Improving Optimization Algorithms via
Machine Learning and Visualization Tools

A dissertation presented in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy in Computer Science

Camilo Chacon Sartori

Universitat Autonoma de Barcelona
Department of Computer Science
PhD Thesis in Computer Science

Barcelona, January 2026

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

ARTIFICIAL de Barcelona

IITA-CSIC
Y. ¥CSIC
D’INVESTIGACIO) N _
EN INTEL-LIGENCIA Universitat Autonoma

Improving Optimization Algorithms via
Machine Learning and Visualization Tools

A dissertation presented in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy in Computer Science

Camilo Chacoén Sartori

Supervisor: Christian Blum

Senior Researcher

Co-supervisor: Filippo Bistaffa

Tenured Researcher

Universitat Autdonoma de Barcelona
Department of Computer Science
PhD Thesis in Computer Science

Barcelona, January 2026

Acknowledgements

To my supervisor, Christian Blum, who gave me the most valuable things a PhD student
can receive: ideas, trust, and above all, time.

To all the people who hired me to do some kind of work (courses, talks, private
lessons, consulting) throughout these years—thank you; it was thanks to you that I
was able to support myself during the PhD.

To my family—my mother, my sisters, and my nieces—for their constant support in
all the projects that this hopelessly passionate one (me) insists on keeping alive.

Finally, to Metallica and Dream Theater, whose music accompanied me throughout
the PhD years: during my routine visits to Sandwichez (my favorite coffee shop), on
my way to and from my go-to bar, during my compulsive book-buying at my favorite
bookstore (Alibri), and through the endless coffees I drank at the IIIA; filling me with
motivation and nostalgia—especially for the romantic dates I never had.

Thank you all!

Agradecimientos

A mi director de tesis, Christian Blum, quien me dio las cosas més valiosas que un
estudiante de doctorado puede recibir: ideas, confianza y, sobre todo, tiempo.

A todas las personas que me contrataron para realizar algtn tipo de trabajo (cursos,
charlas, clases particulares, consultoria) a lo largo de estos afios, gracias; fue gracias a
ustedes que pude mantenerme durante el doctorado.

A mi familia —mi madre, mis hermanas y mis sobrinas— por su apoyo constante
en todos los proyectos que este apasionado sin remedio (yo) insiste en mantener vivos.

Finalmente, a Metallica y Dream Theater, cuya musica me acompafié durante todos
los anos del doctorado: en mis visitas rutinarias a Sandwichez (mi cafeteria favorita),
en mis trayectos de ida y vuelta a mi bar de cabecera, durante mis compras compulsivas
de libros en mi libreria favorita (Alibri), y a través de los interminables cafés que me
tomé en el IIIA; llendindome de motivacién y nostalgia, especialmente por las citas
romanticas que nunca tuve.

iGracias a todos!

ii

Abstract

This thesis addresses two major challenges in metaheuristics: the lack of information
about the problem instance and the lack of transparency in understanding their results.
To tackle the first issue, I propose integrating two Machine Learning techniques
into metaheuristic algorithms: Graph Neural Networks and, more notably, Large Lan-
guage Models. These techniques enhance the quality of solutions obtained for NP-hard
combinatorial problems when compared to using the metaheuristic alone.

To address the second issue, the thesis introduces a visualization tool called
STNWeb, designed to support researchers in the comparative analysis of metaheuris-
tics by facilitating the understanding of how problem instances influence their behav-
ior.

Thus, the thesis is structured in two parts: the first focuses on improving the solu-
tion quality of metaheuristics through the incorporation of information extracted via
modern Machine Learning techniques; the second explores the use of visualization as
a means to better understand the behavior of metaheuristics.

Keywords: Metaheuristics, Combinatorial Optimization, Machine Learning, Large
Language Models, Visual Tools

Resumen

Esta tesis aporta soluciones a dos problemas presentes en las metaheuristicas: la ausen-
cia de informacién sobre la instancia del problema y la falta de transparencia para en-
tender sus resultados.

Para abordar el primer problema, se propone integrar dos técnicas de Machine
Learning dentro de las metaheuristicas: las Graph Neural Networks y, especialmente,
los recientes Modelos Masivos de Lenguaje. Estas técnicas mejoran la calidad de las
soluciones obtenidas en problemas combinatorios NP-hard, en comparacién con el uso
exclusivo de la metaheuristica.

Para el segundo problema, se propone una herramienta de visualizacién llamada
STNWeb, disefiada para apoyar a los investigadores en el andlisis comparativo de meta-
heuristicas, facilitando la comprensién de cémo la instancia del problema influye en el
comportamiento de estas técnicas.

Asi, la tesis se divide en dos partes: la primera estd dedicada a mejorar la calidad
de las soluciones generadas por metaheuristicas mediante la incorporaciéon de infor-
macion proveniente de técnicas modernas de Machine Learning; la segunda se enfoca
en el uso de la visualizacién como medio para comprender el comportamiento de las
metaheuristicas.

Palabras Clave: Metaheuristicas, Optimizacién Combinatoria, Aprendizaje Au-
tomatico, Modelos Masivos de Lenguaje, Herramientas visuales

viii

Resum

Aquesta tesi aporta solucions a dos problemes presents en les metaheuristiques:
I'abséncia d’informaci6é sobre la instancia del problema i la manca de transparéncia
per entendre els seus resultats.

Per abordar el primer problema, es proposa integrar dues tecniques de Machine
Learning dins de les metaheuristiques: les Graph Neural Networks i, especialment,
els recents Models Massius de Llenguatge. Aquestes técniques milloren la qualitat de
les solucions obtingudes en problemes combinatoris NP-hard, en comparacié amb 1'ts
exclusiu de la metaheuristica.

Per al segon problema, es proposa una eina de visualitzaci6 anomenada STNWeb,
dissenyada per donar suport als investigadors en 1’analisi comparativa de metaheuris-
tiques, facilitant la comprensié de com la instancia del problema influeix en el compor-
tament d’aquestes técniques.

Aixi doncs, la tesi es divideix en dues parts: la primera esta dedicada a millorar
la qualitat de les solucions generades per metaheuristiques mitjangant la incorporacié
d’informaci6 provinent de tecniques modernes de Machine Learning; la segona se cen-
tra en 'as de la visualitzacié com a mitja per comprendre el comportament de les meta-
heuristiques.

Paraules clau: Metaheuristiques, Optimitzaci6 Combinatoria, Aprenentatge Au-
tomatic, Models Massius de Llenguatge, Eines visuals

Xi

Contents

List of Figures
List of Tables

Glossary

1

Part I - Machine Learning (Graph Neural Networks & Large Language Models)

2

Xiv

Introduction
1.1 Overview of Optimization Algorithms
1.1.1 Metaheuristics 0 o L
1.2 Contributions
1.2.1 Algorithmic Improvement.
1.2.2 Interpretability Enhancement through Visualization Tools
1.2.3 Philosophical Implications
1.3 Publications Resulting from this Thesis
1.4 Organization.
1.4.1 Partl- Algorithmic Improvement with Machine Learning (Graph
Neural Networks & Large Language Models)
1.4.2 PartII - Visualization Tools for Algorithm Analysis

Introduction

2.1 Metaheuristics and Machine Learning

2.2 Metaheuristics and Deep Learning
221 Deep Reinforcement Learning (DRL) in Metaheuristics
2.2.2 Graph Neural Networks for Combinatorial Optimization

2.3 Metaheuristics and Large Language Models
2.3.1 LLMs for Improving Solution Quality

Boosting a Genetic Algorithm using Graph Neural Networks

3.1 Introduction

3.2 Problem Definition 0 0 L.

33 Methodology
3.3.1 Biased Random Key Genetic Algorithm
3.3.2 Graph Neural Network Framework

xxii
XXX

XXXiv

O O O B W WN P

e

18
18
19
20
20
20
21

CONTENTS XV
3.3.3 The Hybrid BRKGA Algorithm 30

3.4 Experimental Evaluation., 31
3.4.1 Data Preparation and Tuning Process 37

3.4.2 Experimental Evaluation 37

343 Analysis 40

35 Conclusion 40
Improving Ant Colony Optimization supported by Deep Learning 42
41 Introduction 43
4.2 Problem Definition 43
43 Methodology 45
4.3.1 Solution Constructionin MMAS 46

4.3.2 Integrating Deep Learning via Q-Learning 47

4.4 Generating Deep Learning-Based Node Information 48
441 Selected Features and Training Instances 48

442 SAGETraining 49

4.5 Experimental Evaluation. 53
451 Experimentalsetting 54

452 Algorithmtuning 54

453 Numericalresults. oL 54

4.6 Conclusion e 56
Large Language Models as Assistants for Enhancing Metaheuristics 57
5.1 Introduction e 57
5.1.1 OwurContribution o oo 58

52 Background 59
52.1 LLMs as Pattern Recognition Engines 59

5.3 Problem Definition 60
5.3.1 Multi-Hop Influence Maximization 60

5.4 Integration of LLM Output into a Metaheuristic 61
54.1 PromptEngineering 61

542 LLMOutput. 66

5.4.3 Using LLM Output to Guide a Metaheuristic. 67

55 Empirical Evaluation 68
55.1 ExperimentalSetup 68

552 Analysisof LLM Output. 70

5.5.3 Visual Comparative Analysis 78

5.6 Discussion and Open Questions 80
5.7 Conclusion e 82

Xvi

CONTENTS

6 Enhancinga CMSA Heuristic for the MIS Problem with Large Language Mod-

els
6.1
6.2

6.3

6.4

6.5
6.6

84
Introduction 84
Background 85
6.2.1 Code GenerationwithLLMs 85
6.2.2 Maximum Independent Set (MIS) Problem 87
623 CMSA . . . e 87
LLM-Enhanced CMSA for MIS 89
6.3.1 Discovering New Heuristics 89
6.3.2 Code Optimization Strategies 93
6.3.3 Reproducibility 0 oo 95
Empirical Evaluation 95
6.41 Preliminary 95
6.42 NumericalResults, 98
Discussion e 100
Conclusions e 101

7 Improvement of Optimization Algorithms with LLMs by Non-expert Users 102

7.1
7.2

7.3

74

7.5

7.6

Introduction e 102
Background L 103
7.2.1 Large Language Models in Combinatorial Optimization 103
7.2.2 Problem Definition 106
7.2.3 Traditional Optimization Algorithms for the TSP 107
724 Selected Implementations 109
Methodology 109
7.3.1 Enhancing Traditional Optimization Algorithms with Large Lan-
guageModels L L Lo 109
7.3.2 Prompt Design: A Focus on Simplicity and Accessibility 111
Experimental evaluation 113
7471 Setup 113
7.4.2 Benchmark Datasets and Evaluation Metrics 114
743 Experimental Design 114
744 Comparative Analysis with Original Algorithm Codes 116
74.5 Key Insights in Code Generation 120
746 Codecomplexity 123
Discussion e e e e e e e e e e 124
7.5.1 Limitations and Methodological Considerations 125
7.5.2 Directions for Future Research 126
Conclusion o v v 126

Part II - Visualization Tools (Search Trajectory Networks Web (STNWeb)

CONTENTS xvii

8

10

11

Introduction 133
8.1 LLMs for Automated Analysis in Optimization Tools 134
8.2 Future Directions: Leveraging LVLMs for Enhanced STNWeb Analysis 135

Search Trajectory Networks Meet the Web 136
9.1 Introduction e 136
9.2 Background: Search Trajectory Networks 137
921 Limitations 139
9.3 IntegrationIntotheWeb 140
9.3.1 New system architecture 141
932 NewPFeatures 143
94 CaseStudies e 145
941 Casel: ASimpleStudy 147
9.42 Case 2: Comparison of Two Algorithms 147
943 Case3: Complex Analysis. 148
95 Conclusion L 149

STNWeb: A new visualization tool for analyzing optimization algorithms 150

10.1 Introduction e e e 150
10.2 STNWeb Architecture 151
10.2.1 STNWeb Frontend 152
10.2.2 STNWeb Backend 152
10.2.3 RESTAPL e e e e 152
10.2.4 Search Space Partitioning Strategy 153
10.3 Limitations e e 154
104 Conclusion v v v v i e 154

Enhancing the Explainability of STNWeb with Large Language Models 156

11.1 Introduction 156
11.2 Background 157
11.2.1 Search Trajectory Networks (STNs) 157
11.2.2 Large Language Models (LLMs) 160
11.3 Integrating LLMsintoSTNWeb 160
11.3.1 Prompt Engineering 161
11.3.2 Feature Extraction 163
11.4 Empirical Evaluation 165
11471 Setupo 166
1142 Methodology 166
1143 Results o 168
11.5 Discussion e 168

11.6 Conclusion o v i e e e e 169

xviii CONTENTS

12 Improving STNWeb Graphical via HAC of the Search Space 171
12.1 Introduction e 171
12.2 Contextual Overview: Search Trajectory Networks 172

12.2.1 Search Space Partitioning Schemes. 172
12.2.2 Standard Strategies for Partitioning 173
12.3 Partitioning By Hierarchical Agglomerative Clustering 174
12.4 ExperimentalResults 176
12.4.1 Methodologyand Setup 176
12.4.2 Continuous Optimization Problems 181
125 Conclusion e 181

13 A Benchmark Generator for Assessing Variability in Graph Analysis Using

LVLMs 183
13.1 Introduction L 183
13.1.1 Contributions o L 185

13.2 VisGraphVar: A benchmark generator 185
13.2.1 A Custom Synthetic Dataset 185
1322 Tasks oo e 186
13.2.3 Dataset Configuration and Statistics 194
1324 Metrics oo o 195
13.2.5 Promptdesign 196

13.3 Experiments and Evaluation 197
13.3.1 Environment Setup and LVLM Configuration 197
1332 Results 197
13.3.3 Observations 203

13.4 Discussion and Open Questions 209
13.5 Conclusions L 210
14 Conclusion 212
14.1 Discussion of Main Contributions 212
14.1.1 PartI- Algorithmic Enhancements 212
14.1.2 Part Il — Enhanced Interpretability 213

14.2 Limitations and Challenges 214
14.2.1 Algorithmic Improvement. 214
14.2.2 Interpretability Enhanced 216

14.3 Future Research Directions 216
1431 STNWeb3D o e 216
14.3.2 Path-Dependent Runtime Heuristic Steering (PathSteer) 217

Appendix

A A Brief Guide to Optimization 223

A1 Types of Optimization Problems 223
A.1.1 Continuous Optimization 223

A.1.2 Discrete or Combinatorial Optimization 224

B A Brief Introduction and Defense of Metaheuristics 225
B.1 An Invitation to Metaheuristics 227
Bibliography 231

Xix

1.1

3.1

3.2

3.3

xxii

List of Figures

A visual map of the thesis structure, where the connections between nodes
show the influence of each chapter on the others. For example, node 10
represents the work in which we developed STNWeb; this tool is later used
to enrich the analysis in Chapter 5, creating a feedback loop between both
partsofthethesis.. L o

Multi-hop influence process. Given is a directed graph with 11 nodes and
12 arcs (top). Let us assume the k-dDSP is solved with k = 2. The two purple
nodes (v4 and v5) form part of the example solution U. If 4 = 1 (bottom left),
then nodes {v3, v7,vs} are 1-hop covered by U. If d = 2 (bottom center),
then nodes {vs, v3, v7,vs, V6, v11} are 2-hop covered by U. Finally, if d = 3
(bottom right), then all remaining nodes of the graph are 3-hop covered by

Hybridization Process. The integration of BRKGA with FC starts with two
offline steps concerning FC as follows. The training phase begins by using
15 random graphs (Erdés—Rényi). This provides us with a trained version
of FC (called GNN Framework in the graphic). Then, the social network in
which the k-dDSP is to be solved is presented to FC, which returns probabil-
ities for all nodes of the network to belong to the optimal solution. Finally,
the final phase consists of integrating these probabilities into the BRKGA
(called Genetic Algorithm in the graphic).

Data preparation and pipeline. The pipeline starts by training three FC
models, one for each k € {32,64, 128}. Random graphs (Erd§s—Rényi) were
used for this purpose. Next, the evaluation of the FC models is performed
for each of the 19 instances (social networks), for each value of parameter
d € {1,2,3}. Finally, the obtained probabilities (FC output) are exported
and stored intextfiles. L o

12

26

30

LIST OF FIGURES

Xxiii

34

4.1
4.2

4.3

4.4

4.5

51

52

53

54

Search trajectory analysis of BRKGA and BRKGA+FC. The three plots dis-
play 10 execution trajectories of BRKGA (orange) and BRKGA+FC (pink)
on three instances: gplus, twitter-follows, and themarker. The parameter z con-
trols the granularity of search space partitioning used to generate these vi-
sualizations (see [155]). Yellow squares mark trajectory start points, gray
triangles denote endpoints, light gray circles indicate regions visited by both
algorithms, and red circles highlight the best solutions found. (a) BRKGA
outperforms BRKGA+FC on gplus. (b) Both algorithms achieve comparable
results on twitter-follows. (c) BRKGA+FC outperforms BRKGA on themarker.
All visualizations use a force-directed layout based on physical analogies,

without assuming any prior network structure.

General framework of the proposed approach.

Diffusion process for threshold 6(v) = [dEgT(v)-‘ forallv € V. Theinitial target

set (singlenode) isshownin(a)..

Feature value distributions for all nodes in scale-free network (A = 2.25,1 =
10). The x-axis indicates the feature values, and the y-axis shows the number
of nodeswitheachvalue.

Process of extracting the node probabilities for an unseen graph. First, the
feature values (for the five selected features) are calculated for each node
of the graph. Then, each node is given as input to the SAGE network, which
then provides a node probability asoutput..

Evolution of the value of the GA elite individual during training. In addi-
tion, the objective function value on the basis of the Erdos graphs in used to

detect overfitting. L

An overview of our approach to integrating MHs and LLMs: We employ
LLMs to analyze problem instances and uncover hidden patterns. The pat-
terns are then converted into useful information that guides the MH in its
search for high-quality solutions.

An example of a prompt and the corresponding LLM response. The prompt
includes the problem definition, a graph example with node metrics and a
high-quality solution, an evaluation graph, and instructions for the LLM for
producing the output. Based on the patterns identified in the evaluation
graph, the LLM provides the importance of each metric, represented by the
setof alphaandbetavalues. oL

A comprehensive evaluation framework was used to assess the usefulness
of integrating MHs with LLMs for solving combinatorial optimization prob-
lems (COPs) across the three dimensions shown in the graphic..

Correlations between all pairs of the five considered metrics concerning the

soc-hamsterster network. e

39

43

44

51

52

53

62

65

XXiv

LIST OF FIGURES

55

5.6

6.1

6.2

6.3

6.4

6.5

6.6

7.1

7.2

Analysis of the probabilities computed based on the alpha and beta values
(black line) in relation to the (normalized) values of the five metrics. The x-
axis ranges of all 500 nodes of the synthetic graph 0.2-0.0-0.3-0.5 ordered by
a non-increasing LLM-probability. Moreover, the graphic marks the nodes
chosen for the best BRKGA solution, the best BRKGA+LLM solution, and their

intersection. e e e e e e e e e

STNWeb-generated plot comparing the trajectories of BRKGA (cyan),
BRKGA+FC (magenta), and BRKGA+LLM (green) over 10 runs on the soc-
hamsterster instance (with 4 = 1 and k = 32). This plot was generated
using the so-called agglomerative clustering partitioning method available in
STNWeb, with the number of clusters set to approximately 20% of the total,
allowing for a visualization focused on the essential characteristics.

: A dialogue showing how a chatbot applies our approach to improving

optimization algorithms. oo o oo
Examples of maximum independentsets.

Two LLM interaction patterns: (a) a direct request to improve a heuristic
using CMSA’s age parameter, and (b) an iterative dialogue to enhance both
heuristic quality and C++ performance through error correction. Both use
in-context learning as a prompting strategy [58,115].

Comparative analysis of solution quality: Original CMSA vs. LLM-CMSA vari-
ants (Viand V2). e

Critical Difference (CD) plots for different graph types. Algorithms con-
nected by the same horizontal bar do not exhibit a statistically signifi-
cant difference in performance. (a) Barabasi-Albert: The top-performing
group, consisting of LLM-CMSA-V1 and LLM-CMSA-V1-PERF, significantly out-
performs the lower group (LLM-CMSA-V2 and CMSA). Within each group, per-
formances are statistically equivalent. LLM-CMSA-V2-PERF ranks last. (b)
Watts-Strogatz and (c) Erdgs-Rényi: In both graph types, LLM-CMSA-V1 and
LLM-CMSA-V1-PERF are the top performers and do not differ significantly
from each other. Both significantly outperform the other methods, while
LLM-CMSA-V2 and CMSA exhibit the lowest performance.

Examples of algorithm evolution over time.

A non-expert user’s interaction with an LLM can enhance an existing genetic
algorithm by incorporating modern techniques.

Comparison of the metaheuristic codes generated by the five LLMs with the
original codes. Remember that the TSP is a minimization problem, that is,

the lower the values, the better. The y-axes are shown in a logarithmic scale.

79

81

85
87

92

96

97

99

105

117

LIST OF FIGURES

XXV

7.3

7.4

7.5

7.6

9.1

9.2

9.3

94

9.5

9.6

Comparison of the reinforcement learning (RL) codes generated by the five
LLMs with the original codes. Remember that the TSP is a minimization
problem, that is, the lower the values, the better. The y-axes is shown in
logarithmicscale.
Comparison of the deterministic heuristic codes generated by the five LLMs
with the original codes. The bar plots show the performance gaps (in per-
cent) relative to the original codes. Note that a positive value indicates that
the LLM-generated code produces a better solution..
Comparison of the BB codes generated by the five chosen LLMs with the
original BB code (in terms of computation time). Each code was applied 30
times, and the y-axis is shown in a logarithmicscale.

Cyclomatic Complexity

Examples of STN graphics comparing three different algorithms applied 10
times to the same probleminstance.
The graphic shows the workflow of the original STNs tool. It is divided into
three phases (from left to right): (a) a folder must be created, containing a
result file for each algorithm to be included in the comparison; (b) then two
different R scripts must be executed in a given order, and depending on how
many algorithms are included in the comparison (i.e., one versus multiple);
(c) finally, the corresponding STN graphics are generated and provided in
termsofaPDFfile.

At the top is the old input format containing redundant information. The

new and simpler version (as implemented in our web application) is below.

The architecture of the original STNs tool, consisting of R scripts, along with
its limitations is displayed in the upper part. Atthe bottom, the new STNs ar-
chitecture is characterized, consisting additionally of Python scripts, a Rest
API, and a website along with additional improvements.
The web application architecture incorporates a Rest API and new features
implemented in Python to the original STNs tool. Unlike the original STNs
tool, this version requires just one query to the API in order to execute the
three phases of the formerly manual process: creating a folder with the in-
put files, executing the corresponding R scripts, and generating a PDF or
metricsfile.. L
The layout of the web application in the web browser has three main parts.
In the upper part on the left the user can specify the type of optimization
problem (maximization vs. minimization) and a number of advanced op-
tions (see text). At the bottom left, the user can add one algorithm after the
other (clicking the App button). For each algorithm, a name, colour and the
input data file must be provided. Finally, the right-hand side includes an
embedded PDF viewer that shows the STN visualization once the user has

clicked on the GENERATE button..

118

119

120
124

138

139

140

141

142

XXVi

LIST OF FIGURES

9.7

10.1

10.2

11.1
11.2
11.3

114
11.5

12.1

12.2
12.3

12.4

13.1

13.2

13.3

This graphic presents three case studies with different percentages of search
space partitioning generated by STNWeb. First, a single algorithm when ap-
plied 10 times to the same problem instance is analyzed in the upper row.
In the middle row, we can see the behaviour of two algorithms by means of
different levels of search space partitioning. Finally, the new STNWeb fea-
ture was tested with four algorithms (the original STN tool did not support
more than the three algorithms), which is graphically shown in the bottom

After completing the configuration form and uploading the required files
for each algorithm to be compared (frontend), the user can request the gen-
eration of visualizations. The REST API (backend) receives the request and
invokes the selected algorithm to partition the space and generate a PDF vi-
sualization based on the provided configuration. The resulting PDF is then
displayed within the embedded viewer in the frontend.
Interacting with STNWeb requires just three steps. First, generate separate
data files with the search trajectories of the algorithms to be compared. Sec-
ond, configure the analysis and upload the files on the STNWeb interface.
Third, generate and download the visualization in PDF format.

