
Adaptive Organisation Centered
Multi-Agent Systems

Jordi Campos i Miralles

Barcelona, May 2011

Facultat de Matemàtiques - Departament de Matemàtica Aplicada i Anàlisi

Supervisors:

Dr. Maite López-Sánchez (Universitat de Barcelona, UB)
Dr. Marc Esteva (Institut d'Investigació en Intel.ligència Arti�cial, IIIA, CSIC)

Als meus tresors

�Il nous appartient de veiller tous ensemble à ce que notre société
reste une société dont nous soyons �ers� from Indignez-vous!, 2010

Stéphane Hessel (1917-),
contributor to the Universal Declaration of Human Rights in 1948.

Agraïments
Un treball com aquest és fruit de molt d'esforç, i aquest esforç no és només d'un
individu. Així doncs, es tracta d'una �ta personal, i alhora, d'un assoliment
col·lectiu. Les analogies amb el contingut social de la tesi són doncs, nombroses.

Començo agraint les hores dedicades als meus dos tutors de tesi, la
Dra. Maite López Sánchez i el Dr. Marc Esteva. Ambdós han aportat el seu
coneixement en la matèria, però també la seva experiència en la metodologia
d'una feina d'aquesta envergadura. Més enllà del terreny professional, recor-
daré com la Maite va contribuir a la canastreta de la meva �lla i en Marc als
plantejaments a mig termini.

Per extensió, també he d'agrair els mitjans de les dues institucions que hi
ha al seu darrere, la Universitat de Barcelona (UB) i l'Institut d'Investigació en
Intel·ligència Arti�cial (IIIA). D'una banda, la UB ha estat el meu lloc de treball
durant els darrers sis anys, i m'ha donat la possibilitat de gaudir fent classes i
conèixer a savis com els meus companys d'assignatura, de despatx i de tertúlies
de sobretaula. No vull posar els noms, per no fer la llista massa llarga i córrer
el risc de deixar-me algú, però una abraçada a tots/es vosaltres. D'altra banda,
l'IIIA ha estat el meu contacte més directe amb la recerca professional, on he
tingut l'oportunitat de conèixer aquest món en profunditat. Recordaré doncs,
molts dels que heu fet interessants i agradables les meves visites a l'institut.

Tot plegat, però, no voldria deixar de mencionar la Universitat Politècnica
de Catalunya (UPC), on vaig començar el doctorat. Animat per en Sebas, vaig
embarcar-me a la recerca de la mà de la Dra. Daniela Tost i la Dra. Anna Puig.
A ambdues els dec un merescut agraïment per aquest inici. Més encara, gràcies
Anna per continuar present �ns al �nal d'aquest treball. Tampoc hi ha lloc
per esmentar la resta de gent amb qui vam assistir a classe, dinar plegats o
simplement xerrar extensament pels passadissos.

Tan mateix, més enllà de l'àmbit de treball, hi ha persones molt estimades
que han contribuït extensament al fet que pogués dedicar el temps i els ànims
a aquesta tesi. Present dins meu, l'Olga sempre m'ha donat suport i ha tingut
cura del nostre tresor. He de confessar que, com a mínim, un tros de la tesi i
del meu cor els pertoca a elles. També proper, ha estat el caliu de ma germana
Ivanna, la meva àvia Felisa, la família més propera, els amics i �ns i tot la sogra.
Ara bé, he volgut reservar aquest �nal a l'inici de tot plegat, als meus pares, la
Rosalia i en Ximo. Sense la seva estimació, els seus valors, i la cultura de l'esforç
que han mirat de transmetre'm des de petit, no hauria arribat �ns aquí.

Moltes gràcies a tots/es!

iii

Contents overview

Abstract xv

Resum xvi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Objectives and Contributions . 7
1.4 Structure . 10

2 State of the art 13
2.1 Coordination Support . 13
2.2 Connectivity Layer . 15
2.3 Agent Communication Layer . 15
2.4 Organisational Layer . 16
2.5 Assistance layer . 24

3 Situated Adaptive Electronic Institutions (SAEI) 33
3.1 Introduction . 33
3.2 Electronic Institutions applied to our tra�c scenario 34
3.3 Situated Electronic Institutions (SEI) model 38
3.4 Autonomic Electronic Institutions (AEI) applied to our tra�c

scenario . 41
3.5 Situated Autonomic Electronic Institutions (SAEI) model 44

4 Assistance Layer 47
4.1 Introduction . 47
4.2 Organisational Assistance . 48
4.3 Agent Assistance . 50

5 Organisational Adaptation 57
5.1 Introduction . 57
5.2 Notation . 58
5.3 General Organisation Model . 60
5.4 Features of agents in charge of adaptation 65

v

5.5 Two-Level Assisted MAS Architecture (2-LAMA) 65

6 Case study: P2P sharing network 81
6.1 Introduction . 81
6.2 BitTorrent protocol . 82
6.3 Network abstraction . 85
6.4 2-LAMA speci�cation . 89
6.5 Domain-level speci�cation . 90
6.6 Meta-level speci�cation . 97
6.7 Protocol speci�cation . 100

7 Adaptation Mechanisms 107
7.1 Introduction . 107
7.2 Social relationships adaptation 108
7.3 Norm adaptation . 111
7.4 Heuristic approach to norm adaptation 117
7.5 Machine Learning approach to norm adaptation 120

8 P2P sharing network Simulator 131
8.1 Introduction . 131
8.2 Usage and features . 133
8.3 Extensible Architecture . 138
8.4 Open MAS extensions . 152

9 Experiments 161
9.1 Introduction . 161
9.2 Coordination models . 162
9.3 Experiment design . 164
9.4 Results and analysis . 165
9.5 Exploring open MAS issues . 170

10 Conclusions 177
10.1 Achieved objectives and contributions 177
10.2 Publications . 179
10.3 Future work . 182

Bibliography 183

vi

Detailed contents

Abstract xv

Resum xvi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2

1.2.1 Regulation-oriented problems 3
1.2.2 Illustrative scenarios . 4

1.2.2.1 An auction house 4
1.2.2.2 A tra�c scenario 5
1.2.2.3 A P2P Sharing network 6

1.3 Objectives and Contributions . 7
1.4 Structure . 10

2 State of the art 13
2.1 Coordination Support . 13
2.2 Connectivity Layer . 15
2.3 Agent Communication Layer . 15
2.4 Organisational Layer . 16

2.4.1 Agent-Centred versus Organisation-Centred MAS 17
2.4.2 Components and Services 18
2.4.3 Current approaches . 20

2.5 Assistance layer . 24
2.5.1 Services . 24
2.5.2 Agent Assistance approaches 25
2.5.3 Organisational Assistance approaches 26

2.5.3.1 Task assignment approaches 27
2.5.3.2 Regulation de�nition approaches 28

3 Situated Adaptive Electronic Institutions (SAEI) 33
3.1 Introduction . 33
3.2 Electronic Institutions applied to our tra�c scenario 34

3.2.1 Communication Language 35

vii

3.2.2 Performative Structure . 35
3.2.3 Normative Structure . 36

3.3 Situated Electronic Institutions (SEI) model 38
3.3.1 Modellers and sta� agents 40
3.3.2 Social Conventions . 41
3.3.3 Bridge . 41

3.4 Autonomic Electronic Institutions (AEI) applied to our tra�c
scenario . 41
3.4.1 Institutional Goals . 43
3.4.2 Transition Functions . 44

3.5 Situated Autonomic Electronic Institutions (SAEI) model 44

4 Assistance Layer 47
4.1 Introduction . 47
4.2 Organisational Assistance . 48

4.2.1 Adaptation service . 48
4.3 Agent Assistance . 50

4.3.1 Information service . 50
4.3.2 Justi�cation service . 51
4.3.3 Advice service . 52
4.3.4 Estimation service . 54

5 Organisational Adaptation 57
5.1 Introduction . 57
5.2 Notation . 58

5.2.1 Model . 58
5.2.2 Speci�cation . 59
5.2.3 Execution State . 60

5.3 General Organisation Model . 60
5.3.1 The Social Structure . 61
5.3.2 The Social Conventions 62
5.3.3 The Organisational Goals 63

5.4 Features of agents in charge of adaptation 65
5.5 Two-Level Assisted MAS Architecture (2-LAMA) 65

5.5.1 Abstract Architecture . 66
5.5.1.1 Meta-Level . 67
5.5.1.2 Domain-Level 67
5.5.1.3 Discussion . 68
5.5.1.4 Example . 69

5.5.2 Assistance Functions . 70
5.5.2.1 Formalisation . 70
5.5.2.2 Discussion . 72
5.5.2.3 Example . 72

5.5.3 Distributed adaptation . 74
5.5.3.1 Information . 74
5.5.3.2 Decision making 75

viii

5.5.3.3 Example . 76
5.5.4 Costs and frequency . 78

5.5.4.1 Adaptation Costs 78
5.5.4.2 Adaptation Frequency 79
5.5.4.3 Example . 79

6 Case study: P2P sharing network 81
6.1 Introduction . 81
6.2 BitTorrent protocol . 82

6.2.1 Initial phase . 83
6.2.2 Data sharing phase . 84
6.2.3 Noti�cation phase . 85

6.3 Network abstraction . 85
6.3.1 Topology . 85
6.3.2 Metrics . 87

6.4 2-LAMA speci�cation . 89
6.5 Domain-level speci�cation . 90

6.5.1 Observable properties . 90
6.5.1.1 Agent Observable Properties 91
6.5.1.2 Environment Observable Properties 92

6.5.2 Social Structure . 93
6.5.3 Social Conventions . 93
6.5.4 Goals . 96

6.6 Meta-level speci�cation . 97
6.6.1 Social Structure . 97
6.6.2 Social Conventions . 98
6.6.3 Goals and Adaptation . 99

6.7 Protocol speci�cation . 100
6.7.1 Initial phase . 100
6.7.2 Social structure phase . 101
6.7.3 Data sharing phase . 103
6.7.4 Noti�cation phase . 103
6.7.5 Norms phase . 104

7 Adaptation Mechanisms 107
7.1 Introduction . 107
7.2 Social relationships adaptation 108

7.2.1 Information required . 109
7.2.1.1 Connectivity . 109
7.2.1.2 Datum possession 110

7.2.2 Process . 110
7.3 Norm adaptation . 111

7.3.1 Information required . 112
7.3.1.1 Local information 112
7.3.1.2 Remote information 113
7.3.1.3 Knowledge information 114

ix

7.3.2 Local decision . 115
7.3.3 Final decision . 116

7.3.3.1 Agreement . 116
7.3.3.2 Norm adoption 116

7.4 Heuristic approach to norm adaptation 117
7.5 Machine Learning approach to norm adaptation 120

7.5.1 Characterisation . 120
7.5.2 Case description . 121
7.5.3 CBR Cycle . 123

7.5.3.1 Retrieve . 125
7.5.3.2 Reuse . 126
7.5.3.3 Revise . 128
7.5.3.4 Retain . 129

8 P2P sharing network Simulator 131
8.1 Introduction . 131
8.2 Usage and features . 133

8.2.1 Setup of a simulation . 133
8.2.2 Execution of a simulation 135
8.2.3 End of a simulation . 136

8.3 Extensible Architecture . 138
8.3.1 Requirements . 138
8.3.2 Design . 139
8.3.3 GUI layer . 142
8.3.4 Agent Layer . 143

8.3.4.1 Agent base and statistics 143
8.3.4.2 Coordination model implementations 144

8.3.5 Network Layer . 146
8.3.5.1 Initialising the infrastructure 147
8.3.5.2 Exchanging messages 148

8.3.6 Other components . 149
8.3.6.1 Setup . 149
8.3.6.2 Tools . 150

8.4 Open MAS extensions . 152
8.4.1 Entering / Leaving agents 153

8.4.1.1 Model . 153
8.4.1.2 Implementation 155

8.4.2 Norm violations . 157
8.4.2.1 Model . 158
8.4.2.2 Implementation 158

9 Experiments 161
9.1 Introduction . 161
9.2 Coordination models . 162

9.2.1 Non-adaptive coordination model 162
9.2.2 Adaptive coordination models 163

x

9.3 Experiment design . 164
9.4 Results and analysis . 165

9.4.1 Performance evaluation 166
9.4.2 Signi�cance tests . 167
9.4.3 Norm adaptation example 169

9.5 Exploring open MAS issues . 170
9.5.1 Entering / Leaving agents 170

9.5.1.1 Experiment design 171
9.5.1.2 Results . 172

9.5.2 Norm violations . 173
9.5.2.1 Experiment design 173
9.5.2.2 Results . 175

10 Conclusions 177
10.1 Achieved objectives and contributions 177
10.2 Publications . 179
10.3 Future work . 182

Bibliography 183

xi

List of Figures

1.1 Goal-oriented problems. 3
1.2 Auction House scenario. 4
1.3 Tra�c scenario. 5
1.4 P2P scenario. 6
1.5 2-LAMA architecture. 8

2.1 Coordination Support layers. 14
2.2 ACMAS versus OCMAS from [Boissier et al., 2006]. 17
2.3 Organisation Model, Speci�cation and Execution State. 20
2.4 Electronic Institution's organisation model and infrastructure. 21
2.5 Moise's organisation model and infrastructure from

[Gâteau et al., 2005] and [Hübner et al., 2005]. 22
2.6 Agent-Group-Role diagrams from [Ferber et al., 2004]. 23
2.7 Moise's reorganisation architecture from [Hübner et al., 2004]. . 27
2.8 MASPA's architecture from [Zhang et al., 2008]. 28
2.9 Adaptive MAS model's architecture from [Guessoum et al., 2004]. 29
2.10 Dynamic Argumentation Protocols from [Artikis et al., 2009]. . . 29
2.11 P2P Normative System from [Grizard et al., 2007]. 30
2.12 Autonomic EI (AEI) adaptation mechanism. 31

3.1 Electronic Institution's organisational infrastructure. 35
3.2 EI's Performative Structure in a tra�c scenario. 36
3.3 �Collision� scene in a tra�c scenario. 37
3.4 Situated Electronic Institution (SEI). 39
3.5 Autonomic Electronic Institution (AEI). 42

4.1 Adaptation service. 49
4.2 Information service. 50
4.3 Justi�cation service. 52
4.4 Advice service. 53
4.5 Estimation service. 54

5.1 Notation example for Model, Speci�cation and Execution State. . 59
5.2 The General Organisation Model of an OCMAS. 61
5.3 Two Level Assisted MAS Architecture (2-LAMA). 66

xiii

6.1 BitTorrent simpli�ed protocol example. 84
6.2 Network abstraction. 86
6.3 2-LAMA over a physical network. 89
6.4 normFR example (d stands for datum, and t for time). 95
6.5 2-LAMA protocol example. 102

7.1 Implemented adaptation functions within 2-LAMA context. . . . 108
7.2 Social structure adaptation examples. 110
7.3 Norm adaptation steps. 112
7.4 Credit assignment problem. 121
7.5 CBR's case description. 122
7.6 Tailored CBR cycle. 124

8.1 Simulator's basic view. 132
8.2 Simulator initialisation. 134
8.3 Example of 2-LAMA adaptation steps. 135
8.4 End of simulation. 137
8.5 Multiple-simulation comparison example: time versus norm pa-

rameters and approaches. 139
8.6 Simulator's architecture overview. 140
8.7 Simulator's components. 141
8.8 Simulator's GUI layer. 142
8.9 Simulator's Agent Layer. 143
8.10 Simulator's Meta-Level in 2-LAMA approach. 145
8.11 Simulator's Network layer. 147
8.12 Example of an adapter sending packets. 148
8.13 Simulator's Setup component. 150
8.14 Simulator's Tools component. 151
8.15 Simulator's Entering/Leaving extension components. 156
8.16 Entering/Leaving directive example. 157
8.17 Simulator's Norm violations extension components. 159

9.1 Executions performed in each coordination model. 165
9.2 Application of the Nemenyi test to time results on the di�erent

coordination models. 168
9.3 System evolution example in terms of a) norm adaptation and

b) resulting saturation. 169
9.4 Entering/Leaving directive generation and tests. 171
9.5 Number of executions in robustness tests. 174
9.6 Violation tests graph results. 176

xiv

Abstract
This thesis focuses on the design and development of Adaptive Organisation
Centred Multi-Agent Systems (AOCMAS) in regulation-oriented scenarios. In
short, Multi-Agent Systems (MAS) are computational systems where a set of au-
tonomous software components (agents) interact within an environment. Within
MAS, the Organisation Centred Multi-Agent Systems (OCMAS) have proven to
be successful in promoting a coordination model that structures agent interac-
tions. However, changes in agents' behaviour or in the environment may lead
to a poor ful�lment of the system goals, and so, its entire organisation needs to
be adapted. We refer as Adaptive OCMAS (AOCMAS) to those systems that
are able to dynamically adapt their organisational components to better accom-
plish their goals. In particular, we advocate for endowing the organisation with
adaptation capabilities, instead of expecting agents to be capable of adapting
the organisation by themselves. Furthermore, we propose a solution based on a
regulative approach instead of subtasks. Hence, our solution is able to deal with
problems in which there is no goal that can be decomposed into tasks assigned
to agents �e.g. improving tra�c �ow in a road-network.

We argue that existing OCMAS' components are devoted to enact the coor-
dination model mentioned above. Hence, we review the existing OCMAS works
as a set of coordination support mechanisms. Even more, from this point of
view we envision a set of mechanisms that assist coordination further than just
enacting it. In particular, we regard the adaptation of an organisation as an as-
sistance service that provides an added value to merely enabling the organisation
existence. For this purpose, we present a formalisation of such an adaptation
service and an abstract architecture to implement it, the so-called 2-LAMA.

We exemplify all these concepts in di�erent problems driven by goals.
Nonetheless, we illustrate our whole approach by applying it to a case study
in a Peer-to-Peer sharing network (P2P) scenario. In particular, we analyse the
adaptation of agents' social structure and a set of norms �both of them are
organisational components. Moreover, due to the complexity of such processes,
we study two alternatives to perform the latter. That is, we adapt norms by
using a heuristic approach and a machine learning technique. Speci�cally, we
use an extension to Case-Based Reasoning machine learning technique that is
able to deal with multidimensional continuous search spaces, unknown optimal
solutions and awkwardness to identify the impact of a solution on the �nal result.

A relevant e�ort of this thesis has been to develop a simulator that enables to
compare di�erent coordination models in the P2P case study. It provides several
tools to extract and analyse measures from communication network level up to
agent level. Furthermore, it has a modular mechanism to easily test di�erent
norm adaptation approaches. We use it to empirically evaluate our proposals.
The results show that the cost of introducing an additional layer in charge of
the system's adaptation is lower than its bene�ts.

xv

Resum
Aquesta tesi es centra en el disseny i desenvolupament de Sistemes Multi-

Agent Adaptatius Centrats en l'Organització (AOCMAS) en escenaris regulats
no orientats a tasques. En síntesi, els Sistemes Multi-Agent (MAS) són sistemes
de programari, on un conjunt de programes autònoms (agents) interactuen en
un entorn. En particular, els MAS Centrats en l'Organització (OCMAS) han
demostrat ser efectius alhora de promocionar un model de coordinació que es-
tructuri les interaccions dels agents. Tan mateix, els canvis en el comportament
dels agents o l'entorn poden decrementar la seva l'efectivitat, i fer-se necessària
l'adaptació de l'organització. Anomenem OCMAS Adaptatius (AOCMAS) als
sistemes que són capaços d'adaptar dinàmicament la seva organització per assolir
millor els seus objectius. En particular, som partidaris de dotar l'organització
amb les capacitats d'adaptació, enlloc d'esperar que els agents siguin capaços
d'adaptar-la. És més, proposem una solució basada en la regulació d'interaccions
enlloc del repartiment de tasques. Així, aquesta és capaç de fer front a problemes
en els quals no hi ha una �ta que sigui viable dividir en subtasques executades
pels agents �p.ex. millorar el �ux de trànsit en una xarxa de carreteres.

Pensem que els OCMAS existents vetllen per fer possible el model de co-
ordinació esmentat. Per tant, entenem que els components d'aquests OCMAS
són mecanismes de suport a la coordinació. De fet, amb aquesta perspectiva
proposem una seguit de mecanismes que ajudin a millorar aquesta coordinació,
més enllà de simplement permetre-la. En particular, considerem l'adaptació
d'una organització com un servei d'assistència que proporciona un valor afegit
a la organització en si. Amb aquesta �nalitat, es presenta una formalització
d'aquest tipus de servei d'adaptació i una arquitectura abstracta per a poder-lo
proporcionar, que anomenem 2-LAMA.

Al llarg de la tesi, exempli�quem aquests conceptes en diversos problemes
que es guien per objectius que no és poden dividir en subtasques. En particu-
lar, el nostre cas d'estudi és una xarxa d'intercanvi de dades (P2P). En aquest
escenari, s'analitza l'adaptació de les relacions socials i d'un conjunt de normes
�ambdós són components de l'organització. Donada la complexitat d'aquests
processos d'adaptació, s'estudien dues alternatives pel que fa a l'adaptació de
normes: usant una heurística o bé usant aprenentatge automàtic. En concret, la
tècnica d'aprenentatge automàtic és una extensió del Raonament Basat en Casos
(CBR), que és capaç de fer front a espais de recerca continus multidimension-
als, quan es desconeix la solució òptima i és difícil d'identi�car l'impacte d'una
solució en el resultat �nal.

Una part important de recursos s'han dedicat a desenvolupar un simu-
lador que permet comparar els diferents models de coordinació a l'escenari P2P.
Aquest simulador ofereix diverses eines per extreure i analitzar mesures tant de
l'activitat dels agents, com de la seva xarxa de comunicacions. La seva arquitec-
tura modular facilita la incorporació i comparació de mecanismes d'adaptació.
De fet, l'hem usat per avaluar empíricament les nostres propostes i hem obtingut
resultats que mostren que el cost d'introduir una capa a càrrec de l'adaptació
del sistema és menor que els bene�cis que proporciona.

Chapter 1

Introduction

In this chapter, we describe the motivation of this thesis, we present the ini-
tial objectives, and we describe the structure of this dissertation. Brie�y, this
thesis focuses on the design and development of Adaptive Organisation-Centred
Multi-Agent Systems (AOCMAS) in regulation-oriented scenarios. The under-
lying Organisation Centred Multi-Agent Systems (OCMAS) have proven to be
successful in promoting a coordination model that structures agent interactions.
However, changes in agents' behaviour or in the dynamics of the environment
may lead to a poor ful�lment of the system goals, and so its entire organisa-
tion needs to be adapted. We refer as Adaptive OCMAS (AOCMAS) to those
systems that are able to dynamically adapt their organisational components so
to better accomplish their goals. In particular, our main objective is endowing
the organisation with adaptation capabilities, instead of expecting agents to be
capable of adapting the organisation by themselves. For this purpose, this dis-
sertation reviews previous MAS works, suggests our AOCMAS approach and
empirically tests it.

1.1 Motivation

We can describe a Multi-Agent System (MAS) as a set of distributed autonomous
entities (agents) that interact within an environment to achieve their common
and/or individual goals [Jennings et al., 1998]. On the one hand, such an envi-
ronment can be de�ned by its general context characteristics (e.g. spatial divi-
sions), state (e.g. time), and/or existing objects (e.g. resources). On the other
hand, such interactions can be collaborative, competitive or both at the same
time. Henceforth, we refer to them as coordination which we assume is struc-
tured by means of an underlying coordination model (e.g. interaction protocols
are an explicit coordination model). Even more, we argue that MAS infrastruc-
ture and methodologies help to promote such coordination model among agents.
Thus, we regard these infrastructures and methodologies as a set of mechanisms
that provide what we call a coordination support.

1

2 CHAPTER 1. INTRODUCTION

The overall structure of such interactions (i.e. the coordination model)
may be explicitly designed �in OCMAS [Ferber et al., 2004]� or may emerge
implicitly as a result of agent activities �in Agent Centred MAS approaches,
ACMAS [Serugendo et al., 2006]. In particular, OCMAS approaches use ex-
plicit regulative entities called organisations [Horling and Lesser, 2004]. An or-
ganisation constrains the system evolution and allows agents to construe other
participants' behaviour by considering organisational components such as so-
cial conventions or enacted roles. Thus, they help designers to predict/regulate
the system evolution within certain bounds. This is specially relevant in open
MAS [Hewitt, 1986], populated by heterogeneous agents that are developed by
third-parties and that may enter or leave the system at any moment. Thus,
there are no guarantees about agents behaviour, and so, MAS openness without
some regulations may lead to chaotic behaviours. In fact, agent organisations
are inspired by human real-world organisations, which have also proved useful
in structuring open human societies.

However, changes in the environment or the agent population
may decrease the ability of an organisation to ful�l its goals. Thus,
adapting such an organisation has been studied for more than a
decade now [Avouris and Gasser, 1992, Costa and Demazeau, 1996,
Horling et al., 2001, Hübner et al., 2004, Guessoum et al., 2004] and it still
constitutes a major research topic [Kota et al., 2009, Sims et al., 2008], since
it can help to obtain the expected outcomes under changing circumstances.
This adaptation is aligned with the computational organisational theory,
which claims that the best organisation designs are domain �and context�
dependent [Carley, 1995]. From an ACMAS perspective, organisational changes
are expected to emerge from agents' activity. In contrast, OCMAS reason
about the organisation to adapt it in order to induce changes in agents'
activity. Henceforth, we refer to these latter systems as Adaptive OCMAS
(AOCMAS). When dealing with such systems, some research questions arise:
how the organisation is speci�ed; to what extend it in�uences agents' behaviour;
who de�nes it; how it can be adapted; who is in charge of adaptation; when
adaptation occurs; how to deal with transition periods; and what is the cost of
change adoption. The answers to previous questions depends, among others,
on which kind of problem is solved and which sort of approach is taken. Hence,
next section establishes both issues �the sort of problems and approaches� for
the rest of this thesis.

1.2 Problem statement

In this thesis, we focus on problems driven by goals which are not decomposed
into subtasks that agents commit. Alternatively, these goals are usually ex-
pressed as expected system performance measures instead of system tasks. Ac-
cordingly, existing approaches are not based on assigning subtasks to agents, but
they use a normative system to regulate agents' activity. In this section, we �rst
de�ne such problems and identify some of the approaches that can deal with

1.2. PROBLEM STATEMENT 3

Task-oriented

Goal-orientedProblems:

Approaches: Task assignment Regulation definition

Regulation-oriented

Figure 1.1: Goal-oriented problems.

them. Then, we present three scenarios that pose this sort of problem. Such
scenarios are used to illustrate the problem described in this section but also to
exemplify several concepts along all this document.

1.2.1 Regulation-oriented problems

Within OCMAS, we distinguish between di�erent approaches when dealing with
problems driven by goals �which we name goal-oriented problems. Figure 1.1
depicts these approaches and the corresponding sorts of problems. On the one
hand, there is an approach we call task assignment approach, which identi�es
tasks which accomplish system goals, decomposes them into subtasks, and as-
signs them to agents. As a consequence, it assumes that agents committing to
tasks need to somehow incorporate task execution into their individual goals.
Hence, this approach can only deal with goal-oriented problems where system
goals can be translated into tasks that agents assimilate. We denominate these
problems task-oriented problems. Currently, most of previous work on adap-
tive OCMAS [Hübner et al., 2004, Lesser et al., 2004, Guessoum et al., 2004,
Zhang et al., 2009], suggests to re-assign new tasks to agents when circumstances
change. That is to say, these previous works are task assignment approaches ap-
plied to task-oriented problems.

On the other hand, there is an approach we call regulation de�nition ap-
proach, which consists on setting some regulations that bound agents' activity
while preserving much of their autonomy �instead of assigning subtasks to
them. However, establishing the mapping between regulations and goal accom-
plishment is a complex issue, and it is still harder to know how to adapt these
regulations when organisational goals are not being achieved. Notwithstanding
this complexity, as this approach assumes individual and system goals are loosely
coupled �or even independent�, it can deal with problems where system goals
cannot be decomposed into tasks that agents assume. We term these problems
regulation-oriented problems.

In particular, in this thesis we focus on scenarios that pose this last sort
of problems. Furthermore, we speci�cally focus on problems that have the en-
vironmental characteristics described next �the most of them are related to
well-known environment attributes [Russell et al., 1995, Wooldridge, 2009]. We
aim to deal with environments that are inaccessible, so it is not possible to ob-
serve all the factors that in�uence system's evolution. This partial information

4 CHAPTER 1. INTRODUCTION

Auction Rules

Figure 1.2: Auction House scenario.

make them appear to be non-deterministic, so a given action executed in a state
does not always result into the same next state. Furthermore, the environments
we consider are dynamic, since, for an agent, the environment may change even
if this agent is not performing any action. This is due to environmental processes
and other agents acting simultaneously. Additionally, we focus on environments
that are continuous. That is, they may not have neither a discrete number of
states nor a discrete number of actions. Finally, when adapting their regulative
structures, we assume these environments are run-time adapted because their
activity continues even while these structures are being updated.

1.2.2 Illustrative scenarios

In order to illustrate the problem stated above, we present three scenarios that
pose this sort of regulation-oriented problems: an auction house, a tra�c scene
and a Peer-to-Peer sharing network. These same scenarios are also used along
the rest of the document to exemplify di�erent concepts. Even more, the last
one is the case study of this thesis.

1.2.2.1 An auction house

The auction house scenario depicted in �gure 1.2 consists in di�erent activities
where di�erent goods (e.g. the jewels in the �gure) provided by sellers (the
men with a briefcase) are auctioned by auctioneers (the men with a hammer)
according to some auction rules (a rolled paper). In such a scenario, the sys-
tem goal of increasing the amount of transactions cannot be decomposed into
task assimilated by sellers and bidders (the group of men) due to their private
competitive goals. Alternatively, a set of regulations �auction rules� act as an
coordination mechanism that help to accomplish global goals. Besides, we as-
sume this scenario has an inaccessible non-deterministic environment. Because,

1.2. PROBLEM STATEMENT 5

Figure 1.3: Tra�c scenario.

due to mentioned privacy issues, it is not possible to know bidders' strategy. So,
it is not possible to determine which is going to be the result of a particular auc-
tion. Moreover, from the point of view of a particular agent �e.g. a bidder� the
environment is dynamic since it may change even if the agent is not performing
any action �e.g. a product might be sold while the bidder is deliberating about
its next bid. Above all, when there are changes in the participants or the goods,
adapting the regulations may be convenient to enhance system performance. For
instance, if the incoming products are perishable, the auction rules may switch
from English to Dutch auction protocol to shorten the auction time.

1.2.2.2 A tra�c scenario

The tra�c scenario consists on a grid of streets populated by circulating cars as
depicted in �gure 1.3. In this scenario, the individual agent goals (i.e. reaching
a car's destination as fast as possible) may not be aligned with global goals
(having a �uid tra�c �ow). Hence, these goals cannot be directly mapped into
car' basic driving tasks since we assume drivers (cars in the �gure) do not reveal
their private destinations nor accept driving plans. Instead, there is a set of
regulations (e.g. the tra�c lights) as coordination mechanisms that help to
accomplish global goals. These regulations can be updated by police agents
(policemen) depending on their observations. For instance, they can observe the
tra�c �ow in their road-network region (exempli�ed as a pair of vision dashed
lines) or environmental factors (e.g. the weather). Regarding the scenario's
environment, we assume it is inaccessible and non-deterministic because cars
destinations are unknown due to privacy issues and can change at any moment.
Hence, it is not possible to determine the resulting tra�c �ow after a speci�c
update of tra�c lights' intervals. Even more, it is dynamic because while a

6 CHAPTER 1. INTRODUCTION

Peer
1

ISP
nISP

1

datum

inet
.
.
.

Peer
m

Peer
j

.

.

.

Peer
i

Figure 1.4: P2P scenario.

policeman is deliberating about giving priority to a certain driving direction �e.g.
by updating some tra�c lights' intervals�, the tra�c �ow may change �due to
�ow dynamics, cars' destination updates or weather factors. Besides, we consider
this environment is continuous since car positions and speed are not discrete.
Finally, when regulation structures are updated, we assume this environment is
run-time adapted. For instance, when a policeman tries to improve tra�c �ow
by updating tra�c lights' intervals, he requires �ow observations that may vary
while he is deliberating.

1.2.2.3 A P2P Sharing network

The Peer-to-Peer sharing network scenario (P2P henceforth) is our case study.
Hence, in addition to illustrate di�erent concepts in this scenario, we also apply
our whole approach, implement it and perform an empirical evaluation in next
chapters. For now, we simply provide a brief description like we have done with
previous scenarios.

This scenario is composed by a set of computers (called peers) that contact
among them to share some data as depicted in �gure 1.4. They communicate
by accessing the Internet through their Internet Service Providers (ISP). Such
peers can be regarded as agents developed by third parties with the individual
goal of obtaining the data as soon as possible. Also, the system goal is to spread
the data among all agents as soon as possible. However, if all agents try to get
the data at the same time, the network may become saturated. Then, even if
some peers achieve their individual goal soon, the overall process will be longer,
so the system goal will be achieved later. Hence, the individual and system
goals may not be aligned depending on network topology and status. Ideally,
a peer having the datum (so-called seed) should send the data only to a subset
of the peers lacking it (so-called leeches) in order to avoid net saturation. This
action could be regarded as a subtask, so a task-decomposition approach could
be taken. However, due to the open nature of peer-to-peer sharing networks, it
is not possible to impose tasks on participants and expect that they commit such
tasks. Hence, P2P sharing networks are usually based on some regulations (such
as protocols and norms) to bring the system towards its global goal while keeping
most of agent's autonomy. In other words, they use a regulation de�nition
approach.

1.3. OBJECTIVES AND CONTRIBUTIONS 7

In addition, when there are changes in the network status or the agent pop-
ulation, such regulations can be adapted to keep system performance. In such
a case, we assume P2P's environment is run-time adapted since peer computers
do not stop exchanging messages while these regulations are changed. Moreover,
we argue this environment is inaccessible, non-deterministic and dynamic. It is
inaccessible because the details about Internet tra�c are unavailable. Conse-
quently, message latencies cannot be predicted, so it is non-deterministic. Even
more, these latencies may change while computers choose their fastest partner
(the one they choose to request the datum), so the environment is dynamic. Also,
this environment has continuous state and action spaces since we assume that
neither the network saturation measures nor computer's network consumptions
are discrete. Chapter 6 provides further details about these network measures,
the underlying network abstraction and the scenario in general.

1.3 Objectives and Contributions

The initial aim of this thesis was to review previous work from our coordina-
tion support point of view, in order to detect some potential research area and
suggest a MAS enhancement from this perspective. The result is an abstract
MAS architecture proposal, that is able to assist agents to improve system per-
formance.

For this purpose, we introduced the following objectives:

1. to de�ne the concept of coordination support related to sustain a coordi-
nation model among MAS participants.

2. to review the previous work from this perspective in order to identify some
areas that could be enhanced.

3. to propose an approach to provide assistance services to agents.

4. to consider di�erent alternatives to provide such assistance in the form of
organisational adaptation.

5. to evaluate our approach in a P2P sharing network scenario.

In particular, our �rst objective (1) was to de�ne the concept of Coordination
Support related to sustain a coordination model among MAS participants. This
vision was inspired in our understanding of MAS infrastructure evolution. Ini-
tially, a MAS was designed ad hoc without any special methodology, developing
its own infrastructure from scratch [Jennings et al., 1998]. However, as MAS
area evolved, certain tasks were abstracted and gradually provided by MAS in-
frastructure as domain independent services. These services alleviate agent de-
velopment, since participants can use them instead of doing the corresponding
tasks. Furthermore, these services help to structure agent interactions. Thus,
we call them Coordination Support mechanisms. They include from simple in-
dividual services that depend on a single agent, to complex collective services

8 CHAPTER 1. INTRODUCTION

Meta-Level

Org
D L

…
j

Ag

Domain-Level

Environment

1
Ag

…
m

Ag
i

Ag

… …

…
n

As
1

As Org
M L

Figure 1.5: 2-LAMA architecture.

that require information related to a set of agents. Accordingly, we group these
services in di�erent subsequent layers.

Next, as the second objective (2), we planned to review the previous work
from this coordination support perspective. During this process we identi�ed
services that range from connectivity issues concerning data exchange to organ-
isational aspects related to social structure or rule enforcement. Moreover, we
even found some services that �t into our proposed top coordination support
layer: the Assistance Layer. We argue these services assist coordination rather
than merely enabling it. In other words, instead of �making coordination hap-
pen�, these services �help to coordinate seamlessly�. This functionality is similar
to ambient intelligence [Vallee et al., 2005], where the infrastructure supports
human activities, but in this case it is focused on assisting MAS participants.
This layer may even have pro-active capabilities that let the MAS infrastructure
take the initiative and act intelligently �e.g. providing advices to agents that
let them take more pro�t of current coordination mechanisms. Within these ca-
pabilities, we see the organisational adaptation as a coordination support service
present in AOCMAS. This service is particularly useful when environmental or
agent population changes avoid the organisation achieving its goals.

The third objective (3) was to propose an approach to provide such as-
sistance services to a MAS. Speci�cally, our objective was to propose a MAS
abstract architecture that could deal with the de�ned regulation-oriented prob-
lems. We started with an approach called Situated Autonomic Electronic Insti-
tution (SAEI). It was the formalisation of the existing Autonomic Electronic In-
stitution approach [Bou et al., 2006] and its extension to deal with existing MAS
�the original approach was restricted to Electronic Institutions [Esteva, 2003].
Its main drawback was that it was a centralised approach and it was strictly
focused on providing an organisational adaptation service. Alternatively, we
later proposed the Two Level Assisted MAS Architecture (2-LAMA), which is
distributed and was conceived considering di�erent assistance services. Our
main intuition to conceive this architecture is depicted in �gure 1.5. Following
the meta-level abstraction [Corkill and Lesser, 1983], we advocate for adding a

1.3. OBJECTIVES AND CONTRIBUTIONS 9

meta-level that provides di�erent assistance services to a domain-speci�c MAS,
which we call the domain-level. Speci�cally, we focus on a particular assistance
service, the organisational adaptation. That is, the meta-level agents (so-called
assistants, Asi in the �gure) are organised (OrgML) to adapt the organisation
(OrgDL) of the agents participating in the regular domain activity (Agi). These
assistants are meant to reason at a higher level of abstraction than domain
agents. Following a division of labour paradigm, instead of increasing the com-
plexity of domain agents, assistants are the ones in charge of taking into account
organisational goals. Moreover, assistants act as trusted third parties, since they
are not involved in domain activities and they are provided by the infrastructure.

The fourth objective (4) was to consider di�erent alternatives when de-
signing the meta-level approach to update domain-level organisation. Hence,
we started by dealing with the adaptation of two di�erent organisational com-
ponents: the relationship among agents and a set of norms (i.e regulations
expressed in deontic logic). Such adaptation requires a knowledge about the
relationship between these components and system performance. This adapta-
tion knowledge can be provided by system designer at design time (e.g. by
coding a heuristic) or gained at run time by using machine learning. The
former requires previous expert knowledge and provides a �xed estimation.
Whereas the latter estimates this relationship automatically and is able to
evolve it along time. Accordingly, we designed a heuristic to adapt each or-
ganisational component (agents relationships and norms), but also we took
a machine learning approach when dealing with the adaptation of the latter
component (norms). Speci�cally, we proposed a tailored Case-Based Reason-
ing (CBR) [Riesbeck and Schank, 1989] that is able to deal with multidimen-
sional continuous search spaces, unknown optimal solutions and the awkward-
ness to identify the impact of a solution on the �nal result.

Finally, the last objective (5) was to evaluate our approach in the peer-
to-peer sharing network scenario (P2P). Nowadays, it is a relevant application
thanks to the Internet expansion. In addition to this fact, it is a scenario that
poses a regulation-oriented problem like other usual MAS scenarios �such the
auction house and tra�c scenarios presented previously. In order to perform
an empirical evaluation on this scenario, we developed a simulator that gives us
control over all details even at communication network level. This is important,
since the communication aspects are relevant in our case study �like network
latencies. For instance, the simulator lets us access to detailed network statistical
information that is not available in the Internet1 or it lets us determine which is
the status of network links at the beginning of a test. We use this simulator to
perform several executions while using di�erent adaptive alternatives. Moreover,
as base-line, we also compare our proposals to a non-adaptive approach widely
used in P2P, the BitTorrent protocol [BitTorrentInc., 2001]. Even more, we
implemented some open MAS extensions in the simulator and performed some

1Notice that this statistical information is available to the experiment designer, so it can
be used to analyse system behaviour. However, MAS participants cannot access it, like in the
real scenario.

10 CHAPTER 1. INTRODUCTION

exploratory experiments. These additional experiments provided positive results
of our approach when dealing with entering/leaving agents and norm-violator
agents.

1.4 Structure

The rest of this thesis is divided in the following chapters:

Chapter 2 State of the art: it surveys previous work on topics relevant to
this thesis from our Coordination Support point of view. This chapter
is divided in several sections that de�ne the Coordination Support term
structured in layers, and reviews existing works according to these layers.

Chapter 3 SAEI: it goes further reviewing the Situated Autonomic Electronic
Institutions (SAEI), which is the antecedent of our OCMAS abstract archi-
tecture proposal. It performs an organisational adaptation of an existing
MAS by means of an overlapped Electronic Institution.

Chapter 4 Assistance Layer: it focuses on the upper Coordination Support
layer, the Assistance layer. It de�nes the group of services devoted to
assist agents (Agent Assistance) and the adaptation service related to or-
ganisational structures (Organisational Assistance).

Chapter 5 Organisational Adaptation: it goes further detailing the Or-
ganisational Adaptation service presented previously and proposes how to
provide it. First, this chapter formalises the organisational model, and the
features related to its adaptation. Next, it presents our enhanced approach,
the Two Level Assisted MAS Architecture (2-LAMA).

Chapter 6 Case Study: it applies 2-LAMA to the Peer-to-Peer sharing net-
work case study (P2P). It �rstly de�nes all details of the P2P scenario and
afterwards it speci�es a MAS within this domain according to 2-LAMA
model.

Chapter 7 Adaptation mechanisms: it proposes how to adapt two di�er-
ent organisational components in the P2P scenario. On the one hand, it
describes a heuristic to adapt the relationships among agents. And, on
the other hand, it presents two alternatives to adapt norms: a heuristic
approach and a machine learning approach. The latter is an extension
to Case-Based Reasoning (CBR) that suits the characteristics of the P2P
case study.

Chapter 8 P2P MAS Simulator: it describes the simulator developed to
test di�erent alternatives in the P2P sharing network scenario. The chap-
ter details its internal architecture, the general simulation cycle and the
analysis facilities it provides.

1.4. STRUCTURE 11

Chapter 9 Experiments: it presents the experiments performed to empiri-
cally evaluate our approach. It describes the di�erent coordination models
�i.e. approaches� contrasted, the design of the experiments to evaluate
them and the results analysed.

Chapter 10 Conclusions: it discusses the contributions of this research and
how it can be extended in the future.

Chapter 2

State of the art

Along this thesis, we argue that MAS methodologies and infrastructures help to
structure agent interaction. In fact, we claim they help to design and execute a
coordination model among agents. Hence, we regard them as a set of mechanisms
that provide what we call a Coordination Support. In particular, in this chapter
we de�ne this concept structured in layers and we review the related work under
this perspective in order to settle some basic concepts that are used in the rest
of the thesis.

Notice that when describing these works, we explain their approaches using
our coordination support nomenclature. However, we also provide the terms
they use to refer to the same concepts enclosed in brackets. Even more, most
of the �gures we include, are taken from those works. Hence, in addition to
present our coordination support vision, we aim to facilitate understanding these
approaches.

2.1 Coordination Support

We regard a MAS as a set of agents interacting within an environment to achieve
some goals [Kephart and Chess, 2003]. This interaction can be direct or indirect.
For instance, a direct interaction may be a message among two agents, whereas
an indirect interaction may be that a resource is not available to an agent when
another one is using it. In both cases, we say these agents are coordinated be-
cause their interaction re�ects that they a�ect or are a�ected by actions of other
participants. In fact, we interpret previous de�nitions of the coordination con-
cept in a wide sense: coordination is the integration of di�erent activities to
obtain a certain dynamic [Omicini et al., 2004], avoiding harmful interactions
and promoting bene�cial ones [Jennings et al., 1998], from a system-wide per-
spective. This global perspective lets us talk about coordination in cooperative
and competitive scenarios with individual and collective goals.

Above all, such interactions are structured according to a coordination model
de�ned at design time. In fact, current tools and methodologies generally use

13

14 CHAPTER 2. STATE OF THE ART

Connectivity Layer

Agent Communication Layer

Organisational Layer

Assistance Layer

to enable
to assist

C
oo

rd
in

at
io

n
S

up
po

rt

Figure 2.1: Coordination Support layers.

an infrastructure to provide services that aid agents to enact this coordination
model. Hence, we use the term coordination support to denote those services
that are useful for agent coordination.

Moreover, we conceive these services structured in layers as depicted
in �gure 2.1. We conceived this structure to encompass existing MAS
works, taking into account previous strati�ed divisions such as the one from
the Foundation for Intelligent Physical Agents (FIPA Abstract Architec-
ture [FIPA, 2002]), the one appearing in Tuple Centres Spread over Networks
(TuCSoN [Omicini et al., 2004]) or the one from RETSINA [Sycara et al., 2003].
As in previously cited approaches, in our coordination support perspective each
layer provides functionalities required by its subsequent one. This abstraction
simpli�es agents' engineering and reduces the overall engineering complexity by
isolating each functionality. In particular, we distinguish three basic layers de-
voted to enable agents coordination and a last layer devoted to enhance this
coordination by assisting participants. The bottom layer (Connectivity Layer)
provides low level communication functionalities �e.g. de�ning a physical con-
nection. On top of it, a distinct layer (Agent Communication Layer) supports
knowledge exchange among agents by means of a communication language �e.g.
de�ning a message structure. And above, we see a distinct layer (Organisational
Layer) that provides another relevant coordination component, the organisa-
tional aspects �e.g. de�ning roles.

Furthermore, we advocate for considering an additional layer (Assistance
Layer) on top of previous ones, that provides assistance to ful�l the coordination
model enabled by the other layers. That is to say, this layer aids agents to
use more e�ectively and e�ciently previous coordination mechanisms. We see
this layer as a step forward in MAS development, since it could facilitate the
engineering and enrolment of heterogeneous agents �specially relevant in open
MAS1, where agents are designed by di�erent parties.

Next sections illustrate each enabling layer by reviewing existing works un-
der our coordination support perspective. In addition, due to the novelty of the
Assistance Layer concept, it is addressed in an additional chapter 4, which also
includes some references to related work.

1An open MAS is an open system [Hewitt, 1986] where there is no control over the agents
design process, so their behaviour is totally unknown. Accordingly, they can join and leave in
any moment or even try to transgress MAS social conventions.

2.2. CONNECTIVITY LAYER 15

2.2 Connectivity Layer

The �rst requirement to enable agent coordination is to allow the exchange of
information among them. This is covered by what we call the Connectivity
Layer, which usually provides:

� a physical connection speci�cation

� a protocol to use this connection

� a reliable transport service

Even more, it may also provide:

� a data encoding speci�cation

� an addressing format

� an exception handling mechanism

Most of these functionalities can be covered by using the existing network stan-
dards such as the Open Systems Interconnection Basic Reference Model (OSI
Model) [ISO 7498-1, 1994]. This OSI Model provides an abstraction of the inter-
connectivity among di�erent systems, and there are several standard speci�ca-
tions covering specialised parts of it. For instance, FIPA [FIPA, 2002] sug-
gests the following alternative communication standard protocols in their Agent
Message Transport Speci�cation [FIPA, 2001d]: Hyper-Text Transfer Protocol
(HTTP), Internet Inter-Orb Protocol (IIOP) or Wireless Application Protocol
(WAP).

As an illustration, the Java Agent DEvelopment Framework
(JADE [Bellifemine et al., 2007]) is one of the available implementations
of FIPA Speci�cations, so it uses previously cited standards. Recently, another
FIPA compliant implementation, Smart Python multi-Agent Development
Environment (SPADE [Gregori et al., 2006]), uses the Internet instant mes-
saging protocol Extensible Messaging and Presence Protocol (XMPP), as a
transport protocol. This protocol o�ers new features like Presence Noti�cation
and Multi-User Conference, and has been proposed to be added to the FIPA
Speci�cations [Cámara et al., 2006].

2.3 Agent Communication Layer

Further than exchanging data �as supported by previous layer� agents actually
exchange knowledge. Hence, we call Agent Communication Layer to the group
of services that provide agents with means to exchange knowledge. Such services
normally include:

� a message structure speci�cation

� a shared ontology

16 CHAPTER 2. STATE OF THE ART

� a content language

� a directory service to locate destination agents

The �rst three requirements are covered by Agent Communication Languages
(ACL), which are generally based on the speech act theory [Searle, 1969]. This
theory argues that communication can be construed as actions that senders
make just by uttering messages. In other words, in some cases an agent illocu-
tion is an action by itself �it is called a performative utterance. For instance,
in the auction scenario (see �1.1), when an auctioneer says �Sold!�, the good
changes its status from being an o�er to be a sold product. Hence, further than
exchanging knowledge, agents are somehow acting when exchanging messages
among them. For instance, the FIPA Communicative Act Library [FIPA, 2001e]
de�nes twenty-two communicative acts like informing, requesting, agreeing or
cancelling.

Examples of mentioned ACL are FIPA-ACL [FIPA, 1997, FIPA, 2001a],
the Knowledge Query and Manipulation Language (KQML [Finin et al., 1997])
and the Agent Communication Language for Multimedia Communication
(ACLMC [Gou et al., 2007]). All of them basically de�ne a set of keywords �so-
called performatives�, their parameters �e.g. sender, receiver or language� and
the actual content. They frequently use a LISP-like syntax to join all these ele-
ments. Besides, they o�er alternatives to express the associated content, such as
the Semantic Language (FIPA-SL [FIPA, 2001i]) or the Knowledge Interchange
Format (KIF2 [KIF, 1995]).

These languages require the usage of a shared vocabulary which is de-
�ned by the ontology component. For instance, FIPA speci�es an Ontology
Service [FIPA, 2001h] to perform such functionality, and the World Wide Web
Consortium (W3C) has its Web Ontology Language (OWL 2) [Grau et al., 2008]
recently revised.

The Agent Communication Layer also provides an agent directory service to
locate participant agents. This directory stores a relation among agent unique
identi�ers and their current transport addresses �like the the FIPA Directory
Facilitator [FIPA, 2001c]. Thus, agent locations are transparent to agents that
send messages. As an illustration of all stated services, JADE implements all
cited FIPA speci�cations. Alternatively, Java Agent Template Lite (JATLite)
[Jeon et al., 2002] implements KQML, and S-Moise+ [Hübner et al., 2005] im-
plements both of them.

2.4 Organisational Layer

Like humans, agents achieve a higher level of coordination when working in
groups [Frank Dignum, 2000]. Even more, from a system point of view, a degree
of organisation among agents help to achieve certain collective properties despite

2Recently, KIF evolved into an ISO standard called Common
Logic [Common Logic Working Group, 2007].

2.4. ORGANISATIONAL LAYER 17

Figure 2.2: ACMAS versus OCMAS from [Boissier et al., 2006].

individual agents' varying behaviour. Thus, in addition to previous services
devoted to exchange knowledge among agents, several approaches also count on
organisational aspects. These aspects allow to structure the interaction among
agents at higher level of coordination than the one provided by previous layers.

Before enumerating such organisational aspects, we distinguish between
agent-centred and organisation-centred approaches. Although both may include
organisational aspects, our objectives focus on the last ones. Hence, after enu-
merating related organisational components and services, we review current ap-
proaches laying a particular stress on the organisation-centred ones.

2.4.1 Agent-Centred versus Organisation-Centred MAS

The way in which organisational aspects are incorporated into MAS
varies among approaches as shown in �gure 2.2. As originally stated
in [Lemaître and Excelente, 1998], there are two main groups of approaches:
Agent Centred MAS approaches (ACMAS) [Serugendo et al., 2006] and Organ-
isation Centred MAS approaches (OCMAS) [Ferber et al., 2004]. In the former
(ACMAS), organisations are implicit and may emerge as a result of agent ac-
tivities. This may happen either if agents don't know about such implicit or-
ganisation (�gure 2.2.a) or they have their own model about the organisation
(�gure 2.2.b). In the last case, agents may discover organisational characteris-
tics along the interaction with others or simply they may follow organisational
bounds due to its internal codi�cation like in the �rst case.

In contrast, in OCMAS, organisations are explicitly designed entities that
can also be unknown to agents (�gure 2.2.c) or be known to them (�gure 2.2.d).
Besides, as these organisations are generally proposed by the MAS designer,

18 CHAPTER 2. STATE OF THE ART

they help this designer to predict/regulate the system evolution within cer-
tain bounds. Moreover, as they are entities on their own, they can per-
sist even when agents enter or leave. Even more, as they are explicit, they
may reduce the complexity of programming participant agents since these
agents can directly access the organisational speci�cations and act within their
bounds [Dignum and Dignum, 2005]. Furthermore, this same explicit nature fa-
cilitates computational re�ection [Smith, 1982], meaning that a MAS can observe
and modify its own structure. For instance, in next layer this feature is used to
provide di�erent services based on observing/adapting system organisation.

Above all these alternatives, in this thesis we focus on OCMAS. approaches,
in which the organisation is explicit and already exists at the beginning of MAS
activity, like in the scenarios described in �1.2.2. Hence, having an explicit organ-
isation, we can refer to its components and we do not need to make assumptions
about its participants characteristics. In fact, we focus on those OCMAS that
can be adapted, which we call Adaptive OCMAS (AOCMAS).

