section 6.5 highlights the conclusions
on these studies and outlines some directions for future work.

6.2 Considered problems and transformations
This section start by defining a way to transform an instance of the classical LCS problem
into a conflict graph in which a maximum independent set corresponds to a longest
common subsequence of the original problem instance. Henceforth, an LCS problem
instance is described by a pair (S, Σ) in which S = {s1, . . . , sm} is a set of input strings
over the finite alphabet Σ. Given such an instance, we construct an undirected multi-
layered graph G = (V, E) whose vertex set V is partitioned into sets {V1, . . . , Vm}. Each
Vi is called a layer and consists of |si| vertices. Note that each layer represents exactly
one input string and each vertex of the layer represents a position in the string. More
specifically, Vi = {vi,1, . . . , vi,|si|}, where vertex vi,j represents the j-th position of input
string si.

124

6.2. Considered problems and transformations

A C T A G

T A G C

AT T A C G

Layer 1

Layer 2

Layer 3

Figure 6.1: The undirected multi-layered graph G obtained from the LCS instance
(S = {s1 = ACTAG, s2 = TAGC, s3 = ATACG}, Σ = {A,C,T,G}).

We also partition the edge set E of the multi-layered graph G into sets {E1, . . . , Em−1},
where Ei is the set of edges between layers Vi and Vi+1. Set Ei contains an edge connecting
vertices vi,j and vi+1,k if and only if si[j] = si+1[k], i.e., if the letter at position j of input
string si is equal to the letter at position k of input string si+1. Figure 6.1 shows an
example of this graph construction for three strings over an alphabet of size four.

Any sequence p = (v1,j1 , v2,j2 , . . . , vm,jm) of m vertices with the i-th vertex of p being
from the i-th layer of G is called a complete path in G iff fulfills the condition that the
letters at the positions of the input strings corresponding to the m − 1 vertices are all
the same, that is, s1[j1] = s2[j2] = . . . = sn[jm]. Note that if p fulfills this condition,
there is—by definition—an edge between each pair of consecutive vertices of p. Given a
complete path p = (v1,j1 , v2,j2 , . . . , vm,jm), the common letter at positions j1, . . . , jm of
the m input strings is also called the letter of p. We denote it by /(p).

Two complete paths p and q, with p = (v1,j1 , v2,j2 , . . . , vm,jm) and q = (v1,k1 , v2,k2 , . . . , vm,km),
are said to cross if and only if there is at least one index l ∈ {1, . . . , m} such that jl ≤ kl

and at least one index r ∈ {1, . . . m}, r %= l, such that jr ≥ kr. To make the concept
of crossing paths clearer, refer to Figure 6.2 which shows two examples based on the
instance depicted in Figure 6.1. In Figure 6.2 (left), the solid and dashed paths are
crossing because they contain crossing edges between layers 1 and 2. In Figure 6.2 (right),
they cross because they contain a common vertex in layer 2.

Given these notations, the classical LCS problem can be transformed into the maximum
independent set (MIS) problem as follows. First, note that solving the classical LCS
problem relates to finding the largest set of non-crossing complete paths in the respective
multi-layered graph G. Based on graph G we create the conflict graph Gc = (V c, Ec)
where each vertex corresponds to the complete path of the graph G and an edge between
two vertices exists iff the corresponding path cross. Then, solving the LCS problem is
equivalent to solving the MIS problem in Gc which, in turn, is equivalent to solving the
MC problem in the complement Gc of graph Gc.

In the rest of this section we consider three LCS-type problems and show how analogous
transformations allow us to reduce each problem to an MC problem on the complement

125

6. Application of Maximum Clique Solvers to Solve LCS Problems

A C T A G

T A G C

AT T A C G

Layer 1

Layer 2

Layer 3

A C T A G

T A G C

AT T A C G

Layer 1

Layer 2

Layer 3

Figure 6.2: Two examples of complete paths that cross, based on the LCS instance
from 6.1. (a) Paths p = (v1,1, v2,2, v3,4) and q = (v1,3, v2,1, v3,1) cross because their
corresponding edges between layers 1 and 2 cross. (b) Paths p = (v1,1, v2,2, v3,4) and
q = (v1,4, v2,2, v3,2) cross because they both include vertex v2,2 from the second layer.

of conflict graphs.

6.2.1 Repetition-Free Longest Common Subsequence Problem

The repetition-free longest common subsequence (RFLCS) problem [2] is an LCS variant
in which valid solutions are further constrained to contain each possible letter at most
once. It was introduced as a comparison measure for sequences of different biological
origin. In the related literature, this problem is generally considered for the case m = 2,
that is, for two input strings. Note that even for m = 2 the problem is APX –hard (which
implies it is N P-hard), as shown by [2]. It is still an open question whether the RFLCS
admits a constant factor approximation. A fixed parameter tractable (FTP) algorithm
was presented in [12]. Blum and Blesa [14] proposed the current best specialized algorithm
for this problem: a construct, merge, solve and adapt (CMSA) approach in which the
authors initialise the reduced sub-instance by beam search. In [14], the authors show
how their algorithm outperforms other metaheuristics and the application of Cplex to
an ILP model of the problem.

To generate the conflict graph for the RFLCS problem, we first build the multi-layered
graph G concerning the two input strings, just like in the case of the classical LCS
problem. Note that, due to the two input strings, G will have two layers. Two complete
paths p and q of G are in conflict if they fulfill at least one of the following two conditions:

1. p and q cross each other.

2. p and q have the same letter: /(p) = /(q).

Note that the second condition ensures that no letter appears more than once in a
solution.

126

6.2. Considered problems and transformations

6.2.2 Longest Arc-Preserving Common Subsequence Problem
The second considered LCS variant is known as the longest arc-preserving common
subsequence (LAPCS) problem [62]. As in the case of the RFLCS problem, the LAPCS
problem is studied for two input strings/sequences in the literature. Note that, in the
case of the LAPCS problem, the input strings are arc-annotated. An arc annotation of a
string s is a pair of positions in s, say (i1, i2) with i1, i2 ∈ {1, . . . , |s|} and i1 < i2. An arc-
annotated sequence is a pair (s, Ps) where s is a string over some finite alphabet Σ and Ps

is the set of arc annotations of s. Given two arc-annotated sequences (s1, P1) and (s2, P2),
the two-layered multi-graph G is constructed for s1 and s2 in the same way as shown
before. Any set S of non-crossing complete paths in P is a feasible LAPCS solution if the
following additional condition is fulfilled. For any pair p = (v1,j1 , v2,j2) %= q = (v1,k1 , v2,k2)
of non-crossing complete paths from S with j1 < k1 it must hold that if (j1, k1) is an arc
annotation of s1—that is, if (j1, k1) ∈ P1—then (j2, k2) must be an arc annotation of s2,
and vice versa. The optimization goal is to find a largest feasible solution S.

Arc-annotated sequences are useful for the structural comparison of RNA sequences.
Figure 6.3 shows an example of an arc-annotated RNA sequence in which the arc anno-
tations are indicated as solid lines linking the nucleobases ACGU. [61, 62] introduced the
LACPS problem and showed that it is N P-hard already for two strings. Researchers have
also focused on special cases of the problem and developed polynomial time algorithms,
approximation algorithms and fixed parameter tractability results for some of these
cases [62, 97, 75, 72].

Blum and Blesa [15] proposed the best specialized algorithms for the LAPCS. Depending
on the problem instance characteristics, the state-of-the-art algorithm is either a heuristic
based on problem reduction, or an iterative probabilistic algorithm, both of which solve
reduced ILP models. The authors compared these algorithms with the application of
Cplex to solve the MIS problem in the corresponding conflict graphs.

To generate the conflict graph for a LAPCS problem instance consisting of (s1, P1) and
(s2, P2), we first construct the two-layered multi-graph G based on s1 and s2, as done in
the classical LCS problem case. Two complete paths p = (v1,j1 , v2,j2) %= q = (v1,k1 , v2,k2)
with j1 < k1 are in conflict if and only if they fulfill at least one of the following two
conditions:

1. p and q cross each other.

2. p and q violate the arc preservation constraints. This happens when either (j1, k1) ∈
P1 and (j2, k2) /∈ P2, or (j2, k2) ∈ P2 and (j1, k1) /∈ P1.

Figure 6.4 shows an example LAPCS instance. The solution depicted with dashed lines is
infeasible because it matches v1,2 and v1,4 in s1 with, respectively, v2,4 and v2,5 in s2. An
arc annotation links the positions in s1 but not in s2, thus violating condition 2 above.
The solution depicted with straight, solid lines, instead, is feasible.

127

6. Application of Maximum Clique Solvers to Solve LCS Problems

C
C A U G C C G G A C G U A C G G A C A A A C G

C
C
G
C
ACUUCCUC

A
AAUUCAGA

C
GCACUUUU

A C A A G U G U
U

A C G C G C AU
U
G A GG G

G
G
U
A
A
G

GU C G G A G G
AAC
U U

C
U
U
CG

U
U

G
C
A
U
G

C
U C G U G A G GA

G
C
G
G
A G GA C G

A
AAGUCCU

G
C

CG
G
G
U
G
U A C CA

G
A
A
A

U
UCGA

U
C
U
CU

U
G

G
UUCGU

C
C
U
U

U G
A
G
A
UC

U
U

G
A
A
A

C G
C

A
C

C
CGAG

A
A

G
A

U
GU
C

U
U
U
U
A

G
U

G
CAAUGU

G
C
G
G
C A CCU

G
U

G A AA
A

GUC
AG

G
C
A
A
C
U

C
G

AUUCCGAC
U

A
A
U
C
UUGUCUGUAUGUCUGGUAUG

A
U
U

1
2040

60
80

100

120

140

160

180

200

220

240

260
280

Schizosaccharomyces octosporus
nuclear RNase P RNA

Figure 6.3: Example of an arc-annotated sequence (RNA of Schizosaccharomyces oc-
tosporus). The connections between different positions of the RNA sequence, indicated
by short lines, are the members of the arc annotation set. Note that this graphic was
obtained from the RNase P Database [26].

T A G C

AT T A C G

Layer 1

Layer 2

Figure 6.4: This example shows the undirected multi-layered graph G obtained from the
LAPCS instance consisting of (s1 = TAGC, P1 = {(2, 4)}) and (s2 = TATACG, P2 =
{(1, 2), (2, 5)}). The solution in dashed lines {p = (v1,1, v2,1), q = (v1,2, v2,4), r =
(v1,4, v2,5)} is not valid because arc (2, 4) ∈ P1 connects two chosen positions in s1,
while the corresponding chosen positions in s2 — that is, positions 4 and 5 — are not
connected by an arc from P2. The solution in straight, solid lines is, in contrast, feasible.

128

6.2. Considered problems and transformations

6.2.3 Longest Common Palindromic Subsequence Problem

Finally, we also show how to transform the so-called longest common palindromic
subsequence (LCPS) problem [38] into instances of the MC problem instances. Even
though we will show later that this transformation is not practical for benchmark instances
from the literature, because as the resulting conflict graphs are too large, we present the
transformation, since it might help in order to derive transformations for other LCS-type
problems in subsequent works.

The LCPS problem is an LCS variant in which we look for a longest common subsequence
s∗ of m input strings such that s∗ is also a palindrome, see Chapter 4. Remember that a
string is a palindrome if it coincides with its reverse. For example, KAYAK is a palindrome.
In many studies [38, 80, 89] specialized exact algorithms for the LCPS problem on two
input strings (2–LCPS) are presented. Moreover, [89] proved—based on results from [1]—
that the theoretical lower bound on solving the 2–LCPS is O(n4). [54, 57] (see Section 4.5)
presented the first works on the instances with m > 2, introducing two A∗-based hybrid
anytime algorithms, that is, exact algorithms that return a feasible solution of reasonable
quality whenever they are terminated [165].

After generating the layered multi-graph G for the m input strings, in the same way as
in the cases outlined before, the conflict graph is built as follows. The set of vertices
V c of the conflict graph Gc consists of two disjoint subsets of vertices: Vsingle and Vpairs.
More specifically, Vsingle contains a vertex vp for each complete path p ∈ P , and Vpairs
contains a vertex vp,q for each pair of complete paths p %= q with /(p) = /(q) that do not
cross each other. Notice that in the previous cases—that is, the classical LCS problem,
the RFLCS problem, and the LAPCS problem—the number of vertices in the conflict
graph was equal to the number of complete paths in the multi-layered graph G, say z. In
contrast, the number of vertices in the conflict graph of the LCPS problem is of the order
O(z + z2). Finally, we define the edges of the conflict graph by the following conflict
relations:

1. Conflicts between vertices from Vsingle: these vertices are all in conflict with each
other. This is because the vertices from Vsingle model the possibility to have a
singleton letter in the middle of a solution. For example, KAYAK has Y as a singleton
letter in the middle. In contrast, KAAK for example, has no singleton letter in
the middle. As a solution can have at most one singleton letter in the middle, all
vertices from Vsingle are in conflict with each other. As a consequence, all other
vertices that form part of a solution are from Vpairs. In the case of KAYAK, for
example, there would be two such vertices: one representing the two K’s and one
for the two A’s.

2. Conflicts between vertices from Vpairs: to describe a conflict between two such
vertices, it is actually easier to state when they are not in conflict with each other.

129

6. Application of Maximum Clique Solvers to Solve LCS Problems

Consider two vertices vp,q, vp�,q� ∈ Vpairs, with

p = (v1,j1 , . . . , vm,jm)
q = (v1,k1 , . . . , vm,km)
p� = (v1,j�

1
, . . . , vm,j�

m
)

q� = (v1,k�
1
, . . . , vm,k�

m
)

and assume wlog that j1 < k1 and that j�
1 < k�

1. Then vp,q and vp�,q� are not in
conflict if either ji < j�

i < k�
i < ki for all i = 1, . . . , m, or j�

i < ji < ki < k�
i for all

i = 1, . . . , m.

3. Conflicts between vertices from Vsingle and vertices from Vpairs: again, we state
when there is no conflict between two such vertices. Consider vertex vp� ∈ Vsingle
and vertex vp,q ∈ Vpairs, with

p = (v1,j1 , . . . , vm,jm)
q = (v1,k1 , . . . , vm,km)
p� = (v1,j�

1
, . . . , vm,j�

m
)

and assume w.l.o.g. that j1 < k1. Then vp�� and vp,p� are not in conflict if ji < j�
i < ki

for all i = 1, . . . , m.

Notice that all vertices from Vpairs have weight 2 and, if chosen in the final clique, they
will contribute for two letters in the respective solution.

Figure 6.5 shows the multi-layerd graph for input strings TAGCAT and TATACG. Complete
paths are shown by lines and, in particular, we use dashed and dotted lines to highlight
relevant paths concerning letters T and A. Note how the rightmost highlighted paths
for T and A are crossing. Therefore, the potential solution TAAT cannot be constructed.
This string is only a substring of the first input string, but not of the second one. The
optimal solution in this example is, in fact, TAT.

6.3 Conflict graph reduction
The size of the conflict graphs (in terms of the number of vertices) mainly depends on the
length and the number of input strings. The sizes of the conflict graphs can be expressed
as follows: O(nm) in the case of the classical LCS problem, O(n2) in the case of the
RFLCS and LAPCS problems, and O(nm + n2m) in the case of the LCPS problem. In
fact, during preliminary experiments, we realized that the conflict graphs are too large,
even for rather small problem instances from the literature, in the cases of the classical
LCS problem and the LCPS problem. Therefore, we henceforth focus exclusively on
RFLCS and LAPCS problems. However, even for these two problems, the conflict graphs
are very large when large-scale problem instances are concerned. Therefore, we decided

130

6.3. Conflict graph reduction

Layer 1

Layer 2

T A G C

T A T A C G

A T

Figure 6.5: The multi-layered graph G obtained from the LCPS instance on the two
input strings s1 = TAGCAT and s2 = TATACG. This graph contains 10 complete paths,
corresponding to the 10 vertices of the conflict graph (Vsingle). Two pairs of non-crossing
complete paths have the same letters: the first pair (with letter T) is indicated in light
gray and dashed lines, the second one (with letter A) is indicated in dark gray and dotted
lines.

to investigate techniques for reducing the size of the conflict graphs. Note that there are
potentially two strategies for reducing the size of a given conflict graph Gc: (i) making
use of problem-specific information relative to the respective LCS-type problems, and
(ii) analyzing and reducing Gc from the MC problem. However, the latter strategy has
proven ineffective in preliminary computational experiments. This is because solver Lmc
(the state-of-the-art exact MC problem solver that we used [94, 121]) already implements
powerful graph reduction procedures which were not able to reduce Gc. Therefore we
make use of LCS-specific information to reduce the conflict graph in a novel way.

The main idea for our reduction of the conflict graphs is based on making use of a
high-quality primal (lower) bound value lb for the tackled problem, that is, the value of
a high-quality solution. The value of the best-known solution from the literature can be
taken for this purpose, for example. Before we proceed, the following notation is required:
given a string t and two indices l, r ∈ {1, . . . , |t|} with l ≤ r, t[l, r] denotes the substring
of t starting at position l and ending at position r. Now, based on the primal bound lb,
it can be decided for every complete path p = v1,j1 , . . . , vm,jm of the multi-layered graph,
if the corresponding vertex vp can be removed from the conflict graph Gc without losing
an optimal solution.1 This is done as follows. First, note that the complete path under
consideration splits each input string si into two parts: si[1, ji − 1] (the left-hand side)
and si[ji + 1, |si|] (the right-hand side). Henceforth we denote the set of left-hand sides
corresponding to a complete path p by SL

p , and the set of right-hand sides by SR
p . More

formally:

SL
p =

�
si[1, ji − 1] | i = 1, . . . , m

SR

p =
�
si[ji + 1, |si|] | i = 1, . . . , m

1Note that the conflict graph reduction will be described for a general case of n input strings, even

though we only have two input strings in the cases of the RFLCS and LAPCS problems.

131

6. Application of Maximum Clique Solvers to Solve LCS Problems

Note that both SL
p and SR

p are subinstances of the original problem instance. Therefore,
any upper bound function UB() known for the problem (RFLCS, respectively LAPCS)
can be used for (over)-estimating the quality of the length of an optimal solution in SL

p

and SR
p . Given such an upper bound function UB(), vertex vp and all corresponding

edges can be deleted from the conflict graph Gc iff

UB(SL
p) + 1 + UB(SR

p) < lb . (6.1)

For the following discussion, bear in mind that any upper bound for the classical LCS
problem is also an upper bound for the RFLCS and LAPCS problems. This is because
these two problems correspond to classical LCS problems with additional constraints.
In other words, the set of valid solutions of an RFLCS problem instance, respectively a
LAPCS problem instance, is a subset of the set of valid solutions of the instance if solved
as a classical LCS problem. Therefore, upper bound functions developed for the classical
LCS problem are candidates to be used for UB() in 6.1.

Blum et al. [16], for example, introduced an upper bound function henceforth labelled
UBLCS

1 () for the classical LCS problem (see Section 3.3.1). Let δ(a, S) for a ∈ Σ evaluate
to one, if letter a appears at least once in each input string from S, and otherwise to
zero. As each letter from Σ can mostly appear once in a valid RFLCS solution, UBLCS

1 ()
from above reduces to the following upper bound function in the context of the RFLCS
problem:

UBRFLCS
1 (S) =

"
a∈Σ

δ(a, S)

Finally, when used for our purposes—that is, for obtaining an upper bound for (sub-
)instances SL

p and SR
p in Section 6.3 in the context of an RFLCS instance—we can even

exclude letter l(p) (the letter of path p) from the sum. This results in:

UBRFLCS
1 (S, p) =

"
a∈Σ\{l(p)}

δ(a, S) .

For the classical LCS problem we are aware of another upper bound, labelled UB2(),
which is based on dynamic programming (DP). It is obtained in O(m) incorporating
appropriate preprocessing steps, see Section 3.3.1. In particular, note that in the context
of the RFLCS and LAPCS problems, the preprocessing is done in O(n2) time.

In summary, for the conflict graph reduction in the context of the RFLCS problem, UB()
is defined as min{UBRFLCS

1 (), UB2()}; and UB2 in the context of the LAPCS problem,
because UB2() < UBLCS

1 () in all cases.

6.4 Experimental evaluation
The computational experiments aim to compare two strategies to solve LCS problems:
(i) their direct solution using a specialized state-of-the-art algorithm, and (ii) their

132

6.4. Experimental evaluation

transformation to the MIS, respectively the MC, problems and the subsequent solution
by Cplex2 (in case of the MIS problem) or by the following MC solvers:

• Lmc. This exact MC solver was introduced by [94, 121]. It is currently one of
the best exact solvers available for the MC problem. It combines an aggressive
preprocessing of the graph with a MaxSAT solver [122] in a branch-and-bound
scheme.

• Lscc-Bms. This is one of the best-performing heuristic algorithms for the MC
problem. [175] introduced this local-search-based algorithm, whose main strengths
are a configuration checking procedure that reduces the probability of cycling during
local search, and a low-complexity vertex swap neighborhood which is fast even on
massive graphs3.

Note that both Cplex and Lscc-Bms were executed on a cluster of 12-core Intel Xeon
5670 CPUs at 2.9GHz and at least 40GB of RAM. Lmc was executed on a cluster with
8-core Intel Xeon E5-2680 CPUs at 2.4GHz and with 128 GB of memory. In both cases,
the memory consumption of each process was limited to 16 GB.

RFLCS benchmark instances Two sets of problem instances can be found in the
related literature. The first set, henceforth denoted by Rflcs-Set1, consists of 30
randomly generated problem instances for each combination of the input sequence length
n ∈ {32, 64, 128, 256, 512, 1024, 2048, 4096} and the alphabet size |Σ| ∈ {n

8 , n
4 , 3n

8 , n
2 ,

5n
8 , 3n

4 , 7n
8 }. This results in a total of 1680 instances. The second set, henceforth by

Rflcs-Set2, consists of 30 randomly generated instances for each combination of the
alphabet size |Σ| ∈ {4, 8, 16, 32, 64, 128, 256, 512} and the maximal repetition of each
letter, reps ∈ {3, 4, 5, 6, 7, 8}. In total, set Rflcs-Set2 contains 1440 instances.

LAPCS benchmark instances The recent literature on the LAPCS problem con-
siders both artificial instances (benchmark set Lapcs-Arti) and real RNA instances
(benchmark set Lapcs-Real). Each artificial instance consists of two randomly gener-
ated RNA strings of length n ∈ {100, 200, . . . , 900, 1000}. Moreover, each input string
has narcs ∈ �

n
10 , n

5 , n
2

randomly generated unique arc annotations. Set Lapcs-Arti

consists of 30 instances for each combination of n and narcs, which makes a total of 900
problem instances. Set Lapcs-Real consists of 10 problem instances that are composed
of arc-annotated RNA sequences downloaded from the RNase P Database [26]. Note that
the alphabet size in all cases is equal to four. Table 6.1 summaries the characteristics of
these instances.

2IBM ILOG Cplex is an optimization software package that includes state-of-the-art exact techniques
for solving integer linear programming models, among others. It is available for free for academic pur-
poses. For more information, we refer the interested reader to http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/index.html. In this work, we made use of version
12.7.

3We downloaded the code of Lscc-Bms from http://ai.nenu.edu.cn/wangyy/Yiyuandata/
LocalSearchforMWCP.htm on April 29, 2019.

133

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html
http://ai.nenu.edu.cn/wangyy/Yiyuandata/LocalSearchforMWCP.htm
http://ai.nenu.edu.cn/wangyy/Yiyuandata/LocalSearchforMWCP.htm

6. Application of Maximum Clique Solvers to Solve LCS Problems

Instance First String Second string
RNA n narcs RNA n narcs

Real_1 Allochromatium vinosum 369 119 Haemophilus influenza 377 124
Real_2 Bacteroides thetaiotaomicron 361 121 Porphyromonas gingivalis 398 131
Real_3 Halococcus morrhuae 475 154 Haloferax volcanii 433 142
Real_4 Klebsiella pneumoniae 383 127 Escherichia coli 377 124
Real_5 Methanococcus jannaschii 252 75 Archaeoglobus fulgidus 229 67
Real_6 Methanosarcina barkeri 371 115 Pyrococcus abyssi 330 100
Real_7 Mycoplasma genitalium 384 119 Mycoplasma pneumoniae 369 112
Real_8 Saccharomyces kluveri 336 90 Schizosaccharomyces octosporus 281 71
Real_9 Serratia marcescens 378 125 Shewanella putrefaciens 354 115
Real_10 Streptomyces bikiniensis 398 135 Streptomyces lividans 405 138

Table 6.1: Characteristics of real instances from set Lapcs-Real. All 20 arc-annotated
RNA sequences were taken from the RNase P Database [26].

Due to the fact that the amount of reduction of the conflict graphs from 6.3 depends
on the quality of the used primal bound per instance, we used the currently best-known
solution values from the literature for all considered instances. In the case of the RFLCS
problem, these values were taken from [14], and in the case of the LAPCS problem
from [15].

6.4.1 Results without conflict graph reduction

All three methods—Cplex, Lmc, and Lscc-Bms—were applied with a computation
time limit of 3600 seconds (1 hour) and a memory limit of 16GB per run to all RFLCS
and LAPCS problem instances. The results are presented in numerical form in Tables 6.2
and 6.3 concerning the RFLCS problem, and in Tables 6.4 and 6.5 concerning the LAPCS
problem. The first two columns in Tables 6.2–6.4 indicate the problem instance character-
istics, while the third column provides the currently best-known results from the literature.
In the case of the RFLCS problem, the best-known results were obtained by the current
state-of-the-art method—a hybrid CMSA algorithm—from [14]. The best-known results
for the LAPCS problem were obtained by two state-of-the-art algorithms—a hybrid
evolutionary algorithm (Hyb-Ea) and an ILP-based heuristic—from [15]. Note that, in
this way, the results of our transformation-based approaches are compared to the currently
leading methods. Each table row provides results averaged over 30 problem instances of
the same type. 6.5 is slightly different. The first column provides the instance name, while
the second column indicates the best-known results from the literature. Moreover, each
table row only covers one single problem instance. In the case of the LAPCS problem, the
best-known results from the literature are additionally marked either by an a, indicating
that an ILP-based heuristic has produced this result, or by a b, which indicates that the
Hyb-Ea algorithm has generated this result. In Tables 6.2–6.4, the results of Cplex and
Lsm are each provided in four columns. The first one (with heading result) contains the
average solution quality obtained for the 30 problem instances. The second column (with
heading t) indicates the average computation time at which the best solution of a run

134

6.4. Experimental evaluation

Table 6.2: Experimental results for RFLCS instances Rflcs-Set1.

|Σ| n Spec. Cplex Lmc Lscc+Bms
Tech. result t topt #opt result t topt #opt result t

n/8

32 4.00 4.00 0.09 0.09 30 4.00 0.00 0.01 30 4.0 0.01
64 8.00 8.00 0.81 0.81 30 8.00 0.00 0.07 30 8.0 0.00
128 16.00 16.00 8.12 8.12 30 16.00 0.00 49.61 30 16.0 0.01
256 31.97 31.97 188.31 188.31 30 31.90 20.54 – – 0 31.97 0.09
512 63.27 5.17 625.34 – – 0 62.50 485.59 – – 0 63.90 ∗ 68.84
1024 111.57 0.03 1461.74 – – 0 112.53 818.57 – – 0 116.10 ∗ 1297.00
2048 182.67 – – – – – – 0 182.40 1331.53 – – 0 181.67 1394.27
4096 283.33 – – – – – – 0 281.37 1037.61 – – 0 261.37 1510.89

n/4

32 7.83 7.83 0.03 0.03 30 7.83 0.00 0.00 30 7.83 0.00
64 14.67 14.67 0.29 0.29 30 14.67 0.00 0.01 30 14.67 0.00
128 25.77 25.93 ∗ 2.02 2.50 30 25.93 ∗ 0.01 0.09 30 25.93 ∗ 0.02
256 43.70 43.97 ∗ 30.92 51.17 30 43.97 ∗ 0.12 0.80 30 43.97 ∗ 0.22
512 67.90 68.50 582.53 1622.77 27 68.57 ∗ 75.61 185.15 30 68.57 ∗ 7.57
1024 103.00 0.00 240.97 – – 0 103.77 386.81 – – 0 104.87 ∗ 877.29
2048 154.33 0.00 1398.78 – – 0 152.87 438.52 – – 0 151.33 1485.85
4096 226.67 – – – – – – 0 223.57 780.50 – – 0 207.03 1984.69

3n/8

32 8.77 8.77 0.02 0.02 30 8.77 0.00 0.00 30 8.77 0.00
64 15.53 15.53 0.10 0.10 30 15.53 0.00 0.00 30 15.53 0.00
128 24.90 24.90 1.75 1.79 30 24.90 0.00 0.03 30 24.90 0.01
256 39.97 39.97 5.25 5.90 30 39.97 0.02 0.20 30 39.97 0.13
512 59.77 59.97 ∗ 106.42 133.02 30 59.97 ∗ 0.46 1.83 30 59.97 ∗ 1.99
1024 90.50 90.67 2204.06 2263.32 23 90.73 ∗ 5.71 30.67 30 90.73 ∗ 145.24
2048 130.57 0.00 547.50 – – 0 129.67 233.36 105.92 1 129.13 1578.88
4096 191.37 – – – – – – 0 188.30 311.61 – – 0 179.73 1670.85

n/2

32 8.87 8.87 0.01 0.01 30 8.87 0.00 0.00 30 8.87 0.00
64 14.80 14.80 0.06 0.06 30 14.80 0.00 0.00 30 14.80 0.00
128 22.93 22.93 0.76 0.78 30 22.93 0.00 0.01 30 22.93 0.00
256 35.10 35.20 ∗ 2.18 2.27 30 35.20 ∗ 0.02 0.09 30 35.20 ∗ 0.09
512 53.10 53.13 ∗ 31.82 34.03 30 53.13 ∗ 0.08 0.66 30 53.13 ∗ 0.71
1024 79.03 79.13 ∗ 627.90 701.13 30 79.13 ∗ 6.04 11.56 30 79.13 ∗ 30.80
2048 115.30 0.00 248.56 – – 0 115.07 432.97 598.59 19 114.87 1517.02
4096 167.47 0.00 1295.77 – – 0 165.87 390.18 – – 0 159.37 1490.48

5n/8

32 8.60 8.60 0.01 0.01 30 8.60 0.00 0.00 30 8.60 0.00
64 13.30 13.30 0.03 0.03 30 13.30 0.00 0.00 30 13.30 0.00
128 21.20 21.20 0.36 0.37 30 21.20 0.00 0.01 30 21.20 0.00
256 32.53 32.53 4.21 4.36 30 32.53 0.01 0.05 30 32.53 0.04
512 47.83 47.83 13.06 13.15 30 47.83 0.04 0.33 30 47.83 0.28
1024 70.03 70.20 ∗ 208.55 215.63 30 70.20 ∗ 1.43 4.12 30 70.20 ∗ 8.70
2048 103.80 48.33 2306.93 3328.76 1 103.97 ∗ 63.19 158.21 30 103.87 936.80
4096 150.00 0.00 878.84 – – 0 148.53 302.72 1607.66 2 145.77 1423.49