Overview of automating graphics interpretation with Large Language Mod-
els (LLMS). e
Example STN generated by STNWeb for the Rastrigin function..
Prompt templates automatically generated by STNWeb for each task.

Example prompts and GPT-4-turbo outputs for the STN in Figure 11.2.. . .
Methodology for evaluating LLMs across tasks.

Example illustrating single-linkage HAC. At each step, the two clusters with
the minimum distance (according to a distance metric) are merged. The
illustration starts after the first two steps are already performed (to shorten
theprocedure).

Comparison of standard partitioning vs. agglomerative clustering for MDS.

Standard search space partitioning vs. agglomerative clustering in the con-
text of 2E-EVRP-TWresults.
Standard search space partitioning vs. agglomerative clustering in the con-
text of continuous optimization problems.

A general overview of the seven tasks covered by VisGraphVar (1-7), each
representing a different challenge for LVLMs, enabling us to conduct a more
detailed performance comparison and evaluation.
Available configurations for generating graph images to evaluate node and
edge detection capabilities. L
LVLM execution of Task 1 with overlapping nodes and prompt input.

146

152

153

158
159
162
164
168

172
178

179

180

13.4 Seven different typesof graphs. Lo L oo
13.5 Networks with an increasing number of nodes and a single cut-edge: the
graph on the left has cut-edge (6, 7); the one in the center has (1, 19); and
the most complex one to detect, on the right, has (4,23).
13.6 Three graphs with different types of patterns.
13.7 Three types of graphs with different numbers of nodes for which the LVLM
is expected to predict a missing link/edge. The missing link on the left is
(4,2), the one in the center is (2, 4), and the most complex case is (3, 5), on
theright.
13.8 Three graphs with varying levels of interpretive difficulty in identifying
shortest paths. (a) and (b) are simpler due to the lack of overlap between
nodes and edges, whereas (c) makes it very hard to locate each node along
a shortest path due to elementoverlap.
13.9 Graph pairs are shown with the goal for the LVLM to identify matches on
the left and distinctions on the right. Note that, in this work, two graphs in
the same image are said to match if their structure (including node labels)
is equal; that is, only their display style might differ. For this reason, the
two graphs on the right do not match, even though they are isomorphic.

192

193

194

13.10An overview of LVLM performance across the seven tasks (complete dataset).199

13.11The distribution of average scores across the six LVLMs for each task. The
violin plot is configured with bw_adjust = 0.5 (which adjusts the band-
width of the kernel density estimation, making the plot more detailed) and
cut = 0 (which ensures the plot is limited to the range of the data without
extending beyond it) using the Seaborn library in Python.
13.12Average LVLM performance (best to worst from left to right) regarding the
VisGraphVar dataset.
13.13Average performance of Claude-3.5-Sonnet for each task from the
VisGraphVar dataset.
13.14Average scores for each task by prompt strategy, Chain-of-Thought (top)
and 0-shot (bottom). Green indicates strong results, while red denotes poor
results. e
13.15Average performance of Claude-3.5-Sonnet on Task 1 for each considered
graphlayout. L
13.16Image from our dataset (Task 1), showcasing a spectral layout with ran-
domly colored nodes, directed edges, and 10 nodes with 20 edges.
13.17Image from the dataset concerning Task 7 (Matching), containing two struc-
turallyequal graphs. o
13.18Comparison of the average model performance for graphs with labeled
nodes (pink) and graphs with unlabeled nodes (green) in Task 1.
13.19(a) A node-labeled graph with 10 nodes and 16 edges and random node-
colors. (b) A similar, un-labeled graph. Both belong to the dataset of Task

200

201

201

202

204

205

206

207

XXVii

2.1

3.1

3.2

4.1

42

51

52

53

54

55

XXX

List of Tables

Evolution of Combining Large Language Models (LLMs) with Metaheuristics 23

Tuning configuration. Final parameter setting for BRKGA and BRKGA+FC
(forke{32,64,128}) e
Numerical results obtained by FC, the BRKGA, and our hybrid algorithm
BRKGA+FC on 19 well-known social networks. For each network the al-
gorithms were applied for d € {1,2,3} and k € {32,64,128}. For k = 32
BRKGA+FC wins in 73% of the cases; for k = 64 in 71%; and for k = 128 in

Target Set sizes obtained by the five features for the 20 scale-free networks
(trainingset).

Numerical results for 27 social networks

Summary of the assessed LLMs, which have been used via the OpenRouter
APL. This is except for Claude-3-Opus, the first LLM considered. At that
point, we had yet to become familiarized with OpenRouter.
Number of input/output tokens and the associated cost of processing the
input prompts concerning Claude-3-Opus. The costs correspond to March
2024, . .
Solution qualities obtained when turning the probabilities computed based
on the LLM’s output directly into solutions. In addition, the same is done
for the out-degree metric. Considered LLMs are GPT-40, Claude-3-Opus,
Command-R+, and Mixtral-8x22b-Instruct-v0.1. The six synthetic graphs
arechosenasatestbed.0 ..
Comparison of the pure BRKGA with BRKGA+LLM on the six synthetic social
networks. For each network, the algorithms were applied for each combina-
tion of d € {1,2,3} and k € {32, 64, 128}. Average results over 10 algorithm
runsareshown. L
Numerical comparison of three algorithms—BRKGA, BRKGA+FC (results ex-
tracted from [32]), and our hybrid approach BRKGA+LLM—on a total of four
real-world social network instances. For each network, the algorithms were
applied 10 times to each combination of d € {1, 2,3} and k € {32,64, 128}. .

32

50
55

68

70

72

74

75

5.6

5.7

5.8

7.1

7.2

7.3
7.4

7.5

11.1
11.2

13.1
13.2

Comparison of the LLM output with random values. static refers to a
variant of BRKGA+LLM in which the LLM output is replaced by probabilities
computed based on random alpha and beta values. dynamic refers to a very
similar BRKGA+LLM variant in which the random values for the alpha’s and
beta’s are dynamically changed at each iteration.. 75
A numerical comparison of BRKGA+LLM and BRKGA+irace. In the latter algo-
rithm, the alpha and beta values are determined by tuning through irace. 76
The alpha and beta values as determined by irace and the LLM for each
case. Pearson’s correlation coefficient (pirace1M) is used to quantify the
relationships between the two setsof values. 76

Expanded Comparative Analysis of LLM-based Algorithm Design Ap-

proaches e 104
Overview of Selected Algorithms for Solving the Travelling Salesman Prob-

lem (TSP) e 108
Analysis of the Code Generation Process 111
Parameter values obtained by tuning with irace. Ranges show minimum/-

maximum values considered for tuning. 0L 115
Average Cyclomatic Complexity of thecodes 123

LLM Tasks for STN Interpretation: Guidelines and Expected Inferences . . 163

LLMs evaluations fortasks. 167
Dataset distributionby task. o o0 L 194
Performance percentage for each LVLM with the spectral layout. 205

XXX1

k-d Dominating Set Problem (k-

dDSP)

Ant Colony Optimization

(ACO)

Biased Random-Key Genetic Al-

gorithm (BRKGA)

chain-of-thought reasoning

Construct, Merge,
Adapt (CMSA)

XXXiV

Solve &

Glossary

An NP-hard influence maximization problem on a directed graph.
The goal is to select a set of k nodes that maximizes the total num-
ber of unique nodes reachable within a distance of d hops. Itis a

generalization of the Minimum Dominating Set Problem. (p. 27,
60)

A metaheuristic inspired by the foraging behavior of ants. It
uses a probabilistic mechanism where solutions are constructed
based on ‘pheromone’ values, which represent learned informa-
tion about the quality of solution components. A specific variant
mentioned is the MAX-MI N AntSystem (MMAS). (p. 43,108)

A metaheuristic that represents solutions as vectors of random
keys (real numbers). Its core components include a population
of individuals, elite solutions, mutants, and a crossover operator.
A problem-specific ‘decoder’ maps the random keys to a feasible
solution. (p. 20, 25, 60)

An emergent ability of LLMs, accessed via prompting, where the
model is guided to explain its reasoning step-by-step to arrive at a
solution. This is presented as an alternative to zero-shot prompt-
ing for improving reasoning in complex tasks. (p. 160)

A hybrid metaheuristic (matheuristic) that combines probabilis-
tic construction heuristics with exact solvers, such as Integer Lin-
ear Programming. Its four phases are: generating candidate solu-
tions (Construct), aggregating promising components into a sub-
problem (Merge), finding an optimal solution for the subproblem
(Solve), and updating parameters based on the result (Adapt). (p.
87)

LIST OF TABLES

XXXV

cyclomatic complexity

decoder

few-shot

Graph Neural Networks
(GNNs)

GraphSAGE

Hierarchical Agglomerative
Clustering (HAC)

Jaccard Index

A software metric used to measure the structural complexity of a
program by counting the number of linearly independent paths
through its source code. Lower values generally indicate simpler,
more maintainable code. (p. 123)

The problem-dependent component of a Biased Random-Key Ge-
netic Algorithm (BRKGA). It is a function that translates an indi-
vidual’s vector of random keys into a valid solution for the specific
optimization problem being solved. (p. 27, 61)

An emergent ability of Large Language Models (LLMs) where
the model is provided with a small number of examples ('shots”’)
within the prompt to guide its response. The text mentions one-
shot learning as a specific case where a single illustrative example

is given to help the model follow instructions more effectively. (p.
160)

A type of deep learning model designed to work directly on
graph-structured data. GNNs iteratively refine node representa-
tions by aggregating information from neighbors, enabling them
to learn patterns for tasks like node classification or prediction..
(p. 27,43)

A specific type of Graph Neural Network (GNN) that gener-
ates node embeddings by aggregating feature information from
a node’s local neighborhood. It is used in the text to assign im-
portance scores (probabilities) to nodes. (p. 48)

A bottom-up clustering strategy used as a search space partition-
ing method in STNWeb. It starts with each solution as an individ-
ual cluster and iteratively merges the two closest clusters based
on a distance metric (e.g., single-linkage), subject to constraints
on cluster size and volume. (p. 172)

A similarity metric used to evaluate the performance of LVLMs
on the reasoning task (shortest path finding). It measures the
similarity between the set of nodes in the ground truth path and
the set of nodes in the path predicted by the model. (p. 196)

XXXVi

LIST OF TABLES

Large Language Models
(LLMs)

Large Vision-Language Models
(LVLMs)

Maximum Independent Set
(MIS) Problem

prompt engineering

Q-learning

Search Trajectory Networks
(STNs)

Shannon Entropy

Advanced Al models, typically based on the Transformer architec-
ture, capable of understanding and generating human-like text.
In this context, they are used as pattern recognition engines to
analyze problem metrics or as assistants to improve existing algo-
rithm code. (p. 57, 102, 156)

Multimodal models capable of analyzing both visual information,
such as images of graphs, and text prompts. The text evaluates
their ability to perform graph interpretation tasks like detection,
classification, segmentation, and reasoning. (p. 184)

A classic NP-hard problem on an undirected graph. The objec-
tive is to find the largest possible subset of vertices where no two
vertices in the subset are connected by an edge. (p. 85)

The practice of designing and refining input instructions
(prompts) to guide a Large Language Model (LLM) toward pro-
ducing a desired, high-quality output. The text utilizes a one-shot
learning approach as part of this practice. (p. 61, 106, 157)

An off-policy reinforcement learning algorithm. In the text, it is
used as an adaptive mechanism to dynamically choose between
different solution construction strategies in an Ant Colony Opti-
mization algorithm based on their past performance. (p. 47, 125)

A visualization technique used to analyze and compare the be-
havior of metaheuristics. It represents the search process of an
algorithm as a directed graph (a trajectory) in the solution space,
allowing for insights into exploration and convergence patterns.
(p. 136,151,157, 181)

A standard method used in STNWeb for partitioning the search
space of discrete optimization problems. It involves calculating
the entropy for each decision variable based on its values across
all solutions, and then removing a percentage of the variables
with the lowest information content to merge solutions. (p. 153,
173)

STNWeb

Target Set Selection (TSS)

temperature

Travelling Salesman Problem
(TSP)

VisGraphVar

zero-shot

A web application that automates the generation of Search Trajec-
tory Network (STN) graphics. It is designed to improve the us-
ability and accessibility of the original R-script-based STN tool by
providing a user-friendly interface and integrating features like
advanced search space partitioning for both discrete and contin-
uous optimization problems. (p. 141, 157, 171)

An optimization problem on an undirected graph where each
node has a threshold. The goal is to find a minimum-sized ini-
tial set of ‘influenced’ nodes (a target set) such that influence
propagates throughout the entire network according to a diffu-
sion model, like the Linear Threshold (LT) model. (p. 43)

A parameter that controls the randomness and creativity of the
output generated by a Large Language Model. A lower temper-
ature value (e.g., 0.2) makes the output more deterministic and
focused, which is suitable for tasks requiring factual accuracy or
pattern detection. A higher temperature value (e.g., 0.8 or above)
increases the diversity and unpredictability of the response, mak-
ing it better for creative tasks like writing or brainstorming. (p.
63, 98, 110)

A canonical NP-hard combinatorial optimization problem. Given
a set of cities and the distances between them, the goal is to find
the shortest possible route that visits each city exactly once and
returns to the origin city. (p. 103)

A configurable benchmark generator designed to create graph
images with controlled variations in structure and style. It is
used to evaluate the robustness of Large Vision-Language Models
(LVLMSs) across seven distinct visual graph interpretation tasks,
such as node detection, classification, and reasoning. (p. 184)

An emergent ability of Large Language Models (LLMs) to per-
form a task without being given any specific examples in the
prompt. In this approach, the LLM must make its decision based
solely on the instructions and data provided. (p. 160, 196)

XXXVii

Introduction

While metaheuristics are a type of optimization algorithm extremely powerful for ad-
dressing NP-hard optimization problems across a wide range of domains, their effec-
tiveness is fundamentally limited by two core challenges: their lack of insight into the
underlying structure of the problem, and their inherent opacity, which complicates
meaningful analysis. This thesis addresses both issues by introducing novel method-
ologies: machine learning techniques are employed to embed structural awareness
into metaheuristics, while advanced visualization tools are developed to enhance in-
terpretability. Together, these contributions aim to create more powerful, transparent,

and adaptable optimization algorithms.

1.1 Overview of Optimization Algorithms

Not all optimization problems have the same complexity. In fact, many of them are
classified as NP-hard, which means that there is no known algorithm capable of solv-
ing them efficiently—that is, in polynomial time—while guaranteeing the discovery
of the optimal solution. However, it is not only the type of problem that determines
its difficulty, but also the specific instance. For example, finding the shortest possible
route that visits a set of cities exactly once (as in the Traveling Salesman Problem) is
vastly different when dealing with 10 cities compared to 100 or 1,000. As the size of the
instance grows, the difficulty posed to the algorithm increases exponentially, resulting
in dramatically higher computational time.

Because of this exponential growth, exact algorithms—those that guarantee finding
the best possible solution—are often only feasible for small instances or in cases where
time constraints are not a concern (which is rare in real-world applications). As a
result, over the past few decades, approximation algorithms and heuristic methods
have gained significant importance. These approaches aim to find good-enough or
near-optimal solutions in a reasonable amount of time, trading some accuracy for much

greater efficiency—a compromise that is often essential in practice.

2 1. Introduction

1.1.1 Metaheuristics

Metaheuristics are stochastic approximation algorithms that, by relying on heuristics,
forgo the guarantee of finding the global optimum (as exact algorithms do) in exchange
for a significant reduction in computational time [22]. This trade-off makes them highly
useful for a wide range of optimization problems, hence the prefix “meta”, which im-
plies generality. Unlike purely heuristic algorithms, which are tailored to specific prob-
lems, metaheuristics are problem-independent frameworks; thus, a metaheuristic de-
signed for one problem can often be adapted to another with relatively little technical
effort, as its underlying principles remain consistent. However, the No Free Lunch
theorem [226] dictates that no single metaheuristic can consistently outperform others
across all instances of a given optimization problem, regardless of test instance size.
Consequently, experimentation takes precedence over theory in this field, with the pri-
mary goal being to discover new strategies that improve existing metaheuristics to sur-
pass the current state of the-art. In principle, there is always room for novel approaches
to enhance metaheuristic performance.

Thus, over the past years, knowledge from other fields has been increasingly in-
tegrated into metaheuristics, giving rise to the area known as hybrid metaheuristics.
These hybrid approaches combine different techniques, including but not limited to:

e Integration with exact methods (often referred to as matheuristics), which com-
bine metaheuristic frameworks with exact optimization techniques to improve
solution quality and computational efficiency [23].

e Incorporation of machine learning techniques (sometimes called learnheuris-
tics [27]), where learning algorithms are used to adapt, guide, or enhance the
metaheuristic search process based on problem characteristics or past experi-
ence [16,102].

This thesis focuses on the second category: leveraging machine learning to enhance
existing metaheuristics through various integration strategies. Metaheuristics, by de-
sign, lack inherent knowledge of problem structure or specific instance characteristics.
This absence prevents them from utilizing historical data to identify patterns that could
guide the search toward more promising solution space regions, thus accelerating the
discovery of good or near-optimal solutions [16, 102].

Limitations

Metaheuristics exhibit two main drawbacks that prevent them from being more robust
algorithms:

1. Lack of contextual information. The computational efficiency of metaheuris-
tics largely derives from their use of pseudo-random operators. This inherent
stochasticity allows for broad exploration of the search space but also presents

1.2. Contributions 3

a key limitation: metaheuristics typically lack awareness of the problem’s struc-
ture, recurring patterns across instances, or the specific features of the instance at
hand. Although some adaptive variants attempt to learn from the search history,
they often do so through simplistic performance metrics rather than by explicitly
modeling the problem’s topology. In the absence of prior knowledge or contex-
tual clues, these algorithms must rely heavily on exploration—often at the cost of
increased computational time compared to strategies guided by problem-specific
insights [102].

2. Lack of interpretability in result analysis. As mentioned above, metaheuristics
often lack strong theoretical guarantees due to their stochastic nature. This makes
experimental validation essential, typically involving statistical analyses of multi-
ple runs to compare the performance of one metaheuristic against another. How-
ever, numerical comparison alone is not sufficient. Metaheuristics usually lack
interpretability—that is, they do not provide clear explanations of how or why a
particular result was achieved, whether it is good or poor [155].

1.2 Contributions

This thesis proposes novel methodologies for integrating metaheuristics with modern
strategies. These strategies include approaches from other fields, such as machine
learning (specifically Graph Neural Networks and Large Language Models), as well
as the development of tools to enhance interpretability.

Thus, the primary focus is not on the specific optimization problem being ad-
dressed, but rather on the proposed hybridization strategies themselves, which may
later be applied to tackle more complex optimization problems. Nevertheless, as
demonstrated throughout this thesis, many of the proposed approaches resulted in
improvements over the current state-of-the-art for specific problems.

In general, this thesis makes contributions in two main areas: algorithmic enhance-
ment and the interpretability of optimization algorithm comparisons. These two do-
mains form a feedback loop: interpretability tools support and justify the algorithmic
improvements developed in the first area, while those algorithmic advances in turn
create new challenges that drive the refinement of interpretability methods (see Fig-
ure 1.1). The thesis concludes with a study that explores the philosophical implications
of code generation with generative models.

1.2.1 Algorithmic Improvement
Graph Neural Networks (GNNs)

During my first doctoral year, I demonstrated the potential to achieve state-of-the-art re-
sults in challenging combinatorial optimization problems, specifically Multi-Hop Influ-
ence Maximization in Social Networks and Target Set Selection. This was accomplished by
integrating Graph Neural Networks (GNNs) with two distinct metaheuristics: the Bi-

4 1. Introduction

ased Random-Key Genetic Algorithm (BRKGA) and Ant Colony Optimization (ACO).
For detailed methodologies and results, please refer to Chapters 3 and 4.

Large Language Models (LLMs)

Large Language Models (LLMs) are a class of systems based on the transformer archi-
tecture, a type of deep neural network that fundamentally differs from Graph Neural
Networks (GNNs) [101]. These models are trained on vast corpora of data, enabling
them to generate sequences of text tokens. When extended to additional modalities
such as audio, images, or video, they are referred to as multimodal models.

In the third year of my doctoral research, I began exploring how LLMs could be
used as collaborative assistants for optimization algorithm designers. In Chapter 5, I
demonstrate that LLMs can act as powerful pattern recognition engines, particularly for
tabular numerical data such as graph-based metrics. By leveraging this capability, we
identified novel heuristics that were then integrated into a Biased Random-Key Genetic
Algorithm (BRKGA). This hybrid approach outperformed the previous GNN-based so-
lution and achieved state-of-the-art results for the Multi-Hop Influence Maximization in
Social Networks problem.

In the final stage of my PhD, I shifted the focus of my LLM-related research toward
code generation and algorithm enhancement [95]. While most existing studies rely
on LLMs to synthesize entirely new metaheuristics through prompt-based program-
ming [165], our approach centered on the augmentation of existing, expert-written
code. Specifically, we used the Construct, Merge, Solve & Adapt (CMSA) algorithm—
a hybrid metaheuristic implemented by an expert—as contextual input. The LLM was
then employed to identify heuristic code fragments that could be optimized or replaced
to improve algorithmic performance (see Chapter 6).

Recently, we extended this methodology to a broader range of algorithms, including
reinforcement learning, classical heuristics, and exact optimization methods. All exper-
iments were conducted on the benchmark Traveling Salesman Problem, ensuring con-
sistency and comparability across techniques. This line of research demonstrated not
only the versatility of LLMs in enhancing diverse optimization strategies, but also their
potential to democratize algorithm development. By enabling non-experts to improve
complex optimization code through guided suggestions, this approach significantly
lowers the barrier to entry in combinatorial optimization. The full study is presented
in Chapter 7.

1.2.2 Interpretability Enhancement through Visualization Tools

My work on improving the interpretability of metaheuristic results focuses on the de-
velopment of a web-based tool called STNWeb, an extended and more user-friendly
version of the original Search Trajectory Networks (STNs) tool. STNWeb enables re-
searchers to better justify and enrich their heuristic-based algorithms through intuitive

and informative visualizations.

1.2. Contributions 5

STNWeb

The optimization community, particularly within the realm of stochastic algorithms
like metaheuristics, has long highlighted the critical need for visual tools to justify and
understand algorithmic results [71, 22]. In this context, Search Trajectory Networks
(STNs) emerged as one of the pioneering tools enabling the comparison of multiple
algorithm executions on a single problem instance, regardless of whether the problem
is discrete or continuous, minimization or maximization. Thus, in cases where numer-
ical comparisons are inconclusive or a clear winner is not apparent, STNs provide an
invaluable additional perspective by revealing how a specific problem instance affects
the behavior of a metaheuristic. This distinction is crucial: STNs do not merely de-
scribe how an algorithm generally behaves, but rather illustrate the nuanced impact of
particular problem instances on that algorithm. This is vital because a single algorithm
can exhibit substantially different behaviors across various optimization problems, and
even across different instances of the same problem.

