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en Intel·ligència Artificial



Monografies de l’Institut d’Investigació en
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Foreword

Binary relations like equality, membership, order, or type assignment, play a
central role in many executable specification frameworks. Although these rela-
tions share some of a set of basic properties, their computational treatment was
heterogeneous by means of ad hoc proof calculi based on rewriting with equal-
ities. Maybe this was enough for computational efficiency. However the need
was there of a unified understanding of the computational issues raised by these
binary relations. This book comes to satisfy this very scientific need of under-
standing from principles. Precisely the research presented here springs from a
reconsideration of term rewriting in its simple principles. Because of this, there
is much to learn from this book. It brings a general and rigorous view of the role
and limits of term rewriting, aside from the more concrete results which follow
from it. That is a very general notion of term rewriting along binary relations
and the conditions it has to satisfy in order to provide decision procedures for
theoremhood. Then a corresponding logic has been tailored to give appropriate
semantics to this calculus, and conservative maps of logics have been used to
highlight the pragmatics of binary relations in the concrete specification frame-
works that motivated the research. Furthermore the generality of the approach
allowed the author to make a foray into the terrain of diagrammatic reasoning in
the last part of the book. It gives the flavor of a promising area of investigation.
Definitively we believe this is a book rich in potentialities for new research.

Bellaterra, November 1999

Jaume Agust́ı and Jordi Levy
Institut d’Investigació en Intel·ligència Artificial

Consell Superior d’Investigacions Cient́ıfiques

{agusti,levy}@iiia.csic.es
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ficativa en l’enfocament d’aquesta tesi, i mentre jo visitava el Computer Science
Laboratory a SRI International sempre han estat disponibles quan em sorgien
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hagués pogut arribar fins al final. Gràcies.
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Abstract

Motivated by the results obtained from the generalization of term rewriting
techniques to inclusion theories put forth by Levy and Agust́ı in their calculus of
refinements, we further investigate the use of these techniques for a variety of dif-
ferent specification frameworks, such as membership equational logic, rewriting
logic, and non-deterministic specifications with set relations. All these frame-
works use several binary relations —we call them special relations— in their
axioms, and since we believe that many of these special relations have proper-
ties that can be exploited computationally by term rewriting, we extend the term
rewriting technique to reason simultaneously with multiple special relations.

We thus tailor a logic endowed with an abstract semantics based on the
category theory of relations that acts as a general framework of specifications
with special relations; through maps of logics we describe particular specification
frameworks as instances of our logic. We believe that these maps highlight the
pragmatics of special relations in these specification frameworks.

We extend the term rewriting technique to multiple special relations and
very general monotonicity and antimonotonicity properties of function symbols,
and squeeze out all the computational power of this technique, by exploring its
fitness for effective use. Thus we exploit the notion of polarity in order to tackle
the tractability problems arising from our general approach to term rewriting,
and introduce notions such as well-polarized signature and polarization relation
of a signature.

The application of our general view of term rewriting to particular speci-
fication frameworks leads us to unify notions that up to now have been con-
sidered separately, namely confluence and sort-decreasingness, and we further
revise previous work on the generalization of term rewriting techniques for non-
deterministic specifications.

We also formalize the relationship existing between a visual formalism put
forth by Agust́ı et al. and the general framework we are proposing, and present
a completely visual inference mechanism inspired on proof techniques developed
in this thesis. This last research line led us to explore diagrammatic reason-
ing in the more general framework provided by category theory, thus presenting
a formalization of the diagram chasing technique with its relation to standard
equational reasoning, which further highlights the intuitiveness of graphical rep-
resentations and their fitness to conduct inferences with them.
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Introduction





Chapter 1

Motivation

It is safe to say that equational logic lies in the core of the algebraic specification
discipline for formal program development. At least this is true if one is con-
cerned with property-oriented specification languages, for which executability is
their primary goal (Ehrig and Mahr, 1985; Wirsing, 1990). The fundamental
idea of this discipline is to model programs as algebras by first fixing a signa-
ture and then specifying the intended properties of a program with equational
axioms. The success of this approach relies, on one hand, on its intuitiveness
and mathematical simplicity, and on the other hand, on the powerful reasoning
tool it provides: the familiar technique of replacing equals by equals captured
by the term rewriting technique. Specifications based on equational theories are
thus directly executable, acting as a first prototype, and allowing one to validate
its conformance to the initial requirements. By successive refinements of such
executable specifications, one eventually derives efficient and with respect to the
initial specification correct implementations, written in a modern high-level pro-
gramming language, which usually is a functional programming language with
rich data structures (Sannella and Tarlecki, 1997; Bidoit et al., 1991).

Of course, pure equational theories are by far not expressive enough to cover
many of the features of modern programming languages, like e.g., typing, poly-
morphism, non-determinism, partiality, higher-order functions, object-orienta-
tion, and concurrency. Thus more expressive logics have been pursued, but the
vast majority of the approaches rely on equations as the core predicate to build
specifications, and they take more or less sophisticated variants of equational
term rewriting as its computational paradigm.

Let us now emphasize a couple of paradigm shifts that happened during
the last decade. At first sight they may seem to be quite unrelated, but its
relationship happens to be of central importance for the better understanding
of the research accomplished during the development of this thesis. Let us also
stress that this emphasis is in no way intended to give these ‘shifts’ any special
importance with respect to other aspects of the algebraic specification discipline;
they have special importance for grasping our research aims.

On one hand, there was more or less a shift from a purely syntactic treat-
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4 Chapter 1. Motivation

ment of sorts towards a semantic treatment of them, moving information on
sort classification explicitly into the axioms of a specification, thus gaining on
expressiveness (Mosses, 1993). Some examples in this direction are classified
algebras (Wadge, 1982), unified algebras (Mosses, 1989), type algebras (Manca
et al., 1990), galactic algebras (Mégrelis, 1992), and more recently, membership
algebras (Meseguer, 1998). In particular, within this tendency lies also Levy
and Agust́ı’s calculus of refinements (COR) (Levy, 1995), a formal specification
system based on inclusions, suitable for the preliminary specification of complex
systems and their successive refinements (Robertson et al., 1994).

On the other hand, there was a generalization of the term rewriting technique
to handle other transitive relations in addition to equality. Actually, Levy and
Agust́ı were the first to do this generalization, by using term rewriting systems
to reason within logical theories involving inclusions (Levy and Agust́ı, 1993).
This gave rise to the so called bi-rewrite systems (Levy and Agust́ı, 1996), which
underlie the operational semantics of COR, and which later on served for gen-
eralizing paramodulation and superposition calculi to first-order theories with
arbitrary transitive relations (Bachmair and Ganzinger, 1994c; Bachmair and
Ganzinger, 1994a). Independently, Meseguer showed that the implicit logic un-
derlying rewrite systems was not equational logic, as advocated by Huet (1980),
but rewriting logic, and he thoroughly studied and developed its mathematical
semantics (Meseguer, 1992).

Inspired by these two trends in algebraic specification, we want to establish
a common ground for both, motivated by the following observations.

1.1 Beyond Equational Rewriting

Several positive results proved the potential success of the bi-rewriting tech-
nique for automated reasoning. Levy and Agust́ı proposed implementations
of non-deterministic specifications with bi-rewrite systems (Levy and Agust́ı,
1992), and their approach inspired the subsequent work done by Kriaučiukas
and Walicki applying rewriting to non-deterministic specifications with set re-
lations (Kriaučiukas and Walicki, 1995; Kriaučiukas and Walicki, 1996). But
probably the word problem for free lattices is the most significant example of the
computational gain obtained by using bi-rewrite systems. Levy gave a decision
algorithm based on bi-rewriting (Levy, 1995), though no standard associative-
commutative term rewriting system deciding the theory of free lattices exists
(Freese et al., 1993). This was formally proved by Struth (1997).

Despite of this gain, the above mentioned frameworks (type algebras, galactic
algebras, membership algebras) still base their respective proof calculi on stan-
dard equational rewriting, though they extend the expressiveness of many-sorted
conditional equational logic by using additional binary relations besides equal-
ity in their axioms. Even though dealing with several binary relations at once,
not only with equality, they do not extend term rewriting to these other binary
relations in a uniform way, but embed an ad hoc and heterogeneous treatment
of these relations within term rewriting.
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For instance, Manca, Salibra, and Scollo say that equational type logic “can
be viewed as Horn clausal logic with equality and one (binary) predicate, viz.

type assignment” (Manca et al., 1990). But their equational type rewrite sys-
tems make a clear distinction between standard rewrite rules and so called type
assignment rules. They generalize confluence results given by Bergstra and Klop
(1986) for conditional term rewriting systems, taking into account this distinc-
tion. But since they do not give any results on termination, completion, and
on how a decision procedure for type checking would look like, we are not able
to appreciate to what extent their generalization suffices for the purposes of
computation. Such as with equational type rewrite systems, the recently devel-
oped conditional membership/rewriting systems for membership equational logic
make also a clear distinction between standard rewrite rules and type assign-
ment rules (called membership rules). But unlike Manca, Salibra, and Scollo’s
formalism, Bouhoula, Jouannaud, and Meseguer do present Knuth-Bendix -like
completion methods, and suggest powerful proof techniques (Bouhoula et al.,
1997a). Even so, we believe that the distinction between standard rewrite rules,
type assignment rules, and membership rules may hinder further development of
these techniques, because they still embed a heterogeneous treatment of binary
relations.

Without devaluing the interest and success of previous approaches —they aim
at providing efficient rewriting-based proof calculi by focusing on very specific
proof techniques— our purpose is to explore how the recent results on general-
izing term rewriting techniques to other binary relations in addition to equality
translate to all these frameworks. Though such generalization, of course, adds
an additional degree of technical complexity, we believe it sheds light on the role
term rewriting plays within these specification frameworks.

1.2 Special Relations

We will call the binary relations, with which the above mentioned specification
frameworks construct specifications, special relations, because they have certain
properties that we claim can be exploited computationally by term rewriting. We
are thinking of properties such as reflexivity, symmetry, antisymmetry, mono-
tonicity, antimonotonicity, replacement, transitivity, and compositionality.

Let us see what we mean by a special relation. Consider, for example, the
following (quite trivial) specification in equational type logic:

spec NAT is
0 : nat
nat = posint
id(0) = 0

endspec

Symbols 0, nat, and posint are constants, and id stands for a unary function.
As already mentioned, such a specification is a Horn theory1 with two differ-

1In this particular example no conditional axioms are given; but they could be.
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ent predicates, actually binary relations, namely equality (=) and type assign-
ment (:). Equality is a transitive binary relation for which also the replacement
property holds, and that is the reason why term rewriting captures it so well.
But in addition, the following two axioms hold, for all x, y, and z:

x : y and y = z imply x : z
x = y and y : z imply x : z

These axioms are expressed in a much more compact way as relation-algebra
expressions:

: ; = ⊑ : (1.1)

= ; : ⊑ : (1.2)

The symbol ; denotes composition of relations, and ⊑ a partial order over rela-
tions capturing implication. Transitivity of equality can also be expressed this
way:

= ; = ⊑ =

Term rewriting works so well for equality, because it captures this composition
of equality with itself in a natural way. Thus it is reasonable to think that it
could also capture other slightly more general compositions of binary relations.
Let us look at the specification above as the following term rewriting system:

0 −→
:

nat

nat −→
=

posint

id(0) −→
=

0

With these generalized rewrite rules, and taking into account the compositional
relationship existing between = and : given in axioms (1.1) and (1.2), we can
compose rewrite steps as follows:

id(0)−→
=

0 −→
:

︸ ︷︷ ︸

−→
:

nat −→
=

︸ ︷︷ ︸

−→
:

posint

In general, we could compose rewrite steps whenever relation-algebra axioms of
the form α;β ⊑ γ hold, where α, β, and γ denote arbitrary binary relations.

Term rewriting also well captures another property of equality, the replace-
ment property, stated in the following axiom: For every function symbol f and
for every argument position i = 1 . . . n, and for all x and y,

x = y implies f(. . . ,
i)

x, . . . ) = f(. . . ,
i)

y, . . . ) .
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In general, we may have that for a specific function symbol f and some argument
position i ∈ [1 . . . n],

x α y implies f(. . . ,
i)

x, . . . ) β f(. . . ,
i)

y, . . . ) ,

where now α and β denote arbitrary binary relations. We now can generalize
term rewriting to allow replacements of terms only on certain subterm posi-
tions, according to such monotonicity properties of function symbols. We will
use the notion of polarity to capture these properties, inspired by Manna and
Waldinger’s work on defining paramodulation-like inference rules involving spe-
cial relations (Manna and Waldinger, 1986; Manna and Waldinger, 1992).

1.3 Objectives and Contributions

We believe that a suitable notion of term rewriting —we call it term rewriting
along binary relations— nicely captures many basic properties of special rela-
tions, and that it provides a natural way to study some computational issues
concerning these special relations. We claim that this notion actually constitutes
the bare bones of term rewriting, namely

1. replacement of terms, applying one rewrite rule;

2. application of replacements on certain subterm positions of terms; and

3. successive composition of replacements.

Because of these observations, it is necessary

1. to identify the general framework in which we are making all these as-
sumptions: This leads us to look at equational type logic, membership
equational logic, and other extensions of many-sorted equational logic as
particular instances of a logic of special relations. We believe such logic
better grasps the pragmatics of special relations in specification and rea-
soning.

2. to squeeze out all the computational power of our general view of term
rewriting by studying how far such a generalization has actually sense for
practical use: For this purpose we play with the notion of polarity in order
to tackle the tractability problems arising from such general perspective
of term rewriting. We are able to determine the cases in which we may
obtain effective reasoning mechanisms based on term rewriting, and also
to identify what specific role the basic properties of special relations play
in the tractability of those mechanisms.

3. to ensure that the proposed general framework indeed suites well for study-
ing specification paradigms that go beyond equational logic in the sense
explained above: The technique defining maps between suitable abstract
axiomatizations of logics proves to be useful for this purpose. These maps
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also highlight the relationship existing between several special relations
and their interplay within a particular specification framework.

4. to show how our technique applies within these specific frameworks: We
bring together, under one unique notion of local confluence, several decid-
ability conditions that have previously treated separately. We also revise
previous work on the generalization of term rewriting for non-deterministic
specifications, putting special emphasis on the subtleties of such general-
ization.

Visual Formalisms

Taking the fundamental idea of specifying with inclusions coming from the pre-
vious work done by Levy and Agust́ı in defining COR, Agust́ı, Robertson, and
Puigsegur defined the graphical specification language GraSp (Agust́ı et al.,
1995), with the intention of making the use of formal specification languages
more accessible to non-logicians. It comes naturally to explore the relation-
ship existing between this visual formalism and the general framework we are
proposing, since they are inspired both by the same previous work done on
COR. In particular we identify chaining-based inference rules for GraSp, and
lay them down in a completely diagrammatic way. Together with Puigsegur
and Agust́ı we further explore a visual operational semantics based on the infer-
ence mechanism we present in this thesis. This operational semantics is inspired
on resolution-based theorem proving by transformation of diagrams. This joint
work motivates us to further explore diagrammatic reasoning in the more gen-
eral framework provided by category theory. The result is a formal definition
of diagram chasing in category theory within the context laid down by the dia-
grammatic reasoning community; and also a formal presentation of its relation
to standard equational reasoning, by means of a map of entailment systems. We
also hint at some possible application in visual declarative programming.

1.4 Overview of the Thesis

The thesis is structured into five parts:

Part I: After this motivating introduction of chapter 1, where we summarize
the starting points that stimulated the research presented in this thesis,
we provide the reader with some historical background, basic notions, and
terminology for the better understanding of our main results.

Thus we survey, in chapter 2, related work and alternative approaches fol-
lowed by those researches that preceded us in the use of term rewriting
techniques for equational reasoning and for reasoning with transitive rela-
tions. We put special emphasis on the breakthrough that the bi-rewriting
technique meant for automated deduction in first-order theories with tran-
sitive relations, and discuss some of the key aspects to have in mind when
putting such technique into practice.
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Part II: Next, we formally establish our general framework. In chapter 3, we
define the syntax and semantics of a logic of special relations that at-
tempts to capture the pragmatics of special relations in several specifica-
tion paradigms. In general, it is a Horn logic with predicates restricted
to binary relations, but mainly we focus on the fragment consisting of
positive unit clauses. The basic properties of these binary relations are
built into the rules of deduction by endowing the syntax of the logic with a
relation-algebra structure and with a notion of polarity. In a first approach
we construct intuitive set-theoretic models of theories in this logic, but in
order to provide a very abstract framework that indeed captures many dis-
parate specification frameworks, we move towards a model theory based
on the category theory of relations, and thus construct models as a certain
kind of allegories.

In chapter 4, we then thoroughly present and study a general notion of
term rewriting along binary relations. We redefine the well-known notions
of rewrite relation, rewrite proof, termination, confluence, critical peaks,
and completion for this generalization, and show the main advantages and
disadvantages of our perspective of term rewriting. For this reason we ex-
plore the important role played by polarity, and use this notion for taming
the framework and explaining the subtleties that arise in the generaliza-
tion. We thus introduce the notions of ‘well-polarized and well-commuting
signature’ and ‘polarization relation of a signature’, which turned out to
be very useful for revising previous work on the generalization of the term
rewriting technique.

Part III: Through maps of logics, we formally show, in chapter 5, how our
logic of special relations suites well for describing several specification
frameworks. We choose membership equational logic, rewriting logic, and
specifications with set relations to explain how these maps translate these
frameworks into our logic, thus building into the deduction mechanism the
properties of special relations by means of relation-algebra expressions.
We believe these maps illustrate the role played by special relations within
these frameworks.

In chapter 6, we further study some computational issues of these three
specific instances of our logic from the perspective of term rewriting along
binary relations. We are able to show how our general notion of term
rewriting actually unifies separate decidability properties of specific the-
ories, such as the notions of confluence and sort-decreasingness in order-
sorted term rewriting. Our framework also provides a nice way to show
that sort-decreasingness is actually too strong a notion of decidability in
membership equational specifications. We also discuss the role of the bi-
rewriting technique for theories in rewriting logic and its relationship to
ordered chaining inferences; and as already mentioned, we make use of the
notion of well-polarization introduced before to revise previous work on
generalizing term rewriting techniques for non-deterministic specifications
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with set relations.

Part IV: In the chapters forming this part, we make a foray into the terrain
of diagrammatic reasoning. We show, in chapter 7, how our logic is gen-
eral enough as to capture a novel diagrammatic logic, which our research
group currently develops for high-level specification and programming. By
realizing that such diagrammatic logic is based on visual clues that exploit
the spatial relationship of box containment, we explore the role of this spa-
tial relation as a special relation in the deduction process. Therefore we
provide the foundations for a completely visual chaining-based inference
mechanism, which directly exploits the intrinsic properties of the visual
containment relation, such as transitivity of box containments.

In chapter 8, we go a little bit further and discuss some aspects of dia-
grammatic reasoning in category theory. We suggest a formal definition of
diagram chaining by axiomatizing it as an entailment system in a general
logic, and then show how we can establish a map of entailment systems
between diagram chasing and standard equational reasoning. This map
highlights the expressive power of diagram chasing in order to capture
specific properties of the special relation ‘equality’. Thus we briefly dis-
cuss how we may obtain new formal tools for diagrammatic reasoning and
computation out of the visual formalisms provided by category theory.

Part V: We conclude, in chapter 9, summarizing our main contributions. We
also briefly survey other related work that shares similar objectives or
methodology, either in its model-theoretic aspect, or in its proof-theoretical
aspect, and finally suggest some interesting future research lines opened
by the results presented in this thesis.



Chapter 2

Theorem Proving with

Transitive Relations

Rewrite techniques have been typically applied to reason with the equality rela-
tion and have turned out to be among the most successful approaches to equa-
tional theorem proving. They implicitly capture the transitivity and congruence
properties of the equality relation in a natural way and avoid the explicit use of
the equality axioms, which pose severe problems in the design of efficient auto-
mated theorem provers. An effort has also been made to apply these techniques
to theorem proving in first-order logic with equality.

But since rewrite rules rewrite terms in one direction, it is not only in rea-
soning with the equality relation where these techniques naturally apply, but
in reasoning with arbitrary, probably non-symmetric, transitive relations. The
equality relation is just a special case of monotone transitive relation that is also
symmetric. Therefore, the generalization of rewrite systems is not to rewrite
on equivalence classes of terms, as presented by Huet (1980), but to consider
rewrite systems as a logic itself, as pointed out by Meseguer (1992), or to con-
sider them as a deduction mechanism for theories with non-symmetric relations,
the so called bi-rewrite systems of Levy and Agust́ı (1993; 1996). Bachmair and
Ganzinger extended bi-rewrite systems to the more general ordered chaining
calculus in first-order logic with transitive relations (Bachmair and Ganzinger,
1994c). The work done so far in applying rewrite techniques to arbitrary tran-
sitive relations showed several important differences with the equational case,
because of the lack of symmetry, which hinders notably the deduction mecha-
nism in theories with this kind of relations. New problems appear, which must
be solved in a quite different way.

In this chapter, we survey the research accomplished by those researchers that
went before us in using term rewriting techniques for reasoning with transitive
relations. We will point to the reasons why an efficient treatment of this gen-
eralization from symmetric to non-symmetric transitive relations is difficult to
achieve, which reveals that though symmetry is not a property captured by term

11
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rewriting, it plays a key role for the practicability of this technique; therefore, we
present reasoning with the equality relation as a special case. This survey will
provide the necessary background for us to move on, in subsequent chapters, to
generalize these techniques for reasoning with arbitrary binary relations.

After first introducing some preliminary notions used in this chapter, and
also in chapter 4, we give a short historical sketch of the use of term rewriting
techniques in automated theorem proving for reasoning with equality. Next, we
give an overview of the application of these techniques to reason with arbitrary
transitive relations, and how this was generalized to theorem proving for full first-
order clauses with transitive relations. The description of important efficiency
criteria and the discussion of their use in the Saturate theorem prover, imple-
mented by Nivela and Nieuwenhuis (1993) and further developed by Ganzinger
(Ganzinger et al., 1995), allows us to determine the requirements for efficient
implementations of these techniques, and to expose the drawbacks that appear
when trying to adapt these efficiency criteria to arbitrary transitive relations.
Finally, we conclude with some of the recent advances in non-symmetric term
rewriting that followed the work summarized in this chapter.

2.1 Preliminaries

2.1.1 Terms and subterms. Unless stated explicitly, we follow the notation
and the standard definitions used in (Dershowitz and Jouannaud, 1990). We are
concerned with first-order terms TΣ(X ) over a nonempty signature Σ of function
symbols and a denumerable set X of variables. Given a term t, let t|p denote
the subterm that occurs at position p. When this occurrence is replaced with
term s, we denote that by t[s]p. We refer to t[ ]p as the context in which the
replacement takes place. Sometimes we will drop the subscript p if the position
is not significant. If in a term t, subterm t|q is also subterm of subterm t|p, we
write p ≤ q. Thus, if p � q and q � p then neither of both terms is subterm of
the other.

2.1.2 Literals and clauses. We call a pair of terms t, t′ related by ≈ an
equation, and write t ≈ t′. We call it an inequation or an inclusion, if its terms
are related by < or ⊆, respectively. Equations, inequations, and inclusions are
also referred to as atoms. Atoms and their negations are called literals, and the
disjunction of literals are called clauses. We use capital letters, such as C or D,
to denote clauses, and use the comma to denote disjunction.

2.1.3 Substitutions and unifiers. A substitution σ = 〈x1 7→ t1, . . . , xn 7→
tn〉 is a map from a finite set {x1, . . . , xn} ⊆ X of variables to TΣ(X ), and can be
extended as a morphism to a map from terms to terms, from literals to literals,
and from clauses to clauses. A unifier of two terms s and t is a substitution
σ such that σ(s) = σ(t). It is a most general unifier (mgu), if for every other
unifier σ′ there exists a substitution τ such that σ′ = σ · τ .
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2.1.4 Term orderings. An irreflexive and transitive binary relation ≻ over
a set T is called an ordering. In the specific case of orderings on terms (i.e.,
T = TΣ(X )), it is a reduction ordering if it is also well-founded (i.e., there are no
infinite sequences t1 ≻ t2 ≻ · · · of elements of T ), monotonic (i.e., s ≻ t implies
u[s]p ≻ u[t]p), and stable under substitutions (i.e., s ≻ t implies σ(s) ≻ σ(t)).
Path orderings define reduction orderings over a given well-founded ordering
on the symbols of the signature —the precedence— depending on the paths of
the tree structure of terms. Actually they define simplification orderings, i.e.,
reduction orderings that satisfy the subterm property t ≻ t|p, with p 6= λ1. An
example of path ordering is the lexicographic path ordering.

An ordering on terms can be extended to an ordering on literals and on
clauses, by considering literals as multisets of terms, and clauses as multisets of
literals, and taking multiset extensions of the term ordering. A literal l is said to
be maximal with respect to a clause C if, for all l′ in C, l < l′, and it is said to
be strictly maximal with respect to C if, for all l′ in C, l ≻ l′. See (Dershowitz,
1987) for an extended survey on orderings.

2.1.5 Rewrite relation. A binary relation → is called a rewrite relation if
s → t implies u[σ(s)]p → u[σ(t)]p, for all terms s, t, and u, subterm position p,

and substitution σ. We denote with
+
−→ the transitive closure and with

∗
−→ the

reflexive-transitive closure of rewrite relation →. If the rewrite relation is also
symmetric then we will denote it with ←→, and with

+
←−→ and

∗
←−→ its transitive

and its reflexive-transitive closure, respectively.

2.2 Equational Reasoning

2.2.1 Proving by rewriting. Most of the effort made in order to deal effi-
ciently with special relations in the context of resolution-based theorem proving
has focused mainly on the equality relation, because of its importance in a large
number of domains. The use of rewrite techniques in resolution-based theorem
proving appears to be one of the most promising approaches developed so far.

The use of rewrite techniques in automated theorem proving has its origins
in the completion procedure stated by Knuth and Bendix (1970) for solving the
word problem in equational theories. Equations are used as one-way rewrite
rules, namely in the direction in which they simplify terms. The completion
process adds to the initial set of equations E sufficiently many new ones, by
computing critical pairs, in order to obtain a convergent (i.e., terminating and
Church-Rosser) rewrite system. Convergent rewrite systems, when they can be
obtained, provide a decision algorithm for the word problem in E, based on the
computation of normal forms, since they exist and are unique in each equivalence
class of the congruence defined by the set of equations E. If a set of equations
E can be completed into a finite and convergent rewrite system R, then this
system R is actually a finite encoding of the whole congruence closure defined

1Position λ is the root position.
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by E, which is infinite in general: all possible proofs of equational consequences
of E can be represented as rewrite proofs. Furthermore, if rewrite rules are
kept as interreduced as possible, having in R the minimal number of rewrite
rules required to represent the congruence closure, then the rewrite system R is
canonical, and therefore unique up to renaming of variables (Dershowitz et al.,
1988).

But since the word problem in equational theories is not decidable in general,
a convergent rewrite system can not always be obtained. On one hand, the
completion procedure may fail, because of the impossibility to orient an equation
as a simplifying rewrite rule. On the other hand, it may not terminate. Failure
can be avoided by ordered (or unfailing) completion (Lankford, 1975; Hsiang and
Rusinowitch, 1987; Bachmair et al., 1989). Because of the ‘unfailing’ property
of ordered completion, we can see it as a refutational deduction process. During
this process we may distinguish two main kinds of deductions: those based on the
generation of new equations by computation of critical pairs, which participate
in the process of refutation, and those that simplify equations, which therefore
avoid the deduction of unnecessary rules for the purpose of refutation. This
distinction between productive deduction and simplifying deduction is a key
aspect in theorem proving and hence also in its rewrite approach.

2.2.2 Paramodulation. The effort to extend completion to general first-
order clauses has introduced the use of well-founded orderings to resolution-
based theorem proving. In the theorem proving context, the desire to encode the
equality predicate into the logical language led to the paramodulation inference
rule stated by Robinson and Wos (1969):

Paramodulation:
C, s ≈ t D, u[s′]p ≈ v

σ(C), σ(D), σ(u[t]p) ≈ σ(v)

where σ is a most general unifier of s and s′. Paramodulation, together with
resolution and factoring, was proved to be complete, whenever the reflexivity
and functional-reflexivity axioms were added to the initial set of clauses. The
paramodulation rule was significantly improved by Brand (1975) and Peterson
(1983) by proving that the functional-reflexivity axioms were unnecessary, and
that paramodulation through variables was not required. But even under these
restrictions, paramodulation is difficult to control, because it generates the com-
plete congruence closure of equality. Since convergent rewrite systems avoid the
generation of such congruence closure, researchers focused on extending rewrite
techniques to paramodulation.

2.2.3 Superposition. The generalization of completion to full first-order
clauses led to the superposition calculus (Bachmair and Ganzinger, 1990; Bach-
mair and Ganzinger, 1994b), which, in essence, is a generalization of the critical
pair generation of the Knuth-Bendix completion procedure. But this exten-
sion required the development of more powerful techniques for the completeness
proofs. Hsiang and Rusinowitch (1991) proved the refutational completeness of
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ordered paramodulations using the transfinite semantic tree method. Bachmair
(1991) used proof orderings in order to obtain similar results. But it was with the
model construction method of Bachmair and Ganzinger when the refutational
completeness of an inference system based on strict superposition was proved
(Bachmair and Ganzinger, 1990; Bachmair and Ganzinger, 1994b). At the same
time, the model construction method provides a powerful, abstract redundancy
notion, which generalizes the simplification methods of Knuth-Bendix comple-
tion. Model construction also allowed one to prove refutational completeness of
inference calculi based on strict superposition with more restrictions, like the
use of basic strategies and ordering constrained clauses (Nieuwenhuis and Ru-
bio, 1995; Bachmair et al., 1995), which reduces the search space to be explored.
The productive deduction of non-redundant clauses based on superposition is
known as saturation, and it generalizes, in some sense, the process of completion
towards canonical rewrite systems of equational theories.

2.3 Reasoning with Transitive Relations

2.3.1 Chaining. Most of the research done so far focused mainly on the
equality relation, but there have been also some attempts to include transitive
relations other than equality into the logical language. Slagle (1972) was the
first to propose an inference system for theories with equality, orderings, and
sets, based on the chaining inference rule, which essentially is the equivalent of
the paramodulation rule for arbitrary transitive relations:

Chaining:
C, u < s D, t < v

σ(C), σ(D), σ(u) < σ(v)

where σ is a most general unifier of s and t.
But completeness of such inference systems requires the functional-reflexive

axioms and chaining through variables. By investigating special transitive rela-
tions, such as dense total orderings without endpoints, Bledsoe and Hines (1980)
developed techniques for eliminating certain occurrences of variables from for-
mulae, avoiding the prolific chaining through variables. Bledsoe, Kunen, and
Shostak (1985), and also Hines (1992), achieved completeness results for partic-
ular such systems of restricted chaining. Manna and Waldinger proposed sub-
term chaining methods for general clauses in the presence of monotonicity and
antimonotonicity (Manna and Waldinger, 1986), but their calculus was proved
to be incomplete (Manna and Waldinger, 1992).

But, like ordering restrictions on the paramodulation rule led to the super-
position calculus, which avoids the generation of the whole congruence closure of
equality, ordering restrictions on the chaining inference rule avoid the generation
of such transitive closure, too. Therefore, rewrite systems can be used in order
to provide decision procedures for the word problem in some theories with arbi-
trary transitive relations. This was done for the first time by Levy and Agust́ı
(1993), who developed bi-rewrite systems (Levy and Agust́ı, 1996). Bachmair
and Ganzinger later generalized bi-rewrite systems to theorem proving with full
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first-order clauses with arbitrary transitive relations. They introduced the or-
dered chaining calculus, which generalizes superposition to cope with arbitrary
transitive relations (1994c).

2.3.2 Bi-rewriting. Let us now see Levy and Agust́ı’s bi-rewriting tech-
nique in more detail, because of its importance for the research accomplished in
this thesis. Let ⊆ denote a reflexive, monotonic, but non-symmetric transitive
relation, which we will refer to as inclusion. Given a finite set of inclusions I, we
say that s ←−

⊆
→ t if there exist an inclusion u ⊆ v ∈ I and a substitution σ, such

that σ(u) is a subterm of s, and t is the term resulting from replacing σ(u) with

σ(v) in term s, or vice versa. Intuitively, we say that s
∗
←−
⊆
→ t if we are able to

obtain term t from s by replacing terms with ‘bigger’ terms, using instances of
inclusions in I. The same can be done in the reverse direction, from ‘bigger’ to
‘smaller’ terms2. Given two terms s and t, the word problem in a theory I is to
decide whether I |= s ⊆ t. By the equivalent of Birkhoff’s theorem for inclusions

it is known that I |= s ⊆ t if and only if s
∗
←−
⊆
→ t, and in this case we say that the

inclusion s ⊆ t is provable in I. But it is an arduous task to automatically prove
the validity of an inclusion s ⊆ t by application of all possible replacements
on subterms of s until term t is obtained. It is impractical to build a decision
procedure for decidable inclusion theories based on this methodology, because
of the huge search space that may be generated. Even further, because of the
possible existence of infinite branches that may be explored, the procedure will
not terminate if I 6|= s ⊆ t.

But we can avoid all potentially infinite branches by using inclusions to re-
place subterms by smaller ones with respect to a well-founded ordering on terms,
i.e., we use them as rewrite rules. Given a finite set of rewrite rules R, we say
that a rule l → r ∈ R reduces term s to t, and write s −→ t, if a subterm u of
s, which is an instance of the left-hand side l, is replaced by the corresponding
instance of the right-hand side r, obtaining a simpler term t. If t is a term such
that no rewrite rule of R applies to it, we say that it is an irreducible term with
respect to R, and call it a normal from. Given a term t, we call a term s, such
that t

∗
−→ s, a term that is reachable from t.

2.3.3 Remark. Notice that, if we orient a set of inclusions following an
ordering on terms, we get two independent rewrite systems, one consisting of
those rewrite rules that rewrite terms into ‘bigger’ ones (with respect to the
inclusion relation), and the other one consisting of those rewrite rules that rewrite
terms into ‘smaller’ ones3. We distinguish the two separate rewrite relations by
denoting the first one with −→

⊆
and the second one with −→

⊇
.

2Notice that the comparatives ‘bigger’ and ‘smaller’ result from the inclusion relation, not
from the term ordering.

3Here we are supposing that all inclusions can be oriented. Unorientable inclusions will be
considered later.
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2.3.4 Example. Let us consider an inclusion theory defined by the following
axioms:

f(a, x) ⊆ x

f(x, c) ⊆ x

b ⊆ f(a, c)

If we orient these inclusions, following an ordering on terms, we obtain the
following two distinct rewrite systems:

R⊆ =







f(a, x) −→
⊆
x

f(x, c) −→
⊆
x

R⊇ =
{

f(a, c) −→
⊇
b

We say that these two rewrite systems form a bi-rewrite system B = 〈R⊆, R⊇〉.

2.3.5 Bi-rewrite proof. In such a system a bi-rewrite proof consists of two
paths, one using rules of R⊆ and the other using rules of R⊇, which join together
in a common term:

s −→
⊆
· · · −→

⊆
u←−

⊆
· · · ←−

⊆
t

There will be a bi-rewrite proof if the set of reachable terms from s with
∗
−→
⊆

and

the set of reachable terms from t with
∗
−→
⊇

intersect in an nonempty set.

In order to have a decision algorithm for the word problem in a theory I
we need the bi-rewrite system B to satisfy two properties: First, whenever for
two terms s and t, s

∗
←−
⊆
→ t, then a term u should exist, such that s

∗
−→
⊆

u and

t
∗
−→
⊇

u. We denote the existence of such a term u by s ↓⊆ t. This is the

Church-Rosser property. Second, and in order to avoid reducing terms s or t
infinitely many times, we require that, applying one single rewrite rule, only
finite many terms are reached (finite branching), and that only finite sequences
of rewrites with rules in R⊆ (or R⊇) can be built. We say the bi-rewrite system
B is terminating4. Termination can be obtained by the following theorem:

2.3.6 Theorem. A bi-rewrite system B = 〈R⊆, R⊇〉 is terminating if the

rewrite orderings
+
−→
⊆

and
+
−→
⊇

defined by R⊆ and R⊇ respectively are contained

in a unique reduction ordering.

4Actually, for a decision algorithm, only quasi-termination suffices (Levy and Agust́ı, 1996)
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2.3.7 Decision algorithm. Bi-rewrite systems fulfilling termination and
the Church-Rosser property are convergent. The decision algorithm for the word
problem is then straightforward: To check if s

∗
←−
⊆
→ t we reduce s and t, applying

rewrite rules of each rewrite system, until a common term is reached. Since the
bi-rewriting system is terminating, only finite branches will be explored:

⊆
//

⊆����
��

��
�� ⊆

oo

s
⊆

??�������
⊆

//

⊆
��>

>>
>>

>>
u

⊆
//

⊆

^^<<<<<<<<

⊆
����

��
��

��
t

⊆
oo

⊆
//

⊆

??��������

⊆   B
BB

BB
BB

B
⊆

oo

Like convergent rewrite systems are a finite representation of the congruence
closure of equality, convergent bi-rewrite systems finitely encode the reflexive,
transitive, and monotone closure of ⊆. With convergent bi-rewrite systems, all
possible consequences of a set of inclusions I using transitivity, reflexivity, and
monotonicity are represented by a bi-rewrite proof.

An arbitrary bi-rewrite system, obtained by orienting the inclusions of a
inclusion theory I is non-convergent in general. But, like in the equational
case, there exist necessary and sufficient conditions for a terminating bi-rewrite
system to be Church-Rosser, which were stated by Levy and Agust́ı, adapting the
original results of Knuth and Bendix (1970). First of all, we give two definitions,
and then we state the theorem that summarizes this result (see (Levy and Agust́ı,
1996) for further details):

2.3.8 Definition. Let B = 〈R⊆, R⊇〉 be a bi-rewrite system, and let l −→
⊆

r ∈ R⊆ and s[u]p −→
⊇

t ∈ R⊇ (or vice versa) be two rules, where u is not a

variable. If σ is the most general unifier of l and u, then 〈σ(s[r]p), σ(t)〉 is called
a critical pair.

2.3.9 Definition. Let B = 〈R⊆, R⊇〉 be a bi-rewrite system, let l −→
⊆
r be a

rule of R⊆, and let σ(s) −→
⊇
σ(t) be an instance of a rule s −→

⊇
t of R⊇ (or vice

versa), where σ is a substitution such that, for some term v and some variable
x at position p that appears more than once in s, σ(x) = v[l]q and σ(y) = y, if
y 6= x. The critical pair 〈σ(s[v[r]q ]p), σ(t)〉 is called a variable instance pair5.

A critical pair or a variable instance pair 〈t, t′〉 is said to be convergent if t ↓⊇ t′

(or t ↓⊆ t′), and divergent otherwise.

5The definition of variable instance pairs also appears in the context of rewrite systems
modulo a congruence (see (Bachmair et al., 1986))
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2.3.10 Theorem. A terminating bi-rewrite system B = 〈R⊆, R⊇〉 is Church-
Rosser (and thus, convergent) if and only if there are no divergent critical pairs
and variable instance pairs between the rules of R⊆ and the rules of R⊇.

Following the same ideas proposed by Knuth and Bendix (1970), one can attempt
to complete a terminating, but non-confluent, bi-rewrite system by adding di-
vergent critical pairs and divergent variable instance pairs as new rewrite rules
to the systems R⊆ or R⊇. The number of critical pairs among the rules of R⊆

and R⊇ is always finite. But from definition 2.3.9 of a variable instance pair, one
sees that the overlap of term l on s is done below the variable position p of s, and
thus unification always succeeds. Furthermore, term v is arbitrary, so that, if
a variable instance pair exists between two rewrite rules, then there are infinite
many of them. We will see later that this is one of the major drawbacks for a
tractable generalization of rewrite techniques to arbitrary transitive relations: a
completion procedure attempting to add infinite many variable instance pairs as
new rewrite rules cannot manage them effectively.

2.3.11 Example. The bi-rewrite system of 2.3.4 is non-convergent because
rules f(a, x) −→

⊆
x and f(a, c) −→

⊇
b yield a divergent critical pair:

f(a, c)

⊆
||zz

zz
zz

zz
z

⊆
""D

DD
DD

DD
DD

b c

Let us suppose that, in the term ordering, c ≻ b. Since b ⊆ c, we obtain the
following new rule:

c −→
⊇
b

A Knuth-Bendix -like completion procedure would add the critical pair 〈b, c〉 as
this new rewrite rule to the system. In this example, a convergent system can
be built, because during the whole completion process no variable instance pairs
among two rules arise. In fact, for this inclusion theory, the completion procedure
would generate the following convergent bi-rewrite system:

R⊆ =







f(a, x) −→
⊆

x

f(x, c) −→
⊆

x

b −→
⊆

a

f(x, b) −→
⊆

x

R⊇ =







f(a, c) −→
⊇

b

c −→
⊇

b
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Now we can prove the validity of inclusion f(f(a, b), f(b, b)) ⊆ f(c, f(a, c)) by
the following bi-rewrite proof:

f(f(a, b), f(b, b))

⊆ ''OOOOOOOOOOO
f(c, f(a, c))

⊆xxrrrrrrrrrr

f(b, f(b, b))

⊆ $$H
HH

HH
HH

HH
f(b, f(a, c))

⊆zzvvv
vv

vv
vv

f(b, b)

2.3.12 Remark. Notice that f(b, b) is the only term reachable from

f(f(a, b), f(b, b)) with
∗
−→
⊆

which is also reachable from f(c, f(a, c)) with
∗
−→
⊇

.