3n/4

32 8.17 8.17 0.00 0.00 30 8.17 0.00 0.00 30 8.17 0.00
64 12.53 12.53 0.02 0.02 30 12.53 0.00 0.00 30 12.53 0.00
128 19.70 19.70 0.17 0.18 30 19.70 0.00 0.00 30 19.70 0.00
256 29.97 29.97 2.25 2.32 30 29.97 0.00 0.03 30 29.97 0.02
512 44.53 44.57 ∗ 4.90 4.94 30 44.57 ∗ 0.03 0.19 30 44.57 ∗ 0.29
1024 65.07 65.20 ∗ 96.77 97.46 30 65.20 ∗ 0.75 2.11 30 65.20 ∗ 3.39
2048 94.53 94.67 ∗ 1829.86 1862.21 30 94.67 ∗ 4.57 18.69 30 94.63 638.75
4096 136.57 0.00 500.41 – – 0 135.73 355.77 682.50 13 133.53 1617.99

7n/8

32 7.67 7.67 0.00 0.00 30 7.67 0.00 0.00 30 7.67 0.00
64 11.57 11.57 0.01 0.01 30 11.57 0.00 0.00 30 11.57 0.00
128 18.40 18.40 0.12 0.12 30 18.40 0.00 0.00 30 18.40 0.00
256 27.80 27.80 1.21 1.22 30 27.80 0.00 0.02 30 27.80 0.01
512 40.57 40.60 ∗ 2.93 3.01 30 40.60 ∗ 0.02 0.12 30 40.60 ∗ 0.10
1024 60.50 60.57 ∗ 79.74 79.76 30 60.57 ∗ 0.28 1.19 30 60.57 ∗ 3.55
2048 88.00 88.00 831.15 896.78 30 88.00 4.13 18.68 30 88.00 114.45
4096 127.20 0.00 361.39 – – 0 126.50 212.34 478.99 17 125.47 1608.56

135

6. Application of Maximum Clique Solvers to Solve LCS Problems

Table 6.3: Experimental results RFLCS instances Rflcs-Set2.

|Σ| reps Spec. Cplex Lmc Lscc-Bmc
Tech. result t topt #opt result t topt #opt result t

4

3 3.47 3.47 0.00 0.00 30 3.47 0.00 0.00 30 3.47 0.00
4 3.77 3.77 0.00 0.00 30 3.77 0.00 0.00 30 3.77 0.00
5 3.83 3.83 0.00 0.00 30 3.83 0.00 0.00 30 3.83 0.00
6 3.90 3.90 0.00 0.00 30 3.90 0.00 0.00 30 3.90 0.00
7 3.97 3.97 0.01 0.01 30 3.97 0.00 0.00 30 3.97 0.00
8 3.97 3.97 0.01 0.01 30 3.97 0.00 0.00 30 3.97 0.00

8

3 6.23 6.23 0.00 0.00 30 6.23 0.00 0.00 30 6.23 0.00
4 6.87 6.87 0.00 0.00 30 6.87 0.00 0.00 30 6.87 0.00
5 7.40 7.40 0.02 0.02 30 7.40 0.00 0.00 30 7.40 0.00
6 7.53 7.53 0.02 0.02 30 7.53 0.00 0.00 30 7.53 0.00
7 7.70 7.70 0.06 0.06 30 7.70 0.00 0.00 30 7.70 0.00
8 7.77 7.77 0.05 0.05 30 7.77 0.00 0.00 30 7.77 0.00

16

3 9.70 9.70 0.01 0.01 30 9.70 0.00 0.00 30 9.70 0.00
4 11.57 11.57 0.03 0.03 30 11.57 0.00 0.00 30 11.57 0.00
5 12.93 12.93 0.06 0.06 30 12.93 0.00 0.00 30 12.93 0.00
6 14.00 14.00 0.15 0.16 30 14.00 0.00 0.01 30 14.00 0.00
7 14.93 14.93 0.30 0.30 30 14.93 0.00 0.02 30 14.93 0.02
8 14.80 14.80 0.37 0.38 30 14.80 0.00 0.02 30 14.80 0.00

32

3 16.13 16.13 0.08 0.08 30 16.13 0.00 0.00 30 16.13 0.00
4 19.00 19.00 0.27 0.27 30 19.00 0.00 0.01 30 19.00 0.00
5 21.63 21.63 0.83 0.85 30 21.63 0.00 0.02 30 21.63 0.01
6 23.73 23.73 1.57 1.65 30 23.73 0.00 0.04 30 23.73 0.01
7 25.53 25.57 ∗ 2.23 2.34 30 25.57 ∗ 0.02 0.10 30 25.57 ∗ 0.03
8 27.40 27.50 ∗ 4.59 4.71 30 27.50 ∗ 0.06 0.23 30 27.50 ∗ 0.07

64

3 25.43 25.43 0.88 0.91 30 25.43 0.00 0.01 30 25.43 0.00
4 30.37 30.37 2.65 2.80 30 30.37 0.01 0.05 30 30.37 0.02
5 34.87 34.93 ∗ 3.57 4.66 30 34.93 ∗ 0.02 0.13 30 34.93 ∗ 0.07
6 39.07 39.13 ∗ 13.36 17.37 30 39.13 ∗ 0.05 0.34 30 39.13 ∗ 0.18
7 43.50 43.63 ∗ 28.44 55.76 30 43.63 ∗ 0.16 0.92 30 43.63 ∗ 0.40
8 45.17 45.53 ∗ 58.39 116.58 30 45.53 ∗ 1.38 5.41 30 45.53 ∗ 0.75

128

3 36.70 36.77 ∗ 2.39 2.44 30 36.77 ∗ 0.01 0.09 30 36.77 ∗ 0.14
4 44.90 45.03 ∗ 12.95 15.22 30 45.03 ∗ 0.06 0.37 30 45.03 ∗ 0.39
5 53.23 53.43 ∗ 48.50 64.03 30 53.43 ∗ 0.15 1.08 30 53.43 ∗ 1.12
6 61.07 61.53 ∗ 183.29 300.56 30 61.53 ∗ 4.55 7.76 30 61.53 ∗ 4.42
7 67.90 68.40 749.39 1377.40 25 68.47 ∗ 8.25 54.19 30 68.47 ∗ 5.13
8 73.57 74.37 1288.16 1932.99 11 74.30 524.20 474.27 13 74.60 ∗ 22.68

256

3 54.97 55.03 ∗ 46.81 48.61 30 55.03 ∗ 0.08 0.69 30 55.03 ∗ 1.06
4 68.70 68.93 ∗ 247.83 268.90 30 68.93 ∗ 0.31 2.90 30 68.93 ∗ 8.53
5 81.00 81.43 ∗ 917.97 1182.86 30 81.43 ∗ 9.65 21.74 30 81.43 ∗ 45.01
6 93.10 73.83 2951.48 3090.98 2 93.17 239.22 418.66 17 93.53 ∗ 162.94
7 103.50 0.00 308.34 – – 0 103.13 132.52 499.03 3 104.40 ∗ 734.99
8 113.70 0.00 501.06 – – 0 113.10 298.94 – – 0 114.70 ∗ 1300.54

512

3 81.57 81.63 ∗ 524.51 536.33 30 81.63 ∗ 0.72 5.38 30 81.63 ∗ 41.71
4 100.83 78.63 2899.04 3142.25 3 101.10 157.68 230.29 29 101.13 ∗ 602.19
5 120.43 0.00 404.86 – – 0 118.70 539.36 851.21 5 119.60 1147.39
6 137.03 0.00 681.76 – – 0 135.50 483.24 – – 0 136.00 1894.44
7 154.57 0.00 1218.70 – – 0 152.33 784.72 – – 0 150.63 1784.08
8 172.10 – – – – – – 0 169.90 698.89 – – 0 166.47 1428.87

136

6.4. Experimental evaluation

Table 6.4: Experimental results for LAPCS instances Lapcs-Arti.

was found, while the third column (with heading topt) provides the average computation
time at which optimality was proven. Finally, the fourth table column contains the
number of instances that could be solved to optimality. This fourth table column is not
provided in Table 6.5, as it only deals with one instance per table row. Furthermore, the
results of Lscc-Bms are given in two columns in all cases, providing the (average) result
and the (average) computation time. Note that a value in the columns with heading
result is indicated in bold font if the value is at least as good as the best-known one
from the literature. Moreover, a value is marked by an asterisk in case it corresponds to
a new best-known result. Finally, the results of Cplex and Lmc are marked by a grey
background if they correspond to provenly optimal results.

The following observations can be made in the case of the RFLCS problem:

• While both Lmc and Lscc-Bms are able to provide feasible solutions for all problem
instances from both sets (Rflcs-Set1 and Rflcs-Set2), Cplex suffers from a
sharp phase transition when the conflict graphs become too large. Observe, for
example, the case (|Σ| = n/8, n = 256) in Table 6.2 in comparison to the next
larger case (|Σ| = n/8, n = 512). While Cplex is able to solve all instances of the
first case to optimality, it only provides very short solutions in the second case.

• Concerning the comparison of the two exact solvers, we can state that Lmc (the
MC solver) clearly outperforms Cplex. Lmc is able to solve 1282 Rflcs-Set1
instances and 1237 Rflcs-Set2 instances to optimality, while Cplex can only
solve 1221 Rflcs-Set1 instance and 1181 Rflcs-Set2 instances to optimality.
Moreover, Lmc does not suffer from the above-mentioned phase transition for
the remaining instances, and it requires generally less computation time. More
specifically, while Lsm requires—on average—41.7 seconds for proving optimality
(if possible) of Rflcs-Set1 instances, Cplex requires 187.2 seconds; respectively
34.07 and 127.14 seconds in the case of the Rflcs-Set2 instances.

• The heuristic MC solver Lscc-Bms is especially successful in those cases in which the
exact techniques start to fail. See, for example, cases (|Σ| = n/8, n ∈ {512, 1024})
in Table 6.2 and cases (|Σ| = 256, reps ∈ {6, 7, 8}) in Table 6.3. Lscc-Bms can be
seen as the most successful one among the techniques, providing new best-known
results in 35 cases (considering both instance sets together), while Lmc provides
new best-known results in 30 cases and Cplex in 24 cases.

All in all we can state that the idea of solving the RFLCS problem by means of the
transformation to the MC problem is very successful, even before trying to reduce the
size of the conflict graphs.

137

6. Application of Maximum Clique Solvers to Solve LCS Problems

Table 6.5: Experimental results for LAPCS instances Lapcs-Real.

Inst. Spec. Cplex Lmc Lscc-Bms
Name Tech. result t topt result t topt result t

Real_1 268b – – – – – – 259 2691.58 – – 231 3504.69
Real_2 291b – – – – – – 283 637.94 – – 216 1088.45
Real_3 294b – – – – – – 284 104.13 – – 234 1580.28
Real_4 374b – – – – – – 374 34.59 – – 366 2148.66
Real_5 178b – – – – – – 179∗ 6.04 – – 170 2336.97
Real_6 209b – – – – – – 206 30.64 – – 197 2181.59
Real_7 330b – – – – – – 330 43.61 – – 251 1461.38
Real_8 177b – – – – – – 175 3309.91 – – 173 448.26
Real_9 302b – – – – – – 304∗ 44.36 – – 226 49.66
Real_10 361a – – – – – – 361 71.14 – – 272 496.70

Let us now turn towards the LAPCS problem. In some aspects, the observations that
can be made in the context of the artificial instances (Lapcs-Arti; Table 6.4) are similar
to the ones made for the RFLCS problem. Cplex suffers from a sharp phase transition.
In fact, it is only able to provide solutions for the case of the smallest problem instances
(n = 100). Lmc does not suffer from this phase transition and is able to provide feasible
solutions of reasonable quality until instances with input strings of length n = 500. Both
Lmc are Cplex are able to solve 80 problem instances to optimality. And finally, the
heuristic MC solver Lscc-Bms is again very successful in those cases in which Lmc and
Cplex start to fail proving optimality (see the instances with n = 200). Concerning
the results obtained for the real instances (Lapcs-Real; Table 6.5), we can state that
Lsm is, by far, the most successful algorithm. While Cplex is not able to derive any
feasible solutions and Lscc-Bms never matches the best results from the literature, Lsm
matches the best results from the literature in three cases and obtains new best-known
solutions in two additional cases. Nevertheless, we can state that the results—obtained
before trying to reduce the size of the conflict graphs—are rather unsatisfactory in the
context of the LAPCS problem. The main reason for this is the increased size of the
conflict graphs in comparison to the RFLCS problem, which is due to the small alphabet
size of four.

6.4.2 Results after conflict graph reduction

After reducing all the conflict graphs with the method described in 6.3, we first measured
the amount of reduction that was achieved. This reduction is displayed for all RFLCS
and LAPCS problem instances by means of boxplots in Figures 6.6–6.9. More specifically,
the boxplots show the percentage reduction concerning the number of vertices of the
original conflict graphs. If the reduction for an instance is at 60%, for example, this
means that the reduction technique was able to remove 60% of the vertices of the original
conflict graph. In the context of the RFLCS instances, we can state that the percentage
reduction tends to grow with a growing string length and a growing alphabet size. Note

138

6.4. Experimental evaluation

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

n

0

10

20

30

d
ro

p
p
e
d
 v

e
rt

ic
e
s
 [

%
]

|Σ|=1/8n

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

n

20

40

60

80

d
ro

p
p
e
d
 v

e
rt

ic
e
s
 [

%
]

|Σ|=1/4n

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

n

0

20

40

60

80

100

d
ro

p
p
e
d
 v

e
rt

ic
e
s
 [

%
]

|Σ|=1/2n

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

n

0

20

40

60

80

100

d
ro

p
p
e
d
 v

e
rt

ic
e
s
 [

%
]

|Σ|=3/4n

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

n

20

40

60

80

d
ro

p
p
e
d
 v

e
rt

ic
e
s
 [

%
]

|Σ|=5/8n
3

2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

n

0

20

40

60

80

100

d
ro

p
p
e
d
 v

e
rt

ic
e
s
 [

%
]

|Σ|=3/4n

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

n

20

40

60

80

100

d
ro

p
p
e
d
 v

e
rt

ic
e
s
 [

%
]

|Σ|=7/8n

Figure 6.6: Graph reduction (in %) for RFLCS instances from set Rflcs-Set1.

that for long strings on large alphabets we were able to achieve reduction percentages of
more than 90%. Concerning the LAPCS problem, it can be observed that the reduction
percentages grow with an increasing number of arc annotations. However, they slightly
increase with a growing input string length. This is due to the small alphabet size of
four. Finally, it is worth mentioning that in the case of the real problem instances (set
Lapcs-Arti; 6.9) we were able to achieve very high reduction percentages, sometimes
well over 90%. This indicates the difference in structure between artificial and real
problem instances.

The numerical results obtained by the three considered techniques after conflict graph
reduction are provided in Tables C.1–C.4 that can be found in Appendix C. The structure
of these tables is very similat to the one of Tables 6.2–6.5 which was described at the
beginning of 6.4.1. The only difference is that the part on the state-of-the-art results—see
the columns with heading “Spec. Tech.”–is now extended by the corresponding compu-
tation times, that is, the times at which these results were obtained by the respective

139

6. Application of Maximum Clique Solvers to Solve LCS Problems

4 8 16 32 64 128 256 512

|Σ|

0

20

40

60

80

d
ro

p
p
e
d
 v

e
rt

ic
e
s
 [

%
]

reps=3

4 8 16 32 64 128 256 512

|Σ|

0

20

40

60

80

d
ro

p
p
e
d
 v

e
rt

ic
e
s
 [

%
]

reps=4

4 8 16 32 64 128 256 512

|Σ|

0

20

40

60

80

d
ro

p
p
e
d
 v

e
rt

ic
e
s
 [

%
]

reps=5

4 8 16 32 64 128 256 512

|Σ|

0

20

40

60

80

d
ro

p
p
e
d
 v

e
rt

ic
e
s
 [

%
]

reps=6

4 8 16 32 64 128 256 512

|Σ|

0

20

40

60

d
ro

p
p
e
d
 v

e
rt

ic
e
s
 [

%
]

reps=7

4 8 16 32 64 128 256 512

|Σ|

0

10

20

30

40

50

60

d
ro

p
p
e
d
 v

e
rt

ic
e
s
 [

%
]

reps=8

Figure 6.7: Graph reduction (in %) for RFLCS instances from set Rflcs-Set2.

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

n

25

30

35

40

45

d
ro

p
p
e
d
 v

e
rt

ic
e
s
 [

%
]

#arcs=2

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

n

40

50

60

70

80

d
ro

p
p
e
d
 v

e
rt

ic
e
s
 [

%
]

#arcs=5

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

n

50

60

70

80

90
d
ro

p
p
e
d
 v

e
rt

ic
e
s
 [

%
]

#arcs=10

Figure 6.8: Graph reduction (in %) for LAPCS instances from set Lapcs-Arti.

1 2 3 4 5 6 7 8 9 10

Instance number

0

20

40

60

80

100

d
ro

p
p
e
d
 v

e
rt

ic
e
s
 [

%
]

Figure 6.9: Graph reduction (in %) for LAPCS instances from set Lapcs-Real.

140

6.4. Experimental evaluation

Table 6.6: Differences in performance of the exact methods (Cplex and Lmc) summarized
for the four different data sets. The five measures (E-M1–E-M5) are described in the
text.

Data set Cplex Lmc
E-M1 E-M2 E-M3 E-M4 E-M5 E-M1 E-M2 E-M3 E-M4 E-M5

Rflcs-Set1 144.29 172.77 257 61.29 60 9.33 32.99 84 0.24 0
Rflcs-Set2 78.90 105.19 133 82.34 30 5.58 14.90 10 0.20 0
Lapcs-Arti 330.89 526.45 30 -0.39 120 29.70 20.02 0 -0.0004 150
Lapcs-Real – – – – 7 – – 9 – – – – 5 0.0 0

techniques.4 The computation time of the fastest technique in each table row is under-
lined. Moreover, in order to relate the two sets of results, the values in the columns with
heading result are marked differently. More specifically, values marked by a preceding
=-symbol are equal to the values obtained by the same technique before graph reduction.
Furthermore, values marked in italic font and by a preceding −-symbol are worse than
the values obtained by the same technique before graph reduction, and values marked in
bold font and by a preceding +-symbol are better than the corresponding values before
conflict graph reduction.

In order to relate the performance of a technique before graph reduction with its
performance after graph reduction, we also computed a set of measures that are provided
in Table 6.6 for Cplex and Lmc, and in Table 6.7 for Lscc-Bms. The measures regarding
the exact techniques (see Table 6.6) are as follows.

1. Measure E-M1 refers to those instances that were solved to optimality, both
concerning the original conflict graph and the reduced conflict graph. In particular,
it provides the average time saved for finding the best solution of a run (in seconds)
after reducing the respective graph.

2. Measure E-M2 is very similar, just that it refers to the average time saving for
proving optimality.

3. Measure E-M3 indicates the number of instances additionally solved to optimality
after graph reduction.

4. Measure E-M4 indicates the average improvement in solution quality (in percent)
for all those instances for which feasible solutions can be found both before and
after graph reduction, but for which optimality cannot be proven.

5. Finally, measure E-M5 reports on the number of instances for which a feasible
(and possibly optimal) solution can be found after graph reduction, and for which
no feasible solution could be found before graph reduction.

4Note that the state-of-the-art techniques for both the RFLCS and the LAPCS problem were executed
on the same computers as Cplex and Lscc-Bms.

141

6. Application of Maximum Clique Solvers to Solve LCS Problems

Table 6.7: Differences in performance of the heuristic method (Lscc-Bms) summarized
for the four different data sets. The four measures (H-M1–H-M4) are described in the
text.

Data set Lscc-Bms
H-M1 H-M2 H-M3 H-M4

Rflcs-Set1 77.34 296 27 0
Rflcs-Set2 39.41 114 9 0
Lapcs-Arti 176.21 280 33 30
Lapcs-Real – – 9 1 0

In the context of the heuristic MC solver Lscc-Bms (see Table 6.7), measures H-M1–H-M4
can be described as follows.

1. In all those cases in which the same result is obtained by Lscc-Bms before and
after conflict graph reduction, measure H-M1 refers to the average time saving
per instance (in seconds) for achieving this result.

2. Measure H-M2 indicates the number of instances for which the result of Lscc-
Bms improves after graph reduction.

3. Measure H-M3 refers to the number of cases in which the result gets worse.

4. Finally, measure H-M4 counts the number of instances for which Lscc-Bms
can find a feasible solution after graph reduction, while before graph reduction
Lscc-Bms was not able to find any feasible solution.

Remarks concerning the results for the RFLCS problem:

• The great beneficiary of the applied conflict graph reduction is Cplex. Cplex is
now able to solve 1478 Rflcs-Set1 instances (out of 1680) and 1314 Rflcs-Set2
instances (out of 1440) to optimality, while Lmc now solves 1366 Rflcs-Set1
instances and 1247 Rflcs-Set2 instances to optimality. Nevertheless, Cplex still
suffers from a sharp phase transition which, due to the graph reduction, has been
moved to larger problem instances. Also the time savings achieved for finding the
best solutions of a run and for proving optimality are much higher in the case of
Cplex when compared to those of Lmc (see Table 6.6).

• The heuristic MC solver Lscc-Bms is also able to profit from the graph reduction.
It provides an improved result for 296 Rflcs-Set1 instances and for 114 Rflcs-
Set2 instances, while worse results are only produced in 27, respectively 9, cases.
Moreover, in those cases in which Lscc-Bms obtains the same result before and
after graph reduction, the average time saving per instance is approx. 77 seconds for
the Rflcs-Set1 instances, and approx. 39 seconds for the Rflcs-Set2 instances.

142

6.4. Experimental evaluation

After studying the results obtained for the LAPCS instances, the following observations
can be made:

• Concerning the set of artificial problem instances (Lapcs-Arti), it can be observed
that all three techniques are now able to provide solutions for some of the larger
instances. Cplex, for example, can now provide solutions for the instances with
n = 200 and for the case (n = 300, narcs = 30), for which no result was obtained
before conflict graph reduction. However, while Lscc-Bms is able to improve its
results for many instances (see cases n ∈ {200, . . . , 500}), Lsm is again not able
to take much profit from the graph reduction. In fact, the results of Lsm after
graph reduction are sometimes even worse than before; see case n = 200 and
narcs ∈ {20, 40}, for example. On average, Lsm is not able to improve its results for
those instances for which a feasible solution was obtained before and after conflict
graph reduction, but for which optimality could not be proven; see measure E-H4
in Table 6.6. Cplex is now able to solve 110 problem instances to optimality, while
Lsm can solve 80 problem instances, the same ones that it was able to solve before
conflict graph reduction. Again, Lscc-Bms performs best when the performance
of Cplex and Lsm starts to decline (see the cases with n = 200).

• Finally, the results—in particular those of Cplex—for the real-life instances of set
Lapcs-Real are quite pleasing. Cplex is able to solve seven out of 10 instances
to optimality. In three of these cases, the best-known result from the literature
is improved. Lsm, on the other side, obtains exactly the same results as before
conflict graph reduction, with the difference that optimality can be proven now for
five out of the 10 problem instances. Lscc-Bms is again able to take profit from
the graph reduction, improving its results in 9 out of 10 cases.

Finally, a summary of the obtained results in comparison to the current state of the
art is provided in Table 6.8. Concerning the instances of set Rflcs-Set1, for example,
our algorithm approaches were able to improve the current state-of-the-art algorithm
from [14] in 23 out of 56 cases, the results were matched in 28 cases, and in only five
cases our results were inferior to the state of the art. In general, Table 6.8 shows that
our transformation-based approaches are very successful in the context of the RFLCS
problem, while they only succeeded for the smaller instances of set Lapcs-Arti and
the real-life instances from set Lapcs-Real. Finally, the following observations can
be made concerning the comparison of the computation times of our approaches with
those of the state of the art. In the context of the RFLCS problem, our approaches are
generally faster than the current state-of-the-art approaches, especially for instances of
Rflcs-Set1 with alphabets of medium and large size. The state-of-the-art approaches
are only faster for Rflcs-Set1 instances with small alphabet sizes and rather long input
strings. The same happens for Rflcs-Set2 instances with large alphabet sizes and
many repetitions. The computation time comparison concerning the LAPCS problem
reflects the analysis from above concerning solution quality. In particular, our approaches–
especially Lscc-Bms–are only faster than the current state of the art for the smallest

143

6. Application of Maximum Clique Solvers to Solve LCS Problems

Table 6.8: Number of instances for which better, equally good, and worse solutions were
obtained.

Rflcs-Set1 Rflcs-Set2 Lapcs-Arti Lapcs-Real
Better 23 22 6 3
Equal 28 24 0 4
Worse 5 2 24 3

Lapcs-Arti instances with input string length n = 100. Starting from Lapcs-Arti
instances with n = 200, our approaches require considerably more computation time than
state-of-the-art techniques. On the other side, in the context of the real life instances of
set Lapcs-Real our approaches are faster in eight out of 10 cases, reflecting the good
results obtained for this instance set.

6.5 Conclusions
In this chapter, we proposed a new way to transform longest common subsequence
problem instances into instances of the maximal clique problem. Moreover, we defined
a technique for the reduction of the resulting graphs, based on high-quality primal
bounds. The benefits of this approach were experimentally studied in the context of two
longest common subsequence variants: (i) the repetition-free longest common subsequence
(RFLCS) problem and (ii) the longest arc-preserving common subsequence (LAPCS)
problem. Both problem variants are N P-hard even for two input strings. We compared
the application of Cplex for solving the maximum independent set problem, which is the
complementary problem of the maximal clique problem, with the application of recent
heuristic and exact maximal clique solvers. The three approaches were applied both
before and after graph reduction. The best results were obtained after graph reduction,
even though the impact of graph reduction was very different for the three solvers.
Summarizing, we were able to solve 2613 of the 3120 RFLCS instances to optimality.
Moreover, 110 out of 900 artificially created LAPCS problem instances were solved to
optimality. In the context of the LAPCS problem, it was especially pleasing to see seven
out of 10 real-life instances solved to optimality for the first time.

144

CHAPTER 7
The Constrained Longest

Common Subsequence Problem

In this chapter, we study a generalized constrained longest common subsequence problem
which is given as follow. Given an arbitrary set of input strings S and a pattern string
P , the problem aims at finding a subsequence common for all strings from S having P
as its subsequence.

The content of this chapter includes two published papers.

• A journal paper [52] published in the Information Processing Letters journal
(IF=0.677) [52]. In this paper, we have presented an A∗ search algorithm to solve
the classical CLCS problem (with two input strings). The A∗ search is compared
to a few state-of-the-art approaches from the literature. The approach delivers an
order of magnitude lower runtimes to prove optimality in comparison to a few other
state-of-the-art approaches from the literature.

• The conference paper published in the Proceedings of the 11th International
Conference Optimization and Applications (OPTIMA-20) conference [53]. In the
course of this work, we consider the N P–hard variant of the CLCS problem where
an arbitrary set of the input strings and a single pattern string are given in the
input. First, we adopt an existing A∗ search from the classical CLCS problem
with two input strings to an arbitrary number of input strings. To tackle large
problem instances approximately, we additionally propose a greedy heuristic and a
beam search approach. Various search guidances have been proposed to guide the
search towards promising regions. It is important to mention a probability-based
heuristic and the expected length calculation heuristic for the CLCS problem which
represent extensions of the respective heuristics for the LCS problem. Beam search

145

7. The Constrained Longest Common Subsequence Problem

turns out to be the best heuristic approach, returning almost all optimal solutions
obtained by A∗ search.

Moreover, in the course of this project, the master thesis of Christoph Berger [10] was
successfully done. In his thesis, extended computational study on the m–CLCS problem
are presented. Christoph Berger took an active role in the research such as implementing
the A∗ search for the m–CLCS problem as well as testing and analyzing the results
for the both of our papers. The duties of the author of the thesis concerned of the
thesis’ supervision, actively constructing and implementing the approaches, verifying and
validating the implementation, writing the drafts of both papers, and responding to the
referees’ comments.

7.1 Introduction

The generalized constrained longest common subsequence (m–CLCS) problem [74] con-
sidered in this chapter is stated as follows. Given m input strings and a pattern string
P , we seek for a longest common subsequence for the input strings that includes P
as its subsequence. This problem gives a useful measure of similarity when additional
information which concerns of the common structure of all the input strings is known
beforehand. The most studied CLCS variant in the literature is the one where only two
input strings (2–CLCS) are given as an input; see, for example, [162, 5, 34].

The m–CLCS problem is N P–hard [1]. An application of this general variant is motivated
from computational biology when it is necessary to find the commonality for not just
two but an arbitrary number of DNA molecules. When computing the commonality of
more than two biological sequences, it may be important to include a common specific
structure. To the best of our knowledge, the approximation algorithm by Gotthilf et
al. [74] is the only existing algorithm for solving the general m–CLCS problem so far.

We first propose the general search framework for the m–CLCS problem and develop an
A∗ search framework. Since A∗ will sooner or later comes to the issues with scalability, to
solve the large-scale instances we propose two heuristic techniques: (i) a greedy heuristic
that is efficient for producing reasonably good solutions within a short runtime, and
(ii) a beam search (BS) technique which is able to produce high-quality solutions but
takes more time. In order to efficiently run the BS framework, we developed two effective
search guidances: a probability-based guidance and the guidance that approximates the
expected length calculation of an CLCS on random strings.

This chapter is organized as follows. Section 7.2 describes the greedy heuristic for
the m–CLCS problem. In Section 7.3 the general search framework for the m–CLCS
problem is presented. Section 7.4 describes the A∗ search, and in Section 7.5 the beam
search is proposed. In Section 7.6, the detailed computational experiments are presented.
Section 7.7 concludes this work and outlines directions for future research.

146

7.2. A Fast Heuristic for the m–CLCS Problem

7.2 A Fast Heuristic for the m–CLCS Problem
We make use of two data structures created during preprocessing to set up an efficient
search:

• For each i = 1, . . . , m, j = 1, . . . , |si|, and c ∈ Σ, Succ[i, j, c] stores the minimal
position index x such that x ≥ j ∧ si[x] = c or -1 if c does not occur in si from
position j onward. This structure is built in O(m · n · |Σ|) time.

• For each i = 1, . . . , m, u = 1, . . . , |P |, Embed[i, u] stores the right-most position x
of si such that P [u, |P |] is a subsequence of si[x, |si|]. If no such position exists,
Embed[i, u] := −1. This table is built in O(|P | · m) time.

In the following we present Greedy, a heuristic for the m–CLCS problem inspired by the
well-known Best–Next heuristic [85] for the LCS problem. Greedy is pseudo-coded
in Algorithm 24. The basic principle is straight-forward. The algorithm starts with
an empty solution string s := # and proceeds by appending, at each construction step,
exactly one letter to s. The choice of the letter to append is done by means of a greedy
function. The procedure stops once no more letters can be added. The basic data
structure of the algorithm is a position vector ps = (ps

1, . . . , ps
m) ∈ Nm which is initialized

to ps := (1, . . . , 1) at the beginning. The superscript indicates that this position vector
depends on the current (partial) solution s. Given ps, si[ps

i , |si|] for i = 1, . . . , m refer to
the substrings from which letters can still be chosen for extending the current partial
solution s. Moreover, the algorithm starts with a pattern position index u := 1. The
meaning of u is that P [u, |P |] is the substring of P that remains to be included as
a subsequence in s. At each construction step, first, a subset Σfeas ⊆ Σ of letters is
determined that can feasibly extend the current partial solution s, ensuring that the final
outcome contains pattern P as a subsequence. More specifically, Σfeas contains a letter
c ∈ Σ iff (i) c appears in all strings si[ps

i , |si|] and (ii) s · c can be extended towards a
solution that includes pattern P . Condition (ii) is fulfilled if u = |P | + 1, P [u] = c, or
Succ[i, ps

i , c] < Embed[i, u] for all i = 1, . . . , m (assuming that there is at least one feasible
solution). These three cases are checked in the given order, and with the first case that
evaluates to true, condition (ii) evaluates to true; otherwise, condition (ii) evaluates to
false. Next, dominated letters are removed from Σfeas. For two letters c, c� ∈ Σfeas, we
say that c dominates c� iff Succ[i, ps

i , c] ≤ Succ[i, ps
i , c�] for all i = 1, . . . , m. Afterwards,

the remaining letters in Σfeas are evaluated by the greedy function explained below, and
a letter c∗ that has the best greedy value is chosen and appended to s. Further, the
position vector ps is updated w.r.t. letter c∗ by ps

i := Succ[i, ps
i , c∗] + 1, i = 1, . . . , m.