Originally implemented in R, STNs were only accessible via the command line, re-
quiring a certain level of technical expertise to use [155]. A key contribution of this the-
sis was the development of a web-based version of STNWeb (see Chapters 9 and 10),
initiated in the second year of the PhD. This new version not only significantly enhances
usability but also introduces several features that expand its potential for broader adop-
tion:

e Enhanced Interpretability of Visualizations: We improved the clarity and in-
sight provided by STN graphics. This was achieved, in part, through the inte-
gration of Large Language Models (LLMs) to generate natural language explana-
tions and summaries of the visual patterns observed in the networks (see Chap-
ter 11)—a line of work that emerged at the beginning of the third year of the PhD.
This integration allows users to quickly grasp complex behavioral dynamics with-
out requiring prior domain knowledge.

e Improved Visualization Quality: The visual quality of the STN plots was en-
hanced by incorporating a novel clustering algorithm. This new algorithm (de-
tailed in Chapter 12) provides a more effective search space partitioning strategy,
leading to clearer and less cluttered visualizations, especially for large or complex
problem instances. This work was carried out concurrently with the integration
of LLMs into STNWeb.

e Potential for Visual-Spatial Analysis with LVLMs: STNWeb opens the door
for integrating Large Vision-Language Models (LVLMs) to perform direct visual-
spatial analysis of the generated images. For instance, an LVLM could analyze an
STNWeb image and generate a textual description such as: “In the bottom-right
corner, Algorithm_A’s trajectories overlap and appear trapped in a sub-optimal
region, whereas Algorithm_B’s trajectories are dispersed across the image, indi-
cating greater exploratory capacity, which leads to better results.” This type of
rich textual analysis, derived directly from passing the STNWeb-generated im-

6 1. Introduction

age to an LVLM, is impossible to achieve with only textual prompts (without
images). Our initial exploration of the capabilities of LVLMs for analyzing graph
images—particularly relevant given that STNWeb produces directed graphs—is
presented in Chapter 13. This line of work was developed during the final year
of the PhD.

1.2.3 Philosophical Implications

Finally, the progression of research on LLMs over the last two years of the PhD (Chap-
ters 5 to 7, 11 and 13) naturally led to an exploration of the philosophical implications
of generative Al This gave rise to a paper titled Architectures of Error: A Philosophical
Inquiry into Al-Generated and Human-Generated Code, which is currently under review.
In it, I argue for the conceptual importance of distinguishing between the errors pro-
duced by LLMs during code generation and those made by human—a distinction that,
I contend, has practical implications for programmers. Due to its purely philosophi-
cal nature, I wrote this paper independently, thus concluding the body of publications
that emerged from my doctoral research.

1.3 Publications Resulting from this Thesis

The publications produced during my PhD are grouped into two categories, reflecting
my main research lines. This trajectory culminates in a final paper of a philosophical
nature, arising from my broader exploration of Al generative models.

Part I - Algorithmic Improvement

This line of research focuses on leveraging Machine Learning, particularly Graph Neu-
ral Networks and Large Language Models, to directly enhance the performance and
design of existing metaheuristics.

Preprints / Under Review

[1] Combinatorial Optimization for All: Using LLMs to Aid Non-Experts in Im-
proving Optimization Algorithms (March 2025) [182]. arXiv.
Authors: Camilo Chacén Sartori, Christian Blum.
DOI: 10.48550/arXiv.2503.10968
Submitted to a journal for review.
[2] Improving Existing Optimization Algorithms with LLMs (February
2025) [183]. arXiv.
Authors: Camilo Chacén Sartori, Christian Blum.
DOI: 10.48550/arXiv.2502.08298

Submitted to a conference for review.

https://arxiv.org/abs/2503.10968
https://arxiv.org/abs/2502.08298

1.3. Publications Resulting from this Thesis 7

Journal Papers

3]

Metaheuristics and Large Language Models Join Forces: Toward an Integrated
Optimization Approach (2025) [185]. IEEE Access.

Authors: Camilo Chacén Sartori, Christian Blum, Filippo Bistaffa, and Guillem
Rodriguez Corominas.

[Code]

DOI: 10.1109/ACCESS.2025.3333333

Conference Papers

[4]

Large Language Models for the Automated Analysis of Optimization Al-
gorithms (2024) [35]. Genetic and Evolutionary Computation Conference
(GECCO) 24. Core A

Authors: Camilo Chacén Sartori, Christian Blum, Gabriela Ochoa.

DOI: 10.1145/3638529. 3654086

Q-Learning Ant Colony Optimization supported by Deep Learning for Target
Set Selection (2023) [171]. Genetic and Evolutionary Computation Conference
(GECCO) 23. Core A

Authors: Jairo Enrique Ramirez Sdnchez, Camilo Chacén Sartori, Christian
Blum.

DOI: 10.1145/3583131.3590396

Boosting a Genetic Algorithm with Graph Neural Networks for Multi-Hop In-
fluence Maximization in Social Networks (2022) [31]. Conference on Computer
Science and Intelligence System (FedCSIS). Core B. Best paper award.

Authors: Camilo Chacén Sartori, Christian Blum.

DOI: 10.1109/FedCSIS55175.2022.9909110

Part II - Interpretability Enhancement

This line of research focuses on developing and improving tools and methodologies

for better understanding and visualizing the behavior of optimization algorithms.

Journal Papers

[7]

8]

VisGraphVar: A Benchmark Generator for Assessing Variability in Graph
Analysis Using Large Vision-Language Models (2025) [184]. IEEE Access.
Authors: Camilo Chacén Sartori, Christian Blum, Filippo Bistaffa.

[Homepage / Dataset / Code]

DOI: 10.1109/ACCESS. 2025 . 4444444

STNWeb: A new visualization tool for analyzing optimization algorithms
(2023) [33]. Software Impacts.

Authors: Camilo Chacén Sartori, Christian Blum, Gabriela Ochoa.

https://github.com/camilochs/optipattern
https://ieeexplore.ieee.org/document/10818476
https://dl.acm.org/doi/10.1145/3638529.3654086
https://dl.acm.org/doi/10.1145/3583131.3590396
https://ieeexplore.ieee.org/document/9909110/
https://camilochs.github.io/visgraphvar-website/
https://ieeexplore.ieee.org/document/10855899

8 1. Introduction

[Code]
DOQOI: 10.1016/j.s1.2023.100095

Conference Papers

[9] An Extension of STNWeb Functionality: On the Use of Hierarchical Agglomer-
ative Clustering as an Advanced Search Space Partitioning Strategy (2024) [34].
Genetic and Evolutionary Computation Conference (GECCO) 24. Core A
Authors: Camilo Chacon Sartori, Christian Blum, Gabriela Ochoa.

DOI: 10.1145/3638529.3654084

[10] STNWeb for the Analysis of Optimization Algorithms: A Short Introduction
(2024) [181]. Metaheuristics International Conference (MIC).
Authors: Camilo Chacén Sartori, Christian Blum.
DOI: 10.1007/978-3-031-62922-8_29

[11] Search Trajectory Networks Meet the Web: A Web Application for the Visual
Comparison of Optimization Algorithms (2023) [30]. International Conference
on Software and Computer Applications (ICSCA).
Authors: Camilo Chacén Sartori, Christian Blum, Gabriela Ochoa.
DOI: 10.1145/3587828.3587843

Philosophical Synthesis and Reflection
Preprint / Under Review

[12] Architectures of Error: A Philosophical Inquiry into AI-Generated and Human-
Generated Code (May 2025) [180]. SSRN.
Author: Camilo Chacén Sartori
DOI: 10.2139/ssrn. 5265751

Submitted to a journal for review.

Total number of produced texts: 12

1.4 Organization

This thesis is structured into two main parts, reflecting my primary research lines (see
Figure 1.1). The first part focuses on the algorithmic improvement of metaheuristics
using Graph Neural Networks and, predominantly, Large Language Models. The sec-
ond part is dedicated to the research, creation, and enhancement of STNWeb, a tool
designed for analyzing the behavior of metaheuristics in relation to specific problem
instances. Each part begins with an introductory chapter that provides a concise review
of the state-of-the-art in the respective fields.

https://github.com/camilochs/stnweb
https://www.sciencedirect.com/science/article/pii/S2665963823000957
https://dl.acm.org/doi/abs/10.1145/3638529.3654084
https://dl.acm.org/doi/10.1007/978-3-031-62922-8_29
https://dl.acm.org/doi/abs/10.1145/3587828.3587843
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5265751

1.4. Organization 9

1.4.1 Part I - Algorithmic Improvement with Machine Learning (Graph
Neural Networks & Large Language Models)

Chapter 2 begins this section with an overview of the different types of machine learn-
ing techniques applied to metaheuristics, examining their emergence, strengths, and
drawbacks. This helps set the context for what was happening in the field at the time
we began proposing new integration methods.

e Chapter 3: Boosting a Genetic Algorithm using Graph Neural Networks.
This chapter presents my initial work on integrating GNNs with metaheuristics,
demonstrating how Graph Neural Networks can enhance the performance of the
Biased Random-Key Genetic Algorithm (BRKGA) for a specific combinatorial op-
timization problem—achieving state-of-the-art results in the Multi-Hop Influence
Maximization problem in Social Networks.

e Chapter 4: Improving Ant Colony Optimization supported by Deep Learning.
Building on the previous work, this chapter explores another successful integra-
tion, showing how Deep Learning (specifically Q-Learning) can support Ant
Colony Optimization (ACO) to achieve state-of-the-art results in the Target Set
Selection problem.

e Chapter 5: Large Language Models as Assistants for Enhancing Metaheuris-
tics. This chapter marks my transition toward the use of LLMs, showcasing
their novel application as pattern recognition engines for tabular data derived
from graph instances. It introduces a new symbiosis between metaheuristics and
LLMs, which led to the discovery of heuristics that significantly boost the per-
formance of BRKGA—ultimately achieving state-of-the-art results (Chapter 3) in
the Multi-Hop Influence Maximization problem in Social Networks.

e Chapter 6: Enhancing a CMSA Heuristic for the Maximum Independent Set
Problem with Large Language Models and Chapter 7: Improvement of Opti-
mization Algorithms with Large Language Models by Non-expert Users. These
chapters collectively explore the use of LLMs for code generation and improve-
ment of existing optimization algorithms. Chapter 6 details how LLMs can act
as collaborators for algorithm designers, suggesting improvements to expert-
written code. Chapter 7 expands this concept into a systematic study, showing
how LLMs can enable non-experts to enhance a wide range of optimization algo-
rithms for problems like the Traveling Salesman Problem.

1.4.2 PartII - Visualization Tools for Algorithm Analysis

This section begins with a brief Chapter 8, which emphasizes the critical role of visual
tools in our field. It explains why Search Trajectory Networks (STNs) are not meant

to replace numerical comparisons but rather to complement and enrich researchers
analytical capabilities.

e Chapter 9: Search Trajectory Networks Meet the Web: A Web Application for

10 1. Introduction

the Visual Comparison of Optimization Algorithms. This foundational chapter
presents the initial proposal and development of STNWeb, our web-based appli-
cation for visualizing and analyzing STNs. It addresses the usability limitations
of the original R-script implementation, detailing how STNWeb automates the
generation of STN graphics and enhances accessibility for the broader research
community.

e Chapter 10: STNWeb: A New Visualization Tool for Analyzing Optimization
Algorithms. Building upon the initial proposal, this chapter introduces the pub-
licly available version of STNWeb. It highlights how this web-based tool not only
overcomes the usability limitations of the original R-script implementation but
also incorporates additional functionalities designed to further enhance its adop-
tion and utility for the research community.

e Chapter 11: Enhancing the Explainability of STNWeb with Large Language
Models. This chapter explores the integration of LLMs directly into STNWeb
to automate the analysis of optimization algorithm behavior. It demonstrates
how LLMs can generate natural language explanations and insights from STN
visualizations, making complex algorithmic dynamics more accessible.

e Chapter 12: Improving STNWeb Graphical via Hierarchical Clustering-Based
Search Space Partitioning. This chapter details a significant enhancement to
STNWeb, introducing a novel search space partitioning scheme based on hier-
archical agglomerative clustering to improve the clarity and interpretability of
STN visualizations, especially for complex problems.

e Chapter 13: A Benchmark Generator for Assessing Variability in Graph Anal-
ysis Using Large Vision-Language Models. This chapter introduces a novel
benchmark generator designed to rigorously evaluate the visual graph compre-
hension capabilities of Large Vision-Language Models (LVLMs). It explores how
visual variability in graph representations impacts LVLM performance, laying
groundwork for future visual analysis applications within STNWeb.

The thesis concludes with Chapter 14, where I provide a brief summary of the work
presented, a discussion of the main contributions, limitations, and ongoing research

directions.

Each chapter in Parts I and II begins with the research’s origin and ends with
reflections on its impact—how it influenced later work or shifted its direction.
Collectively, these notes highlight the evolving and unpredictable nature of re-
search.

1.4. Organization

11

Support

To support readers less familiar with the field, I have included two appen-
dices: Appendix A provides a brief overview of optimization problems, and

Appendix B introduces metaheuristics.

Improving Optimization Algoritms via Machine Learning and Visualization Tools

Visual Map of the Thesis

4 -
\ 8 Graph Neural Networks P -
7/

/ .

4 Part T Part IT

// Machine Learning \’/ Visualization Tools
D (D
< () > 9 12 Chapters

\ /

\\ - 10 \/ — Topic/chapter influence

\ -)
~ _-" - — > Cross-part influence
P 11 \ /

> 5 —— -\
6 ?:\\ _
- A
\\ Va
~ 7
\\\ ///
7 T~ -
Chapters
(1) Introduction
Part I Part II

(2) Introduction to Part I

(3) Boosting a Genetic Algorithm using Graph Neural Networks

(4) Improving Ant Colony Optimization suppported by Deep Learning

(5) Large Language Models as Assistants for Enhancing Metaheuristics

(6) Enhancing a CMSA Heuristic for the MIS Problem with Large Language Models

(7) Improving of Optimization Algorithms with Large Language Models by Non-expert Users

(8) Introduction to Part IT

(9) Search Trayectory Networks Meet the Web

(10) STNWeb: A new visualization tool for analyzing optimization algorithms
(11) Enhancing the Explainability of STNWeb with LLMs

(12) Improving STNWeb Graphical via Hierarchical Agglomerative Clustering

(13) A Benchmark Generator for Assessing Variability in Graph Analysis Using LVLMs

(14) Conclusion

Figure 1.1: A visual map of the thesis structure, where the connections between nodes show the influence of each chapter on the others. For example, node 10 represents
the work in which we developed STNWeb; this tool is later used to enrich the analysis in Chapter 5, creating a feedback loop between both parts of the thesis.

cl

uoyINpoLJus “[

Part |
Machine Learning

(Graph Neural Networks & Large Language
Models)

Introduction

In this chapter, I begin with a brief review of established machine learning (ML) tech-
niques applied within optimization algorithms, particularly metaheuristics (MH) (Sec-
tion 2.1). These traditional approaches often rely on expert-driven manual feature se-
lection when constructing models. Section 2.2 introduces deep learning (DL), which
replaces this manual effort with automatic pattern extraction from large datasets, en-
abling neural networks to learn rich representations. Within this section, we also dis-
cuss approaches that incorporate reinforcement learning (RL), and especially graph
neural networks (GNNs)—a branch of DL tailored to operate directly on graph struc-
tures, making it particularly well-suited for combinatorial optimization problems on
graphs. My first contribution to the state-of-the-art involves integrating GNN5s into
metaheuristics, before I transitioned to working with foundational models. Finally,
Section 2.3 explores how the emergence of Large Language Models (LLMs) is trans-

forming the field of metaheuristics.

2.1 Metaheuristics and Machine Learning

Optimization algorithms operate based on an objective function and a set of constraints
to minimize or maximize a given value. However, they have no prior knowledge of the
problem instances before execution and do not incorporate past experience into their
operation. In contrast, ML does.

ML serves as a powerful complement to optimization algorithms by filling this gap,
providing insights into the structure of the problem. For example, it can analyze the
topology of graph instances to determine whether valuable patterns can be learned.
This knowledge becomes crucial when tackling larger instances of the same problem—
or even real-world scenarios!

Researchers have proposed various strategies to integrate ML into MHs. As Karimi-
Mamaghan et al. [102] point out, key approaches for incorporating ML into MHs to
solve combinatorial optimization problems (COPs) include:

18

2.2. Metaheuristics and Deep Learning 19

e Algorithm Selection: Using ML to predict the performance of different MHs,
enabling the choice of the most suitable algorithm or algorithm portfolio for each
problem instance.

e Fitness Evaluation: Employing ML to reduce the computational cost of fitness
assessments, either by approximating expensive fitness functions (functional ap-
proximation) or by minimizing the number of evaluations required (fitness re-
duction).

e Initialization: Leveraging ML to generate high-quality initial solutions or popu-
lations, which, in some cases, fosters faster convergence and enhances diversity.
This can involve full or partial solution construction based on prior knowledge,
or decomposition of the problem space.

e Evolution: Integrating ML within the search process to enhance its intelligence
through:

— Operator Selection: Dynamically choosing the most effective search operators
during optimization based on their past performance.

— Learnable Evolution Models (LEMs): Creating new populations by learning
rules from high-quality solutions rather than relying solely on traditional
stochastic operators.

— Neighbor Generation: Utilizing insights from good solutions to guide the cre-
ation of new neighboring candidates, focusing the search on promising re-

gions.

e Parameter Setting: Applying ML techniques to configure MH parameters either
offline (parameter tuning before execution) or online (parameter control during
search), adapting parameters dynamically to the evolving optimization process.

e Cooperation: Enhancing cooperative MH frameworks by enabling intelligent be-
havior adaptation and information exchange among algorithms, exploiting their

complementary strengths.

However, beyond traditional ML methods, recent research has investigated ap-
proaches based on DL, GNNs, and LLMs, as explained below.

2.2 Metaheuristics and Deep Learning

Unlike traditional ML, which often relies on extensive manual feature engineering, DL
replaces this laborious process with automatic feature extraction from large-scale train-
ing data. Its multiple neural network layers are designed to automatically capture com-
plex, hierarchical patterns that are often beyond the reach of simpler ML models. In
essence, DL excels at processing vast data volumes and uncovering intricate structures
within them, making it a powerful tool for various applications, including optimiza-

tion.

20 2. Introduction

2.2.1 Deep Reinforcement Learning (DRL) in Metaheuristics

Deep Reinforcement Learning (DRL) combines the learning power of deep neural net-
works with the decision-making framework of RL. This synergy has proven highly ef-
fective for enhancing metaheuristics in several key areas established previously:

e Initialization: A prominent application of DRL is in generating high-quality ini-
tial solutions. For instance, Miki et al. [145] applied DRL to the Traveling Sales-
man Problem (TSP), training a model on millions of instances to learn a policy
that significantly improved the starting quality for traditional metaheuristics.

e Learning Heuristic Functions and Policies: Beyond initialization, DRL can learn
complex search policies. Huber et al. [90] used it to guide beam search for the
Longest Common Subsequence problem. In a more advanced application, Fenoy
etal. [64] combined an RL-trained attention model with classical optimization to
form agent collectives, allowing for coordinated search strategies.

e Dynamic Operator and Parameter Control: DRL is well-suited for dynamic adap-
tation during the search. Notable works include RL-guided variable neighbor-
hood search [5], where RL selects the most effective neighborhood structures,
and its use in adaptive parameter tuning for algorithms like Biased Random-Key
Genetic Algorithm (BRKGA) [38].

2.2.2 Graph Neural Networks for Combinatorial Optimization

GNN:s are a specialized DL architecture ideal for problems with inherent graph struc-
tures. By operating directly on non-Euclidean data, they can learn rich representations
of the problem’s topology, providing powerful guidance to metaheuristics.

e Guiding the Search Process: A key example, presented in this thesis (see Chap-
ter 3), involves training a GNN to guide a BRKGA. The GNN exploits the graph’s
structural properties to steer the search toward more promising regions. A re-
lated approach integrates Q-learning with an Ant Colony System to similarly en-
hance search guidance [171] (see Chapter 4).

e Enhancing Search Operators: GNNs can also improve core components of local
search. Liu et al. [122] employed GNNs to enhance neighborhood selection in
Tabu Search and Large Neighborhood Search, where the GNNs learned to iden-
tify more effective moves based on the underlying graph structure.

2.3 Metaheuristics and Large Language Models

Over the past two years, the optimization community has explored LLMs with the
hope that their vast pre-training knowledge can beneficially contribute to improving
or even generating optimization algorithms. As we will demonstrate, LLMs have been
leveraged to guide optimization processes, detect patterns and key features in problem

2.3. Metaheuristics and Large Language Models 21

instances, refine search spaces, and generate new problem-specific heuristics. Further-
more, LLMs offer valuable insights by explaining optimization results, making them
versatile tools for both problem-solving and interpretation.

2.3.1 LLMs for Improving Solution Quality

For a concise overview, Table 2.1 presents the main contributions in this emerging hy-
bridization approach.

Early Explorations (2023): Direct Solving and Simple Integration

A foundational work on LLM-optimization synergy is “Large Language Models as Op-
timizers” by Google DeepMind [235], published in September 2023. This influential
paper introduced Optimization by PROmpting (OPRO), demonstrating LLMs’ ability
to solve small-scale optimization problems through natural language instructions.

However, directly tasking an LLM with complex or large-scale optimization re-
mains challenging. Consequently, researchers sought alternative methods to leverage
LLMs for more demanding optimization tasks. A month later, the Large Language
Model-based Evolutionary Algorithm (LMEA) emerged [126], which integrated an
LLM within an evolutionary algorithm, shifting the paradigm from a standalone solver
to an intelligent component in a hybrid system.

Advanced Hybrid Approaches (2024): LLMs as Core Components

The landscape shifted significantly in early 2024 with the advent of larger, more capa-
ble LLMs. The first half of the year saw two key hybrid methodologies emerge, both
successfully benchmarked against state-of-the-art algorithms.

As part of the research for this doctoral thesis, in May 2024, OptiPatterns [185]
was published, a work that leverages leading LLMs as pattern-detection engines.
In our approach, instead of direct solution generation, the LLM analyzes problem in-
stances to extract relevant structural information and distill it into parameters that
guide an existing genetic algorithm. To validate this methodology, we integrated it
with the BRKGA for the Multi-Hop Influence Maximization problem, evaluating it on
real-world social networks of up to 7,000 nodes. The results showed that our method
surpassed the previous state-of-the-art (our GNN-enhanced BRKGA). This work also
pioneered the incorporation of open-weight LLMs in experiments, although at the time,
they did not match the quality of proprietary models.

Days after the publication of OptiPatterns, LLaMEA (Large Language Model Evo-
lutionary Algorithm for Automatically Generating Metaheuristics) [194] appeared on
arXiv. It adopts a different but complementary strategy, using an LLM-driven evolu-
tionary process to automatically generate entirely new metaheuristics.

22 2. Introduction

Emerging Paradigms: Augmentation vs. Generation

These developments, including our contribution with OptiPatterns (see Chapter 5),
have crystallized into two distinct integration areas. The first is Algorithm Augmen-
tation, where an LLM enhances a pre-existing, expert-designed algorithm by pro-
viding it with data-driven insights. The second is Algorithm Generation, where an
LLM-powered framework autonomously creates novel metaheuristic algorithms from

scratch (see Chapters 6 and 7).

23

2.3. Metaheuristics and Large Language Models

UOT)RISUSL) WIYILIOZ[Y

uonejUWdNY WOy

“UOJeIdS WOLJ SWILIOS[E dNSLINaYeow Mau A[9I1Us 9)e1d
-ua3 A[eonewone 03 ssad01d Areuonnjoas usALIp-]A] ue shojdwyg

(VOud
~39) omsumayelow e 10§ sivwered Jurpm [[USIp pue ssdue)sur

waqoid azAeue 0y surdus uondsjep-urayed e se AT ue so8e1dAd|

[Go1] Ter@ uris $207 Aey VANETT

[cg1] apnre QO $70T Ae]N suranegndo

sayovoiddyy priqhf] pasuvapy 570

uoneyuwWSNy WYILIO3[Y

urajog ya11(q

“SIomaurerj wyjio3[e A1euonnjoad
reuonIper; e unim jusuodwod JualdI[eur ue se AT Ue sajyerdajuy

*(8undwoad) suononnsur adenduel feanjeu y3nony
swarqoid uonpezruundo oreds-[[ews 9AJ0S A[3ORIIp 03 AT Ue sasn)

[9z1] Tes@nrT €207 PO VAN

[cez] Ter@ Buex g0z das 0oudo

suoyviojdxg Auvg :€207

wrpere] uonerdajuy

ASo1opoyid\ 210D

(s)uoneoriqng £33 durppuwil] wAuony / Apnig

So13SLANAYDIAN Y1 (SWTT) SIOPOIN aSvnSuvT a4y Suiuiquio)) fo uoynjoad 1° dqeL

24

Boosting a Genetic Algorithm using
Graph Neural Networks

Foundational Work for This Chapter

This chapter is based on the following publication:

Title: Boosting a Genetic Algorithm with Graph Neural Networks for Multi-Hop
Influence Maximization in Social Networks

Published in: Federated Conference on Computer Science and Informa-
tion Systems (FedCSIS) - Core B

Type: Conference Paper

Year: 2022

Metaheuristic used: Biased Random Key Genetic Algorithm (BRKGA)
Main contribution: Leveraging Graph Neural Networks to identify pat-
terns that steer BRKGA towards more promising search spaces

Problem addressed: Multi-Hop Influence Maximization in Social Net-
works

Type of contribution: Algorithmic & Methodological

Has it improved the state-of-the-art? Yes

DOL: http://dx.doi.org/10.15439/2022F78

Current number of citations in Google Scholar: 6

This work received the Best Paper Award at the Workshop on Computational Op-
timization at FedCSIS 2022, held in Sofia, Bulgaria.

http://dx.doi.org/10.15439/2022F78

3.1. Introduction 25

3.1 Introduction

This work marked my first research project in which I integrated ML techniques—
specifically, Deep Learning methods such as Graph Neural Networks (GNNs)—into
a metaheuristic. The initial idea stemmed from a recommendation by my PhD supervi-
sor, who pointed me to a recent framework named FastCover [151]. This framework
leverages GNNs to solve the multi-hop influence maximization problem in social net-
works. My contribution involved adapting FastCover and embedding it into a Biased
Random-Key Genetic Algorithm (BRKGA).! The resulting hybrid algorithm outper-
formed the state-of-the-art for this problem. However, as I will discuss in Chapter 5,
there is a simpler approach that does not rely on GNNs and achieves even better results.