But f(b, b) is not an irreducible term with respect to R⊆, since f(b, b) −→
⊆

b.

This shows that, unlike the equational case, normal forms do not play any role
in the search for a bi-rewrite proof.

2.3.13 Completion modulo a theory. The process of completion gener-
ates new critical pairs or variable instance pairs, and they need to be oriented
in order to add them as new rewrite rules to the bi-rewrite system. Thus we
must define a suitable reduction ordering on terms as to orient all these possible
pairs.

Of course, like in equational theories, not for every given inclusion theory,
and for every reduction ordering we define, the completion procedure terminates
successfully, yielding a convergent bi-rewrite system for the inclusion theory.
There exist theories for which the completion procedure will keep generating
new critical pairs and never stop. But completion can also terminate unsuccess-
fully. It may abort without finding a convergent bi-rewrite system, though one
exists. This happens, for example, when it finds a critical pair which cannot be
oriented with the reduction ordering at hand. Sometimes this is solved by using
stronger reduction orderings (which orient more pairs), but there are pairs, which
no reduction ordering can orient. A typical example is the commutativity-like
axiom:

f(x, y) ⊆ f(y, x)

It is obvious that no orientation of the inclusion preserves the termination prop-
erty, because endless sequences of reductions can always be built:

f(x, y) −→
⊆
f(y, x) −→

⊆
f(x, y) −→

⊆
· · ·

Different methods were developed to overcome this problem. In the equational
case Lankford and Ballantyne (1977) extended rewriting to rewriting modulo
a set of equations. These set of equations are usually structural axioms, such
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as the commutativity and the associativity axiom. Peterson and Stickel (1981)
extended the unification mechanism used in the generation of critical pairs to a
more general unification modulo associativity and commutativity, which Jouan-
naud and Kirchner (1986) extended to the general case. Both approaches treat
the troublesome equations implicitly, not as rewrite rules. These ideas were
generalized to bi-rewrite systems, too (Levy and Agust́ı, 1996).

2.3.14 The role of symmetry in bi-rewrite systems. If the arbitrary
transitive relation we reason with is, in addition to reflexive and monotonic, also
symmetric, then we are dealing with a congruence relation. Bi-rewrite systems
based on equality happen to be standard rewrite systems as known from the
equational case, because, when orienting equations following a given reduction
ordering, we only obtain one single rewrite system, not two.

2.3.15 Example. Let us take the theory of groups, defined by the following
set of equations:

e ∗ x ≈ x

x−1 ∗ x ≈ e

(x ∗ y) ∗ z ≈ x ∗ (y ∗ z)

These equations are oriented leading to the following rewrite system:

e ∗ x −→
≈

x

x−1 ∗ x −→
≈

e

(x ∗ y) ∗ z −→
≈

x ∗ (y ∗ z)

The symmetry of the equality relation relation makes an equality to be equivalent
to two inclusions (since the relation defined by the inclusions is also an equiva-
lence relation), and thus we can define the theory of groups by the following set
of inclusions:

e ∗ x ⊆ x

e ∗ x ⊇ x

x−1 ∗ x ⊆ e

x−1 ∗ x ⊇ e

(x ∗ y) ∗ z ⊆ x ∗ (y ∗ z)

(x ∗ y) ∗ z ⊇ x ∗ (y ∗ z)

By orienting them with respect to a reduction ordering we obtain the following
bi-rewrite system:

R⊆ =







e ∗ x −→
⊆

x

x−1 ∗ x −→
⊆

e

(x ∗ y) ∗ z −→
⊆

x ∗ (y ∗ z)
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R⊇ =







e ∗ x −→
⊇

x

x−1 ∗ x −→
⊇

e

(x ∗ y) ∗ z −→
⊇

x ∗ (y ∗ z)

2.3.16 Remark. Notice that each former equation appears as a rewrite rule
in both rewrite systems. Therefore, the generation of critical pairs, which is
done by looking for overlaps between two rules, one of each rewrite system, is
equivalent to look for overlaps among the rules of one unique equational rewrite
system. Every overlap can be done twice, yielding each time two new inclusions.
The result is resumed in the standard definition of critical pair:

2.3.17 Definition. Let R be a term rewrite system, and let l −→
≈

r and

s[u]p −→
≈

t be two rules in R, where u is not a variable. If σ is a most general

unifier of l and u, then 〈σ(s[r]p), σ(t)〉 is called a critical pair.

2.3.18 Remark. It is easy to check that, because of symmetry, all variable
instance pairs are convergent, and therefore do not need to be generated. Thus,
no overlap on and below variable positions is required.

2.3.19 Unique normal form. Symmetry plays an important role in term
rewriting, because, when reasoning with equivalence relations, we deal with the
notion of equivalence class. Since we do not have two separate rewrite systems
any more, critical pairs are computed by overlapping left-hand sides of rules
of one single rewrite system. Thus, if the rewrite system is convergent, each
term not only has an irreducible term, the normal form, but this normal form
is also unique for each of them. Rewriting is done within an equivalence class,
and all its members share the same normal form. A decision procedure for the
word problem in equational theories, based on convergent rewriting systems, is
much simpler than with arbitrary transitive relations, since backtracking can be
avoided. We just compute the normal forms of both terms whose equality we
want to validate, and check them for syntactic identity. This is an important
difference of bi-rewrite systems with respect to equational rewrite systems: since
rewriting is not done within equivalence classes, the notion of unique normal form
becomes meaningless.

For a more exhaustive study of rewrite systems, see the surveys of Dershowitz
and Jouannaud (1990), Huet (1980), Plaisted (1993), Klop (1992), and, more
recently, of Baader and Nipkow (1998)

2.4 Rewrite Techniques in Theorem Proving

As mentioned in 2.2.1, in order to avoid failure during the completion pro-
cess, completion itself can act as a deduction process for proving theorems, by
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unfailing completion. The same principle can be generalized for the unfailing
completion of bi-rewrite systems. But let us emphasize these notions by looking
at the equational case.

Huet suggested to use the completion procedure not only to obtain convergent
rewrite systems, but also to prove theorems of equational theories (Huet, 1981).
He showed that, whenever the completion process does not fail and all newly
generated equations are orientable, it is a semi-decision procedure for the word
problem of equational theories.

2.4.1 Theorem proving by completion. Let E be a set of equations, and
R the set of rewrite rules obtained by orienting the equations of E. Suppose
we want to check if s

∗
−→
≈
t. We first reduce s and t to their normal forms with

respect to R, obtaining s′ and t′, respectively. If they are identical, s ≈ t is
provable in E. Otherwise, we run the completion procedure on R, following
a suitable fairness criterion6, finding divergent critical pairs and adding them
as new rewrite rules to R, until a new system R′ is obtained, for which s′ or
t′ are reducible. Again, we compute the normal forms of s and t (now with
respect to R′) and check them for identity. We repeat this process until we
reach two identical normal forms —and thus the equation s ≈ t is provable
in E— or we do not find more divergent critical pairs, obtaining a convergent
rewrite system with distinct normal forms for s and t —and thus s ≈ t is not
provable in E. Since the word problem is semi-decidable, it may also happen
that, thought s ≈ t is not provable in E, the completion process never ends,
unable to yield a convergent rewrite system. Notice that the basic idea is to
progressively make divergent critical pairs convergent, until we obtain a rewrite
proof. The same principle can be generalized for arbitrary transitive relations
by progressively making critical pairs and variable instance pairs converge, such
that we eventually get a bi-rewrite proof.

2.4.2 Unfailing completion. Unfortunately, the completion procedure
may fail to orient a critical pair as a rewrite rule and the process is prone
to abort. This makes standard Knuth-Bendix completion inappropriate for the-
orem proving purposes. Bachmair, Dershowitz, and Plaisted (1989) overcame
this situation with a variant of completion, called unfailing completion, which is
refutationally complete for equational theories.

In unfailing completion, first of all, we attempt to complete a set of equations
rather then a set of rewrite rules, because we want to manage unorientable
equations. Even if there is no convergent rewrite system for a given equational
theory, it may still be possible to construct a system of equations that possesses
a weaker Church-Rosser property, namely a Church-Rosser property only on
ground (variable free) terms. Such a system defines unique ground normal forms,
which suffices for most purposes, including refutational theorem proving, as we
will see in 2.4.5. In this approach, the notion of rewriting is refined as follows:

6The fairness criterion guarantees that sooner or later the completion process generates all
possible critical pairs.
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2.4.3 Definition. Given a reduction ordering ≻, s is rewritten to t and we

denote it by s
≻
−→
≈

t, if s ←−
≈
→ t by applying some equation u ≈ v in E with

a substitution σ, for which σ(u) ≻ σ(v). We call σ(u) ≈ σ(v) an orientable
instance of the equation u ≈ v.

2.4.4 Remark. Notice that rewriting is now performed with equations ra-
ther than with rewrite rules. Since we want the system to be ground Church-
Rosser, the unfailing completion process adds to the system those equations
that may have as instance a divergent critical pair. These divergent critical
pairs must be generated by the overlap of orientable instances of equations.

2.4.5 Refutation by completion. Let ŝ ≈ t̂ be the equation obtained by
replacing each variable in s and t with a unique Skolem constant. If the given
reduction ordering ≻ is complete on TΣ∪K(X ), where K is the set of Skolem con-
stants occurring in ŝ and t̂, then unfailing completion is refutationally complete:
If s ≈ t is provable in E, then ŝ ≈ t̂ is also provable in E, and hence unfailing
completion can be used as a semi-decision procedure to find a ground rewrite
proof of ŝ ≈ t̂. Conversely if ŝ ≈ t̂ is provable in some E′ obtained during the
unfailing completion process, then s ≈ t is provable in E. The idea of completion
as a refutationally complete deduction process, can also be generalized to full
first-order clauses, as we show next.

2.4.6 Ordered chaining. Like with paramodulation in first-order logic with
equality (see 2.2.2), there have been attempts to use additional inferences for
resolution-based theorem provers in order to avoid the transitivity axiom of
arbitrary transitive relations. As mentioned in 2.3.1, Slagle introduced for these
purposes the chaining inference rule. Chaining can be seen as the generalization
of paramodulation for arbitrary transitive relations, but in this case without
chaining on subterms, because the transitive relation needs not to be monotonic.
Like with paramodulation, chaining has the drawback that it explicitly generates
the transitive closure of the binary relation. As mentioned previously, there is an
extra cost in this generalization, since chaining through variables is now needed,
in general, unlike with paramodulation.

But like ordering restrictions on the paramodulation inference led to the
superposition calculus —which in essence generalizes the critical pair genera-
tion of the unfailing variant of the Knuth-Bendix completion procedure—, so
ordering restrictions on the chaining inference rule profit of the advantages of
bi-rewriting techniques, avoiding the generation of the whole transitive closure
by using bi-rewrite proofs to validate an inequation. So the ordered chaining
proof calculus, introduced by Bachmair and Ganzinger (1994c), is based on the
chaining inference with additional ordering restrictions on terms and literals.

Figure 2.1 shows the proof calculus, which is refutationally complete for
Horn theories with transitive relation <. A complete calculus for full first-order
theories with such transitive relation requires some additional inference rules
(see (Bachmair and Ganzinger, 1994c) for further details).
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Ordered positive chaining:

C, u < s D, t < v

σ(C), σ(D), σ(u) < σ(v)







σ = mgu(s, t)
σ(u) < σ(s) strictly maximal wrt. σ(C)
σ(t) < σ(v) strictly maximal wrt. σ(D)
σ(u) 6< σ(s)
σ(v) 6< σ(t)

Ordered negative chaining:

C, u ≮ s D, t < v

σ(C), σ(D), σ(v) ≮ σ(s)







σ = mgu(u, t)
σ(u) ≮ σ(s) maximal wrt. σ(C)
σ(t) < σ(v) strictly maximal wrt. σ(D)
σ(s) 6< σ(u)
σ(v) 6< σ(t)
σ(s) 6= σ(v)

C, u ≮ s D, t < v

σ(C), σ(D), σ(u) ≮ σ(t)







σ = mgu(s, v)
σ(u) ≮ σ(s) maximal wrt. σ(C)
σ(t) < σ(v) strictly maximal wrt. σ(D)
σ(u) 6< σ(s)
σ(t) 6< σ(v)
σ(u) 6= σ(t)

Ordered resolution:

C,¬A D,B

σ(C), σ(D)







σ = mgu(A,B)
σ(A) maximal wrt. σ(C)
σ(B) strictly maximal wrt. σ(D)

Figure 2.1: Ordered chaining proof calculus

2.4.7 Saturation. Recall unfailing completion as a semi-decision procedure
for theorem proving. Like in the equational case, the generation of new inequa-
tions from critical pairs and variable instance pairs can be seen as an ordered
version of the chaining inference rule. In this context, like in the equational case,
the process of completion is known as saturation. In analogy to a completion
procedure that attempts to produce a convergent bi-rewrite system, in which all
critical pairs (and variable instance pairs, if the transitive relation is also mono-
tonic) are convergent (have a bi-rewrite proof), the saturation process attempts
to provide us with a set of clauses in which all inferences are redundant. We
say that the set of clauses is saturated, i.e., closed up to redundancy. Notice
that this is the criterion in order to finish the process of completion, or satura-
tion respectively. Like during the completion process rewrite rules are kept as
interreduced as possible, during saturation redundant clauses are deleted and
redundant inferences avoided. Although we will often come back to the notion
of redundancy, we define this notion in more detail later, within the context of
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putting all these concepts into practice.

As we will see next, Bachmair and Ganzinger (1994c) proved the refutational
completeness of several inference calculi based on ordered chaining for Horn
clauses and for general first-order clauses with arbitrary transitive relations with
the help of bi-rewrite systems.

2.4.8 Completeness of ordered chaining calculi. As explained in 2.3.2,
Levy and Agust́ı (1993) gave the sufficient and necessary conditions to identify
those critical pairs that need to converge in order to build a Knuth-Bendix -like
completion procedure for inclusion theories. We have seen that, by completion,
we may get a convergent bi-rewrite system, which is a finite representation of
the transitive closure of the binary relation. Bachmair and Ganzinger used these
techniques at a more abstract level, in the context of their model construction
method.

Bachmair and Ganzinger (1990) introduced this very useful method for prov-
ing refutational completeness of inference systems based on saturation, and
which also provides us a very elegant way to define redundancy, as we will see
later. It consists in constructing a Herbrand interpretation I from a saturated
set of clauses N in such a way that, whenever N is satisfiable, I is a model of
N . But whenever N is unsatisfiable, the minimal counter-example showing that
I is not a model of N is the empty clause. This means that, in some step of the
saturation process, the empty clause is added to the set of clauses. Note that
the minimal counter-example is the smallest clause in N (with respect to the
extension to an ordering on clauses of the reduction ordering ≻) that is false in
I.

The construction of this Herbrand interpretation is done inductively over
a given total reduction ordering on ground clauses. For simplifying purposes,
here we consider clauses without transitive relations: Starting with the empty
interpretation I = ∅, we repeat the following steps: First, we take the smallest
possible instance C of a clause of N that is false in I. Then we take a positive
literal A of C that meets some ‘desired’ conditions7, and add it to I. A clause C
with such a literal is called a productive clause. Obviously, C is true in the new
interpretation I ∪ {A}. The result of repeating these steps is an interpretation
with the properties explained above.

2.4.9 Example. Consider the following ground clauses, which are state-
ments about some property P of the naturals in Peano notation, and which
is a saturated set, in the sense explained before8. The clauses are listed in

7See (Bachmair and Ganzinger, 1990) for how these conditions are determined.
8This example is taken from (Bachmair and Ganzinger, 1994d).
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Clause set Interpretation

P (0) P (0)

P (0) ∨ P (succ(0))

P (succ(0)) ∨ P (succ(succ(0))) P (succ(succ(0)))

. . . . . .

P (succ2n−1(0)) ∨ P (succ2n(0)) P (succ2n(0))

P (succ2n(0)) ∨ P (succ2n+1(0))
. . . . . .

Figure 2.2: Model construction

increasing order:
P (0)
P (0) ∨ P (succ(0))
P (succ(0)) ∨ P (succ(succ(0)))
. . .
P (succ2n−1(0)) ∨ P (succ2n(0))
P (succ2n(0)) ∨ P (succ2n+1(0))
. . .

Figure 2.2 shows how the interpretation would be constructed. The framed
literals represent literals of productive clauses that meet the ‘desired’ condi-
tion (in this simple example, they must be the strictly maximal literals of their
respective clauses). The constructed interpretation is the union of all literals
appearing under the column Interpretation, and it is a model of this set of
clauses. Notice that clause P (0) ∨ P (succ(0)) is not productive, because it is
true in the interpretation {P(0)} constructed so far.

In the case of full first-order clauses with arbitrary transitive relations, pro-
ductive literals will be ordered inequations, i.e., rewrite rules of a bi-rewrite
system. Therefore, the constructed interpretation will be represented by a con-
vergent bi-rewrite system, which finitely encodes the transitive closure of the
binary relation.

2.4.10 Redundancy. The model construction method gives a very simple
way to define the notion of redundancy, introduced before: A ground clause C
is redundant in the saturated set N of clauses if it is non-productive, and thus
does not contribute to the model construction. This means that other clauses
produce the necessary literals, so that clause C is true in the final interpretation.
A non-ground clause is redundant if all its ground instances are. It is easy, now,
to give a sufficient condition for redundancy: A ground clause C is redundant
in N if there exist ground instances D1, . . . , Dn of clauses in N , such that
D1, . . . , Dn |= C, and C ≻ Di, for all i = 1 . . . n. This definition captures
the redundancy, for example, of tautologies, subsumed clauses, and condensed
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clauses, as expected.
A ground inference is redundant when either one of its premises is redundant

or else the conclusion does not contribute to the model construction. A non-
ground inference is redundant if all its ground instances are. As before, we can
give a sufficient condition for redundancy: A ground inference with premises C
and D and conclusion B is redundant (C being the maximal premise), whenever
there exist ground instances D1, . . . , Dn such that D1, . . . , Dn |= B, and C ≻
Di, for all i = 1 . . . n. This redundancy notion generalizes the idea of confluent
critical pairs, i.e., those pairs that have already a rewrite proof, and thus need
not to be added as a new equations to the set of equations.

2.4.11 Example. With this notion it is easy to prove the redundancy of
superposition on variables9: If we have an ordering on terms, such that ground
terms u ≻ v and f(u, u) ≻ g(u), then the superposition inference

u ≈ v f(x, x) ≈ g(x)

f(u, v) ≈ g(u)

is redundant. It is obvious that the only possible ground instance of this infer-
ence, namely

u ≈ v f(u, u) ≈ g(u)

f(u, v) ≈ g(u)

has as maximal premise f(u, u) ≈ g(u). Now we have that

u ≈ v, f(v, v) ≈ g(v) |= f(u, v) ≈ g(u)

and f(u, u) ≈ g(u) ≻ u ≈ v, and f(u, u) ≈ g(u) ≻ f(v, v) ≈ g(v).

2.5 Putting it into Practice

Theorem provers typically consist of two components: On one hand, we require
a deductive inference system that is used to generate new formulae, such as
the chaining inference rules given in figure 2.1. On the other hand, we need
also techniques for simplifying formulae and eliminating redundancies, because
we want a theorem prover to be as efficient as possible, without generating
superfluous clauses or exploring blind allays of the search space.

In the context of the saturation of a set of first-order clauses, the theorem
prover needs to implement powerful redundancy provers, which allow to drasti-
cally cut down the search space of the theorem prover, by maintaining only the
minimum number of necessary clauses, keeping them as small as possible with
respect to the ordering on clauses, and by avoiding those inferences that do not
contribute to the saturation of the set.

These redundancy provers are expected to detect, for example, tautologies,
subsumption within clauses, condensment within clauses, and are also expected

9This example is taken from (Bachmair and Ganzinger, 1994d).
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to simplify clauses as much as possible, for example, by demodulation. Redun-
dancy provers also should detect when a set is already saturated and no more
inferences need to be done. Without the use of powerful redundancy provers the
saturation of a set of clauses is practically impossible. We will see that several
important drawbacks when handling arbitrary transitive relations appear at this
point.

2.5.1 The Saturate theorem prover. All the theoretical results discussed
so far have been put into practice in the Saturate theorem prover, implemented by
Nivela and Nieuwenhuis (1993), and further developed by Ganzinger (Ganzinger
et al., 1995). The system includes other additional constraints introduced by
Nieuwenhuis and Rubio to the superposition inference rule, like the use of basic
strategies and of constrained clauses (Nieuwenhuis and Rubio, 1995; Bachmair
et al., 1995), which prune even more the required search space. Special emphasis
was put on the implementation of powerful redundancy provers; on them lies the
efficiency of the theorem prover. Thus Saturate checks, for example, for tautol-
ogy, subsumption, and condensment. It also simplifies clauses by demodulation
and makes case analysis by constrained rewriting. Redundant inferences are
checked by clausal rewriting. All these redundancy provers are covered by the
notion of redundancy introduced by Bachmair and Ganzinger, and are based on
looking for rewrite proofs.

2.5.2 Drawbacks. We have pointed out several differences that appear when
applying rewrite techniques to other transitive relations in addition to equality.
So, instead of dealing with a single rewrite relation, we have to handle a bi-
rewrite system. There is no rewriting within equivalence classes, making unique
normal forms, on which equational rewrite systems are based, meaningless. Con-
sequently, the order of application of rewrite rules is now significant for finding a
rewrite proof. We also pointed out in 2.3.2 that for the completion of bi-rewrite
systems we need to generate variable instance pairs by computing critical pairs
between instances of rules.

Although Levy and Agust́ı, and Bachmair and Ganzinger proved the com-
pleteness of their respective inference systems, and though Ganzinger put them
into practice extending the Saturate theorem prover to arbitrary transitive rela-
tions, the differences with respect to the equational case appear to cause many
problems for an efficient application of these rewrite techniques, as we will see
in the following paragraphs.

2.5.3 Redundancy provers and rewrite proofs. Though the model con-
struction method provides a powerful abstract notion of redundancy —which is
necessary for the implementation of efficient theorem provers— without a cor-
responding efficient decision procedure yielding bi-rewrite proof for inequations,
we will hardly be able to have efficient redundancy provers.

The notion of redundancy derives from the model construction method, and
is also applicable to clauses and inferences with arbitrary transitive relations.
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Most existing techniques for redundancy proving in the equational case are based
on rewrite proofs, but recall that, in order to find bi-rewrite proofs based on a
bi-rewrite system, we need to search among all possible paths that can be built
starting from each term. This is an important drawback for developing efficient
redundancy provers in these kind of theories, and hence for efficient theorem
proving.

2.5.4 Variable chaining. Brand (1975) made an important refinement to
the paramodulation inference by proving that no paramodulation through vari-
able positions is required for completeness. We have seen, in 2.4.10 and 2.4.11,
that this is captured in the redundancy notion based on the model construction,
since inferences through variable position are redundant. Unfortunately, this is
false with chaining, since chaining through variables is necessary for complete-
ness. This is an important drawback, because unification with variables always
succeeds, and therefore the inference is very prolific. So, in order to make the
theorem proving derivation efficient, we have to avoid as much variable chain-
ings as possible. Fortunately, the ordering restrictions of ordered chaining evade
many of them: The variable x must be a maximal term in the premise, and
therefore x cannot occur in a negative literal and also must be unshielded in the
clause. We say that a variable is unshielded if it only occurs as an argument of
the transitive relation, but not as an argument of any other predicate or func-
tion symbol. In addition, when the variable x is linear, that is, it only occurs
once in the premise, the inference is also redundant, because in these cases the
conclusion is subsumed by one of the premises. For further details, we refer to
the work of Bachmair and Ganzinger (1994c).

Another way to restrict the prolific variable chaining is by studying special
transitive relations, for which these kind of chainings are redundant. In dense
total orderings without endpoints, for example, Bledsoe and Hines (1980) devel-
oped a technique to eliminate variables from formulae. Bachmair and Ganzinger
(1994a) showed that the variable elimination technique in these theories is a
simplification rule captured by the notion of redundancy, in the sense explained
above. So, after applying variable elimination to a clause, it becomes redundant,
and can be eliminated. In this way variable chaining through variables can be
completely avoided.

2.5.5 Chaining below variables. A quite problematic case, in the sense of
practicability, is when we handle functions that are monotonic or antimonotonic
with respect to the transitive relation, but that are not symmetric: This is the
case if for some function f

a < b =⇒ f(a) < f(b) or a < b =⇒ f(a) > f(b) .

In these cases variable subterm chaining is necessary, which leads to many prob-
lems if completeness results are desired.

In 2.3.2, we pointed out that computing the critical pairs between rules of
each rewrite relation, as in the Knuth-Bendix completion, was not sufficient in
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order to guarantee the bi-rewrite system to be Church-Rosser. Levy and Agust́ı
proved that extended critical pairs need to be computed (Levy and Agust́ı, 1996).
The definition of an extended critical pair is slightly different and more restrictive
as the one of a variable instance pair, given in definition 2.3.9:

2.5.6 Definition. Let B = 〈R⊆, R⊇〉 be a bi-rewrite system, and let l −→
⊆
r

and s −→
⊇

t be two rules of R⊆ and of R⊇, respectively (or vice versa), such

that x is a variable at position p that occurs more than once in s, and v is an
arbitrary term with l as subterm at position q, and without any occurrence of
x. Furthermore, l 6

∗
−→
⊇
r. If σ is such that σ(x) = v[l]q and σ(y) = y, if y 6= x,

then 〈σ(s[v[r]q ]p), σ(t)〉 is called an extended critical pair.

Levy and Agust́ı extended the notion Church-Rosser known of equational
rewrite systems to bi-rewrite systems in order to define a completion procedure
for bi-rewrite systems based on theories of reflexive and monotonic transitive
relations (inclusions). Notice that if l

∗
−→
⊇

r, then the extended critical pair

converges, as happens when the transitive relation is also symmetric (see 2.3.14).

2.5.7 Example. For example with rewrite rules:

a −→
⊇

b (2.1)

f(x, x) −→
⊆

x (2.2)

where x occurs twice in f(x, x). Take, for example, σ to substitute x with
g(a); then 〈f(g(b), g(a)), g(a)〉 is an extended critical pair between rule (2.1)
and (2.2).

2.5.8 Remark. Notice that the term v in definition 2.5.6 can be any term
built with function symbols of the signature, whenever it has a as subterm.
Therefore, there are infinite many extended critical pairs between rules (2.1)
and (2.2), and hence the completion process needs to add infinite many new
rewrite rules to the bi-rewrite system. They can be represented by the following
rule schema

f(C[b], C[a]) −→
⊆
C[a] ,

where C[ ] can be seen as an arbitrary context. The generation of extended
critical pairs can then be seen as the conclusion of an inference that chains
below variables:

b ⊆ a f(x, x) ⊆ x

f(C[b], C[a]) ⊆ C[a]

Note that a is unified with some term below variable x, and therefore context
C[ ] may be arbitrary.
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2.5.9 Towards a completion procedure. Computation of extended crit-
ical pairs can be avoided by using only left-linear rewrite system, i.e., rewrite
system where all left-hand sides of rules have only single occurrences of variables;
but this is too strong a restriction. Though it is impossible, in practice, to add
infinite many new rewrite rules to a rewrite systems, Levy and Agust́ı (1996)
attempted to build a completion procedure based on rule schemas, which en-
code the infinite number of new rewrite rules. They were able to give canonical
bi-rewrite systems for the inclusion theory of the union, and of non-distributive
and distributive lattices. This demonstrates the power of bi-rewriting as the-
orem proving technique, since Freese, Jez̆ek, and Nation proved that no finite
and convergent associative-commutative term rewriting system exists for decid-
ing the word problem in the theory of free lattices (Freese et al., 1993). Based
on the idea of handling extended critical pairs with rule schemas, Levy proposed
in (Levy, 1993) to attack this problem by means of using second-order bi-rewrite
systems in order to handle the contexts mentioned above as second-order vari-
ables. In this case, the inference requires the unification of terms with context
variables, i.e., of linear second-order terms. Levy proposed a semi-decision pro-
cedure for context unification, and together with Villaret, he conjectures that
context unification is decidable (Levy and Villaret, 1999).

2.6 Recent Advances

We have given an overview of the most important achievements accomplished
by the theorem proving community in generalizing the term rewriting technique
from equational reasoning to inequational reasoning. But these techniques still
stay with binary relations that are transitive. Recent work in this direction
includes also Inverardi’s rewriting systems for preorder theories (Inverardi, 1995).
Struth (1997) specifically investigated the use of non-symmetric term rewriting
for solving the word problem for free lattices, giving a formal completeness proof
of the decision algorithm originally put forth by Levy (1995).

Probably the most general approach was done by Bachmair and Ganzinger,
who extended their ordered chaining inference mechanism to reason in first-order
theories with multiple transitive relations (Bachmair and Ganzinger, 1998); but
their calculus avoids general monotonicity axioms in order to evade prolific vari-
able subterm chaining inferences. Another quite general approach is Kriaučiukas
and Walicki’s application of term rewriting techniques for non-deterministic
specifications with set relations (Kriaučiukas and Walicki, 1995; Kriaučiukas
and Walicki, 1996), since they cope with three binary relations, one of them
non-transitive.

All this research, that we have surveyed here with more or less detail, served
as starting point for us to attempt to further generalize the term rewriting tech-
nique in order to deal with multiple completely arbitrary binary relations at
once, and including very general notions of monotonicity and antimonotonic-
ity. In the next part, we lay down the framework in which we develop these
techniques.
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Chapter 3

A Logic of Special Relations

We want to identify the logic that captures the role played by special relations
within algebraic specifications. But we are going to tailor this logic having in
mind that we are actually interested in a proof calculus anchored on a general
notion of term rewriting along binary relations, which we are going to develop in
detail in chapter 4. Therefore, many design decisions that we take in proposing
this logic of special relations will be fully understood once we have discussed our
generalization of the term rewriting technique. But, for the moment, we will at
least motivate some of these decisions by means of an example.

3.1 Specifying with Special Relations

3.1.1 Equational type logic. Take, for instance, specifications based on
equational type logic (Manca et al., 1990). Recall that equational type logic
extends many-sorted equational logic by treating sorts semantically. Its axioms
are Horn clauses involving equations t ≈ t′ as well as type assignments t : t′.
Therefore, its proof calculus includes, in addition to the inference rules for Horn
logic (tautology, monotonicity, substitution, and modus ponens), also inference
rules capturing the particular properties of equality and type assignment, in
order to reason with them. Thus, we need rules coping with the reflexivity,
symmetry, transitivity, and replacement properties of equality, as well as rules
coping with typing equals and equating types (see figure 3.1).

But observe that the transitivity, typing equals, and equating types

inference rules of figure 3.1 are actually a combination of the following compo-

sition and partial order rules:

composition:
t α t′ t′ β t′′

t α;β t′′

partial order: t α t′

t β t′
whenever α ⊑ β

They capture together the following properties of special relations ≈ and : ,

35
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1. reflexivity: For each term t

t ≈ t

2. symmetry:
t ≈ t′

t′ ≈ t

3. transitivity:
t ≈ t′ t′ ≈ t′′

t ≈ t′′

4. replacement: For each n-ary function symbol f

t1 ≈ t′1 · · · tn ≈ t
′
n

f(t1, . . . , tn) ≈ f(t′1, . . . , t
′
n)

5. typing equals:
t ≈ t′ t : u

t′ : u

6. equating types:
u ≈ u′ t : u

t : u′

Figure 3.1: Inference rules coping with equations and type assignment

expressed as relation-algebra expressions:

≈ ; ≈ ⊑ ≈

: ; ≈ ⊑ :

≈ ; : ⊑ :

Recall that the symbol ; denotes composition of relations, and ⊑ a partial order
over relations.

Furthermore, the reflexivity and symmetry inference rules of figure 3.1
are also a combination of the following identity and converse rules, each of
them plus partial order as before:

identity:
t 1 ′ t

for each term t

converse: t α t′

t′ ᾰ t

They capture then the following properties of special relation ≈:

1 ′ ⊑ ≈

≈̆ ⊑ ≈
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where the symbol 1 ′ denotes the identity relation, and ˘ denotes reversion of
relations.

3.1.2 A logic of special relations. In general, our logic of special rela-
tions is going to deal with positive Horn formulae with predicates restricted
to binary relations. Properties of these relations are determined by a suitable
relation-algebra structure, which is taken into account by the proof calculus.
Consequently, its inference rules cope with identity relations, composition of
relations, and reversion of relations. Later, in chapter 4, we will see that re-
version is essential when relations are non-symmetric, since when rewriting is
governed by the purpose of doing it in the direction that syntactically simplifies
terms, this can be in either way of the binary relation. The possibility of do-
ing a replacement within the structure of a term is built into the entailment of
our logic by means of monotonicity properties for specific argument positions of
function symbols. Relationships existing between special relations are captured
by a partial order in this relation-algebra structure.

3.1.3 Relation-algebra expressions. We use relation algebra to express
properties of special relations because of its expressiveness. This will become
clearer when introducing the semantics of the logic in section 3.3. But for com-
putational purposes —since we are interested in term rewriting— we do not take
advantage of the whole expressive power of relation algebra; we already men-
tioned that we basically need composition, identity, and reversion. Of course, by
extending to wider fragments of relation algebra we would be able to capture,
within our framework, more expressive specification paradigms.

3.1.4 Overview. The following sections formally introduce the logic of spe-
cial relations. We first define its syntax giving special attention to the notion
of polarity, which will play a central role when term rewriting techniques are
studied in chapter 4. Next, we study its semantics, first, giving an intuitive set-
valued interpretation of the syntax, but then moving on towards a more abstract
presentation within the realm of category theory, to be able to capture disparate
specification paradigms. For the sake of simplicity, we only treat the uncondi-
tional fragment of the logic, but we end this chapter with a brief discussion on
how the framework extends to conditional sentences.

3.2 Syntax

3.2.1 Signatures. Signatures of the logic of special relations are tuples Ω =
(S∗,Σ), where

• S∗ = (S∗, ; , 1 ′, ,̆⊑)1 forms a partially ordered free monoid with an anti-
involution generated over a set S of special binary relation symbols, i.e.,

1We are following the notation of relation algebra given in (Maddux, 1991).
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for all α, β, γ ∈ S∗,

α; (β; γ) = (α;β); γ

1 ′;α = α

˘̆α = α

1̆ ′ = 1 ′

(α;β)̆ = β̆; ᾰ

α ⊑ β =⇒ ᾰ ⊑ β̆

α ⊑ β =⇒ γ;α ⊑ γ;β

• Σ is a ranked alphabet of function symbols, which may be monotonic or
antimonotonic in their argument positions with respect to a pair of special
relation symbols of S.

3.2.2 Remark. Notice the difference between sets S, S∗, and S∗. S is a
finite set of special relations, the generators of the whole monoid structure. The
domain of this structure is S∗, i.e., all the relations we obtain by composing and
reversing the special relations in S, including an identity relation 1 ′. Finally, S∗

denotes the monoid structure itself, with its neutral element, its multiplication
operator, its involution operator, and its partial order.

3.2.3 Polarity. We are going to treat monotonicity and antimonotonicity as
inherent features of the signature’s function symbols, in the same sense as their
arities. For this purpose we use the notion of polarity, inspired by Manna and
Waldinger’s work on special-relation rules (Manna and Waldinger, 1986; Manna
and Waldinger, 1992). For example, let |x| denote the cardinality function ap-
plied to the set x. We have that for all x, y,

x ⊆ y =⇒ |x| ≤ |y|,

i.e., the cardinality function is monotonic in its unique argument position. We
will say that its argument position has positive polarity (or is positive) with
respect to (⊆,≤). In another example, let x \ y denote set difference between
sets x and y. We have that for all x, y, z,

x ⊆ y =⇒ z \ y ⊆ z \ x,

i.e., the set difference function is antimonotonic in its second argument. We will
say that its second argument position has negative polarity (or is negative) with
respect to (⊆,⊆).

When we say that an argument position is positive (or negative) we do not
exclude the possibility that it has both polarities. In general, when an argument
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position has some polarity (either positive, negative, or both) we will just say
that it is polarized.

Without loss of generality, in the rest of this paper we will mainly refer to
positive polarities of argument position, since if a position has negative polarity
with respect to a pair of relations, we express this polarity as a positive one in
the following way: For any argument position i of any function symbol f in Σ,

• the i-th argument position of f is negative with respect to (α, β) if and
only if it is positive with respect to (ᾰ, β),

• the i-th argument position of f is negative with respect to (α, β) if and

only if it is positive with respect to (α, β̆).

We also extend polarities with respect to composite relations and with respect
to the identity relation in the following way: For any argument position i of any
function symbol f in Σ,

• if the i-th argument position of f is positive with respect to both, (α, β)
and (α′, β′), then it is also positive with respect to (α;α′ , β;β′),

• the i-th argument position of f is positive with respect to (1 ′, 1 ′).

There exists an obvious relationship between polarities of argument positions
and the partial order relation ⊑ on relations. We need therefore to guarantee
that the polarities given in a signature indeed satisfy this relationship. Thus we
define a notion of correct signature:

3.2.4 Definition. A signature (S∗,Σ) is said to be correct if for any argu-
ment position i of any function symbol f in Σ, and any relations α, β, and γ in
S we have that

• if γ ⊑ β and the i-th argument position of f is positive with respect to
(α, γ), then it is also positive with respect to (α, β),

• if α ⊑ γ and the i-th argument position of f is positive with respect to
(γ, β), then it is also positive with respect to (α, β).

In the rest of this thesis we assume that all signatures are correct.

3.2.5 Sentences. Let Ω = (S∗,Σ) be a signature. As usual, TΣ(X ) denotes
the set of first-order Σ-terms over a denumerable set X of variables. We write
t(x1, . . . , xm) for a term in TΣ({x1, . . . , xm}), whenever we need to make its vari-
ables explicit. Sometimes we will abbreviate sequences of the form x1, . . . , xm

with x̄m, and we will drop the superscript m when it is clear from context.
Ω-sentences are expressions s α t, where s, t ∈ TΣ(X ) and α ∈ S∗. A sub-
stitution σ = 〈x1 7→ t1, . . . , xn 7→ tn〉 is a map from a finite subset of vari-
ables {x1, . . . , xn} ⊆ X to terms, and can be uniquely extended to a map from
terms to terms and from sentences to sentences. A theory presentation is a pair
T = (Ω,Γ), where Ω is a signature and Γ is a set of Ω-sentences, also called
axioms.
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1. axiom: For each t α t′ ∈ Γ, and substitution σ,

σ(t) α σ(t′)

2. composition:
t α t′ t′ β t′′

t α;β t′′

3. identity: For each t ∈ TΣ(X ),

t 1 ′ t

4. converse:
t α t′

t′ ᾰ t

5. partial order: Whenever α ⊑ β,

t α t′

t β t′

6. monotonicity: For each f ∈ Σn, positive position i = 1 . . . n with respect
to (α, β), and uj ∈ TΣ(X ), j = 1 . . . n and j 6= i,

t α t′

f(u1, . . . , ui−1, t, ui+1, . . . , un) β f(u1, . . . , ui−1, t′, ui+1, . . . , un)

Figure 3.2: Inference rules of the logic of special relations

3.2.6 Remark. As already mentioned, in order to ease the following presen-
tation, we will only consider atomic sentences, i.e., when sentences are unary
positive Horn clauses. In section 3.4 we hint at how the logic can be generalized
to deal with conditional sentences.

3.2.7 Entailment. Let T = (Ω,Γ) be a theory presentation, we define the
entailment Γ ⊢ ϕ of an Ω-sentence ϕ from a set of Ω-sentences Γ, by means of
the inference rules given in figure 3.2.

3.3 Semantics

We first start giving the intuitive set-valued semantics, and then move on towards
a more abstract presentation within the realm of category theory, in order to
embrace a large variety of models of specification, ranging from type algebras
(Manca et al., 1990) to rewriting logic’s ‘R-systems’ (Meseguer, 1992).
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3.3.1 Definition. Given a signature (S∗,Σ), a (set-valued) interpretation is
a Σ-algebra A, together with an assignment to each α ∈ S∗ of a set [[α]] ⊆ A×A,
such that for all α, β ∈ S∗, a, b ∈ A:

1. (a, b) ∈ [[α;β]] if and only if there exists c ∈ A such that (a, c) ∈ [[α]] and
(c, b) ∈ [[β]]

2. (a, a) ∈ [[1 ′]]

3. (a, b) ∈ [[ᾰ]] if and only if (b, a) ∈ [[α]]

4. [[α]] ⊆ [[β]] if and only if α ⊑ β

3.3.2 Satisfaction. We say that an interpretation satisfies a sentence t α t′

if and only if, for each assignment ρ : X → A, we have ([[t]]ρ, [[t
′]]ρ) ∈ [[α]], where

[[ ]]ρ is the unique Σ-homomorphism extending ρ.

3.3.3 Remark. Notice that we can make the logic deal with many-sorted sig-
natures (M,S∗,Σ), where M is a set of sort symbols, by defining interpretations
as many-sorted (M,Σ)-algebras, and having the assignment to each heteroge-
neous relation α : s1 ↔ s2 ∈ S∗ —where s1 and s2 denote sorts— of a set
[[α]] ⊆ [[s1]]× [[s2]].

3.3.4 Categorical approach. In order to capture a large variety of models
of specification, we are going to endow the logic with a more abstract model
theory in the realm of category theory.

By looking at the previous interpretations as structures valued in the cate-
gory Rel of sets and relations, we may express models of a many-sorted theory
presentation ((M,S∗,Σ),Γ) without referring to set elements. We make abuse
of notation by using the symbol of a function f : A→ B also as the symbol for
the binary relation f ⊆ A × B it denotes , such that (a, b) ∈ f if and only if
b = f(a), i.e., f = {(x, f(x)) | x ∈ A}. This abuse can be extended by induction
over the structure of a term in the obvious way.