Moreover, u is increased by one if c∗ = P [u]. These steps are repeated until Σfeas = ∅,
and the greedy solution s is returned.

The greedy function used to evaluate each letter c ∈ Σfeas is

g(ps, u, c) = 1
lmin(ps, c) + ✶P [u]=c

+
m"

i=1

Succ[i, ps
i , c] − ps

i + 1
|si| − ps

i + 1 , (7.1)

147

7. The Constrained Longest Common Subsequence Problem

where lmin(ps, c) is the length of the shortest remaining part of any of the input strings
when considering letter c appended to the solution string and thus consumed, i.e.,
lmin := min{|si| − Succ[i, ps

i , c] | i = 1, . . . , m}, and 1P [u]=c evaluates to one if P [u] = c
and to zero otherwise. Greedy chooses at each construction step a letter that minimizes
g(). The first term of g() penalizes letters for which the lmin is decreased more and which
are not the next letter from P [u]. The second term in Eq. (4.4) represents the sum of
the ratios of characters that are skipped (in relation to the remaining part of each input
string) when extending the current solution s with letter c.

Algorithm 24 Greedy heuristic for the m–CLCS problem
1: Input: problem instance I = (S, P, Σ)
2: Output: heuristic solution s
3: s ← ε
4: ps

i ← 1, i = 1, . . . , m
5: u ← 1
6: Σfeas ← set of feasible and non-dominated letters for extending s
7: while Σfeas %= ∅ do
8: c∗ ← arg min{g(ps, u, c) | c ∈ Σfeas)}
9: s ← s · c∗

10: for i ← 1 to m do
11: ps

i ← Succ[i, ps
i , c∗] + 1

12: end for
13: if P [u] = c∗ then
14: u ← u + 1 // consider next letter in P
15: end if
16: Σfeas ← set of feasible and non-dominated letters for extending s
17: end while
18: return s

7.3 State Graph for the m–CLCS Problem
This section describes the state graph for the m–CLCS problem, in which paths from a
dedicated root node to inner nodes correspond to (meaningful) partial solutions, paths
from the root to sink nodes correspond to complete solutions, and directed arcs represent
(meaningful) extensions of partial solutions.

Given an m–CLCS problem instance I = (S, P, Σ), let s be any string over Σ that is a
common subsequence of all input strings S. Such a (partial) solution s induces a position
vector ps in a well-defined way by assigning a value to each ps

i , i = 1, . . . , m, such
that si[1, ps

i − 1] is the smallest string among all strings in {si[1, k] | k = 1, . . . , ps
i − 1}

that contains s as a subsequence. Note that these position vector are the same ones
as already defined in the context of Greedy. In other words, s induces a subproblem
S[ps] := {s1[ps

1, |s1|], . . . , sm[ps
m, |sm|]} of the original problem instance. This is because s

148

7.3. State Graph for the m–CLCS Problem

can only be extended by adding letters that appear in all strings of si[ps
i , |si|], i = 1, . . . , m.

In this context, let substring P [1, k�] of pattern string P be the maximal string among
all strings of P [1, k], k = 1, . . . , |P |, such that P [1, k�] is a subsequence of s. We then
say that s is a valid (partial) solution iff P [k� + 1, |P |] is a subsequence of the strings in
subproblem S[ps], that is, a subsequence of si[ps

i , |si|] for all i = 1, . . . , m.

The state graph G = (V, A) of our A∗ search is a directed acyclic graph where each
node v ∈ V stores a triple (pv, lv, uv), with pv being a position vector that induces
subproblem S[pv], lv is the length of (any) valid partial solution (i.e., path from the root
to node v) that induces pv, and uv is the length of the longest prefix string of pattern
P that is contained as a subsequence in any of the partial solutions that induce node v.
Moreover, there is an arc a = (v, v�) ∈ A labeled with letter c(a) ∈ Σ between two nodes
v = (pv, lv, uv) and v� = (pv�

, lv
�
, uv�) iff (i) lv

� = lv + 1 and (ii) subproblem S[pv�] is
induced by the partial solution that is obtained by appending letter c(a) to the end of a
partial solution that induces v. As mentioned above, we are only interested in meaningful
partial solutions, and thus, for feasibly extending a node v, only the letters from Σfeas
can be chosen (see Section 7.2 for the definition of Σfeas). An extension v� = (pv�

, lv
�
, uv�)

is therefore generated for each c ∈ Σfeas in the following way: pv�
i = Succ[i, pv

i , c] + 1 for
i = 1, . . . , m, lv

� = lv + 1, and uv� = uv + 1 in case c = P [uv], respectively uv� = uv

otherwise.

The root node of the state graph is defined by r = (pr = (1, . . . , 1), lr = 0, ur = 1) and it
thus represents the original problem instance. Sink nodes correspond to non-extensible
states. A longest path from the root node to some sink node represents an optimal
solution to the m–CLCS problem. Figure 7.1 shows as example the full state graph for the
problem instance ({s1 = bcaacbdba, s2 = cbccadcbbd, s3 = bbccabcdbba}, P =
cbb, Σ = {a,b,c,d}). The root node, for example can only be extended by letters b
and c, because letters a and d are dominated by the other two letters. Moreover, note
that node ((6, 5, 5), 3, 2) (induced by partial solution bcc) can only be extended by letter
b. Even though letter d is not dominated by letter b, adding letter d cannot lead to any
feasible solution, because any solution starting with bccd does not have P = cbb as a
subsequence.

7.3.1 Upper Bounds for the m–CLCS Problem

As any upper bound for the general LCS problem (see Section 3.3.1) is also valid for the
m–CLCS problem [55], we adopt UB(v) = min{UB1(v), UB2(v)} from existing work on
the LCS problem.

We again emphasize that this upper bound has desirable theoretical properties like
admissibility for the A∗ search, which means that its values never underestimate the
optimal value of the subproblem that corresponds to a node v, and monotonicity, that is,
the estimated upper bound of any child node is never smaller than the upper bound of
the parent node.

149

7. The Constrained Longest Common Subsequence Problem

((1,1,1),0,1)

((2,3,2),1,1) ((3,2,4),1,2)

((3,4,4),2,2)

((6,5,5),3,2) ((4,6,6),3,2)

((7,9,7),4,3) ((6,8,8),4,2)

((8,7,9),3,3)

((7,9,10),4,3) ((9,9,10),4,4)

((7,9,10),5,2)

((9,10,11),6,4)

((9,10,10),5,4) ((9,10,11),5,4)

((4,6,6),2,2) ((6,4,5),2,2)((7,3,7),2,3)

((7,9,10),3,3)

((9,10,10),4,4)

((6,8,8),3,2)

b c

c

c a

b

b

c

b

b

a cb

bd

b b

c

b

b

Figure 7.1: State graph for the instance ({s1 = bcaacbdba, s2 = cbccadcbbd, s3 =
bbccabcdbba}, P = cbb, Σ = {a,b,c,d}). There are five non-extensible sink nodes
(shown in gray). The longest path corresponds to the optimal solution s = bcacbb with
length six and leads to node v = (pv = (9, 10, 11), lv = 6, uv = 4) (shown in blue).

7.4 A∗ Search for the m–CLCS Problem

In this section we establish an efficient A∗ search to solve CLCS problem. So, in our
context the graph to be searched is the acyclic state graph G = (V, A) introduced in the
previous section.

The search maintains a list of open nodes, which is initialized with the root node, and
works in a best-first-search manner by expanding in each iteration a most promising
open node. In order to rank open nodes, A∗ search makes use of a priority function
f(v) = g(v) + h(v), for v ∈ V (G), where we set g(v) := lv and h(v) := UB(v) from the
previous section.

In order for the search process to be efficient, our implementation maintains two data

150

7.4. A∗ Search for the m–CLCS Problem

structures: (i) a hash-map N storing all nodes that were encountered during the search,
and (ii) the open list Q ⊆ N containing all not yet expanded/treated nodes. More
specifically, N is implemented as a nested data structure of sorted lists within a hash
map. The position vector pv of a node v = (pv, lv, uv) is mapped to a (linked) list storing
pairs (lv, uv). This structure allows for an efficient membership check, i.e., whether or not
a node that represents subproblem a S[pv] was already encountered during the search,
and a quick retrieval of the respective nodes.

Note that it might occur that several nodes representing the same subproblem S[pv] are
stored, as the following example demonstrates: Consider the problem instance with input
strings s1 = bacxmnob, s2 = abcxmbno, and pattern string P = b. The A∗ search
might, at some time, encounter node v1 = ((4, 4), 2, 1) induced by partial solution bx,
and—at some other time—it might encounter another node v2 = ((4, 4), 3, 0) induced
by partial solution acx. Even though the path from the root node to node v1 is shorter
than the path to node v2, the former still leads to a better solution in the end (bxmno
in comparison to acxb). As the information which of the nodes leads to an optimal
solution is not known beforehand, both nodes are stored.

Finally, the open list Q is realized by a priority queue with priority values f(v) =
lv + UB(v), for all v ∈ V . In case of ties, nodes with larger lv-values are preferred. In
the case of further ties, nodes with larger uv-values are preferred.

The search starts by inserting the root node of the state graph into N and Q. Then,
at each iteration, a node v with highest priority is retrieved from Q and expanded
by considering all successor nodes for a ∈ Σnd

v). If such an extensions leads to a new
state, the corresponding node, denoted by vext, is added to N and Q. Otherwise, vext
is compared to the nodes from set Nrel ⊆ N containing those nodes that represent the
same subproblem S[pv]. Dominated nodes are identified in this way and dropped from
the search process, i.e. the dominated nodes are removed from N and Q. If node vext
is dominated by one of the nodes from Nrel, it can simply be discarded. Otherwise, it
is added to N and Q. In this context, given v1, v2 ∈ Nrel we say that v1 dominates v2
iff lv1 ≥ lv2 ∧ uv1 ≥ uv2 . We emphasize that detecting the domination in Nrel was, on
average, slightly faster when the elements of the lists were sorted in decreasing order
w.r.t. their uv-values. Therefore, we used this ordering in our implementation.

As the upper bound function UB() is admissible and monotonic, it means that no re-
expansion of already expanded nodes become necessary [79] in the A∗ for the CLCS
problem and that the algorithm is optimal in terms of the number of node expansions
required to prove optimality w.r.t. the upper bound and the tie–breaking criterion used.
A pseudocode of our A∗ search implementation for the CLCS problem is provided in
Algorithm 25.

7.4.1 Time and Memory Complexity of A∗ search
In general, an upper bound for the worst-case performance of A∗ search is O(bd), where
b is the branching factor—which, in our case, is the number of letters—and d is the

151

7. The Constrained Longest Common Subsequence Problem

Algorithm 25 A∗ search for the m–CLCS Problem
1: Input: a problem instance I = (S, P, Σ)
2: Output: an optimal CLCS solution
3: Initialize hash-map N and priority queue Q
4: Create root node r = ((1, . . . , 1), 0, 1) and add it to N and Q
5: while Q %= ∅ do
6: v ← Q.pop()
7: Determine Σnd

v for node v
8: if Σnd

v = ∅ then // a complete node is reached
9: Return the solution that corresponds to node v

10: else
11: for each c ∈ Σnd

v do
12: Generate node vext by appending c to the part. solution of v
13: Retrieve Nrel ⊆ N : nodes representing subproblem S[pvext]
14: insert ← true
15: for each vrel ∈ Nrel do
16: if lvrel ≥ lvext ∧ uvrel ≥ uvext then
17: insert ← false
18: break // domination condition is fulfilled
19: end if
20: if lvext ≥ lvrel ∧ uvext ≥ uvrel then
21: Remove vrel from N and Q
22: end if
23: end for
24: if insert then // new state is non-dominated
25: Add vext to N and Q
26: end if
27: end for
28: end if
29: end while
30: return no feasible solution exists

length of an optimal solution. In other words, the runtime of A∗ search is, in general,
exponential. Providing a tighter bound is often hardly possible, as the practical runtime
strongly depends on the used guidance heuristic [149]. In practice, however, it frequently
happens that A∗ search, when using a meaningful heuristic, is quite fast, even in those
cases in which nothing better than the exponential worst-case run time can be proven.
Therefore, respective publications typically focus more on empirically observed run times
or indicate the number of expanded/visited nodes, for example, [174].

Nevertheless, it is possible to derive polynomial worst-case time and space complexity
bounds for our A∗ search from Algorithm 25, if n and m are fixed, as follows. The
number of visited nodes is bounded by O(nm · |P |). Since the used upper bound function

152

7.4. A∗ Search for the m–CLCS Problem

is monotonic, we can be sure that no re-expansion of already expanded nodes is necessary,
which further implies that the outer while-loop of Algorithm 25 is executed at most
O(nm · |P |) times. The pop() function in Line 6 needs a constant time to retrieve the
top node of Q. Afterwards, reorganizing the nodes in the priority queue Q is done in
O(log |Q|) = O(m log(n · |P |) = O(m log n) time. Determining the set of non-dominated
nodes of a node v is achieved in O(|Σ|2 · m) time by pairwise comparisons. For generating
all child nodes of a node v and then checking the domination among the nodes which
refer to the same subproblem (Lines 15–23), O(|Σ| · mn · log n) time is required in total.
Note that the factor log(n) reflects the time required to check the domination of a
single node, which can be done via binary search. The code in Lines 24–27 executes in
O(log(n · |P |)) = O(n) time. Overall, to execute a single iteration of the main while-loop,
we need

Nevertheless, it is possible to derive polynomial worst-case time and space complexity
bounds for our A∗ search from Algorithm 25 as follows. The number of visited nodes is
bounded by O(nm ·|P |). Since the used upper bound function is monotonic, we can be sure
that no re-expansion of already expanded nodes is necessary, which further implies that the
outer while-loop of Algorithm 25 is executed at most O(nm ·|P |) times. The pop() function
in Line 6 needs a constant time to retrieve the top node of Q. Afterwards, reorganizing
the nodes in the priority queue Q is done in O(log |Q|) = O(m log(n · |P |) = O(m log n)
time. Determining the set of non-dominated nodes of a node v is achieved in O(|Σ|2 · m)
time by pairwise comparisons. For generating all child nodes of a node v and then
checking the domination among the nodes which refer to the same subproblem (Lines
15–23), O(|Σ| · mn · log n) time is required in total. Note that the factor log(n) reflects
the time required to check the domination of a single node, which can be done via binary
search. The code in Lines 24–27 executes in O(log(n · |P |)) = O(n) time. Overall, to
execute a single iteration of the main while-loop, we need

O(m log n + |Σ| · mn · log n + |Σ|2 · m + log(n · |P |)) = (7.2)
O(|Σ| · nm · log n + |Σ|2 · n) = O(n · |Σ| · (m log n + |Σ|)) (7.3)

time. For executing the whole algorithm, the time is in

O(n · |Σ| · (m log n + |Σ|) · O(nm · |P |) = (7.4)
O(nm+1 · |P | · |Σ| · (m log n + |Σ|)). (7.5)

Since |Σ|, in practice, represents a small constant number, the time to execute our A∗

search is in

O(nm+1 · |P | · m log n). (7.6)

Concerning the space complexity of the proposed A∗ algorithm, the worst case corresponds
to storing all nodes of the state graph, and is thus in O(nm · |P |).

153

7. The Constrained Longest Common Subsequence Problem

7.5 Beam Search for the m–CLCS Problem
It is well known from research on other LCS variants that beam search (BS) is often
able to produce high-quality approximate solutions in the domain of string problems [55].
For those cases in which our A∗ approach is not able to deliver an optimal solution in
a reasonable computation time, it is quite natural to propose the BS approach which
follows from the generalized beam search framework for the LCS problem (see Section 3.3)
with slight modifications.

Before we run the BS procedure, Greedy is executed returning an initial solution sbsf .
This solution can be served in BS for pruning partial solutions (nodes) that provenly
cannot be extended towards a solution better than sbsf . Beam search for the CLCS
differs from the GBSF for the LCS problem 14 in the following aspects:

• BS is applied on the search space described in Section 7.3.

• the domination relation is defined as follows. Given v, v� ∈ Vext, we say in this
context that v dominates v� iff pv

i ≤ pv�
i , for all i = 1, . . . , m ∧ uv ≥ uv� . Note that

this is a generalization of the domination relation introduced in [16] for the LCS
problem.

Several options for heuristic h(v) in the context of the CLCS problem are detailed in the
next section.

7.5.1 Options for the Heuristic Guidance of BS
Different functions can be used as heuristic guidance of the BS, that is, for the function
h that evaluates the heuristic goodness of any node v = (pL,v, lv, uv) ∈ V . An obvious
choice is, of course, the upper bound UB from Section 3.3.1. Additionally, we consider
the following three options.

Probability Based Heuristic. For a probability based heuristic guidance, we make
use of a DP recursion from [135] for calculating the probability Pr(p, q) that any string
of length p is a subsequence of a random string of length q. These probabilities are
computed in a preprocessing step for p, q = 0, . . . , n. This is already used in the context
of the LCS problem. Assuming that same assumptions hols as for the LCS problem, we
get Pr(s ≺ S) = !m

i=1 Pr(p, |si|).
Given Vext in some construction step of BS, the question is now how to choose the value
p common for all nodes v ∈ Vext in order to take profit from the above formula in a
sensible heuristic manner. For this purpose, we first calculate

pmin = min
v∈Vext

(|P | − uv + 1) , (7.7)

where P is the pattern string of the tackled m–CLCS instance. Note that the string
P [pmin, |P |] must appear as a subsequence in all possible completions of all nodes from

154

7.5. Beam Search for the m–CLCS Problem

v ∈ Vext, because pattern P must be a subsequence of any feasible solution. Based on
pmin, the value of p for all v ∈ Vext is then heuristically chosen as

p = pmin + min
v∈Vext

�
mini=1,...,m {|si| − pv

i + 1} − pmin

|Σ|

�
. (7.8)

The intention here is, first, to let the characters from P [pmin, |P |] fully count, because
they will—as mentioned above—appear for sure in any possible extension. This explains
the first term (pmin) in Eq. (7.8). The second term is justified by the fact that an optimal
m–CLCS solution becomes shorter if the alphabet size becomes larger. Moreover, the
solution tends to be longer for nodes v whose length of the shortest remaining string
from S[pv] is longer than the one of other nodes. We emphasize that this is a heuristic
choice which might be improvable. If p would be zero, we set it to one in order to break
ties. The final probability-based heuristic for evaluating a node v ∈ Vext is then

H(v) =
m

i=1
Pr(p, |si| − pv

i + 1), (7.9)

and those nodes with a larger H–value are preferred.

Expected Length Based Heuristic. In Section 3.3.2 we derived an approximate
formula for the expected length of a longest common subsequence of a set of uniform
random strings. Before we extend this result to the m–CLCS problem, we state those
aspects of the results from this section that are needed for this purpose.

In particular, for the LCS problem we know that

E[Y] =
lmin"
k=1

E[Yk], (7.10)

where lmin := min{|si| | i = 1, . . . , m}, Y is a random variable for the length of an LCS,
and Yk is, for any k = 1, . . . , lmin, a binary random variable indicating whether or not
there is an LCS with a length of at least k.

In the context of the m–CLCS problem, a similar formula with the following re-definition
of the binary variables is used. Y is now a random variable for the length of an LCS that
has pattern string P as a subsequence, and the Yk are binary random variables indicating
whether or not there is an LCS with a length of at least k having P as a subsequence. If
we assume the existence of at least one feasible solution, instead of formula (7.10) we get
E[Y] = |P | + #lmin

k=|P |+1 E[Yk].

For k = |P |, . . . , lmin, let Tk be the set of all possible strings of length k over alphabet
Σ. Clearly, there are |Σ|k such strings. For each s ∈ Tk we define the event Evs that s
is a subsequence of all input strings from S having P as a subsequence. For simplicity,
we assume the independence among events Evs and Evs� , for any s, s� ∈ Tk, s %= s�.
With this assumption, the probability that string s ∈ Tk is a subsequence of all input

155

7. The Constrained Longest Common Subsequence Problem

strings from S is equal to !m
i=1 Pr(|s|, |si|). Further, under the assumption that (i) s is a

uniform random string and (ii) the probabilities that s is a subsequence of si (denoted by
Pr(s ≺ si)) for i = 1, . . . , m, and the probability that P is a subsequence of s (denoted
by (Pr(P ≺ s)) are independent, it follows that the probability P CLCS(s, S, P) that s
is a common subsequence of all strings from S having pattern P as a subsequence is
equal to Pr(|P |, k) · !m

i=1 Pr(k, |si|). Moreover, note that, under our assumptions, it holds
that Pr(P ≺ s�) = Pr(P ≺ s��) = Pr(|P |, k), for any pair of sampled strings s�, s�� ∈ Tk.
Therefore, it follows that

E[Yk] = 1 −

s∈Tk

�
1 − P CLCS(s, S, P)

�

= 1 −
�

1 −
�

m
i=1

Pr(k, |si|)
�

· Pr(|P |, k)
�|Σ|k

. (7.11)

Using this result, the expected length of a final m–CLCS solution that includes a string
inducing node v ∈ V as a prefix can be approximated by the following (heuristic)
expression:

EXCLCS(v) 7.10,7.11= |P | − uv + (lmin − (|P | − uv + 1) + 1)−
lmin"

k=|P |−uv+1

�
1 −

�
m

i=1
Pr(k, |si| − pL,v

i + 1)
�

· Pr(|P | − uv, k)
�|Σ|k

=

= lvmin −
lvmin"

k=|P |−uv+1

�
1 −

�
m

i=1
Pr(k, |si| − pL,v

i + 1)
�

· Pr(|P | − uv, k)
�|Σ|k

, (7.12)

where lvmin = min{|si| − pL,v
i + 1 | i = 1, . . . , m}. To calculate this value in practice, one

has to take care of numerical issues, in particular the large power value |Σ|k. We resolve
it in the same way as in Section 4.4 by applying a Taylor series expansion.

Pattern Ratio Heuristic. So far we have introduced three options for the heuristic
function in beam search: the upper bound (Section 7.3.1), the probability based heuristic
and the expected length based heuristic (Section 7.5.1). With the intention to test, in
comparison, a much simpler measure we introduce in the following the pattern ratio
heuristic that only depends on the length of the shortest string in S[pv] and the length
of the remaining part of the pattern string to be covered (|P | − uv + 1). In fact, we might
directly use the following function for estimating the goodness of any v ∈ V :

R(v) := mini=1,...,m(|si| − pv
i + 1)

|P | − uv + 1 . (7.13)

In general, the larger R(v), the more preferable should be v. However, note that the
direct use of (7.13) generates numerous ties. In order to avoid a large number of ties,

156

7.6. Experimental Evaluation

instead of R(v) we use the well-known k-norm

||v||kk =
m"

i=1

� |si| − pv
i + 1

|P | − uv + 1

�k

,

with some k > 0. Again, nodes v ∈ V with a larger || · ||k-values are preferable. In our
experiments, we set k = 2 (Euclidean norm).

7.6 Experimental Evaluation
All algorithms were implemented in C++ with g++ 7.4 and the experiments were
conducted in single-threaded mode on a machine with an Intel Xeon E5-2640 processor
with 2.40 GHz and a memory limit of 32 GB. The maximum computation time allowed
for each run was limited to one hour. The source code of this project is accessible
at https://www.ac.tuwien.ac.at/files/resources/software/clcs.zip.

7.6.1 Benchmark Instances
Concerning the general m–CLCS problem, for each combination of the number of input
strings m ∈ {10, 50, 100}, the length of input strings n ∈ {100, 500, 1000}, the alphabet
size |Σ| ∈ {4, 20} and the ratio p� = |P |

n ∈
�

1
50 , 1

20 , 1
10 , 1

4 , 1
2

�
, ten instances were created,

each one as follows. The following procedure was used for generating each instances.
First, a pattern string P was created uniformly at random, that is, each character
from Σ has an equal chance to be chosen for each position of P . Second, two input
strings of equal length n were generated as follows. First, |P | different positions were
randomly chosen in each input string. Then, characters P [1], . . . , P [|P |] are placed (in
this order) from left to right at these positions. Finally, the remaining characters of
each input string were set to letters chosen uniformly at random from the alphabet
Σ. This procedure ensures that at least one feasible CLCS solution exists for each
benchmark instances. The benchmarks are available at https://www.ac.tuwien.
ac.at/files/resources/instances/m-clcs.zip. Overall, we thus created and
use 900 benchmark instances.

Concerning the specific 2–CLCS problem, for each combination of n ∈ {100, 500, 1000}
(length of the input strings), |Σ| ∈ {4, 12, 20} (alphabet size), p� = |P |

n ∈
�

1
50 , 1

20 , 1
10 , 1

4 , 1
2

�
(length of the pattern string), ten problem instances were randomly generated. This results
in a total of 450 instances. Unfortunately, none of the artificial benchmarks from [50]
and [86] were provided to us, although the respective authors were contacted with this
concern. These benchmark instances for the 2–CLS problem are available at https://
www.ac.tuwien.ac.at/files/resources/instances/clcs/2d-clcs.zip

In addition to these artificially generated instances, we use a benchmark suite from [50]
based on strings representing real biological sequences1. This benchmark set is henceforth

1Available at http://sun.aei.polsl.pl/~sdeor/pub/do09-ds.zip.

157

https://www.ac.tuwien.ac.at/files/resources/software/clcs.zip
https://www.ac.tuwien.ac.at/files/resources/instances/m-clcs.zip
https://www.ac.tuwien.ac.at/files/resources/instances/m-clcs.zip
https://www.ac.tuwien.ac.at/files/resources/instances/clcs/2d-clcs.zip
https://www.ac.tuwien.ac.at/files/resources/instances/clcs/2d-clcs.zip
http://sun.aei.polsl.pl/~sdeor/pub/do09-ds.zip

7. The Constrained Longest Common Subsequence Problem

Table 7.1: Benchmark suite Real from [50].

data set number of
sequences

sequence length
(min, med, max)

|Σ| origin

ds0 7 (111, 124, 134) 20 [35]
ds1 6 (124, 149, 185) 20 [35]
ds2 6 (131, 142, 160) 20 [35]
ds3 5 (189, 277, 327) 20 [35]
ds4 6 (98, 114, 123) 20 [126]

called Real. It has its origins in experimental studies on the constrained multiple
sequence alignment (CMSA) problem considered in [35, 126]. Each possible pair of
sequences from this data set, together with a pattern string, was used in [50] to define a
problem instance for the CLCS problem. Properties of the input strings, together with
their origins, are provided in Table 7.1. In particular, Chin et al. [35] provided four
sets of strings containing RNase sequences with lengths from 111 to 327. In contrast,
set ds4—containing aspartic acid protease family sequences—was provided by Lu and
Huang [126], also in the context of the CMSA problem. Overall, benchmark set Real
consists of 121 problem instances.

7.6.2 Computational Studies for the general m–CLCS Problem

We include the following six algorithms (resp. algorithm variants) in our comparison: (i)
the approximation algorithm from [74] (Approx), (ii) Greedy from Section 7.2, and
(iii) the four beam search configurations differing only in the heuristic guidance function.
These BS versions are denoted as follows. Bs-Ub refers to BS using the upper bound,
Bs-Prob refers to the use of the probability based heuristic, Bs-Ex to the use of expected
length based heuristic, and BS-Pat to the use of the pattern ratio heuristic. Moreover,
we include the information of how many instances of each type were solved to optimality
by the exact A∗ search. Concerning the beam search, parameters β (the maximum
number of nodes kept for the next iteration) and kbest (the extent of filtering) are crucial
for obtaining good results. Tuning of the parameters of different BS configuration was
presented in Appendix D.2. The results of tuning indicated that selecting β = 2000 and
kbest = 100 for all of our algorithms seems like a reasonable choice. Moreover, the tuning
report indicated that function upper bound based pruning is indeed beneficial.

Table 7.2 reports results for the instances with p� = 1
20 and Table 7.3 those for the

instances with p� = 1
4 . The remaining numerical results are reported in Appendix D. The

first three columns of each table indicate the instance characteristics. Then, for the six
competitors we provide in each table row the obtained solution quality and computation
time averaged over the 10 instances with the respective characteristics. The best result of
each table row is shown in bold. Finally, for A∗ search we provide in each table row the
number of instances solved to optimality (out of 10) and the average runtime required to

158

7.6. Experimental Evaluation

Table 7.2: Results for instances with p� = |P |
n = 1

20 .

Approx Greedy Bs-Ub Bs-Prob Bs-Ex Bs-Pat A∗

|Σ| m n |s| t[s] |s| t[s] |s| t[s] |s| t[s] |s| t[s] |s| t[s] # t[s]

4 10 100 21.4 < 0.1 30.8 < 0.1 34.5 19.2 34.5 16.8 34.5 21.7 33.4 25.6 3 332.8
4 10 500 119.7 < 0.1 162.3 < 0.1 181.7 130.1 184.2 163.7 185.1 179.8 173.3 192.1 0 -
4 10 1000 244.4 0.1 330.9 0.1 365.7 288.5 372.7 346.7 374.1 339.2 343.8 391 0 -
4 50 100 18.7 < 0.1 21.3 < 0.1 24.3 11.5 24.7 13.3 24.9 15.1 24 19.8 0 -
4 50 500 111.1 0.1 127.1 0.1 137.9 98.5 141.2 109.4 142.2 115.4 134.2 162.8 0 -
4 50 1000 232.7 0.5 265 0.3 281 226.4 290.1 267.6 291.3 289.4 273 366.4 0 -
4 100 100 17.6 < 0.1 18.5 < 0.1 22.3 11.6 22.4 9.6 22.5 13.60 21.9 19.7 0 -
4 100 500 109.4 0.2 119.5 0.2 128.9 101.2 131.9 86.2 132.4 119.3 126.6 156 0 -
4 100 1000 227.5 0.8 248 0.9 263.7 244.2 272.0 218.1 273.0 232.2 259.2 301.8 0 -

20 10 100 6 < 0.1 7.1 < 0.1 ∗7.3 < 0.1 ∗7.3 < 0.1 ∗7.3 < 0.1 ∗7.3 < 0.1 10 < 0.1
20 10 500 30.2 < 0.1 40 < 0.1 46.6 16.9 47.0 17.5 46.3 60.0 44.7 57 10 332.1
20 10 1000 56.6 0.1 81.2 0.1 95.7 37.9 97.8 45.5 95.4 185.4 87.9 146.3 0 -
20 50 100 ∗5.0 < 0.1 ∗5.0 < 0.1 ∗5.0 < 0.1 ∗5.0 < 0.1 ∗5.0 < 0.1 ∗5.0 < 0.1 10 < 0.1
20 50 500 26.9 0.1 28.2 0.1 ∗29.9 1.8 ∗29.9 1.7 ∗29.9 1.3 ∗29.9 1.5 10 1.2
20 50 1000 53.1 0.5 58.2 0.5 62.4 17.6 62.7 17 62.5 8.6 60.4 34.4 0 -
20 100 100 ∗5.0 < 0.1 ∗5.0 < 0.1 ∗5.0 < 0.1 ∗5.0 < 0.1 ∗5.0 < 0.1 ∗5.0 < 0.1 10 < 0.1
20 100 500 26.1 0.2 26.4 0.2 ∗27.3 0.3 ∗27.3 0.2 ∗27.3 0.3 ∗27.3 0.3 10 0.3
20 100 1000 52 1 54.7 0.8 57.2 14 ∗57.3 13.6 ∗57.3 9.4 56.4 17.7 10 86.0

Table 7.3: Results for instances with p� = |P |
n = 1

4 .