2.4.2 Components and Services

Before reviewing some current organisational approaches in next section, we
summarise the sort of components they usually present and the related MAS
infrastructure services. Generally, an organisation may include the following
components:

� a social structure de�ned by a set of roles that participants can play and
the relation among them

� a set of social conventions associated to de�ned roles

� an enforcement policy about these conventions

� some organisational goals taken into account when de�ning previous com-
ponents

Speci�cally, a role is an abstract description of agent attributes and behaviours.
It de�nes the properties and actions of the agents that play such a role. In
fact, the possible actions are delimited by the social conventions, which use
roles to refer to involved agents. Moreover, role speci�cation can also include
its relations with other roles. These relations may restrict which agents can
play a certain role, which other roles can be played simultaneously (compat-
ibility) or what their inheritance relation is. Additionally, composition and
authority relations among roles let de�ne social structures such as groups or
hierarchies [Horling and Lesser, 2004].

Besides, social conventions de�ne what agents should conform and expect
others to conform [Lewis, 1969]. This may reduce agent complexity since they
can focus on a smaller set of possible actions. These conventions are generally
expressed as protocols and norms concerning roles. The former (protocols) de�ne
the valid sequences of actions on agent interaction. Whereas the latter (norms),
bound agent actions using deontic logic (i.e. de�ning permissions, prohibitions

2.4. ORGANISATIONAL LAYER 19

and obligations). Such norms are usually called regulative norms compared
to so-called constitutive norms [Boella and van der Torre, 2004, Searle, 1995].
Precisely, a constitutive norm de�nes what count-as a role/action/context in
the regulative system, so a regulative norm can use these generic concepts in its
de�nition. For instance, in a tra�c scenario, a constitutive norm can de�ne a
car as a �vehicle�, and another constitutive norm can de�ne crossing the vertical
projection of a tra�c light in red colour as �to go through a red light�. Then,
there can be a regulative norm that uses both concepts, like a norm that de�nes
the obligation of a �vehicle� that �goes through a red light� to pay a �ne.

Also, in scenarios where agents can violate the above-mentioned social con-
ventions (e.g. in open MAS), the organisation may include an enforcement pol-
icy that determines how to detect these violations and how to act in such cases.
For instance, the detection policies may include no detection, full detection (all
agent actions are checked, e.g. using agent wrappers) or partial detection (only
some actions are checked, e.g. using police agents). And the consequence poli-
cies may include punishment (e.g. �ning violators), incentive (e.g. rewarding
agents) or imposition (e.g. �ltering out improper actions). Nevertheless, the
enforcement can also be delegated to participant agents, by using reputation
techniques as explained in �2.5.1. A further discussion about norms and en-
forcement mechanisms can be found in the following norm-related categorisa-
tion [Savarimuthu and Crane�eld, 2009].

Furthermore, an organisation may explicitly include its goals. These or-
ganisational goals describe the proposal that guided the organisation design and
may di�er from participant individual goals �when individual goals are not
aligned with the social welfare. Depending on the MAS domain (see �1.2), these
organisational goals may be expressed as a global task (in task-oriented prob-
lems), or as a set of desired system outcomes (in regulation-oriented problems).
In the former case, task assignment approaches divide this global task into sub-
tasks performed by participant agents. In contrast, in the latter case, regulation
de�nition approaches check system observable properties against their desired
values. In both cases, these explicit goals can be used to evaluate system per-
formance �depending on the degree of ful�lment of such goals� to determine the
extent to which the system is ful�lling its design objectives. Even more, this
evaluation can be used to guide the adaptation of the organisation as explained
in �2.5.1.

These enumerated services are formalised in �5.3, as part of our contribution
to formalise its adaptation. In addition to these components, we can outline the
services related to them. In brief, the most of OCMAS approaches provide
services to support the speci�cation of organisations, their instantation and the
management at run-time. Such services may include:

� storing a list of current engaged agents and their roles

� keeping the state of organisational elements (e.g. protocol states)

� providing an enforcement mechanism (e.g. �ltering out improper actions)

20 CHAPTER 2. STATE OF THE ART

Concepts: Examples:

Moise+ EI

SoccerOS MASFIT.xml

S-Moise+

Soccer

[Sichman et al., 2006] [Boissier et al., 2007]

InteractiveTV

iTvOS

S-Moise+

SoccerOE iTvOE

Auction

Ameli

MASFIT-EI

[Arcos et al., 2005]

WorldT.xml

Travel

WorldTrotter

[Bogdanovych et al., 2007]

Ameli
3D Virtual World

Model

Specification

Exec. State

Infrastr.

Domaininstantation

execution

Figure 2.3: Organisation Model, Speci�cation and Execution State.

� supplying a directory to locate services o�ered by agents (depending on
their role/skills)

2.4.3 Current approaches

Currently, OCMAS approaches include an organisational speci�cation and its
supporting infrastructure. As described in [Sichman et al., 2006], the for-
mer is an speci�cation of the exposed organisation components (Organisation
Speci�cation) de�ned in a modelling language (Organisation Modelling Lan-
guage), whereas the latter is the infrastructure (Organisation Infrastructure)
that interprets such speci�cation and supports its execution (Organisation En-
tity). Hence, as illustrated in the left part of �gure 2.3, we assume that a
given organisation model can be used to instantiate a particular organisation
speci�cation for a given domain. Such speci�cation can later be interpreted
by a MAS infrastructure and have its corresponding organisation execution
state. The right part of �gure 2.3 illustrates such concepts citing some previ-
ous works [Sichman et al., 2006, Boissier and Gâteau, 2007, Arcos et al., 2005,
Bogdanovych et al., 2007].

For example, an Electronic Institution (EI) [Esteva, 2003] is an organisa-
tional speci�cation that is supported by the Ameli infrastructure as depicted
in �gure 2.4. Its de�nition includes roles and social conventions. These roles
may have compatibility and inheritance relation speci�cations. Whereas, these
social conventions are valid action sequences (protocols in Scenes of its Per-
formative Structure) and their consequences (norms in its Normative Struc-
ture). EI's enforcement policy includes full detection, but consequences dif-
fer between protocols and rules. Whereas protocol violations are �ltered out
(i.e. full detection and imposition), norm violations create deontic conse-
quences (e.g. an obligation to pay a �ne, i.e. punishment policy). Accord-
ingly, the EI's infrastructure that interprets such a speci�cation (Ameli, see
�gure 2.4b) has a mechanism to detect and handle violations. In particu-
lar, every agent (Ai in the �gure) has a wrapper (its Governor Gi) that de-
tects and �lters out any prohibited action. Finally, a basic EI does not have

2.4. ORGANISATIONAL LAYER 21

Dialogical Framework

Roles, Relationships...

Deontical Component
Performative Structure

Normative Structure

Scenes

Protocols

Norms

(a) EI's model (b) EI's infrastructure - Ameli from [Esteva et al., 2004]

Figure 2.4: Electronic Institution's organisation model and infrastructure.

explicit organisational goals. However, its extension called Autonomic Elec-
tronic Institution (AEI) [Bou, 2009] incorporates explicit goals. Speci�cally,
such goals are de�ned as desired system outcomes, since an EI is a regulation
de�nition approach. See �3.2 for additional details about EI, and �2.5.2 for
further details about AEI. Above all, Electronic Institutions are usually con-
ceived as a pure OCMAS approach. However, they could be designed and
speci�ed by the agents themselves upon their agreement [Gaertner et al., 2009],
which is a hybrid approach that introduces ACMAS principles. In fact, there
are also other explicit organisations created and destroyed by agents at run-
time [Foster et al., 2004, Cardoso and Oliveira, 2004]. A further discussion
about these organisational paradigms can be found in [Horling and Lesser, 2004].

Following a similar scheme, Moise [Hübner et al., 2002] has an organisation
speci�ed in Moise+ model, which is supported by the S-Moise+ infrastructure as
depicted in �gure 2.5. It organisational speci�cation (OS) has a role de�nition
very similar to EI's, but it also supports composition and authority relations (in
its Structural Speci�cation, SS). Likewise, the social conventions are also ex-
pressed as interaction protocols (in its Contextual Speci�cation, CS) and rules
(in its Normative Speci�cation, NS)3. Also, its enforcement policy is totally
strict. In fact, S-Moise+ infrastructure [Hübner et al., 2005] has an agent wrap-
per too (so-called OrgBox). However, the infrastructure di�ers in the normative
management . While in EI the normative component is integrated into the insti-
tution, Moise uses a second organisation (Supervision Organisation) to supervise
the norm ful�lment in the original organisation (Domain Organisation). Also,
Moise di�ers from EI in the goal speci�cation, because Moise is a task assign-
ment approach. Hence, its goals are expressed as system tasks that are divided
into subtasks (Functional Speci�cation, FS).

In both previous approaches, the roles are the basis to model an organisa-

3Speci�cally, norms are included in a Moise+ extension called MoiseInst which is supported
by an S-Moise+ extension called Synai [Gâteau et al., 2005].

22 CHAPTER 2. STATE OF THE ART

(a) Moise's model (b) Moise's infrastructure

Figure 2.5: Moise's organisation model and infrastructure from [Gâteau et al., 2005]
and [Hübner et al., 2005].

tion. In this sense, the Agent-Group-Role (AGR) [Ferber et al., 2004] �formerly
Aaladin [Ferber and Gutknecht, 1998]� is an organisation model that almost
uses only this concept to specify an organisation. �gure 2.6a depicts how an or-
ganisation is modelled in AGR by specifying di�erent groups (ellipses) in which
agents (rectangles) play certain roles (diamonds). Also, it somehow has some
basic interaction protocols speci�cations expressed in a derivative of UML dia-
grams (so-called Organisational Sequence Diagram, see �gure 2.6b). However,
it lacks from other organisational components, such as norms or goals. Conse-
quently, the organisational services provided by its organisation infrastructure
(the Madkit), consists basically in maintaining a list of group participants and
their associated roles.

Besides, there are approaches that o�er tools to just model an organisation
or only to create a support infrastructure. For instance, the Prometheus method-
ology [Padgham and Winiko�, 2005] is useful to model an organisation without
providing an infrastructure to support it. Alternatively, the model is used to
create participant agents that behave according to the organisational speci�ca-
tion. This speci�cation includes some organisational goals (de�ned during what
they call the initial System Speci�cation phase) and some social conventions de-
�ned by protocols (in the Architectural Design phase). Then, this model is used
to create agents that follow such conventions (in the Detailed Design phase).
Above all, the assumption of controlling agent development, prevents using this
methodology in open MAS. However, an extension [Sierra et al., 2006] adds an
additional speci�cation step (the Social design phase) to de�ne an Electronic
Institution with the social structure speci�ed in previous phases. Hence, EI's
infrastructure (i.e. Ameli) can be used to ensure that the de�ned conventions
are followed even if agents are designed by third parties. In other words, at the
end of the process Ameli provides an organisation infrastructure to support the
designed organisation speci�cation.

Analogously, CArtAgO [Ricci et al., 2006] o�ers just one of both compo-
nents too. Rather than o�ering a model to specify an organisation, it provides

2.4. ORGANISATIONAL LAYER 23

(a) Organisational structure (b) Organisational Sequence

Figure 2.6: Agent-Group-Role diagrams from [Ferber et al., 2004].

a means to develop an infrastructure to support it. In particular, this approach
is based on the Agents & Artifacts meta-model (A&A) [Omicini et al., 2008]
which adds a set of tools modelled as objects (Artifacts) which populate agents'
environment (Workspace). These objects are not agents, since they do not have
individual goals. Instead, they are tools that can be used by MAS participants to
pursue their individual goals. Hence, depending on the available artifacts, agents
may be able to perform di�erent kinds of actions. This in�uences the way they
interact �i.e. their coordination model. Consequently, given an organisation
speci�cation, some of it could be translated into certain artifacts that agents can
use in a given workspace. For instance, if an agent a gives the power to agent b
to join a group that performs activity c, the former (a) transfers a key-artefact
to the latter (b). Such a key-artefact lets the latter (b) open a door-artefact
that leads the agent to enter a virtual space �the workspace� where activity c
is performed. Precisely, in ORA4MAS [Kitio et al., 2008] this idea is applied to
the Moise framework. That is, this work uses Moise to specify an organisation
and the artifacts approach to build its infrastructure.

There are more organisational methodologies that are interesting at
conceptual level �like OperA [de Almeida Júdice Gamito Dignum, 2004],
Soda [Omicini, 2001], Ingenias [Pavón and Gómez-Sanz, 2003] or
Gaia [Zambonelli et al., 2003]� but to the best of our knowledge, they do not
have a run-time infrastructure to support the designed organisation. In some
cases, these methodologies o�er an Integrated Development Environment (IDE)
to assist in their implementation �e.g. Operetta [Okouya and Dignum, 2008],
IngeniasDK [Gómez-Sanz et al., 2008]� and/or use existing infrastructures
�e.g. TuCSoN or CArtAgO to support SODA [Molesini et al., 2007], or JADE
to support Ingenias [Gómez-Sanz and Pavón, 2005].

Furthermore, FIPA has also some standards that correspond to this Or-
ganisational Layer. For instance, FIPA-ACL has a set of protocol speci�cations

24 CHAPTER 2. STATE OF THE ART

to determine message sequences (so-called Interaction Protocols) which are al-
ready supported by JADE . Even more, it includes speci�cations to establish
large protocols such the English auction protocol [FIPA, 2001g]. Also, FIPA
had some preliminary speci�cations about normative issues known as Policies
and Contracts [FIPA, 2001f], which are surveyed by special agents (so-called
Lawyer Agents). In addition, there is an Agent Discovery Service Speci�ca-
tion [FIPA, 2001b] which provides the directory service. Overall, di�erent plat-
forms provide these FIPA services, like Thomas [Argente et al., 2008]. It is an or-
ganisational infrastructure that extends FIPA Abstract Architecture with trans-
parent interaction among agents and web services. In fact, this infrastructure
considers other organisational components not present in FIPA, such as deontic
norms.

2.5 Assistance layer

We observe some features in existing works which go beyond enabling a coordi-
nation model, assisting agents to participate in it. Accordingly, under our Coor-
dination Support vision we place them in an additional layer called Assistance
Layer. The list of services of this layer are mainly conceived by us, as opposed
to previous layers, in which services try to encompass existing approaches.

In this related work section, we simply enumerate these services and cite
some current approaches that we see as embryonic implementations of this layer.
In contrast, a detailed de�nition of each new service, and its illustration in some
of the presented scenarios is given in chapter 4.

2.5.1 Services

We conceive a set of services to assist agents in following a coordination model
more than just enabling it. These services may simplify agent development
by providing new system facilities that agents can use instead of implementing
them individually. However, agents can choose to use these services or not,
and its their responsibility to decide which actions to perform. In other words,
these services facilitate agent's decision making without reducing participant's
autonomy. We call this set of services Agent Assistance, which comprises:

� the Information service to inform agents about useful information to par-
ticipate in the MAS.

� the Justi�cation service to provide justi�cations about the consequences
of their actions.

� the Advice service to suggest alternative plans that conform social conven-
tions.

� the Estimation service to estimate the possible consequences of certain
actions due to current conventions.

2.5. ASSISTANCE LAYER 25

As mentioned above, chapter 4 provides further details and examples about this
new services.

Besides, the Assistance Layer may also adapt previous layers depending
on system's evolution to improve its performance. In other words, this layer
may include pro-active capabilities that let the MAS infrastructure take the
initiative and act intelligently. We call these services Organisational Assistance,
and currently we suggest the service that is the focus of this thesis:

� the Adaptation service to update previous Organisational Layer in order to
improve system's performance under varying circumstances (see chapter 5
for further details and examples).

This organisational service can be useful when MAS participants behaviour
di�er notably from the expected one or when the MAS environment changes
�like resource availability or technological updates. Such a service is moti-
vated by the computational organisational theory, which claims that the best
organisation designs are domain and context dependent [Carley, 1995]. Accord-
ingly, this service could update the organisation when its context changes. Even
more, this service can be seen as a recon�guration aspect of autonomic comput-
ing [Kephart and Chess, 2003] in which the MAS as a whole is able to recon�gure
itself without human intervention. In other words, under the term Organisa-
tional Assistance we consider the system �and its organisation in particular� as
an entity that can present di�erent self-* properties [Berns and Ghosh, 2009] as
a whole.

In particular, according to the reorganisation typology
in [Dignum et al., 2005], we are not talking about a behavioural change
but about a structural one. That is to say, instead of referring to a change in
agents playing certain roles while the organisation remains the same (so-called
a behavioural change), we actually refer to a change in the organisational
structures (a structural change). As this typology states, the organisational
design acts as an organisational memory, that allows to re�ect on the di�erence
between desired and actual behaviour as well as to decide on structural changes.

The following subsections review existing approaches which somehow
present some of these Assistance Layer services.

2.5.2 Agent Assistance approaches

Currently, there are some MAS approaches that present mechanisms that
can be construed as the �rst of agent assistance services: the so-
called Information service. For instance, the Information Services in
Thomas [Argente et al., 2008] provide internal agents with information about
all the organisational components �i.e. these components are explicit
and agents can access their speci�cations. Similarly, in the A&A ap-
proach [Ricci et al., 2006], an artifact provides information about how it
can be used (they call it Manual). Additionally, in an Electronic Institu-
tion [Esteva, 2003], the sta� agent in charge of an interaction activity (Scene

26 CHAPTER 2. STATE OF THE ART

Manager) informs participants when an agent joins/leaves an interaction proto-
col (a scene). Even more, the mediator among the EI and a participant (Gover-
nor) noti�es the agent when an action has been �ltered out because it did not
conform social conventions.

Besides, in Moise [Boissier and Gâteau, 2007], the special agent in charge
of the organisation (OrgManager) informs participants when they acquire new
obligations. Moreover, agents can ask the OrgManager about which missions
are they forced to commit to and which individual goals they can pursue at a
certain moment �recall that Moise follows a task assignment approach.

Furthermore, there are some infrastructures that o�er a reputation mech-
anism to agents. We regard such a mechanism as an information service,
since the reputation information helps agents to decide how to deal with
other participants. For instance, in the Testimony-based Governance Mech-
anism [Duran et al., 2008], a participant can send a message (Testimony) de-
scribing if another agent has or has not violated a social convention. Later,
the infrastructure mechanism in charge of collecting such messages (Judge-
ment System) provides a decision (Verdict) about if the agent has actu-
ally violated the social convention. These verdicts are accumulated by an-
other infrastructure mechanism (Reputation System) that can be checked
by any participant before interacting with other agents. Hence, such a
reputation mechanism is also an emergent alternative to organisational en-
forcement as stated in RepAge [Sabater-Mir, 2006] and Ostracism Enforce-
ment [de Pinninck et al., 2008]. However, we do not include this mechanism
as an organisational enforcement policy �in previous layer� because it provides
no guarantee �specially in open MAS.

On the other hand, to the best of our knowledge, there are no current
approaches that provide neither justi�cations, advices nor estimations. For ex-
ample, neither Moise nor EI provide any justi�cation when they �lter out agent
actions. Hence, we suggest these organisation infrastructures could provide jus-
ti�cations in such cases. For instance, in addition to inform that an action has
been �ltered out, EI's governors could also detail which protocol and which step
was not ful�lled. Chapter 4 presents several other examples about these services.

2.5.3 Organisational Assistance approaches

There are several related works on adapting organisations. We consider these
approaches provide the Organisational Adaptation service proposed within
the Organisational Assistance. On the one hand, in ACMAS, these ap-
proaches can be divided [Sen and Sen, 2010] into interaction-based emergence
(i.e. agents converge in new behaviours by focusing on individual utili-
ties [Mukherjee et al., 2008]) and observation-based adoption (where agents ob-
serve others' behaviour [Sen and Airiau, 2007]). On the other hand, in OCMAS,
the agents that update the organisation reason about it as an explicit organi-
sational entity, by observing the system as a whole and updating its explicit
components.

2.5. ASSISTANCE LAYER 27

Figure 2.7: Moise's reorganisation architecture from [Hübner et al., 2004].

Next, we describe some AOCMAS, specially regulation de�nition ap-
proaches, since they are the focus of this thesis. In fact, the most of OCMAS
approaches presented in previous section are indeed AOCMAS since they also
de�ne how to perform the adaptation of their organisational models.

2.5.3.1 Task assignment approaches

In AOCMAS, most of the works are task assignment approaches, so they assume
they have full control over the development of MAS participants. Accordingly,
they usually derive new tasks to ful�l organisational goals when there are envi-
ronmental or population changes. Also, they may replicate agents and/or update
their social structure to obtain the expected system outcomes.

For instance, in Moise they use a new organisation to re-organise the orig-
inal one as depicted in �gure 2.7. In this new organisation, there is a special
role (Reorg) that has assigned the task of re-organising other agents. Thus,
it decomposes this task and assigns sub-tasks to other reorganisation agents
(ReorgExperts) in charge of analysing which changes are required. In partic-
ular, in [Hübner et al., 2004] these agents use reinforcement learning to per-
form such a task. However, di�erent techniques can be applied to perform this
task, such as diagnosis [Horling et al., 2001], generalised partial global planning
(GPGP) [Lesser et al., 2004] or a knowledge base of organisational structures
(KB-ORG) [Sims et al., 2008].

The described Moise's adaptation architecture follows implicitly a meta-
level abstraction [Corkill and Lesser, 1983]. In particular, a set of agents is
in charge of adapting the organisation of another set of agents. Also, there
are other approaches that follow this abstraction. For instance, to the best
of our knowledge, the task assignment proposals closer to our approach are:
MASPA [Zhang et al., 2009] and Adaptive-MAS Model [Guessoum et al., 2004].
The former, the Multi-Agent Supervisory Policy Adaptation (MASPA), has the
distributed mechanism depicted in �gure 2.8. It is composed by agents that
have a partial view of the whole system (so-called Supervisors). Such agents
are organised (within a multi-level Supervision Organisation) in order to adapt
the organisation of domain agents (Workers) which are grouped into clusters
(delimited by dotted lines). These agents provide some kind of norms to agents

28 CHAPTER 2. STATE OF THE ART

Figure 2.8: MASPA's architecture from [Zhang et al., 2008].

in their previous layer. These norms can be optional local conventions (Sug-
gestions) or mandatory (Rules). In both cases, they specify a condition and
some actions. In fact, this approach assumes agents are implemented to check
such conditions and perform its corresponding actions. This way, supervision
agents integrate global information into the Multi-Agent Reinforcement Learn-
ing (MARL [Busoniu et al., 2007]) algorithm executed by its workers. In other
words, MASPA aims to create adaptive MAS developing all its components,
whereas our mid-term purpose is to deal with open MAS �where agents are
developed by third parties, so there is no control over their development and
corresponding behaviour.

Similarly, the latter cited meta-level approach, the Adaptive-MAS
Model [Guessoum et al., 2004], assumes that the adaptation mechanism has
total control over domain agents. Speci�cally, it has a meta-level (so-called
Organisation-level) composed by agents (Agent-Monitors) that observe and con-
trol the domain agents (Micro-level or Agent-level). Each agent-monitor is in
charge of a single agent and sends its information to a collector agent (Host-
Monitor). Next, these host-monitors act as a hub of information by exchanging
this information to build a global view of the system. This global view may
motivate di�erent adaptations like the replication of critical agents that they
suggest.

2.5.3.2 Regulation de�nition approaches

Usually, regulation de�nition approaches update social conventions, as an indi-
rect tool to vary system's organisation while preserving agent's autonomy. As
described in previous layer, these social conventions may include protocols and
norms. As an illustration of the former (protocol adaptation), a Dynamic Ar-
gumentation Protocol [Artikis et al., 2009] is a protocol that can be updated by
agents as depicted in �gure 2.10. In particular, some of the agents that use a
given protocol (so-called Object Protocol) can suggest to change it �such agents
are the ones empowered to perform this action. They express this suggestion to

2.5. ASSISTANCE LAYER 29

Figure 2.9: Adaptive MAS model's architecture from [Guessoum et al., 2004].

Figure 2.10: Dynamic Argumentation Protocols from [Artikis et al., 2009].

initialise a discussion in a di�erent protocol (Transition Protocol), which is the
same they use later to express the actual changes in the object protocol. The
discussion itself is performed by using a speci�c protocol designed for this task
(Meta-level Protocol). In other words, some participants can use a meta-level
protocol to discuss how to update their regular protocol.

As an illustration about the latter (norm adaptation), the P2P Normative
System [Grizard et al., 2007] depicted in �gure 2.11 is an OCMAS that focuses
on the adaptation of two types of norms. On the one hand, there are some
norms that are global and mandatory (Rules). Such norms are enforced by
restricting interaction, thanks to a reputation service o�ered by a meta-level
(Overlay System). And on the other hand, there are other norms that are
local and optional (Conventions). The same meta-level also o�ers information
about their violations, which favours the emergence of groups of agents using
similar conventions. In particular, this meta-level consists in an agent (Controller
Agent) in charge of each domain-level participant (Applicative agent). Each
controller agent observes its applicative agent actions and updates a reputation
value depending on its global rules ful�lment. Additionally, a controller cx of an

30 CHAPTER 2. STATE OF THE ART

Figure 2.11: P2P Normative System from [Grizard et al., 2007].

agent x, can be informed by another controller cy of agent y, when y is violating
any of the local conventions de�ned by x. This way, agent x can know which of
their neighbours is sharing the same local conventions. Overall, in this approach
agents can adapt their local conventions but not the global rules. And, the
derived social structure depends on norm ful�lling.

Another social conventions adaptation example can be found in an Auto-
nomic Electronic Institution (AEI) [Bou, 2009] as depicted in �gure 2.12. In
this approach, the norms of an electronic institution are adapted when certain
system-wide measures di�er from the expected ones. In particular a centralised
feedback mechanism compares observations (Properties) with their expected val-
ues (Goals) and self-recon�gures (its Performative Structure PS and Normative
Structure NS, see �3.2) depending on an adaptation policy (Transition Func-
tion). The case study of this approach is a tra�c scenario, in which there are
police agents that can �ne cars depending on current norms. These �ne amounts
are adapted by the feedback mechanism. It is worth mentioning that AEI is the
basis for our initial proposal which is explained in chapter 3.

Besides, the mapping between norms and system outcomes may be more
complex than the mapping between tasks and goals in a task-oriented problem.
In fact, AEI uses machine learning to deal with such complexity. In particular,
in [Bou et al., 2007] they apply a genetic algorithm to evaluate goal satisfaction
when using di�erent norms (NS). Afterwards, the norms of the best individuals
are stored in a Case-Based Reasoning (CBR) [Aam, 1994] system, which is in
charge of the adaptation function (Transition Function). Then, during a regular
execution, the CBR retrieves similar previous situations (similar Properties, in

2.5. ASSISTANCE LAYER 31

AEI

EIGoals Transition Func.
PropertiesPS',NS'

PS,NS

Figure 2.12: Autonomic EI (AEI) adaptation mechanism.

terms of AEI) in order to apply an equivalent solution (a PS′, NS′ similar to
the ones that provided good results in the past). Such a method requires a
knowledge-base (called Case-Base by the CBR community) that contains the
collection of previous cases (a situation, so-called problem and its solution).
According to CBR taxonomy [Plaza and McGinty, 2006], AEI's approach has a
centralised processing (a single mechanism to compute the Transition Function)
and a centralised knowledge (a single case-base). Alternatively, we propose a
distributed CBR approach in our second approach as described in �5.5.

Returning to the ACMAS/OCMAS distinction, there are several works that
focus on norm emergence [Pujol et al., 2005, Savarimuthu et al., 2008] and/or
norm adaptation [Salazar-Ramirez et al., 2008, Kota et al., 2009] from an AC-
MAS perspective. However, these approaches use methods that depend on partic-
ipants' implementation and they rarely create or update organisational persistent
entities.

Moreover, further than the cited MAS approaches, there are some works
that deal with adaptation in the same scenario that we use as case study.
In particular, there are some approaches that deal with a P2P sharing net-
work from a network management perspective by reducing communication costs.
On the one hand, some of them try to achieve it without ISPs involve-
ment, like Ono [Cho�nes and Bustamante, 2008]. In particular, Ono suggests
that peers use information collected by Content Distribution Networks (CDN)
[Verma, 2002] to select their neighbours. CDNs use dynamic DNS redirection
to send clients to low-latency replica servers. Thus, if two clients are sent to
the same replica server, they are likely to be close to each other. Accordingly,
peers query CDN servers and store the corresponding replica identi�ers. Then,
when a peer contacts another one, it estimates their distance based on the set
of replica identi�ers. If it is closer than some of its neighbours (i.e. they have
more replica identi�ers in common), it starts the sharing process with the other
peer. On the other hand, there are approaches that involve ISPs. For example,
P4P [Xie et al., 2008] adds an additional layer with elements called iTrackers.
These elements can access network information �e.g. topology or tra�c mea-
surements. Afterwards, they use it to estimate the distance �in terms of network
latency� among peers and suggest di�erent neighbours to a peer depending on
this information. As it can be observed, both approaches only adapt part the
social structure �i.e. the do not adapt social conventions (protocols or norms)
at all.

Chapter 3

Situated Adaptive Electronic
Institutions (SAEI)

This chapter de�nes the Situated Autonomic Electronic Institutions (SAEI) ap-
proach. It is based on the organisational model of Electronic Institutions (EI)
adapted using the existing Autonomic Electronic Institutions (AEI) approach.
Moreover, the resulting approach can provide this adaptation service to an al-
ready existing MAS thanks to the Situated Electronic Institution (SEI) model
we propose. Overall, the resulting approach (SAEI) is the antecedent of our
OCMAS abstract architecture proposal (2-LAMA), which is detailed in a sub-
sequent chapter.

3.1 Introduction

Chapter 2 reviews the state of the art of Adaptive Organisation Centred Multi-
Agent Systems (AOCMAS) from our coordination support vision. We assume
AOCMAS count on an Organisational Layer that provides them with organ-
isation entities in order to structure their coordination model. Moreover, we
propose they have an Assistance Layer that is able to adapt such organisations
to keep their performance under varying circumstances. In particular, we regard
this adaptation as an Organisational Assistance, assuming that organisations are
�rst-class entities that can present self-* properties [Berns and Ghosh, 2009] as
a whole. Hence, the state of the art chapter reviews di�erent existing approaches
from this perspective. Among others, it cites two approaches that inspire our
work: the Electronic Institutions (EI, see �2.4.3) as an organisational approach
and the Autonomic Electronic Institution (AEI, see �2.5.3.2) as its adaptation
approach.

Now, current chapter de�nes our Situated Autonomic Electronic Institution
(SAEI) proposal using these two approaches plus our suggested Situated Elec-
tronic Institutions (SEI). In particular, it uses the AEI centralised adaptation

33

34CHAPTER 3. SITUATEDADAPTIVE ELECTRONIC INSTITUTIONS (SAEI)

mechanism extended with the capability to connect to an existing MAS �what
we term situatedness. This brings two separated agent properties (situatedness
and adaptation) to an organisational level, or, in other words, it brings up in-
dividual agent level capacities to collective system capabilities. In fact, these
capabilities can be added to basic electronic institutions separately. Hence, next
subsections present each capability by separate. Afterwards, a SAEI is de�ned
as the composition of these approaches.

The resulting approach (SAEI) is the antecedent of our OCMAS abstract
architecture proposal (2-LAMA), which is later detailed in chapter 5. In con-
trast to SAEI, 2-LAMA has a distributed adaptation mechanism and uses an
organisation general model instead of an electronic institution.

3.2 Electronic Institutions applied to our tra�c
scenario

This subsection is devoted to further introduce Electronic Institutions (EI) �
see �2.4.3� since they are referred by subsequent sections. In order to illustrate
some of its components, along this section we provide an example based on
the tra�c scenario described in �1.2.2.1 plus some convenient extensions (e.g.
policemen can �ne cars).

In brief, the main focus of an Electronic Institution [Esteva, 2003] is to guar-
antee that its social conventions �interaction protocols and rules� are followed
by participant agents, which interact via dialogical actions. This is achieved
by communication mediation, so that EIs �lter out non-permitted actions �
i.e. they have an enforcement policy based on full detection and imposition.
Figure 3.1 depicts how MAS regular agents are considered to be external to the
institutional framework, and they interact through an institution wrapper called
governor. Nevertheless, the institution delegates its functions to a special kind
of agents, the so called sta� agents. All in all, the de�nition of an Electronic
Institution is shown below and some of its components are discussed afterwards:

De�nition 1 An Electronic Institution is a tuple EI = DF ×
DC [Sierra et al., 2007]:

� DF = O ×MI × ST × LCL × LE stands for Dialogical Framework and
provides a context for agent interactions, which are speech acts. Its com-
ponents are: an Ontology O, a set of Information Models MI �to keep
information about EI's participants and activities at run time�, a Social
structure ST �roles and their relationships�, a Communication Language
LCL, and an Expression Language LE �to specify conditions with a con-
straint language and their consequences in an action language.

� DC = PS × NS stands for a Deontological Component which is a set of
conventions that constrains possible illocutionary exchanges and manages
the responsibilities established within the institution. Its components are:
a Performative Structure (PS) and a Normative Structure (NS).

3.2. ELECTRONIC INSTITUTIONS APPLIED TOOUR TRAFFIC SCENARIO35

Agent Agent
External agents

EI

Governor

Deontological ComponentStaff Staff

Governor

Figure 3.1: Electronic Institution's organisational infrastructure.

3.2.1 Communication Language

The Communication Language (LCL) is the language used by agents to utter
their messages. Its expressions, called illocutions (I), are de�ned in the terms
shown in eq. 3.1.

I ::= ι(origAi : origRi, [destAj :] destRj ,msg, t) (3.1)

Where there is an illocutionary particle ι (e.g. request, accept,
inform . . .), its sender (origin agent identi�er origAi and the role origRi it
plays), its receivers (destination agent identi�er destAj and/or its role destRj),
a message content msg = f(params) and a time stamp1 t. For instance, in
the extension of the tra�c scenario �see �1.2.2.1� the following message could
appear when police o�cer `Bond' informs car `Shiny' that it has a 10-point �ne
at time 1: inform(Bond : policeman, Shiny : car, fine(10), 1).

3.2.2 Performative Structure

A performative structure (PS) de�nes those conventions that regulate the �ow
of illocutions in an institution. The whole activity of an EI is a composition of
multiple, concurrent dialogic activities �the so called scenes� involving di�erent
groups of agents playing di�erent roles.

In order to illustrate the PS components, �gure 3.2 depicts the PS for
the extended tra�c scenario. It shows a directed graph, where nodes represent
activities (Scenes) and arcs indicate which roles move between them. Thus, in
our example, there is an `Initial' scene where agents enrol in the institution.
Afterwards, depending on their role, they can move to another scene: policemen
can go to `Police Station', cars to `Crossroads' and the rest to `Collision'. In
case there is a collision in this `Crossroads' scene, crashed car agents move to

1EIs have a distributed architecture assuming a synchronised time.

36CHAPTER 3. SITUATEDADAPTIVE ELECTRONIC INSTITUTIONS (SAEI)

Figure 3.2: EI's Performative Structure in a tra�c scenario.

`Collision', which describes a collision emergency protocol (see �gure 3.3) that
is initially supervised by a police agent.

Each scene is speci�ed by means of a �nite-state directed graph, with nodes
representing states and arcs de�ning those relevant actions that imply state
transitions. It also includes some restrictions about time variables or how many
agents can play a given role. Following the tra�c example, �gure 3.3 depicts
the `Collision' scene protocol. A crashed car agent enters the scene through an
initial state. The scene changes to a `Garage' state when a `tow truck' agent
informs it has taken this car to a garage, so that it can now �together with
the `supervisor'� exit the scene because a `mechanic' agent will enter it. Finally,
when this mechanic informs the car that has been repaired, the protocol changes
to `Ready' state and both agents can leave the scene.

3.2.3 Normative Structure

The normative structure (NS) [Gaertner et al.,] de�nes a normative level in
our Deontological Component. Both PS and NS are distributed and controlled
by sta� agents, called Scene Managers and Normative Managers. Brie�y, a NS
consists of a normative state (S) and a set of rules2 (SR) that can update this
state as shown in eq. 3.2.

2It is worth to mention that, in current chapter, we are using the nomenclature of the
Electronic Institution's related work on its Normative Structure [García-Camino et al., 2006],
which named rule �see �3.2.3� to what we will later refer as norm in our generic organisation
model �see �5.3.2.

3.2. ELECTRONIC INSTITUTIONS APPLIED TOOUR TRAFFIC SCENARIO37

Figure 3.3: �Collision� scene in a tra�c scenario.

NS = S × SR
S = { P1 . . . Pk }, Pi ∈ P

P := utt(I)‖NP
NP ::= per(I)‖prh(I)‖obl(I)

SR = {R1 . . . Rm }, Ri ∈ R
R ::= Cond⇒ Conseq
Cond ::= utt(I)‖NP‖Cond,Cond
Conseq ::= add(NP)‖remove(NP)

τ : S ×R→ S

(3.2)

A normative state (S) contains a set of statements called normative posi-
tions (NP), which represent obligations (obl), prohibitions (prh) and permis-
sions (per) associated to illocutions (I). This state can be updated by agents
utterances (utt) and rules (R). A rule [García-Camino et al., 2006] consists of
a condition and its consequences. When it is triggered (τ) by any combination
of uttered illocutions (utt) and NP , it adds or removes NP s to S.

As an illustration, eq. 3.3 contains an example in the tra�c scenario. First,
it has a social convention (a norm n) about respecting tra�c lights. Next,
the normative speci�cation (ns) includes a rule r to de�ne the consequences
of violating this norm. This rule should say that �any car violating the norm
will be �ned�. However, our example delegates violation judgements to sta�
agents (policemen in this case). Therefore, the corresponding rule codi�es the
obligation of a policeman to �ne a car when it informs the car went through
a red light. Finally, the example shows an execution case. It starts with the
empty normative state s0. Then, when a policeman informs that a car has gone
through a red tra�c, the original normative state incorporates the corresponding
illocution, resulting in s1. Afterwards, a Normative Manager applies rule r by
adding an obligation to normative state s2.

38CHAPTER 3. SITUATEDADAPTIVE ELECTRONIC INSTITUTIONS (SAEI)

Convention:
n=�cars cannot go through a red light�

Specification:
ns=(s0, sr) , ns ∈ NS, s0 ∈ S, sr ∈ SR
s0 = {}
sr = {r}
r=utt (inform(x, policeman, y, car, noStop(Tlight), ti))
⇒add(obl (inform(x, policeman, y, car, fine(5), ti+1)))

Execution:
s1={utt (inform(p, policeman, c, car, noStop(tlight1), t1))}
s2={utt (inform(p, policeman, c, car, noStop(tlight1), t1)) ,

obl (inform(p, policeman, c, car, fine(5), t2)) }

(3.3)

3.3 Situated Electronic Institutions (SEI) model

An Electronic Institution is a MAS that provides an interaction mediated en-
vironment within the institution itself. We refer to this environment as the
EI inner environment. Notice that an EI has total control over this EI inner
environment thanks to its governors (see �3.2).

Further, a Situated Electronic Institution (SEI) is an enhanced EI that is
able to interact with a previously existing environment (i.e. with an existing
MAS), so that it relaxes total control in favour of interoperability. The existing
environment (world) can be any social system (society, organisation or MAS)
having individual actions and interactions that are relevant to the institution.
These actions and interactions in the world can be illocutions and non-verbal
actions. The SEI-world relationship is accomplished by attaching a SEI on
top of a world as depicted in �gure 3.4. In fact, there is a communication
interface (Bridge) between the institution and the world it is situated in. This
bridge allows sta� agents to access certain world elements as properties. Such
properties can be related to modelled agents AgsP , institutional issues Org, or
environment facts EnvP . Also, there are specialised governors (Modellers) that
model a world entity as if it was a regular external agent in the EI. In this way,
a SEI can perceive world facts and induce changes on it.

We say that a SEI is situated in an existing environment because it receives
information about the environment, processes it, and induces some changes in
the world. We consider a SEI has a model of the world, which maintains �
according to external inputs� and updates �translating changes to external
environment. It is worth to mention that it is commonly assumed that agents
have a partial perception of the world. Similarly to agent level, at organisational
level, world may be also partially observable by a SEI. Moreover, SEI's control
over this world can be also quite limited, since it can only induce a limited

3.3. SITUATED ELECTRONIC INSTITUTIONS (SEI) MODEL 39

SEI

World

Modeller
Car

Deontological Component

Staff
Signals

Staff
Police

Bridge

Org

AgsPpoints

AgsPpos

EnvP

Figure 3.4: Situated Electronic Institution (SEI).

amount of changes in it. Hence, a SEI can be de�ned as an extension of previous
EI de�nition 1 on page 34:

De�nition 2 We de�ne a Situated Electronic Institution (SEI) as

SEI = DF ′ ×DC ×B

where:

� DF ′ stands for a the Dialogical Framework3 of a regular EI extended with
world's entity Modellers and Observable Properties ⊂MI .

� DC corresponds to the Deontological Component4 of an EI.

� B stands for a Bridge, which is the communication channel with the world.

Next subsections provide further details about these SEI components.

3In brief, the regularDF stands for an agent interaction context that comprises: an ontology
O, some information models MI , a social structure ST , and some communication LCL and
expression LE languages.

4In short, DC stands for a set of conventions which comprise: a performative structure PS
and a normative structure NS.

40CHAPTER 3. SITUATEDADAPTIVE ELECTRONIC INSTITUTIONS (SAEI)

3.3.1 Modellers and sta� agents

Since a basic EI is a persistent organisation entity, it uses its Information Model
(MI) to keep part of its computational state in the form of attributes. In par-
ticular, it has: Agent Observable Properties (AgsP ⊂ MI), which are those
attributes that keep the institutional state of each external agent (e.g. agent's
credit or position); Environment Observable Properties (EnvP ⊂ MI), which
are those attributes about global facts independent of the institution activity
(e.g. date or weather); And Institutional Observable Properties (Org ⊂ MI)
which are attributes related with global facts directly or indirectly in�uenced by
the institution (e.g. the number of collisions which may be in�uenced by tra�c
lights' frequencies).

Some external agents of a SEI are represented by relevant world entities that
are not controlled by the institution. Thus, a SEI has specialised governors, we
name Modellers, in charge of modelling and interacting with these world entities.
Thus, a world entity can be treated by the SEI as if it was a regular participant
agent.

The information between a SEI and its world �ows in two directions. On
the one hand, a modeller models a world entity by accessing the world and ex-
tracting relevant information about this entity. As a result, a modeller keeps
track of its corresponding agent observable properties (AgsP) and utters illocu-
tions when its entity performs actions that are relevant to the institution. On
the other hand, a modeller translates interactions from SEI into changes in its
world entity's Agent observable properties (AgsP). Figure 3.4 illustrates this
process in the tra�c scenario described in �3.2. First, the �Car modeller� gets
its car location (AgsPpos) by processing the camera information. If this car (c)
is entering the road junction through a given lane (laneid), the modeller gen-
erates the illocution `inform (c : car, : policeman, entryJunction(laneid), t)'.
This illocution informs all policemen in the `Crossroads' scene that the modelled
car has performed the entryJunction relevant action. Later, if modeller is asked
to decrease car's driving license points (AgsPpoints, see �3.3.2), it will contact
the Tra�c Regulation Authority to perform this operation.

We see the institution situatedness as an awareness of the world where it is
situated. Thus, we consider a SEI is aware of its world in the sense that it models
and a�ects it. However, its world may or may not be aware of this SEI, depending
on the domain. Moreover, some domains may present some restrictions on which
information can be accessed or updated, so that it determines the level of SEI-
world interaction and awareness. For example, in the tra�c scenario, if the car's
position is retrieved with camera's image processing, this car may probably not
be aware of the SEI. In contrast, if the car is equipped with a Global Positioning
System sensor device and sends its position to the Tra�c Regulation Authority,
it may probably be aware of the existence of a surveillance system like the SEI.

On the other hand, there may be some world entities directly controlled by
the institution. In this case, instead of a modeller, a SEI has sta� agents in charge
of these world entities. Figure 3.4 depicts a sta� agent called �Signals�, which
sends information to the world to set a tra�c light colour (Org). Sta� agents can

3.4. AUTONOMIC ELECTRONIC INSTITUTIONS (AEI) APPLIED TOOUR TRAFFIC SCENARIO41

also interact with modellers to access to Agent Observable Properties (AgsP)
or read Environment Observable Properties (EnvP , e.g. the wind's direction).

3.3.2 Social Conventions

The term relevant action refers to an action �or interaction� in the SEI external
environment (world) that a�ects its institutional model. Consequently, a SEI
perceives or induces a relevant action and binds it to the world. Within rele-
vant actions, we distinguish between: allowed actions �those that follow social
conventions� and non-allowed actions �the rest of relevant actions.

Moreover, the term norm refers to a social convention regarding agents'
interaction. Hence, the allowed actions are those that comply with norms. Ac-
cordingly, we consider that a norm can be violated if agents do not follow its
convention, that is, if agents perform non-allowed actions. On the other hand,
we use the term rule to identify an expression that de�nes the consequences of
agents' actions. Hence, a rule de�nes the consequences of a norm violation.

In a regular EI, most social conventions are speci�ed through protocols
so that governors �lter out those illocutions not following them (non-allowed
actions). In this way, an EI grants no participant can violate these conventions.
In contrast, a SEI does not have such control over the world since it cannot
prevent world entities from performing actions (or interactions). Thus, when
designing a SEI, we have to pay special attention to the fact that it cannot
prevent participants from violating norms. Consequently, it is strictly relevant
to specify the consequences of violating these conventions with rules added to
SEI's Normative Structure �see the example in �3.2.3.

3.3.3 Bridge

The Bridge (B) is an asynchronous bi-directional communication channel be-
tween our institution and the world (in [Arcos et al., 2007] it was conceived as
a channel connected to a multi-agent simulator). This channel is used by sta�
agents and modellers to obtain information from the external environment and
to induce changes in the world as explained previously. It provides access to
agent, institutional and environment observable properties.

Basically, this bridge comes from an implementation requirement to bind a
SEI and its world. From an implementation perspective, although it is a sin-
gle module, it may be distributed among di�erent APIs (Application Program
Interfaces) to access di�erent programming objects that interact with world el-
ements.

3.4 Autonomic Electronic Institutions (AEI) ap-
plied to our tra�c scenario

The aim of a regular Electronic Institution is to guarantee that its social con-
ventions are followed by its participant agents. Such conventions have been

42CHAPTER 3. SITUATEDADAPTIVE ELECTRONIC INSTITUTIONS (SAEI)

AEI

EIG Φ

External Agents

P
PS',NS'

PS,NS

I

Figure 3.5: Autonomic Electronic Institution (AEI).

designed to pursue some implicit goals. However, as the agent behaviour may
di�er among di�erent populations, or there may be large environmental changes,
the original conventions may not lead to the design goals.

An Autonomic Electronic Institution (AEI) [Bou et al., 2006] is an elec-
tronic institution that can autonomously adapt itself to achieve a set of de�ned
goals. In fact, goal ful�lment is its driving force for adaptation within the con-
text of a rational world assumption. In this manner, an AEI has an adaptation
mechanism composed by: a goal (G) that speci�es desired values of certain
properties, the corresponding observed properties (P) and a set of transition
functions (Φ) which de�ne how to recon�gure the institution to accomplish its
objective depending on these observations. Figure 3.5 depicts this approach, in
which PS and NS stand for the Performative and Normative Structures, and I
stands for the illocutions exchanged by external agents through the institution.
Accordingly, an AEI can be de�ned as an extension of previous EI de�nition 1
on page 34:

De�nition 3 We de�ne an Autonomic Electronic Institution (AEI) as

AEI = DF ×DC ×G×Θ

where:

� DF stands for a Dialogical Framework.

� DC stands for a Deontological Component.

� G stands for the institutional Goals.

� Θ stands for the set of Transition Functions which adapt the components
of DC.

Next subsections provide further details about these AEI components.

3.4. AUTONOMIC ELECTRONIC INSTITUTIONS (AEI) APPLIED TOOUR TRAFFIC SCENARIO43

3.4.1 Institutional Goals

Institutional Goals (G) specify desired values for observed properties (P). These
properties belong to the information model (P ⊆ MI), and correspond to in-
formation about agents, the environment or the institution itself (see �3.3.1).
Equations 3.4-3.6 formalise these goals with the components described as fol-
lows:

G = P ′ × Ω (3.4)

P ′ ⊆ P (3.5)

Ω =
[
(R)|P

′| → R ∈ [0..1]
]

(3.6)

� Relevant Properties (P ′): it is the subset of observed properties (P ′ ⊆ P)
that is relevant to compute current goals. For instance, in the tra�c
scenario, if the goals are to keep a low number of norm violations (p#vio)
and a minimum number of policemen (p#police), the relevant properties
are speci�ed in equation 3.7.

� Objective Function (Ω): it is a function that computes overall goal sat-
isfaction (a real value between 0 and 1, 1 meaning completely satis�ed
goals) from current values of relevant properties5. Notice that it assumes
that there is a way to express the value of each property as a real num-
ber, so its domain is a real number for each relevant property �i.e. |P ′|
real numbers. Following the tra�c example, the maximum goal satisfac-
tion corresponds to having no violations (i.e. p#vio = 0) and no police-
men deployed (i.e. p#police = 0) �which may be an utopian situation,
however. Hence, the objective function may be a weighted aggregation
function [Bou et al., 2006] like the speci�ed in equation 3.8.

p′ is a particular speci�cation of the model P ′, p′ ∈ P ′
p′ = {p#vio, p#police}

(3.7)

ω is a particular speci�cation of the model Ω, ω ∈ Ω
ω(x, y) = 1

weight#vio· x
MAX#vio

+weight#police· y
MAX#police

weight#vio + weight#police = 1
x is a particular runtime value of p#vio

y is a particular runtime value of p#police

(3.8)

5As explained in �5.3, we denote the model of a sort of function as a function space (Model =
[Domain→ Codomain], e.g. eq. 3.6) and a speci�c function of that sort as a the rule of

correspondence of a function (spec =< expression >, e.g. eq. 3.8) that belongs to the function
space (i.e. spec : Domain→ Codomain, so spec ∈Model).

44CHAPTER 3. SITUATEDADAPTIVE ELECTRONIC INSTITUTIONS (SAEI)

3.4.2 Transition Functions

Transition Functions (Θ) specify how the institution can change its organisa-
tional structure with the aim of increasing its overall goal satisfaction. We de�ne
two di�erent transition functions depending on what they can adapt (NS or PS).
All of them receive a set of observed properties6 (P) and their desired values
(G).

On the one hand, the Normative Structure adaptation function (Φ) in charge
of updating the rules (NS) is de�ned in equation 3.9.7

Φ : [P ×G×NS → NS] (3.9)

For instance, in the tra�c example, �nes could be increased if there are
a lot of tra�c violations. Hence, ν can adapt propose an updated Normative
structure (ns′), by increasing the �ne parameter (e.g. from 5 to 10) of rule r
(see �3.3) as illustrated in equation 3.10.

ns = (s, sr) , ns ∈ NS, s ∈ S, sr ∈ SR
sr = {r}
r : utt (inform(x, policeman, y, car, noStop(T light), ti))

⇒ add (obl (inform(x, policeman, y, car, fine(5), ti+1)))
φ (p, g, ns) = ns′, φ ∈ Φ
ns′ = (s, sr = {r′})

r′ : utt (inform(x, policeman, y, car, noStop(T light), ti))
⇒ add (obl (inform(x, policeman, y, car, fine(10), ti+1)))

(3.10)
On the other hand, the Performative Structure adaptation function (Ψ) in

charge of updating protocols and/or role �ows (PS) is de�ned in equation 3.11.

Ψ : [P ×G× PS → PS] (3.11)

As an illustration in the tra�c scenario, if there are a lot of accidents, func-
tion ψ could change the number of allowed policemen deployed in the `Cross-
roads' scene �see tra�c's PS in �gure 3.2.

3.5 Situated Autonomic Electronic Institutions
(SAEI) model

It is possible to extend EIs with both situatedness and adaptation capacities
simultaneously. The resulting enhanced institution is called Situated Autonomic

6These properties can be any of the attributes described in �3.3.1.
7Notice that this adaptation function (Φ, eq. 3.9) ful�ls the general adaptation function

de�ned in next section (Γadapt, eq. 4.1). Since the observed properties (P) are related to
agent and environment properties (AgsP , EnvP). And, the goals and the normative structure
(G,NS) are components of the organisation (Org).

3.5. SITUATEDAUTONOMIC ELECTRONIC INSTITUTIONS (SAEI) MODEL45

Electronic Institution (SAEI). It can be de�ned by combining previous de�ni-
tions 2 and 3:

De�nition 4 We de�ne a Situated Autonomic Electronic Institution (SAEI)
as

SAEI = DF ′ ×DC ×B ×G×Θ

where:

� DF ′ stands for a Dialogical Framework that includes Modellers and Prop-
erties.

� DC corresponds to a Deontological Component.

� B stands for a Bridge (the communication channel with the world).

� G stands for institutional Goals.

� Θ stands for set of Transition Functions which adapt the components of
DC.

The SAEI model was our �rst AOCMAS approach. However, it presents
some drawbacks: it is speci�cally based on electronic institution organisation
model, it provides a centralised adaptation approach and it is strictly focused
on providing an organisational adaptation service. Consequently, in the paper
in which we de�ned it [Campos et al., 2009c], we planned as future work to
face these constraints. In fact, we pointed out that it was a step further in
order to let existing AEIs deal with such issues: distributing the mechanism
and do not require an electronic institution. In particular, we suggested to
distribute the adaptation functions (Φ,Ψ) among several sta� agents. These
sta� agents should reason according to their local information, and agree on
actual organisational changes. Even more, we also pointed out that there may
be other assistance services further the organisational adaptation. Overall, these
ideas are considered in our enhanced approach, 2-LAMA, described in chapter 5.