An interpretation is given by an assignment to each sort symbol s of a Rel-
object [[s]], together with an assignment to each function symbol f : s1 · · · sn →
s ∈ Σ of a Rel-arrow

[[f ]] : [[s1]]× · · · × [[sn]]→ [[s]] ,

which obviously has to be a function, and of each relation symbol α : s1 ↔ s2 ∈
S∗ of a Rel-arrow

[[α]] : [[s1]]→ [[s2]] ,

such that

1. [[α;β]] = [[β]] · [[α]] (composition of arrows)

2. [[1 ′
s]] = id[[s]] (identity arrows)
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3. [[ᾰ]] = [[α]]◦ (conversion of arrows)

4. [[α]] ⊆ [[β]] if and only if α ⊑ β

3.3.5 Satisfaction of sentences. What does the satisfaction of a sentence
of the form

t(x1, . . . , xm) α t′(x1, . . . , xm)

actually mean? We will dispose of arrows as pictured in the following diagram:

[[s]]

[[α]]

��

∏m
j=1[[sj]]

[[t(x̄)]]

77nnnnnnnnnnnnnn

[[t′(x̄)]]
''PPPPPPPPPPPPP

[[s′]]

[[ᾰ]]

OO

We have seen above that t(x̄) α t′(x̄) is true if and only if, for each assignment
ρ : X → A, we have ([[t(x̄)]]ρ, [[t

′(x̄)]]ρ) ∈ [[α]]. That is, ∀u ∈
∏m

j=1[[sj ]]

([[t]](u), [[t′]](u)) ∈ [[α]]

≡

(u, [[t′]](u)) ∈ {(u, v) | ([[t]](u), v) ∈ [[α]]}

≡

(u, [[t′]](u)) ∈ {(u, v) | ∃w (u,w) ∈ [[t]] ∧ (w, v) ∈ [[α]]}

and, by definition of composition, this is equivalent to

∀(u, v) ∈ [[t′]] (u, v) ∈ [[α]] · [[t]] .

Analogously, ∀u ∈
∏m

j=1[[sj ]]

([[t]](u), [[t′]](u)) ∈ [[α]]

≡

([[t]](u), u) ∈ {(w, u) | (w, [[t′]](u)) ∈ [[α]]}

≡

(u, [[t]](u)) ∈ {(u,w) | ([[t′]](u), w) ∈ [[ᾰ]]}

≡

(u, [[t]](u)) ∈ {(u,w) | ∃v (u, v) ∈ [[t′]] ∧ (v, w) ∈ [[ᾰ]]}

and, by definition of composition, this is equivalent to

∀(u,w) ∈ [[t]] (u,w) ∈ [[ᾰ]] · [[t′]] .

Consequently,

t(x̄) α t′(x̄) is satisfied ≡ [[t′(x̄)]] ⊆ [[α]] · [[t(x̄)]] ≡ [[t(x̄)]] ⊆ [[ᾰ]] · [[t′(x̄)]] .

Since both inclusions are equivalent, it suffices to state only one of them.
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3.3.6 Monotonicity. We have not seen yet how models capture monotoni-
city and antimonotonicity properties of function symbols. Given a function
symbol f in Σ, we need that, when its i-th argument position is positive with
respect to a pair of relations (α, β), then the following implication should hold,
for terms t and t′:

([[t]], [[t′]]) ∈ [[α]] ⇒ ([[f ]](. . . ,
i)

[[t]], . . . ), [[f ]](. . . ,
i)

[[t′]], . . . )) ∈ [[β]] (3.1)

Let us look first at the case of a monotone one-argument function f ∈ Σ1. This
means, that given two terms t, t′ ∈ TΣ({x1, . . . , xm})

[[t′(x̄)]] ⊆ [[α]] · [[t(x̄)]] ⇒ [[f ]] · [[t′(x̄)]] ⊆ [[β]] · [[f ]] · [[t(x̄)]] .

This is true whenever

[[f ]] · [[α]] ⊆ [[β]] · [[f ]] . (3.2)

The previous statement expresses actually how a model captures monotonicity
of f . This is pictured in the following semi-commutative diagram:

[[s]]

[[α]]

��

[[f ]] // [[s]]

[[β]]

��

∏m
j=1[[sj ]] ⊆

[[t(x̄)]]

77nnnnnnnnnnnnn

[[t′(x̄)]]
''PPPPPPPPPPPPP

[[s]]

⊆

[[f ]] // [[s]]

Monotonicity in the i-th argument of a many-argument function f is se-
mantically captured in a way analogous to the one-argument case, stated in
inclusion (3.2). We proceed by currifying f in all its arguments, but i-th one,
obtaining curry i(f), and proceed as with a monotone one-argument function.
We thus can express monotonicity category-theoretically by saying that

apply · (curryi([[f ]])× [[α]]) ⊆ [[β]] · [[f ]] , (3.3)

where curry i([[f ]]) :
∏

j 6=i[[sj ]]→ [[s]][[si]] is the unique arrow such that

apply · (curry i([[f ]])× id[[si]]) = [[f ]] .

This is pictured in the following semi-commutative diagram:

∏m
j=1[[sj ]]

[[f ]] //

curryi([[f ]])×[[α]]

��

[[s]]

[[β]]

��
[[s]][[si]] × [[si]]

⊆

apply
// [[s]]
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To prove that inclusion (3.3) indeed captures monotonicity, we reason

[[t′]] ⊆ [[α]] · [[t]]

⇒ {[[t1]], . . . , [[ti−1]], [[ti+1]], . . . , [[tn]] are total functions}

〈[[t1]], . . . ,
i)

[[t′]], . . . , [[tn]]〉 ⊆ 〈[[t1]], . . . ,
i)

[[α]] · [[t]], . . . , [[tn]]〉

⇒ {monotonicity of composition}

[[f ]] · 〈[[t1]], . . . ,
i)

[[t′]], . . . , [[tn]]〉 ⊆ [[f ]] · 〈[[t1]], . . . ,
i)

[[α]] · [[t]], . . . , [[tn]]〉.

Furthermore, since

[[f ]] · 〈[[t1]], . . . ,
i)

[[α]] · [[t]], . . . , [[tn]]〉

= {exponentials}

apply · (curry i([[f ]])× id[[si]]) · 〈[[t1]], . . . ,
i)

[[α]] · [[t]], . . . , [[tn]]〉

= {products2}

apply · 〈curry i([[f ]]) · 〈[[t1]], . . . , [[ti−1]], [[ti+1]], . . . , [[tn]]〉, [[α]] · [[t]]〉

= {products2}

apply · (curry i([[f ]])× [[α]]) · 〈[[t1]], . . . ,
i)

[[t]], . . . , [[tn]]〉

⊆ {inclusion (3.3)}

[[β]] · [[f ]] · 〈[[t1]], . . . ,
i)

[[t]], . . . , [[tn]]〉,

it follows that

[[t′]] ⊆ [[α]] · [[t]]⇒ [[f ]] · 〈[[t1]], . . . ,
i)

[[t′]], . . . , [[tn]]〉 ⊆ [[β]] · [[f ]] · 〈[[t1]], . . . ,
i)

[[t]], . . . , [[tn]]〉

which is the category-theoretical equivalent of implication (3.1).
We did the previous discussion for set-valued interpretations —structures

valued in the particular category Rel of sets and relations. The models, though,
can be generalized to valuations in categories in general, provided they have the
additional structure we need. For this reason, we use notions borrowed from
the category theory of relations, allegories, thoroughly studied in (Freyd and
Scedrov, 1990).

3.3.7 Allegories. Allegories are to binary relations between sets as cate-
gories are to functions between sets. They are, therefore, the generalization of
category Rel to any kind of object. We already mentioned in the introduction
to this chapter that, for computational purposes, we chose not to use the whole
expressive power provided by relation algebra. Consequently, we will not use
all the expressiveness provided by the theory of allegories. Therefore, we define
quasi-allegories, a slightly simplified definition of allegories than the original one

2We use the following property of products: (f × g) · 〈p, q〉 = 〈f · p, g · q〉
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given by Freyd and Scedrov (1990), but whose main intuitions remain essen-
tially the the same. See also (Bird and de Moor, 1997) for a short introduction
to allegories.

3.3.8 Definition. A quasi-allegory is a category together with

1. a unary operation on arrows, assigning to each arrow α : S → T its
converse arrow α◦ : T → S such that

• (α◦)◦ = α

• for each object S, id◦S = idS

• given arrows α : S → T and β : T → U , (β · α)◦ = α◦ · β◦

2. a partial order ≤ over arrows such that, whenever for two parallel arrows
α, β : S → T we have that α ≤ β, then

• α◦ ≤ β◦

• given an arrow γ : T → U , γ · α ≤ γ · β

3.3.9 Definition. We say that an arrow f : S → T in a quasi-allegory

• is entire, if idS ≤ f◦ · f ,

• is simple, if f · f◦ ≤ idT ,

• is a function, when it is entire and simple.

For a quasi-allegory A, we denote its subcategory of functions by Fun(A).
For example, Fun(Rel) is the category Set.

3.3.10 Models. We now dispose of all the ingredients to define the models
in the logic of special relations within the abstract theory of allegories:

3.3.11 Definition. Given a theory presentation T = (Ω,Γ), with many-
sorted signature Ω = (M,S∗,Σ), a model of T consists of a quasi-allegory A, for
which its subcategory of functions Fun(A) is Cartesian closed, together with an
assignment

1. to each sort s ∈M of an object [[s]]

2. to each f : s1 · · · sn → s ∈ Σ of a function [[f ]] : [[s1]]× · · · × [[sn]]→ [[s]]

3. to each α : s1 ↔ s2 ∈ S∗ of an arrow [[α]] : [[s1]]→ [[s2]]

such that

1. [[α;β]] = [[β]] · [[α]]

2. [[1 ′
s]] = id[[s]]
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3. [[ᾰ]] = [[α]]◦

4. [[α]] ≤ [[β]] whenever α ⊑ β

and, if the i-th position of f is positive with respect to (α, β), then

apply · (curry i([[f ]])× [[α]]) ≤ [[β]] · [[f ]]

where curry i([[f ]]) :
∏

j 6=i[[sj ]]→ [[s]][[si]] is the unique arrow such that

apply · (curry i([[f ]])× id[[si]]) = [[f ]] ;

and, for each sentence t α t′ in Γ, we have that

[[t′]] ≤ [[α]] · [[t]]3 .

We write Γ |= t α t′.

It suffices to require only one inequation, [[t′]] ≤ [[α]] · [[t]], because the other one,
[[t]] ≤ [[α]]◦ · [[t′]], is equivalent:

3.3.12 Proposition. Given two functions f : A → B and g : A → C and
an arrow α : B → C, then g ≤ α · f if and only if f ≤ α◦ · g.

Proof:
g ≤ α · f ⇒ g◦ · g ≤ g◦ · α · f

⇒ idA ≤ g◦ · α · f
⇒ f◦ ≤ g◦ · α · f · f◦

⇒ f◦ ≤ g◦ · α
⇒ f ≤ α◦ · g

f ≤ α◦ · g ⇒ f◦ · f ≤ f◦ · α◦ · g
⇒ idA ≤ f

◦ · α◦ · g
⇒ g◦ ≤ f◦ · α◦ · g · g◦

⇒ g◦ ≤ f◦ · α◦

⇒ g ≤ α · f

2

3.3.13 Soundness and completeness. We now proof that the inference
system of figure 3.2 is sound with respect to the semantics we have given to
the syntax of our logic. Unfortunately, we do not have yet a proof that the
logic is complete. We suspect that probably we have endowed the logic with
too expressive a semantics, in comparison to its restricted syntactic language,
and that we may have to polish our definition of quasi-allegory in order to get

3The value of a term in a model is defined inductively over the structure of the term by
following the usual conventions of categorical logic, namely as a morphism from the product
object determined by the sorts of the variables, to the object determined the value of the term.
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also a complete logic. We believe that completeness will be achieved, once we
have established the relationship of our logic of special relations with Bruno,
Gadducci, and Montanari’s closely related tile logic (Gaducci and Montanari,
1996; Bruni et al., 1998) (see also the discussion in 9.1.4).

3.3.14 Theorem. The logic is sound: Given a theory presentation T =
(Ω,Γ) and an Ω-sentence t α t′, then if Γ ⊢ t α t′, every model A of T sat-
isfies t α t′, i.e., Γ |= t α t′.

Proof: We proof it, by showing that each inference rule of figure 3.2 is sound:

1. axiom: By monotonicity of composition,

[[t′]] ≤ [[α]] · [[t]] implies [[t′]] · a ≤ [[α]] · [[t]] · a ,

for every arrow a with codomain the domain of [[t]] and [[t′]].

2. composition: By monotonicity of composition and transitivity of ≤,

[[t′]] ≤ [[α]] · [[t]] and [[t′′]] ≤ [[β]] · [[t′]] imply [[t′′]] ≤ [[β]] · [[α]] · [[t]]

3. identity: For each t ∈ TΣ(X ),

[[t]] ≤ id · [[t]]

4. converse: By proposition 3.3.12,

[[t′]] ≤ [[α]] · [[t]] implies [[t]] ≤ [[α]]◦ · [[t′]]

5. partial order: By monotonicity of composition and transitivity of ≤,

[[t′]] ≤ [[α]] · [[t]] and [[α]] ≤ [[β]] imply [[t′]] ≤ [[β]] · [[t]]

6. monotonicity: Reasoning as in 3.3.6,

apply · (curryi([[f ]])× [[α]]) ≤ [[β]] · [[f ]] and [[t′]] ≤ [[α]] · [[t]] imply

[[f ]] · 〈[[t1]], . . . , [[t′]], . . . , [[tn]]〉 ≤ [[β]] · [[f ]] · 〈[[t1]], . . . , [[t]], . . . , [[tn]]〉4

2

3.4 Conditional Sentences

In the introduction to this chapter, we mentioned that we want our logic of
special relations, in general, to deal with positive Horn formulae, but that, in
this thesis, we will only consider the unconditional fragment of the logic, i.e.,
when sentences are positive atoms. Here, we briefly sketch how the logic is to
be extended to cope with conditional sentences.

4〈. . . 〉 denotes the mediating arrow.
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3.4.1 Replacement. If we want to deal with conditional sentences of the
form

t α t′ if u1 β1 v1 ∧ · · · ∧ un βn vn ,

where t, t′, ui, and vi are terms in TΣ(X ), and α and βi are relations in S∗.
we will need to reformulate the axiom deduction rule of our entailment system
given in figure 3.2 to the replacement deduction rule as follows:

replacement:

For each sentence (t α t′ if u1 β1 v1 ∧ · · · ∧ un βn vn) ∈ Γ, and for each
substitution σ : X 7→ TΣ(X )

σ(u1) β1 σ(v1) · · ·σ(un) βn σ(vn)

σ(t) α σ(t′)

3.4.2 Includer. With respect to the semantics, and given a conditional sen-
tence of the form

t(x̄) α t′(x̄) if u1(x̄) β1 v1(x̄) ∧ · · · ∧ un(x̄) βn vn(x̄) ,

we will need the models to satisfy t(x̄) α t′(x̄) whenever all ui(x̄) βi vi(x̄) are
satisfied. In other words, for all functions f with codomain the domain of [[ui(x̄)]]
and [[vi(x̄)]], such that, whenever, for all i,

[[vi(x̄)]] · f ≤ [[β]] · [[ui(x̄)]]) · f ,

then we have also that

[[t′(x̄)]] · f ≤ [[α]] · [[t(x̄)]]) · f .

This is expressed categorically using a variant of the notion of equalizer that we
call includer.

3.4.3 Definition. Given arrows α, β : S → T of a quasi-allegory, an includer
of α and β is an object I together with a function

ι : I → S

such that

1. α · ι ≤ β · ι

2. given an arrow κ : K → S such that α · κ ≤ β · κ there exists a unique
arrow λ : K → I such that κ = ι · λ.

3.4.4 Example. Let α and β be two relations in Rel with common domain
S and codomain T . Let I be the subset of S constructed as follows:

I = {x ∈ S | ∀y ∈ T (x, y) ∈ α⇒ (x, y) ∈ β}

Then the inclusion function i : I → S, which maps each element x ∈ I to the
same x considered as an element of S, is an includer of α and β.
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3.4.5 Satisfaction. The partial order ≤ over arrows of a quasi-allegory can
also be seen as a collection of 2-cells of a 2-category. Thus, an includer is
conceptually close to a subequalizer, originally introduced in (Lambek, 1979),
generalizing equalizers of two functors requiring a natural transformation be-
tween functors instead of an identity of functors. We will use includers in the
same sense as subequalizers are used in the semantics of conditional rewriting
logic (Meseguer, 1992), namely as includers of families of pairs of arrows, such
that a quasi-allegory A will be a model of a given theory presentation involving
conditional sentences, if for each sentence

t(x̄m) α t′(x̄m) if u1(x̄
m) β1 v1(x̄

m) ∧ · · · ∧ un(x̄m) βn vn(x̄m)

in Γ, we have
[[t′(x̄m)]] · ι ≤ [[α]] · [[t(x̄m)]] · ι.

where ι is the includer of the family of arrows ([[v1(x̄
m)]], [[βi]] · [[u1(x̄

m)]])1≤i≤n.

3.5 A Semantic Framework

We have laid down the required framework to explore the assumptions put forth
in chapter 1. The next chapter introduces the general notion of term rewriting
that actually motivated us to define this logic of special relations. The reason
of many of the choices we have taken in developing the logic will become much
clearer once we have worked through its rewriting-based proof calculus; and
we will show the need of the abstract semantics based on quasi-allegories when
demonstrating how, by means of conservative maps of logics, the logic indeed
captures several specification frameworks, such as membership equational logic,
rewriting logic, and specifications with set relations. Therefore, we will need to
postpone the full understanding of the logic presented in this chapter, until we
reach chapter 5, where we will shed light on its role as semantic framework.





Chapter 4

Rewriting Beyond Equality

The development of the general rewriting technique presented in this chapter
originates from our belief that the basic properties of special relations can be
nicely captured by term rewriting. We like to look at term rewriting from the
following perspective:

1. rewriting replaces a term by another by applying an instance of a given
rewrite rule;

2. rewriting profits of the term structure in order to replace only certain
subterms;

3. rewriting is actually the result of a series of successive replacements.

When we rewrite a term, we usually replace equals by equals, but nothing
hinders us to replace smallers by biggers, or supersets by subsets. In principle
we can replace one term by another related by any binary relation. To rewrite
a term we only need to keep track of the binary relation between the source
and the target term. For replacing only part of a term —a subterm— we do
not need to be able to generalize this operation to any subterm. When we
replace equals by equals it has sense to replace any subterm of a term; but if
other binary relations are involved, maybe only certain subterms make sense
to be replaced. If our notion of term rewriting is to proceed like that, we will
need some additional mechanism to control the replacement of subterms. Since
we eventually perform several replacements one after the other, we will need to
know how the source term and the target term are related, once all replacements
have been performed.

In the previous chapter, we have tailored a logic of special relation to be able
to handle with all these aspects, namely

1. arbitrary binary relations, and their reversions, for relating terms,

2. (anti)monotonicity of certain argument positions of function symbols by
means of polarities, and

51
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3. general composition of relations.

In this chapter, we look at theories in this logic of special relations as term
rewriting systems. Therefore, we redefine the notions of rewrite relation and
rewrite proof in order to cover our general approach, and we further explore the
conditions term rewriting systems have to satisfy, in order to provide decision
procedures for theoremhood. This brings us to work through the well-known
notions of termination and confluence, and to see how they translate to our
framework. The difficult terrain is entered when effective completion of non-
confluent systems is desired. Recall the difficulties we already encountered in
surveying the bi-rewriting technique in chapter 2. Indeed, abandoning the re-
quirement of special relations to have nice properties like transitivity, symmetry
and monotonicity makes it very difficult to deal with effective completion... but
not impossible. We therefore analyze the conditions that signatures or theories
have to satisfy, so that completion is tractable, and we find that the concept of
polarity is very useful for this enterprise. Indeed, polarity becomes the key issue
for controlling term rewriting in such general setting.

4.1 Rewriting Along Binary Relations

4.1.1 Polarity of subterm positions. Given a term t, let t|p denote the
subterm occurring at position p. When this occurrence is replaced with term s,
we denote that by t[s]p. The polarity of argument positions of functions can be
easily extended to subterm positions p within a term t as follows:

4.1.2 Definition.

1. Position i in a term f(t1, . . . , tn) ∈ TΣ(X ) is positive with respect to a pair
of relations (α, β), if and only if the i-th argument position of f is positive
with respect to (α, β).

2. For every term u ∈ TΣ(X ), subterm positions p and q, and relations α, β ∈
S∗, p · q in u is positive with respect to (α, β) if and only if there exists a
relation γ ∈ S∗, such that the polarity of q in u|p with respect to (α, γ)
and the polarity of p in u with respect to (γ, β) are both positive.

4.1.3 Remark. Obviously this extension captures all the negative polari-
ties through the relation existing between positive and negative polarities, as
discussed in 3.2.3.

4.1.4 Example. Let (S∗,Σ) be a signature of the logic of special relations,
with S = {⊆,≤} and Σ = {0, a, b, | |, + , \ }1 (three constants, one unary
function symbol, and two binary function symbols), such that the following
polarities hold:

1The symbol is a placeholder for arguments.
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• the first (and unique) argument position of | | is positive with respect to
(⊆,≤)

• the first and second argument positions of + are both positive with
respect to (≤,≤)

• the first argument position of \ is positive with respect to (⊆,⊆)

• the second argument position of \ is negative with respect to (⊆,⊆), and
therefore it is positive with respect to (⊆,⊇), or with respect to (⊇,⊆)2

In this case we have that the subterm position of b in term |a \ b| + 0, namely
1 · 1 · 2 , is positive with respect to (⊇,≤), because

1. the subterm position of b in a\b (i.e., 2 ) is positive with respect to (⊇,⊆),

2. the subterm position of a \ b in |a \ b| (i.e., 1 ) is positive with respect to
(⊆,≤), and

3. the subterm position of |a \ b| in |a \ b|+ 0 (i.e., 1 ) is positive with respect
to (≤,≤).

4.1.5 Rewrite rules. The term rewriting approach to theorem proving in
equational logic is based on using equations of a given theory presentation as
rewrite rules, by imposing a specific directionality. Analogously, we may prove
theorems of a given theory in our logic of special relations by considering its
atomic formulae as rewrite rules, too. We do this, either considering an atomic
formula s α t as a rule from left to right, which we write s −→

α
t, or else from right

to left, which we write s←−
α
t. Since sentences s α t and t ᾰ s are equivalent, we

may also write t←−
ᾰ
s and t −→

ᾰ
s, respectively.

4.1.6 Term rewriting system. If, given a theory presentation ((S∗,Σ),Γ)
we interpret the axioms in Γ as rewrite rules in the sense explained in 4.1.5, then
we may call Γ a term rewriting system, generalizing so the standard notion of
term rewriting system (where rewrite rules are actual equations). Consequently,
we redefine the notion of term rewriting as follows:

4.1.7 Definition. Given a term rewriting system Γ, a rewrite rule l −→
α
r

in Γ, and a term s, we say that s rewrites along γ to t, written s −−→
γ,Γ

t, if

there exist a relation γ in S∗ and a substitution σ, such that σ(l) = s|p for a
subterm position p that is positive with respect to (α, γ), and t = s[σ(r)]p. We
call s −−→

γ,Γ
t also a rewrite step.

2⊇ is the reversion of ⊆, i.e., ⊇≡ ⊆̆.
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4.1.8 Example. Let ((S∗,Σ),Γ) be a theory presentation with (S∗,Σ) the
signature of example 4.1.4 and Γ = {x\y ⊆ x}, such that we interpret the axiom
as a rewrite rule

x \ y −→
⊆
x .

We have that

|a \ b|+ 0 −−→
≤,Γ
|a|+ 0 ,

because x\y matches a\ b, and its subterm position 1 · 1 in |a\ b|+0 is positive
with respect to (⊆,≤).

4.1.9 Notation. In general, we will write s −→
Γ
t, if there exists some relation

γ in S∗, such that s −−→
γ,Γ

t, i.e.,

−→
Γ

=
⋃

γ∈S∗

−−→
γ,Γ

.

4.1.10 Remark. Deviating from its standard definition, we will call −→
Γ

a

rewrite relation. Usually a rewrite relation is defined as a binary relation over
terms that is closed under both, context application (the ‘replacement property’)
and substitutions (the ‘fully invariant property’). Our redefinition of rewrite
relation differs from the standard one in that, according to definition 4.1.7, −→

Γ

satisfies a weaker ‘replacement property’, namely that the relation is closed under
context application only on positively polarized positions with respect to a pair
of relations.

4.1.11 Notation. Given rewrite relation −→
Γ

induced by term rewriting sys-

tem Γ, we write
+
−→
Γ

and
∗
−→
Γ

for its transitive and reflexive-transitive closures, re-

spectively. In particular, we write s
+
−−→
γ,Γ

t if there exist terms s0, . . . , sn ∈ TΣ(X )

and relations α1, . . . , αn ∈ S∗, n > 0, such that

s = s0 −−−→
α1,Γ

s1 −−−→
α2,Γ

s2 −−−→
α3,Γ

· · · −−−→
αn,Γ

sn = t and α1; · · · ;αn ⊑ γ ,

and we write s −−→
γ,Γ

t when n ≥ 0. It is obvious that

+
−→
Γ

=
⋃

γ∈S∗

+
−−→
γ,Γ

∗
−→
Γ

=
⋃

γ∈S∗

∗
−−→
γ,Γ

.
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We write s←−−
γ,Γ
→ t if either s −−→

γ,Γ
t or else s←−−

γ,Γ
t, i.e.,

←−−
γ,Γ
→ = (←−−

γ,Γ
∪ −−→

γ,Γ
) .

And, as before,

←−
Γ
→ =

⋃

γ∈S∗

←−−
γ,Γ
→ ,

which is the symmetric closure of −→
Γ

. Analogously, we write s
+
←−−
γ,Γ
→ t if there

exist terms s0, . . . , sn ∈ TΣ(X ) and relations α1, . . . , αn ∈ S∗, n > 0, such that

s = s0 ←−−−
α1,Γ
→ s1 ←−−−

α2,Γ
→ s2 ←−−−

α3,Γ
→ · · · ←−−−

αn,Γ
→ sn = t and α1; · · · ;αn ⊑ γ ,

and we write s
∗
←−−
γ,Γ
→ t when n ≥ 0. It follows that

+
←−
Γ
→ =

⋃

γ∈S∗

+
←−−
γ,Γ
→

∗
←−
Γ
→ =

⋃

γ∈S∗

∗
←−−
γ,Γ
→ ,

are the transitive and reflexive-transitive closures of ←−
Γ
→, respectively.

We will drop the subscript Γ if the term rewriting system is clear from con-
text.

4.2 Rewrite Proofs

We are interested in using the general notion of term rewriting along relations
introduced in section 4.1 for proving if an atomic formula is or is not a theorem of
a given theory in the logic of special relations. We know from standard equational
reasoning that term rewriting systems need to be convergent in order to provide
decision algorithms for the equational theory they embed. In this section, we
are going to analyze how these properties translate to our general notion of
term rewriting system introduced in 4.1.6. Of course, due to the additional
generality and expressiveness of the logic of special relations, we expect the
required analysis to be much more subtle than in the equational case.

Let us first see how the notion of proof by term rewriting is connected to the
notion of entailment given in 3.2.7.

4.2.1 Definition. Let ((S∗,Σ),Γ) be a theory presentation in the logic of
special relations. A proof of Γ ⊢ s γ t is the sequence of rewrite steps in Γ
—now considered as a term rewriting system— of the form

s = s0 ←−
α1

→ s1 ←−
α2

→ · · · ←−−
αn

→ sn = t
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n ≥ 0, such that α1; · · · ;αn ⊑ γ, i.e., s
∗
←−
γ
→ t. Recall that, when n = 0,

α1; · · · ;αn = 1 ′.

It follows from the definition of the entailment relation ⊢ given by the in-
ference rules of figure 3.2 that there is a proof —as defined in 4.2.1— for every
theorem of a given theory.

4.2.2 Proposition. For any theory presentation ((S∗,Σ),Γ), terms s and t

in TΣ(X ), and relation γ in S∗, Γ ⊢ s γ t if and only if s
∗
←−−
γ,Γ
→ t.

Since we are interested in exploiting term rewriting along relations in a com-
putational way, we will look for sufficient conditions on term rewriting system
Γ, such that every theorem of Γ can also be proved by a rewrite proof:

4.2.3 Definition. Let ((S∗,Σ),Γ) be a theory presentation in our logic of
special relations. A rewrite proof of Γ ⊢ s γ t is a proof of the particular form

s −→
α1

· · · −−→
αn

u←−−
βm

· · · ←−
β1

t

n,m ≥ 0, such that α1; · · · ;αn;βm; · · · ;β1 ⊑ γ, i.e., s
∗

−−−−−−→
α1;··· ;αn

u
∗

←−−−−−−
βm;··· ;β1

t.

If every atom that is provable by a sequence of rewrite steps is also provable
by a rewrite proof, then a decision procedure can be defined in a quite straight-
forward way: In order to prove Γ ⊢ s γ t, we explore all the rewritings starting at
terms s and t respectively until a common term u is reached and the composition
of relations along which the rewritings took place is below relation γ:

//

β4����
��

��
�� β3

oo

s

??������� //

α1

��>
>>

>>
>>

u //
β2

^^<<<<<<<<

����
��

��
��

t
β1

oo

α2

//
α3

??��������

  B
BB

BB
BB

B oo

Before we describe the exact procedure, we need to prove the following propo-
sition, in order to define the notion of reachability set.

4.2.4 Proposition. Let S̆ = {ᾰ | α ∈ S}. For every relation α ∈ S∗, there
exist α1, . . . , αn ∈ S ∪ S̆, n ≥ 0, such that α = α1; · · · ;αn.

Proof: By definition, since S∗ is the domain of a free monoid with an anti-
involution (see 3.2.1). 2
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4.2.5 Definition. Let ((S∗,Σ),Γ) be a theory presentation in our logic of
special relation, and let s be a term in TΣ(X ). We call the set

OneSteps =
⋃

p

⋃

l−→
α

r

B × {s[σ(r)]p} ,

with α = α1; · · · ;αn (αi ∈ S ∪ S̆, see proposition 4.2.4), σ(l) = s|p, and

B = {β1; · · · ;βn | βi ∈ S ∪ S̆ and p in s is positive with respect to (αi, βi)} ,

the one-step-reachability set of s.

4.2.6 Definition. Let ((S∗,Σ),Γ) be a theory presentation in our logic of
special relation, and let s be a term in TΣ(X ). We call the set Reachs ⊆ S∗ ×
TΣ(X ) the reachability set of s, whenever (δ, v) ∈ Reachs if and only if there
exist terms s = s0, s1, . . . , sn = v and relations δ1, . . . , δn, such that

1. ∀i ∈ [1 . . . n] (δi, si) ∈ OneStepsi−1
, and

2. δ = δ1; · · · ; δn ,

i.e., s = s0 −→
δ1

s1 −→
δ2

· · · −→
δn

sn = v.

4.2.7 Decision algorithm. In order to decide whether Γ ⊢ s γ t, we will
have to compute reachability sets Reachs and Reacht and check if there exists
a term u ∈ TΣ(X ) and relations α, β ∈ S∗, such that (α, u) ∈ Reachs, (β, u) ∈

Reacht, and α; β̆ ⊑ γ. Obviously, sets Reachs and Reacht need to be always
finite, and the partial order ⊑ must be decidable. For the finiteness of the
reachability sets, the rewrite relation has to be terminating, so that no branch
of the rewrite tree is infinite, and it has to be finitely branching, so that, by
performing a rewrite step at a given term, we only need to explore a finite
number of branches.

4.2.8 Remark. Notice that the decision algorithm described in 4.2.7 is not
based on normal-form computation as in the case of equational term rewriting,
but instead computes the whole rewrite trees starting from s and t.

4.2.9 Termination and finite branching. Termination and finite branch-
ing are defined in a similar way as in standard equational rewriting, and we
refer to (Dershowitz and Jouannaud, 1990) and (Baader and Nipkow, 1998) for
a deeper discussions concerning these subjects.

Here we will be only interested in general methods guaranteeing, that given
a finite set of atomic sentences in our logic of special relations, it indeed forms
a terminating and finitely branching term rewriting system. Therefore, we are
going to orient rewrite rules following a well-founded ordering ≻ on terms. We
refer to 2.1.4 for the necessary definitions.
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It is obvious that given a term rewriting system Γ, the rewrite relation −→
Γ

is terminating if its transitive closure
+
−→
Γ

is included in a well-founded ordering.

The only additional difficulty within our general framework is to prove finite
branching, since, given a position p in a term s and a rewrite rule l −→

α
r in Γ,

there may be, in principle, more than one possible rewrites of the form s −→
γ
t,

depending on how many relations γ satisfy that the polarity of subterm position
p in s is positive with respect to (α, γ). We allow, therefore, only a finite number
of special relations and of rewrite rules in the system.

4.2.10 Proposition. Let ((S∗,Σ),Γ) be a theory presentation in our logic of
special relations, where S and Γ are finite. Let −→

Γ
be the rewrite relation defined

by Γ interpreting its atomic sentences as rewrite rules, following a well-founded
ordering on terms, and let s be a term in TΣ(X ). Rewrite relation −→

Γ
is finitely

branching, i.e., the set OneSteps as defined in definition 4.2.5 is finite.

Proof: B is a finite set. It is isomorphic to a subset of

n
︷ ︸︸ ︷

(S ∪ S̆)× · · · × (S ∪ S̆),
which is finite, because S is finite. Consequently, B × {s[σ(r)]p} is also finite,
and, since there are a finite number of subterm positions p in s and of rewrite
rules l −→

α
r ∈ Γ, OneSteps is finite, too. 2

4.2.11 Decidability of ⊑. Recall that in 4.2.7 we have also pointed out that,
in order to state a decision algorithm for theoremhood, in addition to termination
and finite branching, we also need the partial order ⊑ of our structure S∗ to be
decidable. Later, in chapter 5, we will see how we define particular partial orders
by giving a finite number of axioms of the form δ1; · · · ; δn ⊑ γ, where δi, γ are
relations in S ∪ S̆, and n ≥ 0. Whenever the partial order relation is defined in
this way, every relation α = α1; · · · ;αn (αi ∈ S ∪ S̆, see proposition 4.2.4) lying
below a given relation β ∈ S∪ S̆ can be seen as a word of the language generated
by the context-free grammar with production rules

Uγ → Uδ1 · · ·Uδn

for each axiom δ1; · · · ; δn ⊑ γ, and

Uγ → γ

for each relation γ ∈ S ∪ S̆. Uγ and Uδi
stand for non-terminal symbols, while

relation symbol γ stands for a terminal symbol of the grammar. Of course, this
makes the partial order ⊑ decidable.

If, in addition, the language generated by this context-free grammar turns
out to be regular, as happens within the particular cases studied later in chapter
5, we can define a couple of finite state automatons that recognize those com-
positions of relations lying below a particular relation, exploring the word (i.e.,
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the compositions of relations) either from the left, or else from the right, as we
explore the search space. We can thus prune those branches of the search space
that do not lead to a composition of relations lying below the special relation of
the atomic sentence to be proved by our decision algorithm.

4.2.12 Soundness and completeness. That the decision algorithm pro-
posed in 4.2.7 is sound is a direct consequence of the definition of rewriting
along relations given in definition 4.1.7. The completeness of the algorithm de-
pends on the existence of a rewrite proof for each theorem of the theory, and
this is a consequence of theorem 4.4.18 seen later.

4.3 Confluence

If we want that, given a term rewriting system Γ, every atomic formula provable
by a sequence of rewrite steps in Γ can also be proved by a rewrite proof, in
addition to be finitely branching and terminating, the rewrite system needs to
be Church-Rosser. Let us define what the Church-Rosser property, and its closely
related properties of confluence and local confluence, for term rewriting along
relations look like:

4.3.1 Definition. A term rewriting systems Γ is Church-Rosser if, for any
pair of terms s, t ∈ TΣ(X ) and relation α ∈ S∗, such that s

∗
←−
α
→ t, there exists a

term u ∈ TΣ(X ) and relations γ, δ ∈ S∗, such that s
∗
−→
γ
u

∗
←−
δ
t, and γ; δ ⊑ α.

s oo ∗

α
//

∗

γ
��

t
∗

δ��
u

4.3.2 Definition. A term rewriting systems Γ is confluent if, for any three
terms s, t, v ∈ TΣ(X ) and pair of relations α, β ∈ S∗, such that s

∗
←−
α

v
∗
−→
β
t,

there exists a term u ∈ TΣ(X ) and relations γ, δ ∈ S∗, such that s
∗
−→
γ
u

∗
←−

δ
t,

and γ; δ ⊑ α;β.

v
∗

α
����

��
��

�� ∗

β ��?
??

??
??

?

s

∗

γ
��

t
∗

δ��
u
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4.3.3 Definition. A term rewriting systems Γ is locally confluent if, for any
three terms s, t, v ∈ TΣ(X ) and pair of relations α, β ∈ S∗, such that s←−

α
v −→

β
t,

there exists a term u ∈ TΣ(X ) and relations γ, δ ∈ S∗, such that s
∗
−→
γ
u

∗
←−

δ
t,

and γ; δ ⊑ α;β.

v

α
����

��
��

��

β ��?
??

??
??

?

s

∗

γ
��

t
∗

δ��
u

We call s←−
α
v −→

β
t a peak, and say that it is convergent when it has a rewrite

proof, and divergent otherwise. Therefore, a term rewriting systems is locally
confluent when all peaks are convergent. The following propositions are true in
our general setting. Their proofs are based on well-known proof techniques used
for abstract reduction relations (see e.g., (Huet, 1980)).

4.3.4 Proposition. A term rewriting system Γ is Church-Rosser if and only
if it is confluent.

Proof: The ‘only if’ direction is trivial. For the ‘if’ direction, we prove the
proposition by induction on the length n of the proof s

∗
←−
α
→ t. If n = 0, the

proposition holds vacuously. If n > 0, we have that s ←−
α′

→ s′
∗
←−−
α′′

→ t, where

α′;α′′ ⊑ α. By the induction hypothesis, there exist u, γ, δ, such that s′
∗
−→
γ

u
∗
←−

δ
t and γ; δ ⊑ α′′.

1. If s −→
α′

s′, we have that s
∗
−−→
α′;γ

u
∗
←−

δ
t and α′; γ; δ ⊑ α′;α′′ ⊑ α.

s
∗

α′

// s′ oo
∗

α′′

//

∗

γ
��

t
∗

δ��
u

2. If s ←−
α′

s′, by confluence, there exist v, γ′, δ′, such that s
∗
−→
γ′

v
∗
←−
δ′

u

and γ′; δ′ ⊑ α′; γ. Therefore, we have that s
∗
−→
γ′

v
∗
←−−
δ′;δ

t and γ′; δ′; δ ⊑
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α′; γ; δ ⊑ α′;α′′ ⊑ α.

s

∗
γ′

��

s′
∗

α′

oo oo ∗

α′′

//

∗

γ
��

t
∗

δ��
u

∗

δ′

~~
v

2

4.3.5 Proposition. A terminating term rewriting system Γ is confluent if
and only if it is locally confluent.

Proof: The ‘only if’ direction is trivial. For the ‘if’ direction, we prove the
proposition by induction on the lengths n and m of the proofs s

∗
←−
α
v and v

∗
−→
β
t,

respectively. If n = 0 or m = 0, the proposition holds vacuously. If n,m > 0,
we have that s

∗
←−−
α′′

s′ ←−
α′

v −→
β′

t′
∗
−→
β′′

t and α′′;α′ ⊑ α and β′;β′′ ⊑ β. By

local confluence, there exist u, γ, δ, such that s′
∗
−→
γ
u

∗
←−

δ
t′ and γ; δ ⊑ α′;β′.

By the induction hypothesis, there exist u′, γ′, δ′, such that s
∗
−→
γ′

u′
∗
←−
δ′

u and

γ′; δ′ ⊑ α′′; γ. Again, by the induction hypothesis, there exist u′′, γ′′, δ′′, such
that u′

∗
−→
γ′′

u′′
∗
←−
δ′′

t and γ′′; δ′′ ⊑ δ′; δ;β′′. Therefore we have that s
∗

−−−→
γ′;γ′′

u′′
∗
←−
δ′′

t, and γ′; γ′′; δ′′ ⊑ γ′; δ′; δ;β′′ ⊑ α′′; γ; δ;β′′ ⊑ α′′;α′;β′;β′′ ⊑ α;β.

v

α′

}}||
||

||
||

β′

  A
AA

AA
AA

A

s′

∗

α′′

����
��

��
�� ∗

γ
  

t′

∗

δ~~

∗

β′′

��=
==

==
==

s

∗

γ′

��

u

∗

δ′

~~

t

∗

δ′′

��

u′

∗

γ′′

  
u′′

2
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4.4 Critical Atoms

Recall that, in standard term rewriting, as a result of the Knuth-Bendix theo-
rem (Knuth and Bendix, 1970), we may check for local confluence by checking
for convergence of all critical pairs arising from non-trivial overlaps among left-
hand sides of rewrite rules of the term rewriting system at hand. Recall that
a non-trivial overlap is an overlap on non-variable subterm positions. Based
on the validity of this theorem, one can attempt to complete a terminating but
non-Church-Rosser term rewriting system to a Church-Rosser one, by adding
non-convergent critical pairs as new rewrite rules to the system. It is, therefore,
very desirable to see if the Knuth-Bendix theorem, or at least a variant of it, is
also valid within the context of term rewriting along relations.