Approx Greedy Bs-Ub Bs-Prob Bs-Ex Bs-Pat A∗

|Σ| m n |s| t[s][s] |s| t[s][s] |s| t[s][s] |s| t[s][s] |s| t[s][s] |s| t[s][s] # t[s][s]

4 10 100 28.6 < 0.1 32.2 < 0.1 ∗34.5 1.1 ∗34.5 0.9 ∗34.5 1.0 ∗34.5 1.5 10 0.2
4 10 500 134.3 < 0.1 160.4 < 0.1 179.3 45.6 182.4 48.8 181.1 98.0 168.6 97 1 660.8
4 10 1000 264.7 0.1 317.4 0.1 350.3 76.8 361.7 108 361.4 249.4 330.8 220.2 0 -
4 50 100 26.4 < 0.1 26.9 < 0.1 ∗27.5 < 0.1 ∗27.5 < 0.1 ∗27.5 < 0.1 ∗27.5 < 0.1 10 < 0.1
4 50 500 130.1 0.1 139.5 0.1 146.2 33.6 148.3 28 146.3 19.9 142.7 55.9 0 -
4 50 1000 257.4 0.5 277.3 0.3 291.9 73.6 296.4 63.6 289.5 41.1 284.2 107.6 0 -
4 100 100 25.9 < 0.1 26.2 < 0.1 ∗26.5 < 0.1 ∗26.5 < 0.1 ∗26.5 < 0.1 ∗26.5 < 0.1 10 < 0.1
4 100 500 128.9 0.2 135.8 0.2 140.4 24.6 140.8 34.8 140.3 17.4 137.3 45.9 0 -
4 100 1000 256.4 0.8 270.7 0.9 279.7 56.4 282.5 73.4 279.0 40.4 273.3 122 0 -

20 10 100 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 10 < 0.1
20 10 500 ∗125.0 < 0.1 ∗125.0 < 0.1 ∗125.0 < 0.1 ∗125.0 < 0.1 ∗125.0 < 0.1 ∗125.0 < 0.1 10 < 0.1
20 10 1000 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 10 0.1
20 50 100 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 10 < 0.1
20 50 500 ∗125.0 0.1 ∗125.0 0.1 ∗125.0 0.2 ∗125.0 0.2 ∗125.0 0.1 ∗125.0 0.1 10 0.1
20 50 1000 ∗250.0 0.5 ∗250.0 0.5 ∗250.0 0.4 ∗250.0 0.5 ∗250.0 0.5 ∗250.0 0.5 10 0.5
20 100 100 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 10 < 0.1
20 100 500 ∗125.0 0.3 ∗125.0 0.2 ∗125.0 0.3 ∗125.0 0.3 ∗125.0 0.2 ∗125.0 0.2 10 0.3
20 100 1000 ∗250.0 1 ∗250.0 0.8 ∗250.0 1.1 ∗250.0 1.1 ∗250.0 0.8 ∗250.0 1.1 10 1.0

do so. A preceding asterisk indicates that the respective result is provenly optimal. The
results allow to make the following observations.

• The m–CLCS problem tends to be most difficult to solve for short pattern strings—
that is, low values of |P |—and for small alphabet sizes. With growing |P | and |Σ|,
the problem becomes easier. On the one side, this is indicated by the results of
the A∗ search. When |P |

n = 1/20 and |Σ| = 4, A∗ can only solve three problem
instances to optimality. When moving to instances with |Σ| = 20, A∗ search can
already solve 70 instances to optimality. The corresponding numbers for instances
with |P |

n = 1/4 are 31 (for |Σ| = 4) and 90 (for |Σ| = 20). In fact, in this last
case 90 corresponds to all problem instances of this type. On the other side,
the decreasing problem difficulty for growing |P | and |Σ| is also indicated by the

159

7. The Constrained Longest Common Subsequence Problem

differences between the results of the heuristic algorithms. In fact, for |P |
n = 1/20

and |Σ| = 20 all algorithms are able to solve all 90 problem instances to optimality.

• The reason for the problem difficulty to decrease with growing |P | can be explained
as follows. With growing |P |, the similarity between the input strings also grows.
This results in a decrease of the search space size. Moreover, from [55] we know
that EX-type guidance for BS becomes worse with a growing similarity of the
input strings. And, in fact, this observation holds also in the case of the m–CLCS
problem. For |P |

n = 1/20, Bs-Ex delivers in most cases better results than the
other BS configurations. However, Bs-Ex seems to lose efficiency for |P |

n = 1/4
where Bs-Prob is generally the better choice.

• All our heuristic algorithms significantly improve over Approx, which is the only
existing technique from the literature. This also holds for Greedy, which requires
approximately the same computation time as Approx. Only when instances
are easy to solve—that is, when n and m are small, and |Σ| and |P | are rather
large—Approx is competitive with our algorithms.

• All versions of BS improve over Greedy. However, this comes at the price of
significantly elevated computation times.

• Bs-Pat, which uses the most simplistic guidance heuristic, is clearly inferior to the
other three BS variants in terms of solution quality for almost all instance types.

• The results of Bs-Ub are comparable with those of Bs-Ex only when |P | and n
are both small. This is because the upper bound is especially tight for smaller
instances.

Finally, we want to shed some more light on the comparison of the heuristic techniques
with A∗ search. For this purpose, from now on we only consider those instances that can
be solved to optimality by A∗ search. The two plots in Fig. 7.2 show for each heuristic
algorithm and each value of |P |

n (x-axis) the average fraction (in percent) of the length of
heuristic solutions in respect to the length of the A∗ search solutions. A dot at 100%
means that the length of the heuristic solution matches the length of the optimal solution
from A∗ search. The plots show, in particular, that Bs-Prob, Bs-Ub and Bs-Ex always
reach at least a value of 98%. Complementary, the two plots in Fig. 7.3 show for each
heuristic algorithm and for each value of |P |

n (x-axis) the percentage of instances that
were solved to optimality. Bs-Prob fails to deliver an optimal solution for only one
instance of type m = 10, n = 500, |Σ| = 20, and |P |

n = 1/20.

7.6.3 Computational Results for 2-CLCS Problem
We aimed to re-implement all algorithms from the literature in the way in which they are
described in the original articles as the respective code could not be obtained. In a few
cases, due to a lack of sufficient details, we had to make our own specific implementation
decisions. This was, in particular, the case for the algorithm of Iliopoulos and Rahman

160

7.6. Experimental Evaluation

1/50 1/10 1/4 1/2

60

70

80

90

100

p� = |P |
n

h
eu
ri
st
ic
so
lu
ti
on
s
/
A
∗
so
lu
ti
on
s
[%

]

BS-Prob
BS-UB
BS-Ex
BS-Pat
Greedy
Approx

1/50 1/10 1/4 1/2

80

85

90

95

100

p� = |P |
n

h
eu
ri
st
ic
so
lu
ti
on
s
/
A
∗
so
lu
ti
on
s
[%

]

BS-Prob
BS-UB
BS-Ex
BS-Pat
Greedy
Approx

Figure 7.2: Average fraction (in percent) of the length of heuristic solutions with respect
to the length of the A∗ solutions.

1/50 1/10 1/4 1/2

0

20

40

60

80

100

p� = |P |
n

p
ct
.
of

in
st
.
so
lv
ed

to
op
ti
m
al
it
y

BS-Prob
BS-UB
BS-Ex
BS-Pat
Greedy
Approx

1/50 1/10 1/4 1/2

30

40

50

60

70

80

90

100

p� = |P |
n

p
ct
.
of

in
st
.
so
lv
ed

to
op
ti
m
al
it
y

BS-Prob
BS-UB
BS-Ex
BS-Pat
Greedy
Approx

Figure 7.3: Percentage of instances solved to optimality.

[88]: The bounded heap data structure has to be initialized for different indices, and it
remains unclear how this can be done efficiently. The authors were contacted with this
issue but we did not receive a response. Our implementation creates a new bounded heap
for a new index by copying the content from the bounded heap of the previous index.
This is the most time-demanding part of the algorithm, which is in particular noticed
in the context of instances with large values of n. Unfortunately, the original article
does not contain any computational study that could serve as a comparison but just
focuses on asymptotic runtimes from a theoretical point-of-view. A short overview over
the algorithms from the literature can be found in Appendix D.

We emphasize that in general, we did our best to achieve efficient re-implementations of
the approaches from literature for the experimental comparison.

We compare our A∗ search from Section 7.4 with our re-implementations of the following
state-of-the-art algorithms from the literature.

• Chin: Algorithm by Chin et al. [34];

161

7. The Constrained Longest Common Subsequence Problem

Table 7.4: Instances with p� = |P |
n = 1

50 : Average runtimes in seconds.

|Σ| n |s| Chin[s] Deo[s] AE[s] IR[s] Hung[s] A∗[s]
4 100 60.9 0.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
4 500 319.3 < 0.1 0.1 0.2 6.5 0.1 < 0.1
4 1000 646.3 0.2 1 1.3 86.4 0.5 < 0.1

12 100 40.1 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 216.0 < 0.1 0.1 0.2 2.9 0.2 < 0.1
12 1000 435.5 0.3 0.5 1.4 39.4 1 0.1
20 100 33.5 < 0.1 0.1 < 0.1 < 0.1 < 0.1 < 0.1
20 500 175.7 < 0.1 0.1 0.2 2.2 0.2 < 0.1
20 1000 355.4 0.3 0.5 1.4 26.6 1.1 < 0.1

• Deo: Algorithm by Deorowicz [49];

• AE: Algorithm by Arslan and Eğecioğlu [5];

• IR: Algorithm by Iliopoulos and Rahman [88];

• Hung: Algorithm by Hung et al. [86].

In general, all algorithms could find optimal solutions and prove their optimality for all
instances. However, the required runtimes differ sometimes substantially. Tables 7.4–7.9
show these runtimes for each re-implemented algorithm as well as our A∗ search in
seconds averaged over each group of instances. Results for the artificial instance sets
are subdivided into five different subclasses w.r.t. the value of p�, which determines the
length of pattern string P . Concerning benchmark suite Real, the average running times
refer to all those instances that belong to the respective data set in combination with
a pattern P , cf. Table 7.9. For each instance group (line), the lowest runtimes among
the competing algorithms are displayed in bold font. The first two columns present the
properties of the instance group, while the third column |s| lists the average length of
the optimal solutions for the respective problem instances.

The following observations can be drawn from these results.

• The small instances (where n = 100) are easy to solve and all competitors require
only a fraction of a second for doing so.

• The first algorithm that starts losing efficiency with growing input string length is IR.
Already starting with n = 500, the computation times start to grow substantially in
comparison to the other approaches, which is most likely due to the complexity of
the utilized data structures. We remark that our specific implementation decision
concerning the initialization of the bounded heap may have a significant impact, as
mentioned already in Section D.1.

162

7.6. Experimental Evaluation

Table 7.5: Instances with p� = |P |
n = 1

20 : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A∗

4 100 61.9 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
4 500 323.0 0.1 0.5 0.4 15.7 0.2 < 0.1
4 1000 645.9 0.9 1.8 3.4 215.5 1.2 0.1

12 100 41.0 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 215.3 0.1 0.2 0.4 5.3 0.3 < 0.1
12 1000 437.0 0.9 1.1 3.4 69.2 2.2 0.2
20 100 32.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
20 500 170.9 0.1 0.2 0.3 3.3 0.2 < 0.1
20 1000 348.4 1 1.1 3.5 40.6 1.7 0.2

Table 7.6: Instances with p� = |P |
n = 1

10 : : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A∗

4 100 62.6 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
4 500 320.9 0.3 0.6 0.9 26.8 0.4 < 0.1
4 1000 646.4 1.8 3.5 9.2 331.2 3.3 < 0.1

12 100 40.5 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 207.1 0.2 0.3 0.9 7.3 0.3 < 0.1
12 1000 419.0 2.1 2.2 8.3 91.1 2.7 0.2
20 100 31.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
20 500 157.4 0.2 0.3 0.9 5.3 0.2 < 0.1
20 1000 317.9 1.8 2.1 8.4 68.1 2 < 0.1

Table 7.7: Instances with p� = |P |
n = 1

4 : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A∗

4 100 63.2 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
4 500 320.1 0.6 1.4 2.7 34.8 0.5 < 0.1
4 1000 642.5 5 6.6 113.6 436.6 4.5 0.1

12 100 39.9 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 203.0 0.6 0.7 3 18.7 0.3 < 0.1
12 1000 413.2 5.3 5.7 112 213.2 3.2 < 0.1
20 100 35.7 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
20 500 175.5 0.6 0.6 3.3 14.4 0.3 < 0.1
20 1000 351.1 5.2 5.9 105.4 154.8 1.8 0.1

• Algorithm Chin clearly outperforms Deo when |Σ| is small. With growing |Σ|, as
already noticed in earlier studies [49], Deo becomes more efficient. In fact, the two
approaches perform similarly for |Σ| = 20. The advantages of Deo over Chin are

163

7. The Constrained Longest Common Subsequence Problem

Table 7.8: Instances with p� = |P |
n = 1

2 : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A∗

4 100 63.9 < 0.1 < 0.1 < 0.1 0.2 < 0.1 < 0.1
4 500 325.5 1.4 1.5 22.5 60.6 0.4 < 0.1
4 1000 652.5 19.1 12.6 336.5 739.4 3.6 < 0.1

12 100 54.6 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 276.5 1.4 1.4 23.9 34.2 0.2 < 0.1
12 1000 544.3 17.8 11.3 347.5 362.2 2.4 0.1
20 100 53.0 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
20 500 264.9 1.2 1.3 21.5 30.6 0.2 < 0.1
20 1000 524.5 18.8 11.1 341 278.8 1.5 0.1

Table 7.9: Benchmark set Real: Average runtimes in seconds.

data set P |s| Chin Deo AE IR Hung A∗

ds0 HKH 60.62 0.012 0.015 0.012 0.026 0.017 0.011
ds1 HKH 64.00 0.012 0.017 0.013 0.032 0.019 0.015
ds1 HKSH 63.93 0.011 0.021 0.017 0.033 0.017 0.011
ds1 HKSTH 63.87 0.016 0.022 0.019 0.043 0.024 0.012
ds2 HKSH 79.60 0.015 0.020 0.016 0.030 0.052 0.012
ds2 HKSTH 77.87 0.013 0.018 0.016 0.030 0.051 0.013
ds3 HKH 103.90 0.018 0.026 0.019 0.138 0.188 0.014
ds4 DGGG 43.87 0.012 0.022 0.014 0.023 0.049 0.012

noticed in particular for higher p�; see Table 7.7.

• Algorithm Hung generally performs better than Deo and Chin. This confirms the
conclusions from the computational study in Hung et al. [86].

• With increasing p� and thus an increasing length of P , all approaches degrade in
their performance, except for A∗ and Hung, which still remain highly efficient.

• A general conclusion for the artificial benchmark set is that A∗ search is in most cases
about one order of magnitude faster than Hung, which is overall the second-best
approach.

• Concerning the results for benchmark set Real (see Table 7.9), we can conclude
that all algorithms only require short times as the input strings are rather short.
Nevertheless, we can also see here that the A∗ search is almost consistently fastest.

• Figure 7.4 shows the influence of the instance length on the algorithms’ runtimes
for |Σ| = 4 and |Σ| = 20. Note that IR is not included here since it was obviously
the slowest among the competitors. It can be noticed that the performance of A∗

is the only one that does not degrade much with increasing n.

164

7.6. Experimental Evaluation

• Figure 7.5 shows the influence of the length of P on the algorithms’ runtimes for
n = 500 and n = 1000 (in log-scale). It can be noticed again that A∗ does not
suffer much from an increase of the length of P . This also holds for Hung but not
the other competitors, whose performance degrades with increasing |P |.

• We emphasize that our A∗ search is also executed on the harder instances with
n ∈ {2000, 5000}. The results are presented and discussed in the master thesis [10].

Finally, we also compare the amount of work done by the algorithms in order to reach
optimal solutions. In the case of A∗, this amount of work is measured by the number
of generated nodes of the state graph. In the case of Deo, this refers to the number
of different keys (i, j, k) generated during the algorithm execution. Finally, in the case
of Hung, this is measured by the amount of newly generated nodes in each Di,l (which
corresponds to the amount of non-dominated extensions of the nodes from Di−1,l−1). Let
us call this measure the amount of created nodes for all three algorithms. This measure
is shown in log-scale in Fig. 7.6 for the instances with n = 500. The x-axis of these
graphics varies over different ratios p� = |P |

n . The curve denoted by Max (see legends) is
the theoretical upper bound on the number of created nodes, which is |s1| × |s2| × |P |
for an instance (S = {s1, s2}, P, Σ). The graphics clearly show that A∗ creates the fewest
nodes in comparison to the other approaches. The difference becomes larger with an
increasing length of P , which correlates with an increase in the similarity between the
input strings. For those instances with strongly related input strings, the upper bound
UB used in the A∗ search is usually tighter, which results in fewer node expansions. The
amount of created nodes in A∗ decreases with an increasing length of P after some point,
because the search space becomes more restricted; see Fig. 7.6 and |Σ| = 4 from p� ≥ 1

4
onward and |Σ| = 20 from p� ≥ 1

20 onward.

100 500 1,000

0

1

2

3

n

av
g.

co
m

pu
ta

tio
n

tim
e

[s
]

A∗

AE
Chin
Deo

Hung

(a) |Σ| = 4

100 500 1,000

0

1

2

3

n

av
g.

co
m

pu
ta

tio
n

tim
e

[s
]

A∗

AE
Chin
Deo

Hung

(b) |Σ| = 20

Figure 7.4: Average computation times of the algorithms for p� = 1
20 .

From a more practical point of view, our results give the impression that the more
misleading the heuristic function used by our A∗ for a specific problem instance is,

165

7. The Constrained Longest Common Subsequence Problem

1/50 1/10 1/4 1/2
0.01

0.1

1

10

p� = |P|
n

av
g.

co
m

pu
ta

tio
n

tim
e

[s
]

A∗

AE
Chin
Deo

Hung

(a) n = 500

1/50 1/10 1/4 1/2

0.1

1

10

100

1,000

p� = |P|
n

av
g.

co
m

pu
ta

tio
n

tim
e

[s
]

A∗

AE
Chin
Deo

Hung

(b) n = 500

Figure 7.5: Average computation times of the algorithms for |Σ| = 20.

1/50 1/10 1/4 1/2

103

104

105

106

107

108

p� = |P|
n

av
g.

am
ou

nt
of

cr
ea

te
d

no
de

s

A∗ Deo Hung Max

(a) |Σ| = 4

1/50 1/10 1/4 1/2
102

103

104

105

106

107

108

p� = |P|
n

av
g.

am
ou

nt
of

cr
ea

te
d

no
de

s

A∗ Deo Hung Max

(b) |Σ| = 20

Figure 7.6: Average amount of created nodes by the algorithms for n = 500.

the higher will be its running time. More specifically, the heuristic employed in our
A∗ search seems more misleading when the input strings are rather similar. In order
to verify this impression, we conducted an additional set of experiments. First, we
generated an additional set of problem instances with different degrees of similarity
in the input strings. For example, the similarity of θ = 0.3 means that, on average,
about 30% of the positions in the two input strings have the same character. We
generated 10 problem instances with input string length n = 100 for each similarity
degree θ ∈ {0.1, 0.2, 0.5, 0.8, 0.9} and an alphabet size of |Σ| = 12. Moreover, the same
random pattern string P = abbbcbcbdb was used for all instances. The running times
of our A∗ algorithms are shown in comparison to algorithm Chin in Table 7.10. Results

166

7.7. Conclusions

Table 7.10: Results for instances with different degrees of similarity (θ) of the input
strings. The similarity of the input strings grows with an increasing value of θ.

θ |s| Chin A∗

0.1 41.3 0.060 0.050
0.2 43.8 0.070 0.050
0.5 55.0 0.061 0.052
0.8 73.2 0.050 0.055
0.9 82.5 0.050 0.075

indeed confirm our observation from above. That is, when the degree of similarity is
rather low, our A∗ algorithm is faster (see the results for θ ∈ {0.1, 0.2, 0.5}. On the other
side, when the degree of similarity is rather high (θ ∈ {0.8, 0.9}, Chin is faster. This is
because, in the case of instances with a rather high θ-value, a significant amount of time
of the overall running time of A∗ is spent to calculate the upper bound values of the
generated nodes.

However, as shown in our experimental evaluation, A∗ can be expected to outperform
the competitor algorithms in most cases, especially harder ones.

7.7 Conclusions
In this chapter, we studied the generalized constrained longest common subsequence
problem which is N P–hard. Apart from a simple greedy heuristic, we also introduced
four different variants of beam search that differ in the heuristic guidance used for
selecting the partial solutions to be further expanded in the subsequent iteration. More
specifically, we considered an upper bound, a probability-based heuristic, an expected
length based heuristic, and a simple greedy criterion. Our approaches are compared to the
approximation algorithm from the literature, the only one so far available for the problem.
In general, the BS variant using the expected length calculation heuristic performs best
when the pattern string is rather short, while the BS variant with the probability-based
heuristic is leading when the pattern string is longer. Moreover, instances become more
easy to solve the longer the pattern is. For the exact solving, we presented an exact A∗

search algorithm.

Concerning the 2–CLCS problem, the literature offers algorithms based on dynamic
programming as well as sparse approaches. The effectivity of A∗ to solve the 2–CLCS
problem was demonstrated by comparing it to several other so far leading algorithms
from the literature. The A∗ search was able to solve all artificially generated benchmarks
as well as the real benchmark instances in a fraction of a second. More specifically, the
running times required by A∗ are about an order of magnitude smaller than those of the
second-best algorithm. Interestingly, the performance of A∗ does not degrade much with
an increase in the instance size, which is not the case for the other algorithms from the

167

7. The Constrained Longest Common Subsequence Problem

literature. We conclude that A∗ search is a tool that has a great potential to be used to
study similarities between sequences. In fact, our A∗ search is the new state-of-the-art
method for the 2–CLCS problem.

168

CHAPTER 8
Conclusions and Future Work

In this thesis, we provide various exact and heuristic methods to solve the longest common
subsequence (LCS) problem and several variants thereof which arise in practice. The
basic LCS problem seeks a maximal subsequence which is common for all strings from
a set of input strings. It is of high practical relevance in particular since it provides
a basic measure of similarity between molecular structures. Finding relations between
molecules plays an important role in understanding complex biological processes that
relate to the structure of the molecules. Specific relations and specific structures of
molecules ask for setting up different measures of similarity such as the longest common
palindromic subsequence problem, the longest common square subsequence problem, the
arc-preserving longest common subsequence problem, the constrained longest common
subsequence problem and the repetition-free longest common subsequence problem,
among others.

First, for each of the considered problems, general search frameworks have been introduced
as a basis to develop more advanced search techniques. We developed (i) greedy heuristics
to obtaining solutions of reasonable quality within a short time, and different (ii) exact,
and (iii) heuristic search procedures. Concerning heuristic solving, a generalized BS
framework (GBSF) has been described. Concerning exact solving, two kinds of methods
are developed (i) a pure exact A∗ search, and (ii) two novel A∗–based anytime algorithms:
A∗+BS and A∗+ACS.

GBSF employs special pruning and filtering procedures for omitting suboptimal and
dominated nodes, respectively. In order to guide the search towards promising regions, a
new state-of-the-art heuristic guidance has been introduced. The heuristic is based on an
approximation of the expected length of an LCS supposing randomness of the strings
in the input. Based on this formula, the expected length calculation heuristic is further
extended towards the LCPS and CLCS problem, also guiding the search towards more
promising regions than other heuristics known from the literature. Moreover, for the

169

8. Conclusions and Future Work

CLCS a new probability-based heuristic is developed which is an extension of such a
heuristic for the LCS problem.

Concerning the heuristic results on the three considered problems (LCS, LCPS, CLCS),
the following main conclusions can be drawn from our experimental evaluations:

• For the LCS problem, GBSF guided by the expected length calculation heuristic is
currently the leading method on the class of quasi-independent instances. When
there is high similarity between input strings, a new tight upper bound is proposed
as guidance and GBSF performs best in this case.

• For the LCPS problem, essentially the same conclusion is drawn as for the LCS
problem.

• For the CLCS problem, the GBSF guided by the expected length calculation
heuristic for the CLCS problem performs best when pattern strings are short w.r.t.
the length of longest input strings, whereas the probability-based heuristic provides
state-of-the-art results when the pattern string is longer.

Concerning the heuristic approaches to solve the longest common square subsequence
(LCSqS) problem, we transform an instance into a series of LCS problem instances, which
are then solved. Two heuristic approaches are developed in this thesis: (i) a randomized
local search, and (ii) a hybrid of a (reduced) variable neighborhood search and a beam
search for the LCS problem. The beam search component of the latter is equipped to
find a high-quality LCSqS solution while the (reduced) variable neighborhood search
component ensures a reasonable diversification of the search. Our experiments show that
the latter hybrid is able to deliver best LCSqS solutions for middle–to–large benchmark
instances when the BS is guided by the expected length calculation heuristic for LCS
problem.

Concerning exact solving, we proposed an A∗ search framework and applied it efficiently
on the LCS, LCPS and CLCS problems. The tightest known upper bounds for the LCS
from the literature are utilized for the LCS and CLCS problem, whereas a new upper
bound is proposed and utilized in the A∗ search for the LCPS problem. The following
conclusions can be drawn from our experimental evaluations:

• For the LCS problem, our A∗ search could solve small-sized instances (up to the
strings’ lengths of 100) in a fraction of a second. It outperforms the state-of-the-art
exact approach from the literature in time, memory, and the number of instances
solved to optimality.

• For the LCPS problem, our A∗ search is the first approach in the literature proposed
for the general problem variant with arbitrary many input strings. The method
shows its efficiency in particular on small-sized instances up to string lengths of 100.
Moreover, A∗ is applied on the well–studied variant of the LCPS problem with two

170

input strings and compared to other state-of-the-art approaches and a Cp approach.
The experiments show that our A∗ search is the only approach able to solve all the
instances within the given time and memory. Running times of A∗ search are an
order of magnitude shorter than the times of the second-best approach.

• For the CLCS problem, A∗ search is also the first exact approach proposed for
the general problem variant with more than two strings. The performance of A∗

is highly dependent on the length of the pattern string. The longer it is, the
easier the problem is to solve. In general, when the ratio between the pattern’s
length and the longest input string is about 0.2, A∗ needs a fraction of a second to
solve any instances considered in our experimental evaluation. If the ratio is less
than 0.1, small-sized instances (up to the strings’ length of 100) are solved by A∗

search. Moreover, A∗ search is applied on the well-studied CLCS problem with
two input strings and has been shown that it can outperform each of five former
state-of-the-art approaches from the literature.

The A∗ search framework was able to tackle small-sized problem instances exactly. In
order to further improve the performance of our A∗ search, we turned the search into
an anytime search such that powerful heuristic search techniques are interleaved with
classical A∗ search iterations. In this thesis, two such algorithms are investigated: (i)
A∗+BS where A∗ iterations are combined with a GBSF, and (ii) A∗+ACS where A∗

iterations are interlined within a major iteration of the anytime column search. Iterations
of ACS are guided by the expected length calculation heuristic of the considered problem.
The performance of the two algorithms is studied on the LCS and LCPS problems. The
following conclusions can be drawn from our experimental these evaluations:

• For the LCS problem, A∗+ACS performs better than A∗+BS and a few other
state-of-the-art anytime algorithms. The convergence towards excellent solutions
of A∗+ACS is much faster than the convergence of the other anytime algorithms.
Obtained heuristic results are new state-of-the-art results for the LCS problem on
the quasi-independent benchmark sets. Also, the obtained final gaps of A∗+ACS
are in general smaller than those of the other state-of-the-art anytime approaches
from the literature as well as A∗+BS.

• For the LCPS problem, similar conclusions can be drawn as in the case of the LCS
problem.

In addition to the above techniques, an alternative exact approach was proposed for
solving the LCS problems based on the transformation of a problem instance to an
instance of the maximum clique problem (also called conflict graphs). It turned out
that this transformation and successive solving of the maximum clique problem is highly
beneficial for, in particular, the repetition-free longest common subsequence (RFLCS)
problem and the longest arc-preserving common subsequence (LAPCS) problem. However,

171

8. Conclusions and Future Work

for large-sized problem instances, the corresponding conflict graphs become huge and,
therefore, we proposed a reduction technique based on the best available lower and upper
bounds from the literature. This reduction is highly effective for the RFLCS problem.
More than 90% of the considered instances were solved to proven optimality by applying
the general-purpose solver Cplex, outperforming the best exact and heuristic MC solvers
from the literature. For the LAPCS problem, seven out of ten real-world benchmark
instances could be solved for the first time in literature by using the reduction.

Concerning future work on the considered problem:

• In the case of the classical LCS problem, it would be interesting to compare A∗

search to the state-of-the-art approaches from the literature which are specially
designed for two strings only.

• In the case of the CLCS problem, anytime algorithms would also be interesting
to study in order to obtain optimality gaps on the large-sized problem instances.
Moreover, the case of the CLCS problem with arbitrary many pattern strings seems
interesting to consider since in biology it makes sense to consider more than just
one putative pattern string in RNA molecules, see [130].

• In the case of the LCSqS problem, we are not aware of any exact algorithm in the
literature. A possible extension of our general A∗ search framework seems to be a
promising option;

• In the case of the RFLCS problem, recently, multi-valued decision diagrams (MDDs)
are shown to be a strong approach to solve the RFLCS problem [82], especially
to further reduce the size of the conflict graphs. In the literature, embedding the
(relaxed) MDDs into B&B was shown to be a promising technique [40]. Therefore,
B&B combined with the MDDs to solve remaining unsolved instances of the problem
would be a promising direction. Considering anytime algorithms to solve large–sized
instances is another promising option.

• In the case of the LAPCS problem, it gets much harder to come up with some reason-
able general search framework due to the specificity of the problem. Constructing
a reasonable state graph structure is a crucial starting point.

• In the case of the LCPS, CLCS and LCSqS problems, the instances considered in
the experiments were all randomly generated. One should study the performance
of the constructed algorithms on real-world benchmark sets.