Discussion

Most of literature interprets situatedness at organisation level as providing a
location notion to MAS participants. This idea was introduced by Weyns
et. al. [Weyns and Holvoet, 2004] as a way to allow local synchronisation of
agents in the �rst Situated MAS approach [Ferber and Muller, 1995]. The key
point is to restrict participants' perceptions depending on their virtual location.
CArtAgO [Ricci et al., 2006] is also an example of this perception paradigm. It
provides direct interaction among agents, and also indirect interaction through
artifacts. But, in both cases, the scope of these interactions is limited to
workspaces where these elements are located. It uses an agent body to situate
an agent inside those workspaces; then its location determines which artifacts
can be perceived or manipulated by its corresponding agent. In this sense, Elec-
tronic Institution scenes can be regarded as a way of grouping agents that can

46CHAPTER 3. SITUATEDADAPTIVE ELECTRONIC INSTITUTIONS (SAEI)

interact together, which can be interpreted as a virtual location that restricts
their perception. EASI model [Saunier et al., 2006] goes a step further, and
additionally lets agents determine which element they want to perceive. They
sustain this approach exposing that awareness is an active state. Precisely, we
see EI's situatedness as an awareness of the world where it is situated. A SEI,
as a whole, determines its world perception and interaction. A �rst approach
to this EI's situatedness was the Simulator Bridge [Arcos et al., 2007]. How-
ever, we go further by assuming all external agents' interactions are performed
in the world. A similar approach is detailed in [Valckenaers et al., 2007], where
they explore the idea of controlling physical entities with a MAS. They per-
form a global overview, without detailing changes in EIs, but provide additional
ideas like augmentation �providing extra information� of real world elements
to MAS agents. Our notion of situatedness could be used to provide the same
normative environment to di�erent existing systems �updating the Bridge�, like
in [Cardoso et al., 2009] where they consider using the same Normative Struc-
ture in di�erent Contexts. However, they study the adaptation of such normative
context depending on individual goals, while we perform it according to institu-
tional goals. These institutional goals could be initially agreed by participants
as suggested in [Gaertner et al., 2009], so they will have a connection with the
individual goals.

Chapter 4

Assistance Layer

In this thesis we consider a set of services devoted to provide assistance to MAS
participants further than just allowing them to enact a certain coordination
model. As stated when reviewing the state of the art, we locate these services
in the top coordination support layer, so-called Assistance Layer. In this chap-
ter, we further describe these services within two groups related to their scope:
collective (Organisational Assistance) or individual (Agent Assistance). In all
cases, in addition to the basic examples presented in the related work �see �2.5�
we provide more examples in some of our regulation-oriented scenarios. Overall,
the organisational adaptation service is the most relevant to the focus of this
thesis. Hence, in despite of presenting this service in this chapter, next chapter
is entirely committed to formalise it and to propose our approach to provide it.

4.1 Introduction

We observed some features in existing works, that we construe they go beyond
enabling a coordination model, but they assist agents to participate in it. Ac-
cordingly, we propose to add an additional coordination support layer �see �2.1�
called Assistance Layer. Such a layer assists agent coordination �rather than
enabling it� and comprises new system facilities that alleviate agent implemen-
tation. That is to say, this layer aids agents to use more e�ectively and e�ciently
the coordination mechanisms provided by previous layers. Thus, we regard it
as a step forward in MAS development, that facilitates the engineering and en-
rolment of heterogeneous agents �this is specially relevant in open MAS since
agents are designed by di�erent parties.

This layer provides two main types of services: adapting MAS organisation
to varying circumstances (Organisational Assistance) and assisting individual
agents to achieve their goals under current context (Agent Assistance). The
former, the Organisational Assistance, consists in adapting the existing organ-
isation to improve the system performance under varying circumstances. This
can be the case when participants behaviour di�ers notably from expected one or

47

48 CHAPTER 4. ASSISTANCE LAYER

when MAS environment changes �such as resource availability or technological
updates. That is to say, this layer may include pro-active capabilities that let it
take the initiative and act intelligently. Within a rational world assumption, we
propose adaptation to be driven by the goal ful�lment criteria. As an illustra-
tion, in our tra�c example, the speed limit norm can be updated to balance the
trip time average and the number of collisions depending on current tra�c �ow.

The latter, the Agent Assistance, may simplify agent development by pro-
viding new system facilities that agents can use instead of implementing them
individually. However, agents can choose to use these services or not, and it is
their responsibility to decide which actions to perform. In other words, these ser-
vices facilitate agent's decision making without reducing participant's autonomy.
Such services comprise providing agents with useful information to participate
in the MAS (Information service); providing justi�cations of the consequences
of their actions, for example, when an agent action is not allowed (Justi�cation
service); suggesting alternative plans that conform social conventions (Advice
service) and estimating the possible consequences that certain actions would
have due to current conventions (Estimation service). For instance, in the tra�c
example, an information service can notify cars about updates in the speed limit
norm. Afterwards, if a police agent �nes a car for exceeding this speed limit,
a justi�cation service can detail the violated norm and the detection circum-
stances. Additionally, an advice service may provide alternative routes, whose
trip time can be approximated by an estimation service.

Next sections derive from our initial Assistance Layer description published
in [Campos et al., 2009a, Campos et al., 2009b] plus several enhancements re-
lated to its description and formalisation.

4.2 Organisational Assistance

We call Organisational Assistance to those assistance services that stress
the organisational goals provided by previous layer. Hence, we assume
MAS organisation is an entity that can present di�erent self-* proper-
ties [Berns and Ghosh, 2009] as a whole. Currently, we propose an adapta-
tion service which is mainly related to self-adapting an existing organisation.
However, other services related to self-* properties could be explored, such as
self-organising (i.e. creating an organisation instead of adapting an existing one).

Next subsection presents the mentioned service, so-called the Adaptation
service. Furthermore, due to its relevance to the focus of our work, in addition
to present this service in this chapter, the rest of the thesis is devoted to formalise
it, to propose an approach to provide it to an OCMAS, and to evaluate such
approach empirically.

4.2.1 Adaptation service

A MAS organisation establishes a coordination model that help to achieve its
organisational goals. However, there can be some changes that bring a new

4.2. ORGANISATIONAL ASSISTANCE 49

Assistance Layer

OrganisationEnv

system evolution

update
Social Struct.

Social Conv.

1
Ag …

m
Ag

…
AgsP EnvP Org

Figure 4.1: Adaptation service.

situation in which the current organisational structures are not accomplishing
its original target. For instance, when participant agents' behaviour di�ers no-
tably from the expected and/or there are signi�cant environment changes �like
changes in country laws, resource availability, or technologies. In such cases, the
organisation should be adapted to bring the system towards its original goals.

Therefore, we propose that the Assistance Layer provides a pro-active Adap-
tation Service at organisational level as depicted in �gure 4.1. In particular, we
propose goal ful�lment �in e�cacy and e�ciency� as the driving force for adap-
tation within the context of a rational world assumption. Hence, the Assistance
Layer requires some way (1) to observe system evolution, (2) to compare it with
the organisational goals and (3) to update the organisation in order to improve
goal ful�lment. In sum, this service can be formalised as the function (Γadapt)
de�ned in equation 4.1, where AgsP stands for the participant observable prop-
erties, EnvP stands for the environment observable properties and Org stands
for the organisation �i.e. its speci�cation and its run-time status.

Γadapt = [AgsP × EnvP ×Org → Org] (4.1)

Notice that, for the sake of simplicity, in subsequent chapters we also refer
to this function Γadapt as αO (α stands for adaptation function, and O stands for
organisational level) since we will refer to the adaptation of di�erent organisation
subcomponents �see equation 5.63.

As an illustration, we consider that the auction scenario organisational goal
is to maximise the number of transactions and the total amount of transferred
money. Also, we consider there is an original social convention that establishes
the starting price of an English auction �it is �xed depending on the expected
money agents can spend. Then, we assume that along time agent's purchasing
power may decrease, so the number of transactions may also decrease due to
the initial price �xed by the social convention. Consequently, the amount of
transferred money may decay accordingly. In such a case, the Assistance Layer
may identify that system performance is decreasing because the transfer param-
eters are lower than their previous values. Hence, this service may adapt the
mentioned social convention by decreasing the starting price. This adaptation

50 CHAPTER 4. ASSISTANCE LAYER

Assistance Layer

Org

query

information

“ ... ”

AgsP EnvP Org

Env
j

Ag … m
Ag

n
Ag

Figure 4.2: Information service.

may hopefully lead to an increment of transfers and the total transferred money.
That is to say, this organisational adaptation may let the system ful�l its original
goals �see �1.2.2-7.2-7.3 for other adaptation examples.

See next chapter for further details and an entire formalisation of the de-
scribed adaptation service in regulation-oriented problem scenarios.

4.3 Agent Assistance

We call Agent Assistance services to those services devoted to assist agents to
achieve their individual goals under current organisation and context. In brief,
these services consist in providing information about the system, justifying the
consequences of agent actions, giving advices to observe current conventions and
estimating what would happen if the agent performs a certain action. Next,
each service is speci�ed in a subsection that contains further details about it.

4.3.1 Information service

The base Assistance Layer function is to provide agents with useful informa-
tion about the coordination model and its state which makes them easier to
participate in the MAS. Moreover, it can provide participants with informa-
tion about other agents, like their reputation for following social conventions1.
In short, this is depicted in �gure 4.2, where the Assistance Layer provides an
agent (Agn) information about participants (Agi), their environment (Env) and
their organisation (Org). Any of this information may be provided either be-
cause it is new for the agents �or has been updated�, because they asked for
it �or subscribed to it�, or just as a reminder to emphasise it. This way, an
agent does not need to periodically check for updates on certain information,
or even store it. For instance, the system can inform a newcomer agent about
social conventions and notify other agents about a new participant. Also, any

1Notice that MAS infrastructure could build this reputation by observing agents or through
opinions submitted by participants (see �2.5.2).

4.3. AGENT ASSISTANCE 51

agent can ask the system about the conventions that are applicable in its actual
context. Moreover, the system may inform agents when these social conventions
are updated. Finally, the system may send a reminder to participants when a
scheduled activity is going to start.

In order to formalise these mentioned concepts, we refer to the information
about participants as their observable properties (AgsP) and the information
about the environment as its observable properties (EnvP). Besides, the infor-
mation about the organisation (Org) comprises its speci�cation and its run-time
status. Hence, this service can be expressed by the function (Γinfo) de�ned in
equation 4.2, where QueryInfo stands for the query message that agent Agn
may send2 to the Assistance Layer and Info stands for the resulting information
message that this layer sends to the agent.

Γinfo =
[
(QueryInfo)

{0,1} ×AgsP × EnvP ×Org → Info
]

(4.2)

In order to illustrate this service in the auction scenario, we consider a
buyer agent can purchase goods by participating in several auctions. Accord-
ingly, entering agents would receive information about current auctions and their
conventions. If they express in which products they are interested in, the As-
sistance Layer will notify them whenever any of these products is going to be
auctioned. Even more, the system can send them reminders when scheduled
auctions begin. Also, a reputation service can store the satisfaction level of pre-
vious buyers with the products o�ered by each seller. In such a case, participants
may query this service to decide how much they want to bid for a product of a
certain seller.

4.3.2 Justi�cation service

Further than informing participants about MAS state and conventions, we pro-
pose a service that provides them with a justi�cation about state evolution
depending on their actions. In particular, we conceive such a justi�cation as
the description of facts (cause) that had as a result a certain situation (con-
sequence). So, the Assistance Layer can provide an agent with a justi�cation
about the consequence of its actions in their current context �actions and con-
text constitute the cause. Figure 4.3 depicts this process: when an agent (Agn)
performs a given action that has some e�ects, the Assistance Layer provides a
justi�cation. The performed action plus the current system state and conven-
tions conforms the cause, whereas its e�ects and the subsequent system status
conforms the consequence. Even more, this layer may also provide a justi�cation
to agent Agn, when it is a�ected by a state change triggered by any other factor
�i.e. Agn may have not performed any action. For instance, depending on the

2Notice that we use the superscript {0, 1} to denote that a certain element is optional. For

example, in eq. 4.2, (QueryInfo){0,1} means that the QueryInfo may be present (when an
agent queries for information) or not (when the service is pro-active and informs an agent
without receiving any query).

52 CHAPTER 4. ASSISTANCE LAYER

OrgEnvaction
j

Ag … m
Ag

n
Ag

justification
“(consequence)

because
(cause)”

Assistance Layer

consequence

AgsP EnvP Org

Figure 4.3: Justi�cation service.

enforcement policy, an action can be �ltered out or performed with extra conse-
quences �e.g. new obligations or prohibitions. In both cases we suggest to send
a justi�cation to the participant explaining the cause of the actual consequence.
Overall, notice that in the example, the previous coordination support layer (Or-
ganisational Layer) applies the enforcement policy �i.e. to enable� whereas the
Assistance Layer explains it �i.e. to assist.

This service can be formalised as the function (Γjustif) speci�ed in equa-
tion 4.3, where Action stands for the action that agent Agn performed and
Justif for the resulting justi�cation message that the Assistance Layer sends to
the agent.

Γjustif =
[
(Action)

{0,1} ×AgsP × EnvP ×Org → Justif
]

Justif = Cause× Consequence
(4.3)

As an illustration, following the auction example, when a bid is not accepted,
the bidder agent receives the corresponding justi�cation. For example, in case
the amount is lower than the previous bid, the agent will be informed that there
is a convention that prevents it. Alternatively, if an agent is �ned because its
bid is greater than its authorised credit, the justi�cation may indicate this agent
that this exceeding was the cause.

4.3.3 Advice service

In addition to justify action consequences, the Assistance Layer could provide
an advice to an agent in order to help it to decide which actions it performs.
We conceive such an advice as a set of alternate plans that ful�l current social
conventions. Each plan is a sequence of actions that takes into account current
system status as depicted in �gure 4.4. Hence, an agent may consider only
some restricted sets of sequential actions in compliance with social conventions,
instead of facing all possible action sequences. This lets abstracting agents from
low level action planning, so they can plan at a higher level. Therefore, this

4.3. AGENT ASSISTANCE 53

Assistance Layer

Org

Plan A

Plan Z

…

advice
AgsP EnvP Org

query

Env
j

Ag … m
Ag

n
Ag

Figure 4.4: Advice service.

may reduce the complexity of developing agents of a MAS that provides this
functionality.

The Assistance Layer may provide this functionality in a reactive or pro-
active way. In the former case, it will only give advices to agents that request
them. Whereas in the latter case, it will give an advice when it assumes an
agent may need it. For instance, when an agent enrols in a certain activity, or
an agent has been inactive for a long time, or when after �ltering out an action.

This service can be formalised as the function (Γadvice) de�ned in equa-
tion 4.4, where QueryAdvice stands for the query message that agent Agn sends
to the Assistance Layer and Advice for the advice message that this layer sends
to the agent �this message contains a set of plans, (Plan)

∗.

Γadvice =
[
(QueryAdvice)

{0,1} ×AgsP × EnvP ×Org → Advice
]

Advice = (Plan)
∗ (4.4)

The way to create an advice can vary from indicating what other agents
have performed on the same situation, until to plan possible actions given some
restrictions and goals. Restrictions include current social conventions, the con-
text status and agent capabilities. The goals to take into account may be a
compound of individual and organisational goals. On the one hand, individual
goals can be estimated from an agent's role, its action history or even the indi-
vidual goals it may have revealed. Moreover, the Assistance Layer can play as a
third party when having information of di�erent individual goals, and it can try
to coordinate the generated plans that satisfy as many goals as possible. On the
other hand, the organisational goals may be provided by previous Organisational
Layer, so this service can take them into account. All these goal sources may
generate di�erent alternative plans to an agent. Then, this agent may evaluate
the plans and follow one of them.

As an illustration, in the auction scenario, an entering agent can indicate the
product it is searching for and ask for advice. Then, the Assistance Layer may
suggest that this agent goes to those English auctions which o�er such product
with a starting price below agent's authorised credit. Later on, if agent's bid is

54 CHAPTER 4. ASSISTANCE LAYER

Assistance Layer

Org

estimation
success

new obl, per,

 prh

AgsP EnvP Org

action

Env
j

Ag … m
Ag

n
Ag

Figure 4.5: Estimation service.

greater than its authorised credit, the Assistance Layer may advise the agent to
increase its credit or change to another auction.

4.3.4 Estimation service

Considering that the aim of the Assistance Layer is to assist MAS participants, it
could help an agent by o�ering it an estimation of the consequences of performing
a certain action �notice that, in such a case, the action is not performed. As
depicted in �gure 4.5, an agent (Agn) can ask the Assistance Layer to estimate
the consequences of a certain action before deciding whether to perform it or
not. For example, the Assistance Layer can check whether such an action ful�ls
current social conventions or not. As a result, it can indicate if the action
would be �ltered out, or if the agent would acquire new obligations. In this
example, the estimation is similar to providing information after an action is
actually performed, but without executing it. In addition, an estimation could
even include a justi�cation �e.g. indicating which convention would be violated�
or even an advice �e.g. suggesting alternative plans depending on estimated
consequences. It is worth mentioning that we use the word estimation since
the Assistance Layer cannot really know what other agents will do and how
the context can change before the agent actually performs the action. Thus, in
all cases, the prediction is just an estimation because the action is not really
performed, and therefore its consequences and the corresponding justi�cation
and advice would be di�erent if it was really executed.

Such a service can be formalised as the function (Γestim) speci�ed in equa-
tion 4.5, where Action stands for the potential action that agent Agn sends to
the Assistance Layer and Estim for the estimation message that this layer sends
to the agent.

Γestim = [Action×AgsP × EnvP ×Org → Estim] (4.5)

We argue that this service also simpli�es agent development since the As-
sistance Layer provides the evaluation of social conventions. Thus, it works as a
decision support system for agents, which can directly focus on evaluating action

4.3. AGENT ASSISTANCE 55

consequences instead of evaluating conventions. Hence, agent complexity can be
reduced because some of its evaluation capacity is delegated to the MAS infras-
tructure. For instance, an agent could know which obligations would acquire
without reasoning about current rules. Moreover, an agent could use a learning
mechanism to acquire empirical knowledge about social conventions instead of
analysing their speci�cations. Or simply, a developer could use this functionality
to test a new agent in a real situation without any danger of improper action
consequences.

As an illustration, in the auction scenario a newcomer agent may ask for an
estimation in case it bids for a certain product. As a response, it may receive, for
instance, an estimation with all possible components (information, justi�cation
and advice). The information part may contain current reputation of the prod-
uct's seller, and the last price paid for a similar product. And the justi�cation
part may indicate that the bid would not be accepted since its amount is greater
than agent's authorised credit. Finally, the advice part may suggest that the
agent can either contact the banking agent to increase its credit or change to
another auction where a similar product will be auctioned..

Chapter 5

Organisational Adaptation

This chapter goes further in detailing the Organisational Adaptation service
presented in previous chapter and de�nes our approach to provide it. This
approach tries to generalise our �rst proposal, the Situated Autonomic Electronic
Institution (SAEI), which was centralised, based on electronic institutions and
strictly focused on providing the adaptation service. Consequently, this chapter
starts by formalising a generic MAS organisation and identifying the features
present in agents that can perform an organisational adaptation in order to
distribute the adaptation mechanism. Then, the chapter presents our enhanced
generic distributed approach, so-called Two Level Assisted MAS Architecture
(2-LAMA).

5.1 Introduction

After de�ning Assistance Layer services in previous chapter, current chapter de-
�nes our proposal to provide them, mainly the organisational adaptation service.
In fact, chapter 3 already presented our �rst approach to provide this adaptation
service: the Situated Autonomic Electronic Institution (SAEI). However, that
proposal had the drawbacks of being a centralised mechanism and being tied to
a particular organisation model, the electronic institution.

Alternatively, our enhanced proposal, the Two Level Assisted MAS Archi-
tecture (2-LAMA), has a distributed adaptation mechanism that relies on a
general organisational model. On the one hand, its organisational general model
was derived from the state of the art in order to facilitate that our approach
could be easily tailored to other organisational models. On the other hand, its
distributed architecture is related to the features present in agents that adapt
an organisation. Moreover, this architecture is based on the premise of not
making assumptions about participants characteristics. This way, 2-LAMA is
able to work with our target problems: the regulation-oriented problems de�ned
in �1.2.1. In fact, avoiding participant-related assumptions helps to prevent de-
sign decisions that could compromise the application of our architecture in an

57

58 CHAPTER 5. ORGANISATIONAL ADAPTATION

open MAS context. As a result, our architecture follows the meta-level abstrac-
tion [Corkill and Lesser, 1983] in the sense that the organisation is updated by
a distributed mechanism that reasons at a higher level of abstraction and is not
involved in the domain activity �as introduced in �gure 1.5.

Therefore, this chapter is structured in three sections: one that de�nes the
general organisational model and the notation used in the rest of this document;
another one that lists the characteristics of adapting agents; and a last section
that accurately de�nes 2-LAMA. Along these sections, we provide several speci-
�cation examples in the tra�c scenario introduced in �1.2.2.2. In addition, next
chapter provides further examples in the P2P sharing network case study intro-
duced in �1.2.2.3. Such case study is also used when discussing about 2-LAMA
adaptation alternatives in chapter 7. Even more, afterwards, the 2-LAMA pro-
posal is evaluated in this same scenario, too.

5.2 Notation

This section introduces the notation used to formalise our approach in the sub-
sequent sections. Such notation is based on the mathematical notation used in
set theory [Sharma, 2010]. In brief, these notations are used to describe sets and
relations among them. We use it to express the components and processes of
a computational system in the following three stages: Model, Speci�cation and
Execution State �see �2.4.3. Figure 5.1 depicts these stages and its notation on
an elementary program example.

5.2.1 Model

First, when de�ning aModel, we mainly use upper-case letters to describe either:

� (i) the model of a component composed by subcomponents: it is denoted by
a Latin-alphabet word and de�ned as a product set of its subcomponents.
For instance, Sys = Categories × Γ means that the systems that ful�ls
the model Sys, have two subcomponents (Categories and Γ).

� (ii) the model of a process with a certain input and output: it is gener-
ally denoted with a Greek-alphabet1 single letter and de�ned as a function
space2 among the sets of possible process inputs (i.e. its domain) and
the set of possible outputs (i.e. its codomain). For instance, equation 5.1
means that in our example there is a process that given two natural num-
bers provides a certain value that belongs to the Categories set.

1In order to avoid misunderstandings, when a Greek upper-case letter is equal to the Latin
equivalent, we use a larger version of the lower-case letter �e.g. we use 'α' instead of 'A' as
the 'α' upper-case.

2In mathematics, a function is a relation that associates each element in the domain with
exactly one element in the codomain (function : Domain → Codomain). And a function

space is a set of functions that share the same domain and codomain (function space =
[Domain→ Codomain], e.g. eq. 5.1). This way, by using function spaces, the notation can
refer to all the processes that ful�l a given input/output model.

5.2. NOTATION 59

Model

Specification

Sys=Categories × Γ

Exec. State

Infrastr.

Domain

Concepts: Notation example:

instantation

execution

∀c ∈ Categories (|c| = 2) Γ=[ℕ×ℕ→Categories]

sys ∈ Sys

sys=(categories, γ)

categories ∈ Categories

categories ={smaller,greater}

γ ∈ Γ

γ(x,y)= smaller x < y
greater x ≥ y

x = 2 y = 6 γ(2,6) = greater

Figure 5.1: Notation example for Model, Speci�cation and Execution State.

Γ = [N× N→ Categories] (5.1)

We can provide further details about any components using standard math-
ematical set notation. For example, ∀c ∈ Categories (|c| = 2) means that the set
of possible categories have two elements. Notice, that in this example, the model
is not specifying which are these elements. It just expresses that the systems
that ful�l such model have only two possible categories.

5.2.2 Speci�cation

Next, when de�ning a particular Speci�cation that ful�ls a certain Model, we
generally use lower-case letters to describe either:

� (i) a speci�c component according to the given model: it is generally de-
noted with a Latin-alphabet single letter and de�ned as an element that
belongs to the set described by the model. For example, sys ∈ Sys means
that the speci�c system sys ful�ls the model Sys. Hence, sys has two
subcomponents sys = (categories, γ) that ful�l the sort of components
de�ned by the model �i.e. categories ∈ Categories and γ ∈ Γ.

� (ii) a speci�c process with an input and output according to the model:
it is generally denoted with a Greek-alphabet single letter and de�ned
as the rule of correspondence of a function3 within the function space
de�ned by the given model. For example, equation 5.2 expresses the rule of
correspondence of a process that ful�ls the domain and codomain described
by the model �i.e. γ ∈ Γ� assuming that x, y are natural numbers.

γ(x, y) =

{
smaller x < y

greater x ≥ y
(5.2)

Again, we can provide further details about any component using standard
mathematical set notation. For instance, we may specify the particular elements
of a set as constants. So, categories = {smaller, greater} means that the
categories set has exactly the two speci�ed symbols. Hence, it ful�ls the model

3In particular, we assume a speci�c process is a computable function, which means that it
can be de�ned by an algorithm.

60 CHAPTER 5. ORGANISATIONAL ADAPTATION

restriction since |categories| = 2. Notice, that we use a typewriter font to denote
constant symbols, so this font highlights that these symbols have no further
descriptions nor alternate values �i.e. they are �literals� from a generative
grammar perspective [Chomsky, 1965].

It is worth to mention, that a Speci�cation may contain upper-case letters
if it needs to express a set of values or a process that will be designated later
during the execution. Analogously, a Model description may contain lower-case
letters if it already de�nes or refers to a particular set of values or process forced
by the model.

5.2.3 Execution State

Finally, when expressing part of the Execution State of a given Speci�cation
in a certain moment, we determine the symbols that were unde�ned by previ-
ous stages. As a result, the value of all symbols can be resolved. Notice that
such values may change over the time, so symbols should have an additional t
subscript or parameter to denote a particular time. However, for the sake of
simplicity, we generally omit it and provide their values for a given time. For
instance, the symbols that remain unde�ned in the example are x and y �i.e.
they are variables that will have a value at run-time. So, as an illustration, at
a given time we assume that x = 2 since it was entered by the user and y = 6
because it was obtained from a sensor. Consequently, we can resolve that at
that given time, γ(2, 6) = greater.

5.3 General Organisation Model

In order to propose a new abstract AOCMAS approach more general than SAEI,
we reviewed the state of the art of organisation models. In particular, we iden-
ti�ed the components they usually present in such models in �2.4.2. Figure 5.2
illustrates such components for an organisation (Org) that regulates the activ-
ities of a set of agents (Ags = {ag1, . . . , ag#ag}, where #ag = |Ags|) within an
environment (Env). Notice that we assume participant agents do not belong to
the organisation itself, so this organisation general model can also encompass
open MAS �where the organisation entity persists regardless entering/leaving
agents and their behaviour. Moreover, along the description of our approach, we
focus speci�cally on their observable properties (AgsP)4 instead of the agents
themselves (Ags). Analogously, we usually refer to the observable properties of
the environment (EnvP) instead of the environment itself (Env).

Speci�cally, we de�ne an organisation model with the aim to encompass
existing approaches, as follows.

De�nition 5 We de�ne the Organisation Model (Org) as

Org = SocStr × SocConv ×Goals
4Later, we will use AgsPS to highlight that it refers to the properties of all agents of the

system. So, we will use the S superscript to denote the whole system.

5.3. GENERAL ORGANISATION MODEL 61

Prots Norms
∘−−−−
∘−−−−

ag
1

ag
n

…
role

1

role
i

role
m

SocStr

rel
j rel

k

group
l

O
rg

Goals

SocConvEnv

DetecPol

Figure 5.2: The General Organisation Model of an OCMAS.

where:

� SocStr stands for a Social Structure.

� SocConv stands for the Social Conventions.

� Goals stands for a set of Organisational Goals.

Such organisation model has a social structure (SocStr) that de�nes agent
roles, groups and relationships. Based on these de�nitions, other organisational
components can refer to participant agents in a generic manner. For instance,
the social conventions (SocConv) include protocols and norms that restrict the
behaviour of speci�c roles. Such social conventions also include a detection policy
that describes how to detect convention violations. In addition, we assume the
organisation has explicit goals (Goals) that describe its design purpose. Next
subsections provide further details about each organisational component.

5.3.1 The Social Structure

A social structure (SocStr) contains a set of roles (Roles), groups (Groups) and
relationships (Rels) among the agents that play these roles or belong to these
groups �see equations 5.3-5.6. In brief, a role speci�cation de�nes the set of
allowed actions for an agent; a group speci�cation describes how agents may
team up, and the role relations de�ne which roles can be played simultaneously
or what is their authority relation �see �2.4.2.

SocStr = Roles×Groups×Rels (5.3)

Roles = {r1, . . . , r#r : ri ∈ Role} (5.4)

Groups = {g1, . . . , g#g : gi ∈ Group} (5.5)

Rels = {rel1, . . . , rel#r : reli ∈ Rel} (5.6)

The execution state of these components keeps the binding among these
elements. For instance, there may be a function (ΠRole) that returns true if
an agent (ag ∈ Ag) has a given role (role ∈ Role): ΠRole = [Ag ×Role] →
{true, false}. Moreover, as we frequently use these sort of functions5 when

5Notice that the model of a relation (Rel) is the de�nition of an additional function among
agents Rel = [(Ag)∗ → {true, false}], which can be used when specifying other components.

62 CHAPTER 5. ORGANISATIONAL ADAPTATION

specifying other components (e.g. specifying a norm, like in eq. 5.20), we actually
use a shorter equivalent expression like: Ragi refers to the set of roles played by
a given agent, i.e. Ragi =

{
r1 . . . rk : ri ∈ Role ∧ πrole(agi, ri) = true

}
.

As an illustration of these components, the equations 5.7-5.9 detail them in
the tra�c scenario. For instance, there may be one role for the car agents (car)
�the police agents are introduced in �5.5.1.4 since we assume they belong to a
meta-level. Also, there may be two groups of vehicles (oil/electric powered)
that may include agents of both roles. Besides, there may be a relation of
visibility between two cars.

roles = {car} (5.7)

groups = {oil, electric} (5.8)

rels =
{
V isibility(agi, agj) : car ∈ Ragi ∧ car ∈ Ragj

}
(5.9)

5.3.2 The Social Conventions

The social conventions (SocConv) consist of a set of interaction protocols
(Prots), a set of norms (Norms) and some detection policy (DetecPol) �see
eq. 5.10. In short, protocols de�ne legitimate sequences of actions, norms limit
agent's actions and/or determine their consequences, and the detection policy
determines how to detect convention violations �see �2.4.2.

SocConv = Prots×Norms×DetecPol (5.10)

In particular, a protocol (Prot) can be speci�ed as a �nite state machine
model like in eq. 5.11-5.14. Hence, it has an input alphabet (InputAlpha) to
de�ne the events that can change its state among the set of possible states
(States). Such events may be agent actions or illocutions, as well as environment
events. Besides, state changes are described by a transition relation among states
(T). Regarding the set of possible states, it includes an initial state (IniState), a
set of �nal states (EndStates) and a current state determined at run-time �this
execution state will also contain additional information such as which agents are
participating.

Prots = {p1, . . . , p#p : pi ∈ Prot} (5.11)

Prot = InputAlpha× States× IniState× EndStates× T (5.12)

IniState ∈ States; EndStates ⊂ States; (5.13)

T = [States× InputAlpha→ States] (5.14)

In addition, an element of the set of norms (Norms) is a norm6 (Norm)
with a condition (Cond) expressed in deontic logic and optionally the con-
sequences (Conseq) for violators �see eq. 5.15-5.16. The subset of deontic

6Notice that in our �rst approach (SAEI) we used the nomenclature of the Electronic
Institution's related work [García-Camino et al., 2006], which named rule �see �3.2.3� to what
we are referring as norm from now on. In a generic context, we prefer to use the term norm

to refer to such concept, since it is currently widespread [Boella et al., 2010].

5.3. GENERAL ORGANISATION MODEL 63

logic [Hilpinen et al., 1971] that we use lets express obligations (obl), permis-
sions (per) and prohibitions (prh) over a certain predicate. Also, the conse-
quence of a norm is a predicate in deontic logic that lets arise new obligations,
permissions or prohibitions. From a more global perspective, the consequence
may be used to enact an certain enforcement policy in form of punishments,
rewards and/or impositions �see �2.4.2 for examples.

Norms = {n1 . . . n#n : ni ∈ Norm} (5.15)

Norm = Cond× Conseq (5.16)

Finally, the detection policy (DetecPol) determines how to detect these
violations and how to act (ConseqPol) in such cases �see eq. 5.17. In particular,
the detection policies may include no detection (none), full detection by checking
all actions (full) or partial detection (partial).

DetecPol = {none, full, partial} (5.17)

Following the tra�c example, the equations 5.18-5.21 detail the social con-
ventions in this scenario. There may be a protocol that describes the valid se-
quence of actions required to turn in a crossroads (turning) �such protocol may
concern the use of blinkers. Regarding norms, there may be one (speedLimit)
limiting the speed of a car �we assume the speed is an agent observable prop-
erty. Finally, the detection policy may be a partial detection of violations by
police agents.

prots = {turning} (5.18)

norms = {speedLimit} (5.19)

speedLimit = prh (car ∈ Ragi ∧ speedagi > maxspeed) (5.20)

detecPol = partial (5.21)

5.3.3 The Organisational Goals

The organisational goals (Goals) speci�cation di�ers depending on the OCMAS
approach �see �2.4.2. However, as this thesis focuses on regulation-oriented
problems, our organisation model corresponds to a regulation de�nition approach
�see �1.2.1. In particular, the organisational goals model is based on the AEI's
approach �see �3.4.1. As de�ned by equations 5.22-5.24 they consist of a set
of relevant observable properties (PropGoals) and an objective function (Ω)
that measures an overall goal satisfaction from current observations. This goal
satisfaction is measured as a real value among 0 (non-achieved goals) and 1
(achieved goals).

Goals = PropGoals× Ω (5.22)

PropGoals ⊆
{
AgsPS ∪ EnvPS

}
(5.23)

64 CHAPTER 5. ORGANISATIONAL ADAPTATION

Ω =
[
(R)
|PropGoals| → R ∈ [0..1]

]
(5.24)

As an illustration in the tra�c example, the goals may be: to have a �uid
tra�c �ow and no collisions. In order to formalise these goals, we �rst de�ne
the observable properties and next we specify the goals.

As for the observable properties, it is necessary to observe if a car is waiting
(Wait) and the number of collisions (Collis), in order to evaluate goal ful�lment.
The former is a property that belongs to the observable properties of an agent
(AgP). Whereas the latter is an observable property that belongs to the environ-
ment (EnvP). Accordingly, these properties are de�ned in equations 5.25-5.31.
Moreover, these de�nitions include the speed of a car (Speed) used in �5.3.2 and
the tra�c density (Density) required in �5.5.2.3.

AgsPS = {agPi ∈ AgP} ,
∣∣AgsPS∣∣ = |Ags| (5.25)

AgP = Wait× Speed (5.26)

Wait = {true, false} (5.27)

Speed = s ∈ R : s ≥ 0 (5.28)

EnvPS = Collis×Density (5.29)

Collis = N (5.30)

Density = d ∈ R : d ≥ 0 (5.31)

Once de�ned the observable properties, the equations 5.32-5.38 express the
goals speci�cation. Basically, there are two relevant observable properties (Wait,
Collis). Their desired values are false for the former and zero for the latter.
Accordingly, there is an objective function (ω) which computes the goal satis-
faction as a weighted addition of these two criteria �de�ned as separate func-
tions (γWait,γCollis) for simplicity� where the last one is the more relevant �see
eq. 5.38. On the one hand, there is a function (γWait) which computes the ratio
of non-waiting cars (waiti) over the number of cars. And, on the other hand,
there is a function (γCollis) which computes the ratio of the number of collisions
(collis) over the number of cars.

goals = (propGoals, ω) (5.32)

propGoals = {waits, collis} (5.33)

waits =
⋃|ags|
i=1 waiti ∈Wait (5.34)

ω(waits, collis) = k · γWait(waits) + (1− k) · γCollis(collis) (5.35)

γWait ({waiti ∈Wait}) = |{waiti:waiti=false}|/|cars|
cars = {agi : agi ∈ ags ∧ car ∈ Ragi}

(5.36)

γCollis (collis) = (|cars|−collis)/|cars| (5.37)

k = 0.2 (5.38)

5.4. FEATURES OF AGENTS IN CHARGE OF ADAPTATION 65

5.4 Features of agents in charge of adaptation

Our initial AOCMAS approach presented in chapter 3, the SAEI, is a centralised
approach based on Electronic Institutions. Hence, in order to provide an en-
hanced approach, previous section generalises its organisational model. Now,
this section identi�es the features present in agents that can perform the or-
ganisational adaptation. As a result, next section 5.5 proposes the enhanced
approach (2-LAMA).

Given the AOCMAS state of the art (see �2.5.3), we identi�ed the following
features in agents that are in charge of adaptation:

� Such agents are usually able to gather certain information that may not
be available to all agents. For instance, in the tra�c scenario, a police
agent can access some tra�c �ow statistics (i.e. Collis, Density) that are
not available to car agents.

� Such agents are able to reason at a level of abstraction higher than the
required by domain activities. For example, a police agent requires a more
general scope reasoning in order to establish tra�c lights' intervals than
the basic driving task performed by car agents.

� Such agents consider system goals beyond their individual goals, taking
into account the social-welfare. In other words, such agents consider the
organisational goals (Goals). For instance, in our tra�c scenario, a police
agent may take into consideration global tra�c �ow.

� Such agents are empowered to update organisational structures whereas
other agents can only examine them (e.g. Norms). For example, a police
agent can update tra�c lights' intervals, whereas a car agent can only
observe them.

Given all these agent features, in next section we propose to count on a meta-level
set of agents that presents these features. Such agents are in charge of adapting
�and thus, empowered to adapt� the organisation of the agents that participate
in the domain activity. Accordingly, these meta-level agents are meant to reason
at a higher level of abstraction than domain agents. Following a division of
labour paradigm, instead of increasing the complexity of domain agents (agi),
assistants are the ones in charge of taking into account organisational goals.
Moreover, assistants act as trusted third parties, since they are not involved in
domain activities and they are provided by the infrastructure.

5.5 Two-Level Assisted MAS Architecture
(2-LAMA)

This section describes our AOCMAS enhanced approach (2-LAMA). It is an im-
provement on our �rst approach (SAEI) which had a centralised mechanism and

66 CHAPTER 5. ORGANISATIONAL ADAPTATION

S
y
s
te
m

InterfaceEnvP
DL

, AgP
DL

, Org
DL Org

DL
'

G
o
a
ls

M
L

O
rg

M
L

…ag
ML

1 ag
ML

n

Env
ML

Prots
ML

Norms
ML

∘−−−−
∘−−−−role

1

role
i

role
m

SocStr
ML

rel
j rel

k

group
l

SocConv
ML

DetecPol
ML

D
L

O
rg

D
L

…
ag

DL

1 ag
DL

m

ag
DL

k ag
DL

p

… …

Env
DL

Prots
DL

Norms
DL

∘−−−−
∘−−−−role

1

role
i

role
m

SocStr
DL

rel
j rel

k

group
l

SocConv
DL

DetecPol
DL

cluster
1

cluster
n

Figure 5.3: Two Level Assisted MAS Architecture (2-LAMA).

was based on an electronic institution. In contrast, 2-LAMA has a distributed
adaptation mechanism and is based on a general organisation model.

First, this section de�nes 2-LAMA abstract architecture. Next, it formalises
its organisational adaptation capabilities and its distributed implementation.
Finally, it examines the costs and frequency of such adaptation.

5.5.1 Abstract Architecture

In order to improve SAEI (see ch. 3), our enhanced approach is based on the
general organisation model proposed in �5.3. As a result, we call it an abstract
architecture since it can be applied to di�erent speci�c organisation models.
Furthermore, its assistance services are distributed among a meta-level set of
agents as depicted in �gure 5.3. Accordingly, we call our enhanced approach
Two Level Assisted MAS Architecture (2-LAMA), which is de�ned as follows:

De�nition 6 We de�ne a Two Level Assisted MAS Architecture (2-LAMA) as

2LAMA = ML×DL× Γ (5.39)

where:

� ML stands for a Meta-Level, which is the part of the system that provides
the assistance services.

� DL stands for a Domain-Level, which is the part of the system related to
domain activity.

� Γ stands for the set of functions that describe the assistance services.

Notice that, it is possible to nest subsequent meta-levels to provide assistance to
previous level's organisation.

5.5. TWO-LEVEL ASSISTED MAS ARCHITECTURE (2-LAMA) 67

Each level has its own set of agents (AgML, AgDL), organisation (OrgML,
OrgDL) and environment (EnvML, EnvDL) as shown in equations 5.40-5.41.
Notice that ML an DL subscripts are introduced to distinguish system main
components among those two levels. Nevertheless, for the sake of notation sim-
plicity, in subsequent sections these subscripts are omitted where there are no
ambiguities when referring to them.

ML = AgML ×OrgML × EnvML (5.40)

DL = AgDL ×OrgDL × EnvDL (5.41)

On the other hand, the assistance functions (Γ) are described in subsec-
tion �5.5.2.

5.5.1.1 Meta-Level

Since agents at meta-level provide assistance services, we henceforth refer to
them as assistants. These agents present the features previously identi�ed
in �5.4. Hence, they are able to gather information from DL in order to reason
about it by taking into account DL's organisational goals. Even more, they are
empowered to update the organisational structures of DL.

Accordingly, the meta-level's organisational goals (GoalsML) come down
to help the domain level to achieve its own goals (GoalsDL). Hence, they are
equivalents as expressed in equation 5.42 and depicted in in �gure 5.3.

GoalsML ≡ GoalsDL (5.42)

Also, ML's environment contains DL's observable properties about its
agents and environment (AgPSDL, EnvP

S
DL), as well as, its explicit organisa-

tion speci�cation (OrgDL) as shown in equation 5.43.

EnvML = EnvPML ×AgsPSDL ×OrgDL × EnvPSDL (5.43)

Nevertheless, locality �a fundamental feature of any MAS� is also applied
to this architecture. In this manner, assistants are just �in charge of� assisting
a subset (a cluster hereafter) of domain-level agents. This leads to a partial
information assumption, where assistants only perceive the observable properties
of both its assisted agents and the local environment where they are situated.

5.5.1.2 Domain-Level

Domain-Level agents are regular MAS participants, which perform the domain
activity. In general, as equation 5.44 shows, agents can be characterised by a
set of properties. All agents have the same kind of properties (i.e. an agent has
the #ag_prop properties de�ned by the AgP model), but with di�erent values.
Furthermore, as stated above, an assistant is able to observe the properties of
all the domain agents in its cluster (AgsPC , eq. 5.45). Such clusters are de�ned
depending on domain-speci�c criteria. Similarly, equation 5.46 expresses the set

68 CHAPTER 5. ORGANISATIONAL ADAPTATION

of system-wide observed properties (AgsPS) as the union of properties observed
along clusters.

Regarding environment properties, we use an analogous notation to denote
the properties of the environment region where a cluster of agents are located
(EPropy in EnvPC), and how they are aggregated at system level (EnvPS) �
see eq. 5.47 and 5.48. Notice that there may be also some environmental observ-
able properties that are not associated to any cluster in particular (EnvPSnC)
�e.g. time. Hence, these properties (EPropSnCy ∈ EnvPSnC) are also present
at system-level as shown in equations 5.49 and 5.48. Overall, in some expressions
we use a single identi�er (ObsProp) to refer to all observable properties, which
is de�ned in equation 5.50.

AgP = AProp1 × . . .×AProp#ag_prop (5.44)

AgsPC =

mi⋃
j=1

AgPj (5.45)

AgsPS =

n⋃
i=1

AgsPCi (5.46)

EnvPC = EProp1 × . . .× EProp#env_prop (5.47)

EnvPS =

n⋃
i=1

EnvPCi ∪ EnvPSnC (5.48)

EnvPSnC = EPropSnC1 × . . .× EPropSnC#EnvPSnC (5.49)

ObsPropDL = AgsPDL ∪ EnvPDL (5.50)

5.5.1.3 Discussion

So far we have presented an abstract architecture containing a separated assis-
tance layer (the meta-level) with a distributed design. Separation of concerns and
distribution are two design decisions that follow the MAS paradigm �see Agent
Oriented Software Engineering (AOSE) in [Wooldridgey and Ciancarini, 2001].
Therefore, they also bene�t from the same advantages of robustness and the
absence of global-information requirements. Separation of concerns allows assis-
tants to reason at a higher level of abstraction than domain-level agents since
they can be completely devoted to the processes of summarising and sharing lo-
cal data. This is also bene�cial for DL agents, since they do not need to increase
their reasoning complexity.

Additionally, having assistants separated, allows to grant certain informa-
tion privileges such as having access to environmental properties (since it is not
always the case that, for example, cars have access to the average tra�c �ow
density). Similarly, their decision making involves system goals properties that
may not be available to domain-level agents. Furthermore, they can individually

5.5. TWO-LEVEL ASSISTED MAS ARCHITECTURE (2-LAMA) 69

specialize to provide speci�c services or to reorganise their society so to best �t
the heterogeneity and dynamism of the needs of assisted agents.

Finally, other agents should regard them as trusted third-parties when ac-
cepting their assistance or revealing information. Regarding distribution, it re-
quires agent communication, our proposal minimizes its costs by keeping most
of it local to clusters.

In conclusion, the proposed architecture assumes assistants have the fea-
tures described in �5.4. In order to ful�l these requirements, we have chosen
an implementation for this abstract architecture that de�nes assistants as sta�
agents which belong to the organisation.

5.5.1.4 Example

Considering our tra�c example, we provide a particular speci�cation
(2lamatraff) of the 2-LAMA model (2LAMA) as shown in equation 5.51.
According to our 2-LAMA model, such speci�cation has its own meta-level
(mltraff ∈ML), domain-level (dltraff ∈ DL) and assistance functions (γtraff ∈
Γ) as expressed in equation 5.52. For the sake of simplicity, in the following equa-
tions we omit the 'tra�' subscript since all of them refer to the tra�c scenario.
Even more, we omit to explicitly indicate that each symbol in lower-case letters
belongs to the upper-case symbol de�ned by the model (e.g. dl ∈ DL).

2lamatraff ∈ 2LAMA (5.51)

2lamatraff = (mltraff , dltraff , γtraff) (5.52)

dl = (agsDL, orgDL, envDL) (5.53)

ml = (agsML, orgML, envML) (5.54)

The domain-level in the tra�c scenario (dl) has its own agents (agsDL)
interacting within and environment (envDL) according to a certain organisation
(orgDL) as appear in eq. 5.53. In particular, its organisation is speci�ed along
the examples of �5.3 (eq. 5.7-5.38). Moreover, that section also speci�es the ob-
servable properties of their agents (AgsPS in eq. 5.25) and environment (EnvPS

in eq. 5.29). Whereas the particular agents (agsDL) and environment (envDL)
will be actually de�ned at run-time (i.e. at the Execution State stage, see �5.2).

Analogously, the meta-level (ml) has also its own agents (agsML), environ-
ment (envML) and organisation (orgML) as appear in eq. 5.54. In this scenario,
the police agents are the ones that constitute the meta-level since they are not
participating in the domain activity (i.e. driving from one origin to one desti-
nation), but assisting the coordination of such activity. Hence, there is a single
role in the meta-level organisation (orgML) as de�ned in eq. 5.55. As a ba-
sic illustration, there are no groups among policemen (eq. 5.56) but there is a
relation among them (eq. 5.57). It represents a radio link (radioLink) among
two policemen which means they can exchange information about the observable
properties they perceive �i.e. it constitutes their net of relationships. In fact,
they use a certain communication protocol (walkieTalkie) when using this radio

70 CHAPTER 5. ORGANISATIONAL ADAPTATION

link. Hence, their social conventions include this protocol (eq. 5.58). However,
in this example it does not include any norm (eq. 5.59) nor detection policy
(eq. 5.60) since they are system trusted agents (i.e. sta� agents). Finally, as
stated in 2-LAMA model (eq. 5.42), their organisational goals are shared with
domain-level as shown in eq. 5.61.

rolesML = {police} (5.55)

groupsML = ∅ (5.56)

relsML =
{
radioLink(agi, agj) : police ∈ Ragi ∧ police ∈ Ragj

}
(5.57)

protsML = {walkieTalkie} (5.58)

normsML = ∅ (5.59)

detecPolML = none (5.60)

goalsML = goalsDL (5.61)

The remaining assistance functions speci�cation (γtraff) is illustrated at
the end of next subsection �speci�cally in �5.5.2.3.

5.5.2 Assistance Functions

In addition to specifying the Meta-Level and Domain-Level, the 2-LAMA model
includes the de�nition of the assistance functions (Γ, see eq. 5.39). Such func-
tions were brie�y introduced when formalising assistance services in chapter 4.
Accordingly, Γ can be expressed as equation 5.62. In particular, our main target
is to provide the Organisational Adaptation service (F adapt, eq. 4.1). Accord-
ingly, this section provides further details about this service and its formalisation
as a set of functions.

5.5.2.1 Formalisation

For the sake of notation simplicity, henceforth we refer to the corresponding set
of functions as an upper-case alpha 'α' with an 'O' superscript7 as shown in
equation 5.63. Hence, the adaptation of an organisation can be expressed as a
function (αO) that provides an updated organisation (Org) depending on both
the system's observable properties (EnvPS and AgPS) and current organisation
�see eq. 5.63 and previous eq. 4.1.

Γ = Γinfo × Γjustif × Γadvice × Γestim × Γadapt (5.62)

αO= Γadapt (5.63)

αO=
[
AgsPS × EnvPS ×Org → Org

]
(5.64)

7Notice that 'α' stands for 'adaptation', whereas the superscript denotes what is being
updated (e.g. the organisation is represented by an 'O').

5.5. TWO-LEVEL ASSISTED MAS ARCHITECTURE (2-LAMA) 71

Depending on the organisation design, the adaptation of its components may
be totally dependent, partially related or completely independent. The more
dependent they are, the more information is required when making adaptation
decisions. The proposed driving force behind adaptation is goal accomplishment,
and so Goals are considered in the adaptation functions of all organisational
components. Therefore, we are taking an assumption of partial-relation. If
all components were dependent, then the whole organisation would be required
to be considered when adapting. Obviously, such a case would also imply an
increase of the complexity of the adaptation function.

Accordingly, we de�ne the adaptation of the Social Structure (αSS , see
eq. 5.65) as a function that provides an updated social structure depending on
system's status �i.e. its observable properties�, the de�ned goals and current
social structure. Analogously, we de�ne the adaptation of the Social Conven-
tions (αSC , see eq. 5.69) and a function to adapt each one of its components.
Speci�cally, one function for the adaptation of interaction Protocols (αP), an-
other one for the adaptation of Norms (αN) and a last one for the adaptation
of the Detection Policy (αD) as de�ned in equations 5.70-5.72. In the same
manner, we de�ne the adaptation of Goals (αG) as the function expressed in
equation 5.73.

αSS=
[
AgsPS × EnvPS ×Goals× SocStr → SocStr

]
(5.65)

αR=
[
AgsPS × EnvPS ×Goals×Roles→ Roles

]
(5.66)

αGr=
[
AgsPS × EnvPS ×Goals×Groups→ Groups

]
(5.67)

αRels=
[
AgsPS × EnvPS ×Goals×Rels→ Rels

]
(5.68)

αSC=
[
AgsPS × EnvPS ×Goals× SocConv → SocConv

]
(5.69)

αP=
[
AgsPS × EnvPS ×Goals× Prots→ Prots

]
(5.70)

αN=
[
AgsPS × EnvPS ×Goals×Norms→ Norms

]
(5.71)

αD=
[
AgsPS × EnvPS ×Goals×DetecPol→ DetecPol

]
(5.72)

αG=
[
AgsPS × EnvPS ×Goals→ Goals

]
(5.73)

Overall, when having a speci�c organisation org ∈ Org, its adaptation is
de�ned as follows:

De�nition 7 Given an organisation org = (socstr, socconv, goals) ∈ Org
where socconv = (prots, norms, enfPol), current values of environment proper-
ties envpS, and current values of agent properties agpS, we de�ne the organisa-
tion adaptation of org as:

72 CHAPTER 5. ORGANISATIONAL ADAPTATION

αO
(
envpS , agpS , org

)
= org′, where :

org′ = ((roles, groups, rels), (prot′, norms′, enfPol′), goals′)
roles′ = αR

(
envpS , agpS , goals, roles

)
groups′ = αGr

(
envpS , agpS , goals, groups

)
rels′ = αRels

(
envpS , agpS , goals, rels

)
prots′ = αP

(
envpS , agpS , goals, prots

)
norms′ = αN

(
envpS , agpS , goals, norms

)
detecPol′ = αD

(
envpS , agpS , goals, detecPol

)
goals′ = αG

(
envpS , agpS , goals

)
(5.74)

Assuming that: αO ∈αO, αSS ∈αSS, αSC ∈αSC , αP ∈αP , αN ∈αN ,
αD ∈αD, αG ∈αG.