Many aspects of the following discussion have already been thoroughly stud-
ied within the context of standard rewriting (see for instance (Dershowitz and
Jouannaud, 1990)), but it is worth to work through them again within our gen-
eral framework of rewriting along relations, in order to highlight the subtleties
we have to deal with now.

4.4.1 Peak. Given a theory presentation ((S∗,Σ),Γ), let s, t, v be terms in
TΣ(X ), α, β relations in S∗, and let us consider Γ as a term rewriting system.
A peak s ←−

α
v −→

β
t in Γ is the result of rewriting with two (not necessarily

distinct) rewrite rules l1 −→
α′

r1 and l2 −→
β′

r2 in Γ on (not necessarily distinct)

subterm positions p and q in v. There are two different cases to consider:

1. either p � q and q � p, i.e., the rewrite rules do not overlap, but are
applied on two disjoint subterm positions in v,

2. or else p ≤ q or q ≤ p, i.e., the rewrite rules do overlap.3

Subterm positions p and q may have a common prefix, i.e., there exist an r
such that p = r · p′ and q = r · q′, and in the previous two cases it is desirable
to neglect the fragment of the term above r, since it does not take part in the
actual formation of the peak, it is just a context w[ ]r put around the terms. In
standard term rewriting we can indeed strip off this context, because equality
is a congruence, but in our general approach, the relations we deal with do
not necessarily have such property. We need to proof explicitly that context
application, when possible, preserves local confluence.

4.4.2 Context application. Context application preserving local conflu-
ence means that, if a peak s ←−

α
v −→

β
t converges, then, by applying a context

w[ ]r around the terms involved, the resulting peak w[s]r ←−
α′

w[v]r −→
β′

w[t]r

converges, too.
Though this is obviously true in standard term rewriting, its validity in the

framework of our general notion of term rewriting is not that straightforward. A

3We refer to 2.1.1 for the exact meaning of the order ≤ between subterm positions.



4.4. Critical Atoms 63

context w[ ]r can be applied around the terms if there exist relations α′, β′ ∈ S∗,
such that r in w is positive with respect to (α, α′) and with respect to (β, β′).
But then the resulting peak converges only if there also exist relations γ′, δ′ ∈ S∗,
such that r in w is positive with respect to (γ, γ′) and with respect to (δ, δ′),
and, in addition, γ′; δ′ ⊑ α′;β′.

v

α
����

��
��

��

β ��?
??

??
??

?

s
∗

γ
��

t
∗

δ��
u

w[v]r

α′

{{wwwwwwww

β′

##F
FFFFFFF

w[s]r

∗

γ′

##

w[t]r

∗

δ′

{{
w[u]r

Unfortunately, this is not always true in general, and we will need to put
additional conditions on the polarity of our signature’s function symbols for
context application to preserve local confluence. In order to simplify the treat-
ment of these conditions, we have already chosen to define the monotonicity and
antimonotonicity properties of function symbols only with respect to special re-
lations in S (see 3.2.1), so that the polarities of their argument positions with
respect to general binary relations in S∗ depend on their polarities with respect
to special relations in S and on the partial order in S∗ .

We now define the notion of well-polarized signatures in order to capture
those special cases, for which context application is going to preserve local con-
fluence:

4.4.3 Definition. A signature (S∗,Σ) in the logic of special relations is well-
polarized, if for all function symbols f ∈ Σ, argument positions i in f , and pairs
of relations α, β ∈ S∗ —where α = α1; · · · ;αn, αj ∈ S ∪ S̆ for all j ∈ [1 . . . n]
(see proposition 4.2.4)— we have that, if i in f is positive with respect to (α, β),
then there exist relations β1, . . . , βn ∈ S ∪ S̆ such that i in f is positive with
respect to (αj , βj), for all j ∈ [1 . . . n], and β1; · · · ;βn ⊑ β.

Well-polarization is a condition put on argument positions of function symbols
in signatures, but it can be extended to subterm positions of terms in TΣ(X ):

4.4.4 Proposition. Let (S∗,Σ) be a well-polarized signature, let s be a term
in TΣ(X ), and let α, β be a pair of relations in S∗ —where α = α1; · · · ;αn,
αi ∈ S ∪ S̆, for all i ∈ [1 . . . n] (proposition 4.2.4). If p in s is positive with
respect to (α, β), then there exist relations β1, . . . , βn ∈ S ∪ S̆, such that p in s
is positive with respect to (αi, βi), for all i ∈ [1 . . . n], and β1; · · · ;βn ⊑ β.

Proof: By induction on the length of position p = d1 · · ·dm, m ≥ 1, dm ∈ N.
Let f be the top-most function symbol of s, i.e., s = f(s1, . . . , sk), where si ∈
TΣ(X ) for all i ∈ [1 . . . k].
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1. If m = 1 then p = d, d ∈ N, the proposition is true by definition 4.1.2.

2. If m > 1 then p = d · p′, d ∈ N. By definition 4.1.2, there exists γ ∈ S∗,
such that p′ in sd is positive with respect to (α, γ), and d in f is positive
with respect to (γ, β). By the induction hypothesis, there exist relations
γ1, . . . , γn ∈ S∪S̆, such that p′ in sd is positive with respect to (αi, γi), for
all i ∈ [1 . . . n], and γ1; · · · ; γn ⊑ γ. Consequently, d in f is also positive
with respect to (γ1; · · · ; γn, β). Since the signature is well-polarized, there
exist relations β1, . . . , βn ∈ S ∪ S̆, such that d in f is positive with respect
to (αi, βi), for all i ∈ [1 . . . n], and β1; · · · ;βn ⊑ β. Finally, by definition
4.1.2, p in s is positive with respect to (αi, βi), for all i ∈ [1 . . . n].

2

Indeed, when dealing with well-polarized signatures, local confluence is closed
under context application:

4.4.5 Proposition. Let (S∗,Σ) be a well-polarized signature, let s, t, v be
terms in TΣ(X ), and let α, β be relations in S∗. If the peak s←−

α
v −→

β
t converges,

then, for each term w ∈ TΣ(X ), argument position r in w, and relations α′, β′ ∈
S∗ such that r in w is positive with respect to (α, α′) and with respect to (β, β′),
the peak w[s]r ←−

α′

w[v]r −→
β′

w[t]r converges, too.

Proof: Since the peak s ←−
α
v −→

β
t converges, there exist a term u ∈ TΣ(X )

and relations γ, δ ∈ S∗, such that s
∗
−→
γ
u

∗
←−

δ
t and γ; δ ⊑ α;β. We have that r in

w is positive with respect to (α;β , α′;β′), therefore, r in w is also positive with
respect to (γ; δ , α′;β′). By proposition 4.4.4, there exist relations γ′, δ′ ∈ S∗

such that r in w is positive with respect to (γ, γ′) and (δ, δ′). Consequently,

w[s]r
∗
−→
γ′

w[u]r
∗
←−
δ′

w[t]r . Also by proposition 4.4.4, γ′; δ′ ⊑ α′;β′. 2

4.4.6 Remark. A negative consequence of not taking into account the well-
polarization of the signature will be shown in chapter 6, were we discuss Kriaučiu-
kas and Walicki’s proof calculus for specifications with set relations presented
in (Kriaučiukas and Walicki, 1995). The calculus is based on an extension of
rewrite techniques to deal with three special relations, but turns out not to be
complete when combined with redundancy, because of the non-preservation of
context application.

4.4.7 Disjoint case. Recall the formation of a peak given in 4.4.1. Knowing
that we can strip off the context not involved in the rewritings that form the
actual peak, let us now see the case when the peak is due to the application of
two rewrite rules on positions p � q and q � p, i.e., p = i.p′ and q = j.q′, and
i 6= j, i, j ∈ N.
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Let f denote the top-most function symbol of v, and let si and sj be the
subterms of v on positions i and j. Let α′′ and β′′ denote the relations along
terms si and sj are rewritten to s′i and s′j , due to the application of rewrite
rules l1 −→

α′

r1 and l2 −→
β′

r2. By rewriting in f(. . . , s′i, . . . , sj , . . . ) term sj to

s′j with rule l2 −→
β′

r2 on position q, and by rewriting in f(. . . , si, . . . , s
′
j, . . . )

term si to s′i with rule l1 −→
α′

r1 on position p, we obtain the common term

f(. . . , s′i, . . . , s
′
j, . . . ).

f(. . . , si, . . . , sj, . . . )

α
ttjjjjjjjjjjjjjjjj

β **TTTTTTTTTTTTTTTT

f(. . . , s′i, . . . , sj, . . . )

β **TTTTTTTTTTTTTTTT
f(. . . , si, . . . , s

′
j, . . . )

α
ttjjjjjjjjjjjjjjj

f(. . . , s′i, . . . , s
′
j, . . . )

But for the peak to converge, we also need that β;α ⊑ α;β. Consequently,
peaks due to disjoint overlaps converge, whenever those binary relations com-
mute, with respect to which specific argument positions in specific function sym-
bols are positive. Before we go on stating the exact conditions our signature
needs to satisfy, we need to first introduce a stronger notion of well-polarization.

4.4.8 Definition. A signature (S∗,Σ) in the logic of special relations is
strongly well-polarized if, for all function symbols f ∈ Σ, argument positions
i in f , and pairs of relations α, β ∈ S∗ —where α = α1; · · · ;αn, αj ∈ S ∪ S̆, for
all j ∈ [1 . . . n] (see proposition 4.2.4)—, we have that, if i in f is positive with
respect to (α, β), then there exist relations β1, . . . , βn ∈ S ∪ S̆, such that i in f
is positive with respect to (αj , βj), for all j ∈ [1 . . . n], and β1; · · · ;βn = β.

4.4.9 Remark. Notice that the difference with respect to definition 4.4.3 is
that β1, . . . , βn = β for strong well-polarization, instead of β1, . . . , βn ⊑ β.

4.4.10 Definition. A signature (S∗,Σ) in the logic of special relations is
well-commuting if, for all function symbols f ∈ Σn, n ∈ N, argument positions
i, j ∈ [1 . . . n], i 6= j, and special relations α, α′, β, β′ ∈ S ∪ S̆, we have that,
whenever both, the i-th and j-th argument positions of f are positive with
respect to (α′, α) and (β′, β), respectively, then α;β ⊑ β;α.

Well-commutation is a condition put on special relations and their conversions,
but it can be extended to general binary relations in S∗, if the signature is also
strongly well-polarized:
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4.4.11 Proposition. Let (S∗,Σ) be a strongly well-polarized and well-com-
muting signature. If, for all function symbols f ∈ Σn, n ∈ N, argument positions
i, j ∈ [1 . . . n], i 6= j, and special relations α, α′, β, β′ ∈ S∗, we have that, when-
ever both, the i-th and j-th argument positions of f are positive with respect to
(α′, α) and (β′, β), respectively, then α;β ⊑ β;α.

Proof: Let α′ = α′
1; · · · ;α

′
n and β′ = β′

1; · · · ;β
′
m, m,n ≥ 0, such that, for all

k ∈ [1 . . . n] and l ∈ [1 . . .m], αk, βl ∈ S ∪ S̆ (proposition 4.2.4). The proof is by
induction over n and m.

1. If n = 0 then 1 ′;β ⊑ β; 1 ′ (analogously for m = 0).

2. If n,m > 0 then let ᾱ′ = α′
2; · · · ;α

′
n and β̄′ = β′

2; · · · ;β
′
m. By strong

well-polarization there exist relations α1, β1 ∈ S ∪ S̆ and ᾱ, β̄ ∈ S∗ with
α = α1; ᾱ and β = β1; β̄, such that

• the i-th argument position in f is positive with respect to (α′
1, α1)

and with respect to (ᾱ′, ᾱ)

• the j-th argument position in f is positive with respect to (β′
1, β1)

and with respect to (β̄′, β̄)

Therefore,

α1;β1 ⊑ β1;α1 ,

and, by the induction hypothesis,

α1; β̄ ⊑ β̄;α1

ᾱ;β1 ⊑ β1; ᾱ

ᾱ; β̄ ⊑ β̄; ᾱ .

Consequently,

α;β = α1; ᾱ;β1; β̄

⊑ α1;β1; ᾱ; β̄

⊑ β1;α1; β̄; ᾱ

⊑ β1; β̄;α1; ᾱ

= β;α .

2

4.4.12 Proposition. Let ((S∗,Σ),Γ) be a theory presentation, such that
(S∗,Σ) is a strongly well-polarized and well-commuting signature. All peaks
due to the application of two rewrite rules in Γ on disjoint subterm positions
converge.
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Proof: Let s ←−
α
v −→

β
t be a peak due to the application of two rewrite rules

r1 ←−
α′

l1 and l2 −→
β′

r2 in Γ on two disjoint subterm positions p = i.p′ and q = j.q′

of v, i 6= j, and let f be the top-most function symbol of term v. We have that
s = v[σ1(r1)]p and t = v[σ2(r2)]q, where σ1 and σ2 are the unifiers of v|p with
l1, and v|q with l2, respectively. It follows that subterm positions p and q in v
are positive with respect to (α′, α) and (β′, β), respectively, and therefore there
exist relations α′′, β′′ ∈ S∗, such that the i-th and j-th argument positions of f
are positive with respect to (α′′, α) and (β′′, β), respectively. Furthermore, since
positions p and q are disjoint, there exist u = s[σ2(r2)]q = t[σ1(r1)]p, such that
s −→

β
u ←−

α
t. In addition, by proposition 4.4.11, α;β ⊑ β;α, which means that

the peak converges. Finally, by proposition 4.4.5, context application preserves
local confluence. 2

4.4.13 Remark. Notice that, since the condition in proposition 4.4.12 re-
quires β;α ⊑ α;β for all argument positions i, j ∈ [1 . . . n] in f , i 6= j —for which,
of course, the suitable polarities hold—, we will also need that α;β ⊑ β;α, and
therefore, we are actually requiring that β;α = α;β.

4.4.14 Overlap case. Recall from 4.4.1 that the overlap case arises when
p ≤ q or q ≤ p. Without any loss of generality, we may consider only the case
when q ≤ p, and again we strip off the context, so that q = λ, which means
that v = σ(l2), σ being the most general unifier of l2|p and l1. When term l2|p
is not a variable, then the pair of terms 〈s, t〉 is usually called a critical pair,
which in standard rewriting is the only case we need to check for convergence.
Unfortunately, when dealing with non-symmetric relations (recall the discussion
on bi-rewriting in chapter 2) —and obviously that happens in our general ap-
proach of rewriting along general binary relations— we also need to check so
called variable instance pairs for confluence. Variable instance pairs are formed
when position p is a variable position in l2, or when it is below a variable position
in l2. This latter means that for a variable position r in l2 we have that r ≤ p,
i.e., rule l1 −→

α′

r1 overlaps on an instance of rule l2 −→
β′

r2 and on a subterm

position of an instantiated variable of l2.

4.4.15 Terminology. In standard equational rewriting we talk about criti-
cal or variable instance pairs, and the two terms are always related by equality.
But in our general approach we also need to make explicit the binary relation in
S∗ that relates these two terms. For this reason, and though ‘critical pair’ and
‘variable instance pair’ are well established in the terminology of rewriting, we
prefer to talk in our framework of critical atoms and variable instance atoms.
Let us define them formally.

4.4.16 Definition. Let ((S∗,Σ),Γ) be a theory presentation, where Γ is con-
sidered a term rewriting system. If l −→

α
r and s −→

β
t are two rewrite rules in
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Γ and α, β, and γ in S∗ are relations, such that p is a positive position with
respect to (ᾰ, γ) of a non-variable subterm of s, and σ is the most general unifier
of s|p and l, then the atomic formula σ(s[r]p) γ;β σ(t) is a critical atom.

4.4.17 Definition. Let ((S∗,Σ),Γ) be a theory presentation, where Γ is con-
sidered a term rewriting system. If l −→

α
r and s −→

β
t are two rewrite rules in

Γ and α, β, and γ in S∗ are relations, such that p is a position of a variable
subterm x of s, σ is a substitution, such that σ(x) has l as subterm at position
q, but σ(y) = y, for all y 6= x, position p · q in σ(s) is a positive position with
respect to (ᾰ, γ), then the critical atom σ(s)[r]p·q γ;β σ(t) is a variable instance
atom.

4.4.18 Theorem. Let ((S∗,Σ),Γ) be a theory presentation, such that
(S∗,Σ) is a strongly well-polarized and well-commuting signature. The rewrite
system Γ is locally confluent if and only if all critical and variable instance atoms
have a rewrite proof.

Proof: The ‘only if’ direction is trivial. For the ‘if’ direction, if we have a peak
due to the application of two rewrite rules on disjoint position, then we have a
rewrite proof by proposition 4.4.12. Otherwise, the peak is due to the overlap of
two rewrite rules generating either a critical atom or a variable instance atom.
Since we assume that such atoms have rewrite proofs, and by proposition 4.4.5
context application preserves the existence of such rewrite proofs, the peak must
have a rewrite proof, too. 2

4.5 Towards Effective Completion

As usual, a Knuth-Bendix -like completion procedure would attempt to complete
a terminating, but non-confluent, term rewriting system to a confluent one, by
adding divergent critical and variable instance atoms as new rewrite rules to the
system. But several important differences to standard equational term rewriting
appear, which are very significant for the practicability of the term rewriting
approach to perform deductions with binary relations, specially if the signature
includes functions that are monotonic or antimonotonic with respect to pairs of
relations.

We already know from the bi-rewriting technique (see chapter 2) that, by
moving from symmetric to non-symmetric transitive relations, two rewrite rules
may give rise to infinite many variable instance atoms. This is a severe drawback
for the practicability of the term-rewriting approach, but even more discourag-
ing is the fact that, as long as we stick with the straightforward definition of
critical atom given in 4.4.16, also a non-variable overlap of two rewrite rules may
generate infinite many critical atoms, as the following example shows:
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4.5.1 Example. Let (S∗,Σ) be a signature of the logic of special relations,
with S = {α, β, γ} and Σ = {a, b, c, f( )} (three constants and one unary func-
tion symbol), such that the first (and unique) argument position of f is positive
with respect to (α, γ). Let us suppose that α is reflexive, so that S∗ is the
minimal structure satisfying 1 ′ ⊑ α. Let now Γ = {f(a) −→

β
c, a −→

ᾰ
b}. Since

α ⊑ α;α but γ 6⊑ γ; γ we have that the argument position of f is positive with
respect to (α, γ; · · · ; γ), and consequently the two rewrite rules of Γ generate the
following infinite number of critical atoms

f(b) γ; · · · ; γ
︸ ︷︷ ︸

n

;β c ,

where n ∈ N. Of course, having monotonicity in an argument of a function with
respect to the pair formed by a reflexive and a non-reflexive relation seems a
quite ‘pathological’ situation, one that rarely will arise in practical specification,
but without additional restrictions, we may have to deal with it. In fact, the
problem lies in that this signature is not well-polarized.

4.5.2 Dimensions of infinity. Recall definition 4.4.17 of variable instance
atoms. The possibly infinite number of them, formed by rewrite rules l −→

α
r

and s −→
β
t, was due to the fact that we can choose infinite possible substitutions

σ instantiating the variable x in s with a term having l as subterm. This is
only one dimension of infinity; it does not exist for critical atoms. But in our
general framework, with the introduction of relational expressions relating the
two terms resulting from a critical peak, a second dimension of infinity arises,
namely when, because of monotonicity properties of function symbols and the
partial order over relations, infinite many relations between the two terms formed
by the critical peak need to be taken into account. This happened, for instance,
in example 4.5.1.

Fortunately, by restricting to well-polarized signatures, we can limit the num-
ber of relations that need to be taken into account in the formation of critical
and variable instance atoms, without, therefore, falsifying theorem 4.4.18, as we
will show next.

4.5.3 Critical and variable instance atoms revisited. With the follow-
ing more accurate definitions of critical and variable instance atoms, we can limit
the number of relations that have to be considered in their generation. Thus we
are able to control one of the two dimensions of infinity discussed in 4.5.2. Later,
in 4.5.8, we discuss how to get to grips with the other dimension of infinity, so
that effective Knuth-Bendix -like completion may become possible.

4.5.4 Definition. Let ((S∗,Σ),Γ) be a theory presentation, where Γ is con-
sidered a term rewriting system. Let l −→

α
r and s −→

β
t be two rewrite rules

in Γ, and let α, β, and γ be relations in S∗, such that α = α1; · · · ;αn and
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γ = γ1; · · · ; γn, for αi, γi ∈ S∪ S̆ (proposition 4.2.4). If, for all i ∈ [1 . . . n], p is a
positive position with respect to (ᾰi, γi) of a non-variable subterm of s, and σ is
the most general unifier of s|p and l, then the atomic formula σ(s[r]p) γ;β σ(t)
is a critical atom.

4.5.5 Definition. Let ((S∗,Σ),Γ) be a theory presentation, where Γ is con-
sidered a term rewriting system. Let l −→

α
r and s −→

β
t be two rewrite rules

in Γ, and let α, β, and γ be relations in S∗, such that α = α1; · · · ;αn and
γ = γ1; · · · ; γn, for αi, γi ∈ S ∪ S̆ (proposition 4.2.4). If p is a position of a
variable subterm x of s, σ is a substitution such that σ(x) has l as subterm
at position q, but σ(y) = y, for all y 6= x, and for all i ∈ [1 . . . n], position
p · q in σ(s) is a positive position with respect to (ᾰi, γi), then the critical atom
σ(s)[r]p·q γ;β σ(t) is a variable instance atom.

4.5.6 Finiteness. The finiteness of the number of relations to be considered
between two terms arising from critical and variable instance atoms, as given in
definitions 4.5.4 and 4.5.5, follows from the finiteness of set S of special relations,
by reasoning analogously as done in proving the finiteness of set B given in
definition 4.2.5 in the proof of proposition 4.2.10. That, with the new definitions,
theorem 4.4.18 still holds, is guaranteed by the following lemma:

4.5.7 Lemma. Let ((S∗,Σ),Γ) be a theory presentation, such that
(S∗,Σ) is a strongly well-polarized and well-commuting signature. If all crit-
ical and variable instance atoms, as defined in 4.5.4 and 4.5.5, have a rewrite
proof, so do all the critical and variable instance atoms, as defined in 4.4.16 and
4.4.17.

Proof: Let s γ;β t be a critical or variable instance atom, as first defined in
4.4.16 and 4.4.17, formed from the overlap of two rewrite rules on a subterm
position p of term s, because p is a positive position with respect to (ᾰ, γ). By
proposition 4.2.4, there exist α1, . . . , αn ∈ S ∪ S̆, such that α = α1; · · · ;αn, and
by strong well-polarization of the signature, there exist relations γ1, . . . , γn ∈
S∪ S̆, such that, for all i ∈ [1 . . . n], p in s is positive with respect to (ᾰi, γi), and
γ = γ1; · · · ; γn. We are assuming that all critical and variable instance atoms, as
defined in 4.5.4 and 4.5.5, have a rewrite proof, thus, in particular, we have that
s γ1; · · · ; γn;β t has one, too, and since γ1; · · · ; γn ⊑ γ, it follows that s γ;β t
converges. 2

4.5.8 Infinite many variable instance atoms. Because of the double di-
mension of infinity arising with variable instance atoms, dealing with them is
infeasible in practice, even if, by well-polarization, one of the dimensions is con-
trolled. Therefore, we may consider rewriting on subterm positions only when
variable instance atoms are generally unnecessary. In the literature, you can
find two ways to avoid the generation of new rewrite rules from variable in-
stance atoms:
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1. We may restrict the special relations of our signature to those satisfying
only specific properties, such as symmetry and transitivity. We may allow
the overlap on and below variable positions only in rules rewriting along
these kind of relations. This is the approach followed by Bachmair and
Ganzinger (1994a; 1998) in order to tame prolific variable subterm chaining
inferences.

2. We may consider only specific kind of axioms in our theories, or certain
algebraic structures, in which variable instance atoms are always conver-
gent. Some cases have been studied by Levy and Agust́ı (1996), and Struth
(1997).

A third and unexplored approach is presented here, in 4.5.11. It relies on ex-
ploiting the notion of polarity of argument positions of specific function symbols.
Actually, this approach does not look under which conditions variable instance
atoms are unnecessary, but when two rewrite rules only generate a finite amount
of variable instance atoms.

Before going any further, let us first see when a variable instance atom is
convergent in general, that is, when the two rules forming the peak through
such an atom are also the rules that make it converge:

4.5.9 Proposition. Let l −→
α
r and s −→

β
t be two rewrite rules in Γ that form

the variable instance atom σ(s)[r]p·q γ;β σ(t), as defined in 4.5.5. Let n be the
number of occurrences of variable x in s, n ≥ 1. One occurrence is in position
p; let p1, . . . , pn−1 denote the other n−1 positions where x occurs. Let m be the
number of occurrences of x in t, m ≥ 0, and let p′1, . . . , p

′
m denote the positions

in t where it occurs. If

1. there exist relations γ1, . . . , γn−1 in S∗ such that positions pi ·q in σ(s)[r]p·q
are positive with respect to (α, γi), i = 1 . . . n− 1,

2. there exist relations δ1, . . . , δm in S∗ such that positions p′j · q in σ(t) are
positive with respect to (ᾰ, δj), j = 1 . . .m, and

3. there exist permutations P and Q of sequences (1, . . . , n−1) and (1, . . . ,m)
respectively, such that

γP1 ; · · · ; γPn−1 ;β; δQ1 ; · · · ; δQm
⊑ γ;β ,

then the variable instance atom σ(s)[r]p·q γ;β σ(t) is convergent.

Proof: Under these conditions, we can use rule l −→
α
r to rewrite each of the n−

1 occurrences of l in positions pi ·q in term σ(s)[r]p·q along relations γi. Choosing
the particular sequence of rewrite steps determined by the permutation P , we
eventually rewrite term σ(s)[r]p·q to term σ′(s) along relation γP1 ; · · · ; γPn−1 ,
where σ′ is the substitution such that σ′(x) = σ(x)[r]q and σ′(y) = y, for
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Figure 4.1: Convergent variable instance atom

all y 6= x. Analogously, under these conditions, we can use rule l −→
α

r to

rewrite each of the m occurrences of l in positions p′j · q in term σ(t) along

relations δ̆j . Again, choosing the particular sequence of rewrite steps determined
by permutation Q, we eventually rewrite term σ(t) to term σ′(t) along relation
(δQ1 ; · · · ; δQm

)̆ . With rule s −→
β

t we can now rewrite σ′(s) to σ′(t) along

relation β, and since γP1 ; · · · ; γPn−1 ;β; δQ1 ; · · · ; δQm
⊑ γ;β, for these particular

permutations, the variable instance atom converges (see figure 4.1). 2

4.5.10 Remark. The conditions for a variable instance atom to be conver-
gent are far too strong, and, in general, a completion procedure should add these
atoms as new rewrite rules to the term rewriting system.

4.5.11 Effectively dealing with variable instance atoms. We have al-
ready mentioned, in 4.5.8, that we wanted to look under which conditions only a
finite amount of variable instance atoms need to be considered by a completion
procedure. This corresponds to cope with the other dimension of infinity (see
4.5.2) not yet treated.
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Recall definition 4.4.17 or 4.5.5 of variable instance atom. There will be a
finite number of such atoms between two given rewrite rules l −→

α
r and s −→

β
t,

if and only if there exist a finite number of substitutions σ satisfying that

1. σ(x) has term l as subterm at position q, and

2. position p · q in σ(s) is positive with respect to (ᾰ, γ).

Basically, we need to limit the number of possible substitutions, and we are going
to do this by exploiting the notion of polarity, so that position p · q in σ(s) is
positive with respect to (ᾰ, γ) only for a finite number of terms σ(s). We will
need to define a polarization relation on which we put conditions, so that we
eventually cut down the number of variable instance atoms to a finite amount:

4.5.12 Definition. A signature Ω = (S∗,Σ) determines a binary relation
� ⊆ (S ∪ S̆) × (S ∪ S̆) as follows: For every α, β in S ∪ S̆, α � β if and only
if there exists a function symbol f in Σn, n ∈ N, and an argument position
i ∈ [1 . . . n], such that i in f is positive with respect to (α, β). We will call the
transitive closure of � the signature’s polarization relation.

4.5.13 Proposition. Let ((S∗,Σ),Γ) be a theory presentation in the logic of
special relations, considering Γ as a term rewriting system. If its polarization
relation is irreflexive (i.e., it is an ordering), then there can be only a finite
number of variable instance atoms between two arbitrary rewrite rules l −→

α
r

and s −→
β
t in Γ.

Proof: Let α = α1; · · · ;αn and γ = γ1; · · · ; γn, where αi, γi ∈ S ∪ S̆. Two
rules l −→

α
r and s −→

β
t form the variable instance atom

σ(s)[r]p·q γ;β σ(t)

if and only if position p · q in σ(s) is positive with respect to (ᾰi, γi), for all
i ∈ [1 . . . n].

Taking an arbitrary i ∈ [1 . . . n], p·q in σ(s) is a positive position with respect
to (ᾰi, γi), if and only if there exists δi ∈ S∪ S̆, such that variable position p in s
is positive with respect to (δi, γi) and position q in σ(x) is positive with respect
to (ᾰi, δi).

Since S ∪ S̆ is finite, there exists only a finite number of such δi. Thus the
finiteness of the amount of variable instance atoms only depends on the number
of terms σ(x) = t[l]q ∈ TΣ(X ), such that q in t is positive with respect to (ᾰi, δi).
Let q = d1 · · · dn and

t =

f1(x1, . . . , xd1−1, f2(· · · fn(y1, . . . , ydn−1, l, ydn+1 . . . , ym) · · · ), xd1+1, . . . , xk)
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where dj ∈ N, fj ∈ Σ, and xk, yk ∈ X . Notice that we construct t by taking
the most general substitution σ assigning to x a term constructed with function
symbols fj , and with subterm l at q, so we subsume all other variable instance
pairs constructed the same way. Position q in t is positive with respect to (ᾰi, δi)
if and only if there exist a sequence of relations

ᾰi = ρ0, . . . , ρn = δi ρj ∈ S ∪ S̆ ,

such that dj in fj is positive with respect to (ρj−1, ρj), for all j ∈ [1 . . . n], which
means that

ᾰi = ρ0 � · · ·� ρn = δi .

But, since the polarization relation is irreflexive, there exists only a finite number
of sequences ρ0, . . . , ρn satisfying such property, which means that there exists
only a finite number of terms t[l]q, for which q in t is positive with respect to
(ᾰi, δi). Consequently, there can be only a finite number of variable instance
atoms between two rewrite rules. 2

4.6 Discussion

Throughout this chapter we have shown the technical complexity involved in
the generalization of the term rewrite technique to arbitrary binary relations
and arbitrary monotonicity properties of function symbols. Confluence results
are not translated in a straightforward way, but are much more subtle, so that
the concept of well-polarized signature becomes necessary. But the most im-
portant drawbacks arise when we want to effectively deal with the completion
of non-confluent term rewrite systems to confluent ones. In addition to the al-
ready known dimension of infinity in variable instance atoms, resulting from
overlapping below variable positions, a new dimension of infinity arises, since
infinite relations between terms formed from critical peaks need to be taken into
account, too. Fortunately, we are able to control both dimensions of infinity
by exploiting again the notion of polarity, with well-polarized signatures and
irreflexive polarization relations.

Well-polarization turns out to be a quite natural property. For instance,
it forces a function symbol to be polarized with respect to a pair of transitive
relations, or else with respect to a pair of non-transitive relations. Thus, it
avoids awkward polarities like with respect to a transitive and a non-transitive
relation, or with respect to a reflexive and a non-reflexive transitive relation
(recall example 4.5.1). On the other hand, an irreflexive polarization relation
is not that natural, and it rules out many interesting theories. For instance,
polarizations with respect to a relation with itself (standard monotonicity) makes
a polarization relation to be reflexive.

From the perspective gained by our detailed analysis of where and when
the term rewriting technique for general binary relations starts to get out of
control, we want to discuss why several particular cases of term rewriting, such
as standard equational term rewriting and bi-rewriting, work so well as deduction
mechanisms.



4.6. Discussion 75

4.6.1 Equational rewriting. The standard equational case arises when the
unique special relation is equality (≈), a reflexive, symmetric, transitive binary
relation with respect to which all argument positions of all function symbols are
positively polarized. In this case, a variable instance atom formed by rewrite
rules l −→

≈
r and s −→

≈
t is always convergent, since the three conditions of

proposition 4.5.9 are satisfied:

1. all position pi · q are positive with respect to (≈,≈)

2. all positions p′i · q are positive with respect to (≈,≈)

3. ≈; · · · ;≈
︸ ︷︷ ︸

n−1

;≈;≈; · · · ;≈
︸ ︷︷ ︸

m

⊑ ≈;≈

The well-known consequence is that a Knuth-Bendix completion process does
not need to generate variable instance atoms, since all of them will be convergent.

4.6.2 Bi-rewriting. The bi-rewriting case arises when the unique special
relation is inclusion (⊆), i.e., a reflexive, but non-symmetric, transitive binary
relation with respect to which all argument positions of all function symbols
are positively polarized, too. In this case, a variable instance atom formed by
rewrite rule l −→

⊇
r and s −→

⊆
t is not always convergent, since only the last two

conditions of proposition 4.5.9 are satisfied in general, but not the first:

1. all position pi.q are not necessarily positive with respect to (⊇,⊆)

2. all positions p′i.q are positive with respect to (⊆,⊆)

3. ⊆; · · · ;⊆
︸ ︷︷ ︸

n−1

;⊆;⊆; · · · ;⊆
︸ ︷︷ ︸

m

⊑ ⊆;⊆

But, when rewrite rule s −→
⊆
t is left-linear (i.e., variable x only occurs once in s,

thus n = 1), then the first condition of proposition 4.5.9 is trivially satisfied. In
this case, a Knuth-Bendix completion process does not need to look for variable
instance atoms, either.

4.6.3 The roles of symmetry, monotonicity, and transitivity. We
mentioned, in 4.5.8, that one way to avoid the generation of new rewrite rules
from variable instance atoms was to restrict the special relations of our signature
to those satisfying only specific properties. In 4.6.1 and 4.6.2 we have shown two
examples where we proceed in this way.

Thus, if in proposition 4.5.9 the relation α along which rewrite rule l −→
α
r

rewrites is symmetric, i.e., ᾰ = α, then we might use this same rule to rewrite
term σ(s)[r]p·q to σ′(s). In addition we need also that the positions pi · q are
polarized.
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When we say that the relation α is monotonic, we think of all argument
positions of all function symbols of our signature being positive with respect to
(α, α). In this case it turns out that

∀i ∈ [1 . . . n] γi = α and ∀j ∈ [1 . . .m] δj = ᾰ ,

so that the permutations P and Q do not matter at all. If α is transitive, too,
i.e., α;α ⊑ α, then the number of occurrences of variable x in s and in t does not
matter either, because then σ(t) −→

α
σ′(t) and σ(s)[r]p·q −→

α
σ′(s), independently

of the number of occurrences n and m.
Monotonicity alone causes many problems. Observe that the condition of

having an irreflexive polarization relation excludes standard monotonicity, i.e.,
the polarity of a function symbol with respect to one relation with itself, and
this is of course very restrictive for practical specification. But monotonicity and
transitivity of α, both combined with symmetry, allow us to consider variable
instance atoms for which the following order among relation has to hold:

α;β;α ⊑ α;β

In the case of left-linear rewrite rules, it would be the sentence

β;α ⊑ α;β .

Of course, such property holds when α and β are the same relation.

4.7 Extensions of Term Rewriting

The obvious question arising at this point is how this general notion of rewriting
along binary relations translates to other extensions of term rewriting, such as
conditional rewriting and rewriting modulo theories, and how these techniques
may be applied to resolution-based theorem proving through saturation tech-
niques. Of course, all these extensions are of central importance, specially for
the research aims we motivated in chapter 1. Furthermore, it could also happen
that, by means of extending the general term rewriting technique presented in
this thesis, we may be able to cope with the problems arising when reasoning
with general binary relations in addition to equality.

4.7.1 Linearization. Consider, for example, the bi-rewriting case, i.e., a
theory in our logic with one unique special relation, namely inclusion. In 4.6.2 we
showed that, when rewrite rules are left-linear, then all critical atoms generated
by an overlap below a variable position —all variable instance atoms— converge.
In particular, recall example 2.5.7 and remark 2.5.8, were we saw how rewrite
rules

f(x, x) −→
⊆

x (4.1)

a −→
⊇

b (4.2)
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generate infinite many new rules of the form

f(C[b], C[a]) −→
⊆
C[a] ,

where C[ ] is an arbitrary context.

At first sight, one might think that such situation could be avoided by lin-
earizing rule (4.1) containing the repeated variable x, replacing the rule by the
following two conditional left-linear rewrite rules

f(y, x) −→
⊆

x if y ⊆ x (4.3)

f(x, y) −→
⊆

x if y ⊆ x (4.4)

because now, any inclusion of the form f(C[b], C[a]) ⊆ C[a] can be proved
by conditional rewriting, no matter what the context C is. For example, let
C ≡ f(·, a). We can perform the rewrite step

f(f(b, a), f(a, a)) −→
⊆
f(a, a)

applying rule (4.3) if we can proof the condition f(b, a) ⊆ f(a, a). Indeed, this
can be done applying rule (4.2).

Unfortunately, linearization alone does not save us of having to generate
critical atoms by overlapping rewrite rules below variable positions. Look at the
following counter-example.

4.7.2 Example. We add a third rewrite rule to the two rewrite rules above:

f(x, x) −→
⊆

x

a −→
⊇

b

a −→
⊇

c

After linearizing we obtain the following system

f(y, x) −→
⊆

x if y ⊆ x (4.5)

f(x, y) −→
⊆

x if y ⊆ x (4.6)

a −→
⊇

b (4.7)

a −→
⊇

c (4.8)

These rewrite rules do not generate critical atoms due to non-variable overlaps
(standard critical atoms). But the system is not complete, because though
f(b, c) ⊆ a is a theorem in the underlying inclusion theory, it is not provable
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with a rewrite proof: We cannot apply neither rule (4.5) nor rule (4.6), because
we cannot proof their respective conditions:

f(b, c) −→
⊆

c only if b ⊆ c

f(b, c) −→
⊆

b only if c ⊆ b

4.7.3 Contextual critical atoms. Overlaps on variable positions are still
necessary for generating critical atoms, even if the rules are left-linear, because
the conditions make them in general non-convergent. For instance, rules (4.5)
and (4.8) form critical atom by unifying a with x, thus generating the following
contextual critical atom:

f(y, c) ⊆ a if y ⊆ a

But in order to make this critical atom converge, by applying the same rules
that generated it, we need that

if we can proof the condition of rule (4.5) with the substitution of x
by a (which is the left-hand side of rule (4.8)),

then we should be able to proof condition of rule (4.5) with the
substitution of x by c (which is the right-hand side of rule (4.8)).

Unfortunately, this does not hold: From y ⊆ a and a ⊇ c we cannot imply y ⊆ c.
Again, if the binary relation was symmetric, for example taking equality (=)
instead of inclusion (⊆), the above implication would hold, and critical atom
generation, overlapping on variable positions, would not be necessary, because
all contextual critical atoms would always converge.

4.7.4 Saturation. In the example above we avoid the problem of generat-
ing critical atoms due to the overlap on variable positions by joining all rules
obtained from linearization into one unique conditional rule:

f(y, z) ⊆ x if y ⊆ x ∧ z ⊆ x ,

But then it is obvious that conditional rewriting techniques are not applicable
any more, and a general saturation calculus based on chaining, at least for Horn
theories, should be taken under consideration. If this will lead us to obtain some
significant gain over dealing with context variables is not clear at first sight.

From example 4.7.2 we also conclude that we might be able to proof the
inclusion f(b, c) ⊆ a with the linearized system, if the binary relation was total
(which would mean that either b ⊆ c or c ⊆ b, which is not the case with inclu-
sion). Thus, maybe linearization together with conditional rewriting suffice for
theories with total orderings. Actually, Bachmair and Ganzinger presented or-
dered chaining calculi for theories with total orderings (Bachmair and Ganzinger,
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1994a), but with the additional restriction of having an ordering without end-
points, and considering only non-monotonic function symbols.

Of course, all these ideas deserve a thorough and detailed analysis in the
future, not only for the special relation ⊆, but also for general binary relations
as studied in this thesis. Instead, in the next part, we are going to use the
tools developed in these last two chapters —the logic of special relations and
the notion of term rewriting along binary relations— to study computational
issues of particular specification frameworks. We believe that the logic and its
term rewriting based calculus suite well for describing the pragmatics of special
relations in specification and reasoning. We shall see its potential on some
examples. But we want to emphasize that we will not use the full expressiveness
of the logic and the term rewriting mechanism, but only part of it. This already
suffices to highlight the gain achieved with this new reasoning tool.
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Chapter 5

Specification Frameworks

with Special Relations

We have defined a logic of special relations and have explored the practicability
of a term rewriting based proof calculus, in order to lay down a framework for
investigating several other frameworks of algebraic specification. Since we want
to look at several logics of specification as particular instances of our logic of
special relations, so that later, in chapter 6, we can analyze how the general
calculus of term rewriting along special relations translates to each particular
framework, we first need to show that our logic of special relation indeed suites
well as a semantic framework.