• Last but not least, studying other variants of the LCS problem such as the doubly-
constrained LCS [22] problem, the restricted LCS [73] problem, and the longest
common increasing subsequence problem [178] is also an important research direc-
tion.

172

APPENDIX A
LCS Problem: Supplementary

Material

In Appendix A we provide an additional material to the studies described in Chapter 3.

A.1 The Full Anytime Results

A∗ + BS A∗+ACS APS A∗ + ACS-dist lit. best
|Σ| m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|

4 10 600 214 41.8 2.52 900.0 *223 39.2 548.2 900.0 214 41.0 2.2 900.0 *223 38.6 173.6 681.1 221
4 15 600 198 46.5 35.8 624.91 *206 44.5 16.0 900.0 199 45.6 892.9 900.0 205 44.1 140.4 596.2 204
4 20 600 189 48.4 687.7 900.0 *195 46.7 130.0 900.0 188 48.1 245.0 900.0 194 46.6 158.7 686.9 193
4 25 600 183 49.9 357.7 900.0 *189 48.2 26.7 900.0 182 49.4 7.7 900.0 187 48.2 110.4 627.1 187
4 40 600 170 53.4 234.6 796.0 *177 51.5 457.5 900.0 170 52.9 110.3 900.0 174 51.7 585.8 718.9 175
4 60 600 162 55.2 8.6 900.0 *169 53.3 275.9 900.0 162 54.7 7.9 900.0 166 53.6 448.3 705.0 168
4 80 600 158 56.5 112.4 900.0 *164 54.8 337.6 900.0 158 56.1 67.3 900.0 159 55.7 9.1 765.3 163
4 100 600 155 57.4 170.6 900.0 *161 55.6 735.4 900.0 155 56.8 70.9 900.0 157 56.3 24.1 832.1 159
4 150 600 149 58.9 19.7 900.0 *155 57.2 487.5 900.0 150 58.0 71.8 900.0 149 58.4 20.1 900.1 153
4 200 600 147 59.1 135.3 900.0 *152 57.8 130.5 900.0 147 58.8 54.0 900.0 147 58.7 430.0 900.0 151

20 10 600 61 66.9 62.6 900.0 63 65.4 8.1 900.0 61 65.7 38.7 900.0 63 64.2 315.5 900.0 63
20 15 600 51 72.3 347.2 900.0 53 71.0 4.4 900.0 51 71.3 5.8 900.0 53 70.1 201.5 900.0 53
20 20 600 46 74.6 57.0 900.0 48 73.5 3.6 900.0 47 73.1 804.5 900.0 48 72.4 160.4 900.0 48
20 25 600 43 76.0 7.8 900.1 *45 74.7 7.1 900.0 44 74.6 187.0 900.1 *45 73.7 342.2 900.0 44
20 40 600 38 78.5 9.8 900.1 39 77.8 4.3 900.0 38 77.8 11.4 900.1 39 76.9 778.8 900.6 39
20 60 600 34 80.6 23.0 900.1 *36 79.2 14.5 900.0 35 79.2 283.5 900.0 35 78.9 10.2 900.0 35
20 80 600 33 80.8 15.7 900.3 33 80.7 5.9 900.0 33 80.1 20.0 900.1 33 79.9 495.3 900.0 33
20 100 600 31 82.0 23.8 900.0 32 81.4 7.6 900.0 31 81.3 21.3 900.1 32 80.4 237.4 900.3 32
20 150 600 29 83.0 413.5 900.6 *30 82.4 733.9 900.0 29 82.4 817.7 900.2 29 82.1 817.7 900.1 29
20 200 600 27 84.0 37.7 901.2 28 83.3 14.1 900.0 27 83.1 19.7 900.1 27 83.1 19.7 900.1 28

Table A.1: Random benchmark. Results when aiming for solution quality.

173

A. LCS Problem: Supplementary Material

A∗ + BS A∗+ACS APS A∗ + ACS-dist lit. best
m n |Σ| |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|
10 100 4 34.1 51.4 20.1 882.1 34.1 15.1 0.3 900.2 34.1 10.9 4.0 900.0 34.1 9.9 0.1 800.7 34.1
10 100 12 12.7 0.0 0.2 5.2 12.7 0.0 0.2 5.2 12.7 0.0 0.7 7.1 12.7 0.0 0.0 4.2 12.7
10 100 20 7.9 0.0 0.1 0.1 7.9 0.0 0.1 0.1 7.9 0.0 0.1 0.1 7.9 0.0 0.0 0.1 7.9
10 500 4 179.9 40.9 312.0 900.0 *186.0 38.8 109.5 900.0 179.6 40.2 221.6 792.7 185.5 38.2 52.8 736.9 184.1
10 500 12 76.4 60.2 134.8 900.0 *79.3 58.5 19.4 900.0 76.4 59.1 123.5 900.0 79.2 57.3 57.2 795.6 78.7
10 500 20 49.7 66.7 87.4 900.0 *51.3 65.2 48.2 900.0 49.8 65.2 104.8 900.0 *51.3 63.7 4.2 900.0 51.1
10 1000 4 362.6 42.4 209.7 900.0 *378.0 40.0 369.7 901.1 362.1 42.1 200.9 900.0 376.1 40.0 288.7 686.6 374.6
10 1000 12 156.2 62.2 214.4 900.4 *163.7 60.4 143.4 900.0 156.2 61.7 229.8 885.6 163.2 60.0 226.5 818.5 162.0
10 1000 20 102.4 68.9 120.8 900.0 *107.4 67.3 134.1 900.0 102.6 68.3 238.0 900.2 *107.4 66.7 294.8 891.2 106.5
50 100 4 24.2 32.9 18.7 884.1 24.2 29.2 0.3 893.3 24.2 24.3 2.3 900.0 24.2 23.6 61.3 754.5 24.2
50 100 12 6.9 0.0 0.1 0.3 6.9 0.0 0.1 0.2 6.9 0.0 0.2 0.2 6.9 0.0 0.1 0.2 6.9
50 100 20 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0
50 500 4 136.9 54.1 63.6 892.8 *142.0 52.4 238.3 897.3 137.2 53.3 137.0 877.7 139.7 52.5 301.7 703.0 141.0
50 500 12 47.8 74.0 190.0 900.0 *49.7 72.8 152.6 900.0 48.1 73.0 92.5 900.1 49.1 72.2 172.2 893.6 49.2
50 500 20 28.2 79.3 54.3 900.1 29.3 78.3 3.6 900.0 28.3 78.3 31.0 900.1 29.1 77.2 133.7 901.0 29.3
50 1000 4 278.6 55.3 162.5 900.0 *291.0 53.4 348.6 900.0 279.0 55.0 190.2 900.0 285.0 54.0 271.7 713.3 288.6
50 1000 12 99.1 75.4 79.0 900.3 *104.2 74.2 72.8 900.0 99.6 75.0 157.8 900.1 102.7 74.1 358.2 896.1 103.5
50 1000 20 60.5 81.0 114.5 900.1 *63.2 80.1 52.6 900.0 60.8 80.4 190.2 900.2 62.2 79.9 307.1 901.7 62.5

100 100 4 21.9 37.3 226.2 900.0 *22.1 32.5 1.1 895.5 *22.1 28.1 12.2 900.0 *22.1 24.9 63.1 815.0 22.0
100 100 12 5.2 0.0 0.1 0.1 5.2 0.0 0.1 0.1 5.2 0.0 0.1 0.1 5.2 0.0 0.0 0.1 5.2
100 100 20 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0 2.1
100 500 4 127.6 57.9 135.2 900.0 *131.9 55.6 74.6 900.0 127.7 56.5 86.0 900.0 128.7 56.1 358.6 868.4 130.8
100 500 12 41.8 76.8 41.0 900.1 *43.4 75.9 52.0 900.2 42.0 75.8 17.8 900.2 42.4 75.4 136.2 900.1 43.1
100 500 20 24.2 81.6 16.1 900.4 *25.0 80.9 7.1 900.0 24.2 80.8 17.3 900.4 24.5 80.1 107.9 900.0 24.9
100 1000 4 261.8 57.9 135.3 900.0 *272.4 56.2 291.9 900.0 262.6 57.5 317.2 900.1 265.1 57.1 257.0 817.3 270.6
100 1000 12 89.2 77.8 106.3 900.2 *93.1 76.8 67.3 900.0 89.0 77.6 93.3 900.2 90.5 77.0 295.2 900.0 92.4
100 1000 20 52.8 83.2 50.4 900.2 *55.1 82.5 61.1 900.6 53.0 82.9 124.1 900.5 53.6 82.5 216.9 901.6 54.7
150 100 4 20.3 37.4 23.4 900.0 *20.8 30.6 2.9 899.1 20.7 26.3 117.9 900.0 20.7 22.4 38.5 826.7 20.5
150 100 12 4.7 0.0 0.0 0.1 4.7 0.0 0.0 0.0 4.7 0.0 0.1 0.1 4.7 0.0 0.0 0.0 4.7
150 100 20 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0 1.9
150 500 4 123.5 58.4 180.3 900.0 *127.5 56.9 150.9 899.7 124.0 57.7 313.6 900.0 123.9 57.6 314.1 884.5 126.4
150 500 12 39.5 77.9 113.9 900.2 *40.9 77.1 24.1 900.0 39.8 77.1 184.7 900.3 39.7 76.9 141.0 900.0 40.4
150 500 20 22.5 82.8 31.4 900.5 23.0 82.3 7.4 900.0 22.5 81.7 27.9 900.8 22.4 81.5 73.3 900.1 23.0
150 1000 4 254.6 59.0 365.0 900.1 *264.0 57.5 245.6 900.0 254.5 58.8 311.1 900.1 255.9 58.6 295.5 864.8 262.8
150 1000 12 84.5 79.0 105.5 900.3 *88.1 78.0 44.4 900.0 84.6 78.6 101.7 900.3 85.2 78.3 296.4 900.0 87.7
150 1000 20 49.7 84.2 98.6 900.4 *51.6 83.5 86.8 900.0 49.8 83.8 114.8 900.9 49.9 83.6 280.8 900.1 51.2
200 100 4 19.9 37.9 5.7 900.0 *20.1 32.8 9.0 898.2 *20.1 28.2 58.8 900.1 19.9 24.6 17.0 861.6 19.9
200 100 12 4.1 0.0 0.0 0.0 4.1 0.0 0.0 0.0 4.1 0.0 0.1 0.1 4.1 0.0 0.0 0.0 4.1
200 100 20 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1
200 500 4 121.0 59.3 93.0 900.0 *124.8 57.9 188.1 900.0 121.3 58.6 126.0 900.1 121.0 58.6 258.6 880.1 123.7
200 500 12 38.0 78.7 41.0 900.4 *39.1 77.9 57.1 900.0 38.0 78.0 31.2 900.3 38.0 77.7 82.9 900.0 39.0
200 500 20 21.0 83.7 28.0 900.5 *22.0 82.9 41.4 900.2 21.1 82.9 107.5 901.0 21.2 82.3 116.4 900.1 21.8
200 1000 4 249.6 59.8 283.5 900.1 *258.8 58.3 170.0 900.0 249.8 59.6 235.8 900.1 250.2 59.4 448.5 893.6 257.6
200 1000 12 81.8 79.5 244.9 900.2 *85.2 78.6 59.5 900.0 81.9 79.2 205.1 900.4 81.9 79.1 205.4 900.0 84.8
200 1000 20 47.8 84.6 305.7 900.4 *49.4 84.1 93.4 900.0 47.9 84.5 190.7 900.6 47.9 84.2 309.5 900.1 49.1

Table A.2: BL benchmark. Results when aiming for solution quality (averages over ten
instances per row).

174

A.2. Improvements of A∗+ACS Over Other Approaches

A∗ + BS A∗+ACS APS A∗ + ACS-dist

|Σ| m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]
4 10 600 215 40.4 3.4 900.0 222 38.3 100.0 900.0 219 39.5 568.6 900.0 223 37.9 236.1 633.2
4 15 600 200 45.2 146.8 900.0 206 43.3 167.7 900.0 200 45.4 74.6 900.0 204 43.8 64.4 586.4
4 20 600 188 47.6 209.3 749.4 194 45.8 158.7 900.0 189 47.8 731.3 917.0 194 45.8 75.0 887.5
4 25 600 182 49.3 397.2 900.0 189 46.9 235.2 900.0 183 49.3 189.7 900.0 186 47.8 7.3 578.1
4 40 600 171 52.1 57.8 812.6 176 50.4 42.8 900.0 169 53.2 34.9 900.0 173 51.3 627.6 640.6
4 60 600 162 54.5 167.6 900.0 168 52.4 471.3 900.1 163 54.6 462.0 900.0 164 53.5 56.2 628.7
4 80 600 157 56.0 108.8 900.1 163 54.0 115.6 900.1 159 55.8 115.6 900.0 159 55.1 65.0 725.5
4 100 600 155 56.6 170.2 900.0 160 54.7 168.1 900.0 155 56.9 84.4 900.0 157 55.5 118.0 900.0
4 150 600 149 58.1 20.5 900.1 154 56.2 301.2 900.0 149 58.4 20.1 900.0 150 57.4 173.2 790.8
4 200 600 147 58.5 115.3 900.1 151 56.7 37.8 900.0 147 58.8 54.8 900.0 146 58.2 221.0 900.0

20 10 600 61 64.3 2.8 900.0 63 62.9 162.8 900.1 62 65.0 29.2 900.1 62 63.1 59.3 890.1
20 15 600 51 70.5 7.7 900.1 53 68.8 86.5 900.0 52 70.8 63.9 900.0 52 69.2 47.9 814.7
20 20 600 46 73.1 7.3 900.1 48 71.3 79.9 900.0 46 73.9 8.5 900.1 47 71.9 8.0 855.2
20 25 600 43 74.6 9.1 900.0 45 72.7 47.0 900.0 44 74.6 440.7 900.2 44 73.2 7.4 868.9
20 40 600 38 77.2 9.9 900.0 39 75.9 29.4 900.0 38 77.8 12.4 900.3 38 76.5 142.2 900.0
20 60 600 34 79.4 434.1 900.2 36 77.4 592.2 900.2 35 79.2 293.9 900.3 35 78.0 179.8 900.0
20 80 600 32 80.2 15.8 900.4 33 78.8 27.9 900.2 32 80.7 21.4 900.2 32 79.5 88.7 900.2
20 100 600 31 80.7 24.9 900.5 32 79.5 56.2 900.2 31 81.0 10.2 900.2 31 80.1 37.5 900.1
20 150 600 28 83.9 36.3 900.0 29 81.2 41.1 900.0 29 82.4 74.3 900.9 28 81.8 26.2 900.2
20 200 600 27 84.3 43.2 900.5 28 81.6 20.9 900.0 28 82.9 856.6 900.7 27 82.2 387.0 900.3

Table A.3: Random benchmark. Results when aiming for small gaps.

A.2 Improvements of A∗+ACS Over Other Approaches

1
0

5
0

1
0
0

1
5
0

2
0
0

m

0.1

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 4

A*+BS

APS

A*+ACS-dist

1
0

5
0

1
0
0

1
5
0

2
0
0

m

0.1

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 12

A*+BS

APS

A*+ACS-dist

1
0

5
0

1
0
0

1
5
0

2
0
0

m

0.1

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 20

A*+BS

APS

A*+ACS-dist

1
0

5
0

1
0
0

1
5
0

2
0
0

m

0.1

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 4

A*+BS

APS

A*+ACS-dist

1
0

5
0

1
0
0

1
5
0

2
0
0

m

0.1

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 12

A*+BS

APS

A*+ACS-dist

1
0

5
0

1
0
0

1
5
0

2
0
0

m

0.1

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 20

A*+BS

APS

A*+ACS-dist

Figure A.1: Improvement of A∗+ACS over the competitors in terms of solution quality
(in %) for benchmark set BL. First row: instances with n = 500. Second row: instances
with n = 1000.

175

A. LCS Problem: Supplementary Material

A∗ + BS A∗+ACS APS A∗ + ACS-dist

m n |Σ| |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]
10 100 4 34.0 4.2 0.3 797.6 34.1 10.8 1.8 900.0 34.1 8.4 0.6 898.9 34.1 6.7 1.4 645.0
10 100 12 12.7 0.0 0.3 2.7 12.7 0.0 1.6 8.2 12.7 0.0 0.5 4.1 12.7 0.0 0.3 2.4
10 100 20 7.9 0.0 0.1 0.1 7.9 0.0 0.1 0.1 7.9 0.0 0.1 0.1 7.9 0.0 0.0 0.0
10 500 4 180.7 39.3 113.1 901.3 185.4 37.7 337.6 900.0 181.2 39.5 28.2 900.0 185.3 37.3 160.8 656.6
10 500 12 76.7 57.9 24.1 900.0 79.0 56.6 216.1 900.1 77.2 58.3 180.3 900.0 79.1 55.8 163.0 795.5
10 500 20 49.6 64.1 5.9 900.0 51.2 62.7 205.8 900.1 50.1 64.8 16.1 900.1 51.3 61.7 72.4 900.0
10 1000 4 365.5 41.4 168.4 900.0 376.2 39.6 385.8 900.0 366.5 41.4 77.4 900.0 375.6 39.5 229.3 700.6
10 1000 12 157.1 61.1 113.5 900.0 162.7 59.6 273.3 900.1 158.2 61.2 135.2 900.0 162.1 59.5 111.2 742.0
10 1000 20 103.4 67.5 38.4 900.0 106.6 66.3 265.9 900.2 104.1 67.7 83.7 900.1 106.4 66.0 240.6 890.9
50 100 4 23.9 21.1 0.8 900.0 24.2 18.7 9.6 900.0 24.2 25.3 2.6 900.0 24.1 18.0 106.5 748.2
50 100 12 6.9 0.0 0.2 0.3 6.9 0.0 0.3 0.5 6.9 0.0 0.3 0.4 6.9 0.0 0.1 0.1
50 100 20 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0
50 500 4 136.5 53.3 110.9 900.0 141.3 51.3 142.3 901.0 137.2 53.4 101.3 900.0 138.8 52.0 256.1 712.6
50 500 12 47.4 72.8 8.3 900.1 49.2 71.3 152.7 900.2 48.1 73.0 137.3 900.0 48.4 71.5 130.8 808.5
50 500 20 28.1 77.7 20.2 900.1 29.3 76.2 121.1 900.3 28.4 78.2 33.8 900.3 28.7 76.2 94.7 900.5
50 1000 4 278.3 55.0 157.3 900.0 289.8 52.9 410.9 900.0 278.9 55.0 96.1 900.0 284.2 53.7 332.7 756.7
50 1000 12 99.0 74.8 104.1 900.1 103.7 73.4 288.9 900.2 99.6 75.0 205.8 900.1 101.7 73.8 378.8 874.5
50 1000 20 60.0 80.4 98.4 900.2 62.6 79.3 134.3 900.4 60.7 80.6 132.0 900.3 61.3 79.6 320.7 901.0

100 100 4 21.6 24.6 1.3 900.0 22.0 20.4 16.1 900.1 22.1 28.1 12.9 900.0 22.0 17.4 80.6 813.9
100 100 12 5.2 0.0 0.1 0.1 5.2 0.0 0.0 0.1 5.2 0.0 0.2 0.2 5.2 0.0 0.0 0.0
100 100 20 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0
100 500 4 127.3 56.3 96.3 900.0 131.4 54.4 250.1 900.0 127.7 56.5 91.2 900.0 128.0 55.4 242.5 857.0
100 500 12 41.8 75.4 88.1 900.1 43.2 74.2 185.7 900.2 42.0 76.0 30.5 900.2 42.0 74.6 131.8 900.0
100 500 20 24.2 80.1 17.0 900.2 24.8 79.0 156.8 900.6 24.2 80.7 14.8 900.4 24.0 79.3 152.9 900.1
100 1000 4 261.9 57.5 206.9 900.0 271.4 55.7 312.8 900.1 262.6 57.5 354.9 900.0 264.7 56.7 521.1 890.2
100 1000 12 88.9 77.3 53.2 900.1 92.7 76.1 363.4 900.3 89.1 77.5 186.5 900.2 89.7 76.7 368.2 900.0
100 1000 20 52.8 83.0 103.0 900.2 54.8 81.6 310.1 900.6 53.0 82.9 126.8 900.2 52.9 82.1 309.9 900.1
150 100 4 20.0 22.0 1.6 900.1 20.6 18.1 17.9 900.0 20.7 26.8 123.5 900.1 20.6 15.1 182.6 834.9
150 100 12 4.7 0.0 0.1 0.1 4.7 0.0 0.0 0.0 4.7 0.0 0.1 0.1 4.7 0.0 0.0 0.0
150 100 20 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0
150 500 4 123.4 57.5 254.8 900.0 127.0 55.8 229.7 900.1 123.9 57.7 251.4 900.0 123.2 57.0 364.8 848.4
150 500 12 39.3 76.8 21.3 900.2 40.5 75.6 95.5 900.4 39.8 77.1 205.9 900.3 39.3 76.1 124.2 900.1
150 500 20 22.4 82.5 25.8 900.2 22.9 80.3 324.6 901.0 22.5 82.0 36.4 900.9 22.1 80.6 142.3 900.2
150 1000 4 254.1 58.7 141.1 900.0 263.3 57.0 340.2 900.1 254.6 58.8 293.6 900.1 255.0 58.2 284.5 872.9
150 1000 12 84.4 78.8 159.2 900.7 87.7 77.2 294.5 900.4 84.6 78.6 106.5 900.3 84.5 78.0 204.9 900.1
150 1000 20 49.7 84.1 101.7 900.6 51.0 82.8 155.6 901.0 49.8 83.8 117.6 900.6 49.0 83.3 309.8 900.3
200 100 4 19.7 23.9 2.3 900.0 20.0 20.2 47.5 900.1 20.1 26.8 56.4 900.1 19.8 17.8 134.5 878.7
200 100 12 4.1 0.0 0.1 0.1 4.1 0.0 0.0 0.1 4.1 0.0 0.1 0.1 4.1 0.0 0.0 0.0
200 100 20 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0
200 500 4 121.0 58.4 190.1 900.1 124.0 56.9 187.4 900.1 121.3 58.6 133.5 900.1 120.3 58.0 186.4 880.4
200 500 12 38.0 77.4 50.6 900.2 38.9 76.3 84.2 900.4 38.0 78.0 31.9 900.5 37.5 77.0 214.4 900.1
200 500 20 21.0 83.5 28.0 900.1 21.7 81.1 256.0 901.3 21.1 83.0 111.8 901.1 20.9 81.4 288.6 900.2
200 1000 4 249.3 59.6 124.0 900.0 258.1 57.7 431.9 900.2 249.8 59.6 242.5 900.1 249.0 59.2 436.3 899.3
200 1000 12 81.7 79.5 130.9 900.2 84.6 78.0 311.7 900.7 81.9 79.2 187.4 900.4 81.1 78.8 332.9 900.1
200 1000 20 47.5 84.7 106.7 900.5 49.0 83.3 221.1 900.8 47.9 84.5 203.9 900.7 46.9 83.9 298.5 900.3

Table A.4: BL benchmark. Results when aiming for small gaps (averages over ten
instances per row).

1
0

1
5

2
0

2
5

4
0

6
0

8
0

1
0

0

1
5

0

2
0

0

m

0.1

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 4

A*+BS

APS

A*+ACS-dist

1
0

1
5

2
0

2
5

4
0

6
0

8
0

1
0

0

1
5

0

2
0

0

m

0.1

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 4

A*+BS

APS

A*+ACS-dist

1
0

1
5

2
0

2
5

4
0

6
0

8
0

1
0

0

1
5

0

2
0

0

m

0.1

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 4

A*+BS

APS

A*+ACS-dist

1
0

1
5

2
0

2
5

4
0

6
0

8
0

1
0

0

1
5

0

2
0

0

m

0.1

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 20

A*+BS

APS

A*+ACS-dist

1
0

1
5

2
0

2
5

4
0

6
0

8
0

1
0

0

1
5

0

2
0

0

m

0.1

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 20

A*+BS

APS

A*+ACS-dist

1
0

1
5

2
0

2
5

4
0

6
0

8
0

1
0

0

1
5

0

2
0

0

m

0.1

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 20

A*+BS

APS

A*+ACS-dist

Figure A.2: Improvement of A∗+ACS over the competitors in terms of solution quality
(in %) for benchmark sets Rat (first column of graphs), Virus (second column of
graphics) and Random (last column of graphics).

176

A.2. Improvements of A∗+ACS Over Other Approaches

1
0

5
0

1
0
0

m

0

5

10

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

n=1000, |Σ|= 2

A*+BS

APS

A*+ACS-dist

1
0

5
0

1
0
0

m

0

5

10

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

n=1000, |Σ|= 10

A*+BS

APS

A*+ACS-dist

1
0

5
0

1
0
0

m

0

5

10

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

n=2500, |Σ|= 25

A*+BS

APS

A*+ACS-dist

1
0

5
0

1
0
0

m

0

5

10

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

n=5000, |Σ|= 100

A*+BS

APS

A*+ACS-dist

Figure A.3: Improvement of A∗+ACS over the competitors in terms of solution quality
(in %) for benchmark set ES.

1
0

1
0
0

m

-10.0

-1.0

0.0

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 2

A*+BS

APS

A*+ACS-dist

1
0

1
0
0

m

-10.0

-1.0

0.0

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 4

A*+BS

APS

A*+ACS-dist

1
0

1
0
0

m

-10.0

-1.0

0.0

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 8

A*+BS

APS

A*+ACS-dist

1
0

1
0
0

m

-10.0

-1.0

0.0

1.0

10.0

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 24

A*+BS

APS

A*+ACS-dist

Figure A.4: Improvement of A∗+ACS over the competitors in terms of solution quality
(in %) for benchmark set BB.

1
0

5
0

1
0

0

1
5

0

2
0

0

m

0

2

4

6

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 4

A*+BS

APS

A*+ACS-dist

1
0

5
0

1
0

0

1
5

0

2
0

0

m

0

2

4

6

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 12

A*+BS

APS

A*+ACS-dist

1
0

5
0

1
0

0

1
5

0

2
0

0

m

0

2

4

6

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 20

A*+BS

APS

A*+ACS-dist

1
0

5
0

1
0

0

1
5

0

2
0

0

m

0

2

4

6

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 4

A*+BS

APS

A*+ACS-dist

1
0

5
0

1
0

0

1
5

0

2
0

0

m

0

2

4

6

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 12

A*+BS

APS

A*+ACS-dist

1
0

5
0

1
0

0

1
5

0

2
0

0

m

0

2

4

6

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 20

A*+BS

APS

A*+ACS-dist

Figure A.5: Improvement of A∗+ACS over the competitors in terms of gaps (in %)
for benchmark set BL. First row: instances with n = 500. Second row: instances with
n = 1000.

177

A. LCS Problem: Supplementary Material

1
0

1
5

2
0

2
5

4
0

6
0

8
0

1
0
0

1
5
0

2
0
0

m

0

10

20

30
Im

p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 4

A*+BS

APS

A*+ACS-dist

1
0

1
5

2
0

2
5

4
0

6
0

8
0

1
0
0

1
5
0

2
0
0

m

0

5

10

15

20

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 4

A*+BS

APS

A*+ACS-dist

1
0

1
5

2
0

2
5

4
0

6
0

8
0

1
0
0

1
5
0

2
0
0

m

0

5

10

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 4

A*+BS

APS

A*+ACS-dist

1
0

1
5

2
0

2
5

4
0

6
0

8
0

1
0
0

1
5
0

2
0
0

m

0

5

10

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 20

A*+BS

APS

A*+ACS-dist

1
0

1
5

2
0

2
5

4
0

6
0

8
0

1
0
0

1
5
0

2
0
0

m

0

5

10

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 20

A*+BS

APS

A*+ACS-dist

1
0

1
5

2
0

2
5

4
0

6
0

8
0

1
0
0

1
5
0

2
0
0

m

−2

0

2

4

6

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 20

A*+BS

APS

A*+ACS-dist

Figure A.6: Improvement of A∗+ACS over the competitors in terms of gaps (in %) for
benchmark sets Rat (first column of graphs), Virus (second column of graphics) and
Random (last column of graphics).

1
0

5
0

1
0
0

m

0

2

4

6

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

n=1000, |Σ|= 2

A*+BS

APS

A*+ACS-dist

1
0

5
0

1
0
0

m

0

2

4

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

n=1000, |Σ|= 10

A*+BS

APS

A*+ACS-dist

1
0

5
0

1
0
0

m

0

2

4

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

n=2500, |Σ|= 25

A*+BS

APS

A*+ACS-dist

1
0

5
0

1
0
0

m

0

2

4

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

n=5000, |Σ|= 100

A*+BS

APS

A*+ACS-dist

Figure A.7: Improvement of A∗+ACS over the competitors in terms of gaps (in %) for
benchmark set ES.

1
0

1
0
0

m

0

10

20

30

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 2

A*+BS

APS

A*+ACS-dist

1
0

1
0
0

m

0

10

20

30

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 4

A*+BS

APS

A*+ACS-dist

1
0

1
0
0

m

0

10

20

30

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 8

A*+BS

APS

A*+ACS-dist

1
0

1
0
0

m

0

10

20

30

Im
p
r.

 o
f

A
*
+

A
C

S
 [

%
]

|Σ|= 24

A*+BS

APS

A*+ACS-dist

Figure A.8: Improvement of A∗+ACS over the competitors in terms of gaps (in %) for
benchmark set BB.

178

APPENDIX B
LCPS Problem: Supplementary

Material

Appendix B provides supplementary material that concerns of the extended experimental
studies for the LCPS problem presented in Chapter 4. The supplementary material
includes:

• a CP model for the LCPS problem.

• a complete set of graphics concerning the anytime performance of the proposed
algorithms to solve the LCPS problem, both concerning the solution quality and
the gaps.

• descriptions of the 2–LCPS algorithms from literature to which the comparison has
made, and with the certain implementation aspects we made by our choice due to
some open questions and ambiguities found in the corresponding papers.

B.1 Constraint Programming model for the LCPS
Problem

For comparison purposes, the following basic CP model for the LCPS problem is consid-
ered.

The model uses the following variables. Let r ∈ {1, ..., l}, with l = min{|si| | i = 1, . . . , m}
denote the length of the solution string, which shall be maximized. Decision variable
Ti,j ∈ {1, . . . , |si|} represents the index of the solution string’s j-th letter in the i-th input
string, for i = 1, . . . , m and j = 1, . . . , r.

179

B. LCPS Problem: Supplementary Material

The LCPS is now expressed as follows.

max r (B.1)
Ti,j < Ti,j+1 ∀i = 1, . . . , m, j = 1, . . . , r − 1 (B.2)
si[Ti,j] = si+1[Ti+1,j] ∀i = 1, . . . , m − 1, ∀j = 1, . . . , r (B.3)
s1[T1,j] = s1[T1,r−j+1] ∀ j = 1, . . . , �r/2� (B.4)

Constraints (B.2) ensure that the sequence of indices Ti,1, . . . , Ti,r is strongly monoton-
ically increasing for each input string si. Constraints (B.3) guarantee that for each
j = 1, . . . , r, the letter at position Ti,j in string si is the same over all i = 1, . . . , m. Last
but not least, constraints (B.4) guarantee that the solution is palindromic. Preliminary
experiments indicated in this respect that stating these constraints redundantly for all
input strings speeds up the solving process.

The model was implemented in MiniZinc 2.1.5. Comparing FlatZinc, Chuffed and Gecode
as backbone solvers, we found Gecode to usually work best for this model.