5.5.2.2 Discussion

Basically, these adaptation functions evaluate the current system's status in
order to modify speci�c organisational components. As mentioned above, these
changes are driven by system goals, so that changes are introduced with the
aim of inducing a higher accomplishment of current goals. Our proposal is that
assistants in the meta-level apply these adaptation functions when agents at the
domain-level fail to obtain the desired performance. In this sense, it can be
interpreted as a top-down adaptation approach. Nevertheless, the meta-level
could also be sensitive to changes in the agent population that may require
fundamental changes �such as goal adaptation. This case is closer to a bottom-
up approach, and thus, a hybrid adaptation approach may be more �exible.

Notice that the goals adaptation function (αG) requires special attention
since its outcomes a�ect the rest of adaptation functions (see subsequent �5.5.4
about adaptation frequency for a further discussion on that). More importantly,
it may change fundamental design goals, and so, some basic system properties
should be guaranteed by means of additional mechanisms such as speci�c goal
updating policies. Although this discussion goes beyond the scope of this thesis,
we envision that measures related to the number of convention violations �which
may be related to agents' degree of satisfaction� may motivate reconsidering
some goals.

5.5.2.3 Example

In general, the assistance functions are already illustrated in chapter 4. Nev-
ertheless, this section provides further examples about the adaptation function
(αO or Γadapt, see eq. 5.64) in the tra�c scenario. In particular, we provide some
brief descriptions about the adaptation functions of each organisational compo-
nent (eq. 5.65-5.73). Besides, next chapters 6 and 7, provide more examples in
the P2P scenario, including full details about the norm adaptation function.

As an illustration, the tra�c example counts on a simple social structure
adaptation function (αSS ∈ αSS) de�ned in eq. 5.75. Basically, in case there

5.5. TWO-LEVEL ASSISTED MAS ARCHITECTURE (2-LAMA) 73

are more collisions than a certain threshold (maxcollis), it adds and ambulance
role (ambulance) to help restoring the tra�c �ow by picking the injured drivers
(pickInjured). Otherwise, it removes such new role and relationship.

αSS
(
agspS , envpS , goals, socStr

)
= socStr′

socStr′ =

{
(roles′, groups, rels′) if (collis > maxcollis) , collis ∈ envpS

(roles′′, groups, rels′′) otherwise

roles′ = roles ∪ {ambulance}
rels′ = rels ∪ {pickInjured (agi, agj) : ambulance ∈ Ragi ∧ car ∈ Ragj}
roles′′ = {ambulance}\roles = roles ∩ {ambulance}C
rels′′ = {pickInjured (agi, agj) : ambulance ∈ Ragi ∧ car ∈ Ragj}\rels

(5.75)
On the other hand, there is also a simple social conventions adaptation func-

tion (αSC ∈αSC) depicted in eq. 5.76. Essentially, it only adapts the protocols
and norms by using their adaptation functions de�ned in equations 5.77-5.78.
In particular, the protocol adaptation function (αP ∈αP) sets a safer turning
procedure (e.g. it includes safety distances to prevent collisions) in case there
are more collisions than the mentioned threshold. Besides, the norm adaptation
function (αN ∈αN) is able to decrease the speed limit to avoid collisions when
there is a large density (larger than a maxdensity threshold).

αSC
(
agspS , envpS , goals, socConv

)
= socConv′

socConv′ =
(
αP
(
agspS , envpS , goals, prots

)
,

αN
(
agspS , envpS , goals, norms

)
,

detecPol)

(5.76)

αP
(
agspS , envpS , goals, prots

)
= prots′

prots′ =

{
({turning} \prots) ∪ {turningSafer} if (collis > maxcollis)

({turningSafer} \prots) ∪ {turning} otherwise

(5.77)

αN
(
agspS , envpS , goals, norms

)
=
{
speedLimit : maxspeed = max′speed

}
max′speed =

{
lowSpeed if

(
density > maxdensity

)
, density ∈ envpS

highSpeed otherwise

(5.78)
Finally, a goal adaptation function (αG ∈αG) updates organisational goals

as expressed in eq. 5.79. Speci�cally, it gives more weight to tra�c �ow than to
collisions (see eq. 5.35) when the average speed of cars (speed) is lower than a
certain threshold (minspeed).

αG
(
agspS , envpS , goals

)
= goals : k = k′

k′ =

{
0.8 if

(
speed < minspeed

)
, speed ∈ agspS

0.2 otherwise

(5.79)

74 CHAPTER 5. ORGANISATIONAL ADAPTATION

5.5.3 Distributed adaptation

In our 2-LAMA approach, the adaptation function (αO) de�ned above is per-
formed by the meta-level in order to adapt the domain-level's organisation. The
distributed nature of meta-level raises some issues to take into account. Each
assistant perceives partial information about system status and computes a sum-
mary that shares subsequently with other assistants. Besides, organisation adap-
tation is distributed between assistants. In this manner, each assistant computes
the desired adaptations for each organisational component, and later on, their
adaptation proposals have to be combined to end up with new organisational
con�gurations. The rest of this subsection is devoted to exploring each of these
issues.

5.5.3.1 Information

In 2-LAMA, each assistant perceives information about the cluster of agents
it assists and about the corresponding environment �see �5.5.1.1. We re-
fer to this information as assistant's local information (agspCi ∈ AgsPC ,
envpCi ∈ EnvPC , i being the assistant's index). Afterwards, it shares a summary
of this information with other assistants. Thus, we de�ne as remote assistant
information all pieces of summary information received from other assistants
(sump1, . . . , sumpi−1, sumpi+1, . . . , sumpn). This way, each assistant has an
abstraction of overall information when taking its decisions. Finally, we de�ne
the knowledge of an assistant (knowpi) as the aggregation of its local and remote
pieces of information including its perception of those environment observable
properties that are not associated to any cluster in particular (EnvPSnC).

This modelling requires us to de�ne two processes: how local information
is summarised and how an assistant aggregates its local and remote informa-
tion. First, we de�ne a summary function (Σ, eq. 5.80) which constructs a
summary (sumpi ∈ SumP 8, eq. 5.81) out of an assistant's local information.
Thus, statistical functions, such as mean or average, are good candidates for
summary functions. Second, we de�ne the aggregation function (Λ, eq. 5.82) as
the process that combines an assistant's local information with pieces of remote
information (i.e. a set of summaries) and the information not associated to any
cluster in particular (envpSnC) to obtain an assistant's knowledge (knowpi, see
eq. 5.83). This knowledge is of type KnowP and will be used in subsequent
adaptation functions.

Σ =
[
AgsPC × EnvPC → SumP

]
(5.80)

sumpi = σ(agspCi , envp
C
i), sumpi ∈ SumP, σ ∈ Σ (5.81)

Λ =
[
AgsPC × EnvPC × EnvPSnC × (SumP)

n−1 → KnowP
]

(5.82)

knowpi = λ(agspCi , envp
C
i , envp

SnC , {sumpx : x = 1..n ∧ x 6= i})
knowpi ∈ KnowP, λ ∈ Λ

(5.83)

8Notice that SumP , the type of this information summary, is not quali�ed by the cluster
superscript �C� because there is no need to di�erentiate it from SumPS .

5.5. TWO-LEVEL ASSISTED MAS ARCHITECTURE (2-LAMA) 75

Finally, it is worth noticing that, although previous formulae assume assis-
tants receive remote information from all other assistants (i.e. {sumpx|x 6= i}),
it is not required to be the case. Actually, it depends on: whether or not the
meta-level's social structure is fully connected, the reliability of communications,
and the assistants' capacity to gather local information. Obviously, the lack of
information may a�ect assistant's (and thus ML's) performance.

5.5.3.2 Decision making

Distribution at meta-level concerns both information and decision making. As
mentioned above, assistants initially make their individual decisions based on
the available information and the system's goals. Afterwards, they reach an
agreement over the actual domain-level organisational changes. The equations
below illustrate this process for the norm adaptation �besides, their cost and
frequency is analysed in �5.5.4. First, as shown in equation 5.84, we de�ne the
decision making of a single assistant i, as a partial adaptation function (αNi)
with a similar domain and codomain than the meta-level adaptation function
previously introduced (αN , eq. 5.71). In particular, when an assistant i applies
its adaptation function αNi ∈αNi , it uses its knowledge, the system's goals and
organisational norms to make its own decision about the de�nition of new norms.
Afterwards, all assistants perform an agreement process by means of a function
(βαN) which takes as many norm update proposals as the number of assistants
and generates the actual norm update as described in equation 5.85.

αNi = [KnowP ×Goals×Norms→ Norms] (5.84)

βαN= [(Norms)
n → Norms] (5.85)

Previous equation 5.85 aggregates n di�erent decisions because it assumes
norms are global �at domain-level� and relevant to all assistants. 9Taking this
into consideration, equation 5.86 shows the overall meta-level norm adaptation
function (αN) as the agreement of partial norm adaptation functions αNi indi-
vidually computed by assistants.

αN (envp, agp, goals, norms) =
= βαN (αN1 (knowp1, goals, norms), . . . , α

N
n (knowpn, goals, norms))

αN ∈αN , αNi ∈αNi , βαN ∈ βαN

(5.86)
Regarding the other organisational components' related functions �i.e. par-

tial adaptations (αSSi , αPi , αEPi , αGi), agreement processes (βαSS , βαP ,
βαEP , βαG) and adaptation functions (αSS , αP , αEP , αG)� their do-
main/codomain and de�nitions are analogous to equations 5.84-5.86. They use
the knowledge derived from exchanged summaries and the organisational goals to

9Nevertheless, it could be the case that certain norms apply only to certain contexts, and
thus, just a�ected assistants should agree upon their update. Taking that to the limit, it may
be the case that a single involved assistant does not need to agree with anyone else.

76 CHAPTER 5. ORGANISATIONAL ADAPTATION

compute the corresponding updated organisational component �notice though,
that the domain of goal related functions is simpler, since it does not consider
any other organisational components.

5.5.3.3 Example

Following the tra�c example, an assistant in this scenario is in charge of a
region of a road-network. Hence, it exchanges information about these regions
(sumPi ∈ SumP) with the other assistants in order to build its knowledge about
the overall system status. Then, it can use this knowledge (knowPi ∈ KnowP)
to suggest organisational changes depending on its partial adaptation functions
(αzi ∈αzi , where z stands for any of the organisational adapted components).
Finally, all assistants achieve an agreement (βαz ∈βαz) on how the organisation
is actually updated.

On the one hand, the local information of an assistant consists of the AgsP
and EnvP de�ned by equations 5.26 and 5.29 respectively �in this example
we do not consider general environmental properties (EnvPSnC , eq. 5.49). On
the other hand, the information required by the illustrative adaptation functions
(eq.5.75-5.79) is related to the tra�c density, the number of collisions and the
speed of cars. Consequently, the summary information they exchange (SumP)
includes only this sort of information (their identi�ers have an 'S' pre�x to denote
'summary') as de�ned in equation 5.87. Moreover, given that in this example
there is no EnvPSnC , the knowledge they use has also the same sort of infor-
mation (they have the identi�ers with a 'K' pre�x) as shown in equation 5.88.
In both cases, the values are positive real numbers (see eq. 5.89-5.90) since they
correspond to the averages of such properties.

SumP = SDensity × SCollis× SSpeed× SWait (5.87)

KnowP = KDensity ×KCollis×KSpeed×KWait (5.88)

PosR = {n ∈ R : n ≥ 0} (5.89)

SDensity ∈ PosR, SCollis ∈ PosR, SSpeed ∈ PosR, SWait ∈ PosR
KDensity ∈ PosR, KCollis ∈ PosR, KSpeed ∈ PosR, KWait ∈ PosR

(5.90)
Accordingly, an assistant computes the summary of its local information

by using the summary function (σ ∈ Σ). This function provides the tra�c �ow
density and the number of collisions in this region as well as computes the average
speed of the cars traversing it and the number of waiting cars as expressed in
equation 5.91.

σ(agpCi , envp
C
i) = sumpi =(

density ∈ envpCi ,
collis ∈ envpCi ,
avg

(
{speedi,j ∈ agpCi : j = 1..mi}

)
,∣∣{waiti,j ∈ agpCi : j = 1..mi : waiti,j = false}

∣∣)
(5.91)

5.5. TWO-LEVEL ASSISTED MAS ARCHITECTURE (2-LAMA) 77

Next, an assistant uses the aggregation function (λ ∈ Λ) to build its knowl-
edge from the received summaries. Speci�cally, in our example this function
computes a weighted average of each summary of local information and all re-
ceived remote information as de�ned in equation 5.92. Therefore, depending
on the constant weights applied to local (wL) and remote (wR,x) information, an
assistant can give more or less relative relevance to each one.

λ
(
agpCi , envp

C
i , envp

SnC , {sumpx : x = 1..n ∧ x 6= i}
)

= knowpi =
= (kDensityi, kCollisi, kSpeedi, kWaiti)
kDensityi = wL · sDensityi +

∑n
x=1 {wR,x · sDensityx : x 6= i} ,

sDensityi ∈ envpCi , sDensityx ∈ sumpx
kCollisi = wL · sCollisi +

∑n
x=1 {wR,x · sCollisx : x 6= i} ,

sCollisi ∈ envpCi , sCollisx ∈ sumpx
kSpeedi = wL · sSpeedi +

∑n
x=1 {wR,x · sSpeedx : x 6= i} ,

sSpeedi ∈ agspCi , sSpeedx ∈ sumpx
kWaiti = wL · sWaiti +

∑n
x=1 {wR,x · sWaitx : x 6= i} ,

sWaiti ∈ agspCi , sWaitx ∈ sumpx

(5.92)

Once an assistant has the knowledge, it uses its partial adaptation functions
(αzi ∈αzi) to decide how to update the organisation. In order to compute the
general adaptation functions described in �5.5.2.3, the partial functions have
an equivalent de�nition so that the general function is the result of applying
the agreement function. For instance, the partial norm adaptation function
(αNi) de�ned in eq. 5.93 is equivalent to the idea expressed in eq. 5.78, but
obtains the density (kDensity) from knowledge (knowpi). Hence, the general
norm adaptation function (αN) is actually the result of applying the agreement
function (βαN) to the result of all the partial functions as shown in eq. 5.94.

αNi (knowpi, goals, norms) =
{
speedLimit : maxspeed = max′speed

}
max′speed =

{
lowSpeed if

(
kDensity > maxdensity

)
, kDensity ∈ knowpi

highSpeed otherwise

(5.93)
αN

(
agspS , envpS , goals, norms

)
=

= βαN (αN1 (knowp1, goals, norms), . . . , α
N
n (knowpn, goals, norms))

(5.94)

βαN = voting (5.95)

In particular, in our example, the agreement follows a voting scheme
(eq. 5.95). That is to say, each assistant sends its proposal change for each
organisational component to the rest of assistants (its votes). As a consequence,
an assistant receive all the proposals (i.e. the votes) from the rest of assis-
tants. So, it can compute the most voted option for each component separately
�notice, this process is replicated, since all assistants recount the same votes.
Finally, the winner updates for each organisational components are applied.

78 CHAPTER 5. ORGANISATIONAL ADAPTATION

5.5.4 Costs and frequency

The process of the organisational adaptation (αO) involves some associated
costs �in time and/or resources� that should be considered when de�ning the
adaptation frequency. That is to say, the resulting frequency should keep the
adaptation costs below the bene�ts it generates.

5.5.4.1 Adaptation Costs

In particular, as equation 5.96 shows, the organisational adaptation cost (cαO)
comprises an information retrieval cost (cinfoO), a computation cost (ccompO),
an adoption cost (cadoptO) and a transition cost (ctransO).

cαO = cinfoO + ccompO + cadoptO + ctransO (5.96)

The former, the information retrieval cost (cinfoO), is related to the cost of
collecting the information required by the adaptation function. For example,
collecting AgsP may require some time and resources to exchange messages
between assistants and participant agents. The second cost, the computation
cost (ccompO), re�ects the time and resources required to compute the adaptation
function. That is to say, the time required to compute all αNi in parallel plus the
cost of achieving an agreement (βαN) at meta-level. The third cost, the adoption
cost (cadoptO), is related to the cost of transforming the previous organisation
into the adapted one. As an illustration, when a norm is updated, messages
must be sent to inform agents and they may need time to alter their activity in
order to comply with the new norm. The last cost, the transition cost (ctransO),
is the time and resources required for system's stabilisation. In this manner, the
new organisation can be evaluated without interference from the previous one,
since the e�ects of previous norms may persist longer in the environment than
their actual activation period.

Furthermore, as the organisational adaptation function (αO) is de�ned by
the adaptation functions of all its components (see �5.5.2.3), its cost depend
on a combination (f) of the costs of each adaptation function. For example,
as shown in equation 5.97, the information retrieval cost derives from the costs
of collecting information to perform: the social structure adaptation (cinfoSS),
the adaptation of social conventions (cinfoSC) and the goal adaptation (cinfoG).
Notice that in equation 5.97 there is not an addition but a function of those
costs since there may be retrieved information that is useful to adapt more than
one component. Thus, the cost of retrieving such shared information may be
present in di�erent component associated costs (e.g. cinfoSS , cinfoSC , cinfoG),
but only needs to be added once to the �nal cost (e.g. cinfoO).

cinfoO = f(cinfoSS , cinfoSC , cinfoG) (5.97)

5.5. TWO-LEVEL ASSISTED MAS ARCHITECTURE (2-LAMA) 79

5.5.4.2 Adaptation Frequency

The adaptation frequency (freq) of each of these organisational components
can be chosen depending on its associated costs �and bene�ts. For instance,
as equation 5.98 shows, the cost of retrieving information in order to perform
the social structure adaptation (cinfoSS) is the sum of the cost of collecting
information every time (x) the SocStr is adapted. In this equation, the number
of added terms (#αSS) is the total number of performed SocStr adaptations,
which depends on the frequency10 of adapting the social structure (freqαSS) and
the system's execution time (t). Thus, the higher the frequency is, the higher
becomes the number of performed adaptations and their associated cost.

cinfoSS =
∑#αSS

x=1 cinfoSSx , #αSS = freqαSS · t (5.98)

Although organisational components may adapt at di�erent frequencies, it
is important to ensure that goals are adapted with the lowest frequency �see
eq. 5.99. In this way, the rest of the adaptation functions may have enough
time to update their corresponding organisational components to current goals
before they change. In this manner the period between goal adaptations should
be long enough to allow the consequences of other component adaptations to
emerge. Thus, the other adaptation functions may see the e�ects.(

freqαG < freqαSS

)
∧
(
freqαG < freqαSC

)
(5.99)

Finally, it is worth mentioning that every cost in a single adaptation step
can be computed as the sum of the costs endured by all assistants. For instance,
the information retrieval cost associated with SocStr in adaptation step x can be
expressed as the sum of the costs of collecting the information for each assistant
i (i.e. cinfoSSx,i):

cinfoSSx =
∑n
i=1cinfoSSx,i (5.100)

5.5.4.3 Example

Again, we can use the tra�c scenario to illustrate previous concepts. Regarding
information retrieval costs (cinfoO), there is a cost associated to observable prop-
erties, since assistants require compiling information from radar traps (used to
detect vehicle speeds, i.e. AgP) and automatic tra�c counters (used to estimate
road densities, i.e. EnvP). There is also a cost of performing the computations
(ccompO) of the adaptation functions and achieving agreement between the assis-
tants. Moreover, upon organisational component updates, domain-level agents
need to be informed, and this implies an an adoption cost (cadoptO). For example,
when speed limit is updated, all electronic tra�c signs must be updated accord-
ingly. Furthermore, when this new speed limit is already communicated, there
is a delay (ctransO) to allow the vehicles to adapt their speeds, since they cannot

10Notice that for the sake of simplicity, we express adaptation frequencies as �xed time
intervals. However, they can be dynamic depending on system status.

80 CHAPTER 5. ORGANISATIONAL ADAPTATION

change their speed abruptly. Finally, the tra�c scenario also requires goals to
be updated at a lower frequency. Thus, for instance, the frequency of the norm
adaptation function is lower than that of the goals (i.e. freqαN < freqαG).
This allows assistants to monitor tra�c �ow and collisions to measure goal ful-
�lment after updating the speed limit. Afterwards, it will only be possible to
compare current performance results with previous ones if both have been com-
puted by considering the same reference goals.

Chapter 6

Case study: P2P sharing
network

The Peer-to-Peer sharing network scenario introduced in the �rst chapter con-
stitutes the case study of this thesis. Brie�y, it consists of a set of computers
sharing some data, so that at the end of the process all of them have a copy
of it. In these networks, these computers are controlled by third parties, in
such a way that it is not possible to assign tasks to each of them, but just to
regulate their activity instead. Accordingly, this scenario can be regarded as a
regulation-oriented problem where it is possible to use a regulation de�nition
approach.

This chapter provides a complete scenario description and speci�es an AOC-
MAS within this domain according to our proposed architecture (2-LAMA).
The scenario description details the underlying communication network and the
widely used BitTorrent protocol �which is the baseline of our proposal. Be-
sides, the speci�cation stipulates the actual protocol and norms in terms of our
2-LAMA model.

6.1 Introduction

The �rst chapter stated that we focus on those problems driven by goals that
cannot be decomposed into subtasks assumed by agents �see �1.2. We called
them regulation-oriented problems, and we illustrated these problems in di�er-
ent scenarios: auctions, tra�c and peer-to-peer sharing networks �see �1.2.
Moreover, we denoted as regulation de�nition approaches those OCMAS that
can deal with such kind of problems.

Then, the �rst exemplifying scenario (an auction) was used in chapter 4 to
illustrate a set of assistance services that we propose. Afterwards, the second
scenario (tra�c) illustrated our own regulation de�nition approach (2-LAMA)
in chapter 5. Now, this third scenario (a P2P sharing network) is fully described
to use it as the case study of this thesis. In other words, current chapter provides

81

82 CHAPTER 6. CASE STUDY: P2P SHARING NETWORK

all details about this scenario, including its speci�cation according to 2-LAMA
model �see �5.5. Next chapters use this speci�cation to illustrate our adaptation
mechanism proposals. In fact, these proposals are implemented in our sharing
network simulator and tested empirically.

As introduced in section �1.2.2, a Peer-to-Peer sharing network (P2P hence-
forth) is composed of third-party computers that share some data. Its tar-
get is that all these computers have a copy of this data as soon as possible.
Since these computers are controlled by third parties, its goal cannot be de-
composed into tasks that computers assume, so the scenario is an instance of
a regulation-oriented problem. As a result, existing P2P approaches are based
on regulations over computers' activity instead of assigning tasks �i.e. they
are regulation de�nition approaches. For example, the widely used BitTorrent
protocol (BT) [BitTorrentInc., 2001] is just a regulative framework (speci�ed by
a protocol) that determines the social conventions among these computers.

Current P2P networks are highly complex, so we try to reduce their com-
plexity by assuming certain simpli�cations about their protocol and the underly-
ing network model. For instance, some P2P protocols require to locate initially
the desired data. Notwithstanding, BT protocol do not deal with this searching
phase, but delegates it to other existing mechanisms �e.g. web-based search.
Accordingly, as our approach is based on BT, it neither deals with this searching
phase. Nevertheless, original BT protocol splits the sharing data into several
pieces, so that these pieces are exchanged in a single protocol message �i.e. the
whole data requires several piece messages. In contrast, for the sake of simplic-
ity, in our approach the data has only a single piece. Additionally, current P2P
networks usually run on the Internet, so there is a heterogeneous mixture of net-
work links among computers which have several distinct parameters. However,
we abstract all low-level network details, and simulate a bare packet switching
network. In fact, the low-level protocols of the Internet are based on this model.

Notice that the environment of this scenario ful�ls the features described
in �1.2.1. It has an inaccessible non-deterministic dynamic environment since the
details about Internet tra�c �i.e. changes in aggregated links� are unavailable,
so it is not possible to predict message latencies �which may change while
computers choose their fastest partner. It has a continuous state space and
action space, for instance bandwidth consumptions are continuous. It has a run-
time adaptation since norms are updated while agents are exchanging messages.

Next sections provide further details about the actual protocol and network
in our scenario1. In particular, the �rst sections describe the base-line scenario,
whereas the last sections specify our 2-LAMA approach.

6.2 BitTorrent protocol

Nowadays BitTorrent (BT) is one of the most widely used protocols in P2P
sharing networks. There are several extensions to the original protocol, however
our approach is based on the basic BT protocol [BitTorrentInc., 2001].

1There is an initial introduction to the P2P scenario in �1.2.2.3.

6.2. BITTORRENT PROTOCOL 83

Protocol Phase Roles Protocol Messages

Initial both join <hasDatum>, contact <peers>

peers handshake, bitfield <hasDatum>

Data sharing peers interested, choke, unchoke, request, data

Noti�cation both complete

peers have

Table 6.1: BitTorrent Protocol messages.

In basic BT there are two kinds of nodes: peers and trackers. On the one
hand, a regular computer that participates by sharing data is called a peer.
All peers share the same data. When a computer has the whole data, it is
called a seed, whereas it is named a leech otherwise. In this thesis, we also
refer to a seed/leech as a complete/incomplete peer respectively. On the other
hand, in a basic BT network, there is a computer called tracker which keeps a
list of computers sharing the same data �i.e. it provides a directory service.
Accordingly, if other data is shared, there is a separated BT network with another
tracker. Besides, as stated in previous section, our simpli�ed version of BT works
with a single-piece datum instead of multi-piece data2.

The BT protocol de�nes how these nodes interact among them in order to
share the data. Table 6.1 contains a list of messages involved in our simpli�ed
version of this protocol. The original BitTorrent has no phases, however we
introduce them to make the protocol comprehension easier. Moreover, these
phases facilitates comparing this protocol to its derivative used in 2-LAMA �
which is speci�ed in �6.7. Even more, in both protocols, we also specify the roles
involved. In BT protocol, it may be only the peers (peers), or both the peers and
the tracker (both). Next subsections describe each phase, and illustrate them in
the example depicted in �gure 6.1. In this example, there are three peers (pi)
and one tracker.

6.2.1 Initial phase

Initially, a computer gets involved in a sharing network by sending a message
(join <hasDatum>) to the network's tracker. This message indicates if the new
participant has (<hasDatum>=1) or has not (<hasDatum>=0) the datum �i.e. if it
is complete or incomplete. Then, the tracker replies with a list of all current
connected computers (contact <peers>). So, the new participant can send mes-
sages (handshake) to contact them. After this initial handshake, they exchange
information (bitfield <hasDatum>) about datum possession3.

For instance, in �gure 6.1, computers p1 and p2 send a message (join) to
join to the sharing network at tick t1 and t2. As a result, the tracker sends the

2Original BT protocol split large data into small pieces. Then, computers collect these
pieces from di�erent sources to compose the whole data again.

3In the multi-piece BitTorrent, the �bitfield� message contains one bit for each piece to
indicate if the peer has it or not.

84 CHAPTER 6. CASE STUDY: P2P SHARING NETWORK

join 1
p

1
tracker p

3

contact p1,p2

p
2

join 0

contact p1

join 0

handshake handshake

handshake
handshake

handshake

handshake

bitfield 0
bitfield 1

p
1

tracker p
3

p
2

interested

choke

bitfield 0
bitfield 1

bitfield 0

bitfield 0
interested

choke

unchoke
request

data

have
interested

u
n
ch

o
k e

 i
n
te

rv
a
l

…

d
a
ta

 t
x

t
1

t
2t

3
t
4

t
5

t
6

t
7

t
8

t
9

t
10

t
11

t
12

t
13

t
14

t
15

t
16

t
17

t
18

t
19

t
20

t
21

t
22

t
23

t
24

t
25

t
26

t
27
t
28

complete

t
29

Figure 6.1: BitTorrent simpli�ed protocol example.

list (contact) of current participants to p2 at t3 �notice that it is only necessary
to send the contact to one out of a pair of contacted peers. Consequently, p2

contacts (handshake) p1 at t4. Afterwards, both of them exchange information
about their datum possession (bitfield) at t6 and t7.

6.2.2 Data sharing phase

After the initial phase, participants can start the data sharing phase with their
contacts. In order to start this phase, an incomplete agent shows its inter-
est (interested) to some of its complete contacts. As a response, it receives
a blocking message (choke) meaning that any further communication will be
ignored.

Nevertheless, at certain time intervals (unchoke_interval), each partici-
pant having the datum sends an unblocking message (unchoke) to some of the
peers that were interested. The BitTorrent speci�cation de�nes that four peers
(num_unchokes) are selected among the interested ones (candidates). The selected
candidates are those that were blocked most recently. In case two of them were
blocked at the same time, the one having a larger network transmission capacity
(upload_bw4) is selected. In fact, if an agent's interest is older than a de�ned
interval (ageing_period = unchoke_interval/1.5), its age is ignored and only its
peer's upload_bw is compared. In addition, in two out of three unchoke_interval

selection processes, the fourth candidate is randomly selected. Finally, when an
agent receives an unblocking message (unchoke) and it is still incomplete, then it
asks for the datum (request). Upon the reception of the request, the complete
peer sends the datum (data).

As an illustration, see the right part of �gure 6.1. After the handshake, the
incomplete computer p2 sends an interest message (interested) to the p1 at t17.

4In a multi-piece scenario, this measure is estimated from previous piece interchanges.
However, since in a single-piece implementation no estimation can be performed, its value is
taken from the network de�nition.

6.3. NETWORK ABSTRACTION 85

Immediately, p1 replies with a blocking message (choke) at t18. Analogously, p3

shows its interest at t21 and is blocked at t22. Hence, p2 and p3 are the candidates
of p1. Then, after the unchoke_interval, p1 unblocks some of its candidates.
For illustrative purposes, in this example p1 simply unblocks (unchoke) a single
candidate: p3 at t23. When p3 knows at t24 that it is unblocked, it asks for the
datum (request) to p1. As a result, p1 starts sending the datum (data) at t25.

6.2.3 Noti�cation phase

Whenever a computer receives the whole datum, it starts the noti�cation phase.
First, it noti�es the tracker (complete) that it has the datum. Next, it noti�es
(have) its incomplete contacts that its status has changed. Then, some of these
contacts may probably show their interest as described before.

For example, in �gure 6.1, after the datum has been transmitted from p1 to
p3 during a time interval (data tx), p3 starts the noti�cation phase. Speci�cally,
at t26 it noti�es the tracker (complete) and its incomplete contact p2 (have) that
it has the datum. As a consequence, p2 shows its interest (interested) at t28.

The described simpli�ed version of BitTorrent is the protocol used as base-
line to empirically compare it to our approach. Also, it is the base for the
protocol used in our approach, as described in �6.7.

6.3 Network abstraction

We consider the P2P underlying communication network as the environment in
which the sharing process takes place. Notice that the network topology and
its saturation in�uences the communication time of messages between agents.
In our network model, we have individual and shared channels, which can be
regarded as individual and shared resources �this is a common situation in
many MAS scenarios.

6.3.1 Topology

We conceptualise the network as a packet switching net having the topology
illustrated in �gure 6.2 �notice that �g. 6.2a is a �gurative version similar to
the introductory �g. 1.4, whereas �g. 6.2b is a more abstract version. There
is an individual link between each peer (pi) and its Internet Service Provider
(ISPi or ri>0

5). Besides, the Internet (inet) is abstracted as a set of aggregated
links among ISPs. Each of these aggregated links transports the messages of an
entire cluster (those peers connected to the same ISP). In all cases, links have
independent upload and download channels with the bandwidth6 represented as
single numerical labels in �g. 6.2b �for simplicity, we assume both directions

5In �gure 6.2b, ri nodes act as routers among di�erent links.
6The bandwidth is the capacity to transfer data over a network link, expressed as #data

units per time unit �see �6.3.2.

86 CHAPTER 6. CASE STUDY: P2P SHARING NETWORK

p1

ISP
3ISP

1

inet
.
.
.

individual

aggregated

p12

p9

.

.

.

p4
ISP

2

p5 p8

cluster

.

.

.

. . .

(a) Figurative

r1 r0

r2

r3

p1

p3

p2

p5 p7p6 p8

p12

p10

p11

p9

40
40
60
80

40409090

90
60
50
30

180

200

190

aggregated ISP

inet

individual cluster

p4

(b) Abstract

Figure 6.2: Network abstraction.

have equal bandwidth. This means that each peer has its own communication
capacity.

Notice that the time required to transmit a message from one computer to
another depends on: its length, the bandwidths of the traversed links, and the
number of simultaneous messages traversing the same links. As an illustration
in the network depicted in �gure 6.2b, we assume p2 sends a message of 200 data
units to p9. First, such message is split into packets of a �xed size, for instance
10 units. Hence, at t = 0 the original message has 20 packets as illustrated in
table 6.2. Given the fact that the bandwidth of p2's individual link (lnp2r1) is 40,
it can transmit 4 packets at each tick. So, at t = 1 the �rst four packets (pk1..4)
are injected into the network (through lnp2r1). Consequently, at t = 2 these
packets (pk1..4) achieve r1 and are routed towards r0 trough the aggregated
link of ISP1 (lnr1r0). At the same tick, the subsequent four packets (pk5..8) are
being transmitted through p2's individual link (lnp2r1). Hence, at t = 3, lnp2r1
is transmitting pk9..12, lnr1r0 has pk5..8 and lnr0r3 has pk1..4. However, at t = 4
the individual link of p9 only has bandwidth to transmit 3 packets instead of
4. Thus, lnr3p9 is transmitting pk1..3 and the fourth packet pkp24 is waiting in
the bu�er of router r3. Consequently, at t = 5, p9 starts receiving packets at
a pace of 3 packets per tick. In other words, without any further tra�c, the
packet cadence among p2 and p9 is limited by the narrowest link �in this case

6.3. NETWORK ABSTRACTION 87

t p2 lnp2r1 r1 lnr1r0 r0 lnr0r3 r3 lnr3p9 p9
bw=40 bw=180 bw=190 bw=30

0 pk1..20

1 pk5..20 pk1..4

2 pk9..20 pk5..8 pk1..4

3 pk12..20 pk9..12 pk5..8 pk1..4

4 pk16..20 pk12..16 pk9..12 pk5..8 pk4 pk1..3

5 pk16..20 pk12..16 pk9..12 pk7..8 pk4..6 pk1..3

Table 6.2: Packet transmission example.

lnr3p9. Next section contains further details about simultaneous usage of a link by
packets coming from di�erent sources. Section 8.3.5 in the simulator's chapter,
has more details about the implementation of the described model.

6.3.2 Metrics

We de�ne the bandwidth (bwci) as the number of data units that can traverse a
channel (ci) in a time unit. Hence, we de�ne the channel usage (usg) as the ratio
of the bandwidth that is used in a given time unit (t). Equation 6.1 formalises
it, where #msgti stands for the number of messages traversing the i -th channel
in that moment t, msgtj,i denotes the j-th message in the channel, and trans
stands for the e�ective data units transmitted during that period. For instance,
if a channel has a bandwidth of 6 units and there is a message of 6 data units,
such message traverses the link in one time unit and the channel has an usage
equal to 1 during this time. Accordingly, if there are two messages of 6 data units
each, both spend two time units to traverse the channel �channels transmit the
same portion of every pending message. In such case, the usage is 1 during this
period. In contrast, if there is only one message of 3 data units, it still traverses
the channel in one time unit but its usage is 0.5 during this period.

usg (ci, t) =

∑#msgsti
j=0 trans

(
msgtj,i

)
bwci

(6.1)

In other words, the time required by a message to travel from a computer to
another one depends on the bandwidth and the usage of the channels it traverses.
In this sense, the term latency denotes the time required for a message of one
data unit to be transmitted among two peers. Thus, if a computer is receiving
a lot of messages at the same time, the usage of its individual download channel
is high and their latencies increase �it takes longer to deliver all messages to it.
Analogously, if every computer of the same ISP are receiving a few messages, the
usage of their individual download channels are low and their latency is small
�i.e. messages are delivered fast. However, as all these messages traverse the
aggregated download channel of the same ISP, the usage of this channel may be
high and messages may be slowly delivered. Consequently, it may not be a good

88 CHAPTER 6. CASE STUDY: P2P SHARING NETWORK

strategy that all computers use all their communication bandwidth, because
network channels may be full and it would delay the complete sharing process.

The de�ned usage metric does not distinguish between a fully occupied
channel �which operates normally� and a channel with delayed messages due to
excessive tra�c. In the latter situation, message latencies increase boundlessly
whilst usage cannot increase any further than 1. Therefore, we introduce another
metric to identify and quantify this situation. We de�ne channel saturation (sat)
as the amount of data waiting to be transmitted over the amount of data the
channel can actually transmit in a unit time, as formalised in equation 6.2. In
such equation, portionto trans denotes the remaining data units of a message to
transmit through a given channel. For instance, if a channel has a bandwidth of
6 and there is a message of 6 data units, this message traverses the link in one
time unit and we say its saturation is 1 during this time. In contrast, if there is
one message of 6 data units and another message of 12 data units, the saturation
is 3 the �rst time unit (= 6+12

6), 2 the second time unit (= 3+9
6) and 1 the third

last unit (= 0+6
6). The average of this saturation is 2 (= 3+2+1

3) meaning the
channel had, in average, double the data than it could transmit.

sat (ci, t) =

∑#msgsti
j=0 portionto trans

(
msgtj,i

)
bw(ci)

(6.2)

These network metrics can be used to describe the network state at a given
moment. Furthermore, their average along a whole sharing process can be used
characterise the whole process. In particular, we call network usage (netUsg)
to the average of the usage of all channels along a sharing process as shown
in equation 6.3. In such equation, #ch stands for the number of channels in
the whole network, and tspread denotes the number of time steps until all peers
have the data. Analogously, equation 6.4 shows the network saturation (netSat)
metric.

netUsg =

∑tspread
t=0

∑#ch
i=1 usg(ci,t)

#ch

tspread
(6.3)

netSat =

∑tspread
t=0

∑#ch
i=1 sat(ci,t)

#ch

tspread
(6.4)

In addition, we also de�ne another metric that can be use to characterise a
whole sharing process. It is is proportional to the amount of data transmitted
and the distance traversed by it. Speci�cally, we de�ne the cost of a message
(cMsgk) as its size (||mk||) times the number of links it traverses (||path (mk) ||)
as shown in equation 6.5 �the number of traversed links is also referred as hops.
Further, we de�ne the network cost (cNet) as the sum of all message costs along
a sharing process. Equation 6.6 shows this cost, where #msgs stands for the
number of messages along all the execution.

cmk = ||mk|| · ||path(mk)|| (6.5)

6.4. 2-LAMA SPECIFICATION 89

m
l

dl

a1 a2 a3

p1

p2

p3

N
et
w
or
k

(p
hy

sic
al
 n

et
w
or

k)

r1r1 r0r0

r2r2

r3r3

na2

na3na1
n1

n3

n2

n5 n7n6 n8

n12

n10

n11

n9

40
40

60
80

40409090

90
60
50
30

180

200

190

aggregated

ISP

inet

2l
am

a
(o

ve
rla

y
ne

tw
or

k)

individual
cl
us

te
r

p9

p10

p11

p12p5 p6 p7 p8

...

p4

n4

Figure 6.3: 2-LAMA over a physical network.

cn =

#msgs∑
k=1

cmk (6.6)

Finally, in order to keep the model simple, we assume that our sharing
process is the only one that generates network tra�c. This implies that the
observable environment properties are only a�ected by system's activity.

6.4 2-LAMA speci�cation

We regard the described P2P sharing network as an OCMAS, where computers
are agents interacting according to a given coordination model. We assume
this coordination model can be adapted to improve system's performance. In
other words, we regard the P2P scenario as an AOCMAS that can be modelled
according to our 2-LAMA architecture.

In particular, �gure 6.3 illustrates our AOCMAS approach of the P2P sce-
nario in accordance with the 2-LAMA model de�ned in �5.5. The top part of
this �gure represents the agents, whereas its bottom part shows the underlying
communication network described in �6.3.1. Hence, a participant computer �so-
called a peer in BT� is symbolised by an agent pi on top of a network adaptor ni
�e.g. see p4 over n4 in �g. 6.3. Hence, the bottom part of �gure 6.3 corresponds
to �gure 6.2b. Notice that in the P2P scenario, the net of actually contacted

90 CHAPTER 6. CASE STUDY: P2P SHARING NETWORK

agents forms an overlay network since it is a net over the underlying physical
network. Besides, the �gure also shows assistants as agents ai on top of network
adaptors naj which are attached to ISPs.

Speci�cally, the top part of �gure 6.3 illustrates a particular speci�cation
(2lamap2p) of the 2-LAMA model (2LAMA) in the P2P scenario as formalised
in equation 6.7. As a result, such speci�cation has its own meta-level (mlp2p ∈
ML), domain-level (dlp2p ∈ DL) and assistance functions (γp2p ∈ AssistF car-
ried out by mlp2p) as expressed in equation 6.8.

2lamap2p ∈ 2LAMA (6.7)

2lamap2p = (mlp2p, dlp2p, γp2p) (6.8)

Next sections provide further details on these components. For the sake of
simplicity, in these sections we omit the 'p2p' subscript in equations since all
of them refer to the P2P scenario. Also, we omit indicating that each symbol
in lower-case letters belongs to the corresponding upper-case symbol de�ned by
the model �like dl ∈ DL.

6.5 Domain-level speci�cation

In the P2P scenario, the domain-level is the one that performs the sharing ac-
tivity. According to our 2-LAMA model, it has its own set of agents (agsDL)
which interact within an environment (envDL) according to an organisation en-
tity (orgDL) �see eq. 6.9.

dl = (agsDL, orgDL, envDL) (6.9)

orgDL = (socStrDL, socConvDL, goalsDL) (6.10)

Therefore, domain-level agents correspond to the computers that share the
datum. For instance, in the example illustrated in �gure 6.3, as there are 12
peers, the execution state would have agsDL = {p1, . . . , p12}. Hence, the un-
derlying physical network described in �6.3 is part of their environment. For in-
stance, the network illustrated in the bottom part of �gure 6.3. Finally, their or-
ganisation is based on the BitTorrent protocol detailed in �6.2. Next subsections
specify the observable properties of the �rst two elements (AgsPDL, EnvPDL)
and the three organisational components (socStrDL, socConvDL, goalsDL) �
see eq. 6.10 and �5.3. Notice that in the subsequent equations we omit the 'DL'
subscript since all of them refer to the domain-level.

6.5.1 Observable properties

The organisation speci�cation refers to the observable properties of agents and
environment instead of themselves �see �5.3. Furthermore, the observable
properties are essentially compounds of information which are local to clus-
ters �see �5.5.1.2. Accordingly, 2lamap2p speci�es the properties of a single

6.5. DOMAIN-LEVEL SPECIFICATION 91

agent (AgP), the properties of the environment of a cluster (EnvPC) and those
properties that are not associated to any particular cluster (EnvPSnC). These
properties are described as follows and are used later when specifying the organ-
isational components.

6.5.1.1 Agent Observable Properties

The observable properties of a single agent are related to datum possession and
agent's activity as de�ned by equations 6.11-6.16.

AgP = Has× Compl ×Act× Pace× SimultDataMsgs (6.11)

Has = {yes, no} (6.12)

Compl = {n : n ∈ R ∧ n ≤ 100} (6.13)

Act = {none, receiving, serving} (6.14)

Pace = {n : n ∈ R ∧ n ≤ 100} (6.15)

SimultDataMsgs = N (6.16)

On the one hand, the datum possession is described by two properties: Has
and Compl. The former (Has) is simply a boolean property that indicates if the
agent has (yes) or has not (no) the shared data. At the same time, the latter
property (Compl) provides more detail since it expresses the percentage of data
possession. Its value ranges from 100% (if the agent has the datum) to 0% (if
it has not the datum). Intermediate values describe situations where an agent
already has received some packets of the corresponding data message.

On the other hand, the agent's activity is described by three properties:
Act, Pace, SimultDataMsgs. The former (Act) is a general description of the
activity which details if the agent is receiving the datum (receiving), serving
it (serving) or inactive (none). The second property (Pace) is a measure of
the pace with which an agent is transmitting data �i.e. an upload ratio. This
measure is the percentage of nominal bandwidth that the agent is using to send
data in the current time instant �all protocol message types are included. For
instance, if an agent sends a message of 20 data units through its upload channel
of bandwidth 5 without any restriction, its Pace is 100% and will require 4 time
units to be transmitted. However, if the agent decides to send it at a Pace of
40% (i.e. 2 units), it will require 10 time units.

Finally, the latter property (SimultDataMsgs) is a measure of the amount
of data messages that are sent simultaneously in the current time instant. As
an illustration, we assume that an agent with a nominal bandwidth of 10 starts
sending a data message at tick 1 and another one at tick 3. If those messages
require 100 data units to be transmitted, then at tick 4 the SimultDataMsgs
is 2 since the agent is sending both messages simultaneously.

92 CHAPTER 6. CASE STUDY: P2P SHARING NETWORK

6.5.1.2 Environment Observable Properties

The observable properties of the environment are related to the time consumed
to spread the datum and the network bandwidths used by each participant. The
time consumed is not associated to any particular cluster (EnvPSnC), whereas
the bandwidths are related to the environment of each cluster of peers (EnvPC).

Speci�cally, EnvPSnC is the sharing time (ShTime) as expressed in equa-
tions 6.17-6.18. It is worth to mention that in subsequent chapters, we may also
refer to this time as tspread.

EnvPSnC = ShTime (6.17)

ShTime = N ∪ {undef} (6.18)

This sharing time (ShTime) is the number of ticks from the beginning of the
data sharing process up to the moment in which all computers have the datum.
Since this sharing time is unknown until the end of the process, this property
has an unde�ned value (undef) until then. As a result, the meta-level can use
this property to evaluate a whole sharing process and compare it with previous
ones. Nevertheless, it cannot use this property to evaluate system's evolution
during the sharing process �see �6.5.4 for a further discussion on this topic.

On the other hand, the information related to a cluster (EnvPC) is com-
posed by: a detailed information about the bandwidth of its agents (NetBWC),
the measured communication latencies among participants (NetLatC) and
a metric that evaluates their degree of connectivity (ConnectC) �see
eqs. 6.19-6.23.

EnvPC = NetBWC ×NetLatC × ConnectC (6.19)

NetBWC = {netBWi : netBWi ∈ NetBW ∧ (1 ≤ i ≤ m)} (6.20)

NetBW = NomBW × EffUpBW × EffDnBW
NomBW = N, EffUpBW = R, EffDnBW = R (6.21)

NetLatC = (NetLat)
m·(m−1)

NetLat = n, n ∈ R ∧ n ≥ 0
(6.22)

ConnectC = (Connect)
m

Connect = n, n ∈ R ∧ n ≥ 0
(6.23)

In particular, the information about the bandwidth of participants
(NetBWC) contains detailed information about the bandwidth of each i -th
agent in the cluster (NetBW) �in eq. 6.19, m stands for the number of agents in
a cluster. This information includes the nominal bandwidth (NomBW), which
is the physical maximum available bandwidth of an agent's individual link �it is
the same for both the upload and download channels, see 6.3.1. Also, it includes
the agent's upload e�ective bandwidth (EffUpBW), which is its current actual
bandwidth consumption used to send data. For instance, a participant may have
an individual link with a bandwidth of 20 units �i.e. NomBW = 20� but it may

6.5. DOMAIN-LEVEL SPECIFICATION 93

be sending only 15 data units in the current time instant �i.e. EffUpBW = 15.
Similarly, it also includes agent's download e�ective bandwidth (EffDnBW),
which is its current actual bandwidth consumed to receive data. For example,
due to a network saturation in some aggregated links, an agent may be receiving
only 10 units of data �i.e. EffDnBW = 10� instead of the 20 units allowed by
its nominal bandwidth.

Besides, the communication latencies (NetLatC) and the connectivity met-
ric (ConnectC) are described in �7.2.1.1 when discussing about the social rela-
tionships adaptation. Brie�y, the communication latencies (NetLatC in eq. 6.22)
are measures of the communication delay among each pair of agents in a clus-
ter �i.e. there are m · (m− 1) measures. Whereas the connectivity metric
(ConnectC , eq. 6.23) is a single value for each cluster participant that sum-
marises all its communication latencies �i.e. there are m values.

6.5.2 Social Structure

According to 2-LAMA, the social structure speci�cation (socStr) has three com-
ponents: roles, groups and relationships (rels) �see �5.3.1. Equations 6.24-6.27
specify them in the P2P scenario.

socStr = (roles, groups, rels) (6.24)

roles = {peer} (6.25)

groups = {cluster} (6.26)

rels =
{
Contact(agi, agj) : peer ∈ Ragi ∧ peer ∈ Ragj

}
(6.27)

Due to the �at organisation of BitTorrent protocol (a pure peer-to-peer
organisation), there is a single role (peer) played by all the computers that
share the datum7. Also, there is a single sort of grouping structure (cluster),
which refers to those participants connected to a same ISP. Moreover, there is a
single relationship among peers (Contact), which exists between two participants
if they know about each other. Hence, these relationships constitute the overlay
network over the physical network as illustrated in �gure 6.3.

6.5.3 Social Conventions

The social conventions have three components in 2-LAMA: protocols (prots),
norms (norms) and a detection policy (detecPol) �see �5.3.2. The equa-
tions 6.28-6.31 specify such components in the P2P scenario.

socConv = (prots, norms, detecPol) (6.28)

prots = {bitTorrent′} (6.29)

7Notice that the tracker role �de�ned by BitTorrent protocol in �6.2� belongs to the Or-
ganisational Layer in our Coordination Support perspective. Hence, it does not belong to
domain-level participant agents, as discussed in �6.7.

94 CHAPTER 6. CASE STUDY: P2P SHARING NETWORK

norms = {normBW,normFR} (6.30)

detecPol = full (6.31)

There is a single protocol (bitTorrent′) which is a derivative of the Bit-
Torrent protocol described in �6.2.8 We regard the original BitTorrent as a
non-adaptive coordination model, since its coordination mechanisms are not al-
tered along the execution. In contrast, we propose an adaptive coordination
model, which includes two norms that are adapted by the meta-level. These
norms di�er in the number of involved interactions. On the one hand, there is a
single-interaction norm (normBW) that limits the amount of upload bandwidth
that agents can use. This way, participants cannot use the network as an in�nite
resource. On the other hand, we de�ne a multiple-interaction norm (normFR)
that limits the number of simultaneous data messages a computer can send. In
this manner, meta-level can indirectly regulate the amount of simultaneous data
transmissions to avoid network channel saturation.

In this speci�cation, the violations of such conventions are fully detected by
a mechanism located at ISPs which �lters out o�ending messages. This approach
is not unrealistic since, nowadays, there exist ISP initiatives [Xie et al., 2008]
to improve �and be involved in� P2P distribution systems. Accordingly, the
detection policy speci�es there is a full detection (full) of convention violations.

Norms

As mentioned, the normBW prevents agents from making massive use of their
bandwidth to send/receive data to/from other participants. It declares that an
agent cannot use more than maxBW percentage of its nominal bandwidth as
formalised in eq. 6.32. In particular, it prohibits (prh) that a domain-level agent
(agi) uploads to the network (paceagi ∈ Pace) more than a given threshold
(maxBW) of data units at a certain moment �see �6.5.1.1 for further details
about Pace agent property.

normBW = prh (peer ∈ Ragi ∧ paceagi > maxBW) (6.32)

Limiting the network usage may increase the execution time since messages
are sent at a lower pace. However, using it as an in�nite resource can also increase
the execution time because network channels become saturated and message
latencies increase. Thus, depending on network status, di�erent maxBW can be
useful in order to use as much network as possible without saturating it. Hence,
the value of maxBW is not de�ned by the designer at the speci�cation stage,
but it is de�ned at run-time by the meta-level.

In contrast, the normFR is targeted to limit the number of simultaneous
data messages. It de�nes that a participant cannot send simultaneously the
datum to more than maxFR peers. In other words, it limits the number of

8Such derivative is detailed later in �6.7, since it also contains messages related to the
meta-level which is speci�ed in next section.

6.5. DOMAIN-LEVEL SPECIFICATION 95

p
1

p
3

p
2

p
4

m
a
x
FR
=
1 p

1
p
3

p
2

p
4

p
1

p
3

p
2

p
4

m
a
x
FR
=
3

t
0

d d

d

d

d

p
1

p
3

p
2

p
4

d d

d

p
1

p
3

p
2

p
4

d

d

d

d

p
1

p
3

p
2

p
4

d

d

d

d

p
1

p
3

p
2

p
4

d

d

d

d

t
1

t
2

t
3

t
4

Figure 6.4: normFR example (d stands for datum, and t for time).

receiving agents (we call them friends of the sending agent) to whom a partici-
pant can simultaneously send the data. It is formalised in equation 6.33, where
there is a prohibition (prh) of a formula that is true if a domain-level agent (agi)
is simultaneously sending (simultDataMsgsai ∈ SimultDataMsgs) more than
maxFR data messages at a certain moment �see �6.5.1.1 for further details
about SimultDataMsgs agent property.

normFR = prh (peer ∈ Ragi ∧ simultDataMsgsagi > maxFR) (6.33)

In this manner, the meta-level can also alter the network tra�c by concen-
trating (small maxFR) or spreading (large maxFR) the data messages towards
a few or a lot of destination agents. As an illustration, in �gure 6.4 we as-
sume there is an agent with the datum (p1) and three agents without it (p2..p4).
Also, we assume that all participants have the same capacity to send/receive
data. Accordingly, the capacity to send data of p1 is smaller than the capacity
of receiving data of p2..p4 altogether. In such a case, if maxFR = 1, at tick
t0 agent p1 sends the datum to only one of the other participants, which is p2

in the �gure. Then, p2 has the datum sooner (at t1) than if maxFR = 3 (at
t3). Because if maxFR = 3, at t0 agent p1 sends the datum to all participants
simultaneously, and data travels slower when traversing shared links. This is
depicted at t1, because when maxFR = 3, p2 has only part of the datum. Con-
sequently, if maxFR = 1, at t1 agent p2 can start serving the datum to one of
the remaining participants while p1 serves to the other. Whereas, if maxFR = 3,
at t1 agent p2 can not act as a source yet because it does not have the complete
datum. Overall, all participants have the datum in less time when maxFR = 1
(at t2) instead of maxFR = 3 (at t3). However, notice that the best value for
maxFR depends on network topology �i.e. which links are shared� and may
change along the execution depending on participants �i.e. who has the datum�
and network status �i.e. link saturation. As a result, like maxBW , the value of
maxFR is also de�ned by the meta-level at run-time.