Therefore, we give a general axiomatization of our logic of special relations,
but also of membership equational logic (Bouhoula et al., 1997a), rewriting logic
(Meseguer, 1992), and specifications with set relations (Kriaučiukas and Walicki,
1995), and we show that there exist conservative maps of logics, as defined in
(Meseguer, 1989), between the latter three and the logic of special relations. The
existence of these maps supports the validity of our logic of special relations as
a general framework, and we claim that the role played by special relations in
specifications is better highlighted in our logic than, for instance, in first-order
logic. In addition, and since in chapter 4 we have described a rewriting-based
calculus, by interpreting theories in the logic of special relations as term rewriting
systems, we will be able to analyze, in chapter 6, computational issues of these
three specification paradigms from such general term rewriting perspective.

Our framework can be made general enough to accommodate many other
specification paradigms, with the purpose of studying rewriting based proof cal-
culi for them. For instance, unified algebras (Mosses, 1989), equational type
logic (Manca et al., 1990), or the calculus of refinements (Levy, 1995) could, in
principle, be mapped to our logic of special relations, or to minor extensions of
it, too, though a careful and detailed study is necessary.

83
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5.1 General Logics

Having logics rigorously axiomatized allows one to study how different logics are
related, or at least some specific components of these logics, such as their entail-
ment systems and proof calculi. We can then speak of a space of logics, where
maps preserve the essential properties, such as deduction, logical consequence,
structure of proofs, initiality of models, and completeness of its entailment sys-
tem.

In the following, we resume the basic ideas underlying the general axioma-
tization of logics, in order to cover their basic components: syntax, entailment,
satisfaction, and proof. For further details, we refer to (Meseguer, 1989).

5.1.1 Entailment system. An entailment system describes, given a signa-
ture Ω, the entailment relation between a set of Ω-sentences Γ and a Ω-sentence
ϕ, denoted Γ ⊢Ω ϕ.

5.1.2 Definition. An entailment system is a tuple (Sign, sen,⊢), such that

• Sign is a category of signatures;

• sen : Sign→ Set is a functor assigning to each Ω a set of Ω-sentences;

• ⊢ is a function assigning to each Ω a binary relation ⊢Ω⊆ P(sen(Ω)) ×
sen(Ω), such that,

1. for all ϕ ∈ sen(Ω), {ϕ} ⊢Ω ϕ (reflexivity),

2. if Γ ⊢Ω ϕ and Γ ⊆ Γ′ then Γ′ ⊢Ω ϕ (monotonicity),

3. if Γ ⊢Ω ϕ and Γ ∪ {ϕ} ⊢Ω ψ then Γ ⊢Ω ψ (transitivity),

4. if Γ ⊢Ω ϕ, then for all signature morphism H : Ω → Ω′ of Sign,
sen(H)(Γ) ⊢Ω′ sen(H)(ϕ) (⊢-translation).

5.1.3 Definition. Given a category of signatures Sign, its category Th of
theories has as objects T = (Ω,Γ), where Ω is a signature, and Γ ⊆ sen(Ω). A
theory morphism H : (Ω,Γ) → (Ω′,Γ′) is a signature morphism H : Ω → Ω′,
such that sen(H)(Γ) ⊆ Γ′1.

5.1.4 Institution. Within this approach, the model-theoretic aspect is cap-
tured by the notion of institution of Goguen and Burstall (Goguen and Burstall,
1984). An institution describes, given a signature Ω, the logical consequence rela-
tion |= between an Ω-model Mod(Ω) and an Ω-sentence ϕ, denoted Mod(Ω) |=Ω

ϕ.

1This is not the most general definition Meseguer gives for Th; I’m actually only interested
in axiom-preserving theory morphisms.
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5.1.5 Definition. An institution is a tuple (Sign, sen,Mod, |=), such that

• Sign is a category of signatures;

• sen : Sign→ Set is a functor assigning to each Ω a set of Ω-sentences;

• Mod : Signop → Cat is a contravariant functor assigning to each Ω a
category of Ω-models;

• |= is a function assigning to each Ω a binary relation |=Ω⊆ |Mod(Ω)| ×
sen(Ω), such that, for all signature homomorphisms H : Ω → Ω′ and
models M ′ ∈ |Mod(Ω′)|,

Mod(H)(M ′) |=Ω ϕ if and only if M ′ |= sen(H)(ϕ) .

5.1.6 Logic. A logic covers both, the provability and the model-theoretic
sides. It is therefore the combination of an entailment system and an institution,
with the additional notions of soundness and completeness relating both parts:

5.1.7 Definition. A logic is a tuple (Sign, sen,Mod,⊢, |=), where

• (Sign, sen,⊢) is an entailment system;

• (Sign, sen,Mod, |=) is an institution,

satisfying the following soundness property: For each signature Ω of Sign and
ϕ ∈ sen(Ω),

Γ ⊢Ω ϕ implies Γ |=Ω ϕ .

In addition, if Γ |=Ω ϕ implies Γ ⊢Ω ϕ, the logic is complete.

5.1.8 Map of logics. Recall that the purpose of axiomatizing logics was to
study how different logics are related, by speaking of a space of logics, where
maps preserve their essential properties. We will be interested in mapping log-
ics, which itself means mapping both components of the logics, namely their
entailment systems and their institutions.

5.1.9 Definition. A map of entailment system (Φ, α) : (Sign, sen,⊢) −→
(Sign′, sen′,⊢′) consists of

• a natural transformation α : sen
�
−→ sen′ ·Φ and

• an α-sensible2 functor Φ : Th→ Th′,

such that
Γ ⊢Ω ϕ implies αΩ(Γ) ⊢′Φ(Ω,∅) αΩ(ϕ) .

The map (Φ, α) is conservative if the previous implication is an equivalence.

2Φ is α-sensible when all theorems of Φ(Ω, Γ) are completely determined by Φ(Ω, ∅) and
αΩ(Γ).
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5.1.10 Definition. A map of institutions (Φ, α, β) : (Sign, sen,Mod,
|=) −→ (Sign′, sen′,Mod′, |=′) consists of

• a natural transformation α : sen
�
−→ sen′ ·Φ,

• an α-sensible functor Φ : Th→ Th′, and

• a natural transformation β : Mod′ · Φop �
−→Mod,

such that, for each Ω ∈ Sign, ϕ ∈ sen(Ω), and M ′ ∈Mod′(Φ(Ω, ∅)),

M ′ |=Φ(Ω,∅) αΩ(ϕ) if and only if β(Ω,∅)(M
′) |=Ω ϕ .

5.1.11 Definition. A map of logics (Φ, α, β) : (Sign, sen,Mod,⊢, |=) −→
(Sign′, sen′,Mod′,⊢′, |=′) consists of

• a natural transformation α : sen
�
−→ sen′ ·Φ,

• an α-sensible functor Φ : Th→ Th′, and

• a natural transformation β : Mod′ · Φop �
−→Mod,

such that

• (Φ, α) : (Sign, sen,⊢) −→ (Sign′, sen′,⊢′) is a map of entailment systems,
and

• (Φ, α, β) : (Sign, sen,Mod, |=) −→ (Sign′, sen′,Mod′, |=′) is a map of
institutions.

5.2 The Logic of Special Relations

We are going to axiomatize the logic of special relations introduced in chapter
3 within Meseguer’s framework of general logics. For this purpose, we define its
entailment system and its institution.

5.2.1 Entailment system. Signatures of the logic of special relations, as
defined in 3.2.1, form a category SignLSR, by taking as signature homomor-
phisms pairs made out of a function H1 : S −→ S′ between special rela-
tions, and a function H2 : Σ −→ Σ′ between function symbols, preserving
the partially ordered ‘monoid-with-anti-involution’ structure, and the ranked
‘alphabet-with-monotonicity-properties’ structure, respectively. This category
of signatures, together with the functor senLSR : SignLSR −→ Set assigning to
each signature Ω the set of all well-formed Ω-sentences, as defined in 3.2.5,
and the function ⊢LSR assigning to each signature Ω the entailment relation
⊢LSR

Ω ⊆ P(senLSR(Ω)) × senLSR(Ω), as defined in 3.2.7, all together form an en-
tailment system (SignLSR, senLSR,⊢LSR). We denote with ThLSR the category of
theories in the logic of special relations.
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5.2.2 Institution. Let Ω be a signature in the logic of special relations.
Models over Ω, as defined in 3.3.11, form a category ModLSR(Ω), by taking
as homomorphisms relators3 between quasi-allegories whose restriction to their
respective subcategories of functions are Cartesian closed functors. ModLSR :
(SignLSR)op −→ Cat is then the contravariant functor mapping signature homo-
morphisms to reduct functors between their respective categories of models. This
functor ModLSR, together with the category of signatures SignLSR and the functor
senLSR discussed above in 5.2.1, and together with the function |=LSR assigning
to each signature Ω the satisfaction relation |=LSR

Ω ⊆ |ModLSR(Ω))| × senLSR(Ω), as
defined in 3.3.11, all together form an institution (SignLSR, senLSR,ModLSR, |=LSR).

5.3 Mapping Membership Equational Specifica-

tions

We start by mapping membership equational specifications (Bouhoula et al.,
1997a) to our logic of special relation, since it is the paradigm that inspired us
to look at specifications from the perspective of a logic of special relations. This
is the example we will treat in detail. Since the subsequent examples follow a
similar pattern, we will discuss certain aspects of their respective maps more
superficially.

In order to ease the following presentation, we are going to consider only the
unkinded case, i.e., when K = {K} is a singleton set. The following discussion
can easily be extended to cover the many-kinded case. We refer to (Meseguer,
1998) for further details. To gain on generality, we map membership equational
logic into a logic of special relations with conditional sentences, as discussed in
section 3.4.

5.3.1 Membership equational logic. Signature are triples Ω = ((K,Σ),
{SK}K∈K), where

• (K,Σ) is a many-kinded signature (here one-kinded),

• {SK}K∈K is a family of sets of sorts (for us it will be a unique set).

Atomic formulae are expressions t : s or t ≈ t′, where t, t′ ∈ TΣ(X ) and s ∈ SK .
Sentences are expressions

A if B1 ∧ · · · ∧Bn n ≥ 0 ,

where A and Bi, i = 1 . . . n, are atomic formulae. Sentences of the particular
form

x : s1 if x : s2 ,

where x ∈ X , are called subsort sentences, because they induce a subsort relation
6 over the sorts of SK . Theories are pairs T = (Ω,Γ), where Ω is a signature and

3Relators are monotonic functors that preserve converse (see e.g., (Mitchell and Scedrov,
1993; Bird and de Moor, 1997) for further details).
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1. reflexivity: For each term t ∈ TΣ(X )

t ≈ t

2. membership:
t ≈ t′ t : s

t′ : s

3. symmetry:
t ≈ t′

t′ ≈ t

4. transitivity:
t ≈ t′ t′ ≈ t′′

t ≈ t′′

5. congruence: For each function symbols f ∈ Σn

t1 ≈ t′1 · · · tn ≈ t
′
n

f(t1, . . . , tn) ≈ f(t′1, . . . , t
′
n)

6. modus ponens: For each sentence t ≈ t′ if ū : s̄ ∧ v̄ ≈ w̄ ∈ Γ, and for
each substitution σ : X 7→ TΣ(X )

σ(ū) : s̄ σ(v̄) ≈ σ(w̄)

σ(t) ≈ σ(t′)

For each sentence t : s if ū : s̄ ∧ v̄ ≈ w̄ ∈ Γ, and for each substitution
σ : X 7→ TΣ(X )

σ(ū) : s̄ σ(v̄) ≈ σ(w̄)

σ(t) : s

Figure 5.1: Inference rules of membership equational logic

Γ is a set of sentences. Sometimes we abbreviate sequences of terms t1, . . . , tn
with t̄, leaving n implicit. This kind of abbreviation also extends to sequences
of atomic formulae, such as s̄ ≈ t̄. Given a theory T = (Ω,Γ), we define the
entailment Γ ⊢MEL

Ω A, A being an atomic sentence, by the inference rules of figure
5.1.

Signatures, sentences, and entailment of membership equational logic form
together the entailment system (SignMEL, senMEL,⊢MEL). We will denote with
ThMEL the category of membership equational theories.

Given a signature Ω = ((K,Σ), {SK}K∈K), a model in membership equa-
tional logic is an Ω-algebra, i.e., a (K,Σ)-algebra A together with an assignment
to each s ∈ SK , K ∈ K, of a subset As ⊆ AK . An Ω-algebra A satisfies the
sentence

1. ϕ = t ≈ t′ if ū : s̄ ∧ v̄ ≈ w̄
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2. ϕ = t : s if ū : s̄ ∧ v̄ ≈ w̄

n,m ≥ 0, and we write A |=MEL

Ω ϕ if and only if, for each K-sorted assignment
ρ : X → A, such that [[ū]]ρ ∈ As̄ and [[v̄]]ρ = [[w̄]]ρ, then

1. [[t]]ρ = [[t′]]ρ

2. [[t]]ρ ∈ As

where [[ ]]ρ : TΣ(X )→ A is the unique Σ-homomorphism extending ρ. Signatures,
sentences, models, and logical consequence within membership equational logic
form together the institution (SignMEL, senMEL,ModMEL, |=MEL).

5.3.2 Map of entailment systems. We map an atomic formula in mem-
bership equational logic, i.e., an equality t ≈ t′ or a membership t : s, to the
formulae t ≈ t′ and t : s in the logic of special relations, where symbols ≈ and :
now stand for special relations, for which we will have to specify their properties
explicitly, by means of the relation-algebra structure, and also by means of the
monotonicity properties of the function symbols. We write α(t ≈ t′) = t ≈ t′

and α(t : s) = t : s. We map a subsort sentence x : s if x : s′ to the atomic
formula s′ 6 s, where 6 stands for a special relation, too. We will also need to
specify how ≈, : and 6 relate to each other. All this will become clear as we
look at how theories are mapped.

We map a membership equational theory (Ω,Γ), with Ω = ((K,Σ), {SK}K∈K),
to a many-sorted theory (Ω′,Γ′) in the logic of special relation, where

• Ω′ = (M, (S∗,Σ′)),

– M = {s1, s2} is a set of two sort symbols,

– S∗ = (S∗, ; , 1 ′, ,̆⊑) is the smallest partially ordered free monoid with
anti-involution generated over the set S = {≈, :,6} satisfying:

1 ′ ⊑≈ ≈̆ ⊑≈ ≈ ; ≈ ⊑≈

1 ′ ⊑6 6 ; 6 ⊑6

≈ ; : ⊑: : ; 6 ⊑:

– Σ′ = Σ ∪ K ∪ SK is an alphabet of function symbols, such that all
f ∈ Σ have rank f : s1 × · · · × s1 → s1, and all c ∈ K ∪ SK have rank
c :→ s2. Furthermore for all f in Σ, all argument positions i in f are
monotonic with respect to (≈,≈).

• Γ′ = α(Γ) ∪ {s 6 s′ | ∀t ∈ TΣ(X ) (Γ ⊢ t : s⇒ Γ ⊢ t : s′)}, such that

– α(A) = A, if it is not a subsort sentence

– α(x : s1 if x : s2) = s2 6 s1

We write Φ(Ω,Γ) = (Ω′,Γ′). Unfortunately, Φ : ThMEL −→ ThLSR is not an α-
sensible functor as required by definition 5.1.9. We need to sacrifice α-sensibility
of the functor, so that its natural transformation α does not only depend on the
signatures, but also on the theories, otherwise we would not be able to have a
conservative map of institutions (see proposition 5.3.5).
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5.3.3 Proposition. The map (Φ, α) : (SignMEL, senMEL,⊢MEL) −→ (SignLSR,
senLSR,⊢LSR) is a conservative map of entailment systems.

Proof: We first proof that Γ ⊢MEL ϕ implies α(Γ) ⊢LSR α(ϕ)4. In fact, the
inferences of membership equational logic given in figure 5.1 can be emulated by
a series of inferences in the logic of special relations given in figure 3.2:

1. reflexivity:

t 1 ′ t
t ≈ t

2. membership:
t ≈ t′

t′≈̆t
t′ ≈ t

t : s

t′ ≈; : s

t′ : s

3. symmetry:
t ≈ t′

t′ ≈̆ t
t′ ≈ t

4. transitivity:
t ≈ t′ t′ ≈ t′′

t ≈;≈ t′′

t ≈ t′′

The emulation of congruence is a little bit trickier and is shown in figure 5.2.
modus ponens is emulated directly by replacement (see section 3.4), except
for following special case:

6. modus ponens with x : s2 if x : s1

t : s1 s1 6 s2
t :; 6 s2
t : s2

Successive modus ponens inferences can be emulated in two ways:

• either
t : s1 s1 6 s2

t :; 6 s2
t : s2

s2 6 s3

t :; 6 s3
t : s3

4The reader familiar with Meseguer’s framework of general logics will have noticed that we
have dropped the subscripts of α, ⊢MEL and ⊢LSR as the signatures are clear from the context.
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• or

t : s1

s1 6 s2 s2 6 s3
s1 6; 6 s3
s1 6 s3

t :; 6 s3
t : s3

The pragmatics pushes me to emulated such successive modus ponens infer-
ences in the second way, i.e., through the transitivity of the subsort relation
6.

To prove that this map is conservative, we need to show that α(Γ) ⊢LSR α(ϕ)
implies Γ ⊢MEL ϕ. In fact, those inferences in our logic with special relations
that have translated atomic formulae as conclusions and translated sentences as
premises can be emulated by a succession of several inferences in membership
equational logic. Conclusions α(ϕ), being ϕ atomic, can only be of the form
s ≈ t or s : t, but not s 6 t.

1. Inferences starting with translated sentences and concluding with an equal-
ity:

(a)

t 1 ′ t
t ≈ t

(b)
t ≈ s

s ≈̆ t
s ≈ t

(c)
s ≈ u u ≈ t

s ≈;≈ t
s ≈ t

(d) For every f ∈ Σn, i = 1 . . . n

s ≈ t

f(. . . ,
i)

s, . . . ) ≈ f(. . . ,
i)

t , . . . )

(e)

σ(ū) ≈ σ(v̄) σ(w̄) : σ(r̄)

σ(s) ≈ σ(t)

whenever s ≈ t if ū ≈ v̄ ∧ w̄ : r̄ ∈ α(Γ)

2. Inferences starting with translated sentences and concluding with a mem-
bership:
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(a)
s ≈ t t : u

s ≈; : u

s : u

(b)

s : t

t 6 v v 6 u

t 6; 6 u

t 6 u
s :; 6 u

s : u

(c)
σ(ū) ≈ σ(v̄) σ(w̄) : σ(r̄)

σ(s) : σ(t)

whenever s : t if ū ≈ v̄ ∧ w̄ : r̄ ∈ α(Γ)

Each of these inferences can be emulated in membership equational logic in the
following way:

1. (a)

t ≈ t

(b)
t ≈ s

s ≈ t

(c)
s ≈ u u ≈ t

s ≈ t

(d) For every f ∈ Σn, i = 1 . . . n

u1 ≈ u1
· · ·

i)

s ≈ t · · ·
un ≈ un

f(u1, . . . ,
i)

s, . . . , un) ≈ f(u1, . . . ,
i)

t, . . . , un)

(e)
σ(ū) ≈ σ(v̄) σ(w̄) : σ(r̄)

σ(s) ≈ σ(t)

because s ≈ t if ū ≈ v̄ ∧ w̄ : r̄ ∈ α(Γ)

2. (a)
s ≈ t

t ≈ s
t : u

s : u



94 Chapter 5. Specification Frameworks with Special Relations

(b)
s : t

s : v
s : u

modus ponens with x : v if x : t and with x : u if x : v

(c)
σ(ū) ≈ σ(v̄) σ(w̄) : σ(r̄)

σ(s) : σ(t)

because s : t if ū ≈ v̄∧w̄ : r̄ ∈ α(Γ) and is not of the form x : v if x : t

2

5.3.4 Map of institutions. For the sake of simplicity, we will only treat
the map of the unconditional fragment of membership equational logic (except
for subsort sentences) into the unconditional fragment of the logic of special
relations, because, in section 6.1, this is the case we are interested in. For how a
map of institutions involving conditional sentences is done, see the one described
in 7.2.10.

Let (Φ, α) be a map of entailment system as discussed in 5.3.2, and let T =
(Ω,Γ) be a membership equational theory. A model A of its corresponding
theory Φ(T ) in the logic of special relations is a quasi-allegory whose subcategory
of functions Fun(A) is Cartesian closed, with

• two objects [[s1]] and [[s2]] corresponding to the two sorts of M ,

• a function [[f ]] : [[s1]]
n −→ [[s1]] for each f ∈ Σn,

• a function [[c]] : 1 −→ [[s2]] for each c ∈ K ∪ SK ,

• arrows [[≈]] : [[s1]] −→ [[s1]], [[:]] : [[s1]] −→ [[s2]], and [[6]] : [[s2]] −→ [[s2]],

such that

id[[s1]] ≤ [[≈]] [[≈]]◦ ≤ [[≈]] [[≈]] · [[≈]] ≤ [[≈]] (5.1)

id[[s2]] ≤ [[6]] [[6]] · [[6]] ≤ [[6]] (5.2)

[[:]] · [[≈]] ≤ [[:]] [[6]] · [[:]] ≤ [[:]] (5.3)

and for all n ∈ N, f ∈ Σn, and i ∈ [1 . . . n],

apply · (curry i([[f ]])× [[≈]]) ≤ [[≈]] · [[f ]] (5.4)

and for each sentence in Γ of the kind

1. t ≈ t′, we have [[t′]] ≤ [[≈]] · [[t]]

2. t : s, we have [[s]] ≤ [[:]] · [[t]]

3. x : s′ if x : s, we have [[s′]] ≤ [[6]] · [[s]]
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and for each induced subsort assertion s 6 s′ (see 5.3.2), we have [[s′]] ≤ [[6]] · [[s]].
Arrow [[≈]] induces a relation ∼ between arrows (functions) f, g in Fun(A),

by saying that

f ∼ g if and only if g ≤ [[≈]] · f in A .

It can be proved that ∼ is a congruence relation by means of inequations (5.1).
Let A be the homset Hom(1, [[s1]]) in Fun(A)/ ∼. It can be proved that A is
a (K,Σ)-algebra by means of inequations (5.4). We now can assign to each sort
symbol s ∈ SK the set

As = {[t] ∈ A | t ≤ [[:]]◦ · [[s]]}5 ,

which is, of course, a subset of A.
We map the model of Φ(T ), i.e., quasi-allegory A, to the Ω-algebra A, and

write β(A) = A, where β : ModLSR ·Φop �
−→ModRL is a natural transformation.

5.3.5 Proposition. The map (Φ, α, β) : (SignMEL, senMEL,ModMEL, |=MEL) −→
(SignLSR, senLSR,ModLSR, |=LSR) is a map of institutions.

Proof: Indeed β(A) |=MEL ϕ if and only if A |=LSR α(ϕ)6:

• If ϕ = t ≈ t′ is an equality in membership equational logic, β(A) |=MEL

t ≈ t′ if and only if arrows [[t]], [[t′]] : 1 → [[s1]] are in the same equivalence
class of ∼, if and only if [[t′]] ≤ [[≈]] · [[t]].

• If ϕ = t : s is a membership in membership equational logic, β(A) |=MEL

t : s if and only if arrow [[t]] is in As, if and only if [[t]] ≤ [[:]]◦ · [[s]].

• If ϕ = x : s′ if x : s is a subsort sentence in membership equational
logic we have β(A) |=MEL x : s′ if x : s if and only if for all valuations
ρ : X → A, we have that

ρ(x) ∈ As implies ρ(x) ∈ As′ ,

and this is true if and only if [[s]] ≤ [[6]] · [[s′]].

2

5.4 Mapping Rewriting Specifications

In this section, we show how rewriting logic is captured within the logic of
special relations, by means of a conservative map of logics. Rewriting logic is the
inherent logic underlying rewrite systems (Meseguer, 1992), and has turned out

5Recall that A is a set of equivalence classes.
6Again, the reader familiar with Meseguer’s framework of general logics will have noticed

that we have dropped the subscripts of α, β, |=MEL and |=LSR.
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1. reflexivity: For each t ∈ TΣ(X ),

[t]⇒ [t]

2. transitivity:
[t]⇒ [t′] [t′]⇒ [t′′]

[t]⇒ [t′′]

3. congruence: For each f ∈ Σn,

[t1]⇒ [t′1] · · · [tn]⇒ [t′n]

[f(t1, . . . , tn)]⇒ [f(t′1, . . . , t
′
n)]

4. replacement: For each [t]⇒ [t′] ∈ Γ and substitution σ,

[σ(t)]⇒ [σ(t′)]

Figure 5.3: Inference rules of rewriting logic

to be suitable as a logical and semantic framework (Mart́ı-Oliet and Meseguer,
1993), and several system implementations are based on it, like Maude (Clavel
et al., 1996), ELAN (Borovansky et al., 1996), and CafeOBJ (Diaconescu et al.,
1998). In order to ease the following discussion we will be concerned only with
the unsorted, unconditional, and unlabeled fragment of rewriting logic. We refer
to (Meseguer, 1992) for further details.

5.4.1 Rewriting logic. Signatures in rewriting logic are tuples Ω = (Σ, E),
such that Σ is a ranked set of function symbols and E is a set of Σ-equations,
and sentences are expressions [t]E ⇒ [t′]E , also called rewrite rules, where t, t′ ∈
TΣ(X ) and [ ]E (or simply [ ]) denotes the E-equivalence class. A rewrite theory
is a pair T = (Ω,Γ), where Ω = (Σ, E) is a signature and Γ is a set of rewrite
rules. The entailment Γ ⊢RL

Ω ϕ is defined by the inference rules of figure 5.3.

Signatures, sentences, and entailment of rewriting logic form together the
entailment system (SignRL, senRL,⊢RL). We will denote with ThRL the category
of rewrite theories.

Recall from (Meseguer, 1992) that, given a rewrite signature (Σ, E), a model
in rewriting logic is a category S, together with a (Σ, E)-algebra structure given
by the family of functors {[[f ]]S : Sn −→ S | f ∈ Σn, n ∈ N} satisfying the
equations in E. Recall also that a sentence [t]⇒ [t′] is satisfied by such a model,

when there exists a natural transformation η : [[t]]S
�
−→ [[t′]]S in S. We write

S |=RL [t]⇒ [t′]. Signatures, sentences, models, and satisfaction within rewriting
logic form together the institution (SignRL, senRL,ModRL, |=RL).
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5.4.2 Map of entailment systems. We map a rewrite rule [s]⇒ [t] to the
sentence s ⇒ t in the logic of special relations, and write α([s] ⇒ [t]) = s ⇒ t,

where α : senRL
�
−→ senLSR ·Φ is a natural transformation. The symbol⇒ denotes

now a special relation, and we will have to specify its properties explicitly7, by
means of the relation-algebra structure, and also by means of the monotonicity
properties of the function symbols. This is given in detail below, as we discuss
the map of theories.

We capture the equivalence class structure of [s] and [t] by handling the
equations in E defining them as sentences in the logic of special relations at the
same level as rewrite rules. We will therefore deal with an additional special
relation ≈, for which we have to specify its properties explicitly, too8. We will
also need to specify how ≈ and ⇒ relate to each other. This will become clear
as we look at how theories are mapped.

We map a rewrite theory (Ω,Γ) to a theory (Ω′,Γ′) in the logic of special
relations, where

• Ω′ = (S∗,Σ),

– S∗ = (S∗, ; , 1 ′, ,̆⊑) being the smallest partially ordered free monoid
with anti-involution generated over the set S = {⇒,≈} satisfying:

1 ′ ⊑≈ ≈ ; ≈ ⊑≈ ≈̆ ⊑≈

1 ′ ⊑⇒ ⇒ ; ⇒ ⊑⇒ ≈ ; ⇒ ⊑⇒ ⇒ ; ≈ ⊑⇒

– Σ being a ranked alphabet of function symbols, such that for all f in
Σ, all argument positions i in f are monotonic with respect (≈,≈)
and with respect to (⇒,⇒)

• Γ′ = α(Γ) ∪ E.

We write Φ(Ω,Γ) = (Ω′,Γ′), where Φ : ThRL −→ ThLSR is an α-sensible functor.

5.4.3 Remark. Notice that since properties of relation ⇒ (and of ≈) are
explicitly stated by means of a partial order between relational expressions,
and by means of polarities of argument positions of function symbols, we could
theoretically vary its properties, depending on our needs. We could, for instance,
specify monotonicity of particular function symbols with respect to ⇒ only for
some of their argument positions, in order to deal with a slightly different kind
of ‘rewrite relation’, as noticed in Remark 4.1.10.

5.4.4 Proposition. The map (Φ, α) : (SignRL, senRL,⊢RL) −→ (SignLSR,
senLSR,⊢LSR) is a conservative map of entailment systems.

7Recall that in rewriting logic ⇒ is a reflexive, transitive, and an under substitutions and
context application stable binary relation.

8In this case ≈ is a reflexive, transitive, symmetric, and an under substitutions and context
application stable binary relation.
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Proof: Γ ⊢RL ϕ implies α(Γ) ∪ E ⊢LSR α(ϕ), because each inference rule of
rewriting logic given in figure 5.3 is captured by a finite application of inferences
rules of the logic of special relations of figure 3.2, in a similar way as seen in the
proof of Proposition 5.3.3. Thus, replacement is captured by the axiom in-
ference, reflexivity by the identity plus the partial order (1 ′ ⊑⇒) infer-
ences, transitivity by the composition plus the partial order (⇒;⇒⊑⇒)
inferences, and congruence by several monotonicity, composition, and
partial order (⇒;⇒⊑⇒) inferences. By additional composition inferences
(with equality axioms) and necessary partial order inferences, we capture
that in the original rewrite theory the inferences involve equivalent classes of
terms.

α(Γ) ∪ E ⊢LSR α(ϕ) implies Γ ⊢RL ϕ, because every derivation with inference
rules of figure 3.2 starting with premises being sentences with binary relation
⇒ or ≈ only, and ending with conclusions being sentences with binary relation
⇒ only, are equivalent to derivations with inference rules of figure 5.3, also in a
similar way as seen in the proof of Proposition 5.3.3. 2

5.4.5 Map of institutions. Let (Φ, α) be a map of entailment system as
discussed in section 5.4.2, and let T = (Ω,Γ) be a rewrite theory. A model A of
its corresponding theory Φ(T ) in the logic of special relations is a quasi-allegory
whose subcategory of functions Fun(A) is Cartesian closed, with

• an object [[s]] for the unique sort of the theory (recall that we are concerned
with the unsorted case here),

• a function [[f ]] : [[s]]n −→ [[s]] for each f ∈ Σn, and

• arrows [[≈]] : [[s]] −→ [[s]] and [[⇒]] : [[s]] −→ [[s]],

such that

id[[s]] ≤ [[≈]] [[≈]] · [[≈]] ≤ [[≈]] [[≈]]◦ ≤ [[≈]] (5.5)

id[[s]] ≤ [[⇒]] [[⇒]] · [[⇒]] ≤ [[⇒]] [[≈]] · [[⇒]] ≤ [[⇒]] [[⇒]] · [[≈]] ≤ [[⇒]] (5.6)

and for all n ∈ N, f ∈ Σn, and i ∈ [1 . . . n],

apply · (curry i([[f ]])× [[≈]]) ≤ [[≈]] · [[f ]] (5.7)

apply · (curry i([[f ]])× [[⇒]]) ≤ [[⇒]] · [[f ]] (5.8)

and for each equation t ≈ t′ ∈ E, we have that [[t′]] ≤ [[≈]] · [[t]], and for each
rewrite rule [t]⇒ [t′] ∈ Γ, we have that [[t′]] ≤ [[⇒]] · [[t]].

Arrow [[≈]] induces a relation ∼ between arrows (functions) f, g in Fun(A),
by saying that

f ∼ g if and only if g ≤ [[≈]] · f in A .

It can be proved that ∼ is a congruence relation by means of inequations (5.5)
and (5.7). Arrow [[⇒]] induces morphisms ψ : [f ] −→ [g] between two congruence
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classes of functions [f ] and [g] in the quotient category Fun(A)/ ∼, whenever
g ≤ [[⇒]] · f in A. Let S be the category whose object are the congruence
classes of functions [f ] : 1 −→ [[s]] in Fun(A)/ ∼, and whose arrows are the
morphisms just defined. It can be proved that S is indeed a category by means
of inequations (5.6). Each term t(x̄m) ∈ TΣ(X ) induces a functor Ft : Sm −→ S,
such that

Ft([f1], . . . , [fm])
def
= [[[t]] · 〈f1, . . . , fm〉],

where [f1], . . . , [fm] are objects in S (i.e., they are congruence classes of function
1 −→ [[s]] in Fun(A)/ ∼). It can be proved that Ft is indeed a functor by means of
inequation (5.8). Furthermore, due to the congruence relation ∼, these functors
form a (Σ, E)-algebra structure.

We map the model of Φ(T ), i.e., quasi-allegory A, to category S, and write

β(A) = S, where β : ModLSR ·Φop �
−→ModRL is a natural transformation.

5.4.6 Proposition. The map (Φ, α, β) : (SignRL, senRL,ModRL, |=RL) −→
(SignLSR, senLSR,ModLSR, |=LSR) is a map of institutions.

Proof: Let [t(x̄m)]⇒ [t′(x̄m)] be a rewrite rule. Indeed, β(A) |=RL [t(x̄m)]⇒

[t′(x̄m)] if and only if there exists a natural transformation η : Ft
�
−→ Ft′ ,

between the functors Ft, Ft′ : β(A)m −→ β(A) induced by terms t(x̄m) and
t′(x̄m) as discussed above. It can be proved, using inequations (5.6), that this
natural transformation exists if and only if [[t′(x̄m)]] ≤ [[⇒]] · [[t(x̄m)]], i.e., A |=LSR

α([t(x̄m)]⇒ [t′(x̄m)]). 2

5.5 Mapping Specifications with Set Relations

Our last example showing how specification paradigms are captured within our
framework will be the map of specifications with set relations (Kriaučiukas and
Walicki, 1995) to the logic of special relations. In this case, we will be concerned
only with the model-theoretic aspect of the map, i.e., its map of institutions.
Furthermore, and in order to ease the following discussion, we will deal only
with unconditional, i.e., atomic, formulae. We refer to (Kriaučiukas and Walicki,
1995) for further details.

5.5.1 Specifications with set relations. Signatures are ranked alphabets
of function symbols Ω, and they form a category SignSSR with arity preserving
functions as homomorphism. Sentences are atomic formulae of the form t ≈ t′,
t < t′, or t ⌢ t′, where t and t′ are ground terms in TΩ(∅). Let senSSR : SignSSR →
Set be the functor assigning to each signature the set of its well-formed sentences.
A specification (or theory) is a pair T = (Ω,Γ), where Ω is a signature and Γ is
a set of sentences. We will denote with ThSSR the category of theories.

Recall from (Kriaučiukas and Walicki, 1995) that, given a signature Ω, a
model is a Ω-multialgebra (A,F), where A is a non-empty carrier set, and F
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is a set of set-valued functions [[f ]] : An → P+(A), where f ∈ Ω and P+(A)
is the power-set of A with the empty set excluded. Recall also, that terms are
interpreted as follows:

[[f(t1, . . . , tn)]] =
⋃

{[[f ]](e1, . . . , en) | ei ∈ [[ti]]}

Such a model satisfies a sentence

• t ≈ t′ if [[t]] = [[t′]] are singleton sets,

• t < t′ if [[t]] ⊆ [[t′]],

• t ⌢ t′ if [[t]] ∩ [[t′]] 6= ∅.

We write (A,F) |=SSR t ≈ t′, (A,F) |=SSR t < t′, and (A,F) |=SSR t ⌢ t′, respec-
tively. Ω-multialgebras form a category ModSSR(Ω), thus signatures, sentences,
models, and satisfaction within specifications with set relations form together
the institution (SignSSR, senSSR,ModSSR, |=SSR).

5.5.2 Map of institutions. We map sentences t ≈ t′, t < t′, and t ⌢ t′, to
sentences t ≈ t′, t < t′, and t ⌢ t′ of the logic of special relation, such that ≈, <,
and ⌢ denote now special relations, and, as with the previous two maps, we will
have to specify their properties explicitly, by means of the relation-algebra struc-
ture, and also by means of the monotonicity properties of the function symbols.
Again, this will become clear as we look at how theories (i.e., specifications) are
mapped.

We map a specification with set relations (Ω,Γ) to a theory (Ω′,Γ′) in the
logic of special relations, where

• Ω′ = (S∗,Σ),

– S∗ = (S∗, ; , 1 ′, ,̆⊑) being the smallest partially ordered free monoid
with anti-involution generated over the set S = {≈, <,⌢} satisfying:

≈̆ ⊑≈ ≈ ; ≈ ⊑≈ < ; ≈ ⊑≈

1 ′ ⊑< < ; < ⊑< ≈ ; ⌢ ⊑< ≈ ⊑<

1 ′ ⊑⌢ ⌢̆ ⊑⌢ ⌢ ; < ⊑⌢ < ⊑⌢

– Σ being the ranked alphabet of function symbols in Ω, such that, for
all f in Σ, all argument positions i in f are monotonic with respect
(<,<) and (⌢,⌢), and they are, both, monotonic and antimonotonic
with respect to (≈, <)

• Γ′ = α(Γ), where

– α(t ≈ t′) = t ≈ t′

– α(t < t′) = t < t′
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– α(t ⌢ t′) = t ⌢ t′

We write Φ(Ω,Γ) = (Ω′,Γ′), where Φ : ThSSR −→ ThLSR is an α-sensible functor.
Let T = (Ω,Γ) be a specification with set relations. A model A of its

corresponding theory Φ(T ) in the logic of special relations is a quasi-allegory
whose subcategory of functions Fun(A) is Cartesian closed, with

• an object [[s]] for the unique sort,

• a function [[f ]] : [[s]]n −→ [[s]] for each f ∈ Σn, and

• arrows [[≈]] : [[s]] −→ [[s]], [[<]] : [[s]] −→ [[s]], and [[⌢]] : [[s]] −→ [[s]].

such that

[[≈]]◦ ≤ [[≈]] [[≈]] · [[≈]] ≤ [[≈]] [[≈]] · [[<]] ≤ [[≈]] (5.9)

id[[s]] ≤ [[<]] [[<]] · [[<]] ≤ [[<]] [[⌢]] · [[≈]] ≤ [[<]] [[≈]] ≤ [[<]] (5.10)

id[[s]] ≤ [[⌢]] [[⌢]]◦ ≤ [[⌢]] [[<]] · [[⌢]] ≤ [[⌢]] [[<]] ≤ [[⌢]] (5.11)

and for all n ∈ N, f ∈ Σn, and i ∈ [1 . . . n],

apply · (curry i([[f ]])× [[<]]) ≤ [[<]] · [[f ]] (5.12)

apply · (curry i([[f ]])× [[⌢]]) ≤ [[⌢]] · [[f ]]

apply · (curry i([[f ]])× [[≈]]) ≤ [[<]] · [[f ]]

apply · (curry i([[f ]])× [[≈]]) ≤ [[<]]◦ · [[f ]]

We explain how we get a multialgebra (A,F) out of the quasi-allegory A. We
take as carrier set the quotient of the set of all arrows in Fun(A) that actually
are specified to be singleton sets, with respect to the relation ∼ between arrows
induced by [[≈]].

A = {a : 1 −→ [[s]] in Fun(A) | a ≤ [[≈]] · a}/ ∼

It follows from inequations (5.9) that ∼ is indeed a congruence. For each f ∈ Σn

we define a set-valued function Ff : An → P+(A) in F , in such a way that, given
an element x of the carrier set A, it assigns to it the set of those elements of A
that correspond to arrows interpreted to be ‘below’ f composed with x in the
quasi-allegory (with respect to special relation <):

Ff (x)
def
= {[y] ∈ A | [[f ]] · x ≤ [[<]] · y}9 (5.13)

Unfortunately, models based on quasi-allegories and models based on multi-
algebras are not directly interchangeable. Therefore, in order to define a map
of institutions, we need that specifications with set relations satisfy an addi-
tional condition. A similar situation was encountered by Levy and Agust́ı when

9Recall that A is a set of equivalence classes.
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developing a bi-rewriting based operational semantics for non-deterministic spec-
ifications (Levy and Agust́ı, 1992).

Thus, we map the model of Φ(T ), i.e., quasi-allegory A, to the multialgebra
(A,F) as constructed above, only if the translated theory Φ(T ) satisfies the
following condition: For every two term t, t′ ∈ TΩ(∅)

Γ′ ⊢LSR t ⌢ t′ implies







Γ′ ⊢LSR u ≈ u
Γ′ ⊢LSR u < t
Γ′ ⊢LSR u < t′

(5.14)

fore some term u ∈ TΩ(∅). Then we write β(A) = (A,F), where β : ModLSR ·

Φop �
−→ModSSR is a natural transformation.

We will use the following lemma in order to proof that, by this way of obtain-
ing a multialgebra out of a quasi-allegory, we indeed have a map of institutions.

5.5.3 Lemma. The interpretation Tt ⊆ A of a ground term t ∈ TΩ(∅) in
multialgebra (A,F) is

Tt = {[y] ∈ A | [[t]] ≤ [[<]] · y} . (5.15)

Proof: By structural induction over the term t (we sketch it for unary function
symbols):

1. If t is a constant: trivial by (5.13).

2. If t = f(t′), for f ∈ Σ and t ∈ TΩ(∅):

Ff(t′)

= {definition of multialgebra, see 5.5.1}
⋃

x∈T ′

t

Ff (x)

= {induction hypothesis}

{[y] ∈ A | [[f ]] · x ≤ [[<]] · y , where x ∈ A ∧ [[t′]] ≤ [[<]] · x}

= {inequations (5.10) and (5.12)}

{[y] ∈ A | [[f ]] · [[t′]] ≤ [[<]] · y}

2

5.5.4 Proposition. The map (Φ, α, β) : (SignSSR, senSSR,ModSSR, |=SSR) −→
(SignLSR, senLSR,ModLSR, |=LSR) is a map of institutions.
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Proof: We distinguish three cases:

1. A |=LSR t ≈ t′ if and only if [[t′]] ≤ [[≈]] · [[t]]. And this happens if and only
if Tt and Tt′ are equal singleton sets, i.e., β(A) |=SSR t ≈ t′, because, by
definition of the map β and by inequations (5.9),

Tt = {[y] ∈ A | [[t]] ≤ [[<]] · y} = {[[[t]]]}
Tt′ = {[y] ∈ A | [[t′]] ≤ [[<]] · y} = {[[[t′]]]}

and [[[t]]] = [[[t′]]].