B.2 Anytime plots of the algorithms that show the
evolution of the obtained sol. quality

0 200 400 600 800
time[s]

150

155

160

165

170

so
l.
 q

u
a
lit

y

m= 10, n= 500, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

58

60

62

64

66

so
l.
 q

u
a
lit

y

m= 10, n= 500, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

36

38

40

42

so
l.
 q

u
a
lit

y

m= 10, n= 500, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.1: Instances with m=10 and n=500.

180

B.2. Anytime plots of the algorithms that show the evolution of the obtained sol. quality

0 200 400 600
time[s]

300

310

320

330

340

so
l.
 q

u
a
lit

y

m= 10, n= 1000, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

120

125

130

135

so
l.
 q

u
a
lit

y

m= 10, n= 1000, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

74

76

78

80

82

84

86

so
l.
 q

u
a
lit

y

m= 10, n= 1000, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.2: Instances with m=10 and n=1000.

0 200 400 600
time[s]

120

125

130

135

140

so
l.
 q

u
a
lit

y

m= 50, n= 500, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

38

40

42

44

46

48

so
l.
 q

u
a
lit

y

m= 50, n= 500, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

23

24

25

26

27

so
l.
 q

u
a
lit

y

m= 50, n= 500, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.3: Instances with m=50 and n=500.

181

B. LCPS Problem: Supplementary Material

0 200 400 600 800
time[s]

250

260

270

280
so

l.
 q

u
a
lit

y

m= 50, n= 1000, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

85

90

95

100

so
l.
 q

u
a
lit

y

m= 50, n= 1000, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

48

50

52

54

56

58

so
l.
 q

u
a
lit

y
m= 50, n= 1000, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.4: Instances with m=50 and n=1000.

0 200 400 600 800
time[s]

115

120

125

130

so
l.
 q

u
a
lit

y

m= 100, n= 500, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

36

38

40

42

so
l.
 q

u
a
lit

y

m= 100, n= 500, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

20

21

22

23

24

so
l.
 q

u
a
lit

y

m= 100, n= 500, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.5: Instances with m=100 and n=500.

182

B.2. Anytime plots of the algorithms that show the evolution of the obtained sol. quality

0 200 400 600 800
time[s]

240

250

260

270

so
l.
 q

u
a
lit

y

m= 100, n= 1000, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

77.5

80.0

82.5

85.0

87.5

90.0

s
o
l.
 q

u
a
lit

y

m= 100, n= 1000, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

44

46

48

50

52

so
l.
 q

u
a
lit

y

m= 100, n= 1000, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.6: Instances with m=100 and n=1000.

0 200 400 600 800
time[s]

110

115

120

125

so
l.
 q

u
a
lit

y

m= 150, n= 500, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

34

36

38

40

so
l.
 q

u
a
lit

y

m= 150, n= 500, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

18

19

20

21

22

23

s
o
l.
 q

u
a
lit

y

m= 150, n= 500, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.7: Instances with m=150 and n=500.

183

B. LCPS Problem: Supplementary Material

0 200 400 600 800
time[s]

230

240

250

260

so
l.
 q

u
a
lit

y

m= 150, n= 1000, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

74

76

78

80

82

84

86

so
l.
 q

u
a
lit

y

m= 150, n= 1000, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

42

44

46

48

50

so
l.
 q

u
a
lit

y
m= 150, n= 1000, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.8: Instances with m=150 and n=1000.

0 200 400 600 800
time[s]

110

115

120

125

so
l.
 q

u
a
lit

y

m= 200, n= 500, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

33

34

35

36

37

38

39

s
o
l.
 q

u
a
lit

y

m= 200, n= 500, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

18.0

18.5

19.0

19.5

20.0

20.5

21.0

so
l.
 q

u
a
lit

y

m= 200, n= 500, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.9: Instances with m=200 and n=500.

184

B.2. Anytime plots of the algorithms that show the evolution of the obtained sol. quality

0 200 400 600 800
time[s]

230

240

250

260

so
l.
 q

u
a
lit

y

m= 200, n= 1000, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

72

74

76

78

80

82

84
so

l.
 q

u
a
lit

y
m= 200, n= 1000, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

40

42

44

46

48

so
l.
 q

u
a
lit

y

m= 200, n= 1000, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.10: Instances with m=200 and n=1000.

185

B. LCPS Problem: Supplementary Material

B.3 Anytime plots of the algorithms that show the
evolution of the obtained gaps

0 200 400 600 800
time[s]

42

44

46

48

50

g
a
p
[\

%
]

m= 10, n= 500, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

57.5

60.0

62.5

65.0

67.5

70.0

g
a
p
[\
%
]

m=10, n= 500, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600
time[s]

65

70

75

80

85

g
a
p
[\

%
]

m= 10, n= 500, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.11: Instances with m=10 and n=500.

0 200 400 600
time[s]

44

46

48

50

52

g
a
p
[\

%
]

m= 10, n= 1000, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

64

66

68

70

72

74

g
a
p
[\

%
]

m= 10, n= 1000, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

70

75

80

85

g
a
p
[\

%
]

m= 10, n= 1000, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.12: Instances with m=10 and n=1000.

186

B.3. Anytime plots of the algorithms that show the evolution of the obtained gaps

0 200 400 600 800
time[s]

50

52

54

56

58

60
g
a
p
[\

%
]

m= 50, n= 500, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

65

70

75

80

g
a
p
[\

%
]

m= 50, n= 500, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

70

75

80

85

90

g
a
p
[\

%
]

m= 50, n= 500, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.13: Instances with m=50 and n=500.

0 200 400 600 800
time[s]

52

54

56

58

60

62

g
a
p
[\

%
]

m= 50, n= 1000, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

70.0

72.5

75.0

77.5

80.0

82.5

g
a
p
[\
%
]

m=50, n= 1000, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

80

85

90

g
a
p
[\

%
]

m= 50, n= 1000, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.14: Instances with m=50 and n=1000.

187

B. LCPS Problem: Supplementary Material

0 200 400 600 800
time[s]

52

54

56

58

60

62

g
a
p
[\

%
]

m= 100, n= 500, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

70

75

80

g
a
p
[\

%
]

m= 100, n= 500, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

70

75

80

85

90
g
a
p
[\
%
]

m=100, n= 500, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.15: Instances with m=100 and n=500.

0 200 400 600 800
time[s]

54

56

58

60

62

64

g
a
p
[\

%
]

m= 100, n= 1000, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

72.5

75.0

77.5

80.0

82.5

85.0

g
a
p
[\
%
]

m=100, n= 1000, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

80

85

90

g
a
p
[\

%
]

m= 100, n= 1000, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.16: Instances with m=100 and n=1000.

B.4 The 2–LCPS Approaches from Literature: details of
our re-implementations

The existing literature on approaches for solving the 2–LCPS problem is more of theoretical
nature. In other words, a computational study comparing the different approaches has

188

B.4. The 2–LCPS Approaches from Literature: details of our re-implementations

0 200 400 600 800
time[s]

52

54

56

58

60

62

64
g
a
p
[\

%
]

m= 150, n= 500, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

70

75

80

g
a
p
[\

%
]

m= 150, n= 500, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

70

75

80

85

90

g
a
p
[\
%
]

m=150, n= 500, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.17: Instances with m=150 and n=500.

0 200 400 600 800
time[s]

56

58

60

62

64

g
a
p
[\

%
]

m= 150, n= 1000, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

74

76

78

80

82

84

g
a
p
[\

%
]

m= 150, n= 1000, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

80

85

90

g
a
p
[\

%
]

m= 150, n= 1000, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.18: Instances with m=150 and n=1000.

not been performed so far. In the following, we sketch the existing approaches, putting
emphasis on the data structures we chose in order to obtain efficient implementations.
Note that a straightforward Constraint Programming (CP) model has already been
described in the appendix. In the following we focus, therefore, on the description of

189

B. LCPS Problem: Supplementary Material

0 200 400 600 800
time[s]

54

56

58

60

62

64

g
a
p
[\

%
]

m= 200, n= 500, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

70.0

72.5

75.0

77.5

80.0

82.5

g
a
p
[\
%
]

m=200, n= 500, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

75

80

85

90
g
a
p
[\

%
]

m= 200, n= 500, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.19: Instances with m=200 and n=500.

0 200 400 600 800
time[s]

56

58

60

62

64

g
a
p
[\

%
]

m= 200, n= 1000, |Σ| = 4

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

75.0

77.5

80.0

82.5

85.0

g
a
p
[\
%
]

m=200, n= 1000, |Σ| = 12

A* + BS

A*+ACS

ACS-ub

APS

0 200 400 600 800
time[s]

80

85

90

g
a
p
[\

%
]

m= 200, n= 1000, |Σ| = 20

A* + BS

A*+ACS

ACS-ub

APS

Figure B.20: Instances with m=200 and n=1000.

the remaining three approaches: (i) a Dynamic Programming (DP) approach, (ii) an
algorithm which solves the Maximum Nesting Depth Rectangle Structures (MNDRS)
problem from computational geometry to which the 2–LCPS problem can be reduced,
and (iii) the so-called CPSA approach which uses an automaton to solve the 2–LCPS

190

B.4. The 2–LCPS Approaches from Literature: details of our re-implementations

problem.

B.4.1 Dynamic Programming Approach
Chowdhury et al. [38] presented a dynamic programming approach for solving the 2–LCPS
problem. The idea is as follows. Let s1 and s2 be the input strings of equal length.1
Let LCPS(i, j, k, l), 1 ≤ i, j, k, l ≤ n, store the optimal length of the LCPS for substrings
s1[i, j] and s2[k, l], that is, LCPS(i, j, k, l) := |LCPS({s1[i, j], s2[k, l]})|. Chowdhury
proved that the following recursion leads to an optimal solution to the 2–LCPS problem:

LCPS(i, j, k, l) =

������������������������

0, for i > j ∨ k > l
1, for i = j ∧ k ≤ l

∧ s1[i] = s2[k]
2 + LCPS(i + 1, j − 1, k + 1, l − 1), for i < j ∧ k < l

∧ s1[i] = s1[j]
= s2[k] = s2[l]

max(LCPS(i + 1, j, k, l), LCPS(i, j − 1, k, l),
LCPS(i, j, k + 1, l), lcps(i, j, k, l − 1)), otherwise.

The first one of the two main cases is obtained when i < j, k < l and s1[i] = s1[j] =
s2[k] = s2[l]. In this case, the value of LCPS(i, j, k, l) can easily be obtained as
LCPS(i, j, k, l) := 2+LCPS(i+1, j−1, k+1, l−1). Otherwise, the value of LCPS(i, j, k, l)
can be recursively calculated by solving the four smaller subproblems corresponding to the
values of LCPS(i+1, j, k, l), LCPS(i, j−1, k, l), LCPS(i, j, k+1, l), and LCPS(i, j, k, l−1).
The maximum of these values actually corresponds to LCPS(i, j, k, l).

The DP approach stores the solution of all possible subproblems in a 4-dimensional table of
size n×n×n×n, which implies a space complexity of O(n4). The DP recursion generates
O(n4) distinct subproblems, in O(1) time each, in a bottom-up manner, implying a time
complexity of O(n4) for the approach. Note that the value of an optimal solution is
stored in lcps(1, n, 1, n).

B.4.2 The MNDRS Approach
The Maximum Nesting Depth Rectangle Structures (MNDRS) problem is known from
computational geometry and can be described as follows. Given a set of rectangles
in the Euclidean plane, find a maximum-length sequence of these rectangles such that
each rectangle in the sequence contains all following rectangles of the sequence. Chowd-
hury [38] mapped the 2–LCPS problem to the MNDRS problem by introducing for each
pair ((i, k), (j, l)) of index couples—such that s1[i] = s1[j] = s2[k] = s2[l]—a rectangle

1The case of input strings of different length can easily be transformed to the case of input strings
with equal length.

191

B. LCPS Problem: Supplementary Material

in N2 whose lower left corner is (i, k) and whose upper right corner is (j, l). Moreover,
Chowdhury provided a sparse DP approach for solving the MNDRS problem by making
use of 3-dimensional balanced range search trees.

Subsequently, Inenaga and Hyyrö [90] proposed an algorithm for solving the MNDRS
problem which makes use of two simple but clever data structures. However, since their
work is theoretically oriented, they did not deal with the question of how to implement
the proposed algorithm in an efficient way. Therefore, the following description of this
algorithm presents our own implementation.
The first one of the two data structures mentioned above is used to find—for each combi-
nation of a letter c ∈ Σ and a rectangle R—a sub-rectangle Rc of maximum area which
is strongly contained in R and whose indexes of the lower left and upper right vertices
correspond to letter c. Finding such a rectangle can be done in constant time O(1) by
making use of two predecessor and two successor tables (which basically correspond to
the Pred and Succ data structures used in the preprocessing of our A∗, as described
in the main paper). The second data structure is a space-efficient 4D–table used for
checking whether or not a rectangle R is processed in the main recursion, as explained in
the following. Our implementation uses hash maps to realize this data structure and thus
answers a query in O(1) expected time. Note that O(R2) memory is needed for these
data structures, where R denotes the number of matching positions in the input strings.

A recursion is used in order to calculate, for each rectangle, its so-called nesting weight
number, which denotes the maximum length of a sequence of rectangles nested in R
(including the rectangle R itself). The initial call of the recursion is applied to the virtual
rectangle RV = (0, 0, n + 1, n + 1) and its final nesting number actually corresponds
to the length of an optimal solution to the 2–LCPS problem. Moreover, all rectangles
are initially marked as non-processed. Furthermore, a rectangle R will be marked as
processed when its nesting weight number is calculated. The information about the
nesting numbers is stored in a 4D-hash table. If an already processed rectangle is en-
countered in the recursion, its nesting number—as obtained from the 4D-hash table—is
immediately returned. Let us suppose a rectangle R is currently being processed. For
each letter c, the maximum sub-rectangle Rc is being determined (by making use of the
Pred and Succ structures) and the recursion is repeatedly called for each Rc until one
of the following conditions is encountered: (i) Rc is empty, returning value 0; (ii) Rc

is a point or a line, returning value 1; or (iii) Rc is already processed, returning the
stored nesting number. Note that a point or a line correspond to a middle letter in
the respective solution to the 2–LCPS problem. It can be shown that—concerning the
expected asymptotic runtime—the MNDRS approach of Inenaga and Hyyrö for solving
the 2–LCPS problem is by a factor of |Σ| faster than the DP approach.

The approach of Inenaga and Hyyrö and the approach of Chowdhury et al. have the
same memory complexity [90]. Moreover, Chowdhury’s MNDRS approach is—with

192

B.4. The 2–LCPS Approaches from Literature: details of our re-implementations

respect to the expected asymptotic runtime—slower than the DP approach in the case of
input strings that were generated uniformly at random, where the number of matchings
of positions in the input strings is R = O(n2). If the number of matchings is lower,
for example R = O(n1.5), MNDRS exhibits an advantage over DP in terms of the
asymptotic runtime [38]. Additionally, the data structures used in the approach of
Inenaga and Hyyrö [90] are simpler—with respect to the ease of implementation—than
the sophisticated data structures from computational geometry used in Chowdhury’s
MNDRS approach. In general, it is not expected that the MNDRS approach of Chowdhury
has a significant advantage over the MNDRS approach of Inenaga and Hyyrö in the
context of instances generated uniformly at random. For these reasons we decided to
implement the algorithm from [90] for comparison purposes.

B.4.3 A Palindromic Subsequence Automaton Approach
In the following we describe the so-called Common Palindromic Subsequence Automa-
ton (CPSA) approach from [80], highlighting the major adaptation we applied in order
to obtain an efficient algorithm for solving the 2–LCPS problem. The algorithm is
based on a so-called Palindromic Subsequence Automaton (PSA) for each input string,
that is, a PSA M1 for input string s1 and a PSA M2 for input string s2. Each of
these PSAs works on the space of the first halves of all palindromic subsequences of
the corresponding input strings. The major idea for solving the 2–LCPS problem is
based on the construction of a so-called intersecting automaton that connects M1 and M2.

In the following we describe the structure of a PSA for a string s. The automaton is
denoted by M(Q, Σ, τ, w, F), where Q is a set of states, τ : Q × Σ "→ Q is a transition
function, w : Q × Q "→ N0 is a weight function, and F is a set of final states. M has a
state q ∈ Q associated with each pair (i, j), i, j ≥ 1, such that s[i] = srev[j]. The initial
state of the automaton is defined by q0 = (0, 0). A transition τ(q1, a) = q2 between two
states q1 = (i�, j�) and q2 = (i��, j��) is possible if and only if s[i��] = srev[j��] = a and there
exist no positions k and l, i� < k < i�� ∧ j� < l < j��, matching the letter a. Note that the
states can be seen as the nodes of a weighted directed acyclic graph, with q0 as the root
node. Moreover, existing transitions between states can be seen as the directed edges of
this graph. A state q is therefore a partial LCPS solution that corresponds to a directed
path from the root node to q. Note that a transition corresponds to the extension of a
partial solution, either by one or by two letters. More specifically, if i�� + j�� = |s| + 1, the
corresponding transition is an extension by a single letter and otherwise an extension by
two letters. The weight function of the PSA is defined accordingly:

w(q1, q2) =

����
2, if i�� + j�� < |s| + 1
1, if i�� + j�� = |s| + 1
0, else.

Each state can be considered as a final (accepted) state of the automaton, that is, F = Q.
Any path p from the initial state q0 to any final state—that is, p = q0 · · · qri · · · qrk

with

193

B. LCPS Problem: Supplementary Material

k ≥ 0—corresponds to the following palindromic subsequence sp of s:

sp =
�

s[ir1] · · · s[irk−1]s[irk
] · (s[ir1] · · · s[irk−1]s[irk

])rev if ik + jk < |s| + 1,

s[ir1] · · · s[irk−1] · s[irk
] · (s[ir1] · · · s[irk−1])rev if ik + jk = |s| + 1.

Let M1 = (Q1, Σ, τ1, w1, F1) be the PSA of s1 and M2 = (Q2, Σ, τ2, w2, F2) be the PSA
for s2, respectively. The intersecting automaton Misec(Q, Σ, τ, w, F) = M1 ∩ M2, called
Common Palindromic Subsequence Automaton (CPSA), is defined as follows. It has an
initial state (root node) denoted by qMisec = (q�

0, q��
0), where q�

0 ∈ Q1 and q��
0 ∈ Q2 are

the root nodes of M1 and M2, respectively. In general, if L(M1) and L(M2) are the
languages accepted by M1 and M2, the intersecting automaton Misec will accept all words
common to both languages, i.e., L(Misec) = L(M1) ∩ L(M2). A maximum path in the
directed acyclic graph defined by Misec corresponds to an optimal solution to the 2–LCPS
problem.

The transition function τ of Misec is defined as follows. If q� = (q�
1, q�

2), q�� = (q��
1 , q��

2) ∈
Q ⊆ Q1 × Q2, then a transition between the nodes—that is, τ(q�, a) = q�� for some
a ∈ Σ—exists if and only if τ1(q�

1, a) = q��
1 and τ2(q�

2, a) = q��
2 . The weight corresponding

to this edge is calculated as follows:

w(q�, q��) =

����
2 if w1(q�

1, q��
1 , a) = w2(q�

2, q��
2 , a) = 2

1 if w1(q�
1, q��

1 , a) = 1 ∨ w2(q�
2, q��

2 , a) = 1
0, else.

(B.5)

The final states q ∈ F of Misec are all states for which q�
1 ∈ F1 or q�

2 ∈ F2. In order to con-
struct the intersection automaton Misec, we start by adding the root node qMisec to a queue
Q� and Q. At each step, the top node q = (q�, q��) is taken from Q� and the outgoing edges
E1 of q� in M1 and outgoing edges E2 of q�� in M2 are considered. All edges e1 = q�r�

1 ∈ E1
and e2 = q��r�

2 ∈ E2 for which τ1(q�, a1) = r�
1 ∧ τ2(q��, a2) = r�

2 ∧ a1 = a2 will create a
new state r = (r�

1, r�
2) which is then added to Q� and to the set of states Q (if not already

there). We implemented Q by means of a hash table in order to be able to efficiently check
whether or not a state is already in Q. If state r is added to Q, an extension of functions τ
and w of Misec is generated for r by determining the corresponding weights for the newly
created edge qr, as defined in (B.5). Afterwards, q is removed from the top of Q�. The
procedure stops once Q� is empty. A detailed description of this process is provided in [80].

As mentioned above, Misec also defines a directed acyclic graph, and for solving the
corresponding 2–LCPS problem it is actually sufficient to find a maximum-length path
in Misec. This takes time O(|Q|) = O(|Q1| · |Q2|) when applying a topological sort to all
nodes of Q. For this purpose, the authors of [80] construct a maximum-length automa-
ton [87], which accepts all the subsequences of maximum length among the subsequences
from L(Misec). The automaton is constructed in O(|Q|) time by using a topological sort
of the nodes in Misec followed by removing all the transitions and states which are not

194

B.4. The 2–LCPS Approaches from Literature: details of our re-implementations

part of any longest path from the initial state to a final state.

Since a main effort of the algorithm is actually to construct the CPSA, and as we are only
interested in finding one optimal solution of possibly several ones, and as constructing
the maximum-length automaton followed by solving the 2–LCPS problem is more time
consuming than a direct application of the maximum-path algorithm to Misec, we decided
to simply use the maximum-path algorithm based on the topological sort of the states
of the CPSA in order to solve the 2–LCPS problem, without the construction of a
maximum-length automaton. This approach yields more directly one optimal solution of
the 2–LCPS problem.

195

APPENDIX C
Application of Max-Clique

Solvers to Solve LCS problem:
Supplementary Material

In Appendix C, we present the additional results on the studies presented in Chapter 6.

C.1 Numerical Results after graph reduction

197

C. Application of Max-Clique Solvers to Solve LCS problem: Supplementary
Material

Table C.1: Results obtained after graph reduction (RFLCS instances of Rflcs-Set1).

|Σ| n Spec. Tech. Cplex Lmc Lscc+Bms
result t result t topt #opt result t topt #opt result t

n/8

32 4.00 0.00 =4.00 0.07 0.07 30 =4.00 0.00 0.03 30 =4.0 0.00
64 8.00 0.00 =8.00 0.52 0.52 30 =8.00 0.00 0.11 30 =8.0 0.00
128 16.00 0.00 =16.00 6.10 6.10 30 =16.00 0.00 76.21 30 =16.0 0.00
256 31.97 0.03 =31.97 202.49 202.49 30 =31.90 18.82 – – 0 =31.97 0.03
512 63.27 38.89 +30.97 1889.32 – – 0 −62.40 347.07 – – 0 =63.90 69.94
1024 111.57 146.30 =0.03 1062.21 – – 0 =112.53 923.56 – – 0 +116.30 ∗ 1099.26
2048 182.67 278.15 – – – – – – 0 −182.37 1415.51 – – 0 +182.40 1443.72
4096 283.33 67.15 – – – – – – 0 =281.37 1114.40 – – 0 +263.83 2079.95

n/4

32 7.83 0.01 =7.83 0.01 0.01 30 =7.83 0.00 0.02 30 =7.83 0.00
64 14.67 0.08 =14.67 0.08 0.08 30 =14.67 0.00 0.03 30 =14.67 0.00
128 25.77 3.47 =25.93 1.78 2.34 30 =25.93 0.01 0.12 30 =25.93 0.01
256 43.70 10.39 =43.97 9.20 19.41 30 =43.97 0.13 0.67 30 =43.97 0.12
512 67.90 35.97 +68.57 233.30 489.73 30 =68.57 95.78 104.92 29 =68.57 3.20
1024 103.00 50.18 +104.53 1169.51 1969.63 14 −103.73 487.95 – – 0 +105.00 ∗ 482.73
2048 154.33 150.72 +117.47 1986.41 1001.01 3 −152.73 513.24 – – 0 +153.93 1229.79
4096 226.67 452.60 +23.17 648.79 – – 0 +224.63 573.22 – – 0 +215.00 1510.06

3n/8

32 8.77 0.01 =8.77 0.00 0.00 30 =8.77 0.00 0.02 30 =8.77 0.00
64 15.53 0.05 =15.53 0.03 0.03 30 =15.53 0.00 0.02 30 =15.53 0.00
128 24.90 0.45 =24.90 0.33 0.34 30 =24.90 0.00 0.04 30 =24.90 0.01
256 39.97 2.68 =39.97 0.81 0.98 30 =39.97 0.02 0.08 30 =39.97 0.06
512 59.77 12.80 =59.97 9.15 14.02 30 =59.97 0.14 0.58 30 =59.97 0.39
1024 90.50 34.73 +90.73 30.62 49.38 30 =90.73 2.93 19.30 30 =90.73 5.81
2048 130.57 51.96 +131.07 ∗ 323.31 369.50 28 +130.57 117.06 410.36 13 +131.00 726.79
4096 191.37 98.06 +186.27 739.49 653.72 23 +190.90 399.25 – – 0 +189.07 1441.64

n/2

32 8.87 0.01 =8.87 0.00 0.00 30 =8.87 0.00 0.02 30 =8.87 0.00
64 14.80 0.01 =14.80 0.01 0.01 30 =14.80 0.00 0.02 30 =14.80 0.00
128 22.93 0.03 =22.93 0.05 0.06 30 =22.93 0.00 0.03 30 =22.93 0.00
256 35.10 1.23 =35.20 0.30 0.34 30 =35.20 0.01 0.04 30 =35.20 0.03
512 53.10 5.70 =53.13 1.41 1.78 30 =53.13 0.03 0.15 30 =53.13 0.16
1024 79.03 12.43 =79.13 4.46 5.16 30 =79.13 0.24 0.60 30 =79.13 3.37
2048 115.30 53.49 +115.70 ∗ 26.72 29.61 30 +115.67 116.09 350.85 28 +115.67 174.36
4096 167.47 89.48 +167.97 ∗ 114.74 158.87 30 +167.60 36.16 208.53 18 +167.43 664.34

5n/8

32 8.60 0.01 =8.60 0.00 0.00 30 =8.60 0.00 0.02 30 =8.60 0.00
64 13.30 0.08 =13.30 0.00 0.00 30 =13.30 0.00 0.02 30 =13.30 0.00
128 21.20 0.03 =21.20 0.01 0.01 30 =21.20 0.00 0.02 30 =21.20 0.00
256 32.53 0.34 =32.53 0.08 0.09 30 =32.53 0.00 0.03 30 =32.53 0.00
512 47.83 1.81 =47.83 0.65 0.65 30 =47.83 0.02 0.06 30 =47.83 0.01
1024 70.03 2.62 =70.20 1.29 1.32 30 =70.20 0.04 0.17 30 =70.20 0.25
2048 103.80 24.71 +103.97 4.28 4.32 30 =103.97 0.49 3.18 30 +103.97 2.77
4096 150.00 152.30 +150.57 ∗ 50.27 50.36 30 +150.43 281.64 219.92 24 +150.40 365.03

3n/4

32 8.17 0.01 =8.17 0.00 0.00 30 =8.17 0.00 0.02 30 =8.17 0.00
64 12.53 0.01 =12.53 0.00 0.00 30 =12.53 0.00 0.02 30 =12.53 0.00
128 19.70 0.07 =19.70 0.00 0.00 30 =19.70 0.00 0.02 30 =19.70 0.00
256 29.97 0.13 =29.97 0.02 0.02 30 =29.97 0.00 0.02 30 =29.97 0.00
512 44.53 0.59 =44.57 0.17 0.19 30 =44.57 0.00 0.04 30 =44.57 0.02
1024 65.07 7.84 =65.20 0.52 0.52 30 =65.20 0.02 0.09 30 =65.20 0.07
2048 94.53 13.11 =94.67 0.87 0.90 30 =94.67 0.04 0.16 30 +94.67 1.29
4096 136.57 60.44 +136.77 ∗ 11.63 11.80 30 +136.47 171.71 3.79 26 +136.73 26.59

7n/8

32 7.67 0.00 =7.67 0.00 0.00 30 =7.67 0.00 0.02 30 =7.67 0.00
64 11.57 0.00 =11.57 0.00 0.00 30 =11.57 0.00 0.02 30 =11.57 0.00
128 18.40 0.01 =18.40 0.01 0.01 30 =18.40 0.00 0.02 30 =18.40 0.00
256 27.80 0.04 =27.80 0.01 0.01 30 =27.80 0.00 0.02 30 =27.80 0.00
512 40.57 4.65 =40.60 0.06 0.06 30 =40.60 0.00 0.02 30 =40.60 0.00
1024 60.50 7.01 =60.57 0.34 0.35 30 =60.57 0.01 0.04 30 =60.57 0.09
2048 88.00 22.42 =88.00 2.56 2.59 30 =88.00 0.05 8.89 30 =88.00 0.33
4096 127.20 37.41 +127.37 ∗ 2.93 2.97 30 +127.37 ∗ 0.15 1.50 30 +127.37 ∗ 2.17

198

C.1. Numerical Results after graph reduction

Table C.2: Results obtained after graph reduction (RFLCS instances of Rflcs-Set2).

|Σ| reps Spec. Tech. Cplex Lmc Lscc-Bms
result t result t topt #opt result t topt #opt result t

4

3 3.47 0.00 =3.47 0.00 0.00 30 =3.47 0.00 0.02 30 =3.47 0.00
4 3.77 0.00 =3.77 0.00 0.00 30 =3.77 0.00 0.02 30 =3.77 0.00
5 3.83 0.00 =3.83 0.00 0.00 30 =3.83 0.00 0.02 30 =3.83 0.00
6 3.90 0.00 =3.90 0.00 0.00 30 =3.90 0.00 0.02 30 =3.90 0.00
7 3.97 0.00 =3.97 0.00 0.00 30 =3.97 0.00 0.02 30 =3.97 0.00
8 3.97 0.00 =3.97 0.01 0.01 30 =3.97 0.00 0.02 30 =3.97 0.00

8

3 6.23 0.00 =6.23 0.00 0.00 30 =6.23 0.00 0.02 30 =6.23 0.00
4 6.87 0.00 =6.87 0.00 0.00 30 =6.87 0.00 0.02 30 =6.87 0.00
5 7.40 0.00 =7.40 0.00 0.00 30 =7.40 0.00 0.02 30 =7.40 0.00
6 7.53 0.01 =7.53 0.01 0.01 30 =7.53 0.00 0.02 30 =7.53 0.00
7 7.70 0.00 =7.70 0.02 0.02 30 =7.70 0.00 0.02 30 =7.70 0.00
8 7.77 0.00 =7.77 0.02 0.02 30 =7.77 0.00 0.02 30 =7.77 0.00

16

3 9.70 0.01 =9.70 0.00 0.00 30 =9.70 0.00 0.02 30 =9.70 0.00
4 11.57 0.01 =11.57 0.01 0.01 30 =11.57 0.00 0.02 30 =11.57 0.00
5 12.93 0.01 =12.93 0.02 0.02 30 =12.93 0.00 0.02 30 =12.93 0.00
6 14.00 0.01 =14.00 0.05 0.05 30 =14.00 0.00 0.02 30 =14.00 0.00
7 14.93 0.22 =14.93 0.10 0.10 30 =14.93 0.00 0.04 30 =14.93 0.00
8 14.80 0.39 =14.80 0.17 0.17 30 =14.80 0.00 0.05 30 =14.80 0.01