96 CHAPTER 6. CASE STUDY: P2P SHARING NETWORK

6.5.4 Goals

In 2-LAMA, organisational goals are speci�ed by: a set of relevant observable
properties (propGoals) and an objective function (ω) �see �5.3.3. Their speci-
�cation in the P2P scenario is formalised in equations 6.34-6.38.

goals = (propGoals, ω) (6.34)

propGoals = {shT ime, compl} (6.35)

ω(propGoals, shT ime, compl) =

{
γShTime(shT ime) if shT ime 6= undef

γCompl(compl) otherwise
(6.36)

γShTime (shT ime) = (maxShTime−shTime)/maxShTime (6.37)

γCompl (compl) = compl/100 (6.38)

Since the target is to share the datum as fast as possible, the relevant observ-
able properties contain the sharing time (ShTime) �as explained later, another
property is required when the �nal sharing time is still not available. Accord-
ingly, the objective function (ω) depends on this property, which is formalised
in a separate function (γShTime) for simplicity. This other function would have
its maximum satisfaction (1) if the actual sharing time has this ideal value, i.e.
zero. Otherwise, it decreases its value up to the minimum satisfaction (0) if the
sharing time is too large �i.e. when it approaches the constant maxShTime,
which is also the instant when the simulator cancels the sharing process.

However, the sharing time is unde�ned until the end of the sharing process
�see �6.5.1. Hence, it can only be used to compute the goal satisfaction at the
end of the process, but not during this process. In other words, this property is
useful to evaluate a sharing process in order to compare it with previous sharing
processes �see �7.5. But it cannot be used along a sharing process to reason
about the current organisational adaptation.

Alternatively, another function (γCompl) is used when the sharing time is
not available (undef). This alternative function is based on the amount of data
spread along the system, such information is available along the whole sharing
process. It can be computed as an average of the degree of completeness of
each agent (Compl, eq. 6.13). For instance, if at the beginning there is only a
single agent out of 10 that has the data, then the system's completeness is 10%
(100·1+0·9

10). Later, if this source is transmitting a data message to a destination
agent, and the half of this message has achieved its destination, the completeness
is 15% (100·1+50·1+0·8

10). Finally, when all participants have the whole datum, the
completeness is 100%. Notice that system completeness is somehow inversely
related to the remaining time since the larger is the completeness, the shorter is
expected to be the remaining time.

In particular, there is an observable property (Compl) that measures the
described completeness. Its ideal value is 100% since it means that all peers have
the datum. Hence, the corresponding function (γCompl) has a level of satisfaction
that approaches its maximum (1) as the agents get the datum.

6.6. META-LEVEL SPECIFICATION 97

6.6 Meta-level speci�cation

In our 2-LAMA model, the meta-level is devoted to provide assistance services
to domain-level agents. However, the basic BitTorrent protocol does not contain
these services. Instead, it only has a directory service provided by the tracker
�see �6.2. According to our Coordination Support model, such a service is
formally provided by the Organisational Layer �see �2.4.2. Therefore, the base-
line scenario does not have assistance services, so it does not have the adaptation
service. In fact, it has a static coordination model �as stated in �6.1.

In contrast, the 2-LAMA speci�cation has a meta-level to update the
domain-level organisation �i.e. it has an adaptive coordination model. No-
tice that, although domain-level is inspired in the pure peer-to-peer organisation
of BitTorrent, 2-LAMA applied to this scenario is no longer following such an
organisation.

In particular, the meta-level has the components speci�ed in equation 6.39.
Like the domain-level, it has three components �see �gure 5.3 in the formalisa-
tion chapter. In brief, it is composed by assistant agents (agsML) which interact
within an environment (envML) that let them access domain-level �see eq. 5.43.

ml = (agsML, orgML, envML) (6.39)

orgML = (socStrML, socConvML, goalsML) (6.40)

Also, its organisation has the three components as shown in equation 6.40.
These components are speci�ed in the following subsections, where equations
omit the 'ML' subscript since all of them refer to the meta-level. Notice that,
due to the extension of the speci�cation of the adaptation functions applied by
the meta-level, they are fully speci�ed in next chapter.

6.6.1 Social Structure

The three social structure components (roles, groups and relationships, see
�5.3.1) are speci�ed in equations 6.41-6.44.

socStr = (roles, groups, rels) (6.41)

roles = {assistant} (6.42)

groups = {cluster} (6.43)

rels =
{
ContactA(agi, agj) : assistant ∈ Ragi ∧ assistant ∈ Ragj

}
(6.44)

Essentially, there is a single role in the meta-level, which is assistant.
The agents that play this role (i.e. all meta-level agents) are system trusted
agents (i.e. sta� agents) that can reason at a higher level of abstraction than
peers �see �5.4 and �5.5.1.3. Each assistant provides assistance services to a
disjoint subset of peers (i.e. a cluster). Hence, meta-level has also the concept of
cluster grouping, which only includes an assistant and is aligned with domain-
level clusters �i.e. it is connected to the same ISP. As an illustration, the

98 CHAPTER 6. CASE STUDY: P2P SHARING NETWORK

dashed lines in the top part of �gure 6.3 depict how domain-level and meta-level
are grouped into clusters. Moreover, the bottom part of the same �gure shows
that assistants are located at ISPs, and thus their communications are fast.

The assistant of each cluster contacts other assistants in order to exchange
summaries about the information they collect �see �5.5.3.1. Accordingly, the
speci�cation includes a relationship among assistants (ContactA). As an illus-
tration, these relationships are drawn as grey lines among assistants in the top
part of �gure 6.3.

6.6.2 Social Conventions

The social conventions are de�ned by the three components (protocols, norms
and a detection policy, see �5.3.2) speci�ed in equations 6.45-6.48.

socConv = (prots, norms, detecPol) (6.45)

prots = {bitTorrent′} (6.46)

norms = {normHAS} (6.47)

detecPol = none (6.48)

Like domain-level agents, assistants also use a derivative (bitTorrent′) of
the BitTorrent protocol which is detailed later in �6.7. In addition, the meta-
level has a norm (normHAS) which limits the number of domain-level agents
that can be informed about new data sources in other clusters. Such norm could
be adapted by an additional meta-level on top of current one as suggested in
de�nition 6. However, in current speci�cation, there is only one meta-level, so
this norm is �xed.

Besides, as mentioned in previous subsection, assistants are sta� agents.
Accordingly, they are system trusted agents that do not violate neither the
protocol nor the norm. Hence, the detection policy of meta-level speci�es no
convention violation detection (none).

In particular, the normHAS limits the number of domain-level agents (in a
cluster) an assistant can inform about a participant (in another cluster) having
the data. This limit is related to the number of relationships among agents
of di�erent clusters that an assistant can suggest. In this manner, this norm
regulates how assistants can update domain-level's social structure.

This norm is formalised in equation 6.49 as a prohibition (prh) that an
assistant (ai) sends more than maxHAS messages to a domain-level agent (pj)
to indicate that another participant has the datum. Such messages are informally
called �has messages� �see �6.7. In fact, assistants have a related observable
property (HasMsgs) which is speci�ed in equations 6.50-6.52. It is a counter of
the number of such messages sent to each participant (HasMsgsForPeer).

normHAS = prh
(
∃ai|assistant ∈ Rai ∧ hasMsgsForPeerai,pj > maxHAS

)
(6.49)

6.6. META-LEVEL SPECIFICATION 99

AgP = HasMsgs (6.50)

HasMsgs = (HasMsgsForPeer)
|Ags| (6.51)

HasMsgsForPeer = N (6.52)

In brief, an assistant cannot simply suggest all its domain-level agents �
the ones in its cluster� to contact a participant having the datum. Instead,
it may have to choose only some of them. Therefore, it regulates the number
of neighbours among di�erent clusters. A small maxHAS reduces aggregated
channels usage but may increase the sharing time since some agents in a cluster
have to wait until the other ones receive the datum.

6.6.3 Goals and Adaptation

The meta-level goals are the same than the domain-level ones as introduced
in �5.5.1.1 and formalised in equation 6.53. Accordingly, they are speci�ed by
the equations 6.34-6.36.

goalsML = goalsDL (6.53)

In order to check goal ful�lment, assistants access domain-level observable
properties during the adaptation process. This is feasible since meta-level envi-
ronment includes such properties �see eq. 5.43. In particular, as each assistant
is in charge of a cluster of domain-level agents, it only perceives the observable
properties of that group of agents. However, as explained in �5.5.3.1, an assistant
receives a summary of those properties in other clusters from other assistants.
The structure of this summary is speci�ed in next chapter 7, since it is entirely
devoted to organisational adaptation �see �7.3.1.

Besides, as this thesis focuses on the organisational adaptation service, in
the case study we only specify some of the assistance functions related to this
service. In particular, we specify the partial adaptation functions of the rela-
tionships (αRelsi) and norms (αNi), and their corresponding agreement functions
(βαRels and βαN) in equations 6.54-6.57 �see ��5.5.2-5.5.3 about the model.

αRelsi = optimiseLatencies (6.54)

βαRels = ∪ (6.55)

αNi ∈ {heuristic, cbr} (6.56)

βαN = voting (6.57)

On the one hand, the adaptation of the relationships (αRelsi) is based on
optimising the latencies among domain-level agents. First, an assistant obtains
information about the latency of communications among its domain-level agents
�see the latency metric de�nition in �6.3.2. Next, it reasons about such mea-
sures in order to build an overlay network of low latency paths for the transmis-
sion of the datum. Then, it sends participants the list of other agents to contact.
As a result, the agreement process among assistants (βαRels) is the union of their

100 CHAPTER 6. CASE STUDY: P2P SHARING NETWORK

proposed relationships, since their creation is local to each cluster. Thus, each
assistant decides which updates are applied to the relationships initiated by the
participants in its cluster.

On the other hand, we specify two alternatives to perform the norm adap-
tation (αNi). In can be based on an adaptation knowledge gained either at
design time �by coding a heuristic� or at run-time �by using machine learning.
The former, using a heuristic (heuristic), requires previous expert knowledge
and provides a �xed estimation. Whereas the latter, using machine learning,
estimates this relationship automatically and is able to evolve it along time.
In particular, the machine learning technique we use is based on Case-Based
Reasoning (cbr) [Riesbeck and Schank, 1989].

Besides, in despite of the alternative, assistants follow a voting scheme
(voting) to achieve an agreement on how to actually update norms (βαN). In
current implementation, a simple replicated averaging approach is used: each
assistant computes the average for each suggested norm parameter value and
communicates it to its cluster of participants.

Next chapter 7 is devoted to specify these adaptation functions. More specif-
ically, it provides several details and examples about the relationship adaptation
in �7.2 and the two norm adaptation alternatives in �7.3.

6.7 Protocol speci�cation

Previous sections specify domain-level and meta-level components. In both
cases, the protocol component contains a particular BitTorrent protocol deriva-
tive (bitTorrent′). This section speci�es this protocol, which involves both levels.
Like the base-line BitTorrent protocol de�ned in �6.2, its derivative is speci�ed
by a table of messages, an explanation of phases and an illustrative example.

This derivative protocol is extended to include messages between levels, as
well as messages between meta-level agents. Table 6.3 presents these messages
in di�erent protocol phases. This way, it is easier to compare it with original
protocol in table 6.1. Notice that there are two new phases: the social structure
phase and the norms phase. These phases are related to the two organisational
components that are adapted. The former (social structure phase) is devoted to
estimate network latencies and vary the relationships in order to exploit meta-
level assistance. Whereas the latter (norms phase) is devoted to agree new norms
among assistants and communicate them to participant agents.

Next subsections detail the usage of these messages structured into protocol
phases. These sections complement their speci�cation with fragments of the
example depicted in �gure 6.5. This example has three agents playing the role
peer (pi) grouped into two clusters. Accordingly, there are two assistants (ai).

6.7.1 Initial phase

In the original BitTorrent protocol, participant agents initially contact the
tracker. This tracker provides a directory service as explained in �6.2. Brie�y,

6.7. PROTOCOL SPECIFICATION 101

Protocol Phase Levels Protocol Messages

Initial both join <hasDatum>

Social structure DL lat_req, lat_rpl, bitfield <hasDatum>

both get_lat <peers>, lat <peer> <measure>,

contact <peers>

Data sharing DL request, data, cancel, choke, unchoke

Noti�cation DL have

both complete, has_datum <peer>

ML all_complete, complete_peer <peer>

Norms both norm <norm_id> <definition>

ML vote <param> <value>, summary <sump>

Table 6.3: 2-LAMA Protocol messages.

agents join this directory and obtain the references to other participants from it
�i.e. agents use this service to be involved in their organisation. From our Co-
ordination Support perspective, such a directory service is formally provided by
the Organisational Layer �see �2.4.2. On top, the Assistance Layer can access
the list of organisation's participants and update their net of relationships by
interacting with the Organisational Layer. However, for the sake of simplicity,
current protocol speci�cation lets domain-level agents directly provide joining in-
formation to assistants. And it lets these assistants update agents' relationships
by informing sharing computers about other participants �see next phase.

Accordingly, in the initial phase of 2-LAMA protocol, agents join a cluster
by contacting the assistant in charge of it. In our speci�cation, agents entering
the system contact the closest assistant, i.e. the one they have a smallest la-
tency with. Like in BT protocol, a new participant sends a join message (join
<hasDatum>) which details if it has (<hasDatum>=1) or has not (<hasDatum>=0) the
datum. For example, in �gure 6.5 participants p1 and p2 send a join message
to a1 at tick t1. These messages express that the �rst one (p1) has the datum,
whereas the last one (p2) lacks it. For the sake of simplicity, �gure 6.5 contains
only some of the protocol messages, and the initial phase of the second cluster
is omitted.

6.7.2 Social structure phase

After the initial phase, there is another phase related to the social structure adap-
tation (αRels). Since it is based on communication delays (eq. 6.54), assistants
collect information about latencies between participants in their cluster in order
to compute the lowest latency net of relationships. Hence, they start requesting
domain-level agents to measure their latency with all other participants in their
cluster (get_lat <peers>). After receiving that message agents measure their la-
tencies with others in their cluster by sending a test message (lat_req, lat_rpl),
and send a results message to its assistant (lat <peer> <measure>). Assistants
use this information to compute a net of relationships among domain-level agents

102 CHAPTER 6. CASE STUDY: P2P SHARING NETWORK

join 1
p

1
a
1

p
2join 0

get_lat p1

lat_req
lat_rpl

p
3

a
2

contact p1

bitfield 0
bitfield 1

lat p1 2

complete_peer p1

has_datum p1

request

request

data

norm normFR maxFR 1

choke

norm normBW maxBW 100

complete
unchoke

requestcomplete_peer p2

t
1

t
2t

3
t
4

t
5

t
6

t
7

t
8

t
9

t
10

t
11

t
12

t
13

t
14

t
15

t
16

t
17

t
18

t
19

t
20

t
21

influenced by
normHAS

influenced by
normFR

influenced by
normBW

Figure 6.5: 2-LAMA protocol example.

in their clusters (see �7.2), and tell each agent which other participants it has to
contact (contact <peers>). The actual social structure �i.e. the net of relation-
ships that ful�l social structure speci�cation� de�nes which other participants
each agent can contact in order to obtain the data. After receiving their con-
tacts, participants send a greeting message (bitfield <hasDatum>) to each one
of their contacts, specifying whether they have the datum (<hasDatum>=1) or not
(<hasDatum>=0) �i.e. the handshake message is omitted.

Similarly, in case a new agent enters the system, its assistant asks this
single participant to measure its latencies against the rest of the cluster, and
computes the best organisation again. On the contrary, if an agent leaves the
system, its assistant can compute the new organisation without collecting new
latencies. Notice that, in contrast to the BT protocol, in any case, the supplied
list of contacts does not include all participants, but only a subset of agents in
its cluster.

As an illustration, in �gure 6.5 assistant a1 asks p2 to measure its latency
to p1 at t4 (get_lat p1). Then, p2 sends a latency request message (lat_req)at
t6 and receives its replay from p1 (lat_rpl) at t8. Later, assistant a1 receives
the corresponding elapsed time measure at t9. In such moment, the assistant
computes the net of relationships among participants. However, before sending
the contact messages, it informs them about current norms as explained in �6.7.5.
Then, a1 only needs to send a contact message to one of the agents that should

6.7. PROTOCOL SPECIFICATION 103

contact another one. In this case, it sends the contact message (contact p1) to
p2 at t12. As a consequence, both participants exchange the bit�eld messages
(bitfield) between t13 and t15.

6.7.3 Data sharing phase

Once the social structure phase is �nished, agents lacking the datum start a
sharing phase requesting the data (request) from their complete contacts9. No-
tice that participants can only serve a maximum number of agents de�ned by
themaxFR value �see normFR in �6.5.3. Hence, upon a request, agents having
the datum start sending it (data) if they are serving fewer participants than al-
lowed number. Otherwise, if an agent is already serving the maximum number,
it replies with a blocking message (choke) which denotes it can not serve the
datum and that it will ignore any further messages. However, as soon as one of
the current data transmissions ends, the agent informs waiting peers with an un-
blocking message (unchoke) that its status has changed. Thus, participants still
lacking the datum can request it again. Agents lacking the datum are allowed
to obtain data from two sources simultaneously for a short period of time. This
is done in order to compare their e�ective bandwidth, and to choose the faster
source and discard the other one by means of a cancel message (cancel).

For instance, in �gure 6.5 the agent p2 asks p1 for the datum (request) at
t15. As a result, p1 starts sending the datum (data) to p2 at t16. In contrast,
p3 also requests data at t11 but p1 blocks it (choke) at t17. The reason that p1

blocks p3 is that when it receives p3's request at t17, it is already sending data
to the maximum number of agents allowed by maxFR �current maxFR value
is 1. Later, as soon as p1 �nishes sending data to p2 at t19, it tells p3 that it is
available (unchoke). So, p3 can request the datum again.

6.7.4 Noti�cation phase

The noti�cation phase is related to notify participants and assistants about
new complete agents. For instance, as soon as one agent has the datum, it in-
forms with a datum possession message (have) those contacts that still lack it,
so they can request the datum. Furthermore, upon data reception, a partici-
pant also informs its assistant with a datum possession message (complete), and
its assistant shares this information with other assistants with the correspond-
ing possession messages (complete_peer <peer>). Afterwards, other assistants
can inform some participants in their cluster about the new data source with
an additional possession messages (has_datum <peer>). The number of agents
informed depends on the meta-level norm normHAS �since it de�nes the max-
imum number (maxHAS) of informed participants within a cluster, see �6.6.2. In
that moment, informed participants may request the datum to the new source.

9As opposed to BitTorrent protocol, in 2-LAMA protocol there are neither interested mes-
sages nor automatic blocking replies (interested and choke). Instead, request messages
(request) are used and the data can be just sent.

104 CHAPTER 6. CASE STUDY: P2P SHARING NETWORK

Besides, an assistant also informs other assistants when all agents in its clus-
ter are complete with a cluster possession message (all_complete), preventing
further unnecessary communications.

In fact, an assistant also noti�es other assistants about a new complete agent
(complete_peer <peer>) when a new complete participant joins the system. For
example, in �gure 6.5, when the complete agent p1 joins assistant a1, this one
noti�es a2 that p1 is complete (complete_peer p1) at t5. Then, a2 noti�es one
agent in its cluster (because maxHAS = 1) that p1 is complete (has_datum p1) at
t8. This noti�cation about a new complete agent (has_datum) has more seman-
tics than a contact message (contact) since the former implies that the referred
agent has the datum. Hence, the receiver can ask the new source for the data
(request) without exchanging possession messages (bitfield) to obtain other's
datum possession. This saves the time and network resources consumed by the
corresponding handshake messages. Following the example in �gure 6.5, at t12

agent p3 is not sending a possession message (bitfield) to p1, but requesting
the datum (request).

Notice that when an assistant selects which agents are informed about a new
data source (has_datum <peer>), it is updating the net of relationships among
participants. In other words, this message is also related with the social structure
adaptation (αRels). In fact, as the social structure adaptation function is related
to communication latencies, an assistant chooses those incomplete agents with
a lower latency as detailed in �7.2.

Furthermore, the organisational adaptation may require additional infor-
mation, that is collected by assistants at the beginning of an adaptation process.
For example, current norm adaptation process requires information about the
degree of completeness of each agent (e.g. if it has already received 50% of the
datum) �see �7.2.1.2. Hence, when an adaptation step starts, each assistant
sends a message to query their participants about their degree of completeness
(provide_completeness). As a response, each participant sends back to its as-
sistant a message that details the percentage of the datum it has (completeness
<percentage>).

6.7.5 Norms phase

In addition to messages related to the social structure adaptation, this derivative
protocol has some messages related to the norm adaptation (αN). Brie�y, assis-
tants use such messages to exchange information, agree on actual norm updates,
and inform participants about new norms.

In particular, each assistant perceives local information about system status
and shares a summary (sumpi) of this information with other assistants by
sending a summary message (summary <sump>). Then, they use this information
to reason about new desired norm values using their individual norm adaptation
functions (αNi , see �5.5.3).

Afterwards, assistants agree on actual norms by following a voting scheme
(βαN). Speci�cally, assistants propose their desired new maxFR value with a
vote message (vote maxFR <value>) and the maxBW value with another vote

6.7. PROTOCOL SPECIFICATION 105

message (vote maxBW <value>). Then, each assistant computes the voting result
�notice this computation is replicated as mentioned in �6.6.3. Finally, when new
norms are agreed among assistants, each assistant informs all the participants
in its cluster with a message about the actual norm de�nition (norm <norm_id>

<definition>).
In addition to inform participants when norms are updated, assistants also

notify them when they join the system. For example, in �gure 6.5, assistant
a1 sends current norms (norm <norm_id> <definition>) to its participants once
they join the system. In particular, it does it at t10..t11, i.e. before sending them
the contacts.

Chapter 7

Adaptation Mechanisms

This chapter elaborates the 2-LAMA adaptation mechanisms in the P2P sharing
network case study. In 2-LAMA, the organisational adaptation is an assistance
service provided by meta-level agents. In particular, previous chapter refers to
the adaptation of two organisational components in the P2P scenario: the net
of relationships as part of the social structure and the norms as part of the
social conventions. Current chapter details how this adaptation is performed,
including two alternatives for the norm adaptation. One alternative is based on
a heuristic coded at design-time, whereas the other one is based on a machine
learning technique that evolves at run-time. Speci�cally, the machine learning
technique approach is a tailored Case-Based Reasoning technique.

7.1 Introduction

In the context of Coordination Support, we regard the organisational adaptation
as an Assistance Layer service as described in chapter 4. From this perspective,
chapter 5 proposes the 2-LAMA as an abstract architecture to provide such
service. In order to illustrate this approach, chapter 6 presents a speci�cation
of the 2-LAMA model in a P2P sharing network scenario. Nonetheless, that
chapter just introduces the adaptation mechanisms, whereas current chapter is
entirely devoted to detail the adaptation of some organisational components in
this scenario.

In particular, this chapter deals with the adaptation of part of the social
structure and social conventions. Regarding the social structure, our P2P exam-
ple adapts the relationships among agents �which are an instantiation of the
social structure. Since these relationships pertain to the execution state of the
relationships organisational component (Rels, eq. 5.6), we refer to this adap-
tation by using the social relationships adaptation function identi�er (αRels,
eq. 5.68). In particular, this adaptation function is based on minimising the net-
work latencies among agents as introduced in �6.6.3. In current implementation,
it is performed after the initial protocol phase and each time a computer obtains

107

108 CHAPTER 7. ADAPTATION MECHANISMS

M
L

D
L o

rg
D

L

ag
DL

i

norms
DL

∘−− param
x
 −

∘− param
y
 −−

role
l

role
m

socStr
DL

rel
n

socConv
DL

ag
DL

kag
DL

j
instances

αRels αN
= optimiseLatencies =

cbr

heuristic
AssistF

Figure 7.1: Implemented adaptation functions within 2-LAMA context.

the datum �see �6.7.2 and �6.7.4.
On the other hand, regarding the social conventions, the norm adaptation

function (αN , eq. 5.71) adapts some numerical parameters of the norms. In
particular, it adapts the maximum allowed values of bandwidth consumption
(maxBW) and destination computers (maxFR) �see �6.5.3. Notice that updat-
ing these parameters may be also equivalent to remove those norms, when these
limits are large enough to avoid constraining agents �e.g. to let participants
use all its nominal bandwidth (maxBW = 100%).

Notice that previous chapters formalise a general framework to adapt all
organisational components, whereas this chapter provides a detailed description
about two of them as a proof of concept. In despite of the potential richness of
these two adaptations, the scope of this chapter is to present some versions that
illustrate our general model's basic concepts. Accordingly, in order to show that
the general model is able to deal with di�erent implementations of these func-
tions, we present two alternatives to perform the norm adaptation as depicted
in �gure 7.1. As introduced in �6.6.3, one alternative is based on a heuristic
(heuristic) coded by system designer, while the other one uses machine learn-
ing (cbr). The former requires previous expert knowledge and provides a �xed
estimation. Whereas the latter estimates this relationship automatically and is
able to evolve it along time. Speci�cally, meta-level agents use a tailored Case-
Based Reasoning (CBR) [Riesbeck and Schank, 1989] to learn how to adapt the
norms. For illustration purposes, �gure 7.1 keeps a similar layout and level of
generalisation than �gure 5.3 �notice that αRels ∈αRels and αN ∈αN .

Next sections provide further details about each adaptation approach.
These approaches are implemented in the P2P simulator described in next chap-
ter 8 and subsequently evaluated in chapter 9.

7.2 Social relationships adaptation

Meta-level agents perform the social structure adaptation function (αRels,
eq. 5.68) by applying the corresponding partial adaptation function (αRelsi ,
see �5.5.3). More precisely, the described speci�cation (αRels ∈αRels) adapts the
actual net of relationships that ful�ls the social structure speci�cation, instead

7.2. SOCIAL RELATIONSHIPS ADAPTATION 109

of the sorts of relationships. In other words, in the P2P scenario, the meta-level
provides contacts to domain-level agents (i.e. contact(x, y)), and these contacts
are instances of the sort of speci�ed relationship (i.e. Contact(ai, aj) ∈ rels)
�see eq. 6.27.

In particular, each assistant is in charge of updating the current net of re-
lationships in its cluster. Speci�cally, an assistant can request any agent in its
cluster to contact other participants in the same cluster or in another one. How-
ever, an assistant cannot provide contacts to agents in other clusters. It can only
provide complete information to other assistants, who may send contacts to their
own participants �see �6.7.4. The resulting domain-level's net of relationships,
is the union of all intra-cluster and inter-cluster relationships. That is to say,
the agreement function (βαRels ∈βαRels) is the union of partial relationships
adaptation (αRelsi ∈αRelsi) results �see eq. 6.55.

In current implementation, assistants apply their adaptation function dur-
ing the protocol's social structure phase and every time a domain-level agent is
complete �see �6.7.2 and �6.7.4. This way, the net of relationships is created
and updated depending on system's evolution.

7.2.1 Information required

In order to perform the social relationships adaptation, an assistant takes into
account information about communication latencies and datum possession as
described next.

7.2.1.1 Connectivity

On the one hand, an assistant mainly obtains the information about latencies
during the social structure protocol phase �see �6.7.2. During this phase, an
assistant asks the new agents in its cluster to measure the latencies towards the
rest of participants in the same cluster (message get_lat <peers>). The received
latency measures (message lat <peer> <measure>) contribute to the latency envi-
ronment observable property (NetLatC ⊂ EnvPC) and the connectivity metric
(ConnectC ⊂ EnvPC). The former (NetLatC) is used to compute the lower
latency paths in order to suggest contacts. Whereas the latter (ConnectC), is
used to choose the participants that are noti�ed about new complete agents in
other clusters �see maxHAS in �6.6.2.

In particular, when an assistant receives a new latency measure lat among
agent px and py, it updates netLatpx,py ∈ NetLat and netLatpy,px ∈ NetLat. In
both cases, it computes the average among previous latency average (netLati,j)
and current measure (lat) as shown in equation 7.1 �i.e. �rst i = px, j = py and
afterwards i = py, j = px. This way, the most recent measure is more relevant
than the previous ones but it stills keeps long-term information. The resulting
latency averages ({netLat1,1, · · · , netLatm,m}) conform a weighted graph that
is used to compute the lower latency paths as described later in next subsection.

netLati,j =
netLati,j + lat

2
(7.1)

110 CHAPTER 7. ADAPTATION MECHANISMS

a
1

p
1

p
2

p
3

p
4

relsenvP,agsP

p
1

p
2

p
3

2

8

p
4

10

9

14
4

Datum

a
2

p
5

p
6

p
7

p
8

p
5

p
6

p
7

2

8

p
8

10

9

14
4

a)

b)

Figure 7.2: Social structure adaptation examples.

In addition to computing netLatpx,py , netLatpx,py when receiving a new la-
tency measure, the assistant also computes the connectivity metrics of the corre-
sponding agents (connectpx , connectpy ∈ Connect) as described in equation 7.2
�i.e. �rst i = px and afterwards i = py. Since, this metric summarises all
latency measures from and towards a certain agent, it is computed as an average
where all the samples have the same weight. This way, a particular latency to a
certain participant cannot bias the result only because it is the last measured.

connecti =
(connecti ·#samples) + lat

#samples+ 1
(7.2)

7.2.1.2 Datum possession

In addition to connectivity information, an assistant receives information about
the datum possession (i.e. Has,Compl ⊂ AgsP) from its cluster but also from
other clusters. The local information is obtained at the initial, data sharing,
and noti�cation phases �see �6.7.1, �6.7.3 and �6.7.4. In particular, when an
assistant receives a join message (join <hasDatum>) from participant px, it can
update haspx and complpx . Also, while an agent px is receiving the datum,
it sends the completeness messages (completeness <percentage>) that are used
to update complpx �see �6.7.4. Finally, when an agent px receives the whole
datum, the complete message (complete) is used to update haspx .

In addition to local information, the remote one is obtained at the noti-
�cation phase �see �6.7.4. Speci�cally, it is obtained when another assistant
noti�es that a new agent py is complete (message complete_peer <peer>). In
such case, an assistant can update haspy . It is worth to mention that an as-
sistant has entire information about its cluster (i.e. all hasi, compli), but only
partial information about other clusters (i.e. it only has hasj but not complj).

7.2.2 Process

The social relationships adaptation process is performed mainly during the social
structure protocol phase �see �6.7.2. In that period, an assistant faces the two
di�erent situations exempli�ed in �gure 7.2. Each situation is shown at left

7.3. NORM ADAPTATION 111

side of each row (a,b), whereas their resulting net of relationships is shown
at the right side. The situations are depicted as weighted graphs that show
measured latencies (netLati,j ⊂ envP) and datum possession (hasi ⊂ agsP).
And the resulting net of relationships are depicted as connectivity graphs among
participants (instances of contact(i, j) ∈ rels). Both of them are explained as
follows.

If some participants within a cluster have the datum (e.g. p1 in �g. 7.2.a
left), the corresponding assistant computes the shortest paths from each agent
having the datum to the rest of participants in the cluster. This computation is
performed using Dijkstra's algorithm [Dijkstra, 1959] over arc latencies. Next, it
re-organises its cluster by telling each participant to contact with its predecessor
in its shortest path to a data source (e.g. in �gure 7.2.a right, p3 contacts p2

because the shortest path is p1 → p2 → p3).
Otherwise, if no participant within a cluster has the datum (e.g. �gure 7.2.b

left), the corresponding assistant organises its cluster to be prepared for data
entering through any agent. Accordingly, it assumes that any participant can
become a data source and computes all possible shortest paths �using Dijk-
stra's algorithm too. Next, it provides each agent with its predecessors in all its
corresponding shortest paths (e.g. �gure 7.2.b right). This way, all participants
are in contact with those neighbours that could rapidly provide the datum when
entering through any node in the cluster.

In both cases, the reorganisation is done by sending contact messages
(contact <peers>) during the social structure protocol phase. In addition, during
the noti�cation phase, every time a remote participant is complete, the partial
adaptation function is invoked again �see �6.7.4. Speci�cally, when an assistant
receives a complete message (complete_peer <peer>) the partial function (αRelsi)
determines a new net of relationships in which some local agents can contact the
remote one. Then, the assistant sends possession messages (has_datum <peer>)
to those participants to request that they contact it. Notice that the number of
selected agents depends on norm normHAS which limits the amount of these
sort of messages �see �6.6.2.

7.3 Norm adaptation

The norm adaptation in the P2P scenario follows the distributed process outlined
in 2-LAMA model �in �5.5.3. Brie�y, it consists in the four steps depicted in
�gure 7.3. First, each assistant (ai) collects some local information (agsPCi ,
envPCi) from the participants in its cluster (pj). This information is related
to network consumption and datum possession. Next, they build a summary of
this information (sumPi) and exchange it among them. The received summaries
constitute their remote information. Then, they use all these information to
make a local decision using their partial norm adaptation functions (αNi ∈αNi).
Later, their decisions are expressed as desired norm parameter values (votei) that
they exchange according to the agreement function (βαN ∈βαN). As a result,
each assistant computes the average of all parameter values and communicates

112 CHAPTER 7. ADAPTATION MECHANISMS

a
n

a
1

a
n

a
1M

L

a
n

a
1

agsP
1

C,

envP
1

C

Local information

M
L

sumP
1

sumP
n

Remote information

M
L

Local decision

i

N vote
1

i

N vote
n

M
L

norms

Final decision

A
N

a
n

a
1

D
L

p
1

….. ..

cluster
1

cluster
n

p
m

p
k

p
z

D
L

p
1

….. ..

cluster
1

cluster
n

p
m

p
k

p
z

D
L

p
1

….. ..

cluster
1

cluster
n

p
m

p
k

p
z

D
L

p
1

….. ..

cluster
1

cluster
n

p
m

p
k

p
z

A
N

agsP
n

C,

envP
n

C
…

… … … …

votes

Figure 7.3: Norm adaptation steps.

the actual values to its cluster of participants �see �6.6.3.
This process adapts the maximum allowed values of the two domain-

level norms �see �6.5.3. One value is the maximum bandwidth consumption
(maxBW) which avoids that participants use the network as an in�nite resource.
And the other value is the maximum number of destination computers (maxFR)
that regulates the amount of simultaneous data transmissions to avoid network
channel saturation. Notice that if assistants set the maximum value of a norm
to its upper limit, it is equivalent to remove the corresponding norm.

As discussed in �5.5.4, the frequency of an adaptation process depends
on di�erent costs. In the case study, we empirically obtained a time interval
(adaptinterv) after performing di�erent tests in the P2P simulator. This interval
is mainly related to the time required for system's stabilisation after a norm
update (ctransN) and the time of collecting the local information (cinfoN).

Next subsections detail each step. However, due to the extension and rele-
vance of the two alternatives employed to make the local decision, they are fully
described in subsequent sections.

7.3.1 Information required

As detailed in the general model, an assistant takes its decisions based on local
information about its cluster and remote information received from other as-
sistants �see �5.5.3.1. The underlying rationale of its decisions is to align the
amount of served data with the amount of received data. Thus, the information
required consists of measures related to complete and incomplete participants.

7.3.1.1 Local information

On the one hand, each assistant perceives local information (agsPCi , envP
C
i)

directly from the agents in its cluster. Speci�cally, in the norm adaptation
process, the relevant local information corresponds to the following observable
properties (see �6.5.1):

7.3. NORM ADAPTATION 113

� the datum possession and activity from the agent observable properties
(Has,Compl,Act ⊂ AgP ⊂ AgsPC)

� and the network consumption from the environment observable properties
(NetBW ⊂ EnvPC).

7.3.1.2 Remote information

On the other hand, each assistant receives remote information from other meta-
level agents. This remote information is generated by other assistants by ap-
plying the summary function (σi ∈ Σ, eq. 5.81) to the local information as for-
malised in equations 7.4-7.13. The summary (sumPi ∈ SumP , eq. 7.3) includes
the following data derived from local information:

� Regarding the bandwidths:

� SeedBW : the seeds bandwidth is the sum of nominal bandwidth
of participants that have the datum �see eq. 7.5, where (i, j) ∈ S
stands for participant j -th of cluster i -th, and hasi,j for its datum
possession, see eq. 6.12.

� LeechBW : the leeches bandwidth is the sum of nominal bandwidth
of participants that lack the datum �see eq. 7.6, where acti,j stands
for the activity of participant j -th of cluster i -th, see also eq. 6.14.

� SrvBW : the serving bandwidth is the sum of nominal bandwidths of
participants that are serving the datum �see eq. 7.7.

� RcvBW : the receiving bandwidth is the sum of nominal bandwidths
of participants that are receiving data �see eq. 7.8.

� RcvEffBW : the e�ective receiving bandwidth is the sum of actual
bandwidths at which participants are receiving data �see eq. 7.9.
Notice that the e�ective bandwidth may be smaller than the nominal
one when only a few data are served or if there is network saturation
that delays message transport.

� AllBW : the total bandwidth is the sum of all nominal bandwidths
�see eq. 7.10.

� Regarding the number of participants:

� Waiting: the waiting agents is the amount of participants that do
not have the datum and are neither receiving it �see eq. 7.11.

� Compl: the cluster completeness is the average of completeness of the
participants in a cluster �see eq. 7.12, where compli,j stands for the
completeness of participant j -th of cluster i -th, see also eq. 6.13.

� NPeers: the total number of peers is the amount of participants in
a cluster �see eq. 7.13.

114 CHAPTER 7. ADAPTATION MECHANISMS

The total amounts (AllBW , NPeers) are only used by the learning approach
in order to normalise the other metrics.

SumP = SeedBW × LeechBW × SrvBW ×RcvBW×
RcvEffBW ×AllBW ×Waiting × Compl ×NPeers (7.3)

σ(agsPCi , envP
C
i) = sumpi =

= (seedBWi, leechBWi, srvBWi, rcvBWi,
rcvEffBWi, allBWi, waitingi, compli, nPeersi)

(7.4)
seedBWi =

∑
i,j∈S (nomBWi,j) , S = {(i, j) : hasi,j = yes} (7.5)

leechBWi =
∑
i,j∈S (nomBWi,j) , S = {(i, j) : hasi,j = no} (7.6)

srvBWi =
∑
i,j∈S (nomBWi,j) , S = {(i, j) : acti,j = serving} (7.7)

rcvBWi =
∑
i,j∈R (nomBWi,j) , R = {(i, j) : acti,j = receiving} (7.8)

rcvEffBWi =
∑
i,j∈R (effDnBWi,j) , R = {(i, j) : acti,j = receiving}

(7.9)
allBWi =

∑mi
j=1 (nomBWi,j) (7.10)

waitingi = |{pi,j : pi,j ∈ agsi ∧ hasi,j = no ∧ acti,j = none}|
(7.11)

compli =
∑
compli,j
|agsi| (7.12)

nPeersi = |agsi| (7.13)

7.3.1.3 Knowledge information

Once an assistant receives the remote information, it aggregates such information
to the local one in order to obtain the knowledge information �see �5.5.3.1.
In particular, the knowledge information (KnowP) has the local information1

(agsPCi ,envP
C
i) and one component related to each summary component �in

eq. 7.3� as shown in equation 7.14 �each component has the identi�er of the
corresponding summary component plus a 'K' pre�x.

KnowP = AgsPC × EnvPC ×KseedBW ×KleechBW×
KsrvBW ×KrcvBW ×KrcvEffBW ×KallBW×
Kwaiting ×Kcompl ×KnPeers

(7.14)

This knowledge is obtained by applying the aggregation function (λ ∈ Λ,
eq. 5.83) speci�ed in equations 7.15-7.17. This function performs a weighted
addition of all received remote information ({sumPj | j = 1..n ∧ j 6= i}) and the

1Although the norm adaptation just uses the summary of local information, the social
structure uses directly the local information �see �7.2.1. Accordingly, the knowledge informa-
tion also includes the local information. Because, according to 2-LAMA model, all adaptation
functions retrieve their information from the knowledge information �see eq. 5.5.3.2.

7.3. NORM ADAPTATION 115

summary of local information (sumPi = σ(agsPCi , envP
C
i)) �where i stands for

the i -th assistant. Essentially, each of these summary-related components is the
sum of a local summary component plus remote ones using di�erent weights.
For instance, equation 7.16 illustrates how the knowledge serving bandwidth
of a given assistant (ksrvBWi) is computed. It is the local serving bandwidth
(srvBWi) multiplied by a local weight (wL) plus the sum of every remote serving
bandwidth ({srvBWj | j 6= i}) multiplied by remote weights (wR,j).

λ(agsPCi , envP
C
i , envP

SnC , {sumPx : x = 1..n ∧ x 6= i}) =
= knowPi =

(
agsPCi , envP

C
i , kseedBWi, kleechBWi, ksrvBWi,

krcvBWi, krcvEffBWi, kallBWi, kwaitingi,
kcompli, knPeersi)

(7.15)

ksrvBWi = wL · srvBWi +
∑n
j=1 {wR,j · srvBWj : j 6= i} (7.16)((

wL +
∑n
j=1 {wR,j | j 6= i}

)
= 1
)
∧ (@wR,j |wR,j > wL) (7.17)

The sum of all these weights is one as shown in equation 7.17, so the result
has the same range as the original components. Moreover, this equation shows
that we assume that remote information cannot be more relevant than local
one. For example, if local weight has its maximum value (wL = 1), then each
assistant takes into account only its cluster status. In contrast, if this weight is
the minimum (∀jwR,j = wL), then each assistant gives the same importance to
local information as to the remote information �this is the case in current tests.
The mid-point is an imbalance importance among local and remote information
that leads an assistant to take its decisions giving more importance to its local
cluster, but taking into account the rest of the system.

7.3.2 Local decision

In order to make their local decision, each assistant uses its partial norm adapta-
tion function (αNi ∈αNi , eq. 5.84). Such function estimates a relationship among
current norms and system performance, with the aim to suggest norm updates.

In order to show that the model is able to deal with di�erent implementa-
tions of these functions, we present two alternative functions �see �6.6.3. The
�rst alternative (αNi = heuristic) is based on a heuristic coded by the system
designer. Basically, such heuristic tries to align the amount of serving capacity
with the receiving capacity. Accordingly, it requires previous expert knowledge
and provides a criteria that is �xed at design-time �i.e. it always uses the same
coded algorithm to adapt norms.

In contrast, the second alternative (αNi = cbr) is based on a ma-
chine learning technique. In particular, it is a tailored Case-Based Reason-
ing (CBR) [Riesbeck and Schank, 1989], so it uses a base of previous cases to
decide on new situations. The tailored machine learning technique lets an assis-
tant estimate the relationship among norms and performance automatically at
run-time and lets the assistant evolve it along time.

116 CHAPTER 7. ADAPTATION MECHANISMS

Due to the extension and relevance of the two alternatives, they deserve
an entire section devoted to provide all their details. Hence, they are fully
described in sections 7.4 and 7.5. In addition to the presented approaches, there
could exist other alternatives. Even more, each assistant could make its local
decision using a di�erent approach. The only constraint is that they have the
domain and co-domain speci�ed in eq. 5.84. In such a case, it is easy to add
them to the developed simulator described in next chapter. In other words, as
all norm adaptation approaches take the same information and provide the same
sort of result, the resulting performance of the system can be compared.

7.3.3 Final decision

After each assistant computes its desired update for norm parameters all of them
agree on their actual modi�cation. Moreover, they actually update the norm and
notify it to domain-level agents. As a result, agent interactions are in�uenced
by these new norms. These agreement and norm adoption processes are detailed
as follows.

7.3.3.1 Agreement

The agreement function (βαN ∈βαN , eq. 5.85) speci�ed in the P2P scenario
is a voting approach �see 6.6.3. Accordingly, an assistant expresses its desired
update in the form of one vote for each norm. That is, one vote for the value of
the maxFR parameter of normFR and another one for the maxBW parameter
of normBW . Both values may include a special value that represents a blank-
ballot paper (BLNK). This special value means that no update is suggested in order
to let the other assistants push for their own interests. In such a case, the other
assistants will better choose required norm adaptations.

Next, each assistant sends its votes to other assistants using the vote mes-
sages �vote maxFR <value> and vote maxBW <value>, see �6.7.5. After, when it
receives the votes of all other assistants, it computes the most frequent vote
for each parameter discarding blank ballot-papers �i.e. there is a distributed
implementation that replicates the ballot recount. Finally, if norms are actually
updated, then the assistant sends them to its domain-level agents by means of
the norm de�nition messages (norm <norm_id> <definition>).

7.3.3.2 Norm adoption

Once a domain-level agent receives new norms, it tries to ful�l them �notice
that participants do not violate norms in current implementation. Thus, when
an agent receives a new maxBW smaller than the one it is using, it decreases its
sending ratio to ful�l this norm. Besides, when it receives a new maxFR, it also
tries to ful�l it. This means that if an agent is serving fewer participants than
maxFR, it will send and unblocking message (unchoke) to those participants
it had blocked previously �see �6.7.3. In contrast, if it was serving to more
friends than maxFR, it will cancel some of those data transmissions and send

7.4. HEURISTIC APPROACH TO NORM ADAPTATION 117

a blocking message (choke). Nevertheless, in our current implementation, an
agent does not need to cancel a data transmission if it has already sent more
than 75% of the datum. This behaviour avoids cancelling data transmissions
that will �nish really soon in order to minimise cadoptN and ctransN �see �5.5.4.

7.4 Heuristic approach to norm adaptation

The �rst alternative to perform the norm adaptation is a heuristic coded by the
system designer based on previous expert knowledge. In the P2P case study, this
knowledge was gained by observing several sharing processes with the same ini-
tial conditions but di�erent norm parameter values. As a result, the empirically
found heuristic tries to align the amount of serving capacity with the receiving
capacity. This heuristic is coded once at design-time and it is used along all
sharing processes. In other words, this alternative is �xed a-priori and it does
not evolve, whereas the machine learning approach described in next section
updates its criteria depending on its experience.

According to our 2-LAMA model, the heuristic partial norm adaptation
function (heuristic ∈αNi) establishes a relationship among knowledge informa-
tion (KnowP), goals (Goals), current norms (�rstNorms label), and new norms
(last Norms label) as formalised in equation 7.18.

heuristic : KnowP ×Goals×Norms→ Norms (7.18)

Speci�cally, the implemented heuristic function (heuristic′) takes into ac-
count only some components of the knowledge information and norms, and re-
turns the sort of changes to apply to norms (Changes) as formalised in equa-
tions 7.19-7.20.

heuristic′ : KsrvBW ×KrcvBW ×KrcvEffBW×
Kwaiting ×Norms→ Changes

(7.19)

Changes = ChangesFR× ChangesBW
ChangesFR = {DECR, SAME, INCR, BLNK}
ChangesBW = {DECR, SAME, MAX}

(7.20)

In particular, the heuristic may suggest the following normFR changes
(ChangesFR): to decrease maxFR by 1 (DECR), to leave the same value (SAME),
to increase it by 1 (INCR), or to change it to the special blank-ballot value
(BLNK, see 7.3.3.1). Besides, it may suggest the following normBW changes
(ChangesBW): to divide maxBW by 2 (DECR), to leave the same value (SAME),
or to set it to 100% (MAX).

As illustrated in algorithm 7.1, the heuristic function (heuristic, eq. 7.1)
receives the expected parameters �see line 1� and calls the implemented heuristic
(heuristic′, eq. 7.19) to obtain the changes to apply to norms �see line 3.
Next, it applies those changes depending on the semantic described in previous
paragraph �see lines 8-9. Finally, it returns new norms �line 11.

118 CHAPTER 7. ADAPTATION MECHANISMS

Algorithm 7.1 Heuristic approach of partial norm adaptation function.
01 def heuristic(knowP, goals, norms):

02

03 changes = heuristic'(knowP.ksrvBW, knowP.krcvBW,

04 knowP.krcvEffBW, knowP.kwaiting,

05 norms.maxFR, norms.maxBW)

06

07 newNorms = new Norms()

08 newNorms.maxFR = apply(changes.FR, norms.maxFR)

09 newNorms.maxBW = apply(changes.BW, norms.maxBW)

10
11 return newNorms

Besides, the implemented heuristic function (heuristic′) is schematised in
algorithm 7.2. This algorithm receives the mentioned knowledge components
plus current norms expressed by their parameter values �see line 1. In addi-
tion, it uses information derived from combining both knowledge and current
norms �line 3. This additional information is the expected receiving bandwidth
(RcvExpBW), that re-scales receiving nominal bandwidth (RcvBW) according
to current bandwidth limit (maxBW) as expressed in equation 7.21. This new
information re�ects that actual receiving bandwidth may be lower when there
is a bandwidth limit applied to serving agents �since less data is being injected
towards receiving participants.

rcvExpBWi = rcvBWi ·
maxBW

100
(7.21)

Also at the beginning, the algorithm starts initialising some constants that
are used as thresholds in comparisons and the changes that will be returned
�line 3. Next, the main decision regarding the choice of a normFR is related
to comparing the available bandwidth used to serve (srvBW) with the available
bandwidth used to receive (rcvBW). If there is a lack of serving bandwidth,
the suggestion is to decrease the number of friends maxFR �line 7. This way,
server agents will be simultaneously serving data to fewer participants, and these
transmissions will �nish sooner. Afterwards, once these other participants have
the datum, there will be more data sources in the system and it will take less
time to �nish the datum distribution. On the other hand, if there is an excess
of serving bandwidth and there are still participants waiting for data, then the
assistant can increase the number of friends in order to serve more agents �
lines 9-10. There is another situation in which there is also an excess of serving
bandwidth but there are no participants waiting for data �lines 12-13. This does
not necessarily mean all agents have the datum, but at least the ones lacking it
are receiving it from some source. In this case, the assistant uses a blank-ballot
paper to let other assistants push for their own interests2.

2Notice, though, that the weighting method applied to measures (see �7.3.1.3) may bring
an assistant to this case when no participants in its cluster are waiting for data, but there are

7.4. HEURISTIC APPROACH TO NORM ADAPTATION 119

Algorithm 7.2 Implemented heuristic.

01 def heuristic'(srvBW, rcvBW, rcvEffBW, waiting, maxFR, maxBW):

02

03 rcvExpBW = rcvBW * (maxBW / 100)

04 τ = 0.1 ; ε = 0.2 ; changes = new Changes()

05

06 // Adapt maxFR ------------

07 case (srvBW < (1-τ)*rcvBW) : changes.FR = DECR

08

09 case (srvBW > (1+τ)*rcvBW
10 && waiting > ε): changes.FR = INCR

11

12 case (srvBW > (1+τ)*rcvBW
13 && waiting < ε): changes.FR = BLNK

14

15 other /* srvBW ≈ rcvBW */ : changes.FR = SAME

16

17

18 if(rcvEffBW <(1-τ)*rcvExpBW) : changes.FR = DECR

19

20 // Adapt maxBW ------------

21 case (changes.FR = DECR ∧ maxFR = 1 : changes.BW= DECR

22 case (changes.FR = INCR ∧ maxBW < 100): changes.BW= MAX

23 other : changes.BW= SAME

24

25 return changes

Finally, if none of the previous cases holds, it means that the serving band-
width is similar to the receiving one. Then, the assistant opts for keeping the
same norm �line 15. That is to say, if there is no excess of serving bandwidth,
the assistant opts for the same norm instead of just leaving the decision to the
rest of the assistants.

In spite of above cases, if there is network saturation in the intermediate
channels, it is always better to decrease the number of friends. This will re-
duce the number of data transmissions. Hence, it will cut back network tra�c
and hopefully network saturation. In order to estimate whether there is net-
work saturation, the assistant checks whether the e�ective receiving bandwidth
(rcvEffBW) is smaller than the expected one (rcvExpBW). If so, this suggests
that data packets are delayed by the intermediate network because it is satu-
rated. Consequently, as a solution to saturation, the assistant opts for decreasing
maxFR �line 18.

As for the normBW , maxBW is only decreased if it is not possible to reduce
the network usage further by decreasing the number of friends �since maxFR

still waiting agents in other clusters. In such a case, if there is enough serving bandwidth, it
is better to let other assistants choose by themselves the norm parameter values.

120 CHAPTER 7. ADAPTATION MECHANISMS

is already 1. In such a case, the assistant opts for decreasing maxBW �line 21.
This way, server agents will use less bandwidth, which can help to diminish the
network saturation. In contrast, if the bandwidth was previously limited but
there is no network saturation �since the assistant chose to increase maxFR�,
then the bandwidth limit can be reset to 100% �line 22. For the remaining
cases, maxBW keeps its value �line 23.

7.5 Machine Learning approach to norm adapta-
tion

The second alternative to perform the norm adaptation is a machine learning
technique. As opposed to previous static heuristic, this machine learning ap-
proach evolves its behaviour depending on its experience. In particular, it is
a tailored Case-Based Reasoning (CBR) technique. Next subsection highlights
some characteristics of the P2P case study considering the machine learning per-
spective, and specify how CBR technique is tailored to deal with such a kind of
scenario.