This work received the Best Paper Award at the Workshop on Computational Opti-
mization at FedCSIS, held in Sofia, Bulgaria.

%% %

Optimization problems over graphs are central to many real-world applications,
from social network analysis and epidemic modeling to infrastructure planning and
recommendation systems. Among these, selecting a small yet influential subset of
nodes capable of exerting a wide-reaching effect over the network is a fundamental chal-
lenge. This is especially relevant in scenarios where spreading information, influence,
or control efficiently is critical. The problem we address in this work belongs to this cat-
egory and extends classical formulations by incorporating directional constraints and
influence dynamics. To better understand the underlying challenge addressed by our
algorithm, we now provide a formal definition of the optimization problem in ques-
tion. It belongs to the family of Influence Maximization (IM) problems, and can be
seen as a generalization of the classical Minimum Dominating Set Problem (MDSP)
on a directed graph G = (V, A). In the MDSP, the goal is to find a subset U C V of
minimum size such that every node v € V is either in U or directly reachable from
some v’ € U—i.e., (v’,v) € A. In other words, MDSP focuses on one-hop coverage.

The specific variant we tackle—known as the k-d Dominating Set Problem (k-dDSP)—
extends this concept to multi-hop influence. Instead of minimizing the size of U, we fix
a budget k and a hop distance 4, and aim to select k nodes such that the number of
influenced nodes is maximized. A node v is considered influenced (or covered) if it
lies within d hops from at least one node in U.

3.2 Problem Definition

As an illustrative example, consider Figure 3.1, where k = 2 and the selected nodes
(colored in purple) are U = {v4, v5}. If d = 1, the covered setis Cyy = {v4, v5,v3, Vs, U7},
since those nodes lie within one hop of a node in U, yielding an objective value of 5.

I The choice of BRKGA over other metaheuristics is purely empirical. In our experiments, it proved to be
easy to implement and capable of delivering satisfactory results for this problem.

3. Boosting a Genetic Algorithm using Graph Neural Networks

26

(@d=1 (byd=2 (c)d=3

Figure 3.1: Multi-hop influence process. Given is a directed graph with 11 nodes and 12 arcs (top). Let us assume the k-dDSP is solved with k = 2. The two purple
nodes (v4 and vs) form part of the example solution U. If d = 1 (bottom left), then nodes {vs, v7,ve} are 1-hop covered by U. If d = 2 (bottom center), then nodes
{v2,v3,v7,v8,v6,v11} are 2-hop covered by U. Finally, if d = 3 (bottom right), then all remaining nodes of the graph are 3-hop covered by U.

3.3. Methodology 27

If d = 2, the covered set becomes Cy = {v4,vs5,v3, V6,07, V2, Vs, V11}, increasing the
objective to 8. Finally, if d = 3, all nodes in V' are covered, and the objective reaches its
maximum value of 11.

Many optimization problems in social networks can be modeled by representing
the network as a directed graph G = (V, A), where V is the set of nodes and A the set of
arcs. This is the case for the multi-hop influence maximization problem addressed in
this work, known as the k-d Dominating Set Problem (k-dDSP), as mentioned already
above.

The core notion is the influence set I;(1) €V of anode u € V, defined as:
Ii(u) :={v e V| dist(u,v) < d} (3.1)

where dist(u, v) is the length (number of arcs) of the shortest directed path from u to
v. That is, I;(u) contains all nodes reachable from u within 4 hops.
This definition extends naturally to a set of nodes U C V:

() :=) a(w) (32)

uel

A node is considered influenced if it belongs to I;(U).
A solution to the k-dDSP is any subset U C V with |U| < k. The objective is to find
a set U* that maximizes the number of influenced nodes:

max |[(U)]
uev (3.3)
s.t. U<k

The k-dDSP is known to be NP-hard [151, 13].

3.3 Methodology

In this section, we introduce a novel hybrid algorithm that combines a Biased Random-
Key Genetic Algorithm (BRKGA) [74] with a Graph Neural Networks (GNNs) frame-
work to solve the k-dDSP in social networks. We begin by briefly describing each al-
gorithmic component. Then, we detail the hybridization strategy that integrates them
into a unified optimization approach.

3.3.1 Biased Random Key Genetic Algorithm

We implemented a BRKGA, a well-established variant of genetic algorithms for com-
binatorial optimization. BRKGA is problem-independent in its core structure, as it op-
erates on populations of individuals represented by vectors of real numbers (random
keys). The problem-specific component lies in the decoder, which maps these vectors
to feasible solutions of the target problem. The general, problem-independent proce-
dure of BRKGA is outlined in Algorithm 1.

28 3. Boosting a Genetic Algorithm using Graph Neural Networks

Algorithm 1 The pseudo-code of BRKGA

Require: a directed graph G = (V,E)
Ensure: values for params. psize, Pe, Pm, Pr0belite, Seed
1: P < GENERATEINITIALPOPULATION(P sz, S€€A)
2: Evarvare(P) > dependent part (greedy)
while computation time limit not reached do
P, < EurreSorutions(P, p,)
Py, «— Mutants(P, pm)
P. < Crossover(P, p,, probeiite)
Evaruate(P,, U P.) > dependent part (greedy)
P« P,UP, UP,
end while
10: return Best solution in P

In the following, we first describe the independent or generic part of the algorithm.
It starts by invoking function GeneratelnitialPopulation(psiz., seed), which generates a
population P formed by psiz. individuals. In case seed = 0, all ps;z, individuals are
randomly generated. Hereby, each individual 7 € P is a vector of length |V|, where V
is the set of nodes from the input graph. For this purpose, the value at position i of
711, denoted by (i), is chosen uniformly at random from [0, 1], foralli =1,...,[V|. In
case seed = 1, only psize — 1 individuals are randomly generated. The last individual
is obtained by defining 7t(i) := 0.5 foralli = 1, ..., [V|. Next, the individuals from the
initial population are evaluated. This means, each individual © € P is transformed
into a valid solution U to the k-dDSP, and the value f(7) of 7 is defined as follows:

f(m) := |Ux|. The transformation of individuals to valid solutions is discussed below.

Then, at each iteration of the algorithm, the operations to be performed are as fol-
lows. First, the best max{|p. - psizc], 1} individuals are copied from P to P, in function
EliteSolutions(P, p.). Second, a set of max{|py psize], 1} so-called mutants are generated
and stored in P,,. These mutants are random individuals generated in the same way
as the random individuals from the initial population. Finally, a set of psize —|Pe| = | Py
individuals are generated by crossover in function Crossover(P, pe, prob,;it.) and stored
in P,.

Each such individual is generated as follows: (1) an elite parent 7; is chosen uni-
formly at random from P,, (2) a second parent 713 is chosen uniformly at random from
P\ P,, and (3) an offspring individual rt, ff is generated on the basis of 711 and 72 and
stored in P.. In the context of the crossover operator, value 7, ¢(i) is set to 71 (i) with
probability prob,;it., and to m(i) otherwise. After generating all new offspring in Py,
and P, these new individuals are evaluated in function Evaluate(); see line 7. Note
that the individuals in P, are already evaluated. Finally, the population of the next
generation is determined to be the union of P, with P, and P,.

The evaluation of an individual (see lines 2 and 7 of Algorithm 1) is the problem-
dependent part of our BRKGA algorithm. The function that evaluates an individual is
often called the decoder. In our case, we make use of a simple greedy heuristic which

3.3. Methodology 29

is based on the intuition that nodes with a higher degree (number of neighbors) are
more likely to have a high influence than nodes with a lower degree. Hereby, the set of
neighbors N(v;) of a node v; € V is defined as follows: N(v;) := {v; € V | (v, v;) € A},
that is, neighbors of v; are only those nodes that can be reached via a directed arc from
v;. The greedy value ¢(v;) of each v; € V is defined as follows:

¢(vi) := [N (i) - (i) (34)

In other words, the greedy value of a node v; is computed as the product of its
degree and the value at position 7 in the individual being decoded. The solution Uy, is
then constructed by selecting the k nodes with the highest greedy values.

As we will see in Section 3.3.3, the greedy function ¢ will be modified to incorporate
information from the GNN, resulting in a hybrid algorithm.

3.3.2 Graph Neural Network Framework

Graph Neural Networks (GNNs) [227, 229, 233] aim to automatically learn meaning-
ful patterns from data represented as graphs. Unlike classical deep learning models,
which operate on Euclidean domains such as images (regular grids) or sequences (or-
dered vectors in R"), GNNs are designed to work directly with non-Euclidean, graph-
structured data. This allows them to make predictions at the level of nodes, edges, or
subgraphs without requiring preprocessing steps that flatten or distort the underlying
graph topology.

The core idea behind GNN:ss is to iteratively refine the representation of each node
by aggregating information from its neighbors and combining it with its own repre-
sentation. Given a graph G = (V, A), each GNN layer / € {0,1,...,L} maintains a
node feature matrix H' € RIVXC, where each row corresponds to the representation of
a node, and C is the number of features. The goal of the GNN is to learn expressive
node embeddings through a series of message-passing iterations.

At each layer, two operations are performed:

1. Aggregate: gather information from neighboring nodes;
2. Combine: update the node’s current representation using the aggregated informa-
tion.

This process can be formalized as:

a' = Accrecate {H!™! | u € N(v)}

H! = Comsine! (HS !, al)

where N(v) denotes the set of neighbors of node v. Once trained, the final node repre-
sentations H' can be used for various downstream tasks.

In the context of the k-dDSP, GNNs can be trained to estimate the likelihood that
each node belongs to an optimal solution. As mentioned earlier, such an approach

30 3. Boosting a Genetic Algorithm using Graph Neural Networks

Offline

025
0.90 0.40)/“)
8

0.10
L -

010 035
GNN o

Erdés-Rényi graphs An unseen social networks graph with k=2 and d = 3

1
0.65

Training Evaluation

Figure 3.2: Hybridization Process. The integration of BRKGA with FC starts with two offline steps
concerning FC as follows. The training phase begins by using 15 random graphs (Erd6s—Rényi). This
provides us with a trained version of FC (called GNN Framework in the graphic). Then, the social
network in which the k-dDSP is to be solved is presented to FC, which returns probabilities for all nodes
of the network to belong to the optimal solution. Finally, the final phase consists of integrating these
probabilities into the BRKGA (called Genetic Algorithm in the graphic).

was proposed in [151], introducing the FastCover (FC) framework—an unsupervised
GNN tailored for this problem. FC is based on a graph reversed attention network
(GRAT) [151], and it operates as follows: (1) node features are embedded in a vector
space, and all arcs in the graph are reversed; (2) the GRAT computes, via a multi-layer
GNN, a real-valued score in [0, 1] for each node; and (3) a differentiable loss function
over the node scores guides the learning during training.

The core innovation of FC lies in the design of the GRAT layer. Unlike standard
Graph Attention Networks (GATs) [211], which apply attention at the destination
nodes, GRAT applies it at the source nodes. This shift emphasizes the idea that nodes
with greater influence should receive stronger reinforcement, thereby increasing their

potential score in the solution space.

3.3.3 The Hybrid BRKGA Algorithm

Our hybrid algorithm, BRKGA+FC, begins with two offline steps. First, given a net-
work for the k-dDSP, node probabilities p; € (0, 1] are extracted from the pretrained FC
model (training details follow in the next section). Then, the original greedy function
¢() (Eq. 3.4) is modified to incorporate these probabilities:

¢rc(vi) .= [N(i)|-n(i)-pi, VovieV (3.5)

The intuition is that accurate predictions guide the search toward regions containing
optimal or near-optimal solutions. Additionally, the FC probabilities help correct the
bias from node degree, which can sometimes be misleading. The integration process
is illustrated in Figure 3.2.

3.4. Experimental Evaluation

3.4 Experimental Evaluation

This section is organized into three parts. First, we describe data preparation for train-
ing and evaluation, along with parameter tuning. Next, we present the experimental
setup and numerical results for three algorithms: FC, BRKGA, and the hybrid BRKGA+FC.
Note that FC can also be used standalone by selecting the k nodes with the highest prob-
abilities. Finally, we provide a graphical analysis of the algorithms using STNs.

Table 3.1: Tuning configuration. Final parameter setting for BRKGA and BRKGA+FC (for k €

{32,64, 128})
BRKGA BRKGA+FC
k k

Parameters Tuning domain 32 64 128 32 64 128
Psize [50,250] 113 162 132 183 198 137
P, [0.1,2.0] 017 024 025 019 022 02
Py, [0.3,5.0] 027 022 014 03 021 021
proberite [0.01,0.1] 06 059 058 057 0.67 0.67
seed {0, 1} 0 0 0 1 1 1

[4

Table 3.2: Numerical results obtained by FC, the BRKGA, and our hybrid algorithm BRKGA+FC on 19 well-known social networks. For each network the algorithms
were applied for d € {1,2,3} and k € {32,64,128}. For k = 32 BRKGA+FC wins in 73% of the cases; for k = 64 in 71%; and for k = 128 in 66%.

k =32 k =64 k=128

Instance 4 |E| d FC BRKGA BRKGA+FC FC BRKGA BRKGA+FC FC BRKGA BRKGA+FC

1 2338 246413 2469.13 2865 2948.67 294890 3313 3340.17 3372.33
advogato 6551 51332 5 4069 4139.83 413230 4153 420683 420777 4220 426697 4251.13
3 4268 4279.67 427547 4275 4281.80 4280.00 4277 430107 4284.00
1 8556 8566.80 8570.70 9045 8981.40 9002.83 9650 9537.60 9626.47
anybeat 12645 67053 5 11104 1117710 11205.63 11209 1130053 11305.83 11384 1137147 11400.77
3 11507 11527.17 1152600 11515 11531.00 11530.33 11556 11542.27 11546.87
1 1266 171433 1808.67 1954 2483.03 264027 3023 344800 3711.63
brightkite 56739 212945 5 4018 4160.63 467150 5444 508890 591040 6795 6075.13 6891.07
3 6094 5699.57 653513 7530 6349.90 761410 8650 717847 8189.63
1 8522 10860.00 10864.83 12431 15793.53 1579290 19483 2104443 21170.37
delicious 536108 1365961 5 21119 22341.80 22481.57 26018 26909.07 26995.33 32248 32811.27 33414.13
3 32000 33041.13 33175.07 36112 36039.43 36328.03 40309 4041877 41722.63

1 1093 1503.83 1482.30 2117 2649.93 2637.90 3950 4557.10 4565.73

SYL0MmIaN [pAnaN ydvio) Suisn wyjrio8y 01§ouas) v Su1jsooq ¢

douban 154908 327162

Table 3.2 — continued from previous page

k=32 k = 64 k=128
Instance \4 E| 4 FC BRKGA BRKGA+FC FC BRKGA BRKGA+FC FC BRKGA BRKGA+FC
2 4147 6809.23 674350 6801 951680 959453 10583 12950.27 13093.53
3 11686 13988.10 14448.00 15938 17548.57 17866.60 20720 21277.43 22368.23
1 1532 175327 177470 2198 2333.10 241317 3019 300047 3170.93
epinions 26588 100120 5 3645 371143 3853.17 4271 408647 4416.07 4904 454913 4897.77
3 4500 448773 463420 4948 466137 5002.83 5430 497310 5334.60
1 1998 329613 338473 3415 4869.60 512230 5553 6976.07 7403.00
gowalla 196591 950327 5 7509 972347 10754.63 10734 12534.07 13628.10 15386 14888.50 17251.67
3 14247 14913.00 16657.80 18418 17386.73 18966.73 23692 1906410 22800.10
1 17498 18077.00 17896.00 22138 22496.93 22167.90 23543 23628.00 23567.00
gplus 23628 39242 5 21277 2307720 2272663 23200 23562.93 2317273 23628 23628.00 23628.00
3 21636 2327137 22884.60 23271 23559.80 23169.00 23628 23628.00 23628.00
1 8778 904133 904727 11232 1171957 11722.57 14749 15058.97 15128.27
loc-brightkite 58228 214078 5 37295 3821210 38267.47 40161 4125813 4119097 42929 43777.03 43827.50
3 52335 52645.00 52744.00 53272 5360017 53469.27 53783 5412380 54134.60

uoyynived [wjudaumLIadxg ¢

€e

Table 3.2 — continued from previous page

k=32 k =64 k=128
Instance \4 E| 4 FC BRKGA BRKGA+FC FC BRKGA BRKGA+FC FC BRKGA BRKGA+FC
1 7162 8087.00 8087.00 11362 11999.33 12003.93 17046 1751480 17524.33
sign-Slashdot081106 77350 516575 5 37501 42021.13 4235203 44291 4778233 47827.97 A7747 5183947 51796.63
3 59456 60393.67 60367.30 60709 6114847 61148.07 61333 6168310 61701.40
1 7232 812787 8128.00 11385 1209427 12108.50 16949 17592.80 17613.43
sign-Slashdot090216 81867 545671 , 39841 4372357 4378193 46021 4977413 4983223 49661 54244.47 54141.53
3 62964 63840.83 63817.00 64209 64710.97 64723.77 64912 6537513 65399.37
1 7182 8129.00 8129.00 11421 12129.03 1212633 17010 17642.67 17641.80
sign-Slashdot090221 82140 549202 5 39750 43869.37 4398253 46410 49972.23 49968.17 49917 54408.47 54334.93
3 62958 6406217 6403697 64473 6493537 64953.90 65145 65589.77 65598.23
1 3455 3479.00 3479.00 4010 4038.17 4040.97 4615 459570 4617.97
sign-bitcoinote 5881 35592 5 5568 563197 563260 5645 571537 571520 5761 5761.83 578117
3 5814 5838.00 5838.03 5834 5839.00 5839.10 5844 584200 5844.00
1 17765 18690.03 18693.50 22933 23569.77 23609.43 28969 29052.87 29284.87
sign-epinions 131828 841372 5 56849 59372.80 5941170 60208 6223823 62288.90 63070 64153.33 64309.37

¥e

SYL0MmIaN [pAnaN ydvio) Suisn wyjrio8y 01§ouas) v Su1jsooq ¢

Table 3.2 — continued from previous page

k=32 k =64 k=128
Instance \4 E| d FC BRKGA BRKGA+FC FC BRKGA BRKGA+FC FC BRKGA BRKGA+FC
3 70410 70739.73 7072193 70829 71021.30 71024.17 71188 7124593 71309.97
1 3419 372270 379137 4683 502093 5083.63 6304 651580 6683.03
slashdot 70068 358647 5 7849 830253 8958.23 9534 9605.07 9771.83 11083 10802.73 11486.17
3 10537 10527.87 11223.53 11699 11166.57 11810.70 12648 1196473 12660.03
1 7229 $100.00 8100.00 11460 12021.30 12051.57 17068 1751453 17515.70
slashdot-zoo 79120 515581 5 37664 4174140 4184830 43850 47347.50 4734650 47629 51361.57 51334.70
3 58974 59818.57 5980510 60176 60600.87 60604.67 60797 6113587 61140.97
1 32088 3232000 32320.00 35567 35891.10 35908.27 39245 39137.20 39258.97
themarker 69413 1644849 5 51299 52117.30 52127.60 52100 52654.87 52665.13 52785 53016.10 53093.40
3 53506 53598.40 53593.03 53575 5366510 53666.67 53729 5375467 53758.90
1 14063 1454857 14549.53 26981 27755.17 2776093 48870 51240.20 50531.97
twitter-follows 404719 713319 5 50319 8844293 88620.80 83380 11760590 117692.57 85371 15136557 135258.13
3 171902 20718127 20497327 203499 213702.93 21415477 212524 219099.80 221819.07
1 2146 216700 217670 2227 2265.63 2268.63 2306 2367.70 2366.47
wiki-elec 7118 107071

uoyynived [wjudaumLIadxg ¢

1%

Table 3.2 — continued from previous page

9¢

Instance

VI

|E|

k=32 k =64

k=128

FC BRKGA BRKGA+FC FC BRKGA BRKGA+FC FC

BRKGA BRKGA+FC

2328 2354.73 2355.10 2341 2390.00 2388.03 2366

2331 2357.10 2357.27 2344 2389.53 2389.67 2366

2454.50 2427.53

2452.23 2426.47

SYL0MmIaN [pAnaN ydvio) Suisn wyjrio8y 01§ouas) v Su1jsooq ¢

3.4. Experimental Evaluation 37

3.4.1 Data Preparation and Tuning Process

We conducted experiments for three values of k: {32, 64, 128}. Accordingly, we trained
one FC model per k, all using a fixed hop parameter d = 1 (see Figure 3.3). This single
model was applied to FC and BRKGA+FC for all d € {1, 2, 3} to reduce computational
cost. However, as our analysis will show, this choice slightly degraded the accuracy of
node probabilities for larger d values.

Each FC model was trained on 15 Erdés-Rényi graphs [62] with 4000 nodes, fol-
lowing the setup in [151]. After training, node probabilities for all 19 social networks
used in the final evaluation (across d € {1, 2, 3}) were extracted and saved.

To ensure fair evaluation, BRKGA and BRKGA+FC were tuned separately for each
k on 10 Erdés-Rényi test graphs?, each with n = 25,000 nodes and arc probability p =
10/n. Tuning was performed using irace [129], with parameter domains and selected
values listed in Table 3.1. The graph size was chosen to reflect the average network size
in the final experiments (Section 3.4.2), as BRKGA’s population size depends on graph
size. FC parameters remained as in [151].

Note that both FC training and BRKGA tuning used random graphs to promote
generality.

3.4.2 Experimental Evaluation

In this subsection, we evaluate the three approaches—FC, BRKGA, and BRKGA +FC—
on 19 real-world social networks sourced from the SNAP library [111]. Each network
is a directed, unweighted graph. The sizes of these graphs are summarized in Table 3.2
(columns V] and |A]).

We tested three values of k € {32, 64, 128} and three values of the multi-hop param-
eter d € {1,2,3}. The choice of k = 64 follows the evaluation in FC [151], while 32
and 128 were added for broader analysis. Values of d beyond 3 were omitted, as no
significant differences were observed past d = 3.

Since FC is deterministic post-training, it was applied once per network for each
(k, d) pair. In contrast, BRKGA and BRKGA+FC were run 30 times per network and
parameter combination, each with a 900-second CPU time limit. Experiments ran on
Intel(R) Xeon(R) Silver 4210 CPUs at 2.20 GHz. FC was implemented in Python 3,
while BRKGA and BRKGA +FC were coded in C++.°

Table 3.2 compares FC with the average results of BRKGA and BRKGA+FC over 30

runs. Key observations are:

e Both BRKGA variants generally outperform FC, which itself surpasses existing
heuristics [151]. Exceptions occur in 1 case for k = 64 and 9 cases for k = 128,
indicating FC’s relative performance improves as k increases.