2. A |=LSR t < t′ if and only if

[[t′]] ≤ [[<]] · [[t]] (5.16)

and this happens if and only if [x] ∈ Tt implies [x] ∈ Tt′ , because

[x] ∈ Tt

≡ {equation (5.15)}

[[t]] ≤ [[<]] · x

⇒ {inequation (5.16)}

[[t′]] ≤ [[<]] · [[<]] · x

⇒ {inequations (5.10)}

[[t′]] ≤ [[<]] · x

≡ {equation (5.15)}

[x] ∈ Tt′

i.e., A |=LSR t < t′ if and only if Tt ⊆ T ′
t if and only if β(A) |=SSR t < t′.

3. A |=LSR t ⌢ t′ if and only if

[[t′]] ≤ [[⌢]] · [[t]]

and this happens if and only if there exists (by (5.11) and (5.14)) a [x] ∈ A,
such that

[[t′]] ≤ [[<]] · x

[[t′]] ≤ [[<]] · x (⇔ x ≤ [[<]]◦ · [[t′]])

i.e., [x] ∈ Tt and [x] ∈ Tt′ and we have A |=LSR t ⌢ t′ if and only if
Tt ∩ T

′
t 6= ∅ if and only if β(A) |=SSR t ⌢ t′.

2
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5.6 Conclusion

The pragmatics of special relations in membership equational logic, rewriting
logic, and specifications with set relations has been highlighted by describing
these frameworks as particular instances of our logic of special relations, and
thus capturing the properties of special relations with the partial order of a
relation-algebra structure. Furthermore, the abstract semantics based on quasi-
allegories served us also to capture membership algebras, R-systems, as well as
specific multialgebras. By having established maps of entailment systems and
maps of institutions between suitable axiomatizations of these logics, we are able
now to put the subsequent analysis of chapter 6 on a firm formal ground, and
consequently, we can safely apply particular aspects of our general perspective
of term rewriting, introduced in chapter 4, to the study of some computational
issues of these three specification paradigms.



Chapter 6

On Specific Computations

Our logic of special relations acts as a framework of several distinct specifica-
tion paradigms. In this chapter, we show that this yields some advantages for
analyzing certain computational issues of membership equational specifications,
rewriting specifications, and specifications of set relations, from the perspective
of term rewriting along binary relations, as defined in chapter 4.

In particular, we show that our framework unifies several notions that within
the area of order-sorted term rewriting, have been considered separately, namely
sort-decreasingness, confluence, and regularity. Furthermore, this allows us to
weaken the sort-decreasingness requirement of membership equational theories,
in a similar way as Eker and Meseguer did.

We further show a particular example of the possibility of effectively using
the technique of term rewriting along binary relations in theories with monotonic
function symbols —which, in general, is quite troublesome to automate—, by
making use of the notion of polarity, and by attempting to present an alternative
operational semantics for rewrite theories coming from Horn logic.

Finally, we revise the term-rewriting based proof calculus for specifications
with set relations proposed by Kriaučiukas and Walicki (1995), and show how
an erroneous notion of relative closeness falsifies their completeness theorem.

6.1 Order-sorted Term Rewriting

6.1.1 Sort-decreasingness. When considering completion procedures for
order-sorted rewrite system, one has to face the problem that order-sorted re-
placement of equals by equals is not complete in general, and consequently, one
has to pose the restriction of sort-decreasingness on the rewrite rules of the
rewrite system (Gnaedig et al., 1988). A rewrite rule is sort-decreasing if the
sort to which the right-hand side of the rule belongs, is subsort of the one to
which the left-hand side belongs. This restriction extends to the completion
process, being an new source of failure, in addition to unorientable equations.

Several unsatisfying and complicated ways to solve this problem have been
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106 Chapter 6. On Specific Computations

suggested (Gnaedig et al., 1988; Kirchner et al., 1988; Ganzinger, 1989; Comon,
1998), but it turns out that a semantic treatment of sorts provides an elegant
solution to the problems posed by the sort-decreasingness requirement. For in-
stance, within the paradigm of membership equational specifications, Bouhoula,
Jouannaud, and Meseguer study a Knuth-Bendix -like completion procedure that
avoids non-sort-decreasing rewrites, by adding semantic preserving membership
assertions to the original theory presentation, in a way similar to adding seman-
tic preserving equations when divergent critical pairs among rewrite rules arise
(Bouhoula et al., 1997b).

Let us analyze this latter approach from the perspective of our logic of special
relations.

6.1.2 Membership equational specifications. Recall from 5.3.1 that in
general a signature Ω = ((K,Σ), {SK}K∈K) in membership equational logic con-
sists of a many-kinded signature (K,Σ) and a family {SK}K∈K of sets of sorts;
for the sake of simplicity we will be only interested in the ‘one-kinded’ fragment,
i.e., when K is a singleton set, and the family {SK}K∈K consists of only one set
of sorts. Recall, also, that atomic formulae are membership assertions t : s or
equations t ≈ t′, where t, t′ ∈ TΣ(X ) and s ∈ SK , that sentences are expressions
A if B1∧· · ·∧Bn, n ≥ 0, where A and Bi, i = 1 . . . n, are atomic formulae, and
that sentences of the particular form x : s1 if x : s2, where x ∈ X , are called
subsort sentences, because they induce a subsort relation 6 over the sorts of SK .
From how we map membership equational theories into theories of the logic of
special relations, we consider subsort sentences as atomic formulae of the form
s1 6 s2. For the subsequent discussion, we will treat the unconditional fragment
of membership equational logic, with the exception of subsort sentences.

We have seen in 5.3.2 that a theory in membership equational logic is a par-
ticular theory in the logic with special relations, involving three different special
relations S = {≈, :,6} standing for ‘equality’, ‘membership’, and ‘subsort’ re-
spectively, and where the relation-algebra structure is partially ordered by the
minimal partial order such that

1 ′ ⊑≈ ≈̆ ⊑≈ ≈ ; ≈ ⊑≈

1 ′ ⊑6 6 ; 6 ⊑6

≈ ; : ⊑: : ; 6 ⊑:

6.1.3 Rewriting equality, membership, and subsort relations. From
how the map from membership equational logic to rewriting logic is defined (see
section 5.3), there is a particular restriction put on sentences coming from mem-
bership equational logic, namely that only special relations in S and not general
binary relations in S∗ are used. Thus, in order to check for local confluence of a
term rewriting system associated to a theory presentation, we consider overlaps
on the left-hand sides of the following five possible distinct rewrite relations:

s −→
≈
t s −→

∈
t s −→

∋
t s −→

6
t s −→

>
t
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6.1.4 Notation. Notice that we use the symbol ∈ instead of : as type assign-
ment, because it is a non-symmetric symbol like the special relation it denotes.
For the subsequent discussion, and when we are concerned with rewriting, we
will follow this convention, though in the logical sentences we will continue using
: instead of ∈.

6.1.5 Term rewriting in membership equational specifications. In
the very special case of membership equational logic, suitable restrictions on the
term ordering allow us to rule out some of the multiple cases of critical pairs we
would otherwise take into account.

1. By requiring all operator symbols for term construction to precede in the
ordering all sort constants we avoid rules of the form −→

∋
.

2. By requiring the ordering on sort constants to resemble the sort hierarchy,
i.e., s2 ≻ s1 whenever s2 > s1, we avoid rules of the form −→

6
.

We only need to consider three rewrite relations, −→
≈

, −→
∈

and −→
>

, and since

function symbols for term construction are kept separate from sort symbols only
the following two cases of local confluence need to be checked:

t

≈
~~}}

}}
}}

}}

≈   A
AA

AA
AA

A

t′

∗

≈
  

t′′

∗

≈
~~

t′′′

t

≈

wwnnnnnnnnnnnnnnn

∈   A
AA

AA
AA

A

t′

∗

≈
��

s′

∗
6

��

t′′

∈   
s′′

Furthermore, since sort symbols are only allowed to be constants in mem-
bership assertions, the unique polarized proper subterm positions are those with
respect to (≈,≈), and because of the symmetry of ≈, no variable instance pairs
need to be considered (see the discussion in 4.6.3). Each of the previous two
cases of local confluence correspond to the conventional notion on ‘local con-
fluence’ —as traditionally known from rewriting along equality— and a weaker
notion of sort-decreasingness as the one defined in (Bouhoula et al., 1997b). We
will show the latter observation in more detail.

6.1.6 Critical reduced membership. In the framework of membership
equational logic, sort-decreasingness is defined together with the notion of critical
reduced membership, which we state here adapted to our framework, and also to
the unconditional case.
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6.1.7 Definition. Given rewrite rules t −→
∈
s and l −→

≈
r and σ(t|p) = σ(l)

for some non-variable position p and most general unifier σ, then σ(t[r]p) : s is
a critical reduced membership.

A critical reduced membership is an actual critical atom as defined in definition
4.4.16 or 4.5.4, but with the additional restriction that only special relations
in S may appear in sentences. This restriction comes from how membership
equational logic is mapped into the logic of special relations (see section 5.3).

6.1.8 Definition. A critical reduced membership t′ : s is sort-decreasing if
there exists s′ such that s

∗
−→
>
s′ and t′ −→

∈
s′.

Analyzing this definition within our framework, it is obvious that sort-decreasing-
ness is actually too strong a condition for decidability of equality and member-
ship statements, because of the unnecessarily required one-step rewrite t′ −→

∈
s′:

t

≈
����

��
��

��

∈
��>

>>
>>

>>
>

t′

∈ ��

s

∗

6��
s′

We have seen, in section 4.3, that —given termination— local confluence
suffices for decidability of atomic formulae in theories with special relations. In
membership equational theories, the weaker sort-decreasingness condition that
actually suffices for decidability of equality, membership and subsort assertions
is the one stated in 6.1.5, and it is similar to Eker and Meseguer’s notion of
descendingness (Eker and Meseguer, 1997), who, following a different approach
than the one presented here, also suggested to weaken the sort-decreasingness
requirement in membership equational theories.

6.1.9 Regularity. Eker and Meseguer’s descendingness differs from our gen-
eral notion of local confluence in that it involves the notion of least sort, and
hence assumes strong regularity of the signature. Regularity is another well-know
restriction usually put on order-sorted signatures and assures the existence of
a least sort for a given term in the hierarchy of sorts. Although not necessary
for the decidability of equality, membership, and subsort assertions, membership
equational logic takes regular and strongly regular signatures into account, for
efficiency purposes.

Actually, in the presence of strong regularity, Eker and Meseguer’s descend-
ingness notion and our general local confluence are equivalent. This is easily
proved within our framework, and constitutes an additional argument in favor



6.1. Order-sorted Term Rewriting 109

of the elegance of term rewriting along binary relations for the study of such
issues, as we can see below.

6.1.10 Definition. A membership equational theory (and by extension the
term rewriting system) is strongly regular if for each term t there exists a sort
s, such that

1. t −→
∈
s, and

2. if there exists a sort s′ such that t −→
∈
s′, then s′

∗
−→
>
s.

We say that s is the least sort of t:

t

∋
����

��
��

��

∈ ��>
>>

>>
>>

s s′
∗

6

oo

The following is an alternative definition of descendingness to the one given
by Eker and Meseguer. It is given with respect to critical reduced memberships
as defined in definition 6.1.7, for comparison with the definition 6.1.8 of sort-
decreasingness.

6.1.11 Definition. A critical reduced membership t′ : s from rewrite rules
t −→

∈
s and l −→

≈
r, for which s is least sort of t, is descending, if there exists a

term t′′ with least sort s′ such that t′
∗
−→
≈
t′′ and s

∗
−→
>
s′.

Now we are ready to prove the equivalence between descendingness and general
local confluence, in the presence of strong regularity.

6.1.12 Proposition. Given a strongly regular term rewriting system, all
critical pairs between rules −→

≈
and −→

∈
are convergent, and thus the system is

locally confluent, if and only if all critical reduced memberships are descending.

Proof: For the ‘if’ direction, let t′ : s′ be a critical atom formed from rewrite
rules t −→

≈
t′ and t −→

∈
s′, and let s be the least sort of t. Then t′ : s is a critical

reduced membership formed from rewrite rules t −→
≈

t′ and t −→
∈

s, and, by

descendingness, there exists a term t′′ with least sort s′′, such that t′
∗
−→
≈
t′′ and

s
∗
−→
>
s′′, and by strong regularity, s′

∗
−→
>
s. Therefore, t′ : s′ is locally confluent:
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t
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For the ‘only if’ direction, let t′ : s be a critical reduced membership formed
from rewrite rules t −→

≈
t′ and t −→

∈
s, where s is least sort of t. Then, by local

confluence, there exists a term t′′ and a sort s′, such that t′
∗
−→
≈

t′′, t′′ −→
∈
s′,

and s
∗
−→
>
s′. By strong regularity, t′′ has a least sort s′′, and therefore s′

∗
−→
>
s′′,

consequently, t′ : s is descending:
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2

6.2 Bi-rewriting Equational and Horn Logic

In this section we apply the technique of term rewriting along binary relations
as a ‘multi-paradigm’ proof calculus. We will sketch this idea on a couple of
very intuitive examples, namely on equational logic and Horn logic, following
maps of these logics into rewriting logic, based on the work of Mart́ı-Oliet and
Meseguer (1993).

We are going to present the proof calculi from the particular perspective of
bi-rewriting, which is an instance of term rewriting along binary relations when
dealing with a unique, reflexive, transitive, but non-symmetric, special relation.
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We refer to 2.3.2 for notation and further details on bi-rewriting. Furthermore,
we are going to use the extension bi-rewriting modulo an equational theory
thoroughly studied in (Levy and Agust́ı, 1996).

Our attempt may appear strange at first sight, but our purpose is to show
that proof calculi for equational and Horn logic are in fact specific cases of bi-
rewrite systems, and that their peculiarities restrict in a significant way the
general proof calculus based on rewriting binary relations. Furthermore, the
presentation of a bi-rewriting based proof calculus for Horn theories serves also
as an example to show how function symbols with different polarizations arise
naturally in their corresponding theories in the logic of special relations. Because
of these polarizations, an ordered subterm chaining calculus for Horn logic can
be effectively applied (recall the discussion in section 4.5).

6.2.1 Bi-rewriting equational logic. Here we will be concerned with equa-
tional theories distinguishing regular axioms from structural axioms. Thus, an
equational theory is described as a tuple ((Σ, E),Γ), where (Σ, E) is a signa-
ture consisting of a set Σ of function symbols and a set E of structural axioms
(Σ-equations), and Γ is a set of equations of the form [s]E = [t]E between equiv-
alence classes of terms. Notice that if E is the empty set, the equations in Γ are
between terms.

An equational theory ((Σ, E),Γ) is mapped to a rewrite theory ((Σ, E),Γ′),
such that for every equation [s] = [t] in Γ, two rules [s]⇒ [t] and [t]⇒ [s] are in
Γ′, in order to make explicit the property of symmetry. The bi-rewrite system
〈Γ′

⇒,Γ
′
⇐〉 resulting from orienting the rules of Γ′ has for every rule [s] −→

⇒
[t] in

Γ′
⇒ also a rule [s] −→

⇐
[t] in Γ′

⇐, i.e., each former equation appears as a rewrite

rule in both rewrite systems.

6.2.2 Example. Let us consider the map of equational theory (({+, s, 0}, ∅),
Γ) specifying the (non-associative/commutative) sum operator

Γ =

{
x+ 0 ≈ x

x+ s(y) ≈ s(x+ y)

into rewrite theory (({+, s, 0}, ∅),Γ′) given below:

Γ′ =







x+ 0 ⇒ x
x ⇒ x+ 0
x+ s(y) ⇒ s(x+ y)
s(x+ y) ⇒ x+ s(y)
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Orienting the rules in Γ′, following e.g., a lexicographic path ordering based on
the signature precedence + ≻ s ≻ 0, we get the following bi-rewrite system:

Γ′
⇒ =

{
x+ 0 −→

⇒
x

x+ s(y) −→
⇒

s(x+ y)

Γ′
⇐ =

{
x+ 0 −→

⇐
x

x+ s(y) −→
⇐

s(x+ y)

6.2.3 Standard equational term rewriting. Because of symmetry, we
actually are duplicating each rewrite rule. Since the generation of critical pairs
is done by looking for overlaps between left-hand sides of two rules, one of each
rewrite system, in this case this is equivalent to look for overlaps among the
rules of one unique rewrite system, i.e., rules that actually rewrite on equations,
as already stated in remark 2.3.16. When dealing with equational theories, bi-
rewrite systems can be ‘simplified’ to standard rewrite systems, as for instance
the following equational term rewrite system for the equational theory of example
6.2.2.

Γ =

{
x+ 0 −→

≈
x

x+ s(y) −→
≈

s(x+ y)

Recall, also, from remark 2.3.18, that overlaps on variable positions are not
needed, since all resulting peaks are convergent. If the equational rewrite system
Γ is Church-Rosser, the bi-rewrite system 〈Γ′

⇒,Γ
′
⇐〉, obtained from the set Γ′ to

which Γ is mapped to, is also Church-Rosser.

In the case E is non-empty, rewriting must be done modulo the set of axioms
in E. As mentioned in 2.3.13, this has been thoroughly studied by the rewriting
community, and their results were applied also to bi-rewrite systems (Levy and
Agust́ı, 1996).

We already emphasized, in 2.3.19, that symmetry plays an important role,
because when reasoning with equivalence relations, we can deal with the notion
of equivalence class. Since we do not have two different rewrite systems any
more, critical pairs are computed by overlapping left-hand sides of rules of one
unique rewrite system. If such rewrite system is convergent, this has important
practical consequences: Each term not only has an irreducible term, the so called
normal form, but this normal form is also unique for each term. Rewriting is
done within an equivalence class, and all the members of this class share the same
normal form. A decision procedure for the word problem in equational theories,
based on convergent rewriting systems, is much simpler than in arbitrary rewrite
theories. Just the normal forms of the two terms of the equation we want to
validate are computed and checked for identity. Furthermore, the property of
don’t care non-determinism of theorem proving in convergent equational theories
is kept.
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6.2.4 Bi-rewriting Horn logic. We now present bi-rewriting of Horn the-
ories. It will serve to illustrate how different polarizations for function symbols
with respect to special relations arise naturally when Horn theories are mapped
into corresponding theories in rewriting logic, seen as a particular logic of special
relations (see section 5.4). These polarizations allow us to effectively apply or-
dered chaining inferences also on subterm position. As with equational theories,
we will be concerned with Horn theories that distinguish regular axioms from
structural axioms.

Thus, a Horn theory is described as a tuple ((Σ,Π, E),Γ). The triple (Σ,Π, E)
is the signature, and consists of a set Σ of function symbols, a set Π of predicate
symbols, and a set E of structural axioms (i.e., Σ-equations). Γ is a set of Horn
clauses of the form [s]E ←− [t1]E , . . . , [tn]E . A Horn theory ((Σ,Π, E),Γ) is
mapped to a two-sorted rewrite theory (Σ ∪Π′, E ∪ E′,Γ′) with sorts term and
prop. All functions symbols in Γ take arguments of sort term and are themselves
of sort term, and set Π′ contains a constant true of sort prop, a binary infix op-
erator ∧ of sort prop taking as argument two elements of sort prop, and for each
n-ary predicate p in Π, an n-ary function symbol p of sort prop taking as argu-
ments n elements of sort term. E′ is the set containing the laws of associativity,
commutativity, and identity (with respect to constant true) of operator ∧, and
Γ′ is the set of rules obtained by mapping each clause [s]E ←− [t1]E , . . . , [tn]E
to the rule [s]E∪E′ ⇒ [t1 ∧ · · · ∧ tn]E∪E′ , and each unit clause [s]E to the rule
[s]E∪E′ ⇒ [true]E∪E′ .

6.2.5 Example. Horn theory (({cesc, anna, jordi}, {parent, ancestor}, ∅),Γ)
—specifying the parent and ancestor relations— with the following clauses

Γ =







parent(cesc, anna)
parent(anna, jordi)
ancestor(x, y)← parent(x, y)
ancestor(x, y)← parent(x, z), ancestor(z, y)

is mapped to rewrite theory (({cesc, anna, jordi, parent( , ), ancestor( , ),
true, ∧ }, E′),Γ′) as follows, E′ being the set defined above:

Γ′ =







[parent(cesc, anna)]E′ ⇒ [true]E′

[parent(anna, jordi)]E′ ⇒ [true]E′

[ancestor(x, y)]E′ ⇒ [parent(x, y)]E′

[ancestor(x, y)]E′ ⇒ [parent(x, z) ∧ ancestor(z, y)]E′

6.2.6 SLD-resolution is not bi-rewriting. It is well-known that a proof
calculus based on the resolution inference is adequate as operational semantics
for Horn logic programming: Queries to a program are existentially quantified
formulas ∃x̄ u1, . . . , um

1, and are solved by refuting its negation. A resolution

1x̄ denotes the free variables of terms u1, . . . , um.
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step is then as follows2:

←− u1, u2, . . . , um s←− t1, . . . , tn
←− σ(t1), . . . , σ(tn), σ(u2), . . . , σ(um)

where σ is a most general unifier of u1 and s.
A query in its correspondent rewrite theory reads then ∃x̄ [u1 ∧ u2 ∧ · · · ∧

um]E′ ⇒ [true]E′ , which is solved also by refuting its negation. The inference
step which corresponds to the above resolution step reads:

[u1 ∧ u2 ∧ · · · ∧ um] 6⇒ [true] [s]⇒ [t1 ∧ · · · ∧ tn]

[σ(t1) ∧ · · · ∧ σ(tn) ∧ σ(u2) ∧ · · ·σ(um)] 6⇒ [true]
(6.1)

where σ is, as before, a most general unifier of u1 and s. This inference step is
actually a negative chaining step (see figure 2.1).

Since chaining is only done through the term on the left-hand side of the rule
representing the negated query, until a term in the E′-equivalence class of true
is reached, we can see this inference also as applying rule [s]⇒ [t1 ∧ · · · ∧ tn] in
order to narrow3 the ‘query term’ [u1 ∧ u2 ∧ · · · ∧ um]:

[u1 ∧ u2 ∧ · · · ∧ um] ; [σ(t1) ∧ · · · ∧ σ(tn) ∧ σ(u2) ∧ · · ·σ(um)]

Here σ is, again, a most general unifier of u1 and s. This is the approach
followed by C. Kirchner, H. Kirchner and Vittek (1995), who also studied the
map of proofs in Horn theories to proofs in rewrite theories. They map Horn
clauses to narrowing rules, and the proof-theoretic structure of Horn logic, based
on SLD-resolution, is therefore captured by the straightforward application of
the deduction rules of rewriting logic. They further add to the rewrite theory a
notion of strategy, to efficiently compute with the given rewrite rules, and call
such a rewrite theory plus strategy a computational system.

Negative chaining —inference (6.1) above— will be ordered if rules [s] ⇒
[t1 ∧ · · · ∧ tn] of the rewrite theory Γ′ are oriented from left to right, i.e.,
[s] ≻ [t1 ∧ · · · ∧ tn]. Indeed, the operational behavior of query solving in Horn
theories, following resolution strategies known from logic programming, such as
Prolog’s SLD-resolution, is captured by the trivial bi-rewrite system 〈Γ′

⇒, ∅〉,
where ⇒⊆−→

⇒
. This bi-rewrite system is actually a standard rewrite system,

since we are not rewriting in two directions, and its operational behavior cor-
responds to standard deduction in rewriting logic. But the ordering induced
by these rules will not be, in general, a reduction ordering, and therefore this
bi-rewrite system will be non-terminating.

When taking a reduction ordering on terms into account, the process of
theorem proving in Horn logic maps to an ordered chaining inference tree. We
will show this through an example.

2For the sake of simplicity this inference is shown for Horn theories with no structural
axioms, i.e., E = ∅.

3Narrowing was originally devised as an efficient E-unification procedure using convergent
sets of rewrite rules (Hullot, 1980).



6.2. Bi-rewriting Equational and Horn Logic 115

6.2.7 Example. If we orient the rules of the rewrite theory obtained in ex-
ample 6.2.5 following e.g., a lexicographic path ordering based on the signature
precedence

∧ ≻ ancestor ≻ parent ≻ jordi ≻ anna ≻ cesc ≻ true ,

we get the following bi-rewrite system:

Γ′
⇒ =







[parent(cesc, anna)] −→
⇒

[true]

[parent(anna, jordi)] −→
⇒

[true]

[ancestor(x, y)] −→
⇒

[parent(x, y)]

Γ′
⇐ =

{

[parent(x, z) ∧ ancestor(z, y)] −→
⇐

[ancestor(x, y)]

6.2.8 Ordered chaining for Horn theories. As said in 2.3.2, by orienting
the rules of a rewrite theory by means of a reduction ordering on terms, critical
pairs (or even variable instance pairs) among the rules of both rewrite systems
may arise: We need to start a process of completion for proving theorems, by
generating new rules, i.e., our proof calculus will be based on ordered chaining
(see 2.4.6). It is interesting that the unique operator of the signature that is
monotonic with respect to relation ⇒ is the the conjunction operator ∧. In
other words, ∧ is the only function symbol whose argument positions are posi-
tive with respect to (⇒,⇒). Consequently, the overlap required for generating
new rules is only needed on whole propositions and not on terms within them.
Furthermore, since the map of Horn to rewrite theories does not introduce vari-
ables as arguments of ∧, unification on variable positions is not needed, and the
intractable variable instance atom generation can be completely avoided.

Figure 6.1 shows the sequence of ordered chaining inferences (see figure 2.1 for
details of each inference rule) for proving theorem ancestor(cesc, jordi)⇒ true
in the rewrite theory of example 6.2.5. The framed sentence is the negation of the
theorem. All other premises are sentences of the rewrite theory or conclusions of
previous inferences. Bold faced terms are the ones unified (i.e., chained through).
For instance the top most inference step of figure 6.1 corresponds to the gen-
eration of a critical pair among rewrite rules parent(x, z) ∧ ancestor(z, y) −→

⇐

ancestor(x, y) and ancestor(x′, y′) −→
⇒

parent(x′, y′).

Unfortunately, as we can observe from figure 6.1, the linear strategy of res-
olution in Horn theories must be —for completeness— abandoned, since the
generation of rules from critical pairs (i.e., ordered chaining inference steps) cor-
respond to resolution among clauses of the given theory. But the advantages of
the use of term ordering arise, when it is possible to saturate (i.e., to complete)
a bi-rewrite system obtained from the previously explained map: The search
for proofs by SLD-resolution (or straightforward deduction in rewriting logic,
see section 6.2.6), which could have been non-terminating, is now ‘replaced’ by
terminating bi-rewriting (because of the reduction ordering on terms).
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Ordered positive chaining:

ancestor(x, y) ⇒ parent(x, y) ∧ ancestor(z, y) ancestor(x′y′) ⇒ parent(x′, y′)

ancestor(x, y) ⇒ parent(x, z) ∧ parent(z, y)

Ordered positive chaining:

ancestor(x, y) ⇒ parent(x, z) ∧ parent(z, y) parent(cesc, anna) ⇒ true

ancestor(cesc, y) ⇒ true ∧ parent(anna, y)

E′-equivalence:

ancestor(cesc, y) ⇒ true ∧ parent(anna, y) ≡E′ ancestor(cesc, y) ⇒ parent(anna, y)

Ordered negative chaining:

ancestor(cesc, jordi) 6⇒ true ancestor(cesc, y) ⇒ parent(anna, y)

parent(anna, jordi) 6⇒ true

Ordered resolution:

parent(anna, jordi) 6⇒ true parent(anna, jordi) ⇒ true

2

Figure 6.1: Sequence of ordered chaining inferences

6.2.9 Example. Consider the following set Γ of Horn clauses:

q(x)←− p(x)
p(x)←− q(x)

and the (negated) query:

←− q(a)

Though it is evident that we cannot refute it, the process of applying SLD-
resolution will never terminate. Instead, given a signature precedence q ≻ p,
the rewrite theory to which this Horn theory is mapped, forms a convergent
bi-rewrite system:

Γ′
⇒ = {q(x) −→

⇒
p(x)}

Γ′
⇐ = {p(x) −→

⇐
q(x)}
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Now we can effectively proof that q(a) 6⇒ true, because q(a) −→
⇒

p(a) is the only

rewrite step that can be performed.

6.3 Rewriting with Set Relations

Kriaučiukas and Walicki propose a proof calculus for specifications with set
relations based on Bachmair and Ganzinger’s ordered chaining calculus, in order
to use it as a new reasoning system for their specification framework, since term
rewriting is much more prone for automation. They first presented an inference
system for ground first-order clauses (Kriaučiukas and Walicki, 1995), which they
later on extended to the non-ground case in (Kriaučiukas and Walicki, 1996).

Recall from section 5.5 that specifications with set relations, are essentially
theories of first-order clauses, whose literals are atomic formulae of the form
s ≈ t, s < t, or s ⌢ t, and their respective negations. In the same section, we
have shown how the fragment consisting of positive unit clauses is actually a
particular instance of our logic of special relations. For this reason, we are going
to apply our knowledge on term rewriting along binary relation to revise some
of the claims made by Kriaučiukas and Walicki concerning the notion of relative
closeness and its relationship to the completeness of their proof calculus.

6.3.1 The proof calculus. First of all, we are going to express the inference
rules of their calculus as a general chaining calculus for theories in our logic of
special relations coming from specifications with set relations. Essentially, the
calculus is the same as the one in (Kriaučiukas and Walicki, 1995), but here
we express Kriaučiukas and Walicki’s composition and replacement rules of set
relations by means of polarities of function symbols and partial orders over
relation-algebra expressions. The resulting proof calculus is shown in figure 6.2.

6.3.2 Ordering restrictions. In analogy to the ordered chaining calculus
(see 2.4.6), Kriaučiukas and Walicki add ordering restrictions to the inference
rules in order to prune the search space one has to explore for finding a refutation.
Thus, only maximal literals and maximal terms may take part in an actual
inference step, with the exception of a compositionality resolution step, where
the ‘active’ literal of the second premise may not be maximal. But term s of
this literal still has to be maximal in the clause.

6.3.3 The calculus is (not) refutationally complete. Kriaučiukas and
Walicki claim that the calculus is refutationally complete, but it turns out, from
how their ground-completeness theorem (Theorem 5.1 in (Kriaučiukas and Wal-
icki, 1995)) is stated, that it is not. Their theorem is namely based on the
notion of a relatively closed set of clauses. It states, that a model exists for
every consistent and relatively closed set of clauses. Unfortunately their notion
of relative closeness of a set, which is analogous to Bachmair and Ganzinger’s
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Reflexivity resolution:
C,¬(s α s)

C

where α ∈ {<, <̆,⌢}.

Superposition:
C, s α t D, u[s]p β v

C,D, u[t]p γ v

where γ is the smallest special relation for which exists α′ such that p in u is
positive with respect to (α, α′) and ᾰ′;β ⊑ γ.

C, s α t D,¬(u[s]p β v)

C,D, u[t]p γ v

where γ is the largest special relation for which exists α′ such that p in u is
positive with respect to (α, α′) and α′; γ ⊑ β.

Compositionality resolution:

C, s α t D, s β u

C,¬(t γ u), s β u

where γ is the largest special relation such that α; γ ⊑ β.

C, s α t D,¬(s β u)

C, t γ u,¬(s β u)

where γ is the smallest special relation such that ᾰ;β ⊑ γ.

Figure 6.2: Kriaučiukas and Walicki’s proof calculus

notion of saturation up to redundancy discussed in 2.4.7, is too weak for such a
more general framework, as the following counter-example shows:

6.3.4 Example. Let (S∗,Σ) be a signature of the logic of special relations,
with S∗ as defined in section 5.5, and with Σ = {a, b, c, d, f( )} (four constants
and one unary function symbol). Recall from section 5.5 that the argument
position of f is positive with respect (<,<), (⌢,⌢), (≈, <), and (≈, >). Let
≻ be an ordering on terms defined as a lexicographic path ordering based on
the following precedence of function symbols f ≻ a ≻ b ≻ c ≻ d, and let ≻
also denote its multiset extension to an ordering on literals and clauses. Let us
now consider the set consisting of the following ground (unit) clauses, listed in
increasing order:

d ≈ d

c ⌢ d
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b ≈ d

b ≈ b

a < c

a ≈ b

f(d) 6≈ f(d)

f(c) ≯ f(d)

f(b) ≮ f(c)

All valid inferences with premises from this set are redundant, since all of them
conclude with a clause already in the initial set, except for the following super-
position inference:

a ≈ b a < c

b < c

But, in this case, b < c is redundant, since b ≈ d and c ⌢ d force b < c, and
both clauses are smaller in the ordering than b < c. A ground literal A is forced
by a set of ground literals S, if it is in the rewriting closure of S, i.e., there exists
a sequence of rewrite steps, with rules from S, that prove A. But the initial set
has no model, because no multialgebra can satisfy a ≈ b, a < c and f(b) ≮ f(c)
at the same time.

6.3.5 False relative closeness. As already mentioned, the weak point lies
in the notion of a relatively closed set of clauses. This notion itself is based on
the construction of confluent term rewriting systems out of a consistent initial
set of clauses, which should provide a rewrite proof for every atom that is valid
in the model of the set. If the initial set of clauses was not consistent, than
it could be only relatively closed if it had the empty clause. The proof of the
completeness of their calculus fails because of the false claim that any atom
provable by a sequence of rewrite steps, in what they define as a confluent
system, has a rewrite proof. A counter-example follows:

6.3.6 Example. Let (S∗,Σ) be a signature of example 6.3.4. Let Γ consist
of the following rewrite rules:

a −→
≈
b

a −→
<
c

b −→
≈
d

c −→
⌢

d

We have that Γ is a confluent system —according to Kriaučiukas and Walicki’s
definition of ‘confluent system’— since b < c is the unique critical atom in Γ —
it arises from the peak b ←−

≈
a −→

<
c and ≈;<⊑<. But this atom has a rewrite

proof in Γ

b −→
≈
d←−

⌢
c
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since ≈;⌢⊑<. Due to the monotonicity properties of function symbol f we
have f(b) < f(c) is provable in Γ by the sequence of rewrite steps

f(b)←−
<
f(a) −→

<
f(c) ,

but it has no rewrite proof! Though there are two ways to reach a common term
f(d) starting from f(a) and f(c) respectively,

f(b) −→
<
f(d)←−

⌢
f(c)

f(b) −→
>
f(d)←−

⌢
f(c)

in both cases <;⌢6⊑< and ≻;⌢6⊑<.

6.3.7 Not well-polarized signature. The reason of the existence of such
counter-example is that the signatures coming from mapping specifications with
set relations to theories in the logic of special relations are not well-polarized
(see definition 4.4.3), in general. In example 6.3.6, the argument position in
f is positive with respect to (≈;⌢, <), because ≈ ; ⌢⊑< and the argument
position in f is positive with respect to (<,<), but unfortunately, there are no
relations α, β ∈ S ∪ S̆, such that the argument position in f is positive with
respect to (≈, α) and with respect to (⌢,β) and α;β ⊑<.

6.3.8 Subtleties of the generalization. Of course, affirming that Kriaučiu-
kas and Walicki’s proof calculus is incomplete is not appropriate; Kriaučiukas
himself agreed that “[our] arguments hit [their] method of proof, but not the
proof calculus, because redundancy is not used in the definition of the strategy”
(Kriaučiukas, 1999). With this revision of Kriaučiukas and Walicki’s work on an
extension of the bi-rewriting and ordered chaining techniques to other general
binary relation we wanted to highlight the negative consequences of a too shal-
low and straightforward generalization from equality to inclusions to arbitrary
binary relations, relying on the false hypothesis that such apparent direct gen-
eralization would translate on a direct application of the notion of completeness
up to redundancy from the equational and the bi-rewriting technique to a more
general framework. On the contrary, such generalization carries many subtleties
to take into account, as we have shown in chapter 4, and the signature’s special
relations and function symbols need to verify many properties, such as well-
polarization, for the computational power of term rewriting to be applied as a
proof calculus in such more general specification paradigms.

6.4 Conclusion

By applying the general notion of term rewriting, we were able to analyze several
quite different computational aspects of three distinct specification frameworks.
Within the area of order-sorted term rewriting, we could neatly relate the no-
tions of confluence, sort-decreasingness, descendingness, and regularity, and de-
scribe them with one unique general notion of local confluence. Furthermore,
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we showed how theories of special relations with different polarizations of func-
tion symbols arise naturally when looking at Horn theories as rewrite theories,
and further as theories in our logic of special relations. Consequently, we deal
with a rewrite relation that does not rewrite within the structure of propositions,
and we propose convergent bi-rewrite systems as possible alternative operational
semantics for Horn logic programming. Finally, we also revised the generaliza-
tion of term rewriting carried out for non-deterministic specifications with set
relations, pointing out to the false notion of redundancy that invalidates the
completeness theorem for a proof calculus based on these techniques.

In the next part, we are going to make a foray into the terrain of diagrammatic
reasoning, and explore the role of special relations in reasoning with specifica-
tions based on visual clues. We show that our framework is general enough to
cope also with a formalisms based on intuitive graphical representations, which
attempts to make formal specification approachable by non-logicians.
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Chapter 7

Special Relations in a

Diagrammatic Logic

The systematic development of correct programs from complete formal specifi-
cations by means of verified refinement steps has attracted considerable effort.
Much less attention has been devoted to formal requirements engineering, the
difficult process of creation of adequate formal and complete specifications from
informal requirements (Wieringa, 1996; Robertson and Agust́ı, 1999). Speci-
fications cannot be validated conclusively with respect to the real world, they
can only be judged subjectively as adequate descriptions of a problem, maybe
with the help of some theorem prover which computes consequences of the for-
mulation. In this direction Levy and Agust́ı defined the calculus of refinements
(Levy, 1995), a functional specification language designed to shorten the dis-
tance between the informal description of a problem and its first formalization,
by concentrating on an incremental approach to executable formal specification
(Robertson et al., 1994).

Formal specification languages, to be widely used in requirements engineer-
ing, should not present undue difficulties of use and interpretation to the persons
who create and read the specifications, who usually are experts on the applica-
tion domain and not programmers. Agust́ı, Robertson, and Puigsegur were
interested in intuitive forms of problem description and resolution within a com-
plete formal language, and thus started to express preliminary specifications in
a notation accessible to non-specialists, while providing clear points of refine-
ment towards complete specifications in languages targeted to more specialized
developers. Consequently, they first defined the graphical specification language
GraSp (Agust́ı et al., 1995), that evolved towards a visual logic programming
language (Puigsegur et al., 1996; Agust́ı et al., 1998a). This research is the
subject of a forthcoming doctoral dissertation (Puigsegur, 2000).

This chapter is the result of the joint work with Puigsegur and Agust́ı, mo-
tivated by our belief that the understanding and pragmatics of formal logic and
automated deduction are sensitive to the syntax used to express statements.

125
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For instance, it has been shown that the taxonomic syntax of many knowledge
representation languages facilitates the inference (McAllester et al., 1989). We
therefore explore the somehow informal claim that a diagrammatic syntax not
only can be an alternative formal notation, emphasizing some structural fea-
tures of logical statements, but it could be useful to conduct visual inferences
and communicate them.

The key visual concepts exploited by Puigsegur and Agust́ı in their diagram-
matic logic are that of a box representing a set, and that of a box contained
within another box, representing set inclusion. This spatial relationship is the
basic building block for defining predicates and writing visual programs. In a
first approach, Agust́ı, Puigsegur, and Robertson (1995) translated their dia-
grammatic sentences into standard Horn clauses in order to execute their visual
programs as pure Prolog programs. But in order to have a real diagrammatic
programming language it was necessary to establish a completely visual oper-
ational semantics, and to explore its advantages and disadvantages; this is our
contribution to their work.

In previous chapters of this thesis, we have drawn our attention to the impor-
tance of special relations in specification frameworks, and we studied their role in
rewriting-based proof calculi. Since the spatial relationship of box containment
acts as special relation in the diagrammatic logic, we believed it necessary to for-
mally establish the relationship between Puigsegur and Agust́ı’s diagrammatic
logic and our logic of special relations, introduced in chapter 3, by showing that
diagrammatic programs are actually specific theories in the logic of special rela-
tions. In order to establish this correspondence we proceed, as done in chapter
5 with other frameworks, by axiomatizing the diagrammatic logic as a general
logic, and defining a map from this logic into the logic of special relations. As
in section 5.5, we will be only concerned with the map of institutions, and we
will only sketch the proof. The existence of such map guarantees the correctness
of a chaining based proof inference mechanism as suitable operational seman-
tics for the language, and we achieve to define such calculus in a completely
diagrammatic way.

7.1 A Diagrammatic Horn Logic

Puigsegur and Agust́ı were after a formal syntax for logic programming which
clearly ‘resembles’ the corresponding semantics. The standard form of symbolic
logic was set by mathematicians in linear form, patterned after Boolean alge-
bra. This syntax favors the interpretation of predicates as truth functions and
connectives as truth operators. Nothing in it suggests the more usual interpre-
tation by logic practitioners of predicates as relations, that is, sets of tuples of
individuals from the universe of discourse. In this section, we present Puigsegur
and Agust́ı’s main intuitions by means of an example, transforming a predicate
definition in standard Horn logic syntax into a diagram. We want to emphasize
their belief, which is also ours, that such a diagram better conveys its meaning.
Our particular contribution relies in showing how this diagrammatic syntax is
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also fit to represent automated deduction in it.