7.5.1 Characterisation

According to our 2-LAMA model, the partial norm adaptation function (αNi ,
eq. 7.22) establishes a relationship among knowledge information (KnowP),
goals (Goals), current norms (�rst Norms label), and new norms (last Norms
label).

αNi : KnowP ×Goals×Norms → Norms
relation : State → Actions

(7.22)

In other words, it is a relation among system state (estimated by KnowP
underGoals perspective) and the convenient actions (in�uenced by newNorms).
This mapping is highly complex, as stated by the cooperative MAS learning
taxonomy in [Panait and Luke, 2005], since agent interactions may bring un-
expected joint behaviour. On the one hand, this categorisation de�nes as team
learning a centralised approach to discover a set of behaviours for a set of agents.
On the other hand, it classi�es as concurrent learning those approaches where
there are multiple learners. They require that the search space can be split in
disjoint parts that require disjoint actions �i.e. to decompose the problem and
the solution. However, our case joins both approaches, because we look for a
distributed learning (i.e. multiple learners) about an organisational level instead
of a local one (i.e. the search space cannot be split).

Furthermore, in the P2P scenario, this relationship is totally undetermined
since the most appropriate norms are unknown for each adaptation interval.
However, it is still possible to obtain feedback about system evolution once
a norm adaptation has been applied. Besides, the time to spread the datum

7.5. MACHINE LEARNING APPROACH TO NORM ADAPTATION 121

t
0

t
spread

adapt
interv

N

n
1

Norms:

Measures: m
1

N

n
2

m
2

n
3

... Credit Assignment
problem:

Which is the contribution
of each norm adaptation

to the final time?
?

Goals: g

Figure 7.4: Credit assignment problem.

among all agents (tspread) depends, among others, on the several norm adap-
tations performed along the execution. This poses a credit assignment prob-
lem [Jones and Goel, 2004] since it is di�cult to identify which is the positive or
negative in�uence of each norm adaptation on tspread. Figure 7.4 illustrates this
problem. From the beginning of the sharing process (t0), norms are adapted at
certain intervals (adaptinterv) depending on system state (mi evaluated by goals
g). Once the sharing process is �nished, there is a credit assignment problem
to determine which norms have in�uenced positively or negatively on the �nal
time (at tspread). In addition, to these norm issues, the P2P scenario ful�ls the
similarity assumption as, in general, similar norms are useful to close situations.

Lastly, the state space is very large, since it is multidimensional and con-
tinuous. For instance, it has more than one bandwidth measure, and all them
are continuous. Similarly, the action space is also multidimensional and has one
continuous dimension �the maxBW norm's parameter.

In order to face all these characteristics, we have tailored a Case-Based Rea-
soning (CBR). The CBR method is de�ned as the process of solving new prob-
lems by retrieving the solutions to the most similar problems from a knowledge-
base and adapting them to new problems [Riesbeck and Schank, 1989]. It is
able to deal with multidimensional continuous spaces taking pro�t of the sim-
ilarity assumption. Furthermore, we extend it to be able to take into account
heuristic suggestions and to tackle the lack of supervision by considering its own
experience �i.e. previously solved problems.

7.5.2 Case description

In classical CBR, the knowledge is represented as a collection of cases
(CaseBase) where a case (Case) has two components: a problem (Prob) and
its solution (Sol). As �gure 7.5 shows, we add a third component representing
the feedback about system evolution: the evaluation (Eval) of a solution. Such
a case is formalised in equation 7.23.

Case = Prob× Sol × Eval (7.23)

122 CHAPTER 7. ADAPTATION MECHANISMS

Case:

C
o
m
p
le
te
n
e
ss Problem

S
e
e
d
B
W

Le
e
ch
B
W

S
rv
B
W

R
cv
B
W

R
cv
E
ff
B
W

W
a
it
in
g

O
l
d
M
a
x
F
R

O
l
d
M
a
x
B
W

N
e
w
M
a
x
F
R

Solution

N
e
w
M
a
x
B
W

G
o
o
d
n
e
s
s

Eval.
Case-Base

Figure 7.5: CBR's case description.

A problem description consists of attributes (Attrib) derived from knowledge
information (KnowP) and current norms (Norms). Speci�cally, there are the
nine numeric attributes shown in equation 7.24. Those attributes related to the
knowledge information have the same identi�er than in KnowP without the 'K'
pre�x �see �7.3.1.3. Whereas the two attributes related to norms have an 'Old'
pre�x to distinct them from the new values contained by the solution attributes.

Prob = Completeness× SeedBW × LeechBW × SrvBW ×RcvBW×
RcvEffBW ×Waiting ×OldMaxFR×OldMaxBW

(7.24)
completeness = kcompli/100 (7.25)

seedBW = kseedBWi/kallBWi (7.26)

waiting = kwaitingi/knPeersi (7.27)

oldMaxFR = maxFR/knPeersi (7.28)

oldMaxBW = maxBW/100 (7.29)

In order to allow to compare similar cases in despite of network scale, all
attributes are normalised to �t in the range [0..1]. In particular, the bandwidth
measures are divided by the sum of the nominal bandwidth of all participants
�e.g. eq. 7.26. The values related to the the amount of participants are divided
by the total number of domain-level agents �e.g. eq. 7.28. And the percentage
values are divided by one hundred �e.g. eq. 7.29.

As for the solution, it has two numeric attributes as formalised in equa-
tions 7.30-7.32. They are normalised to �t in the range [0..1], too. The former
(NewMaxFR) corresponds to the updated maxFR normalised by the number
of participants. And the latter (NewMaxBW) corresponds to the updated
maxBW normalised by one hundred. Both attributes may have the blank-ballot
paper value (BLNK) meaning that the assistant does not require any speci�c value.
An assistant may choose this value if no participants in its cluster are waiting
for data and other clusters still contain waiting agents. In such a case, their
assistants will better choose required norm adaptations.

Sol = NewMaxFR×NewMaxBW (7.30)

newMaxFR =
maxFR
knPeersi

∨ newMaxFR = BLNK (7.31)

newMaxBW =
maxBW

100
∨ newMaxBW = BLNK (7.32)

7.5. MACHINE LEARNING APPROACH TO NORM ADAPTATION 123

Last, the evaluation has a single attribute (Goodness) which provides
an evaluation of how e�ective is the corresponding solution. As next sub-
sections 7.5.3.3-7.5.3.4 detail, this metric takes into account the increment of
Completeness and tspread. Also, like other case attributes its range is [0..1]
�see eq. 7.33-7.34.

Eval = Goodness (7.33)

Goodness = {n : n ∈ R ∧ n ∈ [0..1]} (7.34)

7.5.3 CBR Cycle

The classical CBR cycle [Aam, 1994] has four phases: retrieve, reuse, revise
and retain. We tailored these phases in order to take into account heuristic
suggestions and to let CBR consider its own experience when applying a solution
to the P2P sharing network. The resulting cycle is depicted in �gure 7.6. Brie�y,
once a new problem is encountered, the �rst phase retrieves similar cases from
the case-base �if there are no enough similar problems, the heuristic is called to
provide a solution. Next, the second phase reuses the retrieved case(s) to provide
a solution to the new problem �again, if the solutions of retrieved cases are too
divergent, the heuristic is called instead. Then, each assistant participates in
the agreement process (βαN) by voting for the solution returned by its CBR
reuse phase. Subsequently, the agreed solution is applied �i.e. the norms are
updated. After a certain time interval (adaptinterval), the third phase revises
the results of applying the new solution. And �nally, the fourth phase retains
the new problem if it is representative enough.

Hence, the learning partial norm adaptation (cbr ∈αNi , eq. 7.35) is a com-
position of the functions formalised in equations 7.36-7.40. Among them, the
heuristic (heuristic′′) is equivalent to the function described in previous section
(heuristic′), but it extracts its information from a problem de�nition, and it is
able to return its results as a CBR case, instead.

cbr : KnowP ×Goals×Norms→ Norms (7.35)

retrieve : Prob× CaseBase→ (Case)
∗ (7.36)

reuse : Prob× (Case)
∗ → Sol (7.37)

revise : Solution×KnowP → Eval (7.38)

retain : Case× (Case)
∗ × CaseBase→ CaseBase (7.39)

heuristic′′ : Prob→ Case (7.40)

Speci�cally, algorithm 7.3 illustrates how cbr composes the mentioned func-
tions. This algorithm receives the knowledge information, the goals, and current
norms �see line 1. Since it implements the cycle described in �gure 7.6, it checks
if there was already a previous case �line 3. If the cycle has just started, there is

124 CHAPTER 7. ADAPTATION MECHANISMS

similar
cases

Retrive

Reuse

Revise

Retain

new problem

to extract
a single
solution

to update
case-base

to apply
 new solution

to eval
results

ne
w

 s
itu

at
io

n

P2P
network

heuristic''

Case-Base

Case
-Prob

Case
-Prob

Case
-Prob

Cases
-Prob

-Sol

-Eval

Case
-Prob

-Sol

Case
-Prob

-Sol

-Eval

β
A

N = voting
solution

case with
 solution

problem

Figure 7.6: Tailored CBR cycle.

still no previous case. In such a case, the algorithm continues by creating a new
case from received information �line 7. In fact, this new case only has initialised
the problem description. Such description (newCase.prob) is sent to the retrieve
function to fetch similar cases (retrCases) from the case base �line 9. As de-
tailed in �7.5.3.1, if there are no cases in the case-base (caseBase), or they are not
similar enough to current problem, the retrieve function may use the heuristic.
Afterwards, the algorithm sends these cases and the original problem to the reuse
function in order to extract a solution �line 11. This solution (newCase.sol) is
obtained as described in �7.5.3.2. It contains the values of both norm parame-
ters normalised in the range [0..1]. Hence, the algorithm builds a new norm set
(newNorms) by multiplying the maxFR parameter (newMaxFR) by the number of
participants (knowP.knPeers) and the maxBW parameter (newMaxBW) by one hun-
dred �lines 13-15. Before returning these new norms, the algorithm temporally
keeps track of current case (prevCase) and retrieved cases (prevRetrCases) to be
used in cbr function invocation �line 17. Next, these new norms are returned
�line 19� since they are the result of the partial norm adaptation (αNi ∈αNi).

The corresponding assistant uses this result in the voting scheme
(βαN ∈βαN) described in �7.3.3. As illustrated in �gure 7.6, norms may be
updated and bring the system towards a new situation. After the adaptation
interval (adaptinterv), the cbr function is called again. This time, the initial
check about previous case is true �line 3. Accordingly, the algorithm sends the
previous solution (prevCase.sol) and current system status (knowP) to the revise
function �line 4. Such function returns an evaluation (prevCase.eval) of system
status as described in �7.5.3.2. Next, the retain function receives all the infor-
mation about previous phases and updates the case-base as detailed in �7.5.3.4
�line 5. Finally, the cycle continues by the retrieve phase. In addition to the

7.5. MACHINE LEARNING APPROACH TO NORM ADAPTATION 125

Algorithm 7.3 CBR approach of partial norm adaptation function.
01 def cbr(knowP, goals, norms):

02

03 if (prevCase):

04 prevCase.eval = revise(prevCase.sol, knowP)

05 caseBase = retain(prevCase, prevRetrCases, caseBase)

06

07 newCase = new Case(knowP, goals, norms)

08

09 retrCases = retrieve(newCase.prob, caseBase)

10
11 newCase.sol = reuse(newCase.prob, retrCases)

12

13 newNorms = new Norms()

14 newNorms.maxFR = newCase.sol.newMaxFR * knowP.knPeers

15 newNorms.maxBW = newCase.sol.newMaxBW * 100

16

17 prevCase = newCase ; prevRetrCases = retrCases

18

19 return newNorms

sequence, at the end of the sharing process there is a last call to the revise and
retain functions in order to evaluate the last applied solution.

Next subsections provide further details about each phase and how the
classical CBR is tailored.

7.5.3.1 Retrieve

Once a new problem is encountered, the �rst phase retrieves similar cases from
the case-base �eq. 7.36. It returns the k most similar previous cases that have
at least a minimum similarity (MIN_SIM) to current problem. This phase may
return less than k cases if there are not enough similar cases. If no cases at all
are retrieved, then the heuristic (heuristic′′) is used to solve current problem
�see eq. 7.40 and �7.4.

Algorithm 7.4 illustrates this process. It starts with an empty list of cases
(retrCases) �see line 3. Then, it traverses the case base �line 5� computing
the similarity (Θ, see eq. 7.41) of each previous case's problem description
(prevCase.prob) with the new problem (prob) �line 6. In case this similarity
is greater than the minimum trusted similarity (MIN_SIM), the case is collected
�lines 7-8. However, if no previous case has the minimum trusted similarity to
consider it is representative enough to adapt its solution to the new problem �
line 10�, the algorithm executes the heuristic �line 11� to solve current unknown
problem. Finally, the cases are returned �line 14.

The implemented similarity function (Θ ∈ [0..1]) among two problems
(px, py ∈ Prob) is computed like shown in equation 7.41. It is one less the
Euclidean distance among attribute values (apxi , a

py
i ∈ Attribi) aggregated in a

126 CHAPTER 7. ADAPTATION MECHANISMS

Algorithm 7.4 Retrieve algorithm.
01 def retrieve(prob, caseBase):

02

03 retrCases = ∅
04

05 foreach prevCase in caseBase:

06 s = Θ(prevCase.prob, prob)

07 if (s > MIN_SIM):

08 retrCases = retrCases ∪ { prevCase }

09

10 if (retrCases = ∅):

11 heuCase = heuristic�(prob)

12 retrCases = { heuCase }

13

14 return retrCases

weighted manner (wΘ
i). Currently, weights are computed using the Proportional

Rough Sets (PRS) [Salamó and López-Sánchez, 2011] method.

Θ(px, py) = 1−

√√√√∑
i∈Attribs

(
wΘ

i ·
∣∣apxi − apyi ∣∣)∑

i∈Attribs w
Θ
i

(7.41)

Notice that in the P2P scenario the case-base is initially empty. Hence, the
retrieve phase starts by invoking the heuristic. However, once there exist some
previous cases, the use of the heuristic is marginal as shown in chapter 9.

7.5.3.2 Reuse

Second phase reuses the retrieved case(s) to provide a solution to the new prob-
lem �eq. 7.37. Our reuse phase starts by checking if the divergence of retrieved
solutions is greater than a maximum trusted divergence (MAX_DIV) threshold. This
divergence (δ) is computed as the standard deviation of NewMaxFR solution's
attribute �since in our experiments NewMaxBW was correlated with it. Note
that the divergence of a single case is 0. Exceeding MAX_DIV means that the so-
lutions of retrieved cases are too contradictory to provide a good single solution
for current problem. In such a case, the heuristic (heuristic′′) is invoked to ob-
tain a solution �see eq. 7.40 and �7.4. Once there is a set of slightly divergent
retrieved cases, it performs an adaptation of the solution of these cases.

Algorithm 7.5 illustrates this process. It starts by checking if the divergence
(δ) of retrieved cases (retrCases) is greater than the maximum trusted divergence
(MAX_DIV) �see line 3. In such a case, it considers that previous cases' solutions
are too contradictory to provide a good single solution. Hence, the heuristic is
used �lines 4-5. Once there is a set of slightly divergent previous cases �remind
that a single previous case has no divergence� it adapts their solution to the
current problem �line 7. Finally, the solution is returned �line 9.

The adaptation of the solution of retrieved cases (adapt) can take into ac-
count (i) all retrieved solutions but also (ii) the di�erences between the retrieved

7.5. MACHINE LEARNING APPROACH TO NORM ADAPTATION 127

Algorithm 7.5 Reuse algorithm.
01 def reuse(prob, retrCases):

02

03 if (δ(retrCases) > MAX_DIV)

04 heuCase = heuristic�(prob)

05 retrCases = { heuCase }

06

07 sol = adapt(prob, retrCases)

08

09 return sol

problems and the current one. Currently, the adapt function uses only the former
(i) as expressed in eq. 7.42-7.48.

adapt(prob, retrCases) = (wAvg(FR,G), wAvg(BW,G)) (7.42)

FR = {c.sol.maxFR|c ∈ retrCases} (7.43)

BW = {c.sol.maxBW|c ∈ cases} (7.44)

G = {c.eval.goodness|c ∈ cases} (7.45)

wAvg(V,G) =

{
BLNK if (gB > gNB)∑

(vi·gi|vi 6=BLNK)
gNB otherwise

(7.46)

gB =
∑

(vi,gi)∈(V,G) (gi|vi = BLNK) (7.47)

gNB =
∑

(vi,gi)∈(V,G) (gi|vi 6= BLNK) (7.48)

Brie�y, the adapt function receives the set of retrieved cases (retrCases) and
returns a solution that is the average of retrieved cases' solutions weighted by
their evaluation �notice that it is not using the current problem. In more detail,
this function traverses the retrieved cases and collects their maxFR (FR, eq. 7.43),
their maxBW (BW , eq. 7.44) and their evaluation metric (G, eq. 7.45). Then,
it computes each solution's dimension by averaging their values depending on
their evaluation (i.e. their Goodness) using a weighted average function (wAvg,
eq. 7.46). This function receives a set of values (V , i.e. FR or BW) and their
associated weights determined by their goodness (G). Then, if the goodness
of blank values (gB, eq. 7.47) is greater than the goodness of the non-blank
values (gNB, eq. 7.48), the result is a blank-ballot paper (BLNK, see �7.5.2).
Otherwise, the result is the weighted average of the non-blank values, by giving
more importance to the values with higher goodness (i.e. the sum of non-blank
values times their goodness, normalised by the sum of their goodness).

Algorithm 7.6 illustrates the described adapt function. Brie�y, it initialises
the sets that will contain each solution's dimension (ValuesFR, ValuesBW), the
set that will contain the evaluation of applying them in the past (Goodns), and
the new solution �see line 3. Next, it traverses the retrieved cases �line 5�
and �lls the three mentioned sets. That is, the ValuesFR with corresponding

128 CHAPTER 7. ADAPTATION MECHANISMS

Algorithm 7.6 Adaptation algorithm.
01 def adapt(prob, retrCases):

02

03 ValuesFR=∅; ValuesBW=∅; Goodns=∅ ; sol = new Solution()

04

05 for c in retrCases:

06 ValuesFR = ValuesFR ∪ {c.sol.maxFR}

07 ValuesBW = ValuesBW ∪ {c.sol.maxBW}

08 Goodns = Goodns ∪ {c.eval.goodness}

09

10 sol.maxFR = wAvg(ValuesFR, Goodns)

11 sol.maxBW = wAvg(ValuesBW, Goodns)

12

13 return sol

maxFR, the ValuesBW with maxBW and the Goodns with the evaluation metric of
the corresponding case �lines 6-8. Then, it computes each solution's dimension
by averaging their values depending on their evaluation (i.e. their Goodness)
using the wAvg function �lines 10-11. Finally, the resulting values conform the
returned solution �line 13.

After computing the solution for the current case, each assistant participates
in the agreement process (βαN , eq. 5.85) by sending a vote for each norm to
the other assistants. Hence, assistants receive other's votes and compute the
most frequent vote for each norm discarding blank ballot-papers (if there is
a tie, norms are not updated). Then, each assistant communicates the new
norms to its domain-level agents. Such norms are used during a time interval
(adaptinterval) until next adaptation process begins with the subsequent phase.

7.5.3.3 Revise

As mentioned above, the adaptation process starts at the revise phase, which
requires to evaluate the applied solution �eq. 7.38. However, current Goals
de�nition is related to the total spread time (tspread) which is unknown until
the end of the sharing process. Alternatively, our evaluation metric (g ∈ [0..1])
is based on the datum possession percentage (Completeness) since it is related
to tspread: if the increment of Completeness (cinc) along an adaptation interval
(adaptinterval) is large, it means that a signi�cant number of peers increased
their percentage of the datum, so a short tspread is expected.

g = (cinc−mininc)
(maxinc−mininc) (7.49)

In particular, g is the Completeness increment (cinc) normalised by the di�er-
ence between the maximum and minimum values of cinc that could be obtained
during this speci�c adaptation interval �see eq. 7.49. The maxinc value refers
to the maximum cinc if all seeds serve �and leeches also receive� at their nominal

7.5. MACHINE LEARNING APPROACH TO NORM ADAPTATION 129

bandwidth. The mininc value indicates the minimum cinc if all data transmis-
sions are cancelled. Overall, cases with the largest goodness are expected to
provide better solutions. Accordingly, this evaluation is used by the reuse phase
to assign di�erent weights to retrieved solutions.

7.5.3.4 Retain

Fourth CBR phase retains a new problem if it is representative enough. In
particular, once a solution has been revised, the information about this expe-
rience is added to the case-base or used to update an existing case �eq. 7.39.
In fact, when a solution was generated by the heuristic (either at retrieve or
reuse phases), it is stored as a new case which includes its problem description
and its evaluation. Likewise, when a solution was created from more than one
existing case, it is added as a new case. In contrast, when a solution comes
from a single similar case, the evaluation of this previous case is updated fol-
lowing the constant-α Monte Carlo strategy [Sutton and Barto, 1998] shown in
equation 7.50. This way, the new goodness stored in the case-base (gnew) is the
previous one (gprev) updated according to the current experience (gcur) depend-
ing on the given learning rate constant (αg).

gnew = αg · gcur + (1− αg) · gprev (7.50)

In addition to considering the completeness degree, at the end of the whole
sharing process, this phase also updates (see eq. 7.51) the goodness of all used
cases during the CBR process by considering the �nal data spread time (tspread).
Notice that the goodness (g) of each used case is increased by a given factor (kg)
if this time is smaller than the average sharing time (tavg, which is the average
of previous tspread). Otherwise, it is decreased. This strategy aims to include
information about the application of a set of solutions to the overall sharing
problem. This goodness revision has the additional advantage of being able to
cope with external network changes or the derived concept-drift e�ect of changes
in the the relationship among state and action spaces.

gendSpread =

{
g · (1 + kg) if (tspread<tavg)

g · (1− kg) otherwise
(7.51)

Chapter 8

P2P sharing network
Simulator

This chapter presents a P2P sharing network MAS Simulator. It has been de-
veloped as a tool to empirically test the 2-LAMA in the P2P scenario, which
is speci�ed in previous two chapters. The corresponding tests and results are
detailed in next chapter.

The simulator provides several facilities to analyse system behaviour and
compare di�erent coordination approaches with the same initial conditions. In
fact, its internal architecture is conceived as a set of extensible modules which
facilitate testing and comparing di�erent approaches. This chapter starts intro-
ducing its features, provides usage directions and �nishes with a description of
its implementation and extension capabilities.

8.1 Introduction

In order to test our approach in the P2P case study, we have implemented a
P2P MAS simulator (P2PMASsim). This simulator provides di�erent facilities
to execute tests and analyse results. Moreover, as it simulates both agents and
network components, it allows to execute di�erent approaches with identical
initial conditions.

In fact, the simulator's base code can be used to develop di�erent MAS
where agent actions are solely illocutions �i.e. sending messages. Furthermore,
it simulates a packet switching network simulator to transport agent messages
�see �6.3. Accordingly, agent communications latencies depend on this network
topology and its tra�c. In other words, P2PMASsim can be used to perform
simulations of MAS where agents interact through a communications network,
like in the P2P case study.

In fact, we use this base code to implement the 2-LAMA speci�cation de-
scribed in chapters 6-7. Even more, we also implemented the BitTorrent protocol
detailed in �6.2, as a base-line approach. These implementations let us perform

131

132 CHAPTER 8. P2P SHARING NETWORK SIMULATOR

Figure 8.1: Simulator's basic view.

the empirical evaluation of our 2-LAMA approach discussed in next chapter 9.
Since P2PMASsim simulates the communication network, it can guarantee the
same network initial conditions to all experiments �also, it prevents any tra�c
beyond the generated by the MAS activity if it is not introduced on purpose.
Even more, it generates relevant statistical information about all network com-
ponents performance.

Above all, P2PMASsim provides control over all involved components and
access to its activity that lets analyse system behaviour. As an illustration,
�gure 8.1 shows and screen-shot of the simulator to show its general features.

On top of the �gure, under the title bar, there is a Control toolbar (1) that
allows, among other features, to play the simulation, pause it or execute it step
by step. Besides, it also shows current tick counter, since it is a discrete-event
simulator.

On the left area, there is a Legend panel which shows information about
what represents each layout object (2), the colour in which each sort of mes-
sage among agents is displayed (3), whether messages are visible or not, and if
execution will pause upon sending some of them (4). All these options can be
modi�ed by user. Thus, the legend allows an easy identi�cation of each object
and message to interpret what is happening in the simulation at every tick.

On the centre, there is the Main layout (5) that shows the elements of the
simulation and the communications among them. On the one hand, regular
agents and assistant agents are drawn according to its logical cluster topology
�e.g. there are three clusters in the �gure. On the other hand, messages are
displayed as arrows among them with the corresponding colour de�ned in the
legend panel.

8.2. USAGE AND FEATURES 133

Table 8.1: Setup panel parameters.

Keyword Description

Problem File describing scenario (peers, assistants, datum location).
Net. topology File describing net topology (terminations, links, routers).
Coord. model Coordination Model: BT, 2L-S, 2L-S-N-Heu, 2L-S-N-CBR.
Data location Which peers have the datum initially.
Time limit Max. simulation steps (sim. is aborted when exceeded).
Norms Initial norm values (maxBW , maxFR, maxHAS).
Adapt. int. Time steps elapsed among norm adaptations (adaptinterv).
Reuse cases Reuse existing CBR case bases or start with empty ones.
Sim. weights Weights used when comparing CBR cases (wΘ

i , see �7.5.3.1).

On the right, there is a Summary layout (6) that displays how data has been
distributed among di�erent peers. It highlights completed peers and displays
arrows connecting source and receiver agents. These arrows are labelled with
the time step at which the datum was received. Moreover, the simulator can plot
the evolution of di�erent parameters along simulation, such as norm updates (7).

In addition, P2PMASsim generates a log �le that contains all events oc-
curred during an execution (8). Furthermore, the simulator includes a module
for facilitating the analysis of these events. For this purpose, this module pro-
cesses the generated logs extracting relevant information, which can be processed
later. For instance, it can be used to compare the time spent to share data in
di�erent con�gurations, or using di�erent sharing methods.

Next sections are devoted to provide further details on the simulator char-
acteristics and its extensible architecture.

8.2 Usage and features

The basic cycle when running a simulation in is composed by three main stages:
the setup, the execution, and the end of a simulation. Next subsections describe
these stages and include some �gures to illustrate some simulator's features. For
the sake of simplicity, the examples refer to an interactive session although the
simulator can be also run in batch mode. The former (interactive session) is
useful to understand a single execution, whereas the latter (batch mode) is more
appropriate for comparing several executions.

8.2.1 Setup of a simulation

First, when the simulator is loaded, it o�ers the Setup panel depicted in �g-
ure 8.2a. This panel lets set the execution options that are listed in table 8.1. De-
pending on these options, the simulation is executed using di�erent approaches
with di�erent parameters.

134 CHAPTER 8. P2P SHARING NETWORK SIMULATOR

(a) Initial Setup panel. (b) A running simulation.

Figure 8.2: Simulator initialisation.

On the one hand, the simulator currently supports the following coordi-
nation models (labelled Coord.Model in table 8.1): BitTorrent (BT, see �6.2),
2-LAMA with social structure adaptation (2L-S, see �7.2), 2-LAMA with social
structure and norm adaptation using the heuristic (2L-S-N-Heu, see �7.4), and
2-LAMA with social structure and norm adaptation using CBR (2L-S-N-CBR,
see �7.5). On the other hand, the parameters include the name of two �les: one
that describes the agents of the system (Problem, see �6.4), and another one that
de�nes the underlying communications network (Net. topology, see �6.3).

Although, the Problem �le de�nes default values for all the execution param-
eters, the Setup panel lets change their values to perform a particular execution
without updating external �les. For instance, there is a parameter that lets the
user change datum initial position (Data location). Also, the panel lets update
the initial norm parameters (Norms) as well. These norm parameters are used by
all 2-LAMA approaches, and some of them (2L-S-N-Heu, 2L-S-N-CBR) adapt
their values at an adaptation interval (Adapt. int.) also de�ned in this panel.

Moreover, there is a parameter (Reuse cases) that de�nes if assistants, in
the CBR approach, load the cases collected by previous execution or they start
with an empty case-base �see �7.5.3. The weights used when computing the
similarity among two cases (Sim. weights) in this CBR approach, can also be
speci�ed in this panel �see �7.5.3.1.

Once these parameters are de�ned, the user can start the simulation by
using the Control toolbar (see �gure 8.1-1). Then, the Setup panel is replaced
by the Legend panel and the Main layout as shown in �gure 8.2b �see previous
section. This layout draws both meta-level agents (circles in red colour) and
domain-level agents (in blue colour, or in green colour if they are completed)
grouped by clusters �e.g. there are three clusters in �gure 8.2b. The activity
of these agents is represented by textual descriptions that are saved in a log �le
and illustrated by arrows among them, which indicate the sort of message they
exchange.

8.2. USAGE AND FEATURES 135

(a) ML gathering local information. (b) ML agreement.

(c) ML updates DL norms. (d) New DL activity.

Figure 8.3: Example of 2-LAMA adaptation steps.

8.2.2 Execution of a simulation

As stated, the user can command a simulation by controlling its time steps using
the Control toolbar (see �gure 8.1-1). Essentially, the user can run it step by
step, it can pause the simulation at a certain time step or it can de�ne a real
time delay for each simulated time step. Moreover, the simulator is also able to
pause simulation when certain messages are sent (see the Legend panel in �8.1).
This provides a great tool to pay attention to certain agent interaction phases.

The main tool to visualise the system evolution along the execution is the
Main layout (see �gure 8.1-5) which depicts the messages exchanged by agents.
Besides, the Summary layout (see �gure 8.1-6) is also updated along the sharing
process to show which agents are completed (drawn in green colour), at what
tick they received the datum and from which participant. In addition, it is also
possible to inspect environment and agent properties by using the GUI, and even
to plot some of them (e.g. norm parameter values). As an illustration, �gure 8.3

136 CHAPTER 8. P2P SHARING NETWORK SIMULATOR

shows the Main layout and a plot of norms evolution along a 2-LAMA adaptation
process �see �7.3. First, assistants collect local information about their cluster
as illustrated in �gure 8.3a. Next, assistants take their local decision and send it
to other assistants as part of their agreement process. This message exchange is
depicted in �gure 8.3b. As a result, each assistant computes the new norms and
it informs those participant agents in the same cluster. In �gure 8.3c, the Main
layout shows how assistants send the corresponding message to their agents.
Also, the �gure contains a superimposed plot about norms which re�ects that
the maximum number of simultaneous served agents (maxFR) is decremented
�it becomes 2 instead of 3. Finally, the domain-level activity is in�uenced by
this new norm as illustrated in �gure 8.3d. In the example, the agent that was
sending the datum to three other agents, cancels one of these transmissions to
comply with the new norm.

In addition to described graphical information, all messages and prede�ned
events are stored in a log text �le. Figure 8.4a has some pieces of such �le in
order to illustrate its contents. Notice that it is composed by textual entries that
describe di�erent events indicating at which tick they happen. The most of these
entries are generated by the simulator's infrastructure depending on the debug
level �e.g. sending or receiving messages. In addition, the agents themselves
can also add their own entries depending on their implementation.

8.2.3 End of a simulation

At the end of a simulation, there is di�erent information is provided as an
execution summary. On the one hand, the Summary layout is an illustration
of how the datum was distributed among participants. It visually shows who
provided the datum to each agent (as an arrow) and at which tick the destination
agent received it (as labels over arrows). This information lets the user perform
a visual comparison among di�erent executions. For instance, �gure 8.4b shows
the summary layout of two executions that use a di�erent sharing method �the
top part corresponds to an execution using 2-LAMA, whereas the bottom part
corresponds to the base-line BitTorrent.

On the other hand, there is statistical information added to the mentioned
log �le as illustrated in �gure 8.4a �speci�cally, those messages which contain
the 'END' keyword. Table 8.2 provides a short description of them. The most
relevant metric is the time invested in the sharing process (time) which is used
to evaluate system's performance �see �6.5.4. Besides, there are some network
metrics (e.g. netCost, hops, usg, sat) that summarise net activity �see 6.3.2.
Moreover, the number of messages and its network cost is detailed per each
type of message (num<type>, cost<type>). Also, these details contain information
about the network consumed by those messages that were cancelled (del) before
achieving its destination �see �6.7.3. Besides, there is also a summary of how
data was spread among agents. Speci�cally, there is the number of incomplete
agents served by each complete agent (srcNumLeeches) and which agent provided
the datum to each participant at a certain tick (completedPeers). Finally, if
the execution used the CBR approach, there is a set of statistical information

8.2. USAGE AND FEATURES 137

(a) Activity log �le. (b) Visual summaries.

Figure 8.4: End of simulation.

about it (caseBaseStats). It comprises, among others, the �nal number of cases
in the case-base (numCases) and the average of the number of times the cases
were retrieved, reused and revised (ret_avg, reu_avg, rev_avg). Even more,
assistants print their case-base, which includes this sort of statistical details for
each particular case.

Overall, once a user has used the interactive GUI to understand the be-
haviour of a given approach, he can evaluate and compare it by just using logged
information. In fact, the simulator allows the execution of multiple simulations
with di�erent run options in batch mode, generating a log �le for each simulation.

In particular, P2PMASsim provides analysis facilities to process data from
more than one log at once (multiple-simulation). Thus, it allows to summarise
and compare the performance and behaviour of di�erent simulations. As an
illustration, the average of sharing time when data is initially in di�erent peers
would conform a multiple-simulation summary. Moreover, plotting this aver-
age time for two di�erent approaches with di�erent initial norm parameters as
shown in �gure 8.5 is an example of a multiple-simulation comparison. Such
�gure shows two plots comparing the performance (time in ordinate) among dif-
ferent 2-LAMA approaches (left: without norm adaptation, right: with norm

138 CHAPTER 8. P2P SHARING NETWORK SIMULATOR

Table 8.2: Simulator's available metrics.

Keyword Description

time Time required to spread datum among all peers.

netCost Total network cost.

hops* Average number of links traversed by each message.

usg* Ratio of links' bandwidth used at each time unit.

sat* Ratio of data units that cannot traverse links because there

is saturation.

A2A Number and average cost of messages among assistants.

P2A Number and average cost of messages among participants

and assistants.

num<type> / Number and average cost detailed by each type of message

cost<type> among domain-level agents (BW_TEST, CONTROL, DATA).

del Number, average cost and hops of cancelled data messages.

srcNumLeeches / Measures about how data was actually distributed among

completedPeers domain-level agents.

caseBaseStats Statistics about the CBR.

* ⇒ these measures are an average on all network links; their

standard deviation is also available (with STD su�x).

adaptation), and di�erent initial norm parameters (maxFR in abscissa, maxBW
in series and maxHAS �xed to 1).

This turns out to be very useful for system designers, since rather than just
knowing the overall system performance, it helps to understand its evolution
depending on di�erent parameters and alternatives. As a consequence, if some
problem arises, it is easier to identify it, its possible causes and what is most
valuable: which simulation parameter values perform best.

8.3 Extensible Architecture

The design of the P2PMASsim is conceived as an extensible architecture to de-
velop and test di�erent MAS approaches in the P2P sharing network scenario.
It has an internal architecture that clearly isolates di�erent functionalities and
contributes to its extension capabilities. For instance, it is possible to use all
implemented code and simply change an adaptation function or it is possible
to reuse only the network simulation layer in other scenarios where agents com-
municate through a packet switching net. Next subsections detail the initial
requirements and its architectural extensible design.

8.3.1 Requirements

The initial requirements to develop P2PMASsim comprised:

� to have a discrete-event simulator.

8.3. EXTENSIBLE ARCHITECTURE 139

Figure 8.5: Multiple-simulation comparison example: time versus norm param-
eters and approaches.

� to have facilities to simulate agents.

� to simulate the communications network.

� to visualise system activity in two levels (like 2-LAMA model).

In particular, working with a simulator allows to initially compare di�erent MAS
approach concepts in the P2P scenario without need to deploy real computers
attached to di�erent network con�gurations. Moreover, a simulator allows hav-
ing control and access to all system components. This contributes to guarantee
a fair comparison among the tested approaches.

Furthermore, having a discrete-event simulator simpli�es agent develop-
ment, since it avoids concurrent programming issues. This simpli�cation is also
enhanced by counting on simulator tools that help to implement agents whose
acts are restricted to exchanging messages.

Besides, simulating the communication network contributes to have the
mentioned control and access to all system components. In fact, this lets imple-
ment exactly the simpli�ed packet switching model described in �6.3. Otherwise,
using an existing network simulator requires to set several low level network de-
tails.

In addition, a visualisation close to 2-LAMA model should help to analyse
such approach. This visualisation should distinguish among domain-level and
meta-level agents, show them grouped by clusters, and present their relevant
interactions �i.e. the messages they exchange.

8.3.2 Design

In order to meet the speci�ed requirements, the simulator is implemented in
Repast Simphony [North et al., 2005]. Brie�y, Repast is a simulator framework
which provides the following features:

140 CHAPTER 8. P2P SHARING NETWORK SIMULATOR

m
l

dl

a1 a2 a3

p1

p2

p3

ꝏ

N
et

w
or

k
La

ye
r

r1r1 r0r0

r2r2

r3r3

na2

na3na1
n1

n3

n2

n5 n7n6 n8

n12

n10

n11

n9

Age
nt

 L
ay

er

p9

p10

p11

p12p5 p6 p7 p8

...

p4

n4

G
U
I L

ay
erP2PMASsim Architecture

GUI Layer

Setup

Agent Layer

Network Layer

Tools

Repast
Simphony

GUI

Engine

Tools

messages

sent received

message events
 (sent, received)

agent inventory

Figure 8.6: Simulator's architecture overview.

1. it provides a basic Graphical User Interface (GUI) with a generic layout
and simulation step control.

2. it has a discrete-event scheduler that can call methods at certain ticks.

3. it allows to run simulations in batch mode.

These characteristics constitute a base-line but they are not enough to achieve
the requirements enumerated in previous subsection. As a consequence, our
P2PMASsim code adds the following features to achieve the requirements:

1. An extended GUI that shows the activity of two level of agents grouped
by clusters, visualises some of the messages they exchange, and presents a
summary of the sharing process.

2. A basis to develop agents that follow a certain communication protocol
�e.g. state machine based agents that act by sending messages.

3. The simulation of a packet switching network to transport agent messages.

4. A report of simulator activity into log text �les, and the corresponding
tools to analyse them.

In particular, P2PMASsim provides these features through the layered archi-
tecture depicted in �gure 8.6. In short, it has a component for each previous
mentioned feature (GUI layer for feature 1, Agent layer for 2, Network layer
for 3, and Tools for 4) and a Setup component to arrange all them. As stated,
this architecture clearly isolates di�erent functionalities. Moreover, these layers
are loosely coupled since their interaction is based on agent message exchanges.

8.3. EXTENSIBLE ARCHITECTURE 141

Figure 8.7: Simulator's components.

This feature makes it easier to update each layer independently or even to use
them separately in other domains.

Figure 8.7 presents a summary of each component which are detailed in
subsequent sections. These sections have some diagrams about the internal
structure of these components. These diagrams are simpli�cations of Universal
Modelling Language (UML) class diagrams since they just aim to illustrate the
general structure of such components �e.g. they neither contain all classes nor
all class members. In fact, P2PMASsim is compound of more than 50,000 lines
of code belonging to 265 classes, and next diagrams just show less than 25% of
them.

142 CHAPTER 8. P2P SHARING NETWORK SIMULATOR

Figure 8.8: Simulator's GUI layer.

8.3.3 GUI layer

The Graphical User Interface (GUI) layer of P2PMASsim extends the basic
features of Repast GUI. Figure 8.8 shows its components. In short, there are
two layout subcomponents: Main and Summary. The former provides the Main
layout depicted in �gure 8.1-5, and the latter provides the Summary layout
shown in �gure 8.1-6. In both cases, the corresponding classes o�er a method
(distribAgents) which is in charge of distributing agent representation in the
corresponding canvas1. This method distributes meta-level agents around a
single external ring, and the domain-level agents are distributed in several inner
rings that correspond to clusters �see �gure 8.1.

The agents are drawn according to previous distribution by using the agent
styles (agentSty) which extends Repast basic agent representations. Analo-
gously, the edges among agents �which represent messages in the Main layout,
and datum transmissions in the Summary layout� are extensions (edgeSty) to
Repast basic edge representations too. The colours of these edges are stored in
a container (MsgCols) and can be updated from the Legend Panel depicted in
�gure 8.1-3. This panel is managed by a class (Legend) that lets de�ne which
messages may pause the simulations.

Precisely, the interface among the GUI layer and the other layers relies
only on message events. In particular, the Network layer noti�es the GUI layer
every time a message is sent or received. This simpli�es components and agent
implementation, since they do not need to manage the GUI. On the contrary,
it is the GUI layer which extracts all its information from message contents.
Speci�cally, the GUI layer has a subcomponent that receives all these message
noti�cations (EventStorer) and extracts the relevant information that is used
by layout classes. For instance, it identi�es that two agents have a contact
relationship if they exchanged bitfield messages �see �6.2.1 and �6.7.2. Then,
this fact is stored in an attribute (contacts) that is checked by the Main layout

1The word canvas is used to denote the window's region where the graphical representation
is drawn.

8.3. EXTENSIBLE ARCHITECTURE 143

Figure 8.9: Simulator's Agent Layer.

in order to draw a grew line among those two agents. Similarly, when an agent
in sending the datum to another one, this relationship and the tick when the
datum was totally transmitted is stored in another attribute (sources). In this
case, this information is used by the Summary layout to draw the corresponding
labelled line.

Overall, these mentioned classes can be easily updated, extended or replaced
to obtain other layout distributions, entity representations or traced events. This
can be useful to work with other approaches on the same P2P sharing network
scenario, but also to work with other scenarios since the code is encapsulated
and only relies on message events.

8.3.4 Agent Layer

The Agent layer of P2PMASsim provides the basis to develop agents that follow
a certain communication protocol, but also particular agent implementations de-
pending on the BitTorrent and 2-LAMA approaches �see chapter 6. Figure 8.9
depicts its components.

8.3.4.1 Agent base and statistics

The main component is an agent code skeleton (AgentBase) that provides a state
machine foundation. In short, it has an attribute which contains its current state
(state) �e.g. joining the system, looking for the datum or serving the datum.
Also, it has an attribute (infoAboutOthers) where it stores information about

144 CHAPTER 8. P2P SHARING NETWORK SIMULATOR

other agents, such as the relative protocol state �e.g. handshaking, receiving
datum or choked.

This agent base code, has a reference to the network adapter (netAdapter)
it uses to send messages to other agents. This adapter belongs to the Network
layer, which will transport these messages. In particular, AgentBase has a private
method (sengMsg) that is used to send string messages. This is done by just
indicating the name of the target agent since the Network layer is in charge of
locating the network termination where the message should be delivered.

The implemented agent can be proactive and/or reactive. On the one hand,
it can initiate di�erent actions from a method which is automatically scheduled
to be called at each tick (simulatorTick). On the other hand, it can react
to any received message since its network adapter triggers a callback method
(receiveMsg). Furthermore, the network adapter also triggers a callback method
(packetReceived) when a packet is received �e.g. a datum message requires 500
packets, so packetReceived is called each time, whereas receiveMsg is called only
once when all packets have been received.

Besides, the agent base has a reference to a class that contains statistical
information about the agent layer (Stats). It follows a singleton pattern, so
there is a single instance of this statistical class. This way, all agents can access
this single object in order to notify certain events. For instance, when an agent
receives the datum from a certain participant, it noti�es this fact to the this
statistics object. Accordingly, there is an statistic attribute (complTickSource)
which stores that a particular agent received the datum from a particular source
at a certain tick. Moreover, another statistic attribute (srcNumLeeches) stores
that the source agent has sent the datum to an additional participant. This sort
of information is retrieved at the end of the simulation (atTheEnd) when printing
the statistical information to the log �le �see �8.2.3.

All in all, these classes can be easily reused to develop agents in other
scenarios or they can also be extended to collect other sort of statistics.

8.3.4.2 Coordination model implementations

Currently, the simulator includes implementations of agents according to Bit-
Torrent and 2-LAMA. These agents extend the base code described in previous
section. The right part of �gure 8.9 depicts the corresponding subcomponents.

On the one hand, the BitTorrent component (bitTorrent) includes an agent
specialisation for the peer role (Peer) and another one for the tracker role
(Tracker) �see �6.2. In both cases, these implementations react to each BitTor-
rent protocol message when they receive it.

On the other hand, the 2-LAMA component (twoLama) includes two sub-
components, one for the meta-level (ml) and another one for the domain-level
(dl). Their agents derive from a common code skeleton (AgentML) which pro-
vides them with their individual knowledge about norms (normInfo), the proto-
col (protsInfo), and the social structure (socStrInfo) �e.g. they are containers
of current norm de�nitions or current contacts. Additionally, the domain-level
agent (Peer) keeps the identi�er of its corresponding assistant and its bit�eld,

8.3. EXTENSIBLE ARCHITECTURE 145

Figure 8.10: Simulator's Meta-Level in 2-LAMA approach.

which describes whether it has the datum or not �see �6.5. That is to say,
in current implementation domain-level agents already know to which assistant
they should contact �i.e. they know to which cluster they belong to. Alter-
natively, they could perform an initial bandwidth test �see �6.7.2� to measure
their communication latency to each assistant and choose the closer one.

Besides, �gure 8.10 provides further details about the meta-level imple-
mentation. Its agents (Assistant) contain the summary (SumP) created from
their local information (fromLocalInfo) and the summaries received from other
assistants (parseMsg) �see �5.5.3.1. Both are required when creating its knowl-
edge information (KnowP) from summaries (fromSumPs). Then, this knowledge
is used when calling the corresponding norm adaptation function approach
(suggestNorms in AlphaN_Heu and AlphaN_CBR). Notice, that there is an interface
(AlphaN) devoted to homogenize current and future implementations of di�erent
adaptation approaches.

Current implementations of the norm adaptation function are the heuristic
approach (AlphaN_Heu) and the CBR approach (AlphaN_CBR) �see �7.3.2. The
suggestNorms method of the heuristic approach implements the algorithm 7.1,
whereas the suggestNorms method of the CBR approach implements the algo-
rithm 7.3. The latter has other methods which implement the CBR cycle steps
described in �7.5.3 and uses an additional class (Heu) which extracts its infor-
mation from a problem de�nition, uses the heuristic approach (AlphaN_Heu) and
returns its results as a CBR case.

In addition, the CBR approach requires a case-base (CaseBase) which in-

146 CHAPTER 8. P2P SHARING NETWORK SIMULATOR

cludes a collection of cases (cases) that can be loaded form a �le (loadFile)
to keep the case-base among executions. Also, it keeps the average of tspread
(tSpreadAvg) which is needed to evaluate cases at the end of a sharing process
�see �7.5.3.4.

The implementation of a case is a class (Case) that aggregates other classes
which contain the problem description (Prob), its solution description (Sol) and
its evaluation (Eval). The rational of such implementation is to have more �exi-
bility when testing di�erent approaches from a research point of view �instead
of operating with a �xed approach from a performance point of view. For in-
stance, it has been useful to test di�erent problem attributes (attribXXX stands
for a class member for each attribute), di�erent similarity functions (similarity,
currently it implements eq. 7.41), di�erent divergence functions (divergence, see
δ in �7.5.3.2), di�erent evaluations (goodns, see ��7.5.3.3-7.5.3.4). Besides, the
Eval component also collects statistical information for each case. For instance,
the number of times the case was retrieved (retrieved) or which agent has ini-
tially the datum in the execution that added the case (retainBy). This statistical
information is printed to the log �le at the end of the execution �see �8.2.3.

Further, there is a class (BetaN) related to the agreement function �
see �7.3.3.1. In particular, it has a method (ballotRecount) that computes
new norm parameter values according to collected votes (through methods
addMaxFRvote and addMaxBWvote).

Similarly to the norm adaptation function, the social structure adapta-
tion function is also encapsulated in a class (AlphaSS). Current implementa-
tion has two methods to perform the computation described in �7.2.2. One
method (getGoodNeighbours) returns the contacts of a domain-level agent ac-
cording to collected latency measures (LatencyInfo). Whereas the other method
(getMasHasAgents) returns the maxHAS agents which have a better connectivity
according to collected measures (ConnectivityInfo). In particular, in current
implementation latencies are computed like described in eq. 7.1 and stored as
arc weights in a graph among participants (netLatGraph). Besides, current con-
nectivity implementation is the one described in eq. 7.2 which is stored in a
dictionary (connectByAgent).

Overall, this architecture facilitates testing di�erent approaches for each
component, simply by overloading or replacing certain classes. For instance, it is
easy to add another machine learning adaptation method as a class that inherits
AlphaN, or simply change how the cases similarity is computed by overloading
the divergence method in Prob class. Furthermore, it is possible to add new
sorts of agent by extending current code skeletons.

8.3.5 Network Layer

The Network layer of P2PMASsim transports agent messages by simulating the
packet switching network described in �6.3. This way, the messages are not
received instantaneously but they are delayed depending on network topology,
net status and message length. This behaviour is suitable to simulate the P2P
sharing network scenario, but it can be also useful in other domains that require

8.3. EXTENSIBLE ARCHITECTURE 147

Figure 8.11: Simulator's Network layer.

this sort of communication network. Figure 8.11 depicts the internal components
of this layer, which are described as follows.

8.3.5.1 Initialising the infrastructure

The main component is the network class (Network) which is able to load a net-
work description from a �le (loadTopologyFile). When loading this network de-
scription, it �rst loads a topology description (Topology) from a �le (loadFile),
which is stored as a graph (graph). The nodes of this graph describe routers
or network terminations, whereas the edges describe the links among them �
see �6.3.1. Next, the network class also initialises the network statistics singleton
(Stats) and creates an infrastructure (createInfrastructure) composed by class
instances that simulate each component (Component) according to the described
topology �notice that a link is equivalent to both an upload channel and a
download channel. These class instances will simulate each network component
when they receive data as detailed below. Notice that each component has a
reference to the statistics object (stats), so it can notify certain events to up-
date the statistical information. This information comprises the metrics de�ned
in �6.3.2 that are shown at the end of the sharing process as described in �8.2.3.

148 CHAPTER 8. P2P SHARING NETWORK SIMULATOR

Adapter RouterChannel

msgs=

p
m

1

1/2
p
m

3

1/4

relUpBW=50% BW=40

p
m

1

2/2
p
m

3

2/4

{m
1
(H,20), m

2
(L,30), m

3
(H,40)}

Adapter Channel

msgs=

relUpBW=50% BW=40

{m
1
(H,20), m

2
(L,30), m

3
(H,40)}

t
1

t
2

Router

Adapter RouterChannel

msgs=

p
m

3

3/4
p
m

3

4/4

relUpBW=50% BW=40

p
m

2

1/3
p
m

2

2/3

{m
2
(L,30), m

3
(H,40)}

Adapter Channel

msgs=

relUpBW=50% BW=40

{m
2
(L,30)}

t
3

t
4

Router

Figure 8.12: Example of an adapter sending packets.

8.3.5.2 Exchanging messages

The created network is used by agents to exchange messages. In particular,
previous section 8.3.4.1 mentioned that each agent has a reference to a network
adapter (Adapter). This means that each agent is attached to a network termi-
nation, with a given network address (ip). When the agent wants to send a mes-
sage, it injects it into its network adapter (sendMsg). Then, this message is split
into packets that travel along links and follow their path by switching at routers
depending on network topology. The latency of a packet from a network adaptor
to another one depends on the number of links, their bandwidth and the current
tra�c through them. When packets achieve the destination point, the adapter
calls the agent method registered to receive a packet (receivePacketCallback).
Eventually, if it is the last packet of a message, the adapter also calls the agent
method registered to receive a whole message (receiveMsgCallback). This way,
agent implementations can pay attention to packets or just wait for entire mes-
sages.

In more detail, a message (Msg) contains its priority (priority), its con-
tents as a string (contents), the identi�er of the receiver agent (dst), and the
message type (MsgType) which may determine its length (length). Hence, when
an adapter receives a message to inject into the network, it looks for receiver's
network address using a dictionary (DNS) that translates agent identi�ers to net-
work addresses (ip). Then, the adapter adds this message to its internal list of
messages being sent (sendingMsgsList).

As a consequence, at each tick, adapter's main method (scheduledTick)
creates packets (Packet) for each message being sent. The generated pack-
ets depend on upload channel's bandwidth (Channel.BW), the amount of band-
width the agent wants to use (Adapter.relativeUpBW), the current messages
(Adapter.sendingMsgsList) and their priority (Msg.priority). Figure 8.12 illus-

8.3. EXTENSIBLE ARCHITECTURE 149

trates this behaviour with an example. In the example, an agent has an upload
channel with BW=40 data units per tick. However, it sets a relativeUpBW=50% in
order to ful�l a given maxBW = 50. Accordingly, its adapter should send 40
data units at each tick. Besides, the established packet size is Packet.LENGTH=10,
there are three messages to sent sendingMsgsList={m1,m2,m3}, their lengths
are {20, 30, 40} data units respectively, and their priorities are {high, low, high}
respectively �in top left part of �gure 8.12, 'H' stands for high priority and 'L'
for low priority. Then, at tick t1, the adapter creates and injects two packets,
the �rst out of two of m1 and the �rst out of four of m3 �because m1 and m3

have a higher priority than m2. Next, at t2 the adapter injects the last packet
of m1 and the second of m3. Hence, at t3 , m1 is already sent, and the adapter
generates the last two packets ofm3. Finally, at t4, the adapter can start sending
messages of the low priority message m2.