2 Available at https://github.com/camilochs/genetic-algorithm-with-gnn

3 The difference in programming language arises because the authors of FC implemented it in Python
3. To mitigate the performance limitations of Python as an interpreted language, FC is implemented
with PyTorch, an efficient deep learning library that leverages C++ and CUDA bindings to accelerate
computations.

https://github.com/camilochs/genetic-algorithm-with-gnn

38 3. Boosting a Genetic Algorithm using Graph Neural Networks

Training
From
random < v v v
graphs Model #1 Model #2 Model #3
k=32 k=64 k=128
d=1 d=1 d=1
~
- \ \i \i
ol
‘ Evaluation ’ E
E.
For
each < v v ,}
d=123
Instance Instance Instance
#1 #2 #n
(\ \ \
For
each < Probabilites Probabilites Probabilites v
node

Figure 3.3: Data preparation and pipeline. The pipeline starts by training three FC models, one for
each k € {32, 64, 128}. Random graphs (Erdds—Rényi) were used for this purpose. Next, the evaluation
of the FC models is performed for each of the 19 instances (social networks), for each value of parameter
d € {1,2, 3}. Finally, the obtained probabilities (FC output) are exported and stored in text files.

39

3.4. Experimental Evaluation

"2UNJONAIS YA0miau 1orid Aup Sununssy jnoygim ‘sardojpuv (warshiyd 1o pasvq 3noAv] pajgoasp-adLof v asn SUOLVZIJUNSIA (] AdYAVAY] U0 YOG Suidofiadino
DJ+vo¥g (9) ‘smojjof-10331m3 uo syymsa. ajquavdinod 20a1yov suiyirio8y yjoq (q) snpds uo D+ ONYG Sutiofiadino oy g (v) “punof suoynjos 3saq ayg jySiydiy
Sa[2410 pat puv ‘Suiiirio3]v y30q Aq pagisia suo1Sal awarpur sap1d Avad 1Sy ‘sjurodpua ajouap sai8uviiy Avad ‘sjuiod 1avis Aio0g2alvag yivw sauvnbs mojiax *([GG1] 20s)
SUOYYZIUNSIQ 25y} ajpdauad 0 pasn Suiuo1gigivd aovds 1ouvas o AJLAINUDLS Y] S]0IFU0D Z Jajauvavd Y] AaYADWAY] puv ‘Smojjoj~1a331my ‘sndS :saouvisuy a4y 1o
(yuid) DI+ g puv (a8uvio) YO Jo sari030alvag uoynoaxa 01 Avidsip sjopd aaiyg oy I "DJ+VONRAL Puv VO Jo sishipuv A1039a(v43 yo4vag 3¢ aan31y

voNud
1s9g

4000

pui
1aels

I xewnl () SMOT[0J-I911M] (Q) snids (e)

40 3. Boosting a Genetic Algorithm using Graph Neural Networks

e While BRKGA typically outperforms FC, the hybrid BRKGA+FC benefits from
incorporating FC’s probability information when decoding individuals. This ad-
vantage is most pronounced at d = 1, where BRKGA+FC outperforms BRKGA in
73% of cases.

e The weakest BRKGA+FC performance is observed at k = 32 and d = 3 (47%
superiority), possibly because (1) FC struggles to detect patterns at small k, and
(2) all FC models were trained at d = 1, suggesting potential gains from training
FC specifically for each 4.

In summary, incorporating information from the GNN framework FC into our
BRKGA significantly enhances the algorithm’s performance.

3.4.3 Analysis

In some cases, our hybrid algorithm does not outperform BRKGA or shows similar re-
sults. To investigate these situations, we employed Search Trajectory Networks

(STNs) [155], which visualize algorithm trajectories in the search space and enable
comparison of metaheuristic behaviors. We selected three networks illustrating differ-

ent cases, shown in Figure 3.4. The following observations arise:

1. Figure 3.4 (a) depicts a case where BRKGA+FC underperforms relative to
BRKGA. The trajectories focus on distinct regions, with BRKGA attracted to a
specific area. However, the best solution (red dot) lies away from this attraction
zone (larger grey triangles), suggesting that FC’s node probabilities may be mis-
leading here.

2. Figure 3.4 (b) shows comparable performance between the algorithms, with
mostly separate search areas and minimal trajectory overlap (light gray dot). Al-
though the best solutions have equal quality, they differ substantially (two red
dots).

In most cases, however, BRKGA+FC outperforms BRKGA, as illustrated in Fig-
ure 3.4 (c). Here, BRKGA+FC'’s trajectory is more concentrated and less dispersed
than BRKGA’s, with the best solution found within the region it explores—indicating
that FC’s guidance is effective.

3.5 Conclusion

In this work, we developed a hybrid algorithm that integrates a Biased Random-Key
Genetic Algorithm with the Graph Neural Network framework FastCover, targeting
an NP-hard combinatorial optimization problem of influence maximization in social
networks. Our approach leverages the probability estimates from FastCover to guide
the decoding of individuals into feasible solutions. Experimental results on 19 real-
world social networks demonstrate that, in most cases, the hybrid algorithm outper-
forms both standalone components.

3.5. Conclusion 41

A promising direction for future work is to extend this hybridization approach to

other combinatorial problems, especially by harnessing recent advances in graph rep-
resentation learning.

This potential is further explored in the following chapter, where we demon-
strate that machine learning techniques can be successfully integrated not only
with BRKGA, but also with metaheuristics based on different paradigms—such
as Ant Colony Optimization—while addressing a distinct optimization.

42

Improving Ant Colony Optimization

supported by Deep Learning

Foundational Work for This Chapter

This chapter is based on the following publication:

Title: Q-Learning Ant Colony Optimization supported by Deep Learning for
Target Set Selection

Published in: Genetic and Evolutionary Computation Conference
(GECCO) - Core A

Type: Conference Paper

Year: 2023

Metaheuristic used: Ant Colony Optimization (ACO)

Main contribution: Using Deep Learning to detect patterns that guide
ACO towards better search spaces

Problem addressed: Target Set Selection

Type of contribution: Algorithmic & Methodological

Has it improved the state-of-the-art? Yes

DOI: https://doi.org/10.1145/3583131.3590396

Current number of citations in Google Scholar: 3

This was the only publication during my PhD in which I was not the first author,

as a Master’s student led the implementation and experimentation. Notably, the

paper was nominated for the Best Paper Award in the Evolutionary Combinatorial
Optimization and Metaheuristics (ECOM) track at GECCO 2023, held in Lisboa,
Portugal.

https://doi.org/10.1145/3583131.3590396

4.1. Introduction 43

Offline

3\% - o |

Scale-free Networks An unseen real-life social networks graph

‘ ‘ ACO

Training Evaluation

Figure 4.1: General framework of the proposed approach.

4.1 Introduction

In this work, we propose a more ambitious strategy that goes beyond previous ap-
proaches, ambitious in the sense that it enables the integration of metaheuristics with
novel deep learning techniques. Specifically, we employ a Graph Neural Network of
the SAGE type to generate node-level probability scores, which guide the Ant Colony
Optimization algorithm toward the most promising regions of the search space. This
offline mechanism parallels the approach discussed in the previous chapter. In ad-
dition, the method incorporates an adaptive component based on Q-learning, which
dynamically refines the search strategy by rewarding configurations that produce bet-
ter solutions—thus adjusting the initial static guidance provided by SAGE throughout
the algorithm’s execution.

%% %

To tackle the Target Set Selection problem more effectively, we propose a hybrid
approach that leverages both machine learning and combinatorial optimization. The
core idea is to combine the structural awareness provided by Graph Neural Networks
(GNNs) with the adaptive search capabilities of Ant Colony Optimization (ACO). By
integrating learned node importance scores into the construction phase of ACO, we
aim to guide the search towards more promising regions of the solution space. The
full methodology is outlined in Figure 4.1. In the offline phase, a SAGE Graph Convolu-
tional Network [81] is trained using scale-free networks to learn structural patterns and
assign importance scores to nodes. These node-level probabilities are then used during
the ACO'’s solution construction process, guiding the probabilistic selection of nodes in
each iteration. This hybrid design—blending offline learning and online adaptation—
aims to enhance the overall performance of ACO on the Target Set Selection problem.

4.2 Problem Definition

We consider the Target Set Selection (TSS) problem following the notation of [36, 128].
Let G = (V, E) be an undirected graph modeling, for instance, a social network. Each

4. Improving Ant Colony Optimization supported by Deep Learning

44

(d)F5(S)

Figure 4.2: Diffusion process for threshold 0(v) = —

(9)F

deg(v)
2

(NHFE(S)

2(S) = o(S)

f«ox all v € V. The initial target set (single node) is shown in (a).

4.3. Methodology 45

node v € V has an associated threshold 0(v) € N with 0(v) < deg(v), where deg(v)
denotes the degree of node v. Recall that deg(v) := |[N(v)|, where N(v) = {u € V |
(u,v) € E} is the neighborhood of v.

A subset S C V is called a target set, whose nodes are initially influenced. To verify
if S is a valid solution, we apply a diffusion process based on the Linear Threshold (LT)
model [75]. This generates a sequence of influenced node sets:

S=FJ(S)cF!S)cFJ(©S)c---ca?S)cV, (4.1)

where Pf(S) is the set of nodes influenced at time t. A node v becomes active at step ¢
if (1) it was inactive at t — 1, and (2) at least O(v) of its neighbors were active at t — 1.
The initial active set Fg (S) is the target set S.

Formally, the diffusion update at step ¢ is:

Fés)=F% (S)uive U N@)|IN@)NF(S)>6(v)}, VteN. (42)
ueFt()_l(S)
This process guarantees the nested sequence in Equation (4.1).

A target set S is valid if there exists some finite t(such that F?O(S) =V,ie., all nodes
deg(v)-‘

2
with an initial target set of a single node v;. After seven diffusion steps, the entire

are influenced within finite time. Figure 4.2 illustrates this process for 0(v) = [

graph is influenced.

Additionally, as proven in [188], the following property holds: for any target set
SCVandnodev eV,

(S U {v}) = 6(a(S) U {o}).

This means applying diffusion to S U {v} yields the same influenced set as applying
it to 0(S) U {v}. Since o(S) is already fully diffused, the latter computation is faster.
We exploit this property to efficiently construct valid solutions within our Ant Colony
Optimization framework.

4.3 Methodology

The proposed methodology integrates ACO with an external source of problem
knowledge—here, derived from deep learning—applied to the TSS problem using a
MAX-MI N Ant System (MMAS) within the Hypercube Framework. Our imple-
mentation follows the MMAS algorithm detailed in [153] for the minimum dominating
set problem. To avoid redundancy, we omit the basic MMAS description, referring
readers to [153]. The key differences in our approach lie in the pheromone model and
the solution construction process.

46 4. Improving Ant Colony Optimization supported by Deep Learning

Algorithm 2 Solution Construction Procedure

Require: Graph G = (V,E)
1: S« 0
22 C«—10
3: while C # V do
4 v « ChooseFrom(V \ C)
5: C «— o(CU{v})
6
7
8

S « SU{v}
: end while
: return S

4.3.1 Solution Construction in MMAS

The pheromone model associates a pheromone value 7, to each node v € V, follow-
ing the standard approach for combinatorial optimization problems where solutions
are subsets of nodes. Motivated by the strong performance of the maximum degree
heuristic (MDH) [31], we use the node degree as a greedy function within the con-

struction process.

The solution construction procedure (Algorithm 2) initializes the solution set S and
the influenced node set C as empty. At each iteration, the function ChooseFrom(V \ C)
selects one node v from the uninfluenced nodes as follows: a random number 7 is
drawn uniformly from [0, 1]. If r < d;ate (the determinism rate), the node v maximizing
the product of pheromone and degree plus one is chosen deterministically:

= o - (deg(@’) + 1)} 4.
v argv{ggicc{f (deg(v’) + 1)} (4.3)

Otherwise, a candidate list L € V' \ C of size ly,e is formed, containing the nodes with
the highest values of 7,/ - (deg(v’) + 1):

Ty - (deg(v) + 1) > 1y - (deg(v”)+1) Vo' €L, v e(V\C)\L. (4.4)

Node v is then selected from L via roulette wheel selection with probabilities

Ty - (deg(v') + 1)

Vo' e L. 45
St T (deg(@) 1 1) (45)

p(@') :=

The parameters d;ate (determinism rate) and [, (candidate list size) play crucial
roles in balancing exploration and exploitation. Additional MMAS parameters tuned
experimentally include the number of solution constructions per iteration 7, and the
pheromone evaporation rate p € [0, 1].

The construction process terminates once all nodes in the graph are influenced.

4.3. Methodology 47

4.3.2 Integrating Deep Learning via Q-Learning

This research pursues two main goals: (1) to obtain problem-specific knowledge that
improves upon the current best heuristic (node degree), and (2) to integrate this addi-
tional knowledge with the pheromone and greedy components of MMAS. While the
next section (Section 4.4) details how this knowledge is generated, here we explain how
it is integrated into the algorithm.

Assume that, for each node v € V, we have precomputed a value 0 < I, < 1 rep-
resenting the estimated usefulness of including v in a solution. These values are later
used during hybrid solution construction.

Since this additional knowledge may not be equally useful for all graphs, we in-
troduce a Q-learning mechanism [217] to dynamically balance between two solution

construction modes:

e Standard mode: Based on 7, - (deg(v) + 1).
e Hybrid mode: Incorporates deep learning knowledge as 7,-(deg(v)+1)-1,, where
I, is a value between 0 and 1 estimated by a deep learning model, representing

the usefulness of including node v in the solution.

At the beginning of the algorithm, both probabilities psiq and pyp are initialized
to 0.5. At each solution construction, one of the two modes is chosen based on these
probabilities. Once all 1, solutions are built in an MMAS iteration, the success of each
mode is evaluated using a rank-based reward scheme.

Let the n, constructed solutions be sorted by non-increasing size into {Sy, ..., Sy, }.
We assign a quality score z; to each S; as:

zi—1 i [Si| =1Si_1]
i otherwise

Let Ssta and Spyp, be the sets of solutions constructed in standard and hybrid mode,
respectively. The reward for standard mode is then:

1
2sieSaa 7
Tstd *= ~< 1/ and Thyb 1= 1 — Tstd
2y zZi
Using these rewards, we update the probabilities for the next iteration via the Q-

Learning update rule:
Pstd := @ *Pstd + (1 — @) - Tt Phyb = 1 — Pstd

Here, a € [0, 1] is the learning rate. This mechanism gradually favors the more effec-

tive construction strategy depending on problem instance and learning performance.

48 4. Improving Ant Colony Optimization supported by Deep Learning

4.4 Generating Deep Learning-Based Node Information

To generate informative node probabilities for the TSS problem, we adopt a deep learn-
ing approach based on Graph Neural Networks (GNNs) [186]. Traditional machine
learning methods struggle to capture node interactions in non-Euclidean domains,
especially in graphs with large variability in size and structure. GNNSs are specifi-
cally designed for such data, preserving permutation invariance and leveraging node,
edge, and graph-level features. Among their variants, Graph Convolutional Networks
(GCNs) use convolution operators to aggregate neighbourhood information, trans-
forming node features ¥, into latent representations X7,.

Several GCN architectures exist—such as GAT, GIN, and SAGE—each using differ-
ent aggregation strategies. In this work, we employ GraphSAGE [81], implemented in
PyTorch Geometric [65], to assign importance scores (probabilities) to nodes. These
probabilities serve as a proxy for estimating each node’s likelihood of belonging to a
minimal target set. The exploration of alternative architectures is left for future work.

GraphSAGE Aggregation. Let G = (V, E) be an undirected, unweighted graph, and
X, the k-dimensional feature vector of node v € V. The embedding ¥/, is computed via:

= | Wiy + Wo - m u;‘v) T (4.6)

Here, W; and W; are learnable weight matrices for the node and its neighbourhood,
respectively, and « is a ReLU activation. Adding multiple layers expands the receptive
field of each node, aggregating information from more distant neighbours. However,
stacking too many layers leads to the well-known over-smoothing problem [41, 26],
where node embeddings become indistinguishable. To mitigate this, we use a single
GraphSAGE layer.

The following sections describe the selected node features, the training data, and
the learning process in more detail.

4.4.1 Selected Features and Training Instances

Feature selection plays a critical role in the performance of the SAGE model. To capture
different structural aspects of each node, we extracted five graph-based metrics using
the NetworkX library in Python [80]:

o Betweenness centrality: Measures how often a node appears on shortest paths
between other nodes. High values indicate strong control over information flow.

o Closeness centrality: Reflects how close a node is to all others in terms of shortest
paths. Central nodes have smaller average path lengths.

e Eigenvector centrality: Captures influence through transitivity. Nodes linked to
other high-scoring nodes receive higher scores.

4.4. Generating Deep Learning-Based Node Information 49

e PageRank: Assesses node importance based on the quantity and quality of in-
coming links, favoring connections from authoritative or selective nodes.
e Degree: Counts the number of neighbors of a node, capturing its direct connec-

tivity.

Since real-world social networks often follow a scale-free structure, we trained
SAGE using synthetic scale-free networks. We generated 20 such networks with 1000
nodes each, varying both density (|E| = [|V| for I € {5,10,20,30}) and degree distri-
bution exponent A € {2.0,2.25,2.5,2.75, 3.0}, which controls the prevalence of highly
connected hubs.

To evaluate each feature’s standalone predictive power for TSS solutions, we ap-
plied a deterministic solution construction heuristic (see Section 4.3.1) to each of the
20 networks. In this setting, each node v was evaluated solely by its feature value, re-
placing the standard metric 7,-(deg(v)+1). Table 4.1 reports the resulting solution sizes.
As expected, the degree is a strong indicator, but PageRank occasionally performs even
better—e.g., for the instance (A = 2.5,1 = 5).

To further illustrate how feature values are distributed across a graph, Figure 4.3
shows the value distributions for the five metrics on one example graph (A = 2.25,1 =
10). Each subplot presents the feature values on the x-axis and the frequency of nodes
with that value on the y-axis. Before being fed into SAGE, all values were normalized
to the range [0, 1].

4.4.2 SAGE Training

Obtaining the optimal target set sizes for the 20 training instances is computationally
infeasible. Therefore, instead of using gradient-based optimization to train SAGE, we
opted for a genetic algorithm (GA), a well-known alternative for training deep neural
networks [57, 54]. The GA runs for 100 generations with a population of 50 individuals,
using one elite individual, uniform crossover (rate 0.5), and mutation (rate 0.4). Each
individual I encodes the 22 real-valued weights of the matrices W; and W, in SAGE.

To evaluate an individual I, the weights encoded in I are used in SAGE to generate
node probabilities for each of the 20 training graphs, denoted by G. For a graph G =
(V,E) € G, the corresponding set of node probabilities is denoted L(G, I), where I, €
[0, 1] for each v € V. Then, using the construction heuristic from Section 4.3.1, a target
set Sy (G, 1) is constructed deterministically by evaluating each node v with [,,-(deg(v)+1)
in place of the standard pheromone expression.

The fitness of an individual I is computed as:

(4.7)

-1S 1-a) - C(L(G,I
f(l)::éza|uc,1)|+(a) - C(L()

& VI

where

50 4. Improving Ant Colony Optimization supported by Deep Learning

Table 4.1: Target Set sizes obtained by the five features for the 20 scale-free networks (training set).

Graph Centrality Measures
A [| Betweenness | Closeness | Eigenvector | PageRank | Degree
10 97 102 100 97 96
995 20 129 129 129 128 128
30 145 144 144 144 143
5 85 85 86 84 81
10 126 135 135 126 127
25 20 160 161 158 159 156
30 176 174 176 173 176
5 107 115 114 97 100
10 143 155 159 143 141
575 20 183 183 182 180 181
30 197 198 201 200 198
5 107 114 116 104 105
10 16 16 16 16 16
20 20 24 24 24 24 24
30 34 34 34 34 34
5 46 46 46 46 46
10 101 105 103 97 97
3.0 20 127 129 132 127 127
30 156 149 153 149 149
5 73 81 80 71 71

4.4. Generating Deep Learning-Based Node Information 51

800 250
700
600 § 200
500+ 150
400+
300+ 100
200+

50
100+

0, B
0.000 0.005 0.010 0.015 0.020 0.025 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.500

(a) Betweenness centrality (b) Closeness centrality

4001

3507

501

0__ 4
0.00 002 004 006 008 010 012 0.14 0.001 0.002 0.003 0.004

(¢) Eigenvector centrality (d) PageRank

400

350

3001~

2501~

200

150

100+

501

0=

o

20 40 60 80 100
(e) Degree

Figure 4.3: Feature value distributions for all nodes in scale-free network (A = 2.25,1 = 10). The x-axis
indicates the feature values, and the y-axis shows the number of nodes with each value.

1-L) w ifve SL(G,I)

C(LG, D) =)

veV | [, - wo ifve SL(G,I)

(4.8)

Here, wy and wy are inverse-frequency weights, used to counterbalance class im-
balance between nodes in and out of the target set. The parameter a (set to 0.7 in
our experiments) controls the trade-off between minimizing the target set size and en-
forcing confidence in the node probabilities. The function C() penalizes probabilities

4. Improving Ant Colony Optimization supported by Deep Learning

52

Degree

| Closeness /i

mﬁaz,\alox °

Aggregation

Graph Features Extraction SAGEConv

Figure 4.4: Process of extracting the node probabilities for an unseen graph. First, the feature values (for the five selected features) are calculated for each node of the

graph. Then, each node is given as input to the SAGE network, which then provides a node probability as output.

Output

4.5. Experimental Evaluation 53

that deviate from ideal binary values (0 or 1), promoting sharper distinction between
selected and non-selected nodes.

To monitor potential overfitting, we also evaluated the elite individual’s per-
formance on a separate set of 18 Erdds—Rényi graphs, generated with sizes |V| €
{1000, 2000, 5000} and edge densities of 10/|V|, 15/|V|, and 20/|V|. At each GA genera-
tion, we computed the objective function for both the training set (scale-free graphs)
and this test set. Figure 4.5 shows both curves. As no overfitting was detected—i.e., the

test curve did not show a sustained increase—there was no need for early stopping.

0.300 A —— Erdos {validatipr?}
—— Scale-free (training)
0.275 1
0.250 4
0.225 1
%]
1%}
3
0.200 1
0.175 1
0.150 1
0.125 1
T T T T T T
0 20 40 60 80 100
Generations

Figure 4.5: Evolution of the value of the GA elite individual during training. In addition, the objective
function value on the basis of the Erdds graphs in used to detect overfitting.

4.5 Experimental Evaluation

This section presents the experimental evaluation of the standard and hybrid MMAS
approaches, referred to as MMas and Mwmas-LEARN, respectively. We also assess the
effectiveness of the node probabilities produced by SAGE by applying the construction
heuristic from Section 4.3.1 deterministically: each node v € V is evaluated using I, -
(deg(v)+1) instead of 7, - (deg(v) + 1), where [, is the node probability output by SAGE.
This heuristic will be denoted as Sage. For comparative purposes, we also report results
from the well-known maximum degree heuristic (Mps). The feature extraction and
training of SAGE were implemented in Python, while the ACO variants were developed
in C++. All experiments were conducted on a computing cluster with Intel® Xeon®
5670 CPUs (12 cores at 2.933 GHz) and at least 32 GB of RAM.

54 4. Improving Ant Colony Optimization supported by Deep Learning

4.5.1 Experimental setting

We tested our methods on a set of 27 real-world social networks, some of which were
sourced from the open-access SNAP repository [110], widely used in graph-based com-
binatorial optimization. The benchmark includes small-, medium-, and large-scale net-
works, enabling a study of algorithm performance across different scales.

Following prior work on a Brkaca for the TSS problem [188], we adopted the thresh-
old function 6(v) = [de g()/ 2] for all v € V. This choice ensures our results are directly
comparable to those obtained by BrkGa, a current state-of-the-art approach. Moreover,
fixed thresholds have also been used in other related studies [50, 66].