32

3 16.13 0.02 =16.13 0.01 0.01 30 =16.13 0.00 0.02 30 =16.13 0.00
4 19.00 0.07 =19.00 0.02 0.03 30 =19.00 0.00 0.02 30 =19.00 0.00
5 21.63 0.37 =21.63 0.28 0.30 30 =21.63 0.00 0.03 30 =21.63 0.01
6 23.73 0.48 =23.73 0.62 0.70 30 =23.73 0.00 0.06 30 =23.73 0.01
7 25.53 0.78 =25.57 1.79 1.93 30 =25.57 0.02 0.13 30 =25.57 0.02
8 27.40 5.02 =27.50 2.49 2.67 30 =27.50 0.07 0.29 30 =27.50 0.05

64

3 25.43 0.06 =25.43 0.02 0.02 30 =25.43 0.00 0.02 30 =25.43 0.00
4 30.37 0.77 =30.37 0.24 0.26 30 =30.37 0.00 0.03 30 =30.37 0.01
5 34.87 1.09 =34.93 1.46 2.21 30 =34.93 0.01 0.09 30 =34.93 0.04
6 39.07 10.66 =39.13 5.46 8.21 30 =39.13 0.04 0.25 30 =39.13 0.11
7 43.50 24.28 =43.63 11.06 24.01 30 =43.63 0.16 0.79 30 =43.63 0.18
8 45.17 35.41 =45.53 35.48 84.08 30 =45.53 1.69 6.06 30 =45.53 0.44

128

3 36.70 0.67 =36.77 0.18 0.18 30 =36.77 0.00 0.03 30 =36.77 0.02
4 44.90 4.83 =45.03 1.99 2.67 30 =45.03 0.02 0.11 30 =45.03 0.15
5 53.23 17.58 =53.43 7.90 10.76 30 =53.43 0.12 0.42 30 =53.43 0.30
6 61.07 34.68 =61.53 28.13 46.99 30 =61.53 4.27 6.76 30 =61.53 0.98
7 67.90 52.14 +68.47 125.08 421.63 30 =68.47 9.47 57.64 30 =68.47 1.98
8 73.57 105.79 +74.50 554.65 1321.01 18 =74.30 608.14 544.04 13 =74.60 10.65

256

3 54.97 0.30 =55.03 0.74 0.79 30 =55.03 0.02 0.06 30 =55.03 0.04
4 68.70 1.74 =68.93 5.61 6.63 30 =68.93 0.10 1.64 30 =68.93 0.79
5 81.00 29.22 =81.43 28.37 40.16 30 =81.43 3.51 7.68 30 =81.43 3.13
6 93.10 36.48 +93.60 ∗ 227.62 476.17 30 +93.17 124.54 309.18 17 +93.60 ∗ 47.19
7 103.50 98.94 +104.27 667.00 1338.10 24 −103.13 156.41 176.14 3 +104.47 ∗ 262.17
8 113.70 176.80 +112.07 2277.45 1367.53 1 =113.10 344.01 – – 0 +115.00 ∗ 1009.44

512

3 81.57 29.98 =81.63 0.52 0.54 30 =81.63 0.02 0.35 30 =81.63 0.12
4 100.83 14.56 +101.13 10.22 10.99 30 +101.10 17.70 23.64 30 =101.13 4.44
5 120.43 92.05 +121.03 ∗ 147.62 209.48 30 +120.03 249.84 866.25 14 +121.03 ∗ 226.89
6 137.03 128.19 +136.97 1335.77 771.58 11 +136.47 499.84 47.78 1 +137.80 ∗ 1064.07
7 154.57 295.09 +111.40 2118.90 – – 0 −152.27 823.67 – – 0 +153.33 1619.19
8 172.10 356.01 +13.97 577.60 – – 0 −169.73 620.92 – – 0 +168.70 1557.06

199

C. Application of Max-Clique Solvers to Solve LCS problem: Supplementary
Material

Table C.3: Results for LAPCS instances of set Lapcs-Arti after graph reduction.

n narcs Spec. Tech Cplex Lmc Lscc-Bms
result t result t topt #opt result t topt #opt result t

100
10 60.17a 39.01 =60.20 6.57 8.56 30 =60.20 38.48 85.52 30 =60.20 0.46
20 58.13a 52.11 =58.20 12.46 22.41 30 =58.17 15.96 361.00 29 =58.20 0.80
50 51.87a 50.78 =52.03 637.48 1150.86 24 =52.07 145.51 1105.66 21 =52.10 2.48

200
20 121.70b 38.28 +122.60 956.11 1072.96 22 −120.20 635.33 – – 0 +122.63 ∗ 671.81
40 116.70b 61.36 +111.80 2475.25 1972.97 4 −115.80 627.34 – – 0 +118.40 ∗ 748.94
100 104.57a 143.72 +0.07 302.02 – – 0 =104.30 539.94 – – 0 +106.87 ∗ 1048.04

300
30 181.30a 178.30 +22.10 659.71 – – 0 +178.23 643.25 – – 0 +178.63 1495.86
60 174.97a 157.58 – – – – – – 0 =171.80 507.46 – – 0 +172.20 1338.14
150 157.13a 262.94 – – – – – – 0 +155.97 991.12 – – 0 +156.97 1410.26

400
40 242.70b 191.72 – – – – – – 0 +239.73 650.89 – – 0 +230.77 1616.86
80 233.23a 322.25 – – – – – – 0 =226.97 578.27 – – 0 +221.80 1657.25
200 208.77a 378.41 – – – – – – 0 −205.17 705.84 – – 0 +202.27 2035.29

500
50 302.27b 250.46 – – – – – – 0 −295.83 847.81 – – 0 +278.47 1819.17
100 291.23a 181.52 – – – – – – 0 +284.70 891.25 – – 0 +266.70 1470.81
250 259.50a 498.75 – – – – – – 0 −255.80 1116.97 – – 0 +242.57 1686.56

600
60 366.03b 324.61 – – – – – – 0 +356.83 773.68 – – 0 +323.13 1598.87
120 350.97a 580.70 – – – – – – 0 +341.40 987.06 – – 0 – – – –
300 309.20a 370.43 – – – – – – 0 +306.63 906.20 – – 0 – – – –

700
70 418.40b 372.52 – – – – – – 0 +386.93 708.66 – – 0 – – – –
140 400.60a 6.17 – – – – – – 0 +40.23 169.30 – – 0 – – – –
350 362.74a 698.11 – – – – – – 0 – – – – – – 0 – – – –

800
80 484.43b 420.71 – – – – – – 0 – – – – – – 0 – – – –
160 462.60b 572.70 – – – – – – 0 – – – – – – 0 – – – –
400 414.33a 797.52 – – – – – – 0 – – – – – – 0 – – – –

900
90 542.07b 516.09 – – – – – – 0 – – – – – – 0 – – – –
180 522.40a 534.96 – – – – – – 0 – – – – – – 0 – – – –
450 463.27a 897.39 – – – – – – 0 – – – – – – 0 – – – –

1000
100 605.10b 535.42 – – – – – – 0 – – – – – – 0 – – – –
200 583.30a 889.74 – – – – – – 0 – – – – – – 0 – – – –
500 514.80b 664.53 – – – – – – 0 – – – – – – 0 – – – –

Table C.4: Results for LAPCS instances of set Lapcs-Real after graph reduction.

Inst. Spec. Tech. Cplex Lmc Lscc-Bms
Name results t result t topt result t topt result t

Real_1 268b 80.92 +273∗ 339.70 339.76 =259 2489.55 – – +272 847.60
Real_2 291b 84.93 +291 21.84 21.85 =283 416.57 – – +291 903.86
Real_3 294b 171.78 – – – – – – =284 49.69 – – +263 1360.83
Real_4 374b 0.02 +374 0.02 0.02 =374 0.01 0.07 +374 0.00
Real_5 178b 58.96 +179 4.62 4.63 =179 1.38 351.62 +179 11.32
Real_6 209b 131.35 +0 2376.75 – – =206 15.19 – – +204 2441.29
Real_7 330b 7.40 +330 0.05 0.05 =330 0.73 1.12 +330 758.07
Real_8 177b 174.40 +1 1281.87 – – =175 2760.20 – – −

textit172 3025.38
Real_9 302b 24.89 +304 1.47 1.81 =304 16.41 54.18 +304 498.12
Real_10 361a 0.49 +361 0.23 0.23 =361 1.49 10.50 +361 74.89

200

APPENDIX D
CLCS Problem: Supplementary

Material

This appendix presents the supplementary material on the computational studies from
Chapter 7.

D.1 A short overview over the Algorithms Used for
Comparison

Algorithm by Chin et al. [34]. This method is based on dynamic programming. It
uses a three-dimensional matrix M to store the lengths of optimal solutions of subproblems
Si,j,k = (s1[1, i], s2[1, j], P [1, k], Σ) for i = 1, . . . , |s1|, j = 1, . . . , |s2|, k = 1, . . . , |P |. All
these values are obtained recursively on the basis of solutions to smaller subinstances for
which optimal values are already known. In essence, the recursive procedure distinguishes
the following cases and handles them appropriately: s1[i] = s2[j] = P [k], s1[i] = s2[j] %=
P [k], or s1[i] %= s2[j]. In this way, optimal values of successor entries (representing larger
subproblems) are determined in constant time. Due to its simplicity, the algorithm is
fast for problem instances of small and medium size but its performance degrades for
longer sequences. In general, its time and space complexity is O(|s1| · |s2| · |P |).

Algorithm by Arslan and Eğecioğlu [5]. This approach replaces the matrix used in
the original dynamic programming algorithm of Tsai [162] by multiple three-dimensional
matrices in order to realize some calculations of the approach of Tsai more efficiently.
In particular, the recurrence used by Tsai was simplified. In the end, this results in an
algorithm with the same time complexity as the algorithm of Chin et al., however with a
memory requirement that is by a factor of three higher.

201

D. CLCS Problem: Supplementary Material

Algorithm by Iliopoulos and Rahman [88]. This method is based on a modification
of the dynamic programming formulation from [5]. To perform the matrix calculations
of each iteration efficiently, the authors make use of a so-called bounded heap data
structure [25] that was realized by means of Van Emde Boas (vEB) trees [20]. This data
structure allows to calculate intermediate results more efficiently in O(log log n) time,
leading to a total time complexity of O(|P | · R · log log n + n), where R is the number of
ordered pairs of positions at which input strings s1 and s2 match.

Algorithm by Hung et al. [86]. This method is a more recent development that is
particularly suited for input strings that are highly similar. It was developed on the basis
of the so-called diagonal concept for the LCS problem by Nakatsu et al. [136]. In general it
can be said that the efficiency of the algorithm grows with the length of an optimal CLCS
solution. The algorithm uses a table D of dimension |P |×L, where L is an upper bound for
the CLCS length. Each cell Di,l stores a triple associated with a partial solution. At each
iteration of the algorithm some of the cells are filled with information such that for any
triple (i�, j, k) ∈ Di,l, where i� = 1, . . . , i, the relation |CLCS(s1[1, i�], s2[1, j], P [1, |P | −
k])| ≥ l holds. The elements belonging to Di,l are determined by extending all the partial
solutions from Di−1,l−1, to which all the partial solutions of Di−1,l are added, and by
filtering out dominated pairs. If (i�, j, 0) ∈ Di,l and there is no other (i��, j��, 0) ∈ Di,l

with i� %= i�� and j %= j��, it implies that |CLCS(s1[1, i�], s2[1, j], P)| = l. In this way an
optimal solution is found for the specific subproblem.

Algorithm by Deorowicz [49]. Just like the previous approach, this algorithm is
a so-called sparse approach. The matrix utilized for the calculations is processed for
each level k = 0, . . . , |P | in a row-wise manner and an ordered list is maintained to
store for each rank (representing the assumed length of an optimal solution) the lowest
possible column number. Furthermore, a two-dimensional matrix T is used to store
computed values from the current and previous levels. For each row i and column j
where s1[i] = s2[j], the list entries are recalculated. If s1[i] = s2[j] %= P [k], then the
value for the match at (i, j) is calculated from the highest rank in the list with a column
number lower than j. Otherwise, if s1[i] = s2[j] = P [k], the value is calculated from
matrix T . On completion, the highest rank in the list corresponds to the length of an
optimal solution.

Improvements of Deorowicz’s algorithm were introduced by Deorowicz and Obstoj [50].
They utilize so–called external–entry points (EEP) [81] initially proposed for the pairwise
sequence alignment problem, for omitting those cells in the lists that do not contribute
to optimal solutions.

202

D.2. Tuning of β and kbest parameters for different Beam Search Configurations

D.2 Tuning of β and kbest parameters for different Beam
Search Configurations

1 10 100 1000 5000

134

136

138

140

142

144

146

beam width β

av
g.

so
lu
ti
on

qu
al
it
y

BS–Prob
BS–UB
BS–Ex
BS–Pat

(a) Average solution qualities (over all in-
stances) (kbest := 100

1 10 100 1000 5000

0

50

100

150

200

beam width β

av
g.

co
m
p
u
ta
ti
on

ti
m
e
[s
] BS–Prob

BS–UB
BS–Ex
BS–Pat

(b) Average computation times over all in-
stances

Figure D.1: Results of Beam search with kbest = 100 and varying β.

010 50 100 200

140

142

144

146

filter parameter kbest

av
g.

so
lu
ti
on

qu
al
it
y

BS–Prob
BS–UB
BS–Ex
BS–Pat

(a) Average solution qualities over all in-
stances (β := 2000)

010 50 100 200

0

100

200

300

400

filter parameter kbest

av
g.

co
m
p
u
ta
ti
on

ti
m
e
[s
]

BS–Prob
BS–UB
BS–Ex
BS–Pat

(b) Average computation times (over all in-
stances)

Figure D.2: Results of Beam search with β = 2000 and varying kbest.

203

D. CLCS Problem: Supplementary Material

D.3 The Numerical Results on the Remaining m–CLCS
Benchmark Sets

Table D.1: Instances with p� = |P |
n = 1

50 .

Approx Greedy BS–UB BS–Prob BS–Ex BS–Pat A∗

|Σ| m n |s| t[s] |s| t[s] |s| t[s] |s| t[s] |s| t[s] |s| t[s] # t[s]

4 10 100 20.9 <0.1 30 <0.1 34.2 22.9 34.3 20 34.3 20.8 33.8 26.2 7 290.4
4 10 500 117.8 <0.1 162 <0.1 180.4 149.1 183.6 157.3 184.8 143.2 177.7 174.7 0 -
4 10 1000 239.2 0.1 329.9 0.1 363.5 284.7 372.4 372.3 376.3 434.2 354.7 428.2 0 -
4 50 100 17.4 <0.1 20.4 <0.1 24.1 15.5 24.2 12.1 24.2 16.7 24 22 0 -
4 50 500 109.3 0.1 127.5 0.1 137.3 106 140.4 138.1 141.8 131.8 136.3 147.2 0 -
4 50 1000 228.9 0.5 263.4 0.5 279.8 257.9 288.7 231.1 290.4 340.0 277.2 251.7 0 -
4 100 100 17.0 <0.1 18 <0.1 21.9 16.1 21.9 16.3 21.9 14 21.6 19.4 0 -
4 100 500 108.1 0.2 117.2 0.2 128.4 135 131 118.2 132.0 115.2 127.6 160.2 0 -
4 100 1000 225.1 0.9 246.9 0.7 262.4 287.6 270.5 236.6 272.1 329.9 261.6 282 0 -

20 10 100 4.3 <0.1 6.8 <0.1 ∗7.9 0.1 ∗7.9 0.1 ∗7.9 0.1 ∗7.9 0.1 10 <0.1
20 10 500 23.8 <0.1 40.9 <0.1 48.9 104.5 49.7 137 50.4 183.8 41.9 221.7 0 -
20 10 1000 48.9 0.1 82.9 0.1 97.7 246.8 102.0 280.7 104.9 344.3 85.6 551.4 0 -
20 50 100 2.8 <0.1 ∗3.1 <0.1 ∗3.1 <0.1 ∗3.1 <0.1 ∗3.1 <0.1 ∗3.1 <0.1 10 <0.1
20 50 500 20.0 0.1 24.2 0.1 28.3 49 28.8 46.8 28.8 100.3 26 135.5 0 -
20 50 1000 42.6 0.5 53.8 0.4 59.6 152.5 61.4 158.1 62.3 245.4 55.1 211.2 0 -
20 100 100 2.3 <0.1 ∗2.4 <0.1 ∗2.4 <0.1 ∗2.4 <0.1 ∗2.4 <0.1 ∗2.4 <0.1 10 <0.1
20 100 500 18.5 0.3 22.2 0.2 24.7 60.9 25.2 62.6 25.0 118.5 22.8 82.7 0 -
20 100 1000 41.1 1 48.8 1 52.8 166.2 54.7 188.6 55.0 334.8 50 342.7 0 -

Table D.2: Instances with p� = |P |
n = 1

10 .

Approx Greedy BS–UB BS–Prob BS–Ex BS–Pat A∗

|Σ| m n |s| t[s] |s| t[s] |s| t[s] |s| t[s] |s| t[s] |s| t[s] # t[s]

4 10 100 22.9 <0.1 29.6 <0.1 34.6 14.4 34.6 17.4 34.6 18.91 23 8 269.1
4 10 500 121.4 <0.1 163.7 <0.1 182.2 97.6 185.0 137 186.0 162.3 165.9 193.9 0 –
4 10 1000 245.5 0.1 329.1 0.1 365 212 375.8 240.5 377.0 271.3 330.4 391.7 0 -
4 50 100 19.8 <0.1 21.8 <0.1 24.9 10.1 25.0 11.2 25.1 19.6 23.5 19.9 0 -
4 50 500 114.2 0.1 129.5 0.1 138.7 102.4 142.9 99.6 143.6 129.8 131.2 145.9 0 -
4 50 1000 233.5 0.4 266.5 0.5 279.6 199 289.2 200.6 290.4 340.0 266 351.7 0 -
4 100 100 18.9 <0.1 20.8 <0.1 23.0 8.8 23.0 8.7 23.0 14.4 21.5 19.3 3 265.1
4 100 500 111.3 0.2 122 0.2 129.2 63.2 133.3 78.5 134.2 128.2 124.3 163.8 0 -
4 100 1000 230.3 0.9 253.2 0.7 262.3 122.7 270.9 183.3 274.8 273.9 255.2 316.3 0 -

20 10 100 ∗10.2 <0.1 10.1 <0.1 ∗10.2 <0.1 ∗10.2 <0.1 ∗10.2 <0.1 ∗10.2 <0.1 10 <0.1
20 10 500 51 <0.1 52.5 <0.1 ∗53.1 <0.1 ∗53.1 <0.1 ∗53.1 <0.1 ∗53.1 <0.1 10 <0.1
20 10 1000 101 0.1 103.9 0.1 ∗105.4 0.1 ∗105.4 0.1 ∗105.4 0.1 ∗105.4 0.1 10 0.1
20 50 100 ∗10.0 <0.1 ∗10.0 <0.1 ∗10.0 <0.1 ∗10.0 <0.1 ∗10.0 <0.1 ∗10.0 <0.1 10 <0.1
20 50 500 ∗50.0 0.1 ∗50.0 0.1 ∗50.0 0.1 ∗50.0 0.1 ∗50.0 0.1 ∗50.0 0.1 10 0.2
20 50 1000 ∗100.0 0.5 ∗100.0 0.4 ∗100.0 0.5 ∗100.0 0.5 ∗100.0 0.5 ∗100.0 0.4 10 0.5
20 100 100 ∗10.0 <0.1 ∗10.0 <0.1 ∗10.0 <0.1 ∗10.0 <0.1 ∗10.0 <0.1 ∗10.0 <0.1 10 <0.1
20 100 500 ∗50.0 0.3 ∗50.0 0.2 ∗50.0 0.3 ∗50.0 0.3 ∗50.0 0.3 ∗50.0 0.2 10 0.3
20 100 1000 ∗100.0 1 ∗100.0 1 ∗100.0 0.8 ∗100.0 0.8 ∗100.0 1.1 ∗100.0 1 10 0.9

204

D.3. The Numerical Results on the Remaining m–CLCS Benchmark Sets

Table D.3: Instances with p� = |P |
n = 1

2 .

Approx Greedy BS–UB BS–Prob BS–Ex BS–Pat A∗

|Σ| m n |s| t[s] |s| t[s] |s| t[s] |s| t[s] |s| t[s] |s| t[s] # t[s]

4 10 100 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 10 <0.1
4 10 500 250.1 <0.1 ∗250.6 <0.1 ∗250.6 <0.1 ∗250.6 <0.1 ∗250.6 0.1 ∗250.6 <0.1 10 <0.1
4 10 1000 500.1 0.1 501.5 0.1 ∗501.7 0.1 ∗501.7 0.1 ∗501.7 0.1 ∗501.7 0.1 10 0.1
4 50 100 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 10 <0.1
4 50 500 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 10 0.1
4 50 1000 ∗500.0 0.4 ∗500.0 0.5 ∗500.0 0.5 ∗500.0 0.3 ∗500.0 0.5 ∗500.0 0.3 10 0.5
4 100 100 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 10 <0.1
4 100 500 ∗250.0 0.2 ∗250.0 0.2 ∗250.0 0.2 ∗250.0 0.2 ∗250.0 0.2 ∗250.0 0.2 10 0.2
4 100 1000 ∗500.0 1 ∗500.0 0.7 ∗500.0 1 ∗500.0 0.8 ∗500.0 1 ∗500.0 0.8 10 0.8

20 10 100 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 10 <0.1
20 10 500 ∗250.0 <0.1 ∗250.0 <0.1 ∗250.0 <0.1 ∗250.0 0.1 ∗250.0 <0.1 ∗250.0 <0.1 10 <0.1
20 10 1000 ∗500.0 0.1 ∗500.0 0.1 ∗500.0 0.1 ∗500.0 0.1 ∗500.0 0.1 ∗500.0 0.1 10 0.1
20 50 100 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 10 <0.1
20 50 500 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 10 0.1
20 50 1000 ∗500.0 0.5 ∗500.0 0.4 ∗500.0 0.4 ∗500.0 0.4 ∗500.0 0.5 ∗500.0 0.4 10 0.5
20 100 100 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 ∗50.0 <0.1 10 <0.1
20 100 500 ∗250.0 0.2 ∗250.0 0.2 ∗250.0 0.3 ∗250.0 0.2 ∗250.0 0.2 ∗250.0 0.2 10 0.3
20 100 1000 ∗500.0 1 ∗500.0 1 ∗500.0 0.7 ∗500.0 0.8 ∗500.0 1 ∗500.0 1.1 10 0.7

205

List of Algorithms

1 A General Tree Search Algorithm . 13
2 Branch-and-Bound (maximization) . 17
3 A∗ Search (maximization) . 19
4 A General Constraint Programming Scheme (for CSP) 25
5 Constraint Propagation . 25
6 Constructive Heuristic . 28
7 Beam Search . 29
8 Local Search (maximization) . 32
9 Iterated Greedy (IG) . 33
10 Variable Neighborhood Descent (VND) 34
11 GVNS metaheuristic . 35
12 APS Algorithm . 38
13 ACS Algorithm . 39
14 A Generalized BS framework (GBSF) for the LCS problem 49
15 A∗ for the LCS problem. 57
16 A∗+BS for the LCS problem. 59
17 ExpandNode(v). 60
18 A∗+ACS for the LCS problem. 62
19 A* Search for the LCPS Problem . 91
20 A∗+ACS for the LCPS Problem . 98
21 ExpandNode(v) . 99
22 Randomized Local Search . 117
23 RVNS&BS algorithm for the LCSqS 118
24 Greedy heuristic for the m–CLCS problem 148
25 A∗ search for the m–CLCS Problem 152

207

Bibliography

[1] A. Abboud, A. Backurs, and V. V. Williams. Tight hardness results for LCS and
other sequence similarity measures. In Proceedings of FOCS 2015 – the 56th Annual
Symposium on Foundations of Computer Science, pages 59–78. IEEE, 2015.

[2] S. S. Adi, M. D. Braga, C. G. Fernandes, C. E. Ferreira, F. V. Martinez, M.-F.
Sagot, M. A. Stefanes, C. Tjandraatmadja, and Y. Wakabayashi. Repetition-free
longest common subsequence. Discrete Applied Mathematics, 158(12):1315–1324,
2010.

[3] S. Aine, P. P. Chakrabarti, and R. Kumar. AWA* – A window constrained anytime
heuristic search algorithm. In M. M. Veloso, editor, Proceedings of IJCAI 2007 –
Proceedings of the 20th International Joint Conference on Artificial Intelligence,
pages 2250–2255. ACM, 2007.

[4] H.-C. An, R. Kleinberg, and D. B. Shmoys. Improving christofides’ algorithm for
the st path tsp. Journal of the ACM (JACM), 62(5):1–28, 2015.

[5] A. N. Arslan and Ö. Eğecioğlu. Algorithms for the constrained longest common
subsequence problems. International Journal of Foundations of Computer Science,
16(06):1099–1109, 2005.

[6] M. Baghel, S. Agrawal, and S. Silakari. Survey of metaheuristic algorithms for
combinatorial optimization. International Journal of Computer Applications, 58(19),
2012.

[7] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based scheduling: applying
constraint programming to scheduling problems, volume 39. Springer Science &
Business Media, 2012.

[8] R. Beal, T. Afrin, A. Farheen, and D. Adjeroh. A new algorithm for “the LCS prob-
lem” with application in compressing genome resequencing data. BMC Genomics,
17(4):544, 2016.

[9] R. Bellman and S. Dreyfus. Functional approximations and dynamic programming.
Mathematical Tables and Other Aids to Computation, pages 247–251, 1959.

209

[10] C. Berger. Solving a generalized constrained longest common subsequence problem.
Master thesis, TU Wien, 2020.

[11] D. Bergman, A. A. Cire, W.-J. Van Hoeve, and J. Hooker. Decision diagrams for
optimization, volume 1. Springer, 2016.

[12] G. Blin, P. Bonizzoni, R. Dondi, and F. Sikora. On the parameterized complexity of
the repetition free longest common subsequence problem. Information Processing
Letters, 112(7):272–276, 2012.

[13] C. Blum and M. J. Blesa. Probabilistic beam search for the longest common
subsequence problem. In T. Stützle, M. Birratari, and H. H. Hoos, editors, Proceed-
ings of SLS 2007 – the 1st International on Engineering Stochastic Local Search
Algorithms, volume 4638 of LNCS, pages 150–161. Springer, 2007.

[14] C. Blum and M. J. Blesa. A comprehensive comparison of metaheuristics for
the repetition-free longest common subsequence problem. Journal of Heuristics,
24(3):551–579, 2018.

[15] C. Blum and M. J. Blesa. Hybrid techniques based on solving reduced problem
instances for a longest common subsequence problem. Applied Soft Computing,
62:15–28, 2018.

[16] C. Blum, M. J. Blesa, and M. López-Ibáñez. Beam search for the longest common
subsequence problem. Computers and Operations Research, 36(12):3178–3186, 2009.

[17] C. Blum, M. Djukanovic, A. Santini, H. Jiang, C.-M. Li, F. Manyà, and G. R.
Raidl. Solving longest common subsequence problems via a transformation to the
maximum clique problem. Computers & Operations Research, 125:105089, 2020.

[18] C. Blum and P. Festa. Metaheuristics for String Problems in Bioinformatics,
volume 21. Wiley, 2011.

[19] C. Blum and G. R. Raidl. Hybrid Metaheuristics: Powerful Tools for Optimization.
Springer, 2016.

[20] P. v. E. Boas. Preserving order in a forest in less than logarithmic time and linear
space. Information Processing Letters, 6(3):80–82, 1977.

[21] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique
problem. In Handbook of combinatorial optimization, pages 1–74. Springer, 1999.

[22] P. Bonizzoni, G. Della Vedova, R. Dondi, and Y. Pirola. Variants of constrained
longest common subsequence. Information Processing Letters, 110(20):877–881,
2010.

[23] P. Bonizzoni, G. Della Vedova, and G. Mauri. Experimenting an approximation
algorithm for the LCS. Discrete Applied Mathematics, 110(1):13–24, 2001.

210

[24] P. Brisk, A. Kaplan, and M. Sarrafzadeh. Area-efficient instruction set synthesis for
reconfigurable system-on-chip design. In Proceedings of DAC’04 – the 41st Design
Automation Conference, pages 395–400. IEEE press, 2004.

[25] G. S. Brodal, M. Kutz, K. Kaligosi, and I. Katriel. Faster algorithms for computing
longest common increasing subsequences. Journal of Discrete Algorithms, 9(4):314–
325, 2011.

[26] J. W. Brown. The ribonuclease P database. Nucleic acids research, 26(1):351–352,
1998.

[27] A. Bundy and L. Wallen. Breadth-First Search, pages 13–13. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1984.

[28] S. Cai, K. Su, and Q. Chen. Ewls: A new local search for minimum vertex cover.
In Proceedings of AAAI-10 – the 24th AAAI Conference on Artificial Intelligence,
2010.

[29] B. Calvo and G. Santafe. scmamp: Statistical comparison of multiple algorithms
in multiple problems. The R Journal, 8(1):248–256, 2016.

[30] R. Carraghan and P. M. Pardalos. An exact algorithm for the maximum clique
problem. Operations Research Letters, 9(6):375–382, 1990.

[31] H.-T. Chan, C.-B. Yang, and Y.-H. Peng. The generalized definitions of the two-
dimensional largest common substructure problems. In Proceedings of the 33rd
Workshop on Combinatorial Mathematics and Computation Theory, pages 1–12.
National Taiwan University, Department of Mathematics, 2016.

[32] Y.-C. Chen and K.-M. Chao. On the generalized constrained longest common
subsequence problems. Journal of Combinatorial Optimization, (3):383–392, 2016.

[33] K. Chimanga, J. Kalezhi, and P. Mumba. Application of best first search algorithm
to demand control. In Proceedings of 2016 IEEE PES PowerAfrica, pages 51–55.
IEEE, 2016.

[34] F. Y. Chin, A. De Santis, A. L. Ferrara, N. Ho, and S. Kim. A simple algorithm for
the constrained sequence problems. Information Processing Letters, 90(4):175–179,
2004.

[35] F. Y. Chin, N. Ho, T. Lam, P. W. Wong, and M. Chan. Efficient constrained
multiple sequence alignment with performance guarantee. Journal of Bioinformatics
and Computational Biology, 3(1):1–8, 2005.

[36] C. Q. Choi. DNA palindromes found in cancer. Genome Biology, 6:1–3, 2005.

[37] Y. Choi and W. Szpankowski. Pattern matching in constrained sequences. In
Proceedings of ISIT 2007 – the International Symposium on Information Theory,
pages 2606–2610. IEEE, 2007.

211

[38] S. R. Chowdhury, M. Hasan, S. Iqbal, and M. S. Rahman. Computing a longest
common palindromic subsequence. Fundamenta Informaticae, 129(4):329–340,
2014.

[39] V. Chvátal and D. Sankoff. Longest common subsequences of two random sequences.
Journal of Applied Probability, 12(2):306–315, 1975.

[40] A. A. Cire and W.-J. van Hoeve. Multivalued decision diagrams for sequencing
problems. Operations Research, 61(6):1411–1428, 2013.

[41] W. F. Clocksin and C. S. Mellish. Programming in Prolog: Using the ISO standard.
Springer Science & Business Media, 2012.