7.1.1 Clause transformation. For example, to define who the ancestors of
a person are, we could write the following Horn clauses,

ancestor(x, y)←− person(x) ∧ parent(x, y)

ancestor(x, y)←− person(x) ∧ parent(x, z) ∧ ancestor(z, y)

in which, as we said previously, the interpretation closest to the syntax is by
considering person, ancestor, and parent as truth valued functions. However, if
we want to suggest their interpretations as a set of tuples of individuals, then a
better notation could be set notation using membership (∈) as unique predicate,
and write the previous expressions as follows:

〈x, y〉 ∈ ancestor←− x ∈ person ∧ 〈x, y〉 ∈ parent

〈x, y〉 ∈ ancestor←− x ∈ person ∧ 〈x, z〉 ∈ parent ∧ 〈z, y〉 ∈ ancestor

The next step in order to make the syntax better convey the intended op-
erational meaning of logical expressions could be to somehow make explicit the
wanted directionality of some arguments as input or output. The importance
of directionality was stressed for instance in (Deville, 1990). In our example,
both, ancestor and parent, are better understood as non-deterministic functions,
which give for each individual the set of its ancestors and parents respectively.
Then we can transform the previous expressions into the following ones,

y ∈ ancestor(x)←− x ∈ person ∧ y ∈ parent(x)

y ∈ ancestor(x)←− x ∈ person ∧ z ∈ parent(x) ∧ y ∈ ancestor(z)

where we use the conventional linear syntax for functional application. This
new functional notation allows us to show syntactically two other structural
features of the definition of predicates: First, predicate composition by successive
applications, and second, logical implication by set inclusion. In the standard
syntax, predicate composition is expressed by means of the ‘and’ connective (∧),
see for instance the composition of parent and ancestor in the second of the
previous clauses. However, predicate composition could be noted more directly
by successive function applications. Then we can write the previous expressions
as follows1

y ∈ ancestor(x)←− x ∈ person ∧ y ∈ parent(x)

y ∈ ancestor(x)←− x ∈ person ∧ y ∈ ancestor(parent(x))

Now we are ready to represent logical implication by means of set inclusion.
In most Horn clauses we can distinguish a main implication, which connects the

1Notice that we use ancestor as a function over subsets. The purpose of this example is
to emphasize the advantages of functional composition, thus we shall not worry about typing
issues here.
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head of the clause with conditions in the body sharing the same output variable.
For instance, the previous clauses can be written as follows,

(y ∈ ancestor(x)←− y ∈ parent(x))←− x ∈ person

(y ∈ ancestor(x)←− y ∈ ancestor(parent(x)))←− x ∈ person

making explicit the main implication. Then it can be more directly represented
by set inclusion (⊆), leaving the other implications as conditions. For instance,
in our example, instead of the implications, we represent the inclusion of parent
into ancestor and of ancestor of parent into ancestor as follows:

parent(x) ⊆ ancestor(x)←− x ∈ person

ancestor(parent(x)) ⊆ ancestor(x)←− x ∈ person

7.1.2 Inclusional Horn clauses. Up to now, we have transformed the ini-
tial Horn clauses into a new type of Horn clauses with two predicates only,
inclusion (⊆) and membership (∈) between terms composed with predicates of
the initial syntax. We call them inclusional Horn clauses. Notice that the trans-
formations, although explained by means of an example, are completely general,
and could be applied to any standard Horn clause definition of a predicate. How-
ever, the real interest in using this set notation for Horn clauses comes from its
natural representation by means of diagrams. To do so, Puigsegur and Agust́ı
exploit two well known visual formalisms, namely Venn/Euler diagrams to em-
phasize set inclusion and membership, and directed acyclic graphs to describe
the structure of terms.

7.1.3 Diagrams. The correspondence between an inclusional Horn clause
and the corresponding diagram is as follows. Variables are represented as cir-
cles, and each n-ary predicate (seen as an (n−1)-ary non-deterministic function
whose result is the n-th argument of the original predicate) is represented by
a square box labeled with the name of the predicate, and is pointed by n − 1
arrows coming from its arguments. The argument order of the predicate may
be disambiguated by labeling the arrows, if necessary. The square box denotes
the set of results corresponding to the n-th argument of the n-ary predicate
not represented with an incoming arrow. The predicate being defined is dis-
tinguished by drawing its box highlighted with thick lines, and it contains the
box corresponding to the left-hand side of the inclusion in the inclusional Horn
clause. The memberships in the body of the clause are represented by circles
contained in boxes denoting the corresponding predicates. Then each clause is
represented by a set of graphical containments circumscribed by an unlabeled
box to note the scope of the diagram. For instance, each one of the previous
inclusional Horn clauses can be represented by a different diagram as shown in
figure 7.1.

Puigsegur and Agust́ı claim that the ‘degree of homomorphism’ or ‘resem-
blance’, as understood by Barwise and Hammer (1996), between a diagram and
the predicate it describes, is higher than with linear formulas. Another structural
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parent

person

ancestor

parent

ancestor

ancestor

person

Figure 7.1: Diagrammatic Horn clauses

A

A

B C

Figure 7.2: Pattern diagram of recursion

feature of predicate definition highlighted by diagrams is recursion. The struc-
ture of recursion is represented by the visual metaphor of a picture reproduced
inside itself, as can be seen in the right diagram of figure 7.1. Furthermore, ‘pat-
tern diagrams’ labeled with variable symbols could be useful to record different
patterns of recursion like the one in figure 7.2.

It is a simple recursive pattern common to many definitions, as, for instance,
the one of ancestor given in figure 7.1. A library of diagrammatic patterns record-
ing different styles of description could become a pragmatic tool to support the
use of logic. However, the utility of this diagrammatic language to a particular
community of users can only be claimed after serious empirical testing, which
still has to be done.

In the previous diagrams we only represented predicate and variable symbols.
In general we also need to represent terms built from function and constant
symbols. These terms denoting individuals are represented by directed acyclic
graphs (DAGs). Their nodes are either round boxes, labeled by the name of
a function (or of a constant), or circles. As usual, arrows in a DAG represent
function application. The advantage of representing terms as DAGs, compared
to linear textual terms, is well known.

Figure 7.3 shows a more complex Horn clause in standard syntax, inclusional
syntax, and the corresponding diagram. Notice that there is no need to name
variables —we denote them simply by circles. The graph structure allows us to
represent variable sharing or correference.
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p(f(X), Z) ←− q(f(X), g(X,Y ), Z) ∧ r(g(X,Y )) ∧ s(Y, g(X,Y ))

⇓

q(f(X), g(X,Y )) ⊆ p(f(X)) ←− g(X,Y ) ∈ r ∧ g(X,Y ) ∈ s(Y )

⇓

g s

p

q

r

f

Figure 7.3: From Horn clause to diagram

7.2 Spatial and Special Relations

Since the diagrammatic language proposed in (Agust́ı et al., 1998a; Puigsegur
and Agust́ı, 1998) is actually Horn logic with set inclusion and set membership, it
can be seen as an instance of the logic of special relations introduced in chapter 3.
Consequently, a chaining based proof calculus is suitable as operational semantics
for the language, and we outline such calculus in a completely diagrammatic way.
The diagrammatic nature provides us with some interesting features, namely the
ability of keeping track, within a diagram, of the proof that is built while trying
to refute a clause, and the possibility to represent alternative proofs within a
unique diagram.

Before identifying the institution of the diagrammatic logic and its map to
the institution of the logic of special relations, let us first review some notation
concerning relational expressions that we will use in subsequent paragraphs.

7.2.1 Relational expressions. A relation R between elements of a set A
and elements of a set B is a set of pairs R ⊆ A×B. The domain and codomain
of R is defined as follows:

dom(R) = {a ∈ A | ∃b ∈ B (a, b) ∈ R}

cod(R) = {b ∈ B | ∃a ∈ A (a, b) ∈ R}

Let C be a set, and let S ⊆ B×C be a relation. Relation composition, denoted
with the binary operator ; , and relation reversion, denoted with the unary
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operator ˘ , is defined as follows:

• (a, c) ∈ R;S if and only if there exists b ∈ B such that (a, b) ∈ R and
(b, c) ∈ S

• (a, b) ∈ R̆ if and only if (b, a) ∈ R

7.2.2 Syntax. Signatures in the diagrammatic Horn logic are standard first-
order signatures Ω = (Σ,Π), where Σ is a ranked alphabet of function symbols
and Π is a ranked alphabet of predicate symbols. The distinguishing syntactic
aspect of the diagrammatic Horn logic with respect to standard Horn logic is how
sentences are formed, since they are diagrams as described in 7.1.3. Diagrams
are essentially graphs with three sorts of nodes together with a relation of con-
tainment between nodes of the graph. Each diagram has a distinguished square
box, highlighted with thick lines, and denotes the predicate we are defining (in
figure 7.3 it is predicate p), and which contains one or more graphical items,
either a round box, a circle, or another square box, free of other containments.
All other square boxes (drawn with thin lines) contain exactly one graphical
item, and these can only be round boxes or circles, never other square boxes.
Nevertheless, overlapping of different square boxes is allowed (e.g., in figure 7.3,
boxes r and s).

7.2.3 Definition. A sentence or diagram is a pair D = (G,L), consisting of
a customized higraph2, together with labeling functions, given as follows:

• G = (N,E,C1, C2) is a directed acyclic graph with

– nodes consisting of a finite set S of square boxes , a finite set R
of round boxes

�

�

�

�, a finite set X of circles ©, and one highlighted
square box , i.e., N = X ∪R ∪ S ∪ { }),

– edges going from circles and round boxes to round boxes and square
boxes (including the highlighted box), i.e., E ⊆ (R ∪ X)× (R ∪ S ∪
{ }); E is a multiset, because we may have more than one edge
between two particular nodes of the graph3, and

– a couple of irreflexive relations of containment between nodes, such
that C1 ⊆ { } ×N and C2 ⊆ S × (R ∪X);

• L = (lS , lR) is a pair of total functions labeling every square box (including
the highlighted box) with a predicate symbol and every rounded box with
a function symbol, i.e., lS : (S ∪ { })→ Π and lR : R→ Σ.

Given the multiset of edges E, let connE : N → P(N) be the function that,
given a node w ∈ N , yields the multiset of nodes with an edge pointing to it,
i.e., connE(w) = cod({(w,w)}; Ĕ). A sentence (diagram) is well-formed if and
only if

2Higraphs were introduced by Harel (1988).
3Recall that a multiset is a set where the number of occurrences of an element is significant.



132 Chapter 7. Special Relations in a Diagrammatic Logic

parent

grandparent

parent

man

jordi dídac cesc cesc

dídacanna

parent

anna

jordi maria

parent

Figure 7.4: A diagrammatic logic program

• The highlighted box contains only boxes free from any containment, i.e.,
C1;C2 = ∅,

• square boxes contain exactly one node, either round box or circle, i.e., C2

is actually a total function on the domain S,

• each node is pointed by the correct number of arrows according to the
arity of the function or predicate symbol that labels it, i.e., for every
w ∈ R, |connE(w)| = arity(lR(w)), and for every w ∈ S, |connE(w)| =
arity(lS(w))− 1, where function | | yields the cardinality of a set, and the
function arity the arity of a function symbol.

• all circles and round boxes that are also leaves of the graph are always
contained in some other square box, i.e., (R ∪ X) \ dom(E) ⊆ cod(C1) ∪
cod(C2), where the function \ yields the set difference between two sets.

A collection of the kind of diagrams of figures 7.1 and 7.3 form a diagrammatic
logic program, such as the one given in figure 7.4. Thus, a diagrammatic logic
program is a theory T = (Ω,Γ), where Ω is a signature and Γ is a set of diagrams.

7.2.4 Semantics. Let Ω be a signature in the diagrammatic Horn logic. Ω-
models are just standard first-order models, i.e., they consist of a universe A
together with an assignment to each symbol f ∈ Σn of a function fA : An → A
and to each predicate symbol p ∈ Πn of a set pA ⊆ An.

A diagram defines a predicate by stating the subsets or elements of the graph-
ical set associated to the predicate. Such predicate has arguments as arrows
pointing to the square box it represents. One argument is kept implicit. When
defining an interpretation function of this box, we have to commit to some par-
ticular order of these arguments, and thus we introduce a tupling function.
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7.2.5 Definition. Given a set N , we define a tupling function

τ : P(N)→
⋃

n∈N

Nn

as follows: Let S ⊆ N with cardinality n ∈ N.

τ(S) = (s1, . . . , sn) ∈ Nn

such that, for all s ∈ S, there exists an si = s.

For each diagram D, we define an interpretation function [[ ]] as follows:

7.2.6 Definition. Let D be a well-formed diagram, as defined in 7.2.3, let
τ be a tupling function, and let ρ : X → A be a valuation function of circles
(which is analogous to a valuation function of variables). For every node w ∈ N
of such diagram,

[[w]] =







ρ(w) if w ∈ X
lR(w)A([[τ(connE(w))]]) if w ∈ R
{a ∈ A | ([[τ(connE(w))]], a) ∈ lS(w)A} if w ∈ S ∪ { }

where the interpretation function is applied over n-tuples in the following way:

[[(s1, . . . , sn)]] = ([[s1]], . . . , [[sn]])

7.2.7 Satisfaction. Diagrams can be viewed as conditional subset or mem-
bership assertions, where the containments in the highlighted box are condi-
tioned by the rest of containments in the diagram. In order to formally state
when an interpretation satisfies a sentence, we need to consider two contaiment
relations. That is why we are distinguishing between C1 and C2. We further par-
tition the containment relation C1 distiguishing between containment of square
boxes into the highlighted box, and between containment of round boxes and
circles into the highlighted box. Thus, C11 consists of those pairs of C1 having
only elements of S in its codomain, and C12 consists of those pairs of C1 hav-
ing only elements of R ∪X in its codomain. An Ω-model A stisfies a sentence
(diagram) D, A |=DHL D if and only if, for every assignment ρ : X → A, we have

(∀ (v, u) ∈ C2 [[u]] ∈ [[v]])

⇒ (∀ (t′, t) ∈ C11 [[t]] ⊆ [[t′]]) ∧ (∀ (t′, t) ∈ C12 [[t]] ∈ [[t′]])

7.2.8 Remark. Though the visual notation is close to Venn diagrams, two
important differences are worth noticing: First, the graphical sets of diagrams
do not have a unique physical existence, i.e., the same set may appear in various
places of the diagram. Second, in a diagram only graphical containment informa-
tion is relevant, the absence of graphical containment is not taken into account,
which means that graphically non-overlapping sets may still have elements in
common.
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7.2.9 Insititution. We deal with first-order signatures and models, thus
they form the categories SignDHL and ModDHL(Ω) respectively. Let senDHL :
SignDHL → Set be the functor assigning to each signature the set of its well-
formed diagrams, and let |=DHL be the logical consequence relation given above.
Signatures, sentences, models, and logical consequence in the diagrammatic Horn
logic form together the institution (SignDHL, senDHL,ModDHL, |=DHL).

7.2.10 A particular logic of special relations. Let D be a well-formed
diagram as defined in definition 7.2.3. Given a node n ∈ N we will denote with
n̂ the first-order term constructed with the labels attached to the nodes of the
graph rooted4 at this node. Thus, n̂ = f(t1, · · · , tn), where f ∈ Σn ∪ Πn+1

5,
and ti ∈ TΣ(X ), where X is a set of variable symbols in bijection to the set X
of circles in D.

Of course we must determine the order of the parameters in the first-order
terms in some way. We will do that by previously fixing a tupling function τ as
given in definition 7.2.5. As before, let us partition C1 into C11 and C12, and let
C2 = {(v1, u1), . . . , (vn, un)}. We map the diagrams D to a set of conditional
sentences as follows:

α(D) = {t̂ ⊆ t̂′ if û1 ∈ v̂1 ∧ · · · ∧ ûn ∈ v̂n | (t
′, t) ∈ C11}

∪ {t̂ ∈ t̂′ if û1 ∈ v̂1 ∧ · · · ∧ ûn ∈ v̂n | (t
′, t) ∈ C12}

Observe, as already mentioned, that these sentences in the logic of special
relations involve a couple of special relations ⊆ and ∈. We will have to specify
their properties explicitly, by means of the partial order of the relation-algebra
structure, and also by means of the monotonicity properties of the function
symbols. This will become clear as we look at how theories are mapped.

We map a diagrammatic logic program ((Σ,Π),Γ) to a theory (Ω′,Γ′) in the
logic of special relations, where

• Ω′ = (M, (S∗,Σ′)),

– M = {s1, s2} is a set of two sort symbols,

– S∗ = (S∗, ; , 1 ′, ,̆⊑) being the smallest partially ordered free monoid
with anti-involution generated over the set S = {⊆,∈} satisfying:

1 ′ ⊑ ⊆

⊆;⊆ ⊑ ⊆

∈;⊆ ⊑ ∈

4Perhaps the expression ‘rooted’ is not the most suitable one, because we build the term
following the edges in their reverse direction; so for instance in figure 7.3, letting n be the node
labeled by q, we have that n̂ = q(f(x), g(x, y)).

5Recall that boxes labelled with predicate symbols have one incoming arrow less than the
arity of the predicate symbol.
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– Σ′ = Σ ∪ Π being the ranked alphabet of function and predicate
symbols (reducing the arity of predicate symbols by 1), such that for
all f in Σ′, no argument positions i in f is monotonic or antimonotonic
with respect to any pair of special relations.

• Γ′ = α(Γ) =
⋃

D∈Γ α(D)

We write Φ(Ω,Γ) = (Ω′,Γ′), where Φ : ThDHL −→ ThLSR is an α-sensible functor.
A model A of its corresponding theory Φ(T ) in the logic of special relations

is a quasi-allegory whose subcategory of functions Fun(A) is Cartesian closed,
with

• two objects [[s1]] and [[s2]] corresponding to the two sorts of M ,

• a function [[f ]] : [[s1]]
n −→ [[s1]] for each f ∈ Σn,

• a function [[p]] : [[s1]]
n−1 −→ [[s2]] for each p ∈ Πn,

• arrows [[∈]] : [[s1]] −→ [[s2]] and [[⊆]] : [[s2]] −→ [[s2]],

such that

id[[s2]] ≤ [[⊆]]

[[⊆]] · [[⊆]] ≤ [[⊆]]

[[⊆]] · [[∈]] ≤ [[∈]] (7.1)

and, for each sentence

t̂(x̄) γ t̂′(x̄) if û1(x̄) ∈ v̂1(x̄) ∧ · · · ∧ ûn(x̄) ∈ v̂n(x̄)

in α(Γ), we have that
[[t̂′(x̄)]] · ι ≤ [[γ]] · [[t̂(x̄)]] · ι ,

where ι is the includer of the family of arrows ([[v̂i(x̄)]], [[∈]] · [[ûi(x̄)]])i∈[1...n] (see
definition 3.4.2), and γ is either ⊆ or ∈.

We define the map of institutions as follows: We take as universe A =
Hom(1, [[s1]]) in Fun(A). For each f in Σn we define fA : An → A as fol-
lows

fA(a1, . . . , an)
def
= [[f ]] · 〈a1, . . . , an〉 (7.2)

For each p in Πn we define pA ⊆ An as follows

pA
def
= {(a1, . . . , an) ∈ A | [[p]] · 〈a1, . . . , an−1〉 ≤ [[∈]] · an} (7.3)

These interpretations can be extended as usual over terms as defined in 7.2.10.
We map the model of Φ(T ), i.e., quasi-allegory A, to the first-order model A

constructed above, and write β(A) = A, where β : ModLSR · Φop �
−→ModDHL is

a natural transformation.
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7.2.11 Proposition. The map (Φ, α, β) : (SignDHL, senDHL,ModDHL, |=DHL)→
(SignLSR, senLSR,ModLSR, |=LSR) is a map of institutions.

Proof: Let D = (G,L) be a diagram as defined in 7.2.3. Recall that a dia-
gram translates along α to a set of sentences, one for each containment in the
highlighted box (i.e., one for each pair in C1). Therefore we are going to handle
each of this translations individually by considering that C1 only has one unique
pair (t′, t) capturing the containment. Let C2 = {(v1, u1), . . . , (vn, un)}. We
have two cases, when t ∈ R ∪X or t ∈ S.

1. If t ∈ R ∪ X , i.e., the highlighted box contains a round box or a circle,
then

α(D) = t̂(x̄m) ∈ t̂′(x̄m) if û1(x̄
m) ∈ v̂1(x̄

m) ∧ · · · ∧ ûn(x̄m) ∈ v̂n(x̄m)

We reason: A |=LSR α(D) if and only if

[[t̂′(x̄m)]] · ι ≤ [[∈]] · [[t̂(x̄m)]] · ι ,

where ι is the includer of the family of arrows

([[v̂i(x̄
m)]], [[∈]] · [[ûi(x̄

m)]])i∈[1...n] .

From definition 3.4.2 of includer, the latter holds, if and only if for all
ζ ∈ Am, and for all i ∈ [1 . . . n], such that

[[v̂i(x̄
m)]] · ζ ≤ [[∈]] · [[ûi(x̄

m)]] · ζ ,

we have also that

[[t̂′(x̄m)]] · ζ ≤ [[∈]] · [[t̂(x̄m)]] · ζ .

Let ζ =< a1, . . . , am >. From (7.2) and (7.3) follows that

[[v̂i(x̄)]] · ζ ≤ [[∈]] · [[ûi(x̄)]] · ζ

if and only if

(a1, . . . , am−1, v̂iA(a1, . . . , am−1)) ∈ ûiA ;

but then from (7.2) and (7.3) follows that

(a1, . . . , am−1, t̂A(a1, . . . , am−1)) ∈ t̂
′
A .

Therefore, A |=LSR α(D) if and only if D is satisfied by A = β(A), for any
assignment ρ : X → A, i.e., A |=DHL D.

2. If t ∈ S, i.e., the highlighted box contains a square box, then

α(D) = t̂(x̄m) ⊆ t̂′(x̄m) if û1(x̄
m) ∈ v̂1(x̄

m) ∧ · · · ∧ ûn(x̄m) ∈ v̂n(x̄m)
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We reason in a similar way as before, with the only difference that now
A |=LSR α(D) if and only if

[[t̂′(x̄m)]] · ι ≤ [[⊆]] · [[t̂(x̄m)]] · ι , (7.4)

where ι is the includer as before. Now

t̂A ⊆ t̂
′
A

if and only if (a1, . . . , am) ∈ t̂A implies (a1, . . . , am) ∈ t̂′A. But

(a1, . . . , am) ∈ t̂A

if and only if
[[t̂(x̄m)]] · 〈a1, . . . , am−1〉 ≤ [[∈]] · am ,

and this implies, by (7.1) and (7.4), that

[[t̂′(x̄m)]] · 〈a1, . . . , am−1〉 ≤ [[⊆]] · [[∈]] · am ≤ [[∈]] · am ,

and thus
(a1, . . . , am) ∈ t̂′A .

Again, A |=LSR α(D) if and only if D is satisfied by A = β(A), for any
assignment ρ : X → A, i.e., A |=DHL D.

2

7.3 Diagram Chaining

7.3.1 Spatial relations vs. special relations. The map from the dia-
grammatic logic to the logic of special relations introduces explicit symbols —
special relations ⊆ and ∈— in order to express relationships implicitly captured
by the spatial containment between boxes of a diagram. Here lies the power
of diagrammatic notations with respect to equivalent textual ones, since they
reflect much more its intended meaning. The spatial relationship of box con-
tainment is very close to the intended meaning of special relations ⊆ and ∈.
We want to take advantage of this resemblance in order to define an operational
semantics for the diagrammatic logic programming language, which exploits the
implicit properties of the spatial relations of a diagram in a computational way.
So the properties expressed as partial order relations among compositions of
special relations are implicitly given in the diagrammatic notation. See figure
7.5.

7.3.2 Visual inferences. Recall the chaining inference, generalized to arbi-
trary special relations:

Chaining:
u α s,C t β v, T

σ(u) γ σ(v), σ(C), σ(D)
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(a) ⊆;⊆ ⊑ ⊆ (b) ∈;⊆ ⊑ ∈

Figure 7.5: Spatially captured properties of special relations

where σ is a most general unifier of s and t, and γ is the smallest special relation
such that α;β ⊑ γ. For our special case in our logic this rephrases as follows:

u ⊆ s, C t ⊆ v,D

σ(u) ⊆ σ(v), σ(C), σ(D)
(7.5)

where σ is a most general unifier of s and t, and

u ∈ s, C t ⊆ v,D

σ(u) ∈ σ(v), σ(C), σ(D)

where σ is a most general unifier of s and t.
Chaining is based on taking properties of special relations —expressed as a

partial order— and building them into the inference system. In the above case
they are

⊆;⊆ ⊑ ⊆ and ∈;⊆ ⊑ ∈

respectively. We now can take advantage of the fact that these properties are
implicitly captured by spatial relations in our diagrams, in order to present the
chaining inference diagrammatically. Figure 7.6 shows an example of a visual
inference that corresponds to the chaining inference (7.5) above. We call such
visual inference diagram chaining.

7.3.3 Refutational proof calculus. Since we end up proposing a diagram
transformation process that resembles closely the refutation of negated queries,
by means of a standard, but completely visual, resolution-based inference mech-
anism, we will be interested in visual forms of inferences that actually correspond
to the negative chaining and resolution inferences of a chaining proof calculus:

Negative Chaining:
s 6∈ t u ⊆ v, C

σ(s) 6∈ σ(u), σ(C)

where σ is the most general unifier of t and v. C is the body of the Horn clause.

Resolution:
s 6∈ t u ∈ v, C

σ(C)

where σ is the most general unifier of s and u, and t and v, respectively. The
corresponding diagrammatic inferences are shown in figure 7.7.
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parent

ancestor

ancestor

person

parent

person

ancestor

︸ ︷︷ ︸

parentperson

ancestor

ancestor

parent

person

Figure 7.6: Diagram chaining

Notice, for instance, how nicely the negative chaining inference intuitively
visualizes in what way the compositional property of membership with inclusion
is exploited: The inference captures our attempt to prove the membership of
f in p through first proving its membership in q. When we eventually proof
this latter membership, the first one will follow trivially by transitivity, which is
directly and intuitively captured in our diagrammatic notation.

The diagrammatic chaining inferences in figure 7.7 were originally called
subset rule and membership rule in (Puigsegur et al., 1997), and they both
involve a process of merging parts of the diagram, namely those subgraphs rooted
on the matching nodes. Such merging process corresponds to a unification of
visual terms, which Puigsegur and Agust́ı put forth in detail in (Puigsegur and
Agust́ı, 1998).

7.3.4 Discussion. We hope that we have been able to show that conven-
tional textual syntax not only is not indicative of the semantics of relations as
sets, but tells nothing about the inference with Horn clauses. We believe di-
agrammatic syntax is more fit to make intuitive the resolution inference rule,
which corresponds directly to the transitivity of inclusions, given for free in the
diagrammatic notation. The intrinsic property that makes diagrammatic no-
tation so useful as reasoning mechanism, exploiting a property of the intended
models one is reasoning about, is called by Shimojima a ‘free ride’ (Shimojima,
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p p

q q

p

f

+ =

merging subgraphs

. . . . . . . . .
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. . . . . .
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. . .. . .

f

(a) Negative chaining

f f f

p p p

+ =

merging subgraphs

. . . . . . . . .

. . . . . . . . .

. . .. . .

(b) Resolution

Figure 7.7: Diagrammatic inferences

1996). For instance, the resolution inference rule applied to the two Horn clauses
defining the ancestor relation considered above is made intuitive by the tran-
sitivity of box containment in the visual inference depicted in figure 7.6. The
inferred clause corresponds to the special case of ancestors which are grandpar-
ents.

7.4 Diagram Transformation

Since visual inferences in general could become too complicated diagrammati-
cally, we have explored, together with Puigsegur and Agust́ı, some advantages
of these visual inferences in query answering (Puigsegur et al., 1997). We have
customized the visual inferences discussed above to lay down a diagram trans-
formation process for visually answering queries put on a diagrammatic logic
program, as the one of figure 7.4. Here, we only want to sketch this transforma-
tion process, since all its details can be found in (Agust́ı et al., 1998b; Puigsegur
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and Agust́ı, 1998) and in Puigsegur’s forthcoming dissertation (Puigsegur, 2000).

7.4.1 Query diagrams. We provide a way to ask questions about a dia-
grammatic program by means of query diagrams. They are actually standard di-
agrams as described in section 7.1, with the difference that no box is highlighted
with thick lines, and no box is contained within another, since no predicate is
being defined. Instead query diagrams express a set of existential memberships
to be proved. Suppose, given the visual program of figure 7.4, we want to know
the grandfathers of Cesc. We will draw a query diagram as follows

grandparent

man

cesc

whose textual equivalent would be

∃x x ∈ grandparent(cesc) ∧ x ∈ man ?

The way we answer this query resembles the way Prolog would answers existen-
tially quantified queries, namely by actually refuting their negation.

7.4.2 Query answering. Queries are answered by transforming query dia-
grams into answer diagrams applying visual inference rules given in section 7.3.
The idea behind this diagram transformation is to complete the query with the
trace of its proof, while instantiating circles (i.e., variables) by unification. As in
conventional logic programming, we answer a query by exploring the definitions
given in the program. We look for a definition diagram whose highlighted box
has the same label as one of the boxes of the query diagram, and whose overall
structures unify, and merge it into the query diagram. This will become clear
by looking at an example.

Let us answer the simple query represented above. We have two differ-
ent possibilities, since we can apply the subset rule (negative chaining) to the
grandparent box or the membership rule (resolution) to the man box. Here,
we do not consider specific deduction strategies, this is the subject of future
work. Therefore we do not bother about the possible order in which boxes
may be solved, and non-deterministically choose the first option. Recall that
this means to unify the grandparent box with its definition in figure 7.4, trans-
forming the query diagram by unifying the two circles —the argument of each
grandparent box—, and by adding to the query diagram all boxes of the defini-
tion of grandparent.
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parent

grandparent

parent

cesc

man

This inference step captures the idea that we are going to proof the existence of
an element in the grandparent box by means of its membership in the parent
box contained in it. Therefore we place the circle contained in the grandparent
box also within the parent box.

7.4.3 Proof tracing. At this point, the first distinctive feature of a visual
syntax with respect to a textual one arises. Note that the resulting query dia-
gram reflects, both, the new inferred membership of the goal variable into the
parent box and the old one into the grandparent box. This way, we can keep
track of the original query and its proof during subsequent diagram transfor-
mations. The transitivity of the membership relation with respect to subset
inclusion is clearly visualized by the diagram, since the circle contained in the
parent box is obviously also within the grandparent box. This captures directly
a basic kind of computational logic reasoning.

Keeping track of the original query forces us to distinguish goals that still
need to be solved from the already solved ones. That is why we have drawn
the solved grandparent box with dashed lines. This is how we represent solved
goals. Boxes representing goals still to be solved remain drawn by solid lines.

The inclusion of circles into the parent boxes has to be checked before we
can qualify the resulting diagram as a valid inference, otherwise we will have
to backtrack. We choose to apply the membership rule by unifying the mostly
instantiated parent box with its definition in figure 7.4.

Since in this definition diagram two graphical items are contained in its
highlighted box, we have two alternatives to instantiate the circle within parent,
either by round box anna or dı́dac.

parent

cesc

parent

grandparent

man

anna

parent

cesc

parent

grandparent

man

dídac

7.4.4 Simultaneous representation of alternatives. A new additional
advantage of the visual syntax is that it easily allows us to represent both alter-
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natives seen previously (anna and dı́dac) in one single diagram:

parent

grandparent

cesc

man man

parent

parent

anna dídac

Keeping several alternatives simultaneously is actually ‘multiply instantiating’
the circle within parent with anna and dı́dac. Whenever such a multiple in-
stantiation occurs we will have to duplicate all those boxes that also contained
or had as arguments the variable (or term containing the variable) where the
multiple instantiation has occurred. And again, when we duplicate these boxes,
we might have to duplicate other boxes that share variables with them. A formal
definition of this duplication operation can be seen in (Puigsegur and Agust́ı,
1998).

Different alternatives due to multiple instantiation introduce disjunction in
the query, and consequently, we need to make explicit the logical relations be-
tween boxes of the query diagram. In our case, both, parent boxes and the
man box need to be solved — they form a conjunction. But their duplications
are different alternatives and therefore form a disjunction. It is well known in
the diagrammatic reasoning community that disjunction is a representationally
‘thin’ concept, a concept that is difficult to capture diagrammatically (Barwise
and Hammer, 1996). Puigsegur and Agust́ı choose an AND-OR annotation tree
for this purpose, where the boxes of the query diagram are its leaves (Puigsegur
and Agust́ı, 1998).

7.4.5 Failure. We cannot solve one of the two alternatives, because we do
not dispose of a unifying definition diagram for finding a parent of dı́dac. The
box fails and has to be erased from the diagram, together with all other boxes
attached to it by conjunction:

parent

cesc

parent

grandparent

man

anna

This failure doesn’t affect the solvability of the whole query, because there is
still another alternative to be explored. Further transformation steps in our
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example involve a membership inference to solve the parent box yielding two
new alternatives, jordi and maria.

parent

cesc

parent

grandparent

man man

mariajordi

anna

The alternative maria fails in solving the remaining man box applying a mem-
bership inference, but this same inference succeeds for alternative jordi, even-
tually yielding

parent

cesc

parent

grandparent

man

jordi

anna

7.4.6 Answer diagram. The answer we have obtained to the original query
is that Jordi is a grandfather of Cesc. In order to make the answer more readable,
we may highlight the boxes of the original query diagram by drawing them
with solid lines. We call such a diagram an answer diagram, the original query
diagram plus a trace of its proof:

parent

cesc

parent

grandparent

man

jordi

anna

7.5 Conclusion

We have presented a completely visual inference mechanism for the visual pro-
gramming language currently under development (Puigsegur, 2000). Although
the rules are formally based on the chaining calculus, the visual inference mech-
anism is intrinsically different. Visual queries differ from textual ones, since
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they involve different kinds of query transformations, providing a new and in-
teresting framework for exploring and developing visual inference systems. The
main difference with regard to a conventional calculus is that in Puigsegur and
Agust́ı’s diagrams we do not erase boxes (predicates) that have already been
refuted, because we want to keep track of the trace of the proof. Another dif-
ference is when we are applying diagrams whose highlighted boxes contain more
than one graphical item, and therefore various alternatives for solving a goal
arise. Further development of this visual operational semantics has been done
by Puigsegur and Agust́ı in (Puigsegur and Agust́ı, 1998).

The formalization we have done of Puigsegur and Agust́ı’s visual Horn logic as
customized higraphs also opens new interesting perspectives for further studying
visual inference mechanisms: it provides the necessary framework for formally
defining the visual inferences put forth in this chapter as a merging of two
higraphs. But before we actually attempted to completely develop such formal
definition, we first studied how diagrammatic inferences based on the merging
of graphs actually work in the more general framework provided by category
theory. This is the subject of the next chapter.





Chapter 8

On Diagrammatic

Reasoning in Category

Theory

Category theory is one of those branches of mathematics that heavily uses dia-
grams, not as an informal aid, but as a formally-defined mathematical object.
The so called commutative diagrams are the category theorist’s way of express-
ing equations. Categories itself are best understood having a graphical image in
mind, since a category is actually a graph with some additional structure1, and
can be therefore easily visualized as a graph. In addition, proofs of theorems
in category theory are often constructed with a technique known as diagram
chasing, based on pasting several commutative diagrams together. In fact, for
many people proofs expressed in this way are much easier to understand than by
applying equational reasoning inferences. The use of graphs and commutative
diagrams for specifying mathematical structures has been thoroughly studied
by means of the notion of sketch, first introduced by Ehresmann (Ehresmann,
1968). Sketches are a graph-based logic and therefore an alternative to tra-
ditional string-based logic for specifying mathematical structures (Bagchi and
Wells, 1997a).

Furthermore, there is a well-known relationship between category theory and
computer science. Category theory has provided theoretical foundations to the
design of programming and specification languages, together with their semantic
models. Recently, category theory, together with its diagrammatic notation,
serves also as guideline for the emerging theory of information flow (Barwise
and Seligman, 1997).

Very often diagrammatic notations capture a large amount of information
in a much more compact and clear way than equivalent textual ones, because
they somehow resemble what they represent in a much closer way than textual

1To be rigorous we should talk about small categories, but we shall not worry about foun-
dational issues here.

147
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ones do. Barwise and Hammer suggests to provide a definition of resemblance
by the use of a precise mathematical concept of homomorphism between an
abstract notion of diagrammatic representations and an abstract notion of what
they represent (Barwise and Hammer, 1996). We believe that the framework
provided by general logics (see section 5.1) may be suitable for describing such
resemblance, at least in cases for logical systems based on sketches. Recall that
in this framework the syntax of a logic is presented as a category of signatures,
abstracting the kind of symbols one actually uses to write down sentences. This
abstraction does not restrict a signature to be of textual manner, but allows it
to be of any kind, and therefore also one of diagrammatic nature.

In this chapter we motivate the use of visual representations, like graphs,
and diagrammatic reasoning mechanisms, like diagram chasing, analyzing them
from the perspective of ‘formal diagrammatic reasoning’, i.e. by putting the
strength on how the manipulation of commutative diagrams by diagram chasing
captures the reasoning process when proving theorems in category theory. Here
we only formalize diagram chasing, and thus, we will ignore other important
diagrammatic reasoning mechanisms common in category theory, for instance,
for establishing the uniqueness of an arrow. We want to explore how visual
aspects of category theory, not only diagram chasing, can inspire us in the design
of visual declarative programming languages, and if these aspects can be useful
from the operational point of view.

8.1 Graphs and Categories

What are the signatures —the abstract mathematical objects— mathematicians
use when they specify and reason in category theory by means of diagrammatic
representations? Let us first observe the following representation:

•

''OOOOOOOOOOOOOO •

•::

??������� // •

wwoooooooooooooo

• •

GG��������������

We may identify two kind of visual items, bullets and arrows. We also may
observe that bullets and arrows are in relation to each other: For every arrow
there is always a unique bullet on its source and also a unique bullet on its
target.

The mathematical model we grasp by observing the representation above is
a well-known one, namely a (directed) graph.

8.1.1 Definition. A graph G consists of a set of nodes G0 and a set of arrows
G1, together with two total functions source : G1 → G0 and target : G1 → G0.
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This should not surprise us at all, because there is a strong resemblance between
the mathematical notion of graph and its physical representation. Since (small)
categories are graphs with some additional structure, mathematicians use the
same kind of representation for describing categories and reasoning about them.
Let us analyze that a little bit closer:

8.1.2 Definition. A category C is a graph2 together with a function assign-
ing to each pair of arrows f and g in C1, with target(f) = source(g), the com-
posite arrow (f ; g)3, with source(f ; g) = source(f) and target(f ; g) = target(g),
and a function assigning to each node A in C0 an identity arrow idA in C1, with
source(idA) = target(idA) = A, such that, if f, g, h are arrows in C1,

(f ; g);h = f ; (g;h)

idsource(f); f = f

f ; idtarget(f) = f

In a category, nodes are often called objects and arrows morphisms.

By representing categories as graphs, we clearly indicate which arrows have a
common source or target, much more so than if we use a linear listing of the
arrows with the source and target given for each of them, instead. Unfortunately,
due to the additional structure of categories (composite arrows and identity
arrows), its representations by means of finite graphs —each object represented
by a node and each morphism by an arrow— can be quite complicated even for
very simple categories, or actually impossible at all, due to infinite number of
distinct composite arrows:

B

idB

�� g //

g;h
PPPPPP

''PPPPPP

C

idC

��

h

  @
@@

@@
@@

AidA 88

f
??~~~~~~~
f ;goooooo

77oooooo
f ;g;h

,,

k;l;m

22

k;l
OOOOOO

''OOOOOO
k ��@

@@
@@

@@
D idDff

E

idE

YY

l;mnnnnnn

77nnnnnn

l
// F

idF

YY

m

>>~~~~~~~
A

f

��

...

f ;··· ;f

xx

...

idA

YY

(a) (b)

But, we can represent the morphisms of a category by means of paths in a
graph instead of directly by arrows.

2This way we only define small categories; large categories are captured by a more general
notion of graph, where nodes and arrows form collections rather than sets.

3Usually composition is written g · f . We use its ‘diagrammatic’ notation instead. As its
name indicates, it is closer to the diagrammatic representation of composition by means of
paths in a graph as discussed in this section.
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8.1.3 Definition. In a graph G, a path from node A to node B of length
n ≥ 0 is a sequence p = 〈f1, f2, . . . , fn〉 of arrows, for which

source(f1) = A

target(fi) = source(fi+1) for i = 1, . . . , n− 1

target(fn) = B

We will denote a path p from A to B with A
p ///o/o/o B . If n = 0, we say that the

path is empty. A path starting and ending at the same node is called a cyclic
path.

Paths in a graph capture in an elegant way the additional structure of categories,
and their properties. A path represents the composition of the morphisms repre-
sented by its arrows. An empty path on a node represents the identity morphism.
The following graphs represent the categories above, using the notion of path:

B
g // C

h

  @
@@

@@
@@

A

f
??~~~~~~~

k ��@
@@

@@
@@

D

E
l

// F

m

>>~~~~~~~

A

f

��

(a) (b)

The resulting graphs, though loosing on degree of ‘resemblance’ with respect
to the categories they represent, they remain being highly resemblant, and in
addition we obtain other advantages. We gain in clear representations of cate-
gories, and are able to express equality of morphisms by means of ‘diagrams’ in
an elegant way, as we will see in the next section.