To ensure scalability, a dynamic time limit was imposed on Mmas and Mmas-LEARN
runs: max {100, |V'|/100} CPU seconds. This provides more computation time for larger

graphs, while ensuring at least 100 seconds for each run.

4.5.2 Algorithm tuning

The parameter values for Mmas were optimized using the automated configuration tool
irace [129], with a budget of 2000 runs and a precision of two decimal places. The
tuning was conducted on three representative instances: CA-AstroPh, socfb-Mich67,
and Amazon0302. The resulting parameters were: n, = 4 (solutions per iteration),
drate = 0.0, and p = 0.22. For fairness, MMas-LEARN used the same configuration, with
the exception of the Q-learning rate a, which was tuned separately and set to a = 0.32.

4.5.3 Numerical results

Table 4.2 reports the numerical results. The first three columns list the network name,
number of nodes, and number of edges. The largest networks contain hundreds of
thousands of nodes and millions of edges. For Mps and Sacg, we report the resulting
target set size (column “Result”) and the runtime (column “Time”). Note that SAGE’s
training time is excluded. For Brkca [188], Mmas, and MMmas-LearN, we show the best
and average results across 10 runs, along with the average time required to obtain the
best solution in each run. The final row summarizes the average best results for each
technique.

Several insights emerge from the results. First, SAGe outperforms Mbs in 13 out of
27 cases, ties in 4, and is outperformed in 10. Notably, Sace shows a clear advantage in
the six largest instances. On average, SAGE yields solutions of size 8347.33, compared
to 8535.52 for Mps.

Second, both Mmas and Mwmas-LEarN outperform Brkca—which was run under
identical conditions as in its original study—on the majority of instances. With the ex-
ception of a few medium-sized graphs (such as the socfb-* family and networks like
musae_git, gemsec_facebook_artist, and deezer_HR), the ACO-based approaches
consistently perform better. These exceptions might be related to specific structural

properties of the graphs, which could be examined in future work.

55

4.5. Experimental Evaluation

0£°00%4 |8ia 7474 5918 €ELYES ¢q'aes8 IDVUIAY
0vILL 08999¢ T11S9¢ §9¢LL €8049C 9999¢ §'844¢ calvie 9Svie y'e §020€ ge L0STE 80¥EvvC ¥6£C0¥ TO9QuOZRUY
9'6691 C'1/89C 1089T VLT 6'0004C S¥69C §'c0Le L/G81¢ T¥8IE q9'¢ 2960¢€ A 9cele LeV6EYC 9¢e01y §gogouozeuwy
reesl ¢'1029C 9819C VLT 8'21€9¢ 08¢9C ¥e9ce 8'9601¢ 9801¢ ye 86¢0¢ qe Qo11¢ 6986YcC LTLO0Y greouozeuy
601 0'8196C €996C 88941 £yee0e 16C0€ g'8¥1c 1'4145€ G895¢ 6€C oveve ¥C 9945¢ 64668 T11¢9¢ cogouozeuy
§92Ll £726€Tc P9€CE eyl 6'910€e 186¢€ €026C 9904 L10LE 70'v 6005¢ Iy L61LE 9986¥01 08041€ drqp-wod
9'¢C6 €LLILE PSILE 1'196 0°8IVLE 66€LE §'26801 €/4€06E €206€ €CCl VLL8E S¥¢l 0606¢ ¥¢9/86C 068¥ELL aqnano£-wos
6'¢8¢C 6'99¢C 0¥ce 6'9ce 0°Z¥ce 1ece 6'89¥% 6'¢9Ce 1444 cro ¥¥0€ 10 9¥ee c0T86Y €LSPS YH I9Z98p
8'0ce ¥'8vL 74 9'¢8¢ YA 44 9tL 6'9LY 0914 0L L1°0 0€6 0 062 060618 91505 1STaIR ¥00qedey dosuwed
geltl 9'LL19 ssIs 0824 1614 0814 €'6e8l §'084¢ 9¥as 690 €689 L0 0495 £2€096 169961 segpe eTTEM08-D0T
YAIAS ¥'90C 661 620C 6'90¢ a0¢ 0'80¢ 47281 9.1 £0°0 (054 80°0 961 €0068C 0044€ 313 eesnu
¢ot 619 19 8'8¢ 19 19 §'9¢ 6'C9 9 100 69 100 69 Y6l6< 879¢T sn1dg-oos
§'29 €6L1 LL1 €89 €6Ll LLT 9cL [XIAS 891 100 00¢ 100 <0¢ €0618 749 L9UOTH-qFO0s
10°0 > 001 01 10°0 > 001 (1) 10°0 > oot (1) 100> 0T 100> o1 186C 888¢ o8e-sdru-qzo08
€69 c0Le 89¢ 189 C'69¢ §9¢ 808 0'849¢ 8€€ 100 ¥6¢ 00 S6€ £99LET 868¢€ 66STOpURIG-qFO0S
1'89 6’187 8L¥ £'99 878y 8LY 99 1109 €6V 100 L¥S 100 8¢S P€C88 6€0¥ f00qeoes-030
16 0°206 <68 €68 8'206 006 9'G6 Veve €6 €00 0901 00 ¥101 ¢89s¥1L ¢¥001 BIBP-SI0308
9'¢8 ¢'1001 L66 ¥'08 G'c001 0001 €79 £'av01 £201 100 0011 100 8011 ¢L8ST 969 g38nTIsou
9'66C ¥'669¢ 269¢ ¥'£L8¢C 0'989¢ 6.9C 9'q6¢ 6'644¢C B 744 o 6¢8¢ 10 188¢ 1€8€8L T699¢ UoIUF-TTRUY
8'¢CC 0'8¢ve 61¥¢ ¥'0ce €eere 91¥C ¥'91¢ 9'LLLT 094¢ §0°0 €6/¢ 500 8€6¢ 6€VE6 €€1¢eT FRRPUOD-YD
q'es 6811 811 98 9811 6L11 792 cIel L0eT 100 geel 100 88¢1 €464C £/86 q1deH-v)
gort ¥'86¢C1L 68¢L <601 ¢'L6Cl 68¢L ¢all 9c0r1L y6cl 00 44" €00 6¢S1 6878TT 800CT uddeH-vD
€L ¥'668 L68 r9 1°006 868 006 ¥'Lv6 6 100 166 100 €e01 ¥8¥¥1 44 o0ID-VD
9Ll 0etvl SOPT resl QCIyl SOvL L£C81 9'8041 00sT €00 1041 S0°0 8¢91 050861 CLL8L YdoIIsy-vd
6¢ClL 0'0c 0¢ Ly 0'0¢ 0¢ 001 ¥'0¢ 0¢ 100> €€ 100> 1€ (4714 861 zzer
10°0 > 0¢ € 10°0 > 0¢ € 10°0 > 0¢ € 100> € 100> € 8L ¥e sutydroq
€0¢ 0ce (14 0ce 0ce €¢C 9'6¢ €¢C [14 100 > ¢¢ 100> 1€ €19 148 TTeq3004
10°0 > 09 9 10°0 > 09 9 10°0 > 09 9 100> 8 100> 8 691 a9 e3jeIRy
ouny ‘Say oferoay 1sag owry, ‘8ay ofersAy 1sog owry ‘8ay afemwAy 1sag Qwil] JNSIY | dwir] NS |Al SYIOMIDN]

NAVET-SVINJA SVINIA[voxug g5VG SaAL

SYL0MJaU (V1008 /T 40f SINSAL [VILIIWNN TF d]qeL

56 4. Improving Ant Colony Optimization supported by Deep Learning

Finally, while Mmas and Mwmas-LEarRN perform similarly on small- and medium-
scale graphs, the hybrid Mmas-LEarN shows a clear advantage on the largest instances.
It achieves an average solution size of 7400.70, compared to 7474.41 for Mmas, high-
lighting the benefit of integrating learning into the search process.

4.6 Conclusion

In conclusion, both objectives of this research have been successfully achieved. First,
the fact that SAGe outperforms Mps—particularly on large-scale graphs—demonstrates
our ability to extract and encode generic problem knowledge more effectively than the
best-known greedy heuristic. Second, we have shown that incorporating this learned
knowledge into an ant colony optimization algorithm leads to a measurable improve-
ment in performance. As future work, we intend to validate the generality of these

findings by applying the approach to other classes of challenging optimization prob-
lems.

This will be the last project involving Graph Neural Networks (GNNs) in the
context of my PhD. The main reason for this decision is that I found alternative
modern techniques that offer two key advantages: easier implementation and
improved performance.

Nevertheless, GNNs remain a valid option for integration within metaheuristic
frameworks—especially in scenarios where modern alternatives, such as Large
Language Models, present limitations. These may include high monetary cost
or contextual constraints that prevent them from efficiently processing graphs
with millions of nodes. For further discussion, see Chapter 5.

Large Language Models as Assistants
for Enhancing Metaheuristics

Foundational Work for This Chapter

This chapter is based on the following publication:

o Title: Metaheuristics and Large Language Models Join Forces: Toward an Inte-
grated Optimization Approach

e Published in: IEEE Access

e Type: Journal Paper

e Year: 2025 (The preprint was published in May 2024)

e Metaheuristic used: Biased Random Key Genetic Algorithm (BRKGA)

e Main contribution: Use LLMs as pattern-matching systems to identify
and generate novel heuristics, thereby enhancing the performance of
BRKGA

e Problem addressed: Multi-Hop Influence Maximization in Social Net-
works

e Type of contribution: Algorithmic & Methodological

e Has it improved the state-of-the-art? Yes

e DOI: https://doi.org/10.1109/ACCESS.2024.3524176

e Current number of citations in Google Scholar: 9

5.1 Introduction

This work presents what I consider to be the most original and personally meaning-
ful idea developed during my PhD. In early 2024, the integration of metaheuristics
(MHs) with Large Language Models (LLMs) primarily focused on explicit code gener-
ation. The prevailing approach involved crafting prompts for LLMs to generate heuris-

57

https://doi.org/10.1109/ACCESS.2024.3524176

58 5. Large Language Models as Assistants for Enhancing Metaheuristics

tics [165, 194], which would then be refined through an evolutionary process to develop
new metaheuristics. This initial direction did not appeal to me at the time, primarily
because it aimed to generate algorithms from scratch rather than leveraging existing
ones. However, as the context window of LLMs expanded, the potential for providing
richer context—such as extensive existing code—opened up more exciting possibilities.

In particular, the following promising avenue for advancing existing approaches
emerged: using LLMs not as code generators, but as pattern detection engines based
on metrics extracted from an optimization problem instance. One day, I opened Chat-
GPT and fed it hundreds of rows of numerical data—and to my surprise, it was able to
identify several patterns that could be useful for an algorithm designer. Of course, it
turned out not to be as simple as I initially thought. The concept was refined and ma-
tured through the invaluable feedback of my co-authors. My PhD supervisor, Christian
Blum, not only suggested asking the LLM to optimize a linear model, but also provided
the ideas for useful experiments. My co-supervisor, Filippo Bistaffa, proposed addi-
tional experiments; and my PhD colleague, Guillem Rodriguez, contributed the final
insight that significantly improved our results: prompting the LLM to suggest repair
parameters (which we refer to as beta values). This chapter presents the approach we
developed through that collaboration.

% % %

Whenever a new technology emerges, it is natural to ask whether it can enhance
existing methods. In the field of combinatorial optimization, MHs have proven to be
powerful approximate algorithms for solving complex, NP-hard problems [72]. While
they are effective at quickly generating good-enough solutions, their performance often
relies on domain-specific knowledge. To overcome this limitation, researchers have ex-
plored integrating MHs with other techniques, such as exact algorithms and Machine
Learning (ML). The combination of MHs with exact methods has yielded promising
results [23], but it typically demands a high level of technical expertise. Similarly, em-
bedding ML techniques within MHs can yield valuable problem-specific insights [102],
yet such approaches frequently require specialized knowledge oz, in the case of Deep
Learning (DL), large datasets and significant computational resources [12]. In this
work, we explore a different path: investigating the potential of Large Language Mod-
els (LLMs) to develop a novel hybrid approach that leverages the strengths of both
MHs and LLMs.

5.1.1 Owur Contribution

We introduce a novel approach to enhance MH performance by leveraging LLM output.
Our method distinguishes itself from existing techniques in two key ways:

e Instead of using LLMs to generate MHs (e.g., [165, 126, 133]), we employ them
as pattern recognition tools for problem instance metrics. This allows seamless
integration into existing MHs via an LLM-provided parameter.

5.2. Background 59

e Unlike methods that use LLMs as direct optimizers for simple, natural language-
described problems [235] (limited by LLMs’ stochastic nature), our approach
tackles complex optimization problems by using LLMs to identify and track per-
tinent information within the problem instance.

This dual-faceted approach significantly advances LLM-MH integration, offering a
more robust and versatile framework for diverse optimization problems. We utilize
LLMs not as an end-to-end oracle (following the classification proposed by Bengio et
al.[16]) but as an intermediate, hybrid step for pattern detection within metric values (see
Figure 5.1). We validate our proposed MH+LLM integration on the Multi-Hop Influence
Maximization in Social Networks problem, demonstrating improved performance over
the current state-of-the-art MH-Deep Learning (DL) approach [32] (see Chapter 3).
We believe this method unlocks new possibilities for enhancing MHs by leveraging
generative Al for complex pattern recognition.

5.2 Background

5.2.1 LLMs as Pattern Recognition Engines

LLMs have revolutionized Natural Language Processing (NLP), offering unprece-
dented capabilities in understanding and generating human language. Models like
GPT-40 (OpenAl)!, Claude-3-Opus (Anthropic)?, Gemini 1.5 (Google)?, Mixtral 8x22b
(Mistral AI)*, and Command-R+ (Cohere)?, along with tools like ChatGPT, GitHub
Copilot, and Bing Chat, have made advanced Al accessible beyond the expert commu-
nity.

Built on the Transformer architecture [209], LLMs generate text token-by-token by
modeling dependencies through self-attention. This mechanism enables the model to
weigh and prioritize contextual information, producing coherent and contextually rele-
vant outputs. Its parallelizable nature also aligns well with modern hardware, leading
to efficient training and inference at scale. Despite their lack of built-in factual verifica-
tion, LLMs represent a significant leap in NLP performance.

Beyond language, LLMs are increasingly applied to tasks requiring reasoning and
abstraction, such as interpreting chemical structures or images [191], acting as au-
tonomous agents with external tools [79], and solving problems in math and optimiza-
tion [235]. Although challenges remain [2], these applications highlight the growing
potential of LLMs in complex cognitive domains.

So far, LLM-based optimization has followed two main paths: (i) formulating opti-
mization tasks via prompting and having the model propose solutions [235], and (ii)
automating code generation to improve algorithmic design [133, 165]. However, the

1 https://openai.com/index/hello-gpt-4o.

2 https://www.anthropic.com/news/claude-3-family.
3 https://deepmind.google/technologies/gemini.

4 https://mistral.ai/news/mixtral-8x22b.
5https://docs.cohere.com/docs/command-r-plus.

https://openai.com/index/hello-gpt-4o
https://www.anthropic.com/news/claude-3-family
https://deepmind.google/technologies/gemini
https://mistral.ai/news/mixtral-8x22b
https://docs.cohere.com/docs/command-r-plus

60 5. Large Language Models as Assistants for Enhancing Metaheuristics

idea of using LLMs explicitly as pattern recognition engines in combinatorial optimiza-
tion remains largely unexplored, despite evidence of their pattern-finding capabilities
across tasks [147].

This work proposes a novel hybrid approach that integrates LLMs into metaheuris-
tic search as pattern detectors, guiding the optimization process.

5.3 Problem Definition

This section introduces the combinatorial optimization problem used as a case study in
our approach (described later in Section 5.4). We focus on a social network optimiza-
tion problem—an ideal testbed for metaheuristics due to its graph-based structure and
scalability challenges.

Specifically, we consider the Multi-Hop Influence Maximization problem, shown to
be NP-hard [151, 13]. This problem has been tackled using various metaheuristics and,
more recently, through a hybrid of Biased Random-Key Genetic Algorithm (BRKGA)
and deep learning [32], which serves as a strong benchmark (see Chapter 3).

5.3.1 Multi-Hop Influence Maximization

Note

This is the same problem used in Chapter 3, in Section 3.2, so we now explain it

only briefly.

Let the social network be modeled as a directed graph G = (V, A), with V as nodes
and A as directed arcs. The goal is to select a subset U C V with at most k nodes,
maximizing the number of nodes influenced within d hops. This problem is formally
known as the k-d Dominating Set Problem (k-dDSP).

We define the influence of a node u € V as:
Ij(u):=v eV :|:dist(u,v) <d (5.1)

where dist(u, v) is the length of the shortest directed path from u to v in G. For a set of
nodes U C V, the total influence is:

() :=) la(w) (52)

uel

The objective is to find a set U* C V such that |U! < k and |I;(U] is maximized:
max LU st U<k (5.3)

Figure 3.1 illustrates this influence process for different values of d in a small exam-

5.4. Integration of LLM Output into a Metaheuristic 61

ple graph.

5.4 Integration of LLM Output into a Metaheuristic

Figure 5.1 depicts the framework of our proposed MH+LLM integration, comprising three
automatic sequential steps:

1. Prompt generation and execution by an LLM. We begin by phrasing the k-d DSP
in natural text and creating a small random graph with a high-quality solution.
Next, we calculate five key metrics for each node of the graph, which enables the
LLM to determine the most relevant metrics for this problem. We then compute
the same metrics for a second (larger) graph in which we want to solve the k-
dDSP problem. This graph is henceforth called the evaluation graph. Using the
generated data, we design a prompt and ask the LLM to provide parameters for
calculating the importance of each node in the evaluation graph. In essence, we
leverage the LLM as a pattern recognition engine to identify correlations between
node metrics and node importance in the context of the k-dDSP.

2. Calculate probabilities for each node of the evaluation graph. As explained
in detail below, the LLM provides values for ten parameters that can be used to
compute the probability of each node of the evaluation graph to form part of an
optimal k-dDSP solution. We expect this information to offer excellent guidance
toa MH.

3. Utilizing the probabilities (guidance) within a MH. Since the MH we use in
this work is a BRKGA, we incorporate the probabilities calculated based on the
LLM output into the decoder that translates random keys into valid solutions to
the tackled optimization problem.

In what follows, these three steps are detailed in corresponding subsections.

5.4.1 Prompt Engineering

A prompt is an input instruction given to a LLM, and its design plays a critical role
in shaping the quality of the model’s output [219, 214] (also called prompt engineer-
ing). Moreover, the generated response may vary depending on the specific LLM used.
Among the various prompting strategies, we adopted a one-shot learning approach—
also referred to as few(1)-shot learning[25]. This involves providing the LLM with a
single illustrative example to guide its response. Notably, Chen et al.[45] showed that
for tabular data reasoning tasks, even a single example can yield strong results, remov-
ing the need for additional examples or model fine-tuning. This strategy enables the
LLM to recognize patterns and follow instructions more effectively in the target task.

e N L a4
5 _ono egen
Problem definition and &
response instructions 7 m = A vector containing five metrics.
\.)
e . . ™
- | - , Evaluation graph with
Example gra , .
G probabilities
Generate alpha_1=0.15
alpha_2=0.25
alpha_3=0.20 Generate
@ alpha_4=0.10 probabilities
Prompt l LLM l alpha_5=0.30 l from ..m;u_qw l Metaheuristic
. beta_1=0.60 and beta
beta_2=0.70 values
beta_3=0.90
beta_4=0.50
| beta_5=0.80 |

Discover patterns from
metrics

5. Large Language Models as Assistants for Enhancing Metaheuristics
[\
w

Figure 5.1: An overview of our approach to integrating MHs and LLMs: We employ LLMs to analyze problem instances and uncover hidden patterns. The patterns are
then converted into useful information that gquides the MIH in its search for high-quality solutions.

62

5.4. Integration of LLM Output into a Metaheuristic 63

Definition
The prompt we have designed consists of four tags, defined as follows:

P := promrr(Tagl, Tag2, Tag3, Tag4) (5.4)

where

e Tagl is the [PROBLEM] tag,

o Tag2 is the [EXAMPLE GRAPH] tag,

e Tag3is the [EVALUATION GRAPH] tag, and
e Tag4 is the [RULES ANSWERING] tag.

Hereby, the [PROBLEM] tag contains the description of the k-dDSP. Moreover, the exam-
ple graph information is provided in the [EXAMPLE GRAPH] tag. Hereby, the example
graph consists of 100 nodes, each characterized by the values of five metrics: in-degree,
out-degree, closeness, betweenness, and pagerank. In particular, these values are hence-
forth denoted by

mex mex mex mex mex

1My, miy,my,mis forall v; of the example graph. (5.5)

Hereby, m?] is the value corresponding to metric in-degree, m;%

out-degree, etc. Note also that the metric values are normalized to the range [0, 1].

corresponds to

Furthermore, the high-quality k-dDSP solution of the example graph is computed
using the pure BRKGA algorithm, which we adopted from our earlier work [32]
(see Chapter 3). The solution is encoded as a vector of 32 nodes, separated by commas,
corresponding to the k-dDSP parameter k = 32.

Next, the [EVALUATION GRAPH] tag contains the evaluation graph for which the
k-dDSP must be solved. Each node of this graph is described by the values of the same
five metrics described above. These evaluation graph values are henceforth denoted

by

eval eval eval eval eval
i1 oMo /My, My oy My g

Finally, the [RULES ANSWERING] tag specifies the details of the request to the LLM,
which will be elaborated on in Section 5.4.1.

m for all v; of the evaluation graph. (5.6)

After the prompt P is formulated, it is utilized by invoking the executEe function,
which takes three parameters: the prompt P, the selected LLM, and ©, representing
a set of values for the configuration parameters of the LLM. This results in the corre-
sponding LLM output:

Output := execute(P, LLM, ©) (5.7)

Specifically, ® contains values for exactly two parameters, regardless of the utilized
LLM. The first, known as temperature, is a value between 0 and 1 that measures the

64 5. Large Language Models as Assistants for Enhancing Metaheuristics

model’s response uncertainty, with lower values indicating a more deterministic out-
put. Since a more deterministic response is desirable when searching for patterns in
data, we set the temperature to 0.° The second parameter is the maximum number of
output tokens, which we have set to a moderate 1000 tokens. This choice is based on the
prompt design, which consistently yields relevant outputs regardless of the evaluation
graph’s size, ensuring that the quality of the results is not compromised by a smaller
token limit.

Prompt Structure

Effective prompts are generally those with few language ambiguities. To achieve this,
the four unique opening and closing tags mentioned in the previous section provide
structure and coherence. We will now clarify the syntactic structure of each of these
tags. A complete example of a prompt, along with each tag, can be found in Figure 5.2.

1. Problem description. The prompt starts by providing a concise definition of the
k-dDSP utilizing LaTeX notation within the [PROBLEM] tag; see the top right of
Figure 5.2.

2. Example Graph. The [EXAMPLE GRAPH] tag, as the name suggests, provides
information about the example graph. Nestled within this tag are two additional
tags: [DATA], encompassing the metric values of each node of the example graph,
and [ANSWER], which provides a high-quality solution for the given graph.

e [DATA] tag: A (directed) random graph with 100 nodes produced with the
Erd6s-Rényi model [161] was chosen as an example graph. The edge prob-
ability of the graph was 0.05. Subsequently, five before-mentioned metrics
were calculated for each of the 100 nodes and incorporated into the prompt
in a tabular data format, with rows and columns separated by commas. Each
row corresponds to a node ID, while the columns represent the respective
metric values for that particular node. The metric values are presented in
scientific numerical notation to minimize token usage. The rationale be-
hind this decision is discussed in the context of the empirical results; see
Section 5.5.

e [ANSWER] tag: The solution to the example graph is computed using the
BRKGA algorithm from [32] (see Chapter 3). However, note that this solu-
tion (which is not necessarily optimal) could potentially have been achieved
through alternative means, such as employing a different metaheuristic or
solving the problem via an exact method. The rationale behind including a
high-quality solution is our expectation that—given the nodes belonging to
a presumably high-quality solution—the LLM will be able to discern which
metrics are more crucial than others and how the metric values of selected

nodes interrelate.

® When generating text or paraphrasing, it is advisable to increase the temperature. This is because cre-
ativity is a welcome characteristic in these scenarios.