[42] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press, third edition, 2009.

[43] I. I. Cplex. V12. 1: User’s manual for CPLEX. International Business Machines
Corporation, 46(53):157, 2009.

[44] V. Dančik and M. Paterson. Upper bounds for the expected length of a longest
common subsequence of two binary sequences. Random Structures & Algorithms,
6(4):449–458, 1995.

[45] M. J. De Smith, M. F. Goodchild, and P. Longley. Geospatial analysis: a compre-
hensive guide to principles, techniques and software tools. Troubador publishing
ltd, 2007.

[46] T. L. Dean and M. S. Boddy. An analysis of time-dependent planning. In Proceedings
of AAAI-88 – the 7th National Conference on Artificial Intelligence, volume 88,
pages 49–54, 1988.

[47] R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality
of A*. Journal of the ACM, 32(3):505–536, 1985.

[48] J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, 7:1–30, 2006.

[49] S. Deorowicz. Fast algorithm for constrained longest common subsequence problem.
Theoretical and Applied Informatics, 19(2):91–102, 2007.

[50] S. Deorowicz and J. Obstój. Constrained longest common subsequence computing
algorithms in practice. Computing and Informatics, 29(3):427–445, 2012.

[51] J. D. Dixon. Longest common subsequences in binary sequences. ArXiv e-prints,
2013. arxiv:1307.2796v1.

[52] M. Djukanovic, C. Berger, G. R. Raidl, and C. Blum. An A∗ search algorithm
for the constrained longest common subsequence problem. Information Processing
Letters, 166:106041, 2020.

212

[53] M. Djukanovic, C. Berger, G. R. Raidl, and C. Blum. On solving a generalized
constrained longest common subsequence problem. In N. Olenev, Y. Evtushenko,
M. Khachay, and V. Malkova, editors, Proceedings of OPTIMA 2020 – the 11th
International Conference Optimization and Applications, volume 12422, pages
55–70, Cham, 2020. Springer International Publishing.

[54] M. Djukanovic, G. Raidl, and C. Blum. Exact and heuristic approaches for the
longest common palindromic subsequence problem. In Proceedings of LION 12 –
the 12th International Conference on Learning and Intelligent Optimization, volume
11353, pages 199–214. Springer, 2018.

[55] M. Djukanovic, G. Raidl, and C. Blum. A beam search for the longest common
subsequence problem guided by a novel approximate expected length calculation. In
Proceedings of LOD 2019 – the 5th International Conference on Machine Learning,
Optimization, and Data Science, volume 11943, pages 154–167. Springer, 2019.

[56] M. Djukanovic, G. Raidl, and C. Blum. Heuristic approaches for solving the longest
common squared subsequence problem. In Proceedings of EUROCAST 2019 - the
17th International Conference on Computer Aided Systems Theory, Part I, volume
12013, pages 429–437. Springer, 2019.

[57] M. Djukanovic, G. R. Raidl, and C. Blum. Anytime algorithms for the longest
common palindromic subsequence problem. Computers & Operations Research,
114:104827, 2020.

[58] M. Djukanovic, G. R. Raidl, and C. Blum. Finding longest common subsequences:
New anytime A* search results. Applied Soft Computing, 95:106499, 2020.

[59] M. Dorigo and C. Blum. Ant colony optimization theory: A survey. Theoretical
computer science, 344(2-3):243–278, 2005.

[60] T. Easton and A. Singireddy. A large neighborhood search heuristic for the longest
common subsequence problem. Journal of Heuristics, 14(3):271–283, 2008.

[61] P. A. Evans. Algorithms and Complexity for Annotated Sequence Analysis. PhD
thesis, University of Victoria, 1999.

[62] P. A. Evans. Finding common subsequences with arcs and pseudoknots. In Annual
Symposium on Combinatorial Pattern Matching, pages 270–280. Springer, 1999.

[63] D. Ferguson, M. Likhachev, and A. Stentz. A guide to heuristic-based path
planning. In Proceedings of ICAPS’05 – the 15th International workshop on
planning under uncertainty for autonomous systems, international conference on
automated planning and scheduling, pages 9–18, 2005.

[64] J. A. Filar, M. Haythorpe, and R. Taylor. Linearly-growing reductions of karp’s 21
np-complete problems. arXiv preprint arXiv:1902.10349, 2019.

213

[65] C. B. Fraser. Subsequences and Supersequences of Strings. PhD thesis, University
of Glasgow, Glasgow, UK, 1995.

[66] D. Furcy and S. Koenig. Limited discrepancy beam search. In IJCAI, 2005.

[67] R. A. Gallego, R. Romero, and A. J. Monticelli. Tabu search algorithm for network
synthesis. IEEE Transactions on Power Systems, 15(2):490–495, 2000.

[68] S. García and F. Herrera. An extension on “statistical comparisons of classifiers
over multiple data sets” for all pairwise comparisons. Journal of Machine Learning
Research, 9:2677 – 2694, 2008.

[69] M. Gendreau, J.-Y. Potvin, et al. Handbook of metaheuristics, volume 2. Springer,
2010.

[70] M. Giel-Pietraszuk, M. Hoffmann, S. Dolecka, J. Rychlewski, and J. Barciszewski.
Palindromes in proteins. Journal of Protein Chemistry, 22(2):109–113, 2003.

[71] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-
stock problem. Operations research, 9(6):849–859, 1961.

[72] A. Gorbenko and V. Popov. The c-fragment longest arc-preserving common subse-
quence problem. IAENG International Journal of Computer Science, 39(3):231–238,
2012.

[73] Z. Gotthilf, D. Hermelin, G. M. Landau, and M. Lewenstein. Restricted LCS. In
Proceedings of SPIRE 2010 – the 17th Int. Symposium on String Processing and
Information Retrieval, volume 6394 of LNCS, pages 250–257. Springer, 2010.

[74] Z. Gotthilf, D. Hermelin, and M. Lewenstein. Constrained LCS: hardness and
approximation. In Proceedings of CPM 2008 – the 19th Annual Symposium on
Combinatorial Pattern Matching, pages 255–262. Springer, 2008.

[75] J. Gramm, J. Guo, and R. Niedermeier. Pattern matching for arc-annotated
sequences. ACM Transactions on Algorithms, 2(1):44–65, 2006.

[76] E. A. Hansen and R. Zhou. Anytime heuristic search. Journal of Artificial
Intelligence Research, 28(1):267–297, 2007.

[77] E. A. Hansen, S. Zilberstein, and V. A. Danilchenko. Anytime heuristic search:
First results. Technical report, University of Massachusetts, Amherst, MA, USA,
1997.

[78] P. Hansen, N. Mladenović, and J. A. M. Pérez. Variable neighbourhood search:
methods and applications. Annals of Operations Research, 175(1):367–407, 2010.

[79] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

214

[80] M. M. Hasan, A. S. M. Sohidull Islam, M. Sohel Rahman, and A. Sen. Palindromic
subsequence automata and longest common palindromic subsequence. Mathematics
in Computer Science, 11:219–232, 2017.

[81] D. He and A. N. Arslan. A space-efficient algorithm for the constrained pairwise
sequence alignment problem. Genome Informatics, 16(2):237–246, 2005.

[82] M. Horn, M. Djukanovic, C. Blum, and G. R. Raidl. On the use of decision diagrams
for finding repetition-free longest common subsequences. In Proceedings of OPTIMA
2020 – the 11th International Conference Optimization and Applications, pages
134–149. Springer, 2020.

[83] E. Horvitz and G. Rutledge. Time-dependent utility and action under uncertainty.
In Uncertainty Proceedings 1991, pages 151–158. Elsevier, 1991.

[84] G. Huang and A. Lim. An effective branch-and-bound algorithm to solve the
k-longest common subsequence problem. In Proceedings of ECAI 2004 – the 16th
European Conference on Artificial Intelligence, pages 191–195. IOS Press, 2004.

[85] K. Huang, C.-B. Yang, K.-T. Tseng, et al. Fast algorithms for finding the com-
mon subsequence of multiple sequences. In Proceedings of ICS 2004 – the 13th
International Computer Symposium, pages 1006–1011. IEEE press, 2004.

[86] S.-H. Hung, C.-B. Yang, and K.-S. Huang. A diagonal-based algorithm for the
constrained longest common subsequence problem. In Proceedings of ICS 2018 –
the 23rd International Computer Symposium, pages 425–432. Springer Singapore,
2019.

[87] C. Iliopoulos, M. S. Rahman, M. Voráček, and L. Vagner. Finite automata based
algorithms on subsequences and supersequences of degenerate strings. Journal of
Discrete Algorithms, 8(2):117–130, 2010.

[88] C. S. Iliopoulos and M. S. Rahman. New efficient algorithms for the LCS and
constrained LCS problems. Information Processing Letters, 106(1):13–18, 2008.

[89] S. Inenaga and H. Hyyrö. A hardness result and new algorithm for the longest
common palindromic subsequence problem. Information Processing Letters, 129:11–
15, 2018. Supplement C.

[90] S. Inenaga and H. Hyyrö. A hardness result and new algorithm for the longest com-
mon palindromic subsequence problem. Information Processing Letters, 129(C):11–
15, 2018.

[91] T. Inoue, S. Inenaga, H. Hyyrö, H. Bannai, and M. Takeda. Computing longest
common square subsequences. In In Proceedings of CPM 2018 – the 29th Annual
Symposium on Combinatorial Pattern Matching. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, Dagstuhl Publishing, 2018.

215

[92] A. Islam and D. Inkpen. Semantic text similarity using corpus-based word similarity
and string similarity. ACM Transactions on Knowledge Discovery from Data, 2(2):1–
25, 2008.

[93] M. R. Islam, C. K. Saifullah, Z. T. Asha, and R. Ahamed. Chemical reaction
optimization for solving longest common subsequence problem for multiple string.
Soft Computing, 23(14):5485–5509, 2019.

[94] H. Jiang, C.-M. Li, and F. Manyà. Combining efficient preprocessing and incremen-
tal MaxSAT reasoning for MaxClique in large graphs. In Proceedings of ECAI 2016
– the 22nd European Conference on Artificial Intelligence, pages 939–947, 2016.

[95] T. Jiang and M. Li. On the approximation of shortest common supersequences
and longest common subsequences. SIAM Journal on Computing, 24(5):1122–1139,
1995.

[96] T. Jiang, G. Lin, B. Ma, and K. Zhang. A general edit distance between RNA
structures. Journal of Computational Biology, 9(2):371–388, 2002.

[97] T. Jiang, G.-H. Lin, B. Ma, and K. Zhang. The longest common subsequence
problem for arc-annotated sequences. In In Proceedings of CPM 2000 – the 11th
Annual Symposium on Combinatorial Pattern Matching, pages 154–165. Springer,
2000.

[98] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of
computer and system sciences, 9(3):256–278, 1974.

[99] G. K. Kao, E. C. Sewell, and S. H. Jacobson. A branch, bound, and remember
algorithm for the 1|ri| #

ti scheduling problem. Journal of Scheduling, 12(2):163–
175, 2009.

[100] N. Karmarkar. A new polynomial-time algorithm for linear programming. In
Proceedings of STOC’84 – the 16th annual ACM symposium on Theory of computing,
pages 302–311, 1984.

[101] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of
ICNN’95 – the 10th International Conference on Neural Networks, volume 4, pages
1942–1948. IEEE, 1995.

[102] A. Kershenbaum and R. R. Boorstyn. Centralized teleprocessing network design.
Networks, 13(2):279–293, 1983.

[103] S. Khuri, T. Bäck, and J. Heitkötter. The zero/one multiple knapsack problem and
genetic algorithms. In Proceedings of SAC94 – the ACM symposium on Applied
computing, pages 188–193, 1994.

[104] M. Kiwi, M. Loebl, and J. Matoušek. Expected length of the longest common
subsequence for large alphabets. Advances in Mathematics, 197(2):480–498, 2005.

216

[105] V. Klee and G. J. Minty. How good is the simplex algorithm. Inequalities, 3(3):159–
175, 1972.

[106] J. Kleinberg and E. Tardos. Algorithm design. Pearson Education India, 2006.

[107] P. Koehn. Pharaoh: a beam search decoder for phrase-based statistical machine
translation models. In Proceedings of AMTA 2004 – the 4th Conference of the
Association for Machine Translation in the Americas, pages 115–124. Springer,
2004.

[108] P. J. Kolesar. A branch and bound algorithm for the knapsack problem. Management
science, 13(9):723–735, 1967.

[109] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search.
Artificial intelligence, 27(1):97–109, 1985.

[110] S. Kosub. A note on the triangle inequality for the Jaccard distance. Pattern
Recognition Letters, 120:36–38, 2019.

[111] A. Kovács, K. N. Brown, and S. A. Tarim. An efficient mip model for the capacitated
lot-sizing and scheduling problem with sequence-dependent setups. International
Journal of Production Economics, 118(1):282–291, 2009.

[112] J. B. Kruskal. An overview of sequence comparison: Time warps, string edits, and
macromolecules. SIAM Review, 25(2):201–237, 1983.

[113] A. Kumar, S. Vembu, A. K. Menon, and C. Elkan. Beam search algorithms for
multilabel learning. Machine learning, 92(1):65–89, 2013.

[114] P. Laborie, J. Rogerie, P. Shaw, and P. Vilím. Ibm ilog cp optimizer for scheduling.
Constraints, 23(2):210–250, 2018.

[115] A. H. Land and A. G. Doig. An automatic method of solving discrete programming
problems. Econometrica, 28(3):497–520, 1960.

[116] T. K. Landauer, P. W. Foltz, and D. Laham. An introduction to latent semantic
analysis. Discourse processes, 25(2-3):259–284, 1998.

[117] S. Larionov, A. Loskutov, and E. Ryadchenko. Chromosome evolution with naked
eye: Palindromic context of the life origin. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 18(1), 2008.

[118] E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Operations
research, 14(4):699–719, 1966.

[119] E. K. Lee, T. Easton, and K. Gupta. Novel evolutionary models and applications
to sequence alignment problems. Annals of Operations Research, 148(1):167–187,
2006.

217

[120] A. S. Lhoussain, G. Hicham, and Y. Abdellah. Adaptating the Levenshtein distance
to contextual spelling correction. International Journal of Computer Science and
Applications, 12(1):127–133, 2015.

[121] C.-M. Li, H. Jiang, and F. Manyà. On minimization of the number of branches
in branch-and-bound algorithms for the maximum clique problem. Computers &
Operations Research, 84:1–15, 2017.

[122] C. M. Li and F. Manya. Maxsat, hard and soft constraints. In Handbook of
satisfiability, volume 185, pages 613–631. 2009.

[123] Y. Li, Y. Wang, Z. Zhang, Y. Wang, D. Ma, and J. Huang. A novel fast and memory
efficient parallel MLCS algorithm for long and large-scale sequences alignments. In
Proceedings of ICDE 2016 – the 32nd International Conference on Data Engineering,
pages 1170–1181. IEEE, 2016.

[124] M. Likhachev, G. J. Gordon, and S. Thrun. ARA*: Anytime A* with provable
bounds on sub-optimality. In Proceedings of NIPS’04 – the 17th International
Conference on Neural Information Processing Systems, pages 767–774, 2004.

[125] G. O. LLC. Gurobi optimizer reference manual, 2018.

[126] C. L. Lu and Y. P. Huang. A memory-efficient algorithm for multiple sequence
alignment with constraints. Bioinformatics, 21(1):20–30, 2005.

[127] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and T. Stützle. The
irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives, 3:43–58, 2016.

[128] D. Maier. The complexity of some problems on subsequences and supersequences.
Journal of the ACM, 25(2):322–336, 1978.

[129] H. Marchand, A. Martin, R. Weismantel, and L. Wolsey. Cutting planes in integer
and mixed integer programming. Discrete Applied Mathematics, 123(1-3):397–446,
2002.

[130] M. Martínez-Porchas and F. Vargas-Albores. An efficient strategy using k-mers to
analyse 16s rrna sequences. Heliyon, 3(7):e00370, 2017.

[131] J. E. Mitchell. Branch-and-cut algorithms for combinatorial optimization problems.
Handbook of applied optimization, 1:65–77, 2002.

[132] L. Mitten. Branch-and-bound methods: General formulation and properties.
Operations Research, 18(1):24–34, 1970.

[133] N. Mladenović and P. Hansen. Variable neighborhood search. Computers &
operations research, 24(11):1097–1100, 1997.

218

[134] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell. Branch-and-bound
algorithms: A survey of recent advances in searching, branching, and pruning.
Discrete Optimization, 19:79 – 102, 2016.

[135] S. R. Mousavi and F. Tabataba. An improved algorithm for the longest common
subsequence problem. Computers & Operations Research, 39(3):512–520, 2012.

[136] N. Nakatsu, Y. Kambayashi, and S. Yajima. A longest common subsequence
algorithm suitable for similar text strings. Acta Informatica, 18(2):171–179, 1982.

[137] D. S. Nau, V. Kumar, and L. Kanal. General branch and bound, and its relation
to A* and AO*. Artificial Intelligence, 23(1):29–58, 1984.

[138] J. A. Nelder and R. Mead. A simplex method for function minimization. The
computer journal, 7(4):308–313, 1965.

[139] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack.
Minizinc: Towards a standard CP modelling language. In Proceedings of CP
2007 – the 13th International Conference on Principles and Practice of Constraint
Programming, pages 529–543. Springer, 2007.

[140] P. S. Ow and T. E. Morton. Filtered beam search in scheduling. The International
Journal Of Production Research, 26(1):35–62, 1988.

[141] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, Inc., USA, 1982.

[142] Z. Peng and Y. Wang. A novel efficient graph model for the multiple longest
common subsequences (MLCS) problem. Frontiers in Genetics, 8:104, 2017.

[143] C. Prud’homme, J.-G. Fages, and X. Lorca. Choco documentation. TASC, INRIA
Rennes, LINA CNRS UMR, 6241:64–70, 2014.

[144] L. Rabiner, A. Rosenberg, and S. Levinson. Considerations in dynamic time warping
algorithms for discrete word recognition. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 26(6):575–582, 1978.

[145] C. M. Rands, S. Meader, C. P. Ponting, and G. Lunter. 8.2% of the human genome
is constrained: Variation in rates of turnover across functional element classes in
the human lineage. PLoS Genetics, 10(7):e1004525, 2014.

[146] K. Rieck, P. Laskov, and K.-R. Müller. Efficient algorithms for similarity measures
over sequential data: A look beyond kernels. In Proccedings of DAGM 2006 – the
28th Joint Pattern Recognition Symposium, pages 374–383. Springer, 2006.

[147] F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming. Elsevier,
2006.

219

[148] R. Ruiz and T. Stützle. A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European journal of operational research,
177(3):2033–2049, 2007.

[149] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall
Press, USA, 3rd edition, 2009.

[150] D. Sankoff. Genome rearrangement with gene families. Bioinformatics, 15(11):909–
917, 1999.

[151] C. Schulte, G. Tack, and M. Z. Lagerkvist. Modeling and programming with gecode.
Schulte, Christian and Tack, Guido and Lagerkvist, Mikael, 1, 2010.

[152] S. J. Shyu and C.-Y. Tsai. Finding the longest common subsequence for multiple
biological sequences by ant colony optimization. Computers & Operations Research,
36(1):73–91, 2009.

[153] G. Sidorov, A. Gelbukh, H. Gómez-Adorno, and D. Pinto. Soft similarity and
soft cosine measure: Similarity of features in vector space model. Computación y
Sistemas, 18(3):491–504, 2014.

[154] S. Sivanandam and S. Deepa. Genetic algorithm optimization problems. Springer,
2008.

[155] J. Storer. Data Compression: Methods and Theory. Computer Science Press, MD,
USA, 1988.

[156] T. Stützle and R. Ruiz. Iterated Greedy, pages 547–577. Springer International
Publishing, Cham, 2018.

[157] F. S. Tabataba and S. R. Mousavi. A hyper-heuristic for the longest common
subsequence problem. Computational Biology and Chemistry, 36:42–54, 2012.

[158] E.-G. Talbi. Metaheuristics: From Design to Implementation. John Wiley & Sons,
Hoboken, NJ, USA, 2009.

[159] H. Tanaka, D. A. Bergstrom, M.-C. Yao, and S. J. Tapscott. Large DNA palindromes
as a common form of structural chromosome aberrations in human cancers. Human
Cell, 19(1):17–23, 2006.

[160] R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal on
computing, 1(2):146–160, 1972.

[161] Y. Tsai and J. Hsu. An approximation algorithm for multiple longest common
subsequence problems. In Proceedings of SCI 2020 – the 6th world multiconference
on systemics, cybernetics and informatics, pages 456–460, 2002.

[162] Y. T. Tsai. The constrained longest common subsequence problem. Information
Processing Letters, 88(4):173–176, 2003.

220

[163] S. G. Vadlamudi, S. Aine, and P. P. Chakrabarti. MAWA∗ – A Memory–Bounded
Anytime Heuristic–Search Algorithm. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 41(3):725–735, 2011.

[164] S. G. Vadlamudi, S. Aine, and P. P. Chakrabarti. Anytime pack search. Natural
Computing, 15(3):395–414, 2016.

[165] S. G. Vadlamudi, P. Gaurav, S. Aine, and P. P. Chakrabarti. Anytime column
search. In Proceedings of AI 2012 – the 16th Australasian Joint Conference on
Artificial Intelligence, pages 254–265. Springer, 2012.

[166] J. van den Berg, R. Shah, A. Huang, and K. Y. Goldberg. Anytime nonparametric
A*. In Proceedings of AAAI 2011 – the 25th Conference on Artificial Intelligence,
San Francisco, California, USA, August 7-11, 2011, 2011.

[167] W.-J. Van Hoeve. Operations research techniques in constraint programming.
Tepper School of Business, page 532, 2005.

[168] P. J. Van Laarhoven and E. H. Aarts. Simulated annealing. In Simulated annealing:
Theory and applications, pages 7–15. Springer, 1987.

[169] K. Viswanathan and A. Bagchi. Best-first search methods for constrained two-
dimensional cutting stock problems. Operations Research, 41(4):768–776, 1993.

[170] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21(1):168–173, 1974.

[171] S. Wan, Y. Lan, J. Xu, J. Guo, L. Pang, and X. Cheng. Match-SRNN: Modeling
the recursive matching structure with spatial RNN. In Proceedings of IJCAI’16 –
the 25th International Joint Conference on Artificial Intelligence, pages 2922–2928.
AAAI Press, 2016.

[172] Q. Wang, D. Korkin, and Y. Shang. Efficient dominant point algorithms for the
multiple longest common subsequence (MLCS) problem. In Proceedings of IJCAI’09
– the 25th International Joint Conference on Artificial Intelligence, pages 1494–1499,
2009.

[173] Q. Wang, D. Korkin, and Y. Shang. A fast multiple longest common subsequence
(MLCS) algorithm. IEEE Transactions on Knowledge and Data Engineering,
23(3):321–334, 2011.

[174] Q. Wang, M. Pan, Y. Shang, and D. Korkin. A fast heuristic search algorithm
for finding the longest common subsequence of multiple strings. In Proceedings of
AAAI 2010 – the 24th AAAI Conference on Artificial Intelligence, 2010.

[175] Y. Wang, S. Cai, and M. Yin. Two efficient local search algorithms for maximum
weight clique problem. In Proceedings of AAAI 2016 – the 30th Conference on
Artificial Intelligence, pages 805–811, 2016.

221

[176] D. P. Williamson and D. B. Shmoys. The design of approximation algorithms.
Cambridge university press, 2011.

[177] L. A. Wolsey. Heuristic analysis, linear programming and branch and bound.
Springer, 1980.

[178] I.-H. Yang, C.-P. Huang, and K.-M. Chao. A fast algorithm for computing a longest
common increasing subsequence. Information Processing Letters, 93(5):249–253,
2005.

[179] J. Yang, Y. Xu, Y. Shang, and G. Chen. A space-bounded anytime algorithm
for the multiple longest common subsequence problem. IEEE Transactions on
Knowledge and Data Engineering, 26(11):2599–2609, 2014.

[180] J. Yang, Y. Xu, G. Sun, and Y. Shang. A new progressive algorithm for a multiple
longest common subsequences problem and its efficient parallelization. IEEE
Transactions on Parallel and Distributed Systems, 24(5):862–870, 2013.

[181] Y. Ye, J. Jiang, B. Ge, Y. Dou, and K. Yang. Similarity measures for time series
data classification using grid representation and matrix distance. Knowledge and
Information Systems, 60(2):1105–1134, 2019.

[182] W. Zhang. Complete anytime beam search. In Proceedings of AAAI ’98/IAAI ’98 –
the 15th National/10th Conference on Artificial Intelligence/Innovative Applications
of Artificial Intelligence, pages 425–430. AAAI Press, 1998.

[183] R. Zhou and E. A. Hansen. Beam-stack search: Integrating backtracking with
beam search. In Proceedings of ICAPS’05 – 15th International Conference on
International Conference on Automated Planning and Scheduling, pages 90–98.
AAAI Press, 2005.

[184] A. Zielezinski, S. Vinga, J. Almeida, and W. M. Karlowski. Alignment-free sequence
comparison: benefits, applications, and tools. Genome biology, 18(1):186, 2017.

[185] S. Zilberstein. Using anytime algorithms in intelligent systems. AI magazine,
17(3):73–73, 1996.

[186] S. Zilberstein and S. Russell. Approximate reasoning using anytime algorithms. In
Imprecise and approximate computation, pages 43–62. Springer, 1995.

[187] S. Zilberstein and S. Russell. Optimal composition of real-time systems. Artificial
Intelligence, 82(1-2):181–213, 1996.

[188] S. V. Znamenskij. Approximation of the longest common subsequence length for
two long random strings. Program Systems: Theory and Applications, 7(4):347–358,
2016.

222

Curriculum Vitae of Marko Djukanović

Personal Information:

Email djukanovic.marko90@gmail.com
Date of birth October 20, 1990

Education:

since 2017 TU Wien, Vienna, Austria
Field of Studies Doctoral programme in Engineering Sciences:

Computer Science
Thesis Exact and Heuristic Approaches for Solving

String Problems from Bioinformatics
Advisor Ao.Univ.Prof. Dipl.-Ing.Dr.techn. Günther Raidl

2014 – 2016 University of Banja Luka, Bosnia and Herzegovina
Master of Science

Field of Studies Mathematics

Thesis Numerical Construction of anti-Gaussian Quadratures
Advisor prof. dr Miroslav Pranić

2009 – 2013 University of Banja Luka, Bosnia and Herzegovina
Bachelor of Science

Field of Studies Mathematics and Informatics

Personal Activities:

since 2017 Researcher
Algorithms and Complexity Group
Institute of Logic and Computation

2015 – 2016 Software developer (part time)
Bitlab d.o.o, Banja Luka, B&H

2014 – 2017 Teaching assistant
Faculty of Natural Science and Mathematics
University of Banja Luka

2013 – 2014 Software developer
Inova d.o.o, Banja Luka, B&H

223

Publications:

2021 C. Blum, M. Djukanovic, A. Santini, H. Jiang, C.-M. Lie, F. Manya,
G. Raidl.
Solving longest common subsequence problems via a transformation
to the maximum clique problem. Computers & Operations Research.
125:105089, 2021.

2020 M. Djukanovic, G. R. Raidl, and C. Blum.
Finding longest common subsequences: New anytime A* search
results.
Applied Soft Computing, 95:106499, 2020.

M. Djukanovic, C. Berger, G. R. Raidl, and C. Blum.
An A∗ search algorithm for the constrained longest common subse-
quence problem.
Information Processing Letters, 166:106041, 2020.

M. Djukanovic, C. Berger, G. R. Raidl, and C. Blum.
On solving a generalized constrained longest common subsequence
problem. In Proceedings of OPTIMA 2020 – the 11th International
Conference Optimization and Applications, volume 12422, pages 55–
70, Cham, 2020. Springer International Publishing.

M. Horn, M. Djukanovic, C. Blum, and G. R. Raidl.
On the use of decision diagrams for finding repetition-free longest com-
mon subsequences. In Proceedings of OPTIMA 2020 – the 11th Inter-
national Conference Optimization and Applications, pages 134–149.
Cham, 2020. Springer International Publishing.

2019 M. Djukanovic, G. Raidl, and C. Blum.
Heuristic approaches for solving the longest common squared sub-
sequence problem. In Proceedings of EUROCAST 2019 – the 17th
International Conference on Computer Aided Systems Theory, Part
I, volume 12013, pages 429–437. Springer, 2019.

224

M. Djukanovic, G. Raidl, and C. Blum.
A beam search for the longest common subsequence problem guided by a novel
approximate expected length calculation. In Proceedings of LOD 2019 – the
5th International Conference on Machine Learning, Optimization, and Data
Science, vol. 11943, pages 154–167. Springer, 2019.

M. Djukanovic, G. R. Raidl, and C. Blum.
Anytime algorithms for the longest common palindromic subsequence problem.
Computers & Operations Research, 114:104827, 2020.

2018 M. Djukanovic, G. Raidl, and C. Blum.
Exact and heuristic approaches for the longest common palindromic subsequence
problem. In Proceedings of LION 12 – the 12th International Conference on
Learning and Intelligent Optimization, volume 11353, pages 199–214. Springer,
2018.

225

	Abstract
	Kurzfassung
	Contents
	Introduction
	Structure of the Thesis
	Preliminaries

	Methodology
	Exact Methods
	Heuristic Methods
	Anytime Algorithms

	The Longest Common Subsequence Problem
	Introduction
	State Graph for the LCS Problem
	A General Beam Search Framework for the LCS Problem
	A* Search Framework
	Anytime Algorithms to Solve the LCS Problem
	Computational Studies
	Conclusions

	The Longest Common Palindromic Subsequence Problem
	Introduction
	A Greedy Heuristic for the LCPS Problem
	A* Search for the LCPS Problem
	Approximating the Expected Length of an LCPS for Random Strings
	Anytime Algorithms to Solve the LCPS Problem
	Experimental Results
	Conclusions

	The Longest Common Square Subsequence Problem
	Introduction
	Algorithms for Solving the LCSqS Problem
	Computational Experiments
	Conclusions

	Application of Maximum Clique Solvers to Solve LCS Problems
	Introduction
	Considered problems and transformations
	Conflict graph reduction
	Experimental evaluation
	Conclusions

	The Constrained Longest Common Subsequence Problem
	Introduction
	A Fast Heuristic for the m–CLCS Problem
	State Graph for the m–CLCS Problem
	A* Search for the m–CLCS Problem
	Beam Search for the m–CLCS Problem
	Experimental Evaluation
	Conclusions

	Conclusions and Future Work
	LCS Problem: Supplementary Material
	The Full Anytime Results
	Improvements of A*+ACS Over Other Approaches

	LCPS Problem: Supplementary Material
	Constraint Programming model for the LCPS Problem
	Anytime plots of the algorithms that show the evolution of the obtained sol. quality
	Anytime plots of the algorithms that show the evolution of the obtained gaps
	The 2–LCPS Approaches from Literature: details of our re-implementations

	Application of Max-Clique Solvers to Solve LCS problem: Supplementary Material
	Numerical Results after graph reduction

	CLCS Problem: Supplementary Material
	A short overview over the Algorithms Used for Comparison
	Tuning of and kbest parameters for different Beam Search Configurations
	The Numerical Results on the Remaining m–CLCS Benchmark Sets

	List of Algorithms
	Bibliography