When a channel (Channel) receives a packet, it delivers the packet to the
subsequent router (Router) �or network adapter� in the next tick. Then, the
router is in charge of injecting the packet to the corresponding channel depend-
ing on its path (pendingRoute). In real networks, routers have a bu�er to store
packets if they cannot be sent through a given channel due to its bandwidth
capacity. However, in current implementation this bu�er functionality is pro-
vided by the channels themselves, which only let traverse a number of packets
according to its bandwidth and store the rest of the packets to deliver them in
subsequent ticks.

In order to behave as described, a component (i.e. an adapter, a channel
or a router) uses two execution policies: a reactive policy on incoming packets
and a scheduled policy on outgoing packets. For instance, no code is executed
while the component is waiting for a packet. Then, when another component
delivers it a packet, the code to handle incoming packets (receivePacket) is ex-
ecuted �notice that the way to deliver a packet to a component is to call this
method. Such execution is performed in a tick. However, if further actions are
required in subsequent ticks, the component itself registers into Repast scheduler
(registerScheduler) a method (scheduledTick) to be called at next tick. This
way, the scheduler calls the component at each tick while it has actions to per-
form �e.g. an adapter injecting packets as depicted in �gure 8.12 or a channel
delivering some of the packets it has in its bu�er.

8.3.6 Other components

In addition to the three layers described above, P2PMASsim has some more
components to support the layer components which are described in the following
subsections.

8.3.6.1 Setup

On the one hand, there is the setup component which is in charge of con�g-
uring and managing them. Figure 8.13 depicts its subcomponents. It has

150 CHAPTER 8. P2P SHARING NETWORK SIMULATOR

Figure 8.13: Simulator's Setup component.

a class (Execution) with the simulator's code entry point (main) that con�g-
ures all layers depending on current context. In particular, a context de�ni-
tion (Context) is the description of the agent and network components that
are simulated. For instance, it speci�es which agents have initially the datum
(agentsWithDatum), how is the underlying network (network) or where agents are
attached to the network (ids2ips, where ids stands for agent identi�ers and
ips for network nodes identi�ers). In fact, there are specialisations of this con-
text class, which contain further details depending on the particular approach
(approach). For example, the context description (Ctxt2LAMA) when running a
2-LAMA approach (see �6.4) provides a list of domain-level identi�ers (peerIDs),
meta-level agent identi�ers (assistantIDs) and a meta-level social structure de-
scription (assistContactGraph, i.e. the net of relationships among assistants).
Besides, the context description (CtxtBT) when running a BT approach (see �6.2)
just provides a list of sharing agents (peerIDs) and the identi�er of their tracker
(tracker).

When con�guring previous layers, the prime class (Execution) also creates
the global statistics (Stats). They contain a reference to agent and network
statistics (statsAgents, statsNet) and the number of simulated ticks (ticks). In
fact, this prime class it the one in charge of printing the statistical information
at the end of an execution (atTheEnd) �see �8.2.3. Moreover, this class has an
attribute that de�nes the limit of simulated ticks (maxTicks) to prevent in�nite
executions. This limit is passed to Repast engine, in order to abort the execution
if it is exceeded due to a coding error or an approach misconception.

8.3.6.2 Tools

On the other hand, there is a component (tools) which groups di�erent utilities
related to previous components. Figure 8.14 illustrates its subcomponents. It has
a set of data structure implementations (dataStructures) which are used by dif-
ferent P2PMASsim components and could also be reused in other projects. For
instance, it has a weighted graph implementation (Graph) which allows to attach
a reference to any sort of information (extra) to each node (Node). This is used
to attach network component type and identi�er when using a graph to de�ne

8.3. EXTENSIBLE ARCHITECTURE 151

Figure 8.14: Simulator's Tools component.

networks' topology. Moreover, the graph implementation (Graph) o�ers meth-
ods to compute Dijkstra's algorithm [Dijkstra, 1959] on it. These methods ob-
tain path costs from di�erent parameters: from edge weights (dijkstraWeights),
from the number of edges traversed (dijkstraHops) or both at the same time
(dijkstraHandW, see [Campos et al., 2010]). These methods are used, for exam-
ple, when computing the route of a packet along the communication network.

Besides, there is a set of classes which extend Repast log functionali-
ties (overRepast) and could be used in other Repast projects. Almost all
P2PMASsim classes derive from one of these log classes �e.g. all the classes
mentioned in previous sections. The base one (LogBase) stores the name of the
inherited class (className), which is added as a pre�x to all printed messages.
This way, when printing log messages from code (printLog), it is not neces-
sary to include the name of the class which is generating the message, since it
is automatically added �e.g. printing �Assistant� pre�x to each log message
printed by an assistant. Analogously, there is another class (LogLabel) that au-
tomatically adds an additional label (label) which can be used to print agent's
identi�er �e.g. printing the assistant identi�er like �a2�. Also, there is a third
log class (LogComposed) which adds a component label (component) and can be
used to automatically print an agent's internal component name �e.g. adding
the �CBR� pre�x when messages are issued from CBR classes. Besides, there are
other methods related to log messages, such the one used when there is a critical
error (criticalError). This method prints the log message with an additional
�CRITICAL ERROR� pre�x and stops simulator's execution.

Moreover, there is a set of tools (logAnalysis) focused on allowing batch

152 CHAPTER 8. P2P SHARING NETWORK SIMULATOR

executions of several simulations with di�erent parameters and analysing after-
wards the corresponding results. Mainly, these tools are shell scripts, so they can
easily run in remote server. This way it is easy to have di�erent remote machines
running di�erent sets of simulations and collecting their results subsequently.

As an illustration, we describe a basic execution and analysis cycle. First,
there is a script (runJobs.sh) which contains the de�nition of a set of simulations
to execute. Hence, there can be di�erent versions of this script in di�erent remote
machines in order to run a part of the total simulations in each computer. In fact,
these scripts call several times to a basic script (batchRun.sh) that provides all
necessary arrangements to perform a single simulation �e.g. it de�nes library
paths or the Java Virtual Machine con�guration. When a machine �nishes
its simulations, it can use a script (extractStats.sh) to extract desired statistic
information from the generated log �les. Moreover, the computer can run a script
(computeAverages.sh) to compute di�erent averages of these multiple-execution
statistics.

Finally, these results can be collected in a single computer and use other
scripts to plot this information. For example, �gure 8.5 shows a chart generated
with a script (plot-Ytime-Xfr-Sbw.sh) that draws the time (Y-axis) for di�erent
domain-level norms (maxFR parameter in X-axis and maxBW as series) when
these norms are not adapted (left-part) or adapted by using the heuristic (right-
part). These plots are generated using the standard Gnuplot tool [Janert, 2009],
so they are fully con�gurable and can created remotely if necessary. In addition,
it is also possible to convert data �les into other formats in order to plot/process
them using di�erent software. For instance, there is a script (dat2csv.sh) to
convert a data �le into a comma separated values �le, so it can be imported into
a spreadsheet program to plot charts interactively.

8.4 Open MAS extensions

In addition to the features described in previous sections, P2PMASsim o�ers
some extensions to simulate two open MAS issues: agents that enter and/or
leave during the execution (Entering / Leaving agents) and non-compliant agents
(Norm violations) �both issues are related to the lack of control over participant
development by the system designer. Next subsections detail each extension by
describing and motivating a possible underlying model and its current imple-
mentation.

In fact, the implementation of these extensions rises some complexities,
specially the entering/leaving issue. For instance, when a source agent is leaving,
the ones receiving the datum from it need to ask for the datum to other sources.
This means that the agent code needs to be updated to let the agent enter or
leave, but also to handle other agents entering/leaving. Even more, some of these
changes imply enhancing the protocol itself and updating di�erent simulator
components.

In addition, due to the need for a fair comparison among di�erent ap-
proaches, it is necessary to implement a mechanism that allows repeating a

8.4. OPEN MAS EXTENSIONS 153

similar sequence of violations or entering/leaving events among di�erent simu-
lations. The implementation of this mechanism rises more complexities again.

Overall, current conceptualisation and implementation of these extensions
may be a guidance to explore other open MAS issues or enhance current ones.
Furthermore, chapter 9 introduces some experiments using these extensions
which provide further insights into analysing the behaviour of di�erent ap-
proaches in an open MAS context.

8.4.1 Entering / Leaving agents

One characteristic of open MAS is that it is not feasible to control when agents
enter or leave the system along the execution. For instance, in a real tra�c
scenario, cars may leave the street to enter a parking area or they may return to
the street at any moment. Moreover, there can be di�erent agent pro�les, with
di�erent tendencies to perform such actions. For example, there may be agents
leaving the system as soon as they get a pro�t, which we call freerider agents.

Furthermore, these entering/leaving actions may be voluntary �i.e. they
depend on agent intentions� or forced by environmental circumstances �i.e.
they do not depend on agent purposes. For instance, in a real P2P sharing
network, connected computers may involuntarily leave the system due to a net
failure. Hence, in contrast to voluntary actions, the involuntary actions may not
leave agents the opportunity to notify their actions properly.

Accordingly, P2PMASsim entering/leaving model o�ers di�erent parame-
ters to control voluntary and involuntary actions, as described in next subsec-
tion. Besides, [Novo and Campos, 2010] provides further information about the
model and its implementation.

8.4.1.1 Model

The P2PMASsim entering/leaving model is focused on changing initial MAS
population at certain intervals. This process depends on a reference network
topology (it indicates the proportion of agents connected to each cluster and
their possible bandwidths) and a set of parameters (listed in table 8.3). Mainly,
there are four sets of parameters to control: the amount of agents connected
along the execution (General), the entering process (Enter), the involuntary
leaving process (Network failure) and the voluntary leaving process (Voluntary).

These parameters are relevant in the following entering/leaving phases:

� (1) Initial phase: initially a percentage of agents (INITIAL_PEERS) over the
maximum number of agents allowed (MAX_PEERS) is created. Their band-
width and cluster is randomly selected from the reference network topology.
A percentage (PROB_PEER_FREERIDER) of these created agents are freeriders,
which means that they may leave the system easily �see the Voluntary
leaving phase.

� (2) Delay phase: after the initial phase, the entering/leaving model is in-
active until a given tick (STARTING_TICK). This way, the domain-level can

154 CHAPTER 8. P2P SHARING NETWORK SIMULATOR

Parameter Val. Description
General

MAX_PEERS 15 max. number of peers during the execution

INITIAL_PEERS 0.80 percentage of peers initially connected

MIN_PEERS_CONNECTED 0.60 percentage of the minimum remaining peers

STARTING_TICK 75 tick when the E/L system is active

MIN_LEECHES_TO_STOP_EL 2 E/L is inactive when there only this #leeches

Enter

ENTERING_PEER_INTERVAL 100 ticks among entering steps

NUM_ENTERING_PEERS 0.20 percentage of possible entering peers

PROB_ENTERING_PEERS 0.50 probability to e�ectively enter the system

PROB_ENTERING_COMPLETED 0.25 probability that an entering peer is complete

Leave: Network failure

PEER_FAILURE_INTERVAL 100 ticks among net failure leaving steps

POSSIBLE_NUM_PEER_FAILURES 0.20 percentage of possible leaving peers

PROB_PEER_FAILURE 0.50 probability to e�ectively leave the system

Leave: Voluntary

LEAVING_PEER_INTERVAL 100 ticks among voluntary leaving steps

PROB_PEER_FREERIDER 0.50 probability of a peer to be a freerider

PROB_LEAVING_SEED_NORMAL 0.10 prob. to leave of a complete non-freerider

PROB_LEAVING_LEECH_NORMAL 0.00 prob. to leave of an incomplete non-freerider

PROB_LEAVING_SEED_FRIDER 0.90 prob. to leave of a complete freerider

PROB_LEAVING_LEECH_FRIDER 0.10 prob. to leave of an incomplete freerider

Table 8.3: Enter/Leaving control parameters.
(the listed values are related to the experiments described in �9.5.1)

perform its regular initialisation (e.g. performing a massive latency mea-
surement).

� (3) Entering phase: every certain ticks (ENTERING_PEER_INTERVAL), a percent-
age of agents (NUM_ENTERING_PEERS over MAX_PEERS) may enter the system with
a given probability (PROB_ENTERING_PEERS). The entering agents will have a
certain probability (PROB_ENTERING_COMPLETED) of having the datum and a
random bandwidth and cluster among the ones suggested by the reference
network topology.

� (4) Involuntary leaving phase: every certain ticks (PEER_FAILURE_INTERVAL),
a percentage of agents (POSSIBLE_NUM_PEER_FAILURES over MAX_PEERS) may in-
voluntarily leave the system with a given probability (PROB_PEER_FAILURE).

� (5) Voluntary leaving phase: every certain ticks (LEAVING_PEER_INTERVAL), any
agent may leave the system depending on its pro�le: it can be normal or
freerider. A normal agent has a very low probability to leave the system
when it does not have the datum (PROB_LEAVING_LEECH_NORMAL) and a low
probability to do it when it has the datum (PROB_LEAVING_SEED_NORMAL) �i.e.

8.4. OPEN MAS EXTENSIONS 155

it contributes to the sharing process. In contrast, a freerider agent has
a low probability to leave the system when it does not have the datum
(PROB_LEAVING_LEECH_FRIDER) and a high probability to do it when it has the
datum (PROB_LEAVING_SEED_FRIDER).

� (6) Final inactive phase: �nally, when only a few agents lack the datum
(MIN_LEECHES_TO_STOP_EL) the entering/leaving system becomes inactive.

In any case, the model does not allow agents to enter when there is already the
maximum allowed population (MAX_PEERS) nor to leave when there is already the
minimum allowed population (MIN_PEERS_CONNECTED). So, these parameters help to
keep the agent population size within a desired range. Even more, the model
does not allow an agent to leave the system if it is the only one that has the
datum. This way, the sharing network is always active.

8.4.1.2 Implementation

Implementing the described entering/leaving extension model involves updat-
ing several P2PMASsim components, as highlighted in �gure 8.15. In short,
there is a new subcomponent (EnterLeave), within the Setup component (setup),
which keeps all the entering/leaving model parameters described in previous
subsection. It is registered into the Repast scheduler in order to be called at
the appropriate intervals in order to perform the Entering phase (number 3
in �8.4.1.1) and the Involuntary leaving phase (4). In case there should be an
entering agent �according to some random numbers and model parameters�
it creates a new instance of the corresponding agent (twoLama.dl.Peer or
bitTorrent.Peer). Analogously, if there should be an involuntary leaving agent,
it sets the corresponding agent as o�ine. In addition, the agent base imple-
mentation (agentLayer.AgentBase) was updated to register into the scheduler
in order to perform the Voluntary leaving phase (5) depending on the model
parameters.

However, these changes entail updating other components. For example,
if an agent can leave at any moment, then the messages towards it that are
travelling along the network cannot be delivered. This implies updating the
network infrastructure (netLayer.infrastructure) in order to let its components
(Component) detect such situations and send back a new protocol message to
the sender (MsgType, new message err_no_dst) to denote that the recipient agent
was o�ine. Besides, the network adapter (Adapter) o�ers an o�ine switch, which
stops sending packages when and agent is disconnected.

In addition, the entering/leaving Initial phase (1) is performed by the cre-
ation method of the context component (setup.Context) by using the mentioned
new subcomponent (EnterLeave). This context component creates the initial
agents depending on the reference network topology. Hence, the network com-
ponent (netLayer.Network) has two topologies, the reference one and the actual
one. Moreover, the topology component (Topology) supports adding and re-
moving elements, thanks to some extensions of the underlying graph component
(tools.datastructures.Graph).

156 CHAPTER 8. P2P SHARING NETWORK SIMULATOR

Figure 8.15: Simulator's Entering/Leaving extension components.

All described changes involve also updating the protocol, and consequently
agents code (Assistant, Tracker and Peers). For instance, now an assistant can
receive join messages at any moment. This means that its internal state machine
is updated to handle this situation and ask a newcomer to measure its latency
to the rest of agents in its cluster. In this case, the agent (Peer) will measure its
latency using a shorter message than before �see �6.7.2� because there is already
network tra�c. The resulting measures make the assistant recompute the proper
social structure and send the corresponding contact messages to agents.

Furthermore, the protocol has new messages to inform that an agent is
leaving (MsgType, new messages leave_p2p, leave_p2a, leave_a2a). In particular,
when an agent is leaving, it noti�es its contacts (messages leave_p2p) and assis-
tant (message leave_p2a). Then, the assistant noti�es the other assistants about
such fact (message leave_a2a). This way, domain-level agents can update their
internal contact lists �and change its source when necessary� and assistants can
recompute the best social structure. In an open MAS context, a leaving agent
may not notify others anyway. Is such a case, other agents usually deduce that
it is leaving when there are network timeouts. In our implementation, this hap-
pens when an agent sends a message to another one and receives the previously
introduced err_no_dst message.

8.4. OPEN MAS EXTENSIONS 157

FORCE_INITIAL_PEERS = [

[id:'P01', datum:false, frider:true, bw:40, cluster:1],

[id:'P02', datum:false, frider:true, bw:40, cluster:1],

[id:'P03', datum:false, frider:true, bw:60, cluster:1],

[id:'P04', datum:false, frider:true, bw:80, cluster:1],

[id:'P05', datum:false, frider:false, bw:40, cluster:2],

[id:'P06', datum:false, frider:false, bw:40, cluster:2],

[id:'P07', datum:true , frider:true, bw:90, cluster:2],

[id:'P08', datum:false, frider:true, bw:90, cluster:2],

[id:'P09', datum:false, frider:true, bw:30, cluster:3],

[id:'P10', datum:false, frider:true, bw:50, cluster:3],

[id:'P11', datum:false, frider:true, bw:60, cluster:3],

[id:'P12', datum:false, frider:false, bw:90, cluster:3]

]

FORCE_ENTER_LEAVE = [

75: ['enter': [[id:'P13', datum:false, frider:false, bw:40, cluster:1]]],

275: ['voluL': [[id:'P04', datum:false],

[id:'P05', datum:false]],

],

375: ['voluL': [[id:'P01', datum:true],],

'enter': [[id:'P14', datum:false, frider:false, bw:60, cluster:3],],

],

475: ['failL': ['P10', 'P14']]

]

Figure 8.16: Entering/Leaving directive example.

Finally, these new behaviour implies new sort of statistics, like the number
of peers that actually entered/left the system or the number of complete datum
transmissions �this number can be greater than the number of agents at the
end of execution, since some completed agents may have left before. These new
metrics are collected by an updated statistics component (agentLayer.Stats)
and processed by an updated analysis stack (tools.logAnalysis). In fact, the
batch execution was updated in order to save the entering/leaving activity during
an execution �we call it an Entering/leaving directive. This way, in a subse-
quent execution, instead of rolling dices, the described methods may mimic the
stored directive. Figure 8.16 shows an example of such directive. It contains
the list of initially connected peer agents (FORCE_INITIAL_PEERS) with informa-
tion about its datum possession (completed), its entering/leaving pro�le (frider,
which stands for freerider), its individual bandwidth (bw) and the cluster where
they are connected (cluster). Also, it contains a list of entering/leaving events
(FORCE_ENTER_LEAVE). This list is indexed by the simulation tick, and the cor-
responding entries may have entering (enter), voluntary leaving (voluL) and
involuntary leaving (failL) directives.

8.4.2 Norm violations

In addition to entering/leaving agents, another characteristic of open MAS is
dealing with non-compliant agent populations. In particular, we focus on pop-
ulations where there is a certain percentage of agents that violate norms �so-

158 CHAPTER 8. P2P SHARING NETWORK SIMULATOR

called violators. Moreover, we consider that agents may have di�erent ways of
violating such norms. For instance, in the tra�c scenario when the speed limit
is 100 km/h (kilometres per hour), 30% of agents may violate such limit in dif-
ferent proportions. For example, a moderate violator may drive at 130 km/h,
whereas an extreme violator may drive at 200 km/h. Actual violations also de-
pend on other factors like system status, agent capabilities, or environmental
characteristics. For instance, the mentioned extreme violator may wish to drive
at 200 Km/h, but current tra�c �ow may actually prevent it from driving at
more than 160 Km/h.

Accordingly, the norm violations extension o�ers di�erent parameters to
control the percentage of violators and their degree of violation. Furthermore,
current P2PMASsim also o�ers a reward/sanction extension that goes beyond
the scope of this thesis, see [Ávila et al., 2011].

8.4.2.1 Model

The norm violations model provides two parameters to describe an agent popu-
lation:

� the percentage of violators (pV io): it de�nes the amount of agents that
violate norms as the proportion of the agent population that does not ful�l
norms (violators). For example, when there are 12 peers and pV io = 0.3,
there are 30% of violators that result in 4 non-compliant peers (12·0.3 ≈ 4).

� the degree of violation (dV io): it establishes the extent in which an agent
violates the norm. For example, if current maxBW = 50% and dV io = 0.3,
then a violator may use 65% of its nominal BW (50 + 50 · 0.3 = 65).
In contrast, if dV io = 0.7 a violator may use 85% of its nominal BW
(50 + 50 · 0.7 = 85).

Equation 8.1 shows how violator agents compute their internal limits
(vioMaxFR, vioMaxBW) according to current normative ones (maxFR,
maxBW) and their degree of violation (dV io). Notice that the actual violation
also depends on other factors like system status, agent capabilities, or environ-
mental characteristics. For instance, a violator would not be sending the data
to more agents than those that requested it, or it can not use more than 100%
of its bandwidth.

vioMaxFR = maxFR +maxFR · dV io
vioMaxBW = maxBW +maxBW · dV io

(8.1)

8.4.2.2 Implementation

Previous Norm Violation model mainly involves the initial population creation
and the agent implementation. Speci�cally, as 2-LAMA approach is the only
implemented coordination model that has norms, its domain-level agents and
context initialisation are the components updated as depicted in �gure 8.17.

8.4. OPEN MAS EXTENSIONS 159

Figure 8.17: Simulator's Norm violations extension components.

On the one hand, the �rst Norm Violation model parameter (pV io) is used
by the 2-LAMA context (Ctxt2LAMA) when creating the agent population. In
particular, every time it creates a new domain-level agent, it creates a violator or
a non-violator agent depending on a random dice based on the pV io probability.
Alternatively, 2-LAMA context can create certain agents as violators or non-
violators depending on a Norm Violations directive �i.e. a list of violators/non-
violators agent identi�ers. This way, other simulations can be conducted with
the same agent population in order to do a fair comparison of their results �
see �9.5.2.1.

On the other hand, the domain-level agent (twoLama.dl.Peer) is updated
to be able to violate norms in case it was created as a violator agent. Par-
ticularly, if it is a violator, it computes its internal limits as de�ned in eq. 8.1
�instead of just ful�lling current norms. In fact, it recomputes these limits every
time that the norms are updated. This way, it sets its own internal bandwidth
limit (vioMaxBW) on its network adapter �see Adapter.relativeUpBW in �8.3.5.2�
which may be larger than the allowed by current maxBW . Also, it may serve
the datum to a new agent if it is already serving current maxFR agents but less
than its internal limit (vioMaxFR).

Besides, this new behaviour implies new sort of statistics, like the average
of the number of datum transmissions that violate normFR or the average of
used bandwidth that violates normBW . These new metrics are collected by an
updated statistics component (agentLayer.Stats) and processed by an updated
analysis stack (tools.logAnalysis).

Chapter 9

Experiments

This chapter presents the experiments conducted to empirically evaluate the
2-LAMA in the P2P scenario. These experiments compare the di�erent coordi-
nation models �presented in previous chapters� using the developed simulator.
Such coordination models include the standard BitTorrent protocol as a base-
line and di�erent 2-LAMA approaches. In the experiments, the metric used to
evaluate the performance is the total sharing time to spread the data among all
agents, nevertheless some other metrics are also analysed. The derived results
show that our proposal is able to improve system performance, specially the
approaches that adapt norms. Additionally, we include a preliminary analysis
about 2-LAMA robustness when facing some open MAS issues: entering/leaving
agents and norm violations. The corresponding tests arise some positive prelim-
inary results and constitute a guidance to design further experiments in such a
context.

9.1 Introduction

Previous chapter 8 described the simulator we developed in order to empirically
test our 2-LAMA proposal in the P2P sharing network scenario �see the corre-
sponding speci�cation in chapters 6-7. Speci�cally, the simulator P2PMASsim
o�ers the implementation of all the suggested 2-LAMA alternatives which di�er
in which organisational components they adapt and how they do it �see �7.2,
�7.4 and �7.5. Moreover, P2PMASsim also has an implementation of the base-
line standard BitTorrent protocol �see �6.2. Therefore, the following empirical
tests are able to compare any of these coordination models.

Experiments analyse several metrics, being the time to spread the data
among all agents the one used to evaluate the performance. In fact, this metric
is the most relevant in real P2P sharing networks. The other metrics are mainly
used to roughly overview what is conditioning the resulting times. Moreover, we
have frequently analysed some particular simulation logs in order to determine
what is exactly happening. Hence, our comments about system behaviour are

161

162 CHAPTER 9. EXPERIMENTS

based on all these indicators.
All in all, we present the measured metrics, an analysis about the signi�-

cance of the performance results and a particular norm adaptation example to
illustrate the overall behaviour. In general, these results show that our 2-LAMA
proposal helps to improve system performance, specially the approach that uses
machine learning to adapt norms.

Additionally, there is also a �rst analysis about 2-LAMA robustness when
facing some open MAS issues. Designing the corresponding experiments has
risen several complexities concerning how to fairly compare di�erent approaches
in this context. Even more, the number of executions to perform such experi-
ments increases signi�cantly. In despite of these di�culties, the corresponding
tests arise some positive preliminary results and provide a guidance to design
further experiments about these issues.

In summary, the empirical tests show that our proposal 2-LAMA proposal is
able to help to improve system performance in the P2P sharing network scenario
and that it is robust when dealing with entering/leaving participants or non-
compliant agent populations.

9.2 Coordination models

The target of 2-LAMA is to adapt the coordination model of the domain-level
agents in order to improve system performance. In particular, chapter 7 pro-
poses di�erent mechanisms to adapt di�erent aspects of the coordination model.
Hence, in order to test 2-LAMA empirically, we compare the performance of each
of these adaptive coordination model alternatives. Moreover, as the 2-LAMA
speci�cation in the P2P sharing network scenario is based in the standard Bit-
Torrent protocol, we also compare the mentioned adaptive models to the non-
adaptive approach BitTorrent. This section provides further details about all
these coordination models.

9.2.1 Non-adaptive coordination model

We regard a BitTorrent network (BT) as an agent-centred multi-agent system
(ACMAS) approach, in which agents (peers) stablish their own organisation.
Moreover, we construe it as a non-adaptive coordination model, since its agents
always use the same mechanisms to coordinate. In short, its coordination model
does not limit bandwidth usage and always restricts to three the number of
leeches (peers lacking the datum) that a seed (peer having the datum) can start
serving simultaneously.

As detailed in �6.2, we have implemented a BitTorrent version based on
the original standard protocol. The main di�erence is that in our implemen-
tation the data have only a single piece. The rest is equivalent, so BT has a
single agent (tracker) that informs about connected peers, instead of providing
further assistance like our distributed meta-level. Following the original pro-
tocol, new peers without data (interested) show their interest to peers having

9.2. COORDINATION MODELS 163

the datum (sources). Afterwards, sources start serving only at given intervals
(unchoke_interval). In particular, at these intervals, a source peer communi-
cates to three of its previously interested peers (selected peers) to say that it
can serve them. Next, these peers can request the datum and all of them are
served. The selected peers are those that were interested most recently. If two
of them were interested at the same time, the one with the larger network band-
width (upload_bw1) is selected. In fact, if a peer's interest is older than a de�ned
interval (ageing_period), its age is ignored and only its peer's upload_bw is com-
pared. In addition, in two out of three unchoke_interval selection processes, the
third peer is randomly selected.

In our experiments, BT uses an unchoke_interval of 250 time units (ticks).
It is approximately the time required to send three data messages in current
topology �along an average peer individual link. Thus, it is the average time
that a server peer can invest sending data to three selected peers �i.e. the
number of simultaneous starting servings in BT. Also, we use an ageing_period

of 130 ticks to keep the ratio de�ned by the o�cial protocol.

9.2.2 Adaptive coordination models

In contrast to BitTorrent, we assume 2-LAMA has an adaptive coordination
model, since its meta-level provides di�erent mechanism to adapt the organi-
sation of domain-level agents �see chapter 7. In particular, we present three
alternatives:

� 2-LAMA with Social relationships adaptation (2L-S) but no norm adap-
tation.

� 2-LAMA with Social relationships adaptation and Norm adaptation using
a Heuristic approach (2L-S-N-Heu).

� 2-LAMA with Social relationships adaptation and Norm adaptation using
a CBR learning approach (2L-S-N-CBR).

The �rst alternative (2L-S) provides the social relationships adaptation detailed
in �7.2. Hence, it di�ers from BT in their social structure. While BT has a �at
social structure in which all peers contact among them, 2L-S uses our suggested
two-level multi-agent architecture. In this architecture, the meta-level assists
peers to create a social structure depending on their communication latencies
and datum possession.

The second alternative (2L-S-N-Heu) provides also the same social relation-
ships adaptation �since it has the 2-LAMA architecture� plus the norm adapta-
tion detailed in �7.4. Hence, it di�ers from BT in their social structure but also

1In a multi-piece scenario, this measure is estimated from previous piece interchanges.
However, since in a single-piece implementation no estimation can be performed, its actual
value is taken from the network topology. In contrast, our approach (2-LAMA) is actually
estimating connectivity by sending partial data messages �see �6.7.3. Notice that this gives
advantage to BT as peers do not have to exchange extra data messages.

164 CHAPTER 9. EXPERIMENTS

in the norms agents use to exchange data. In BT, these norms are �xed by the
protocol speci�cations, whereas in 2L-S-N-Heu they evolve along the execution.

Analogously, the third alternative (2L-S-N-CBR) also provides the same
social relationships adaptation but a di�erent norm adaptation mechanism, the
machine learning approach detailed in �7.5.

Besides, in order to make a fair comparison among BT and these 2-LAMA
approaches, we use a set of initial norm parameters that provide equivalent
starting conditions. Speci�cally, we use maxHas =∞ �i.e. no communication
restriction among clusters� maxBW = 100% �i.e. no bandwidth restriction� and
maxFR = 3 �equivalent to BT serving restriction. In addition, we empirically
established the adaptation interval adaptinterval = 50 time steps as large enough
to let new norms in�uence agents' behaviour before evaluating their e�ects. Cur-
rently, in order to perform these adaptations, assistants aggregate their local and
remote information by giving them the same importance (i.e. equal local and
remote weights, ∀jwR,j = wL, see �7.3.1.3). Besides, the machine learning ap-
proach (2L-S-N-CBR) requires some more parameters, like the minimum similar-
ity threshold MIN_SIM=0.65, the learning rate αg = 0.1, the tspread revision factor
kg = 0.1 or the attribute weights (wΘ

i). We computed these attribute weights
using PRS [Salamó and López-Sánchez, 2011] weighting method, and obtained:
wΘ
Compl =wΘ

SrvBW =wΘ
RcvBW = wΘ

RcvEffBW =wΘ
Waiting = 1 and wΘ

SeedBW =

wΘ
LeechBW = 0.5 �see �7.5.2.

9.3 Experiment design

All mentioned coordination models have been executed using the network topol-
ogy depicted in �gure 6.2b. Notice that in BT approach, a single tracker is linked
to r0, whereas in our 2-LAMA approaches there is an assistant connected to each
ISP (r1..r3). In any case, these elements (tracker/ assistants) have an in�nite
bandwidth �as if they were located at the ISP. We have used data messages
of 5000 data units, and the rest of messages of a single data unit. Addition-
ally, peers exchange messages of 150 data units to estimate the communication
latencies between them �see �lat_req�/�lat_rpl� messages in �6.7.2.

Overall, models have been tested by varying the domain-level agent that
initially has the datum. However, depending on model's properties we performed
a di�erent set of executions. They are illustrated in �gure 9.1 and detailed as
follows.

On the one hand, due to the random nature of the BitTorrent (i.e. some
served peers are selected haphazardly), the BT results show the average of re-
peating 50 times the execution with the data in each possible initial position
(i.e. 12 × 50 = 600 executions, where the 12 corresponds to all possible initial
data positions, and the 50 corresponds to repetitions).

On the other hand, the only social relationships adaptation approach and
the heuristic approach simply need to be executed once on each initial position
(i.e. 12 executions) since 2L-S / 2L-S-N-Heu have neither randomness �like BT�
nor training phase �like 2L-S-N-CBR.

9.4. RESULTS AND ANALYSIS 165

P2 P3 P4 … P12

Training Test

2L-S-N-CBR2L-S-N-HeuBT

P1

CB

CB CB

…
P1 P2 P3 … P11 P12

P1
…

Test

P1 P3 P4 … P12 P2

…
…

P1

P12

P2

Test

P3 P4 P2 … P12

P12 P4 P3 … P2

P1
P1

P12

P2

… …

#
e
x
. = = =

12600 (50·12=600) 600 (50·12=600)

50
 p

er
m

ut
at

io
ns

12
 ≠

 in
iti

al
 d

at
a

po
si

t io
n

50
 re

pe
tit

io
ns

…
…

2L-S

Test

P1

P12

P2

…

=

12

training ex.: 6600 (600·11=6600)

Figure 9.1: Executions performed in each coordination model.

Besides, the CBR learning approach requires a training period before test-
ing each initial data position. Hence, the system is trained with executions
where the data is in all the other possible initial positions. This lets the sys-
tem learn and �ll the initially empty case-base �either by calling the heuristic
or adapting previously learnt cases. Once it has been trained, the system is
tested against the remaining initial data position �the one not used during the
training. Given that the order of data positions during the training is relevant,
di�erent permutations of initial positions should be tested. In particular we
tested 50 random permutations out of all possible permutations of the 11 posi-
tions (i.e. 11!). Consequently, the results of 2L-S-N-CBR show the average of
executing 50 times each test of initial position (i.e. 12 × 50 = 600 executions,
where the 50 corresponds to di�erent training permutations for the 12 tested
initial data positions).

Accordingly, the results shown in next section correspond to the average of
the total number of test executions shown in the bottom part of �gure 9.1. For
instance, the 2L-S-N-CBR tests imply 600 test executions and their correspond-
ing 6600 training executions.

9.4 Results and analysis

Performance in our experiments is measured in terms of the total time (tspread)
required to spread the datum among all agents. In addition, we also measure
the network metrics de�ned in �6.3.2: the network cost (cn) consumed by all
messages, the average number of links traversed by each message (hops), the
network usage (netUsg) of all channels along a sharing process and the network
saturation (netSat) which indicates if there were messages waiting to traverse
those channels. In addition, we consider two more values about the case-base
for the machine learning approach: #cases as the average of the total number
of cases at the end of a test execution and fromHeu as the percentage average
of cases in the case-base with a solution generated by calling the heuristic �
see �7.5.3.1-7.5.3.2. Table 9.1 shows theses measures averaged over the number

166 CHAPTER 9. EXPERIMENTS

Table 9.1: Results (average for all executions).

time net cost (cn) hops netUsg netSat

BT 986.2 206,592.0 3.42 0.098 0.177
2L-S 793.1 338,448.3 3.22 0.163 1.813
2L-S-N -Heu 744.5 306,755.0 3.03 0.146 2.126
2L-S-N -CBR 732.6 348,399.6 3.25 0.161 1.846
#cases =155.4
fromHeu =1.3%

of executions �see �9.3� for the di�erent coordination models �see �9.2� in the
P2P sharing network scenario. Next subsections analyse these results, showing
that 2-LAMA presents a signi�cantly good performance, specially the machine
learning approach.

9.4.1 Performance evaluation

If we compare the performance of BT and 2-LAMA coordination models, we see
in table 9.1 that 2-LAMA approaches require less time to share the datum �see
next subsection 9.4.2 for further details about the signi�cance of these result.
This means that the time invested in communicating with our suggested meta-
level is less than the time bene�t of having this additional level. In contrast,
the network cost is larger in 2-LAMA. This indicates that, in our approaches,
the network is intensively used along the whole execution without achieving
saturation �otherwise, the time would increase. Having a meta-level implies
that coordination messages are exchanged among peers and assistants and also
between assistants. However, the network usage increment is mainly caused by
transmitting more data messages. In particular, in 2-LAMA there are more data
messages because some of them are not totally transmitted when: (i) a destina-
tion peer sends a cancel message to its source because it has found a faster one or
(ii) a source peer stops sending data to ful�l an updated maxFR. Thus, we ex-
pect to minimise the network consumption related to compare sources (i) when
dealing with more than one piece of data, since peers could compare sources
depending on the pieces previously retrieved. In more detail, as pointed out
in �9.2.1, current BT implementation takes the upload_bw measure from the net-
work topology information, whereas, in 2-LAMA implementation, peers receive
data simultaneously from more than one source to compare their bandwidths
�see �6.7.3. However, in a multi-piece scenario, these measures could be esti-
mated from previous piece exchanges, so 2-LAMA would save the network cost
associated to having simultaneous sources. Moreover, currently 2-LAMA invests
an average of 20% of its network cost and 10% of its sharing time to perform
its social structure phase �see �6.7.2. Such investment in time and network
resources would be exploited longer if more pieces were exchanged. In summary,
a multi-piece scenario would bene�t more 2-LAMA than BT.

Regarding the number of links traversed by messages (hops), our 2-LAMA

9.4. RESULTS AND ANALYSIS 167

approaches have more local communications �i.e. intra-clusters� than BT. This
is convenient because local messages have lower latencies and costs, since they
are usually performed within the same cluster. For example, the heuristic norm
adaptation approach (2L-S-N-Heu) has 12% less hops in average than the base-
line BT. However, in our case study this is not the only factor that contributes
to have a short time, since the machine learning approach (2L-S-N-CBR) is the
fastest and its hops average is larger than in the other 2-LAMA approaches.

Finally, the results in table 9.1 show that the norm adaptation approaches
(2L-S-N-Heu, 2L-S-N-CBR) perform better than the 2-LAMA approach that
just adapts the social structure (2L-S), since they require less time. In fact,
in our tests, no single combination of norm parameters applied during a whole
execution outperforms an execution that starts by using the same parameter
combination but adapts it later on �see also [Campos et al., 2008]. Further-
more, our learning approach (2L-SS-N-CBR) achieves better results than our
heuristic approach (2L-SS-N-Heu). This means that our heuristic performs a
good estimation of the mapping between system status, norms and outcomes,
but current learning approach 2L-S-N-CBR automatically improves this esti-
mation �see next subsection 9.4.3 for an example. However, in order to obtain
better results, the CBR approach requires a computation more complex than the
heuristic one. Speci�cally, the heuristic is a set of nested conditional instruc-
tions, so its cost is O(k). Whereas, the CBR approach requires computing the
similarity of current problem to all previous cases, so its cost is approximately
O(n) �n stands for the number of previous cases. Favourably, the number of
cases is not large, as shown in #cases = 155.41 at table 9.1. Hence, the actual
CBR's computation cost is small. Moreover, our CBR approach is basically ob-
taining solutions by adapting previous solved cases, since the heuristic is only
called a 1.3%, see fromHeu at table 9.1.

9.4.2 Signi�cance tests

We also analyse whether there are signi�cant di�erences between the presented
approaches by applying the Friedman test [Friedman, 1937, Friedman, 1940] and
Nemenyi test [Nemenyi, 1963] to the time results. First of all, we compute the
mean rank (r) of each algorithm considering all the experiments (k = 4 algo-
rithms and N = 600 di�erent experiments2 for each test). We rank alternative
algorithms, for each experiment, following the practice of Friedman. The rank-
ings are obtained computing each particular ranking rji for each experiment i and
each coordination model j, and computing the mean ranking R for each model
as Rj = 1

N

∑
i r
j
i , where N is the total number of experiments. Compared with

mean performance values, the mean rank reduces the susceptibility to outliers
which, for instance, allows a classi�er's excellent performance in one query to
compensate for its overall poor performance [Dem²ar, 2006]. Secondly, we ap-
ply the Friedman and Nemenyi tests to analyse whether the di�erence between

2In 2L-S and 2L-S-N-Heu there are 12 experiments, so their results have been repeated 50
times to be able to compare them with the rest of approaches.

168 CHAPTER 9. EXPERIMENTS

Figure 9.2: Application of the Nemenyi test to time results on the di�erent
coordination models.

algorithms is statistically signi�cant.
The Friedman test, recommended by [Dem²ar, 2006], is e�ective for compar-

ing multiple algorithms across multiple data sets �in our case, across multiple
experiments. It compares the mean ranks of algorithms to decide whether to
reject the null hypothesis, which states that all the methods are equivalent and
therefore their ranks should be equal. The Friedman statistic value is computed
as follows:

X2
F =

12N

k(k + 1)

∑
j

R2
j −

k(k + 1)2

4

 (9.1)

where k is the number of algorithms to compare.
Since this value is undesirably conservative, Iman proposed a corrected

statistic [Iman and Davenport, 1980]:

FF =
(N − 1)X2

F

N(k − 1)−X2
F

(9.2)

When we apply the Friedman test in our experimental setup with k al-
gorithms and N di�erent experiments, FF is distributed according to the F
distribution with (4− 1) = 3 and (4− 1) · (600− 1) = 1797 degrees of freedom.
The critical value of F (3, 1797) = 2.61 is computed at the 0.01 critical level �i.e.
at 99%. For our experiments on the P2P sharing network scenario we obtained
the values of XF = 542.55 and FF = 258.4. As the value is higher than 2.61 we
can reject the null hypothesis.

Once we have checked for the non-randomness of the results, we can perform
a post hoc test to check if one of the approaches can be singled out. For this
purpose, we use the Nemenyi test. In brief, it states that two approaches are
signi�cantly di�erent if the corresponding average ranks di�er by at least the
critical di�erence value:

CD = qα

√
k(k + 1)

6N
(9.3)

9.4. RESULTS AND ANALYSIS 169

1

2

3

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

m
a
x

F
R

time

(a) maxFR

2-LAMA-CBR
2-LAMA-Heu

1

2

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

n
e
tS

a
t

time

(b) netSat

2-LAMA-Heu

when the data is initially in p3

2-LAMA-CBR

when the data is initially in p3

Figure 9.3: System evolution example in terms of a) norm adaptation and b) re-
sulting saturation.

where qα is based on the Studentized range statistic divided by
√

2 and k is the
number of algorithms to compare. In our case, when comparing k algorithms
with a critical value α = 0.01, q0.01 = 3.113 for a two-tailed Nemenyi test �i.e.
99%. Hence, the critical di�erence value is CD = 0.232. Thus, for any two pairs
of algorithms whose rank di�erence is higher than CD, we can infer �with a
con�dence of 99%� that there exists a signi�cant di�erence between them.

Figure 9.2 illustrates the results of the Nemenyi test. In the �gure, dots
represent the mean rank of each coordination model. Vertical lines across dots
indicate the critical di�erence (CD). As stated, the performance of two ap-
proaches is signi�cantly di�erent if their corresponding mean ranks di�er by at
least the critical di�erence. For instance, �gure 9.2 reveals that 2L-S is signi�-
cantly better than BT. Overall, the best mean rank corresponds to 2L-S-N-CBR
which also shows that is signi�cantly better than the rest of coordination models
at a 99%.

9.4.3 Norm adaptation example

In order to illustrate how the machine learning approach (2L-S-N-CBR) im-
proves the heuristic approach (2L-S-N-Heu), �gure 9.3.a shows the adaptation
of normFR in a single execution �where the datum is initially at peer p3� using
both approaches. In brief, the heuristic tends to force a small maxFR to avoid
network saturation but CBR learns that it can obtain better results (775 ticks
versus 883 ticks) by using a larger value. Furthermore, the network saturation
curves shown in �gure 9.3.b reveal that the heuristic has actually more network

170 CHAPTER 9. EXPERIMENTS

saturation (netSat) when it starts using a smaller maxFR (i.e. t = 100). In
fact, inspecting execution details it arises that lowering maxFR values does not
always imply a saturation reduction. For instance, this situation can be found
when a source agent (seed) with a large bandwidth is serving data to other
agents (leeches) with smaller bandwidths. In such a case, it may be worse to
serve just a few agents, since there may be more probability to saturate their
individual links. Avoiding this saturation, the CBR approach is able to use the
network more intensively and thus, it obtains a shorter sharing time. Regarding
�gure 9.3.b, its initial peak re�ects intensive communication used to estimate
bandwidths among peers. Next, the CBR approach has a low net saturation
(if netSat < 1 then, in average, links have less information to transmit than
their nominal bandwidth) since di�erent seeds send data to di�erent leeches in
parallel. However, at the end the of the execution, the netSat increases because
the links of the few remaining leeches can be saturated by some of the numerous
available seeds.

9.5 Exploring open MAS issues

In addition to the results presented in previous sections, we performed some ex-
ploratory experiments about the open MAS extensions discussed in �8.4. Con-
ceiving such experiments has risen several design issues about how to fairly com-
pare di�erent approaches in an open MAS context. Even more, it has risen that
the number of executions to perform such experiments may increase signi�cantly.

In particular, this section presents an initial exploration of two speci�c open
MAS issues: MAS where there are agents entering and/or leaving during the exe-
cution (Entering / Leaving agents tests) and MAS where there are non-compliant
agents (Norm violations tests). In each case, there is a subsection detailing a test
design proposal to fairly compare di�erent approaches on such context. These
proposals may be a guidance for further tests on di�erent scenarios and ap-
proaches. Besides, there is also a subsection containing some preliminary results
on these contexts. These results are preliminary because due to time restric-
tions, we could only explore a small subset of the possible number of executions
in order to keep an a�ordable number of simulations.

Overall, these experiments show that 2-LAMA's architecture can deal with
such open MAS contexts and the preliminary results suggest that current im-
plementation is robust enough in such contexts.

9.5.1 Entering / Leaving agents

One characteristic of open MAS is that it is not feasible to control when agents
leave the system and it is usually worth to let them enter along the execution.
For instance, in real P2P sharing networks, connected computers may leave the
system due to a net failure or as soon as they get the data �instead of sharing it
for a while. In any case, such changes in agent population may alter domain-level
activity. Moreover, in 2-LAMA, the meta-level may also update the coordination

9.5. EXPLORING OPEN MAS ISSUES 171

#
e
x
. =

12000

=

240

training ex.:
 132000

1 2 3 4

E/L
directiv.

Fix

≡

Reference
topology

P1

P12

P2

…

10
 re

pe
tit

io
ns

Params Directives

4
ap

pr
oa

ch
es

Execute w/ params

Select

E/L
params

#directives:
 480 (10*12*4)

E/L
directiv.

Choose short ones

#directives:
 240 (20*12)

20 directives

1 initial
 datum

 position

Test

 training

2L-S-N-CBRHeuBT

P1

P12

…

50
 p

er
m

ut
.

50
 re

pe
t.

2L-S

P1

P12
…

P1

P12

…
P1

P12

…

20 directives

=

240

=

12000

Execute w/ directives

Figure 9.4: Entering/Leaving directive generation and tests.

model in order to assist the domain-level in facing such population changes. This
subsection suggests how to test the robustness of di�erent approaches when there
are this sort of agent population changes.

Before dealing with entering/leaving issues, in [Campos et al., 2010] we
analysed the behaviour of the heuristic approach (2L-S-N-Heu) when running
di�erent communication network topologies �i.e. di�erent sets of agents with
di�erent communication capacities. Such topologies di�er in: layout (ring/star),
size (number of agents), heterogeneity (agents per cluster or agents' bandwidth).
The corresponding results showed that 2-LAMA is robust when changing un-
derlying communication network's topology. For instance, the times obtained
when increasing the number of agents �in similar topologies� were sub-linear, so
2-LAMA is scalable when the population increases.

However, in that experiment, the topologies were �xed along the whole
sharing process and only di�er among di�erent tests. In contrast, in current ex-
periments we explore the behaviour of the di�erent approaches when the topol-
ogy evolves because there are agents entering/leaving along the execution. The
resulting preliminary results show that 2-LAMA is robust in such context.

9.5.1.1 Experiment design

Designing an experiment to compare di�erent MAS executions when there are
agents entering or leaving the system arises some fairness issues. Such issues
are related to guarantee an equivalent agent population behaviour in compared
simulations. In this sense, �xing the same entering/leaving model parameters
�see �8.4.1.1� and running many experiment would guarantee such equivalence.
However, in order to keep an a�ordable number of simulations, we decided to
generate some sets of entering/leaving directives �see �8.4.1.2� and compare
the approaches when they follow the same directive. Figure 9.4 illustrates this
process, that is detailed as follows.

First (�g.9.4-1), we �xed the entering/leaving model parameters as shown
in table 8.3. Such values try to simulate a network similar to the one
used in previous tests �see �9.3. For instance, given the MAX_PEERS=15 and

172 CHAPTER 9. EXPERIMENTS

PEERS_INITIALLY_CONNECTED=0.8, the initial number of connected agents matches
previous experiments topology (i.e. 15 · 0.8 = 12 agents). Then, at �xed in-
tervals (ENTERING_PEER_INTERVAL, PEER_FAILURE_INTERVAL and LEAVING_PEER_INTERVAL)
there may be agents entering or leaving, but the di�erence of population
size will not be larger than 25% of the average population of 12 agents (i.e.
9 ≤ #peers ≤ 15, since MIN_PEERS_CONNECTED=0.6 so 15 · 0.6 = 9).

Next (�g.9.4-2), we performed 10 executions for each initial datum position
�i.e. they start with the same topology than previous tests, see �g. 6.2b� using
each coordination approach with the same parameter values. During these exe-
cutions, we recorded their entering/leaving activity thanks to this P2PMASsim
capability �see �gure 8.16. As a result, we had 40 entering/leaving directives
(10·4 = 40, where 4 stands for the number of coordination models) for each of the
12 initial datum positions. Within this possible 40 entering/leaving directives,
we chose (�g.9.4-3) the 20 shorter executions. This way, we could guarantee that
all approaches could follow the whole directive, since they are not going to �nish
before.

Finally (�g.9.4-4), we executed the reference tests described in �gure 9.1, but
repeating them 20 times �i.e. once per entering/leaving directive. Accordingly,
the results shown in next subsection correspond to the average of the total num-
ber of test executions shown in the bottom part of �gure 9.4-4. For instance, the
2L-S-N-CBR tests imply 12000 test executions and their corresponding 132000
training executions.

9.5.1.2 Results

The results of the entering/leaving tests described previous section appear in
table 9.2. It contains the average of the metrics de�ned in �6.3.2: the time
(tspread) required to spread the datum among all agents, the network cost (cn)
consumed by all messages, the average number of links traversed by each mes-
sage (hops), the network usage (netUsg) of all channels along a sharing pro-
cess and the network saturation (netSat) which indicates if there were messages
waiting to traverse those channels. These metrics are available for all the coor-
dination models described in �9.2: the base-line coordination model (BT), the
only-social-adaptation 2-LAMA approach (2L-S), the heuristic norm-adaptation
approach (2L-S-N-Heu) and the machine learning norm-adaptation approach
(2L-S-N-CBR).

Notice that in terms of performance �i.e. time� all 2-LAMA approaches
have still a better performance than the base-line BitTorrent (BT). Furthermore,
within the 2-LAMA proposals, the machine learning approach (2L-S-N-CBR) is
still faster than the rest. Observe that the number of cases (#cases) has in-
creased (from 155.41 to 168.5). This re�ects that the topology changes along
the execution poses more heterogeneous situations to CBR, which �nds less sim-
ilar previous cases and creates more cases. However, these new cases are mainly
created by reusing previous ones instead of interrogating the heuristic, as shown
by the decrease in fromHeu (from 1.3% to 1.2%). The rest of metrics basically
keep the same behaviour than in previous simulations without entering/leaving

9.5. EXPLORING OPEN MAS ISSUES 173

Table 9.2: Entering/Leaving results (average for all executions).

time net cost (cn) hops netUsg netSat

BT 1220.69 233,810.03 3.33 0.076 0.153
2L-S 847.86 340,902.30 3.18 0.124 1.443
2L-S-N -Heu 822.80 336,891.31 3.10 0.126 1.495
2L-S-N -CBR 805.48 331,909.21 3.14 0.127 1.421
#cases =168.5
fromHeu =1.2%

agents �see table 9.1.
Above all, these preliminary results show that 2-LAMA is robust when there

are agents entering and leaving in the P2P sharing network scenario. In order
to continue this exploration, we should test more entering/leaving directives,
but also more sets of entering/leaving parameters. However, it should be taken
into account that any of these expansions increases the number of simulations
in some orders of magnitude.

9.5.2 Norm violations

In addition to entering/leaving agents, another characteristic of open MAS is
that they may be populated with non-compliant agents since the system designer
cannot control their development. For instance, in a real tra�c scenario, some
cars may violate tra�c rules.This subsection suggests how to test the robustness
of di�erent approaches when there are non-compliant agent populations.

The presented experiment focus on the machine learning approach
(2L-S-N-CBR), since it has the best performance in previous experiments �
the heuristic approach (2L-S-N-Heu) was already explored in a norm-violations
context in [Ávila et al., 2011]. In particular, this experiment explores how the
system behaves when there are di�erent percentages of peers that excess the lim-
its established by norms in a certain degree. We could also add sanction/reward
mechanisms in such context, but [Ávila et al., 2011] concluded that they added
more costs than bene�ts to our case study. All in all, the huge number of simu-
lations required by these sort of tests and our time restrictions led us to focus on
what was most relevant to test �it is worth to mention that current experiment
has four times the number of simulations in [Ávila et al., 2011], among others,
due to the CBR training phase.