5.4. Integration of LLM Output into a Metaheuristic 65

This problem is known as the multi-hop influence maximization problem

+-{ [BEGIN PROBLEM] (k-dDSP)---d-hop coverage is considered. The input to the problem is a directed
H graph G = (V, A), where V is the set of nodes and A is the set of arcs. In the k-dDSP
E {{ problem_definition }} the task is to find a set U € V of cardinality k such that the set C_U € V of nodes
L] [ENDPROBLEM] that are covered (or influenced) by U is of maximal cardinality. Hereby, a node v
forms part of C_U---that is, v is said to be covered (or influenced) by U---if there
-4{ [BEGIN EXAMPLE GRAPH] exists a node v' € U such that the shortest directed path from v' to v consists of at
[BEGIN DATA] most d arcs.

{{ example_graph_metrics }} - ;
node,in-degree,out-degree,closeness (outward distance),betweenness,pagerank

e

[P (outcoming links)
BEGIN ANSWER GRAPH
[Th P]H " R i) 0,6¢-01,4¢-01,9¢-01,5¢-01,de-01
e nodes that form a feasible solution of high quality to this problem are: {{ ‘high_quality_solution
[END ANSWER GRAPH] 1,3¢-01,1e+00,1e+00,6e-01,7¢-01
| [END EXAMPLE GRAPH] 2,5¢-01,9e-02,6e-01,3¢-01,9¢-02

- [BEGIN EVALUATION GRAPH]

[BEGIN DATA] 50,97,96,95,5,25,91,98,18,58,34,28,80,67,56,73,86,38,41,82,12,66,7,33,65,70,78
{{ evaluation_graph_metrics }}

node,in-degree,out-degree closeness (outward distance) betweenness,pagerank

(outcoming links)

0,2e-02,1e-02,6e-01,1e-02,1e-02

1,1e-02,4e-03,5e-01,7e-03,4e-03

[END DATA]
-4 [END EVALUATION GRAPH]

e —

- [BEGIN RULES ANSWERING]
Consider the following equation to assign a probability range to each node: 2,1e-02,5e-03,5e-01,4e-03,4e-03
Influence(N) = sigmoid (a; - (1 = (f; — in-degree)) + @ - (1 — (> — out-degree)) + a3 - (1 — (f3 — closeness)) +
a4 - (1 = (B4 — betweeness)) + as - (1 — (fs — pagerank)))
Represents the weighting coefficients
- Alpha {{ | alpha_definition ' }} calculation. The sum of all alpha values must equal 1 (\(\sum_{i=1}*{5} \alpha_i =

signed to each metric in the influence

1V)), and each alpha value could be different, inferring the proper distribution
- Beta: {{ beta_definition }} representing the importance among the metrics. Each alpha coefficient
(\(\alpha_{i}\)) is constrained to the range (0, 1).

The goal is to identify patterns in the selection of nodes for the solution of Example Graph (for example)
e o P el e ot o2 Represents a factor of desirable results for each metric, indicating their relative
The response must be in the following format: importance. Each beta value (\(beta_{i}\)) i independent and constrained to the

range (0, 1). The beta value indicates where the favorable values are expected

o

alpha_t = {{ I Value_alpha_1 I relative to the metrics; it serves as a repair parameter.
alpha_s = {{ value,;l;;ha,s B
beta 1 = {{ " value_beta_1 | }}
beta 5 = {{ | value_beta 5 B
-] [END RULES ANSWERING]

Human Input

Based on the analysis of the solution nodes from Example Graph and the metrics from Evaluation Graph,

the following value
alpha_1=0.15
alpha_2-0.25
alpha_3-0.20
alpha_4=0.10
alpha_5-0.30
beta_1=0.60

for alpha and beta are inferred

0.90
beta_4=0.50
beta_5-0.80

The rationale behind these values:

LLM Output

Figure 5.2: An example of a prompt and the corresponding LLM response. The prompt includes the
problem definition, a graph example with node metrics and a high-quality solution, an evaluation graph,
and instructions for the LLM for producing the output. Based on the patterns identified in the evaluation
graph, the LLM provides the importance of each metric, represented by the set of alpha and beta values.

66 5. Large Language Models as Assistants for Enhancing Metaheuristics

3. Evaluation Graph. The [EVALUATION GRAPH] tag, much like the [EXAMPLE
GRAPH] tag, utilizes a nested [DATA] tag to store the values of the five metrics for
every node. However, we obviously do not provide any solution for the evalua-
tion graph. This is because the objective is to request information from the LLM
on the probability of nodes from the evaluation graph to pertain to an optimal
solution.

4. Rules Answering. The [RULES ANSWERING] tag is crucial as it ties together all
the information provided in the previous tags. In this part of the prompt, an
equation is presented to the LLM to calculate the probability of each node of the
evaluation graph to form part of an optimal solution. The equation requires 10
parameters: 5 alpha parameters and 5 beta parameters, which will be explained
in more detail in Section 5.4.2. These parameters serve to assign weights to the
metrics and correct potential errors. The LLM infers the values of these param-
eters by analyzing the metrics in the [EVALUATION GRAPH] tag and using the
metrics and the solution from the [EXAMPLE GRAPH)] tag as a guide.

5.4.2 LLM Output

As described before, a prompt P provides the values of the following five metrics for
each node of the example graph and the evaluation graph: in-degree, out-degree, close-
ness, betweenness, and pagerank. It is assumed that the most important metric for ad-
dressing the k-dDSP is the out-degree, that is, the number of neighbors that can be
reached from a node via directed arcs. A node with a higher out-degree is generally
more likely to form part of high-quality solutions. However, we assume that there
are additional metrics (among the other four metrics) that might contribute valuable
information. Consequently, we anticipate that the LLM will be able to identify this.
To identify patterns in the values provided by the metrics, the LLM is requested (by
means of the [RULES ANSWERING] tag) to return values for two sets of five parame-
ters (one for each metric, in the order as given above), resulting in ten values. More
specifically, upon executing a prompt P, the chosen LLM produces a set Output (see
Eq. (5.7)) which is as follows:

Output ={a1,...,as5,B1,...,B5} (5.8)

The first five of these values are henceforth called alpha values, while the last five
values are named beta values. The heart concept of the proposed prompt is centered
on the meaning of these values and how they are utilized.

e alpha values: These are weights that indicate the influence of each metric. The
total sum of all alpha values should be equal to one (3}7_, @; = 1), and each alpha
value can be unique. In other words, the alpha value 0 < a; < 1 reflects the
relative significance of the i-th metric (in the order as mentioned above).

e beta values: These five values are adjustment (or correction) parameters. Unlike

5.4. Integration of LLM Output into a Metaheuristic 67

the alpha values, beta values 0 < 8; < 1 are independent of each other. Moreover,
beta values do not represent relative weights among the metrics. They rather
indicate the best possible value of a node regarding a metric. This allows the
LLM to identify where the best values are found with respect to their range [0, 1].

Based on these values from the LLM output, the probability for a node v; of the
evaluation graph is determined using the following formula:

5
P M) = of Y i (1- (B = ms)) (5.9)
i=1

Note that this formula introduces non-linearity into the node probabilities by ap-
plying the sigmoid function o, which enables a more nuanced representation of the
probability space.”

As shown in Figure 5.2, our proposed prompt thoroughly explains the alpha and
beta values to the LLM, along with Eq. 5.9. By giving the LLM a clear understanding of
the context surrounding the alpha and beta values, we simply ask the LLM to provide
the corresponding values for the evaluation graph.

5.4.3 Using LLM Output to Guide a Metaheuristic

In this section, we first describe the metaheuristic considered to test the quality of the
LLM output. Subsequently, the way of incorporating the probability values into the
metaheuristic is outlined.

The Considered Metaheuristic: A BRKGA

Since the BRKGA employed in this study is identical to the one presented in Chapter 3,

Section 3.3, we refrain from redefining it here.

Hybrid Algorithm

The proposed hybrid algorithm—referred to as BRKGA+LLM—starts with two offline pre-
processing steps. Given an evaluation graph G = (V,A), a prompt is generated as
described in the previous section and sent to an LLM. Based on the resulting @ and f8
values extracted from the model’s output, the probability p*M (v j) foreachnodev; € V
is computed using Eq. (5.9).

Next, the original greedy function ¢() defined in Eq. (3.4, see page 29) is replaced
with a modified version that incorporates the LLM-derived probabilities:

¢INFLUENCELLM (U]) = |N(U])| : 77(]) : pLLM(U]')r ij eV (510)

7 The sigmoid function has been used for many purposes in neural networks. But also in metaheuristics,
for example, for significantly accelerating the convergence of a genetic algorithm [232].

68 5. Large Language Models as Assistants for Enhancing Metaheuristics

Table 5.1: Summary of the assessed LLMSs, which have been used via the OpenRouter API. This is
except for Claude-3-Opus, the first LLM considered. At that point, we had yet to become familiarized
with OpenRouter.

Model Chatbot Version License Maximum Test Environment (API)
Arena Context
Ranking Window
OpenAl/GPT-40 #1 may2024 private 128,000 OpenRouter
Anthropic/Claude-3-Opus #2 march2024 private 200,000 Anthropic
Cohere/Command-R+ #10 april2024 CC-BY-NC-4.0 128,000 OpenRouter
Mistral Al/Mixtral-8x22b-Instruct-v0.1 #19 april2024 Apache 2.0 32,768 OpenRouter

We hypothesize that appropriate predictions from the LLM can bias the algorithm
toward more promising regions of the search space. These regions are assumed to
contain high-quality solutions that the BRKGA alone would be unlikely to identify. In
this sense, leveraging LLM-discovered patterns in metric values (see Section 5.4.1),
rather than relying solely on out-degree, may lead to improved performance.

5.5 Empirical Evaluation

This section presents empirical evidence demonstrating the benefits of integrating MHs
and LLMs. The following algorithm variants are considered for the comparison:

e BRKGA: the pure BRKGA variant already published in [32] and described above
in Section 5.4.3.

e BRKGA+FC: the BRKGA hybridized with a hand-designed GNN called FastCover
(FC) that was used to derive the probability values (last term of Eq. (5.10))
in [32].

e BRKGA+LLM: the BRKGA enhanced with LLM output as described in the previous

section.

In this chapter, we adopt the corresponding parameter settings of BRKGA obtained
by tuning in Chapter 3 for BRKGA+LLM. In this way, we can be sure that any difference
in their performance is caused by the guidance of the probabilities computed from the
LLM outputs. In any case, a specific tuning of BRKGA+LLM could only further improve
its results.

Apart from comparing the three approaches mentioned above, we show results for
different LLMs and provide evidence for the quality of LLM output. Additionally, we
support our analysis with a visual examination, providing additional insight into why
the hybrid BRKGA+LLM outperforms the other algorithm variants.

5.5.1 Experimental Setup

The BRKGA was implemented in C++, whereas the prompt construction process, which
entails extracting metrics from graph instances, was conducted using Python 3.11. Re-

5.5. Empirical Evaluation 69

garding the choice of LLMs, we utilized two proprietary language models, GPT-40 and
Claude-3-Opus, as well as two open-source models, Command-R+ and Mixtral-8x22b-
Instruct-v0.1. We selected these models based on the Chatbot Arena—a platform de-
veloped by LMSYS members and UC Berkeley SkyLab researchers—which provides an
Arena Leaderboard,® a community-driven ranking system for LLMs [246].” Table 5.1
presents a comprehensive overview of the models, including their ranking in the Chat-
bot Arena Leaderboard (as of May 2024), corresponding version numbers, licenses,
maximum context windows, and crucially, the test environment employed for each
model.

Execution Environment

We utilized the OpenRouter API"Y to execute prompts in their corresponding LLMs,
except for Claude-3-Opus, which we used through the Anthropic API (see Table 5.1).
Finally, all experiments involving the three BRKGA variants were conducted on a high-
performance computing cluster comprising machines powered by Intel Xeon CPU 5670
processors with 12 cores running at 2.933 GHz and a minimum of 32 GB of RAM.

Dataset

Our evaluation is based on two categories of k-dDSP instances (evaluation graphs).
The first consists of rather small, synthetic social network graphs with 500 and 1000
nodes, generated using three configuration methods developed by Nettleton [150].
The corresponding graph generator requires four real-valued parameters, whose
values are reflected by the instance names.!! The second instance set comprises four
real-world social network graph instances obtained from the well-established SNAP
(Stanford Network Analysis Project) repository [110]. Moreover, note that the k-dDSP
can be solved in each graph for different values of 4 and k. In this work we solved all
evaluation graphs with d € {1, 2, 3} and k € {32, 64, 128}.

Restrictions. The size of the graphs poses a constraint on the prompts we have
designed for the LLMs, which is limited by two factors:

1. The maximum context window of LLMs is still relatively small.!> For instance,

8 https://chat.lmsys.org.

9 Please be aware that our experiments took place between February and May 2024, and the LLMs ranking
classification in Chatbot Arena may have changed by the time of reading this thesis.

1%ttps ://openrouter.ai.

MThe instance names are obtained by a concatenation of the utilized parameter values: examples are
0.4-0.15-0.15-0.3, 0.3-0.0-0.3-0.4, and 0.2-0.0-0.3-0.5. The parameters labeled 4, b, c, and d, respectively,
define communities weights (2 and d) and link weights between communities (b and ¢), a+b+c+d = 1.
These parameters influence the topology of the network, specifically the total number of connections
and the density.

12The maximum context window of an LLM sets the maximum amount of text it can process simultane-
ously when generating a response. This constraint determines the scope of contextual information the
LLM can draw upon when answering a question or completing a task. The response quality will likely
degrade if the input prompt exceeds this limit. Given that our prompt design requires each metric for

https://chat.lmsys.org
https://openrouter.ai

70 5. Large Language Models as Assistants for Enhancing Metaheuristics

Table 5.2: Number of input/output tokens and the associated cost of processing the input prompts
concerning Claude-3-Opus. The costs correspond to March 2024.

Instance Input (tokens) Output (tokens) Cost (USD/EUR)
soc-wiki-elec 181,719 463 2,78/2,58
soc-advogato 160,812 410 2,46/2,28
sign-bitcoinotc 66,406 303 1,02/0,95
soc-hamsterster 17,097 438 0,29/0,27

the largest evaluation graph we use, soc-wiki-elec, results in an input prompt size
of 181,719 tokens, which is close to the 200,000 tokens limit of Claude-3-Opus [7],
the LLM which offers the currently largest context window.

2. The cost of processing larger instances is prohibitively high. For example, execut-
ing the prompt regarding the soc-wiki-elec evaluation graph on Claude-3-Opus
exceeds €2.5.

Table 5.2 provides a detailed breakdown of the constraints for the largest evaluation
graphs considered in this work. Although these limitations currently restrict us to test-
ing with smaller instances, we anticipate that this constraint will soon be alleviated as
the maximum context window increases and processing costs decrease (see Section 5.6

for more information on this).

5.5.2 Analysis of LLM Output

This section evaluates the usefulness of LLM outputs as guidance within the BRKGA al-
gorithm, aiming to show they are meaningful rather than arbitrary. To this end, we con-
ducted three sets of experiments, each targeting a different aspect. Figure 5.3 presents
the custom three-dimensional experimental framework designed for this evaluation.'?

Before the main evaluation, we selected the most suitable LLM. We generated
prompts for six synthetic graphs across all d € {1,2,3} and k € {32,64,128} combi-
nations, feeding them to GPT-40, Claude-3-Opus, Command-R+, and Mixtral-8x22b-
Instruct-v0.1. Probabilities from these LLMs (and from the out-degree metric) were
directly used to generate solutions. Table 5.3 shows Claude-3-Opus generally excels,
especially for larger k. While out-degree performs slightly better for k = 32, Claude-3-
Opus is superior for k = 128. Thus, we selected Claude-3-Opus for all subsequent
experiments.

each node to be equally important, the LLM needs to consider as much context as possible to deliver
reasonable and trustworthy results.

1% uture work may extend this framework to further assess LLM response quality and their integration
with metaheuristics.

71

5.5. Empirical Evaluation

“o1ydpa8 a1y3 Ul UMOYs SU0ISUAULP 9241} Ay} S50V (SJOD)
swajqoid uoyvziwigdo wriogpuIqUIod SuUla]os 40f SWTT Yim SHIN Suljpidajuy Jo ssaujnjasn ayj ssassv 0j pasn svm YA0MIWpLf UoINIvad a0isuayaiduiod y ¢ 2amsry

douepIng wopuer Yym T 2y} areduro))

[opow TN Pajeld-puey & y3rm NTT 9y} a9e[doy

Suruny 193owrered ym N7 2y} aoejdey

SHIN Surping 10j sonbruyoa) sanjeuIa)y
TT

¢3dword oY) W01} POAOWISI ST UOTJRULIOJUT JT 1R A\ JA[NSOT JTe-OT[1-§O-018}S J8aq oM)

&0» &
Jdwoxd sy 01 JuLAI[DI SOLIIU [[E 21y < f%{ Jonstnayela]y 21nd oy} 1040 da01dwt 31 S90(]

Table 5.3: Solution qualities obtained when turning the probabilities computed based on the LLM’s output directly into solutions. In addition, the same is done for the
out-degree metric. Considered LLMs are GPT-40, Claude-3-Opus, Command-R+, and Mixtral-8x22b-Instruct-v0.1. The six synthetic graphs are chosen as a test bed.

k =32 k = 64 k =128
5+ 5+ 5+
92) = = e
= & % g g % g g % §
R 1] < Y] Fad 1 o] <
5 - . | - . | - B R
g § ¥ E T ®¥|F ¥ E T P/ § ¥ g T ¥
E £ 2 E ¥ Y |5 3 g £ 3| & 2 E £ 3
S A8 o = 8 A8 S Z 5 M= S =z B
S Instance vl Ef 4/l U o©o = 3|V U o = 3|v U o = 3
%)
=
S 1] 240 241 240 241 256 | 338 339 332 330 361 | 425 428 430 428 439
[~y
M 0.4-0.15-0.15-0.3 500 3000 5 | 458 458 461 457 461 | 481 481 483 479 485 | 494 494 494 494 492
S 3494 494 494 494 493 | 494 495 496 494 495 | 496 496 496 496 496
wy
=
g 11302 316 308 288 323|391 393 392 375 384 | 435 449 439 429 448
m 0.3-0.0-0.3-0.4 500 3000 5 | 366 377 371 358 379 | 416 421 418 404 410 | 442 455 447 439 453
195}
s 31369 380 374 360 381 | 416 421 418 404 410 | 442 455 447 439 453
2
=
S 1] 164 168 163 163 155 | 236 250 244 244 225|321 332 331 331 297
WV
80 0.2-0.0-0.3-0.5 500 3000 5 | 198 202 201 201 179 | 253 269 264 264 237 | 328 339 340 340 301
X
%)
g 30202 206 203 203 179 | 254 269 264 264 237 | 328 339 340 340 301
—
W
20 1]381 379 378 na. 392 | 534 551 552 na. 560 | 727 732 734 n.a. 748
~
o 04-0.15-0.15-0.3 1000 8000 5 | 926 925 925 na. 931|973 971 971 na. 973 | 988 988 989 n.a. 990
31992 992 991 na. 993 | 993 993 993 n.a. 994 | 994 995 995 n.a. 995
1|52 561 509 na 571|701 720 692 n.a. 723 | 823 848 819 n.a. 842
0.3-0.0-0.3-04 1000 8000 5 | 743 762 728 n.a. 755 | 804 810 799 n.a. 812 | 857 880 855 n.a. 874
3758 773 747 na. 775 | 808 815 803 n.a. 819 | 858 880 856 n.a. 874
(q\]
D~
1]232 237 230 na. 223|343 349 341 na. 316 | 501 512 512 na. 470
0.2-0.0-0.3-0.5 1000 8000 5 | 308 311 322 na. 269 | 394 399 402 na. 343 | 526 535 537 n.a. 482
31313 320 328 na 272 | 396 401 405 n.a. 345 | 526 535 537 n.a. 482

5.5. Empirical Evaluation 73

Dimension 1 of the Evaluation Framework: Result Quality

In the first experiment set, we compared BRKGA with BRKGA+LLM on six synthetic graphs
(alld € {1,2,3}and k € {32, 64, 128} combinations). Both were executed 10 times, with
a 900 CPU second limit. Table 5.4 shows BRKGA+LLM generally outperforms BRKGA, with
significant improvements on the largest graph (0.2-0.0-0.3-0.5, 1000 nodes, 8000 arcs).
Only three cases showed slightly inferior BRKGA+LLM results. While promising, these
results are from relatively small instances.

Next, we applied BRKGA+FC [32] (a hybrid GNN-biased approach), BRKGA, and
BRKGA+LLM to four larger real-world social networks (Table 5.5). All three had a 900
CPU second limit, averaged over 10 runs. BRKGA+LLM consistently outperformed both,
with greater margins on larger networks, especially for increasing k. This is notable as
prompts only included an example solution for k = 32, indicating the LLM’s ability to
uncover meaningful patterns and adapt.

Finally, to assess the meaningfulness of LLM output, we created two BRKGA+LLM
variants: static (random alpha/beta probabilities) and dynamic (random alpha/beta
re-computed iteratively). All three ran 10 times on the four real-world networks for all
d €{1,2,3} and k € {32, 64,128} combinations. Table 5.6 clearly shows LLM guidance
is significantly more useful than random guidance.

In conclusion, LLM output guidance consistently improves algorithm performance,
demonstrating its value in informing metaheuristics. We anticipate even greater bene-
tits for larger networks, though current limitations prevent such extensive testing.

Dimension 2 of the Evaluation Framework: Alternative Techniques for Guiding
MHs

To assess LLM output reliability, we compared BRKGA+LLM with BRKGA+irace, an algo-
rithm variant where alpha and beta values are obtained via explicit parameter tuning
using irace [129]. For each of the four large social networks (Section 5.5.1), we per-
formed a tuning procedure: for every d € {1,2, 3} and k € {32,64, 128} combination, a
training instance was generated, and irace was applied with a 1000-run budget and a
900 CPU second time limit per run. After obtaining the optimal alpha and beta values,
BRKGA+irace was run under the same conditions as BRKGA+LLM.

Table 5.7 shows that BRKGA+irace outperforms BRKGA+LLM in soc-hamsterster and
soc-wiki-elec, while the opposite holds for sign-bitcoinotc. Performance is similar for soc-
advogato, except for d = 3 where BRKGA+irace is better. Crucially, BRKGA+irace’s alpha
and beta values required 250 hours of computing time per instance, whereas Claude-
3-Opus’s output was obtained in under a minute without specific training.

We used Pearson’s correlation coefficient [15] (pirace, 1M in Table 5.8) to analyze the
relationship between alpha and beta parameters from irace and the LLM.

1. Where BRKGA+irace dominates (soc-hamsterster and soc-wiki-elec), alpha values

show a moderate to strong negative correlation. Beta values show no clear rela-

74 5. Large Language Models as Assistants for Enhancing Metaheuristics

Table 5.4: Comparison of the pure BRKGA with BRKGA+LLM on the six synthetic social networks. For
each network, the algorithms were applied for each combination of d € {1,2,3} and k € {32, 64,128}.
Average results over 10 algorithm runs are shown.

k =32 k =64 k=128

Instance IN| |E| d | BRKGA BRKGA+LLM | BRKGA BRKGA+LLM | BRKGA BRKGA+LLM

1| 309.6 309.9 433.9 437.2 499.0 500.0
0.4-0.15-0.15-0.3 500 3000 5 | 4960 499.9 497.4 500.0 500.0 500.0

3| 496.0 500.0 498.0 500.0 500.0 500.0

1| 353.7 353.1 432.9 434.1 489.0 498.8
0.3-0.0-0.3-0.4 500 3000 , | 4939 413.0 453.0 454.0 489.0 500.0

3| 417.0 416.9 455.0 456.0 489.0 500.0

1] 2038 204.4 287.6 291.4 373.0 380.0
0.2-0.0-0.3-0.5 500 3000 5 | 2470 252.6 316.0 323.8 386.0 394.0

3| 247.0 254.9 316.0 323.8 386.0 394.0

1| 446.6 447.4 679.4 680.5 907.6 915.9
0.4-0.15-0.15-0.3 1000 8000 5 | 9gp 985.0 996.0 1,000.0 | 9960 1,000.0

3| 996.0 996.0 996.0 1,000.0 996.0 1,000.0

1| 604.0 604.6 773.8 774.7 908.7 909.2
0.3-0.0-0.3-04 1000 8000 , | gogg 808.0 880.0 879.6 948.8 949.8

3| 8243 824.8 888.6 891.0 955.0 955.9

1] 296.0 296.4 438.0 441.3 596.1 612.2

0.2-0.0-0.3-0.5 1000 8000 5 | 3904 404.7 506.7 523.2 630.0 658.9

3| 404.1 424.7 511.8 531.2 635.7 662.0

tionship for soc-hamsterster but a negative correlation for soc-wiki-elec. Predomi-
nant negative correlations suggest irace’s chosen direction is superior.