We can now answer the question put at the beginning of this section: When
mathematicians specify and reason in category theory by means of diagram-
matic representations, the kind of signatures they use are actually graphs: a
set of object symbols, a set of morphism symbols, and relations between them
determined by the sources and targets of morphisms.

8.2 Commutative Diagrams

The basic task in categorical proof is to show the existence of a morphism, or to
show the equality of two morphisms, when some other morphisms and objects
are given. Category theorists use diagrams to state equality of morphisms,
by a semantic convention on these diagrams, namely that all paths with the
same source and the same target are considered to represent equal morphisms.
By this semantic convention, the following diagram states that morphism f ; k,
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represented by path 〈f, k〉, and morphism h; g, represented by path 〈h, g〉, are
equal, i.e. f ; k = h; g:

A
f //

h;g=f ;k

  
h

��

B

k

��
C g

// D

We call such a diagram (without the dotted arrow), together with this se-
mantic convention, a commutative diagram. A commutative composite diagram
is a very economical way of showing several equalities simultaneously without
duplication of subterms.

Although the representation above is that of a graph, the precise notion
of diagram is much more subtle. In order to use commutative diagrams to
represent equalities of morphisms, we need to express much more within one
unique representation than a graph would allow.

8.2.1 Example. Observe the following three diagrams:

A

f ��@
@@

@@
@@

h // A

B

g

??~~~~~~~

k

YY

B

g
��@

@@
@@

@@
k // B

A

f

??~~~~~~~

h

YY

A

f

��

h

��

B

g

VV

k

YY

(a) (b) (c)

They are different diagrams, though for all three of them their nodes are
A,B, and their arrows are f, g, h, k such that

source(f) = source(h) = A
source(g) = source(k) = B
target(g) = target(h) = A
target(f) = target(k) = B

Diagrams (a) and (b) have the same shape, namely the one given by the following
graph:

1

a
��>

>>
>>

>>
c // 3

2

b

@@�������

d

YY
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Nodes and arrows, though, are labeled differently. Diagram (c) above has a
completely different shape, namely the one given by the following graph:

1

a

��

c

��

2

b

VV

d

YY

A diagram is, therefore, the drawing of a graph that determines the shape,
and the labeling of nodes and arrows with respect to the graph we want to
describe. This is captured by a graph homomorphism:

8.2.2 Definition. A graph homomorphism φ : G → H is a pair of functions
φ0 : G0 → H0 and φ1 : G1 → H1 such that for every arrow f of G,

sourceH(φ1(f)) = φ0(sourceG(f))

targetH(φ1(f)) = φ0(targetG(f))

8.2.3 Definition. Let I and G be graphs. A diagram in G of shape I is a
graph homomorphism D : I → G.

8.2.4 Example (continued). For diagram (a), the homomorphism is D(1)
= D(3) = A, D(2) = B, D(a) = f , D(b) = g, D(c) = h, and D(d) = k, taking
the first of the two shape graphs above. For diagram (b), the homomorphism is
D(1) = D(3) = B, D(2) = A, D(a) = g, D(b) = f , D(c) = k, and D(d) = h,
taking the first of the two shape graphs, too. For diagram (c), the homomor-
phism is D(1) = A, D(2) = B, D(a) = f , D(b) = g, D(c) = h, and D(d) = k,
now taking the second of the two shape graphs above.

8.2.5 Definition. In a category C, a diagram D : I → C is commutative (or
commutes) if for any pair of nodes 1 and 2 of I and any two paths 〈a1, . . . , an〉
and 〈b1, . . . , bm〉 form 1 to 2, we have that the two morphisms D(a1); · · · ;D(an)
and D(b1); · · · ;D(bm) obtained by composition in C are the same:
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D(1′)
D(a2) // · · ·

D(an−1)// D(2′)

D(an)

##G
GG

GG
GG

GG

D(1)

D(a1)
;;wwwwwwwww

D(b1) ##G
GG

GG
GG

GG
D(2)

D(1′′)
D(b2)

// · · ·
D(bm−1)

// D(2′′)

D(bm)

;;wwwwwwwww

8.2.6 Observation. Having in mind that empty paths represent identity
morphisms, observe the distinct assertions we are making with the diagrams of
example 8.2.1, when considered to be commutative: Diagram (a) asserts that
f ; g = h and k = idB. Diagram (b) asserts that g; f = k and h = idA. Finally,
diagram (c) asserts that f ; g = h = idA and g; f = k = idB.

8.3 Reasoning by Diagram Chasing

A conventional style of proof in category theory is diagram chasing. Diagram
chasing is the technique by which category theorists reason with commutative
diagrams. It is an easy, visual, reliable style of proving equality of morphisms.

8.3.1 Free rides. Consider the following diagram chasing step:

B

A

f
??~~~~~~~

g
// C

h

OO B
k // D

C

h

OO

l

>>~~~~~~~
=⇒

B
k // D

A

f
??~~~~~~~

g
// C

h

OO

l

>>~~~~~~~

The two diagrams pictured to the left state that f = g;h and l = h; k.
Diagram chasing consists of pasting both diagrams together along the common
arrow h to obtain the new commutative diagram to the right. From this diagram,
and by the semantic convention established on commutative diagrams discussed
in section 8.2, we can grasp a new fact not previously stated, namely that f ; k =
g; l. This is a consequence of chasing the diagrams.

This form of diagrammatic reasoning provides us with free rides, as defined
by Shimojima (1996): By chasing two diagrams, new paths with coinciding
sources and targets may appear in the new diagram, without explicitly drawing
them; we may get them for free! By the semantic convention of ‘commutation
of a diagram’, these paths will be considered to represent equal morphisms.
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8.3.2 Correct and incorrect diagram chasings. Diagram chasing is not a
mere pasting together of two diagrams along common arrows, since such pasting
must be done in a correct way. Consider the following two diagrams:.

A

f

��
h

��

B

g

��
C

A

f

��
k

��

B

g

��
C

We may think of three different correct alternatives to chase the two original
commutative diagrams together, namely along arrow f , arrow g, or both at once:

A
f

��@
@@

@@
@@

h

��/
//

//
//

//
//

//
/ A

f

��~~
~~

~~
~

k

����
��
��
��
��
��
��

B

g

��
C

A

f

��
h

����
��
��
��
��
��
��

k

��0
00

00
00

00
00

00
0

B

g
��~~

~~
~~

~

g
��@

@@
@@

@@

C C

A

f

��
h

��

k

��

B

g

��
C

(a) (b) (c)

We do not obtain new equalities from diagrams (a) and (b), they do not
provide us any ‘free ride’, but from diagram (c) we can grasp the equality of
morphisms h = k. It seams, therefore, that in order to deduce as many new
equalities thanks to ‘free rides’ provided by diagram chasing, we would have to
paste diagrams along as many common arrows as possible. But this is not always
the case.

8.3.3 Observation. Let us now chase the following diagrams, which are
almost identical to the previous ones, but with the direction of arrow g reversed:

A

f

��
h

��

B

C

g

OO

A

f

��
k

��

B

C

g

OO
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Observe the possible alternatives we might consider now:

A
f

��@
@@

@@
@@

h

��/
//

//
//

//
//

//
/ A

f

��~~
~~

~~
~

k

����
��
��
��
��
��
��

B

C

g

OO

A

f

��
h

����
��
��
��
��
��
��

k

��0
00

00
00

00
00

00
0

B

C

g

??~~~~~~~
C

g

__@@@@@@@

A

f

��
h

��

k

��

B

C

g

OO

(a) (b) (c)

As before, from diagram (c) we would obtain that h = k, but now this cannot
be deduced equationally from f = h; g and f = k; g. Instead, diagrams (a) and
(b) are correct diagram chasings. In order for diagram chasing to provide correct
‘free rides’ we have to paste along arrows that form together a path, which is
the key notion in the semantic convention.

8.3.4 Cyclic paths in diagram chasing. It is more subtle to state the cor-
rectness of diagram chasing when cyclic paths are involved, due to the semantic
convention put on commutative diagrams that morphisms represented by paths
beginning and ending at the same node are equal to the identity morphism of
that node. Consider the following diagram chasing:

A
f // B

h

��
C

g

__@@@@@@@

B
k //

h

��

D

l~~~~
~~

~~
~

C

=⇒

A
f // B

k //

h

��

D

l~~~~
~~

~~
~

C

g

__@@@@@@@

The resulting diagram asserts —beside other equalities— that l; g; f ; k = idD,
which cannot be equationally deduced from the equations stated by the original
diagrams. In general we will disallow diagram chasings on paths if some of their
arrows belongs to a cyclic path, though this restriction can be relaxed for some
cases.

The problem arises when a node not belonging to a cyclic path before the
chasing takes place ends up within a cyclic path afterwards. This is what hap-
pened to node D in our example. By the following diagram chasing we obtain
that g; f = idB, which cannot be derived from the original equalities, because
we have brought node B into a cyclic path, due to the loop h (which is an arrow
forming a cyclic path by itself):

A hff

A
f //

h

��

B

g
��~~

~~
~~

~

A

=⇒ Ah 88

f
))
B

g

hh

Notice that everything works fine when the affected nodes already belonged to
cyclic paths. The diagram chasing below is correct, since the free ride f ; g = idB
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can be derived by equational reasoning. In this case node B was part of a cyclic
path before the chasing took place:

A hff

A

h

��

B
foo

A

g

??~~~~~~~
=⇒ Ah 88

g

55 B

f
vv

8.3.5 The formal definition. Let us give a formal definition of diagram
chasing. We will first define an equivalence relation on the set of arrows and
set of nodes of both original shape graphs. The idea is to merge the two shape
graphs into one, at the same time we are making equivalent those nodes and
arrows on which the diagrams are chased:

8.3.6 Definition. Given two diagrams D : I → G and D′ : I ′ → G and two
non-empty paths, p = 〈a1, . . . , an〉 and p′ = 〈a′1, . . . , a

′
n〉 in I and I ′ respectively,

n ≥ 1, such that,

1. for all i ∈ [1 . . . n], D(ai) = D′(a′i), and

2. no arrow ai of p and no arrow a′j of p′ belongs to a cyclic path, neither in
I nor in I ′,

we define the relation ∼ on the set of arrows I1 ∪ I ′1 and on the set of nodes
I0 ∪ I ′0 to be the minimal equivalence relation satisfying, for all i ∈ [1 . . . n],

ai ∼ a′i

source(ai) ∼ source′(a′i)

target(ai) ∼ target′(a′i) .

We are now ready to give the actual definition of ‘diagram chasing’, using the
equivalence relation ∼ on nodes and arrows just defined.

8.3.7 Definition. We define the diagram D′′ : I ′′ → G obtained by chasing
diagrams D and D′ along paths p and p′, and write {D,D′} ⊢DC

0 D′′, in the
following way:

1. The set of nodes and set of arrows of its shape graph are

I ′′0 = (I0 ∪ I
′
0)/ ∼

I ′′1 = (I1 ∪ I
′
1)/ ∼

with

source′′ = (source ∪ source′)/ ∼

target′′ = (target ∪ target′)/ ∼ .
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2. The graph homomorphism is

D′′
0 = (D0 ∪D

′
0)/ ∼

D′′
1 = (D1 ∪D

′
1)/ ∼ .

8.3.8 Warning. Notice that we have made abuse of notation by defining
source′′, target′′, D′′

0 , and D′′
1 as quotients by ∼ in the obvious way. Recall

from definition 8.3.6 that ∼ depends on the paths we are chasing. It is easy to
prove that D′′ is indeed a graph homomorphism.

8.4 Diagram Chasing vs. Equational Reasoning

We now formally prove that reasoning with diagrams and diagram chasing is
indeed a correct alternative to traditional equational reasoning, by proving that
every equality of morphisms derivable by diagram chasing, as defined in the
previous section, is also derivable by conventional equational reasoning. We
do this by defining a map of entailment systems (see section 5.1). We need
therefore to first define the entailment systems of diagram chasing and equational
reasoning, respectively.

8.4.1 Entailment system. In section 8.1 we saw that the signatures we
are dealing with are graphs. The category Grf of graphs and graph homomor-
phisms is therefore the category of signatures and signature homomorphisms.
Given a graph G, the diagrams in G play the role of well-formed sentences over
this signature. Since diagrams in G are graph homomorphisms from a shape
graph to G, they form a category, namely the slice category Grf/G. We can
define a functor diag : Grf → Set assigning to each graph G the set of all dia-
grams in G, namely O(Grf/G) where O : Cat→ Set is the object functor. This
functor is therefore the one assigning to each signature the set of all well-formed
sentences over it. Given a graph G, diagram chasing determines an entailment
relation ⊢DC between sets of diagrams and single diagrams, by defining it as the
reflexive, monotonic, and transitive closure of ⊢DC

0 . Consequently, we have that
the category Grf , the functor diag, and the entailment relation ⊢DC , all to-
gether constitute an entailment system (Grf , diag,⊢DC), the entailment system
of diagram chasing (see also section 5.1).

8.4.2 Sketches. Theories (or, to be more exact, theory presentations) are
given by a signature together with a set of sentences over this signature. In
our particular entailment system of diagram chasing, signatures are graphs, and
sentences are diagrams in that graph. Theories are therefore linear sketches, as
defined by Barr and Wells (Barr and Wells, 1995):

8.4.3 Definition. A linear sketch is a pair S = (G,D) with G a graph and
D is a set of diagrams in G.
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Since, given an entailment system, theories form a category (Meseguer, 1989),
we have that linear sketches do so, too. Let LinSk denote the category of linear
sketches.

8.4.4 Entailment system. For the entailment system of equational rea-
soning, the category of signatures and signature homomorphisms is Grf , too,
because we are dealing with a set of morphism symbols, a set of object symbols4,
and relations between them determined by the sources and targets of these sym-
bols. The sentences are equations, i.e. pairs of well-formed strings over these
morphism and object symbols, plus the composition symbol ;5. We write equa-
tions with the infix symbol ≈ for equality. The functor eq : Grf → Set assigns
to each signature the set of its well-formed equations. The entailment relation
⊢ER is equational reasoning with strings, capturing the reflexivity, symmetry,
transitivity, and the congruence properties of equality with respect to composi-
tion. The entailment system of equational reasoning is therefore (Grf , eq,⊢ER)6.
Analogous to linear sketches (i.e. theories of the entailment system of diagram
chasing), equational theories form a category, and we denote it EqTh.

8.4.5 Map of entailment systems. The following is an example of an
equational reasoning process. It captures the diagram chasing given in 8.3.1:

f ≈ g;h

f ; k ≈ g;h; k

l ≈ h; k

h; k ≈ l
g;h; k ≈ g; l

f ; k ≈ g; l

The reasoning process done by diagram chasing, instead, spares us of many
intermediate inference steps, compared to equational reasoning, because the se-
mantic convention put on commutative diagrams —that different paths with
coinciding sources and targets represent equal morphisms— implicitly captures
‘graphically’ the reflexivity, symmetry, transitivity, and congruence properties of
equality with respect to composition, without explicitly performing the inference
steps, as shown in figure 8.1.

Let us see these issues in a formal way, by studying the map from the entail-
ment system of diagram chasing to the entailment system of equational reason-
ing. Given a graph G, if D is a diagram in G of shape I and p = 〈a1, . . . , an〉 is
a path in I, n ≥ 0, then we denote with p̂ the string of morphism compositions
D(a1); · · · ;D(an) represented by p. We map a diagram D to a set of equations,
by defining αG(D) = {p̂ ≈ p̂′ | source(p) = source(p′)∧ target(p) = target(p′)}.
Being D a set of diagrams, αG(D) =

⋃

D∈D αG(D). Theories (linear sketches)
are mapped in the following way: Φ(G,D) = (G, αG(D)).

4Actually we are dealing with a family of morphism symbols id, subindexed by the object
symbols.

5The strings are well-formed according to the sources and targets of the morphism symbols.
6To be more rigorous we should define the entailment system of equational reasoning within

many-sorted equational logic with polymorphic operators (since composition of morphisms is
polymorphic), but the above stated entailment system suffices for our purposes.
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Reflexivity: p ≈ p A
p ///o/o/o B

Symmetry:
p ≈ p′

p′ ≈ p A
p ///o/o/o

p′

///o/o/o B

Transitivity:
p ≈ p′ p′ ≈ p′′

p ≈ p′′
A

p ///o/o/o

p′/o ///o

p′′

///o/o/o

B

Congruence (right):
p ≈ p′

p; p′′ ≈ p′; p′′
A

p ///o/o/o

p′

///o/o/o B
p′′

///o/o/o C

Congruence (left):
p ≈ p′

p′′; p ≈ p′′; p′
C

p′′

///o/o/o A
p ///o/o/o

p′

///o/o/o B

Figure 8.1: Equational inferences vs. commutative diagrams

Through the notion of ‘map of entailment systems’, we capture in a formal
way the intuitive idea that every equality of morphisms derivable by diagram
chasing is also derivable by equational reasoning.

8.4.6 Proposition. The map (Φ, α) : (Grf , diag,⊢DC)→ (Grf , eq,⊢ER) is
a map of entailment systems.

For (Φ, α) to be a map of entailment systems, α : diag ⇒ eq ◦ Φ has to be a
natural transformation, and Φ : LinSk → EqTh an α-sensible functor7, such
that D ⊢DC

G D implies αG(D) ⊢ER
Φ(G,∅) αG(D). We refer to section 5.1 for further

details on the general definition of a map of entailment systems. In the rest of
this chapter we will drop the subscripts of α, ⊢DC , and ⊢ER when the graph G
is clear from the context.

That (Φ, α) is indeed a map of entailment systems is a direct consequence of
lemma 8.4.11 below. But let us first prove several auxiliary lemmas, in which
we use the following conventions:

8.4.7 Conventions. By a path in a diagram we actually think of a path it its
shape graph. We extend source and target on arrows to paths in the following
way: If p = 〈a1, · · · , an〉, source(p) = source(a1) and target(p) = target(an).
We will also write p = 〈s1, · · · , sm〉 to indicate that si are subpaths of p, such
that for all i ∈ [1 . . .m − 1], target(si) = source(si+1). If D′′ is the diagram
obtained by chasing diagrams D and D′ along paths p and p′, respectively, we
will call p, p′ and their resulting path p′′ in D′′ indistinguishably the chased path.
We will say that a node n is on the chased path if it is the source or target of one
of its arrows. Furthermore, if q = 〈a1, · · · , an〉 is a path in D′′, we will say that

7Φ is α-sensible when the theorems of Φ(G,D) are completely determined by Φ(G, ∅) and
αG(D).
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q is also a path in D (or in D′) if, for all i ∈ [1 . . . n], there exists an arrow a′i
in the equivalence class ai, and 〈a′1, . . . , a

′
n〉 is a path in D (or D′). This latter

can be also applied to single nodes and arrows.

8.4.8 Lemma. Let D′′ be the diagram obtained by chasing diagrams D and
D′. Every path p in D′′ can be decomposed in a sequence of subpaths p =
〈s1, . . . , sn〉, with n ≥ 1, such that, for all i ∈ [1 . . . n− 1], either si is a path in
D, and then si+1 is a path in D′, or else si is a path in D′, and then si+1 is a
path in D.

Proof: Because paths inD′′ are actually finite sequences of equivalence classes
of arrows of the shape graphs ofD andD′ (see definitions 8.3.6 and 8.3.7), we can
‘isolate’ the subsequences of arrows that are completely in D or D′ respectively.
2

8.4.9 Corollary. For all i ∈ [1 . . . n − 1], target(si) and source(si+1) are
nodes on the chased path.

Proof: If si is in D, then si+1 is in D′, and since node target(si) =
source(si+1), it must be both in D and D′, and consequently, on the chased
path. 2

8.4.10 Lemma. Let D′′ be the diagram obtained by chasing diagrams D and
D′. If p is a path in D′′, such that its source and target is on the chased path, then
there exists a subpath q of the chased path, such that α(D) ∪ α(D′) ⊢ER q̂ ≈ p̂.

Proof: By lemma 8.4.8 and corollary 8.4.9, p = 〈s1, . . . , sn〉, such that, for
all i ∈ [1 . . . n], si is either in D or in D′, and source(si) and target(si) are on
the chased path. Consequently, there is a subpath s′i of the chased path between
these two nodes, which must go also from source(si) to target(si) , otherwise
it would violate the condition put on diagram chasing, namely that no arrow of
the chased path belongs to a cyclic path (see definition 8.3.6). Since si is either
in D or in D′ and s′i is in both, we have that α(D) ∪ α(D′) ⊢ER ŝ′i ≈ ŝi, for
all i ∈ [1 . . . n], and by the properties of equational reasoning α(D)∪α(D′) ⊢ER

q̂ ≈ p̂. 2

8.4.11 Lemma. If D′′ is the diagram obtained by chasing diagrams D and
D′, i.e. {D,D′} ⊢DC

0 D′′, then α(D) ∪ α(D′) ⊢ER α(D′′).

Proof: Let u and v be two paths in D′′, and therefore û ≈ v̂ is in α(D′′). We
have the following cases:

1. u and v are either both in D or else both in D′:
Then, either equation û ≈ v̂ is in α(D), or else it is in α(D′), and therefore
α(D) ∪ α(D′) ⊢ER û ≈ v̂
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2. u is in D, but v is not in D (or vice versa)8:
By lemma 8.4.8 and corollary 8.4.9, and by letting w1 be the empty path
from source(v) to itself when source(v) is on the chased path, and w3 be
the empty path from target(v) to itself when target(v) is on the chased
path, we can decompose v in a sequence of three subpaths 〈w1, w2, w3〉,
such that w1 and w3 are both in D and source(w2) and target(w2) are on
the chased path. By lemma 8.4.10, there exists a subpath q of the chased
path, such that α(D) ∪ α(D′) ⊢ER q̂ ≈ ŵ2. Since q is also a path in D,
α(D) ⊢ER û ≈ ŵ1; q̂; ŵ3, and by the properties of equational reasoning
α(D) ∪ α(D′) ⊢ER û ≈ v̂.

3. Neither u nor v is in D or in D′:
By lemma 8.4.8 and corollary 8.4.9, we decompose u and v in the sequence
of three subpaths 〈w1, w2, w3〉 and 〈w′

1, w
′
2, w

′
3〉 respectively, such that w1,

w3, w
′
1, and w′

3 are each either in D or D′, and source(w2), target(w2),
source(w′

2), and target(w′
2) are on the chased path. By lemma 8.4.10, there

exist subpaths q and q′ of the chased path, such that α(D) ∪ α(D′) ⊢ER

q̂ ≈ ŵ2 and α(D) ∪ α(D′) ⊢ER q̂′ ≈ ŵ′
2.

(a) If q′ is subpath of q (or vice versa), then there exists subpaths r1, r2
such that q = 〈r1, q′, r2〉. Consequently, α(D) ∪ α(D′) ⊢ER ŵ1; r̂1 ≈
ŵ′

1 and α(D) ∪ α(D′) ⊢ER r̂2; ŵ3 ≈ ŵ′
3. By the properties of equa-

tional reasoning, α(D)∪α(D′) ⊢ER ŵ1; r̂1; q̂
′; r̂2; ŵ3 ≈ ŵ′

1; q̂
′; ŵ′

3, and
consequently, α(D) ∪ α(D′) ⊢ER û ≈ v̂.

(b) If q and q′ overlap, but neither is subpath of the other, then there
exist subpaths q′′, r1, r2 such that q = 〈r1, q′′〉 and q′ = 〈q′′, r2〉 (or
vice versa). Consequently, α(D)∪α(D′) ⊢ER ŵ1; r̂1 ≈ ŵ

′
1 and α(D)∪

α(D′) ⊢ER r̂2; ŵ
′
3 ≈ ŵ3. By the properties of equational reasoning,

α(D) ∪ α(D′) ⊢ER ŵ1; r̂1; q̂
′′; ŵ3 ≈ ŵ′

1; q̂
′′; r̂2; ŵ

′
3, and consequently,

α(D) ∪ α(D′) ⊢ER û ≈ v̂.

(c) If q and q′ do not overlap, then there exists a subpath q′′, such that
〈q, q′′, q′〉 (or 〈q′, q′′, q〉) is subpath of chased path. Consequently,
and by the properties of equational reasoning, α(D) ∪ α(D′) ⊢ER

ŵ1; q̂; q̂
′′; q̂′; ŵ′

3 ≈ ŵ′
1; q̂

′; ŵ′
3 and α(D) ∪ α(D′) ⊢ER ŵ1; q̂; ŵ3 ≈

ŵ1; q̂; q̂
′′; q̂′; ŵ′

3. Consequently, α(D) ∪ α(D′) ⊢ER û ≈ v̂.

2

8.4.12 Remark. From the diversity of cases one has to consider while prov-
ing lemmas 8.4.10 and 8.4.11, we can see the considerable amount of equational
reasoning inferences required in order to ‘emulate’ one single diagram chasing
inference {D,D′} ⊢DC

0 D′′. This observation further highlights that commuta-
tive diagrams and diagram chasing somehow embed the properties of equational
reasoning in a natural way.

8v may be in D′ or not, it doesn’t matter.
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Figure 8.2: Category providing types and basic operators

8.4.13 Non-conservative map. If by equational reasoning we cannot prove
more equalities of morphisms than by diagram chasing, we say that the map of
entailment system is conservative. Formally, the map (Φ, α) would be conserva-
tive if αG(D) ⊢ER

Φ(G,∅) αG(D) implies D ⊢DC
G D. Unfortunately, with the current

formalization of diagram chasing given in definitions 8.3.6 and 8.3.7 it is not.
This is due to the particular treatment we are giving to cyclic paths. Observe
the following case:

A hff

A
f //

h

��

B

g
��~~

~~
~~

~

A

=⇒ Ah 88

f
))
B

g

hh

We cannot deduce the equality of morphisms f ; g and idA by diagram chas-
ing, because we disallow chasings along cyclic paths in order to avoid incorrect
deductions, although f ; g ≈ idA can be deduced by equational reasoning.

8.5 Computing by Diagram Chasing

We are interested in exploiting sketches as a computing device. As an example,
let us see how we would graphically describe a very simple functional program-
ming language.

8.5.1 Example. Figure 8.2 represents the category providing us with the
basic operators of the language, together with its typing. Arrows originating at
1 are constants of their target type (e.g. false is a constant of type Bool).

The behavior of these basic operators is specified by means of the commuta-
tive diagrams of figure 8.3, where the intended meaning of the operators in the
obvious one.

8.5.2 Cones. Before going any further, we need to introduce another visual
formalism frequently used in category theory, namely cones. Like diagrams, they
are also a particular type of graph homomorphism:
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ord

kk

(e)

Figure 8.3: Commutative diagrams specifying the behavior of operators

8.5.3 Definition. Let I be a finite discrete graph and G a graph. A finite
discrete cone in G is a graph homomorphism L : I → G, a node n of G and a
collection of arrows πi : n→ L(i), one for each node i ∈ I.

n

πi

}}{{
{{

{{
{{ πj

!!C
CC

CC
CC

C

···

L(i) L(j)

The node n is called the vertex, the diagram L the base of the cone.

8.5.4 Example (continued). We need to specify constants as nullary op-
erators, by determining 1 to be a final object. This is done with the product
cone with vertex 1 and empty base:

1

This description of the functional programming language is nothing else but a
finite product sketch:

8.5.5 Definition. A finite product sketch S is a triple (G,D,L) where G is
a graph, D is a collection of diagrams in G, and L is a collection of cones.
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Figure 8.4: Computation by diagram chasing

We do not want to enter here in more details about sketches, because our purpose
is to give the basic notions in order to present our argumentation. We refer
to (Barr and Wells, 1995) for an exhaustive study on sketches.

8.5.6 Computation. Let us now see how computation with commutative
diagrams by means of diagram chasing may look like. Suppose we want to know
if the numeric code for character ‘a’ is zero o not, i.e. we want to know to which
other morphism from 1 to Bool the composite morphism a; ord; iszero is equal.

We take diagram 8.4(a) and start to paste commutative diagrams taken from
figure 8.3. By chasing diagram 8.3(e) on ord we get diagram 8.4(b). We indicate
by dotted lines those arrows on which we have just pasted a diagram. The solid-
line arrows show us those arrows on which we still have to paste other diagrams.
Next, by chasing diagram 8.3(a) on a and chr we get diagram 8.4(c).

8.5.7 Remark. Notice that in this step we are not chasing along arrows of
a common path. This would seem a violation of definitions 8.3.6 and 8.3.7. It is
not, because what we are actually doing here is an ‘unchasing’ of diagrams, i.e.

a reverse process of diagram chasing. You can check that the chasings done in
the reverse direction (from (d) to (a)) are all in accordance to definitions 8.3.6
and 8.3.7. Finally, by chasing diagram 8.3(c) on zero and iszero we get diagram
8.4(d), from which we can read that the numeric code of character ‘a’ is indeed
zero.

8.5.8 Caveat. Of course, this example is in no manner a complete analysis
of how sketches and diagram chasing may be applied to computation. A detailed
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study remains to be done, since we only attempted to give a glimpse of the kind
of questions that bother us, and in which directions we are trying to pursue
them.

On the other hand, we think it is sufficiently illustrative to demonstrate the
intuitive gain obtained by using a visual notation based on diagrams, and that
this is no way contradictory with the use of a formal language. We believe
that diagrammatic representations and the reasoning done with them, as it is
exploited in category theory, can be very useful in order to design in the future an
intuitive high-level visual declarative programming language that may help non-
specialists build prototypes of preliminary specifications in a completely formal
way.





Part V

Conclusion





Chapter 9

Conclusions and Future

Work

This thesis is the result of exploring the relationship existing between several
distinct research fields, by trying to bring them together upon one key aspect:
the role of special relations in specification and reasoning.

Therefore we have tailored a logic in which the pragmatics of special relations
is highlighted, much more, we believe, than in standard first-order logic, since
we use technicalities borrowed from relation algebra, as for instance identity
relations, relation composition, and relation reversion, to better cope with the
role these relations play in specification and reasoning. We further endowed the
logic with a very abstract semantics based on allegories, the category theory of
relations, in order to have a framework of specification general enough to cover
many distinct paradigms of specification based on special relations.

We have shown that the proposed logic indeed suites well as a framework
logic for specification paradigms by defining conservative maps of logics from
several examples of specification frameworks. Thus we were able to map mem-
bership equational logic, rewriting logic, non-deterministic specifications with
set-relations, and also a diagrammatic Horn logic to our logic of special rela-
tions. These maps, for sure, emphasise much more the pragmatics of special
relations, i.e., the key role played by them in all these specification frameworks.

But we have also shown how this key role played by special relations can
also be exploited computationally by laying down a very general notion of term
rewriting along binary relations. The technique presented in this thesis goes
further than previous generalisations by allowing rewrite steps to be done along
any relational expression within a fragment of relation algebra, and also taking
into account very general monotonicity properties of the function symbols in
the signature. We have shown in detail all the tractability problems that arise
in such general perspective of term rewriting, but we also were able to identify
those key properties signatures have to satisfy for effectively dealing with a
proof calculus based on our general notion of term rewriting. For this reason,

169
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we have established the important role played by the notion of polarity for
taming the general framework, and introduced concepts like ‘well-polarised and
well-commuting signature’ or ‘polarisation relation of a signature’, which shed
light on how properties of special relations influence the tractability of the term
rewriting technique.

Our general term rewriting technique applied to specific specification para-
digms led us to unify two notions for the decidability of term rewriting tech-
niques in membership equational specifications, which up to now were consid-
ered distinct. We have namely shown that confluence and sort-decreasingness
actually are the same general notion of local confluence, pointing out that sort-
decreasingness is actually too strong a condition for decidability. We also were
able to revise the redundancy notions exploited by a proof calculus for non-
deterministic specifications with set relations, and which is based on a generali-
sation of term rewriting similar, but more restricted, than the one presented in
this thesis. By paying attention to the subtleties that such generalisation carries,
we showed that the framework suffers of non-well-polarisation, which is one of
the key conditions for practicable application of such general techniques.

Finally, inspired by the proof techniques presented in this thesis, we laid down
completely diagrammatic inference rules that constitute the operational seman-
tics of a novel visual programming language currently under development, and
that attempts to make formal specification closer to non-logicians. Motivated
by the success of our approach we have explored diagram reasoning within the
more general framework provided by category theory, and have formalised one
of its reasoning techniques —diagram chasing— within the context and perspec-
tive established by the diagrammatic reasoning community, in order to figure
out how category theory may be useful for defining general methods of visual
representation and reasoning.

9.1 Related Research

During the research done while working on this thesis, and because of the many
different aspects involved in it, we came in touch with many other lines of re-
search sharing similar objectives, methodology or inspirational points. But un-
fortunately, we have not devoted them the required time they deserved, in order
to incorporate their ideas and approaches into our work. Now we would like to
briefly comment them here.

9.1.1 Partial order programming. Focusing on the role special relations
play in declarative programming, several researchers chose specific algebraic
structures, and in particular lattices, for a variety of declarative programming
languages. For example, Aı̈t-Kaci and Podelski make use of order-sorted fea-
ture terms as basic data structure of the programming language LIFE (Aı̈t-Kaci
and Podelski, 1993), generalising in this way the flat first-order terms normally
used as unique data structure in logic programming. Jayaraman, Osorio, and
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Moon also base their partial order programming paradigm on a lattice struc-
ture, and are specially interested on the complete lattice of finite sets (Jayara-
man et al., 1995). In their paradigm they pursue the aim to integrate sets
into logic programming, and to consider them as basic data structure on which
the paradigm relies. But Parker was probably the first who advocated pro-
gramming on non-symmetric transitive relations like preorder or partial order
relations for generalising and subsequently combining several different program-
ming paradigms (Parker, 1987; Parker, 1989). Another approach for integrating
functional and logic programming, based on rewriting logic, but taking possibly
non-deterministic lazy functions as the fundamental notion, has been done by
González-Moreno et al. (1996; 1997). We have done a preliminary exploration on
the use of rewrite techniques for declarative programming with special relations
in (Schorlemmer and Agust́ı, 1996).

9.1.2 Relational programming and program construction. Staying
within the area of declarative programming, but moving to more abstract frame-
works, we have found several attempts to integrate functional and logic pro-
gramming by basing computation on the calculus of relations. Some directions
are Broome and Lipton’s combinatory logic programming (Broome and Lip-
ton, 1994), which extends traditional database query formalisms by translating
Horn clauses into relational expressions, and subsequently solving queries with
a variable-free calculus based on equational term rewriting with the axioms of a
relation algebra.

Motivated by the usefulness of a relational calculus to provide a natural treat-
ment of partiality or non-determinism, and also by the opinion that the leading
declarative programming paradigms, functional and logic programming, and the
integration of both, lack of an elegant computational model which complicates
the reasoning about the behaviour of functional logic programs, McPhee and de
Moor propose to pursue a relational programming language which is purely com-
positional, and which is based on the theory of allegories (McPhee and de Moor,
1996). Furthermore Bird and de Moor have recently written an introductory
textbook on the algebra of programming were they put special emphasis on
using categorical methods form the theory of allegories for formal program con-
struction (Bird and de Moor, 1997).

9.1.3 Relational specifications. From the algebraic specification point of
view, theories in our logic of special relations can actually be seen as customised
relational specification as put forth by Berghammer and Schmidt (1993). Their
framework is very similar to ours from the model theoretic point of view, but it is
more general, because it uses the whole expressiveness provided by relation alge-
bra. The main difference relies in the proof theoretic aspect, since we were after
providing rewriting-based proof calculi by approaching a general notion of term
rewriting, while they focused mainly on machine-supported proof techniques for
proving theorems in a relation algebra (Behnke et al., 1997).
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9.1.4 Tile logic. Recently, we have discussed with Gaducci and Bruni the
relationship existing between tile logic (Gaducci and Montanari, 1996) and the
logic of special relations. It seems like a term rewriting system over a logic of spe-
cial relations can be seen as a particular tile rewriting system, where our special
relations are observations in that framework. Since there exists a conservative
map of tile logic back to rewriting logic (Bruni et al., 1998), tile rewriting sys-
tems can be implemented in specification languages based on rewriting logic like
Maude (Clavel et al., 1996), so that perhaps our general term rewrite technique
can be eventually implemented in this language.

9.1.5 Combining algebraic and set-theoretic specifications. Rewrit-
ing set expression has been approached from an other quite distinct perspective
by Kirchner and Mosses, who attempt to apply term rewriting techniques coming
from membership equational specifications to a Z-like specification framework,
thus bringing the model-oriented and property-oriented approach to specifica-
tion together (Hintermeier et al., 1996; Kirchner and Mosses, 1999). Since we
have not been aware of their work until very recently, we still do not know to
which extend our framework and theirs may profit from mutual results.

9.2 Future Work

Beside exploring the relationship of our framework to all the research mentioned
in the previous section, we also can further work on many aspects treated in this
thesis.

9.2.1 Logic of special relations. We just tailored a logic to our needs, and
it turned out to suite well for capturing several specification frameworks, and
to highlight the role played by special relations. From the conclusion drawn in
chapter 6, we firmly believe that this logic is a good starting point for further
investigations of algebraic specification frameworks. But of course, one impor-
tant aspect is still missing, namely that it is indeed complete with respect to our
inference mechanism and to our proof method based on term rewriting with spe-
cial relations. We know that, in convergent term rewriting systems, a decision
algorithm based on rewriting can prove all sentences that the rewrite systems en-
tails, but we do not know if it proves all sentences satisfied by its models. As we
already mentioned in 3.3.13, we believe that completeness will be achieved, once
we have established the relationship of our logic of special relations with Bruno,
Gadducci, and Montanari’s closely related tile logic (Gaducci and Montanari,
1996; Bruni et al., 1998).

9.2.2 Term rewriting beyond equality. Despite the discouraging situ-
ation laid down by the researchers that went before us in generalising term
rewriting, namely that the development of term rewriting techniques and Knuth-
Bendix -like completion procedures involving non-symmetric relations was not
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worth any deeper investigation, because of its inherent difficulties for automation
(Bachmair and Ganzinger, 1998; Struth, 1997), in this thesis we have shown that
by using the notion of polarity we can tame the general inference mechanism,
though the resulting conditions put on theories turn out to be very restrictive.
Term rewriting captures many other special relations in addition to transitive
and congruence ones, and this property of term rewriting needs to be further
exploited.

Although maybe further studying general techniques of term rewriting, as
presented in this thesis, is not worth the effort, it is necessary to think about
more specific interesting theories with general special relations were our rewriting
technique based on polarities for logics with special relations can be applied.
Since by generalising term rewriting to binary relations we have been able, at
least, to unify several distinct decidability conditions for specific theories in our
logic with special relations, we are convinced that we will obtain more interesting
results in the future by applying our rewriting techniques. For this reason, first,
we will need to extend the framework to cover conditional term rewriting, in
a similar way equational rewriting has been extended to the conditional case
(Kaplan, 1984; Dershowitz and Okada, 1990; Ganzinger, 1991). Such extension
might also be helpful to avoid the generation of critical atoms due to the overlap
on variable positions as discussed in section 4.7.

9.2.3 Specification and programming with special relations. Specifi-
cation paradigms are usually based on several special relations. While many-
sorted specification has slowly shifted to treat sorts semantically, instead of syn-
tactically, the interplay of special relations in their deduction systems has become
more and more important. A unifying view at all levels, in their models and in
their deduction systems is achieved in our logic with special relations.

We have also emphasised in section 9.1 that the gain in expressiveness us-
ing relations for specification and also for programming has been advocated
by numerous researchers, and several proposals have been given. Specification
paradigms and term-rewriting techniques, as studied in this thesis, may defi-
nitely be useful for further exploration of the use of relations for specification and
programming. An interesting open problem would be to apply term-rewriting
techniques to specific relation algebras, and to use term rewriting along binary
relations to execute relational programs in a spirit similar to (Broome and Lip-
ton, 1994).

9.2.4 Diagrammatic reasoning and declarative programming. Bar-
wise and Hammer show the validity of diagrammatic reasoning as a completely
formal deduction technique in logical systems. In particular, we have shown in
this thesis how a particular novel visual language is just a diagrammatic logic
with special relations that can be intuitively captured by visual cues, and how
the diagrammatic reasoning done in this logic corresponds to specific chaining
inferences.

In order to bring this observation a little bit further, and since models of our
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logical theories are based on the category theoretic aspects of relation algebras,
we attempted to formally define a fragment of diagrammatic reasoning in cat-
egory theory. It would be of great interest to extend the formal analysis done
on commutative diagrams and diagram chasing together with its relationship
to standard equational reasoning, to semi-commutative diagrams and the dia-
grammatic Godement calculus of functors and natural transformations. It would
capture a diagrammatic alternative to inequational reasoning as investigated in
this thesis in its non-visual aspect.

Although the relationship between category theory and computer science has
been of central importance for the formal specification discipline, a thorough in-
vestigation on how to use its diagrammatic tools for formal specification and
high-level declarative programming remains to be done. Recent work in this
direction, exploiting the category-theoretic notion of sketch for computation, in-
cludes Bagchi and Wells’s thorough study on a graph-based logic constructed
over the notion of sketch. They affirm it is “a first step towards a theory
that is directly implementable for the purposes of computation” (Bagchi and
Wells, 1997a; Bagchi and Wells, 1997b). Duval and Reynaud notice, also, that
first-order structures are not well adapted to computation. They provide “a
definition of sketches to deal explicitly with ‘programs’ (i.e. with operational se-
mantics)” (Duval and Reynaud, 1994a; Duval and Reynaud, 1994b). We would
like to further explore to which extend sketches fit well for the purpose of com-
putation, by taking advantage of the experience of the diagrammatic reasoning
community.
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