Results show that the norm-adaptation coordination model is better than
the no-norm-adaptation ones. In other words, 2-LAMA approach is robust
enough when dealing with non-compliant agent populations.

9.5.2.1 Experiment design

The model to simulate non-compliant agent populations is detailed in �8.4.2.1.
In brief, it has two parameters: the percentage of violators (pV io) and the degree

174 CHAPTER 9. EXPERIMENTS

2L-S:

pVio
dVio

0.0

0.3

0.7

1.0

 0.0 0.3 0.7 1.0

#ex · 1

#ex · #vSets #ex · #vSets #ex · #vSets

#ex · 1 #ex · 1 #ex · 1

#ex · #vSets #ex · #vSets #ex · #vSets

dVio = degree of violation

pV
io

 =
 p

er
ce

nt
ag

e

 o
f v

io
la

to
rs

vSets = violator sets = 10

Violation tests:

pVio
dVio 0.0 0.3 0.7 1.0

12

240

12

240

2L-S-N-CBR:
pVio
dVio 0.0 0.3 0.7 1.0

600

12000

600

12000

12000

600

12000

12000

600

12000

240

12

240

240

12

240

0.0

0.3

0.7

1.0

0.0

0.3

0.7

1.0

Figure 9.5: Number of executions in robustness tests.

of violation (dV io). The former pV io de�nes the amount of agents that violate
norms as the proportion of the agent population that does not ful�l norms �e.g.
pV io = 0.7 means that there is a 70% of violator agents. And the latter dV io
establishes the extent in which an agent violates �e.g. dV io = 0.3 means that a
violator may use 65% of its nominal BW when the current limit is maxBW = 50%.

However, in order to keep an a�ordable number of simulations, we set both
violation parameters (pV io, dV io) to a discrete set of values: 0 for no violations
at all, 1 for the maximum level of violations and {0.3, 0.7} for two intermediate
violation levels. This approach is depicted in the top part of �gure 9.5. Notice,
that when there are no violations (either because pV io = 0 or dV io = 0), the
total number of executions is the #ex described in �gure 9.1. Similarly, when
all peers are violators (pV io = 1), the total number of executions is also the
mentioned #ex for every di�erent degree of violation (dV io = {0, 0.3, 0.7, 1}).
However, when there is an intermediate number of violators (0 < pV io < 1)
there are several possible distinct violator sets (vSets). For instance, when
pV io = 0.3, there are

(
12
4

)
di�erent sets of 4 (12 · 0.3 ≈ 4) violator peers out of

12. Accordingly, when some peers violate norms (0 < pV io < 1 and dV io > 0)
the total number of executions is the mentioned #ex times vSets. Again, in
order to keep an a�ordable number of simulations, current results take into
account ten possible violator sets (vSets = 20).

According to the described tests, their results correspond to the total
number of executions shown in the middle and bottom parts of �gure 9.5.
For instance, the 2L-S-N-CBR tests imply 74,400 test executions (74, 400 =
600·4+12, 000·6) and their corresponding 818,400 training executions (818, 400 =

9.5. EXPLORING OPEN MAS ISSUES 175

2L-S

pVio \ dVio 0.0 0.3 0.7 1.0

0.0 793.08 793.08 793.08 793.08

0.3 793.08 776,04 803,75 837,96

0.7 793.08 759,81 839,37 893,38

1.0 793.08 746.42 868.08 980.33

2L-S-N-CBR

pVio \ dVio 0.0 0.3 0.7 1.0

0.0 732.59 732.59 732.59 732.59

0.3 732.59 763,56 769,54 768,43

0.7 732.59 782,00 791,68 798,34

1.0 732.59 847.42 835.90 789.65

Table 9.3: Violation tests numeric results (average time for all executions).

74, 400 · 11, see also �gure 9.1). All these executions are performed using the
same topology than in previous tests �see �9.3.

9.5.2.2 Results

The results of the violation tests described in previous section appear in table 9.3.
It contains the average of the sharing time for all described executions depending
on both violation model parameters: percentage of violators (pV io) and degree
of violation (dV io). The higher they are, the more violations there are during
the execution. Figure 9.6 illustrates these results. Its left part shows the results
for the only social structure adaptation 2-LAMA approach (2L-S) whereas its
right part shows the results for the machine learning norm-adaptation approach
(2L-S-N-CBR). Each part has a set of bars for each percentage of violators
(pV io), which contains a bar for each degree of violation (dV io). Moreover, the
base-line coordination model (BT) is depicted as a constant line that corresponds
to the 986.2 ticks �see table 9.1.

Notice that, in general, the performance of the norm adaptive approach is
still better than the other approaches in presence of violators. As expected, the
sharing time increases when the violation rate grows �e.g. see how 2L-S-N-CBR
bars clearly increase from pV io = 0.3 to pV io = 0.7 and also when dV io rises.
It is worth mentioning that, in general, the norm-adaptation approach presents
a time shorter than 2L-S �i.e. its bars are shorter. Specially when all agents
always violate norms (pV io = 1 and dV io = 1), the norm-adaptation approach
is able to counter-act the violation e�ects since it can toughen up the limits �by
decreasing their values. Furthermore, 2L-S-N-CBR presents a more steady time
variation in comparison to the no-norm-adaptation approach.

In summary, results show that the norm-adaptation coordination model is
better than the no-norm-adaptation ones, even when agents violate norms in the
P2P sharing network scenario. That is to say, our norm-adaptation approach

176 CHAPTER 9. EXPERIMENTS

Figure 9.6: Violation tests graph results.

is robust enough in presence of non-compliant agent populations. In order to
continue this exploration, there should be more violator sets (vSets), but also
more values of both violation parameters (pV io, dV io). Nonetheless, notice that
current violation experiments imply almost one million simulations and that
any of the mentioned expansions would increase this number in some orders of
magnitude.

Chapter 10

Conclusions

This chapter summarises the achievements of our research according to the orig-
inal thesis objectives laid out on �rst chapter. It reviews the actual thesis de-
velopment of those objectives, detailing the contributions and the derived publi-
cations. Moreover, it also suggests di�erent paths to extend this research in the
future work.

10.1 Achieved objectives and contributions

Over the years, software systems are applied to more complex and dynamic do-
mains. Among these systems, the Organisation Centred Multiagent Systems
(OCMAS) have proven to be successful in promoting a coordination model
among agent that is convenient to face such complexity. Furthermore, one of the
main challenges in software engineering is to design and to develop mechanisms
to endow such systems with self-adaptation capabilities to continue being e�ec-
tive under changing situations. Our research addresses this issue when dealing
with regulation-oriented problems �i.e. problems where it is not feasible to as-
sign subtasks to agents. The result is an abstract OCMAS architecture proposal,
that is able to assist agents to improve system performance on such problems:
2-LAMA.

In order to reach this general purpose, we introduced �ve particular ob-
jectives: (1) to de�ne the concept of coordination support related to sustain a
coordination model among MAS participants; (2) to review the previous work
from this perspective in order to identify some areas that could be enhanced;
(3) to propose an approach to provide assistance services to agents; (4) to con-
sider di�erent alternatives to provide such assistance in the form of organisa-
tional adaptation; and (5) to evaluate our approach in a P2P sharing network
scenario. All in all, in �rst chapter we introduced these objectives, speci�ed the
target regulation-oriented problems and described the scenarios that were later
used to illustrate subsequent concepts.

We achieved the �rst two objectives by de�ning our coordination support

177

178 CHAPTER 10. CONCLUSIONS

perspective of MAS approaches (1) and reviewing the state of the art from this
angle (2) �see ch. 2. This perspective is well-argued and presented in form of
di�erent service layers illustrated by several previous works. As a result, we iden-
ti�ed a set of assistance services as a potential research area. Next, we proposed
the Situated Autonomic Electronic Institutions (SAEI), which were focused on
the organisational adaptation of an existing MAS by means of an overlapped in-
stitution �see ch. 3. Such approach was the antecedent of our OCMAS abstract
architecture proposal. Afterwards, we schematised di�erent assistance services
as a coordination support layer that we named Assistance Layer �see ch. 4.
This contributed to �rst objective (1) and provided an incipient formalisation
of the this layer towards the third objective (3), i.e. proposing an approach to
provide such services. This formalisation was illustrated in one of the presented
scenarios, the auction house.

In particular, we focused on a single assistance service, the Organisational
Adaptation, and we proposed an approach to provide it �see ch. 5. In fact, we
proposed two alternatives: an extension to use Electronic Institutions to adapt
an existing MAS (SAEI) and a more generic architecture based in a meta-level
approach (2-LAMA). The second one, the Two Level Assisted MAS Architecture,
is our actual contribution to achieve the third objective (3). In this distributed
abstract architecture, the MAS organisation is updated by a set of agents that
reason at a higher level of abstraction and are not involved in the domain activity
�i.e. the meta-level. Such mechanism adapts the coordination model (organi-
sation) that structures participants interactions whenever there are changes �in
agents' behaviour or in the environment� that lead to a poor ful�lment of the
system goals. Therefore, we advocate for endowing the organisation with adap-
tation capabilities, instead of expecting agents to be capable of adapting the
organisation by themselves. Notice that we made a relevant e�ort to formalise
the whole 2-LAMA model and its subsequent speci�cation. This may help to
apply the same model to more scenarios. For instance, during the formalisation,
we provided several speci�cation examples in the tra�c scenario.

Even more, we later used our P2P sharing network case study to fully spec-
ify all formalised 2-LAMA components �see ch. 6. Therefore, we could elaborate
di�erent adaptation alternatives in this scenario �see ch. 7� as demanded by the
fourth objective (4). In particular, we proposed how two adapt two organisa-
tional components in the P2P scenario: the net of relationships among agents
and the norms that regulate participants behaviours.

Furthermore, we presented two alternatives to perform the norm adapta-
tion. One alternative is based on a heuristic coded at design-time, whereas the
other one is based on the CBR machine learning technique that evolves at run-
time. The former depends totally on designer's previous knowledge and provides
an adaptation �xed at design-time. This implies that the developer should think
about all possible situations, otherwise the technique may be ine�ective if the
circumstances signi�cantly change. In contrast, the CBR approach can use its
own experience to learn how to act and it can update its behaviour under chang-
ing circumstances. In fact, we have tailored the classical CBR in order to take

10.2. PUBLICATIONS 179

into account both some heuristic knowledge and its own experience.
In relation to the last objective (5), we implemented a simulator and we

used it to perform an empirical evaluation of our 2-LAMA proposal. Regard-
ing the implementation, we developed a P2P sharing network MAS Simulator
(P2PMASsim) �see ch. 8. This simulator provides several facilities to analyse
system behaviour and compare di�erent MAS approaches with the same initial
conditions. We paid special attention to the �exibility of its internal architec-
ture, which facilitates replacing some of its components in order to simulate
other approaches and/or scenarios.

Finally, we empirically evaluated our di�erent 2-LAMA approaches and
used the standard BitTorrent protocol as a base-line �see ch.9. The corre-
sponding results show that our 2-LAMA proposal is able to improve system per-
formance, specially the norm-adaptation approaches. Additionally, there is also
a exploratory analysis about 2-LAMA robustness when facing some open MAS
issues: entering/leaving agents and non-compliant participants. This analysis
provides positive results and constitutes a guidance to design further experi-
ments on current case study or on di�erent scenarios and/or approaches.

10.2 Publications

This section contains the list of the main publications we have done during
our research work, mentioning their contributions to this thesis, the related
objectives and the chapters more in�uenced by their contents. Notice that the
list contains some journal papers, some relevant congress papers and an awarded
demo, among others. These relevant publications are the following:

� Jordi Campos, Maite Lopez-Sanchez, J.A. Rodriguez-Aguilar, and Marc
Esteva "Formalising Situatedness and Adaptation in Electronic Institu-
tions" in Coordination, Organizations, Institutions, and Norms in Agent
Systems IV . Lecture Notes in Arti�cial Intelligence (LNAI 5428, ISBN
978-3-642-00442-1, ISSN 0302-9743). Springer. pp. 126-139. 2009. From
COIN'08 at AAMAS'08.

� It de�ned our �rst self-adaptive OCMAS approach (SAEI) in the
tra�c scenario [Objective: 4; Chapters: 1,3]

� Jordi Campos, Maite Lopez-Sanchez, and Marc Esteva. "Multi-Agent Sys-
tem adaptation in a Peer-to-Peer scenario". In ACM SAC Symposium on
Applied Computing - Agreement Technologies Track. Hawaii, USA, March
9 - 12, 2009 (ISBN: 978-1-60558-166-8). pp. 735-739. 2009

� It de�ned our second self-adaptive OCMAS approach (2-LAMA) in
the P2P sharing network scenario and concluded that the cost of hav-
ing a meta-level was lesser than the bene�ts it reported [Objective: 4;
Chapters: 1,5]

180 CHAPTER 10. CONCLUSIONS

� Jordi Campos, Maite Lopez-Sanchez, and Marc Esteva. "Norms in
2-LAMA" Research Report at Arti�cial Intelligence Research Institute
(IIIA), Spanish National Research Council (CSIC), ref. number RR-IIIA-
2008-05. 2008.

� It compared the results of using 2-LAMA with di�erent �xed norm
values versus using an initial norm adaptation heuristic, concluding
that the adaptive approach managed to obtain a good time in despite
of initial norm values [Objective: 5; Chapter: 9]

� Jordi Campos, Maite Lopez-Sanchez, and Marc Esteva. "Coordination
Support in MAS". In AAMAS'09 Eighth International Conference on
Autonomous Agents and Multiagent Systems, (Impact factor by CiteSeer
= 1.18) May 10-15, 2009, Budapest, Hungary (ISBN 978-0-9817381-5-4).
pp.1301-1302. 2009

� It de�ned our Coordination Support perspective illustrated in both
the auction house and the P2P sharing network, and presents the
Assistance services as a step forward in MAS development [Objec-
tives: 1,2; Chapters: 1,2,4]

� Jordi Campos, Maite López-Sánchez, Marc Esteva, Alba Novo, Javier
Morales "2LAMA Architecture vs. BitTorrent Protocol in a Peer-to-Peer
Scenario" Arti�cial Intelligence Research and Development, proceedings
of the 12th International Conference of the Catalan Association for Arti�-
cial Intelligence. Edited by Sandra Sandri, Miquel Sanchez-Marré, Ulises
Cortés. Vol 202 of the series Frontiers in Arti�cial Intelligence and Appli-
cations 202. IOS Press. ISBN. 978-1-60750-061-2, ISSN 0922-6389. pp.
197-206, Cardona Barcelona, 21-23 Oct 2009.

� It de�ned our simpli�ed version of the BitTorrent protocol and em-
pirically compared it to our 2-LAMA approach, concluding that our
meta-level outperforms this base-line protocol [Objective: 5; Chap-
ters: 6,9]

� Jordi Campos, Marc Esteva, Maite Lopez-Sanchez, and Javier Morales
"An Organisational Adaptation Simulator for P2P networks". H. Aldew-
ereld, V. Dignum and G. Picard (Eds.) Spinger. Engineering Societies
in the Agents World X. Lecture Notes in Arti�cial Intelligence. LNAI
5881, ISSN 0302-9743, ISBN 978-3-42-10202-8, 10th International Work-
shop ESAW'09, pp. 240-242, Utrecht, The Netherlands, 16-19 November
2009.

� We won the Best Demo Award by presenting the features of our sim-
ulator [Objective: 5; Chapter: 8]

10.2. PUBLICATIONS 181

� Jordi Campos, Maite Lopez-Sanchez, Marc Esteva and Javier Morales "A
simulator for organisation-centred MAS adaptation in P2P sharing net-
works" proceedings of the ninth international conference on Autonomous
Agents and MultiAgent Systems AAMAS'10 (Impact factor by CiteSeer =
1.18) pp. 1615-1616. Toronto, Canada, May 10-14 2010.

� It demoed P2PMASsim at the main conference, with an enhanced
control through the GUI [Objective: 5; Chapter: 8]

� Jordi Campos, Maite Lopez-Sanchez and Marc Esteva "Norm Adaptation
using a Two-Level Multi-Agent System Architecture in a Peer-to-Peer Sce-
nario" proceedings of the ninth workshop on Coordination, Organization,
Institutions and Norms in multi-agent systems (COIN) at AAMAS'10 pp.
64-71. Toronto, Canada, May 11 2010.

� It detailed current heuristic approach to adapt norms in 2-LAMA,
concluding it outperformed the no-norm-adaptation 2-LAMA and the
base-line BitTorrent [Objectives: 4,5; Chapters: 7,9]

� Jordi Campos, Nuria Piqué, Maite López-Sánchez, Marc Esteva "Com-
parison of Topologies in Peer-to-Peer Data Sharing Networks" Arti�cial
Intelligence Research and Development, proceedings of the 13th Interna-
tional Conference of the Catalan Association for Arti�cial Intelligence.
Edited by Rene Alquezar, Antonio Moreno, Josep Aguilar. Vol 220 of
the series Frontiers in Arti�cial Intelligence and Applications 220. IOS
Press. ISBN. 978-1-60750-642-3, ISSN 0922-6389. pp. 49-58, L'Espluga
de Francolí (Tarragona, Spain), 20-22 Oct 2010.

� It tested the heuristic approach of 2-LAMA when running on di�erent
network topologies, concluding that it was robust to these changes
[Objective: 5; Chapters: 9]

� Jordi Campos, Maite Lopez-Sanchez, Marc Esteva "A Case-Based Reason-
ing Approach for Norm Adaptation" E. Corchado, M. Graña-Romay and
A.M Savio (Eds). Springer. Hybrid Arti�cial Intelligence Systems part II.
Lecture Notes in Arti�cial Intelligence, LNAI 6077, ISSN 0302-9743, ISBN
978-3-642-13802-7. 5th International Conference HAIS 2010, pp. 168-176,
San Sebastián, Spain, June 2010.

� It detailed a CBR approach to adapt norms in 2-LAMA, conclud-
ing it outperformed previous coordination models [Objectives: 4,5;
Chapters: 7,9]

� Jordi Campos, Marc Esteva, Maite Lopez-Sanchez, Javier Morales, and
Maria Salamó "Organisational Adaptation of Multi-Agent Systems in a
Peer-to-Peer scenario" Journal Computing. ISSN: 0010-485X, Ed Springer
(Wien). IF 2009 JCR: 1.033. Vol 91, pp 169-215 (DOI 10.1007/s00607-
010-0141-9) Computing 2011.

182 CHAPTER 10. CONCLUSIONS

� This journal paper detailed several previous topics and enhanced the
problem description, the 2-LAMA formalisation, the experimental
methodology and the related work review [Objectives: 1,2,3,5; Chap-
ters: 5,7,9]

� Jordi Campos, Maite Lopez-Sanchez, Marc Esteva, Maria Salamó and Pe-
dro Ávila "Learning Organisational Self-Adaptation in Multi-Agent Sys-
tems" submitted to Journal of Systems and Software. Special issue Self-
Adaptive Systems (under revision)

� This journal paper is currently under revision. It includes the cur-
rent CBR approach and some violation tests [Objectives: 4,5; Chap-
ters: 7,9]

10.3 Future work

This thesis lays the foundations of our MAS architecture proposal (2-LAMA) to
provide high-level coordination support services (assistance services in general,
organisational adaptation in particular) to OCMAS that deal with regulation-
oriented problems �e.g. the P2P sharing network. Nevertheless, along this
work we identi�ed several research branches that could be further explored.

First, this thesis focuses on a particular Assistance Layer service (adapta-
tion), so the other proposed services �see �4.3� could be further elaborated. For
instance, the Estimation service may alleviate agent development, since it is a
way of abstracting some reasoning capabilities that could be provided by MAS
infrastructure. Such an abstraction of high level functionalities may be a step
further in software engineering.

Concerning the particular assistance service addressed in this thesis, the
adaptation service, we suggested di�erent alternatives �see �7.3.2� but there
could be other ones. For instance, the norm adaptation could be performed
using another machine learning technique like the reinforcement learning. Even
more, using a hybrid learning approach could improve results. For example,
we could merge mentioned reinforcement learning with our tailored CBR. Such
a combination would require much more training than the CBR approach but
could lead to current unexplored search space regions. Moreover, such a hybrid
approach could decrease �or even terminate� CBR dependence on expert knowl-
edge. Besides, it is also possible to go further in current CBR approach, like
adding a maintenance phase to remove cases with a low evaluation value.

Further, this adaptation service could be provided by using another MAS
architecture di�erent from our proposal. That is to say, 2-LAMA was our pro-
posal to guarantee the features of the agents in change of adaptation �see �5.4�
but there may be other ways to guarantee such features. For example, one of the
features of an adaptation agent is having access to gather certain information,
which may depend on the other agents trusting it. Hence, some of the exist-
ing trust systems could be used to identify trusted third-parties among MAS
participants, and let them act as the meta-level.

10.3. FUTURE WORK 183

Moreover, although the 2-LAMA architecture is generic and abstract, we
took some assumptions when specifying its components. For instance, we
assumed that the adaptations are performed at a certain �xed frequency �
see �5.5.4.2. In contrast, this frequency could vary depending on system out-
comes stability. This way, if it is estimated that the system is not going to require
any adaptation for a while, the next adaptation step could be delayed to avoid
its computational and network costs. Even more, the meta-level coordination
model could be modi�ed by using a di�erent agreement function based on con-
sensus instead of majority �see �7.3.3.1. Also, the remote and local information
could be aggregated in a di�erent manner, instead of using the current weighted
average �see �7.3.1.3. In fact, taking pro�t that 2-LAMA can be applied recur-
sively �see �5.5.1� an additional meta-level could be in charge of these changes
in current one.

Besides, current case study could be enhanced by approaching it more to
real P2P sharing networks. For example, extending current protocol to deal
with multiple-piece data �see �6.1. This may add more complexity, but could
lead to get more out of 2-LAMA since the resources invested in the social struc-
ture phase would be exploited longer �see �9.4.1. Even focusing on current case
study de�nition, it could have more norms, like one limiting the number of simul-
taneous sources. Currently, this limit is �xed to two simultaneous data sources
�see �6.7.3� but it could vary depending on network status. Alternatively, other
case studies could be chosen, like some of the other scenarios presented in �1.2.2.

Finally, regarding the empirical evaluation, certainly other experiments
could be conducted to check any of the mentioned alternatives. But also, current
exploration on open MAS issues showed that testing such concepts requires a
very large number of simulations. Hence, some additional simulations could be
done when having more time and computing resources. Even more, current pa-
rameter values could be modi�ed to study their in�uence �with the correspond-
ing increment of the number of simulations. Further, current entering/leaving
and violation models could be enhanced, like using sanction or reward mech-
anisms �[Ávila et al., 2011] started this branch. In addition, there are other
open MAS issues that could be essayed, like untrustworthy agent populations
�e.g. in real P2P sharing networks, there are agents that send fake pieces of
data in exchange of good pieces.

Overall, we think that the most promising future works are enhancing cur-
rent learning method with reinforcement learning, continuing current open MAS
exploration and developing the rest of assistance services.

Bibliography

[Aam, 1994] (1994). Case-Based Reasoning: Foundational Issues, Methodolog-
ical Variations, and System Approaches. Arti�cial Intelligence Communica-
tions, 7:39�59.

[KIF, 1995] (1995). Knowledge Interchange Format (KIF).
http://logic.stanford.edu/kif/speci�cation.html.

[Bou, 2009] (2009). Autonomic Electronic Institutions' Self-Adaptation in Het-
erogeneous Agent Societies, volume 5368, pages 18�35. Springer.

[Arcos et al., 2005] Arcos, J. L., Esteva, M., Noriega, P., Rodríguez-Aguilar,
J. A., and Sierra, C. (2005). Engineering open environments with electronic
institutions. Engineering Applications of Arti�cial Intelligence, 18(2):191�204.

[Arcos et al., 2007] Arcos, J. L., Noriega, P., Rodríguez-Aguilar, J. A., and
Sierra, C. (2007). E4mas through electronic institutions. In D. Weyns, H. P.
and Michel, F., editors, Environments for Multiagent Systems III, volume 4389
of Lecture Notes in Arti�cial Intelligence, pages 184�202. Springer-Verlag.

[Argente et al., 2008] Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian,
V., and Rebollo, M. (2008). An Abstract Architecture for Virtual Organiza-
tions: The THOMAS project. Technical report, Grupo de Tecnología Infor-
mática - Inteligencia Arti�cial (GTI-IA), Universidad Politécnica de Valéncia.
Technical Report.

[Artikis et al., 2009] Artikis, A., Kaponis, D., and Pitt, J. (2009). Multi-Agent
Systems: Semantics and Dynamics of Organisational Models, chapter Dy-
namic Speci�cations of Norm-Governed Systems, pages 460�479. V. Dignum,
IGI Global.

[Avouris and Gasser, 1992] Avouris, N. and Gasser, L. (1992). Distributed arti-
�cial intelligence: Theory and praxis, volume 5. Springer.

[Bellifemine et al., 2007] Bellifemine, F. L., Caire, G., and Greenwood, D.
(2007). Developing Multi-Agent Systems with JADE. John Wiley & Sons,
NJ.

185

186 Bibliography

[Berns and Ghosh, 2009] Berns, A. and Ghosh, S. (2009). Dissecting self-* prop-
erties. In 2009 Third IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO), pages 10�19. IEEE.

[BitTorrentInc., 2001] BitTorrentInc. (2001). BitTorrent protocol speci�cation.
http://www.bittorrent.org/beps/bep_0003.html.

[Boella et al., 2010] Boella, G., Pigozzi, G., Singh, M., and Verhagen, H. (2010).
Normative multiagent systems: Guest editors' introduction. Logic Journal of
IGPL.

[Boella and van der Torre, 2004] Boella, G. and van der Torre, L. (2004). Reg-
ulative and constitutive norms in normative multiagent systems. Proceedings
of KR'04, pages 255�265.

[Bogdanovych et al., 2007] Bogdanovych, A., Esteva, M., Gu, N., Simo�, S.,
Maher, M., and Smith, G. (2007). The role of online travel agents in the
experience economy. In Proceedings of the 14th International Conference on
Information Technology and Travel & Tourism (ENTER 2007). UK: Axon
Imprint, pages 81�91.

[Boissier and Gâteau, 2007] Boissier, O. and Gâteau, B. (2007). Normative
multi-agent organizations: Modeling, support and control. In Boella, G.,
van der Torre, L., and Verhagen, H., editors, Normative Multi-agent Systems,
number 07122 in Dagstuhl Seminar Proceedings, pages 1�17. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany.

[Boissier et al., 2006] Boissier, O., Hübner, J. F., and Sichman, J. S. (2006).
Organization oriented programming: From closed to open organizations. In
O'Hare, G. M. P., Ricci, A., O'Grady, M. J., and Dikenelli, O., editors, ESAW,
volume 4457 of Lecture Notes in Computer Science, pages 86�105. Springer.

[Bou et al., 2006] Bou, E., López-Sánchez, M., and Rodríguez-Aguilar, J. A.
(2006). Norm adaptation of autonomic electronic institutions with multiple
goals. ITSSA, 1(3):227�238.

[Bou et al., 2007] Bou, E., López-Sánchez, M., and Rodríguez-Aguilar, J. A.
(2007). Self-adaptation in autonomic electronic institutions through case-
based reasoning. In Proceedings of MA4CS Workshop of ECCS'07, page To
appear as Lecture Notes in Computer Science.

[Busoniu et al., 2007] Busoniu, L., Babuska, R., and De Schutter, B. (2007).
Multi-agent reinforcement learning: A survey. In Control, Automation,
Robotics and Vision, 2006. ICARCV'06. 9th International Conference on,
pages 1�6. IEEE.

[Cámara et al., 2006] Cámara, J. P., Gregori, M. E., Bada, G. A., García-
Fornes, A., Julián, V., and Botti, V. J. (2006). Adding new communication

Bibliography 187

services to the FIPA message transport system. In MATES, volume 4196 of
LNCS, pages 1�11.

[Campos et al., 2009a] Campos, J., López-Sánchez, M., and Esteva, M. (2009a).
Assistance layer, a step forward in Multi-Agent Systems Coordination Sup-
port. In Eighth International Conference on Autonomous Agents and Multi-
agent Systems, pages 1301�1302.

[Campos et al., 2009b] Campos, J., López-Sánchez, M., and Esteva, M. (2009b).
Assistance layer in a p2p scenario. In Engineering Societies in the Agents
World X (ESAW'09). Lecture Notes in Arti�cial Intelligence, number 5881,
pages 229�232. Spinger.

[Campos et al., 2010] Campos, J., López-Sánchez, M., Esteva, M., and Piqué,
N. (to appear 2010). Comparison of Topologies in Peer-to-Peer Data Sharing
Networks. In Proceedings of the 13th International Conference of the Catalan
Association for Arti�cial Intelligence (CCIA09).

[Campos et al., 2008] Campos, J., López-Sánchez, M., Rodríguez-Aguilar, J. A.,
and Esteva, M. (2008). Norms in 2-LAMA. Technical Report RR-IIIA-2008-
05, The Arti�cial Intelligence Research Institute (IIIA), Spanish National Re-
search Council (CSIC).

[Campos et al., 2009c] Campos, J., López-Sánchez, M., Rodríguez-Aguilar,
J. A., and Esteva, M. (2009c). Formalising situatedness and adaptation in elec-
tronic institutions. In Coordination, Organizations, Institutions, and Norms
in Agent Systems IV. Lecture Notes in Arti�cial Intelligence (LNAI), number
5428, pages 126�139. Springer.

[Cardoso and Oliveira, 2004] Cardoso, H. and Oliveira, E. (2004). Virtual En-
terprise Normative Framework within Electronic Institutions. In Proceedings
of ESAW'04.

[Cardoso et al., 2009] Cardoso, H., Oliveira, E., and Pesquisa, N. (2009).
A Context-based Institutional Normative Environment. pages 140�155.
Springer.

[Carley, 1995] Carley, K. (1995). Computational and mathematical organization
theory: Perspective and directions. Computational & Mathematical Organi-
zation Theory, 1(1):39�56.

[Cho�nes and Bustamante, 2008] Cho�nes, D. and Bustamante, F. (2008).
Taming the torrent: a practical approach to reducing cross-ISP tra�c in peer-
to-peer systems. SIGCOMM Comput. Commun. Rev., 38(4):363�374.

[Chomsky, 1965] Chomsky, N. (1965). Aspects of the Theory of Syntax, volume
119. The MIT press.

[Common Logic Working Group, 2007] Common Logic Working Group (2007).
Common Logic ISO/IEC IS 24707:2007.

188 Bibliography

[Corkill and Lesser, 1983] Corkill, D. D. and Lesser, V. R. (1983). The use of
meta-level control for coordination in a distributed problem solving network.
In IJCAI'83: Proceedings of the Eighth international joint conference on Arti-
�cial intelligence, pages 748�756, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

[Costa and Demazeau, 1996] Costa, A. and Demazeau, Y. (1996). Toward a for-
mal model of multi-agent systems with dynamic organizations. In Proceedings
of the International Conference on Multi-Agent Systems, MIT Press, Kyoto,
Japan, page 431.

[de Almeida Júdice Gamito Dignum, 2004] de Almeida Júdice Gamito Dignum,
M. V. F. (2004). A model for organizational interaction: based on agents,
founded in logic. Universiteit Utrecht PhD Monography. Universiteit Utrecht,
Faculteit Wiskunde en Informatica.

[de Pinninck et al., 2008] de Pinninck, A., Sierra, C., and Schorlemmer, M.
(2008). Distributed Norm Enforcement Via Ostracism. LNCS, 4870:301.

[Dem²ar, 2006] Dem²ar, J. (2006). Statistical comparisons of classi�ers over
multiple data sets. Journal Machine Learning Research, 7:1�30.

[Dignum and Dignum, 2005] Dignum, V. and Dignum, F. (2005). Structures for
agent organizations. In International Conference on Integration of Knowledge
Intensive Multi-Agent Systems, pages 215�220. IEEE.

[Dignum et al., 2005] Dignum, V., Dignum, F., Furtado, V., Melo, A., and So-
nenberg, L. (2005). Towards a Simulation Tool for Evaluating Dynamic Re-
organization of Agents Societies. In Proc. of WS. on Socially Inspired Com-
puting, AISB Convention, volume 230, pages 153�162.

[Dijkstra, 1959] Dijkstra, E. W. (1959). A note on two problems in connection
with graphs. Numerische Mathematik, 1:269�271.

[Duran et al., 2008] Duran, F., da Silva, V., and de Lucena, C. (2008). Using
Testimonies to Enforce the Behavior of Agents. LNCS, 4870:218.

[Esteva, 2003] Esteva, M. (2003). Electronic Institutions: from speci�cation to
development. IIIA PhD. Vol. 19.

[Esteva et al., 2004] Esteva, M., Rosell, B., Rodriguez-Aguilar, J., and Arcos, J.
(2004). Ameli: An agent-based middleware for electronic institutions.

[Ferber and Gutknecht, 1998] Ferber, J. and Gutknecht, O. (1998). A meta-
model for the analysis and design of organizations in multi-agent systems.
In Demazeau, Y., editor, Proceedings of ICMAS'98, pages 128�135. IEEE
Computer Society.

Bibliography 189

[Ferber et al., 2004] Ferber, J., Gutknecht, O., and Michel, F. (2004). From
Agents to Organizations: An Organizational View of Multi-agent Systems.
In Giorgini, P., Müller, J. P., and Odell, J., editors, Agent-Oriented Software
Engineering IV, pages 214�230. Springer.

[Ferber and Muller, 1995] Ferber, J. and Muller, J.-P. (1995). In�uences and
reaction: A model of situated multiagent systems. In Lesser, V., editor, Pro-
ceedings of the First International Conference on Multi�Agent Systems. MIT
Press.

[Finin et al., 1997] Finin, T., Labrou, Y., and May�eld, J. (1997). KQML as
an agent communication language. In Software Agents, chapter 14, pages
291�316.

[FIPA, 1997] FIPA (1997). FIPA 97 Speci�cation Part 2: Agent Com-
munication Language. Foundation for Intelligent Physical Agents.
http://www.�pa.org/spec/f8a22.zip.

[FIPA, 2001a] FIPA (2001a). FIPA ACL Message Structure Speci�cation. Foun-
dation for Intelligent Physical Agents. http://www.�pa.org/specs/�pa00061.

[FIPA, 2001b] FIPA (2001b). FIPA Agent Discovery Service
Speci�cation. Foundation for Intelligent Physical Agents.
http://www.�pa.org/specs/�pa00095.

[FIPA, 2001c] FIPA (2001c). FIPA Agent Management Speci�cation. Founda-
tion for Intelligent Physical Agents. http://www.�pa.org/specs/�pa00023.

[FIPA, 2001d] FIPA (2001d). FIPA Agent Message Transport Ser-
vice Speci�cation. Foundation for Intelligent Physical Agents.
http://www.�pa.org/specs/�pa00067.

[FIPA, 2001e] FIPA (2001e). FIPA Communicative Act Li-
brary Speci�cation. Foundation for Intelligent Physical Agents.
http://www.�pa.org/specs/�pa00037.

[FIPA, 2001f] FIPA (2001f). FIPA Domains and Policies Speci�cation. Foun-
dation for Intelligent Physical Agents. http://www.�pa.org/specs/�pa00089.

[FIPA, 2001g] FIPA (2001g). FIPA English Auction Interaction Pro-
tocol Speci�cation. Foundation for Intelligent Physical Agents.
http://www.�pa.org/specs/�pa00031.

[FIPA, 2001h] FIPA (2001h). FIPA Ontology Service Speci�cation. Foundation
for Intelligent Physical Agents. http://www.�pa.org/specs/�pa00086.

[FIPA, 2001i] FIPA (2001i). FIPA SL Content Language Speci�cation. Founda-
tion for Intelligent Physical Agents. http://www.�pa.org/specs/�pa00008.

[FIPA, 2002] FIPA (2002). FIPA Abstract Architecture Speci�cation. Founda-
tion for Intelligent Physical Agents. http://www.�pa.org/specs/�pa00001/.

190 Bibliography

[Foster et al., 2004] Foster, I., Jennings, N. R., and Kesselman, C. (2004). Brain
meets brawn: Why grid and agents need each other. In Proceedings of AA-
MAS'04, pages 8�15.

[Frank Dignum, 2000] Frank Dignum, M. G. (2000). Issues in agent commu-
nication: An introduction. In Issues in Agent Communication, pages 1�16.
Springer Berlin / Heidelberg.

[Friedman, 1937] Friedman, M. (1937). The use of ranks to avoid the assumption
of normality implicit in the analysis of variance. Journal of the American
Statistical Association, 32(200):675�701.

[Friedman, 1940] Friedman, M. (1940). A comparison of alternative tests of sig-
ni�cance for the problem of m rankings. The Annals of Mathematical Statis-
tics, 11(1):86�92.

[Gaertner et al.,] Gaertner, D., García-Camino, A., Noriega, P., Rodríguez-
Aguilar, J.-A., and Vasconcelos, W. Distributed norm management in regu-
lated multi-agent systems. In AAMAS'07.

[Gaertner et al., 2009] Gaertner, D., Rodríguez-Aguilar, J., and Toni, F. (2009).
Agreeing on institutional goals for multi-agent societies. Coordination, Orga-
nizations, Institutions and Norms in Agent Systems IV, pages 1�16.

[García-Camino et al., 2006] García-Camino, A., Rodríguez-Aguilar, J. A.,
Sierra, C., and Vasconcelos, W. (2006). A rule-based approach to norm-
oriented programming of electronic institutions. ACM SIGecom Exchanges,
5(5):33�40.

[Gâteau et al., 2005] Gâteau, B., Boissier, O., Khadraoui, D., and Dubois, E.
(2005). Moiseinst: An organizational model for specifying rights and duties
of autonomous agents. In EUMAS, pages 484�485.

[Gou et al., 2007] Gou, X., Qin, N., and Li, Z. (2007). An Agent Communica-
tion Language for Multimedia Communication Task and Its Application. In
Mechatronics and Automation, 2007. ICMA 2007. International Conference
on, pages 1401�1405. IEEE.

[Grau et al., 2008] Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-
Schneider, P., and Sattler, U. (2008). OWL 2: The next step for OWL. Web
Semantics: Science, Services and Agents on the World Wide Web, 6(4):309�
322.

[Gregori et al., 2006] Gregori, M. E., Cámara, J. P., and Bada, G. A. (2006).
A jabber-based multi-agent system platform. In Proceedings of AAMAS'06,
pages 1282�1284.

[Grizard et al., 2007] Grizard, A., Vercouter, L., Stratulat, T., and Muller, G.
(2007). A peer-to-peer normative system to achieve social order. In LNCS
- Proc. of the Coordination, organizations, institutions, and norms in agent
systems II, volume 4386, page 274. Springer.

Bibliography 191

[Guessoum et al., 2004] Guessoum, Z., Ziane, M., and Faci, N. (2004). Monitor-
ing and organizational-level adaptation of multi-agent systems. In AAMAS
'04: Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 514�521, Washington, DC, USA. IEEE
Computer Society.

[Gómez-Sanz et al., 2008] Gómez-Sanz, J. J., Fuentes-Fernández, R., Pavón, J.,
and García-Magariño, I. (2008). INGENIAS Development Kit: a visual multi-
agent system development environment. In Proceedings of AAMAS'08, pages
1675�1676.

[Gómez-Sanz and Pavón, 2005] Gómez-Sanz, J. J. and Pavón, J. (2005). Imple-
menting Multi-agent Systems Organizations with INGENIAS. In Proceedings
of ProMAS'05, volume 3862, pages 236�251.

[Hewitt, 1986] Hewitt, C. (1986). O�ces are open systems. ACM Transactions
on O�ce Information Systems, 4(3):271�287.

[Hilpinen et al., 1971] Hilpinen, R., Kanger, S., Segerberg, K., and Hansson, B.
(1971). Deontic Logic: Introductory and Systematic Readings. Reidel.

[Horling et al., 2001] Horling, B., Benyo, B., and Lesser, V. (2001). Using self-
diagnosis to adapt organizational structures. In AGENTS '01: Proceedings of
the �fth international conference on Autonomous agents, pages 529�536, New
York, NY, USA. ACM.

[Horling and Lesser, 2004] Horling, B. and Lesser, V. (2004). A survey of
multi-agent organizational paradigms. The Knowledge Engineering Review,
19(4):281�316.

[Hübner et al., 2002] Hübner, J., Sichman, J., and Boissier, O. (2002). A model
for the structural, functional, and deontic speci�cation of organizations in
multiagent systems. Advances in Arti�cial Intelligence, pages 439�448.

[Hübner et al., 2004] Hübner, J. F., Sichman, J. S., and Boissier, O. (2004).
Using theMoise+ for a cooperative framework of mas reorganisation. In LNAI
- Proc. of the 17th Brazilian Symposium on Arti�cial Intelligence (SBIA'04),
volume 3171, pages 506�515. Springer.

[Hübner et al., 2005] Hübner, J. F., Sichman, J. S., and Boissier, O. (2005). S-
MOISE+: A middleware for developing organised multi-agent systems. In
AAMAS Workshops, volume 3913 of LNCS, pages 64�78. Springer.

[Iman and Davenport, 1980] Iman, R. and Davenport, J. (1980). Approxima-
tions of the critical region of the friedman statistic. Communications in statis-
tics, pages 571�595.

[ISO 7498-1, 1994] ISO 7498-1 (1994). Information technol-
ogy - Open Systems Interconnection - Basic Reference Model.
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-
1_1994(E).zip.

192 Bibliography

[Janert, 2009] Janert, P. K. (2009). Gnuplot in Action: Understanding Data
with Graphs. Manning Publications Co., Greenwich, CT, USA.

[Jennings et al., 1998] Jennings, N., Sycara, K., and Wooldridge, M. (1998). A
roadmap of agent research and development. Autonomous Agents and Multi-
Agent Systems, 1(1):7�38.

[Jeon et al., 2002] Jeon, H., Petrie, C., and Cutkosky, M. (2002). JATLite: a
Java agent infrastructure with message routing. Internet Computing, IEEE,
4(2):87�96.

[Jones and Goel, 2004] Jones, J. and Goel, A. K. (2004). Revisiting the Credit
Assignment Problem. In Challenges of Game AI: Proceedings of the AAAI,
volume 4, page 4.

[Kephart and Chess, 2003] Kephart, J. O. and Chess, D. M. (2003). The vision
of autonomic computing. IEEE Computer, 36(1):41�50.

[Kitio et al., 2008] Kitio, R., Boissier, O., Hübner, J. F., and Ricci, A. (2008).
Organisational artifacts and agents for open MAS organisations. In Proceed-
ings of COIN at AAMAS'08, volume 4870, pages 171�186.

[Kota et al., 2009] Kota, R., Gibbins, N., and Jennings, N. (2009). Decentralised
structural adaptation in agent organisations. In AAMAS Workshop on Or-
ganised Adaptation in Multi-Agent Systems, Estoril, Portugal, pages 54�71.
Springer.

[Lemaître and Excelente, 1998] Lemaître, C. and Excelente, C. (1998). Multi-
agent organization approach. In Proceedings of II Iberoamerican Workshop on
DAI and MAS.

[Lesser et al., 2004] Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey,
A., Horling, B., Neiman, D., Podorozhny, R., Prasad, M., Raja, A., et al.
(2004). Evolution of the GPGP/TAEMS domain-independent coordination
framework. Autonomous Agents and Multi-Agent Systems, 9(1):87�143.

[Lewis, 1969] Lewis, D. (1969). Convention: A Philosophical Study. Harvard
University Press.

[Molesini et al., 2007] Molesini, A., Denti, E., and Omicini, A. (2007). From aose
methodologies to mas infrastructures: The soda case study. In Engineering
Societies in the Agents World 2007, pages 283�298.

[Mukherjee et al., 2008] Mukherjee, P., Sen, S., and Airiau, S. (2008). Norm
emergence under constrained interactions in diverse societies. In AAMAS '08:
Proceedings of the 7th international joint conference on Autonomous agents
and multiagent systems, pages 779�786, Richland, SC. International Founda-
tion for Autonomous Agents and Multiagent Systems.

Bibliography 193

[Nemenyi, 1963] Nemenyi, P. B. (1963). Distribution-free Multiple Comparisons.
PhD thesis, Princeton University.

[North et al., 2005] North, M., Howe, T., Collier, N., and Vos, J. (2005). Repast
Simphony Runtime System. In Agent Conference on Generative Social Pro-
cesses, Models, and Mechanisms.

[Novo and Campos, 2010] Novo, A. and Campos, J. (2010). Simulación de redes
Peer-to-Peer con OpenMas. Master's thesis, Universitat de Barcelona.

[Okouya and Dignum, 2008] Okouya, D. M. and Dignum, V. (2008). OperettA:
A prototype tool for the design, analysis and development of multi-agent or-
ganizations. In Proceedings of the 7th international joint conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS'08): demo papers, pages
1677�1678. International Foundation for Autonomous Agents and Multiagent
Systems.

[Omicini, 2001] Omicini, A. (2001). SODA: societies and infrastructures in the
analysis and design of agent-based systems. In Proceedings of AOSE'00, pages
185�193.

[Omicini et al., 2004] Omicini, A., Ossowski, S., and Ricci, A. (2004). Coordi-
nation infrastructures in the engineering of multiagent systems. Methodologies
and Software Engineering for Agent Systems: The Agent-Oriented Software
Engineering Handbook, 11:273�296.

[Omicini et al., 2008] Omicini, A., Ricci, A., and Viroli, M. (2008). Artifacts
in the A&A meta-model for multi-agent systems. Autonomous Agents and
Multi-Agent Systems, 17(3):432�456.

[Padgham and Winiko�, 2005] Padgham, L. and Winiko�, M. (2005). Agent-
Oriented Methodologies, chapter 5. Prometheus: A Practical Agent-Oriented
Methodology. Idea Group.

[Panait and Luke, 2005] Panait, L. and Luke, S. (2005). Cooperative multi-
agent learning: The state of the art. Autonomous Agents and Multi-Agent
Systems, 11(3):387�434.

[Pavón and Gómez-Sanz, 2003] Pavón, J. and Gómez-Sanz, J. J. (2003). Agent
oriented software engineering with INGENIAS. In Procedings of CEECMAS,
volume 2691, pages 394�403.

[Plaza and McGinty, 2006] Plaza, E. and McGinty, L. (2006). Distributed case-
based reasoning. The Knowledge engineering review, 20(03):261�265.

[Pujol et al., 2005] Pujol, J., Delgado, J., Sanguesa, R., and Flache, A. (2005).
The role of clustering on the emergence of e�cient social conventions. In
IJCAI'05: Proceedings of the 19th international joint conference on Arti�cial
intelligence, pages 965�970.

194 Bibliography

[Ricci et al., 2006] Ricci, A., Viroli, M., and Omicini, A. (2006). CArtAgO:A
framework for prototyping artifact-based environments in MAS. In Procced-
ings of E4MAS'06, volume 4389 of LNCS.

[Riesbeck and Schank, 1989] Riesbeck, C. K. and Schank, R. C. (1989). Inside
Case-Based Reasoning. Lawrence Erlbaum Associates, Hillsdale, NJ, US.

[Russell et al., 1995] Russell, S., Norvig, P., Canny, J., Malik, J., and Edwards,
D. (1995). Arti�cial intelligence: a modern approach. Prentice hall Englewood
Cli�s, NJ.

[Sabater-Mir, 2006] Sabater-Mir, J. (2006). Towards the next generation of com-
putational trust and reputation models. In Modeling Decisions for Arti�cial
Intelligence, volume 3885, pages 19�21. Springer.

[Salamó and López-Sánchez, 2011] Salamó, M. and López-Sánchez, M. (2011).
Rough set based approaches to feature selection for case-based reasoning clas-
si�ers. Pattern Recogn. Lett., 32:280�292.

[Salazar-Ramirez et al., 2008] Salazar-Ramirez, N., Rodríguez-Aguilar, J. A.,
and Arcos, J. L. (2008). An infection-based mechanism for self-adaptation in
multi-agent complex networks. In Brueckner, S., Robertson, P., and Bellur,
U., editors, 2nd IEEE International Conference on Self-Adaptive and Self-
Organizing Systems, SASO 2008, pages 161�170.

[Saunier et al., 2006] Saunier, J., Balbo, F., and Badeig, F. (2006). Environment
as active support of interaction. In Weyns, D., Parunak, H. V. D., and Michel,
F., editors, E4MAS, volume 4389 of Lecture Notes in Computer Science, pages
87�105. Springer.

[Savarimuthu and Crane�eld, 2009] Savarimuthu, B. T. R. and Crane�eld, S.
(2009). A categorization of simulation works on norms. (09121).

[Savarimuthu et al., 2008] Savarimuthu, B. T. R., Crane�eld, S., Purvis, M.,
and Purvis, M. (2008). Role model based mechanism for norm emergence in
arti�cial agent societies. In Proceedings of the 2007 international conference
on Coordination, organizations, institutions, and norms in agent systems III,
COIN'07, pages 203�217, Berlin, Heidelberg. Springer-Verlag.

[Searle, 1995] Searle, J. (1995). The Construction of Social Reality. The Free
Press, New York.

[Searle, 1969] Searle, J. R. (1969). Speech Acts: An Essay in the Philosophy of
Language. Cambridge University Press.

[Sen and Sen, 2010] Sen, O. and Sen, S. (2010). E�ects of Social Network Topol-
ogy and Options on Norm Emergence. Coordination, Organizations, Institu-
tions and Norms in Agent Systems V, pages 211�222.

Bibliography 195

[Sen and Airiau, 2007] Sen, S. and Airiau, S. (2007). Emergence of norms
through social learning. In Veloso, M. M., editor, IJCAI, pages 1507�1512.

[Serugendo et al., 2006] Serugendo, G. D. M., Gleizes, M.-P., and Karageorgos,
A. (2006). Self-Organisation and Emergence in MAS: An Overview. Infor-
matica, 30:45�54.

[Sharma, 2010] Sharma, A. (2010). Introduction To Set Theory. DPH mathe-
matics series. Discovery Publishing House.

[Sichman et al., 2006] Sichman, J. S., Boissier, O., and Hübner, J. F. (2006).
Organization oriented programming: From closed to open mas. Presented at
Iberagents.

[Sierra et al., 2007] Sierra, C., Rodríguez-Aguilar, J. A., Noriega, P., Esteva,
M., and Arcos, J. L. (2007). personal communications about Electronic Insti-
tutions.

[Sierra et al., 2006] Sierra, C., Thangarajah, J., Padgham, L., and Winiko�, M.
(2006). Designing institutional multi-agent systems. In AOSE'06, volume
4405 of LNCS, pages 84�103.

[Sims et al., 2008] Sims, M., Corkill, D., and Lesser, V. (2008). Automated
Organization Design for Multi-agent Systems. Autonomous Agents and Multi-
Agent Systems, 16(2):151�185.

[Smith, 1982] Smith, B. C. (1982). Re�ection and Semantics in a Procedural
Language, volume MIT/LCS/TR-272. MIT Laboratory for Computer Science
Technical Report.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforcement
learning: An introduction. The MIT press.

[Sycara et al., 2003] Sycara, K. P., Paolucci, M., Velsen, M. V., and Giampapa,
J. A. (2003). The RETSINA MAS infrastructure. Autonomous Agents and
Multi-Agent Systems, 7(1-2):29�48.

[Valckenaers et al., 2007] Valckenaers, P., Sauter, J. A., Sierra, C., and
Rodríguez-Aguilar, J. A. (2007). Applications and environments for multi-
agent systems. Autonomous Agents and Multi-Agent Systems, 14(1):61�85.

[Vallee et al., 2005] Vallee, M., Ramparany, F., and Vercouter, L. (2005). A
Multi-Agent System for Dynamic Service Composition in Ambient Intelligence
Environments. In Advances in pervasive computing, pages 8�11.

[Verma, 2002] Verma, D. (2002). Content distribution networks. Wiley Online
Library.

[Weyns and Holvoet, 2004] Weyns, D. and Holvoet, T. (2004). A formal model
for situated multi-agent systems. Fundam. Inform, 63(2-3):125�158.

196 Bibliography

[Wooldridge, 2009] Wooldridge, M. (2009). An introduction to multiagent sys-
tems. Wiley.

[Wooldridgey and Ciancarini, 2001] Wooldridgey, M. and Ciancarini, P. (2001).
Agent-oriented software engineering: The state of the art. In Agent-Oriented
Software Engineering, pages 55�82. Springer.

[Xie et al., 2008] Xie, H., Yang, Y. R., Krishnamurthy, A., Liu, Y., and Silber-
schatz, A. (2008). P4P: provider portal for applications. ACM SIGCOMM
Computer Communication Review, 38(4):351�362.

[Zambonelli et al., 2003] Zambonelli, F., Jennings, N. R., and Wooldridge, M.
(2003). Developing multiagent systems: The Gaia methodology. ACM Trans-
actions on Software Engineering and Methodology, 12(3):317�370.

[Zhang et al., 2008] Zhang, C., Abdallah, S., and Lesser, V. (2008). MASPA:
Multi-Agent Automated Supervisory Policy Adaptation. Technical Report 03.

[Zhang et al., 2009] Zhang, C., Abdallah, S., and Lesser, V. (2009). Integrating
Organizational Control into Multi-Agent Learning. In Proceedings of The
8th International Conference on Autonomous Agents and Multiagent Systems-
Volume 2, pages 757�764. International Foundation for Autonomous Agents
and Multiagent Systems.

[Ávila et al., 2011] Ávila, P., López-Sánchez, M., and Esteva, M. (2011). On
norm compliance within organization centered multi-agent systems applied to
a Peer-to peer sharing network scenario. Master's thesis, Universitat Politèc-
nica de Catalunya.