2. Conversely, in sign-bitcoinotc, where BRKGA+LLM excels, alpha values show no cor-
relation. This indicates the LLM found unique, effective predictions missed by
irace.

3. For soc-advogato, results are inconclusive. Alpha values show negative correla-
tion, while beta values show positive correlation. This suggests either irace or
the LLM correctly identified one set of values but not the other.

While BRKGA+LLM's results are not always superior to irace in two of four instances,
our approach offers significantly reduced computational effort, even accounting for
prompt generation time. Future LLM improvements or prompt adjustments (e.g., ad-
dressing current precision limitations due to 0.05 divisibility) could further enhance

its performance.

5.5. Empirical Evaluation 75

Table 5.5: Numerical comparison of three algorithms—BRKGA, BRKGA+FC (results extracted from [32]),
and our hybrid approach BRKGA+LLM—on a total of four real-world social network instances. For each
network, the algorithms were applied 10 times to each combination of d € {1,2, 3} and k € {32, 64, 128}.

‘ k=32 k=64 k=128

Instance V| |E| d‘ BRKGA BRKGA+FC BRKGA+LLM‘ BRKGA BRKGA+FC BRKGA+LLM‘ BRKGA BRKGA+FC BRKGA+LLM
1| 1,230.0 962.7 1,238.9 1,455.3 1,184.5 1,478.0 1,627.8 1,376.5 1,731.3

soc-hamsterster 2426 16630 5 | 17510 16821 17832 | 17796 17787 1,892.0 | 1,811.0 1,857.0 2,115.6

31 1,788.0 1,799.6 1,876.0 1,816.8 1,850.2 1,947.3 1,828.0 1,877.4 2,180.2

134790 34790 34790 | 40403 40410 40547 | 45999 46180 4,606.2
sign-bitcoinotc 5881 35592 5 | 56300 56326 56502 | 57164 57152 57522 | 5769.0 57812 5,835.1

358380 58380 5,852.7 5839.0 5,839.1 5,863.4 5842.0 5,844.0 5,868.0

1| 24641 2469.1 24859 | 29498 29489 29522 | 33422 33723 33851
soc-advogato 6551 51332 5 | 41406 41323 41449 | 42087 42078 42231 | 42685 42511 4,330.1

3| 42803 42755 4,318.6 4,284.4 4,280.0 4,359.9 4,301.2 4,284.0 4,431.9

1121670 21767 2,880 | 2,265.6 22686 22861 | 23677 23665 2,408.8
soc-wiki-elec 7118 107071 5 | 53547 2355.1 2,365.0 | 2,390.0 2,388.0 2,409.7 | 24545 24275 2,478.6

323571 23573 2,366.2 2,389.5 2,389.7 2,406.4 24522 24265 2,474.2

Table 5.6: Comparison of the LLM output with random values. stat<crefers toa variant of BRKGA+LLM
in which the LLM output is replaced by probabilities computed based on random alpha and beta values.
dynamic refers to a very similar BRKGA+LLM variant in which the random values for the alpha’s and
beta’s are dynamically changed at each iteration.

‘ k=32 k=64 k=128

Instance V]| |E| d | static dynamic BRKGA+LLM | static dynamic BRKGA+LLM | static dynamic BRKGA+LLM

112265 12271 12389 | 14197 14185 15002 | 1,6056 1,6090 1,7915
soc-hamsterster 2426 16630 5 | 17448 17463 1,783.2 | 17775 17813 19725 | 1,811.0 18110 2,150.2

3| 17880 1,788.0 1,876.0 1,816.0 1,811.8 2,056.6 1,8252 1,822.4 2,211.0

134790 34790 34790 | 4,037.6 40385 40610 | 45939 45941 4,628.2
sign-bitcoinote 5881 35592 5 | 56371 56321 56502 | 57153 57153 57677 | 57618 57344 58420

3| 58380 5,838.0 5,852.7 5839.0 5,839.0 5,873.9 5,842.0 5,842.0 5,874.0

1| 24637 24641 24859 | 29491 29494 29585 | 3,3385 33392 34020
soc-advogato 6551 51332 5 | 41411 41387 @ 41449 | 42072 42061 = 42348 | 42672 42664 4,357.3

3| 42790 4,276.6 4,318.6 4,281.3 4,283.4 4,377.8 4,301.1 4,299.7 4,451.5

1] 27166.6 2,169.1 2,188.0 2,265.0 2,264.7 2,295.0 2,367.1 2,366.5 2,417.1

soc-wiki-elec 7118 107071 5 | 53548 23548 2,365.0 | 2,389.0 2,389.8 2,418.6 | 24544 24548 2,484.0

323573 23571 2,366.2 2,389.8 2,390.1 2,419.6 24519 2,451.0 2,485.0

Dimension 3 of the Evaluation Framework: Prompt Quality

This final dimension shifts from numerical analysis to an interpretive discussion on
designing effective prompts for optimization problems. We first examine the five se-
lected metrics (Section 5.4.1). As larger prompts increase context window limitations
and financial costs, we investigate if less information can yield similar or superior re-
sults. This involves two experiments: assessing metric correlations and analyzing the
impact of information removal.

Correlation between metrics. Figure 5.4 displays a matrix of plots for the soc-

76 5. Large Language Models as Assistants for Enhancing Metaheuristics

Table 5.7: A numerical comparison of BRKGA+LLMand BRKGA+irace. In the latter algorithm, the alpha
and beta values are determined by tuning through irace.

[em

k=64 k=128
Instance |V| |E| d ‘ BRKGA+irace BRKGA+LLM | BRKGA+irace BRKGA+LLM | BRKGA+irace BRKGA+LLM
1 1,242.4 1,238.9 1,487.9 1,478.0 1,763.2 1,731.3
soc-hamsterster 2426 16630 5 1,816.3 1,783.2 1,956.9 1,892.0 2,128.7 2,115.6
3 1,931.4 1,876.0 2,038.4 1,947.3 2,192.5 2,180.2
1 3,478.8 3,479.0 4,054.5 4,054.7 4,606.0 4,606.2
sign-bitcoinotc 5881 35592, 5,642.3 5,650.2 5,749.1 5,752.2 5,823.5 5,835.1
3 5,851.6 5,852.7 5,860.4 5,863.4 5,867.1 5,868.0
1 2,487.3 2,485.9 2,951.9 2,952.2 3,380.9 3,385.1
soc-advogato 6551 51332 5 41413 4,144.9 4,224.6 4,223.1 43292 4,330.1
3 4,320.1 43186 4,366.8 4,359.9 4,441.0 4,431.9
1 2,188.7 2,188.0 2,293.2 2,286.1 2,411.5 2,408.8
soc-wiki-elec 7118 107071 , 2,375.3 2,365.0 2,417.5 2,409.7 2,482.90 2,478.6
3 2,378.8 2,366.2 2,415.3 2,406.4 2,478.60 2,474.2

Table 5.8: The alpha and beta values as determined by irace and the LLM for each case. Pearson’s
correlation coefficient (Pirace, LM) iS used to quantify the relationships between the two sets of values.

soc-hamsterster sign-bitcoinotc soc-advogato soc-wiki-elec
irace LLM irace LLM | irace LLM | irace LLM
a; | 040 0.10 0.28 0.15 0.21 0.15 0.08 0.15
as | 0.08 0.30 0.14 0.25 0.21 0.25 0.05 0.25
as | 0.03 0.20 0.30 0.20 0.12 0.35 021 0.20
ay | 040 0.10 0.18 0.30 0.34 0.15 0.25 0.30
as | 0.09 0.30 0.10 0.10 0.12 0.10 041 0.10
Pirace, LLM -0.85 0.02 -0.27 -0.38
B1 | 0.78 0.60 0.61 0.70 0.31 0.60 0.61 0.70
B2 | 0.83 0.60 0.21 0.60 0.65 0.70 092 0.60
B3 | 0.65 0.90 0.01 0.80 0.83 0.90 0.19 0.90
Ba | 0.01 0.60 0.51 0.05 0.75 0.60 0.80 0.60
Bs | 0.75 0.60 0.50 0.10 0.86 0.70 051 0.50
Pirace, LLM 0.08 -0.55 0.55 -0.67

5.5. Empirical Evaluation 77

hamsterster instance, where BRKGA+LLM significantly outperformed BRKGA (Table 5.5).
The upper triangle shows scatter plots of metric pairs (e.g., out-degree vs. in-degree).
The lower triangle presents kernel density estimation (KDE) plots, revealing smoothed
data distributions, clusters, outliers, and non-linear relationships. The diagonal shows
univariate KDE plots for individual metric distributions. Observations from Figure 5.4:

o All metric pairs in the upper triangle exhibit non-linear patterns, suggesting each
metric contributes unique information and none are superfluous.

e Lower triangle KDE plots highlight non-linear relationships less apparent in scat-
ter plots. pagerank shows a more linear relationship with other metrics, but out-
liers prevent its exclusion.

e Univariate KDE plots on the diagonal reveal frequently occurring values for cer-
tain metrics (e.g., betweenness), suggesting potential prompt design strategies
to reduce size.

All metrics appear relevant. However, adjusting the metric set might yield better re-
sults.!*

Removal of information. Our investigation revealed the following effects of
prompt modification:

e Removing graph metrics ([EXAMPLE GRAPH] tag) still allows the LLM to gen-
erate useful responses, leveraging its pre-training knowledge of social network
metrics. However, providing an example graph refines alpha and beta values,
improving output for the k-dDSP problem.

e Using scientific notation for metric values ([DATA] tag) maintains LLM response
quality while reducing character count and tokens.

e Beta values are crucial for response quality; their omission significantly degrades
LLM output. Assigning importance weights (alpha values) and requesting an
expected value (beta) enables the LLM to uncover subtle patterns in evaluation
graph metrics ([EVALUATION GRAPH] tag), leading to enhanced results.

In summary, while LLMs possess prior knowledge, it is insufficient for independent
pattern identification in tabular numerical data.

Differences in node selection. Finally, we analyzed how LLM output influences
node selection in BRKGA+LLM versus BRKGA. Figure 5.5 shows node probabilities (black
line) relative to normalized metric values for the synthetic graph 0.2-0.0-0.3-0.5. The
x-axis orders 500 nodes by decreasing LLM-probability. Horizontal lines mark nodes
chosen by best BRKGA (dotted), best BRKGA+LLM (solid), and their intersection (dashed).
Specific cases (a), (b), and (c) in Figure 5.5 highlight:

(a) A BRKGA+LLM-selected node (second solid green line) has significantly higher
closeness than out-degree (the standard BRKGA metric). This shows the LLM’s abil-
ity to identify suitable nodes by blending multiple metrics.

Financial limitations prevent extensive prompt experimentation, especially for large, challenging scenar-
ios; thus, careful consideration is essential.

78 5. Large Language Models as Assistants for Enhancing Metaheuristics

in-degree
o o o o
o o o o
= N w B

o
o
S

© © o
o o
& ® o

o
o
=

out-degree

closeness
=4
b

oo [/

0.006

&, 0.005

n

2 0.004

c

$ 0.003

© 0.002

Qo
0.001

0.000 /w ’ -

0.06
0.05

< 0.04

E

[

3 0.03

©

2 0.02

0.01

0.00 - - - -

0.00 0.02 0.040.00 0.05 010 00 0.1 0.2 0.30.000 0.002 0.004 0.006 0.00 0.02 0.04 0.06
in-degree out-degree closeness betweenness pagerank

Figure 5.4: Correlations between all pairs of the five considered metrics concerning the soc-hamsterster
network.

(b) Similar to (a), the first and last BRKGA+LLM-selected nodes show higher closeness
than out-degree. Conversely, nodes shared by both (BRKGA and BRKGA+LLM, green
dashed lines) have high closeness and out-degree.

(c) This example also shows cases where closeness is high and out-degree is relatively
lower for BRKGA+LLM-selected nodes. This indicates that for the 0.2-0.0-0.3-0.5 net-
work, the LLM’s ability to recognize the importance of closeness for certain nodes,
which pure BRKGA cannot detect, leads to the best solution.

5.5.3 Visual Comparative Analysis

Numerical analysis often fails to capture the full complexity of a metaheuristic’s
stochastic search process. Visual tools, like STNWeb [33] (see Chapters 9 and 10), ad-
dress this by generating directed graphs from algorithm trajectories, offering deeper

79

5.5. Empirical Evaluation

“U01JDISI2JUL 112U} PUD “UO1N]0S WTT+VONYE 1509 a3 “U01N]0S VHNYE
1529 ayj 40f uasoyo sapou ayj syivuL Ydva8 ayj 4200310 ANIqUQOLA-INTT Suisvaioul-uou v Aq paiapio G 0-£0-0°0-Z 0 Ydva8 onayjuhis ayj Jo sapou 0QG 11 Jo SaSuv.
SIXD-X 2y] "sorijaui aalf ayy Jo sanjva (pazijpuiion) ayj o3 uoyvjal ur (aui] yovjq) sanjve vjaq puv vydp ayj uo pasvq panduiod saijifiquqoid ayp Jo sishpuyy 6 aanSry

r oo

U0T}098I9qUT ..—.— | T

E,_éuxmm' |
VONUE e ||

a1l
— : !
(17) ouonpul ——r | _

yuesaSed ——

Fro

sonfep

Ssauuzamiaq

F80

mmw_._ﬂmo_u —

93.8sp-an0 ——

Pau89p-u Lot

80 5. Large Language Models as Assistants for Enhancing Metaheuristics

insights into search space navigation and enabling performance comparisons. This
section presents a visual analysis to better understand BRKGA+LLM's advantages over
BRKGA and BRKGA+FC.

Figure 5.6 displays STNWeb plots for 10 runs of BRKGA+LLM, BRKGA, and BRKGA+FC
on the soc-hamsterster instance. The following explains the plot’s technical elements
and highlights key insights:

1. Each of the 30 algorithm runs is a directed trajectory in the search space, color-
coded: BRKGA (cyan @), BRKGA+FC (magenta @), and BRKGA+LLM (green e).

2. Trajectory starting points are yellow squares (); end points are black trian-
gles (»).

3. Trajectories comprise solutions (nodes, ®, ®, and ®) connected by directed edges,
each with an increasing fitness value (for this maximization problem).

4. Node size indicates the number of trajectories passing through it.

5. Red nodes @ represent the best solutions found across all 30 trajectories. Multiple
best solutions may exist.

Figure 5.6 reveals several interesting observations. Only BRKGA+LLM finds best so-
lutions (two red dots), located in distinct search space areas. The three algorithms
are attracted to different regions. While BRKGA and BRKGA+FC converge to nearby solu-
tions, BRKGA+LLM shows no clear convergence to a single area. Notably, BRKGA’s search
trajectories are much shorter than those of the two hybrid approaches.

Following empirical prompt analysis (Section 5.5.2) and this visual study, our pro-
posed hybridization successfully demonstrates that LLMs can generate heuristic infor-
mation to improve metaheuristic search. Our approach even outperformed an alterna-
tive hybridization using a hand-crafted, specifically trained graph neural network [32].
However, successful LLM integration into MHs still involves critical issues and open
questions, detailed in the next section.

5.6 Discussion and Open Questions

The current enthusiasm surrounding LLMSs continues to grow, with new applications
emerging daily across a wide range of domains—from solving complex problems to
automating everyday tasks. While their universal utility remains debatable, our work
highlights their potential as pattern recognizers capable of uncovering latent structures
and guiding metaheuristics. This opens several questions:

e Are LLMs still just “stochastic parrots”? Bender et al. [14] famously argued that
LLMs lack true understanding, merely mimicking language without grounding
in meaning. However, models have advanced considerably since then. Our study,
among others [2, 147], shows that LLMs can reason within structured contexts
such as optimization, suggesting their utility goes beyond imitation. That said,
their application in sensitive areas—like law or ethics [6]—still demands careful

81

5.6. Discussion and Open Questions

*SO1SLAIIVAVYD [VIFUISSI Y] U0 Pasnoof uoyvzijpnsia v iof Suimojjv ‘1v303 ayp Jo 9,0z Arpavuirxoiddp o3 3as sia3snjo
Jo uaquuinu a3 yjm “QIMNLLS Ul a1quiivay poyjaw Suiuonied Suliaisnid aAlzelsswolS8e pajjpo-os ayy Suisn pajuiouad svm joid siy (g = Y puv 1 = p yjm) ouvisui
191S131SWeY-00S Y] U0 SUnd)T 4200 (U2aL8) NTT+VONHT puv ‘(vjuadvut) D4+yoxag ‘(Uvhd) yoyyg Jo $a14030a(vag ayg Sutivduiod jojd paviauad-qapmNILS :9°S 2InSig

. ?
aoeds yoreas ayf} jo waIe . v ! H&
ouwIeS 9] 0] 98I9AU0D aoeds yoress
so110309(®1} YOI [TV) 31} JO seaIe I9YJ0
{ 01 VO 2y} sopin3
.,m UOIJBWLIOUT SIN'TT
paseys
voNyg @
04+VONYUE @
WTT+VONYE ©
1sed @
pu3 W

Vels

82 5. Large Language Models as Assistants for Enhancing Metaheuristics

oversight. As with any powerful tool, LLMs should be approached with caution,
letting empirical results guide adoption.

e Do private LLMs have a monopoly on performance? Historically, the best-
performing models (e.g., GPT-4, Claude-3-Opus) were proprietary. Our results
confirm Claude’s advantage. However, recent open-source alternatives—such
as Cohere’s Command-R+, Mistral’s Mixtral, and Meta’s LLaMA 3—are rapidly
closing the gap [55, 127, 42]. Still, even these models are backed by well-funded
private entities. Training high-performing LLMs from scratch remains out of
reach for small teams, raising concerns about transparency and accessibility [82].

e What are the main barriers to adopting our approach? Two stand out: computa-
tional cost and context limitations. Even modest graph instances (7,000 nodes)
can hit the token limits of current models (see Section 5.5.1). While models like
Gemini 1.5 offer extended context windows (up to 2.8M tokens [204]), general
adoption requires either more efficient prompt strategies or context compression
techniques [94], neither of which we explored in this study.

e How should researchers approach LLM-based reasoning? Claims about LLMs’
reasoning abilities often hinge on how “reasoning” is defined. In our context, it
refers to identifying useful patterns in node metrics. We’ve shown that LLMs
follow structured instructions and yield non-random results. Still, it’s crucial to
remain aware of the philosophical and epistemological implications. For a deeper
foundation, works by Floridi [67, 68] offer a valuable starting point.

e Can MH-LLM integration be improved? Several hybrid approaches already
exist—using LLMs to write code, solve problem descriptions, or, as we propose,
detect structural patterns. We believe these are complementary rather than ex-
clusive. A unified framework, possibly agent-based [230, 79], could orchestrate
all these methods and further elevate MH research.

5.7 Conclusion

This work explored the novel use of Large Language Models (LLMs) as pattern recogni-
tion engines to guide and enhance metaheuristics (MHs). We applied this concept to a
combinatorial optimization problem in the domain of social networks, demonstrating
that LLM-generated information can meaningfully bias the search of a Biased Random
Key Genetic Algorithm (BRKGA). A key component of our method is prompt engineer-
ing: the effectiveness of LLM responses critically depends on well-crafted prompts. In
our case, the LLM outputs are used to assign probabilities to each node in the input
graph, indicating their likelihood of belonging to an optimal solution. These probabil-
ities then influence the MH search process.

Our hybrid method outperformed both the baseline BRKGA and a state-of-the-art
BRKGA variant augmented with a hand-crafted, trained graph neural network. This
result highlights the potential of LLMs to serve as powerful, general-purpose tools for

structure-aware optimization without the need for expensive model training or task-

5.7. Conclusion 83

specific feature engineering.
This initial exploration opens new research avenues, particularly in extending LLM-
guided optimization to a wider range of problem domains and further refining prompt

strategies to maximize interpretability and performance.

This study was among the earliest to combine metaheuristics with Large Lan-
guage Models and was published in IEEE Access. Whether it will have any im-
pact or be cited in the future remains uncertain, but I thoroughly enjoyed work-
ing on it!

This

Enhancing a CMSA Heuristic for the
Maximum Independent Set Problem
with Large Language Models

Foundational Work for This Chapter

chapter is based on the following publication:

Title: Improving Existing Optimization Algorithms with LLMs

Published in: arXiv

Type: Conference Paper (under revision)

Year: 2025

Hybrid Metaheuristic used: Construct, Merge, Select & Adapt (CMSA)
Main contribution: Enhance the performance of CMSA through the use
of LLM-generated code improvements

Problem addressed: Maximum Independent Set

Type of contribution: Methodological

DOI: https://arxiv.org/abs/2502.08298

Current number of citations in Google Scholar: 3

6.1 Introduction

Since 2024, and after completing the work presented in Chapter 5, I had resisted us-

ing LLMs for code generation in my research. There were several reasons for this

hesitation—perhaps because I anticipated skepticism or resistance from some peers.

But after running a series of experiments, and taking advantage of the latest LLM ver-

sions (which evolve week by week!), I grew curious: what if I provided a sophisti-

cated, non-trivial algorithm as context and used an LLM as an assistant to discover

84

https://arxiv.org/abs/2502.08298

6.2. Background 85

new heuristics tailored to that algorithm? Not to invent heuristics never seen before,
but to generate original ones specific to that setting. I chose the Construct, Merge, Solve
& Adapt (Construct, Merge, Solve & Adapt (CMSA)) algorithm, originally designed
by my PhD supervisor. And when the results turned out to be promising, I thought,
“We have to publish this!”

%% %

In this chapter, we demonstrate how LLMs like GPT-40 can be leveraged to en-
hance a sophisticated optimization algorithm, specifically the CMSA hybrid meta-
heuristic [21, 24, 23]. Starting with an expert-developed C++ implementation of
CMSA for the Maximum Independent Set (MIS) Problem (roughly 400 lines of code),
we employed an in-context prompting strategy combined with interactive dialogue
(see Figure 6.1). Our findings show that the LLM successfully understood the intricate
logic and parameter interactions within the CMSA implementation, offering insightful
suggestions that led to novel, algorithm-specific heuristics and improvements to the
codebase. This case highlights the potential of LLMs as effective assistants for refining
and extending complex optimization algorithms.

I discovered a
way to incorporate the
'age' parameter into the

heuristic. Here is the

BOT, can you improve my
CMSA heuristic for the
Maximum Independent Set

|
Thadn’t }

thought of that, You're |

(MIS) problem? code in Cat thank you! welcome! I
: l A [

X ‘) @O ‘

LLM |
W/t |

Aiha |

|

|

|

|

|

|

|

Optimization
researcher

Optimization LLM

hxtemdl Context Internal C()ntext
researcher

CMSA Pre-built prompts to request
(Complete C++ Code) improvements for optimization

for MIS. algorithms.

Figure 6.1: : A dialogue showing how a chatbot applies our approach to improving optimization algo-
rithms.

6.2 Background

6.2.1 Code Generation with LLMs

Code generation has emerged as a prominent research area within the field of LLMs [95,
98, 43]. The core idea is simple: given a natural language prompt (e.g., “I need an algo-
rithm to sort a list of numbers in Python”), an LLM can return a working implementation
(e.g., Quicksort) in the specified language. This capability is made possible by the ex-
tensive training of LLMs on vast datasets that include source code from GitHub, Stack-

Overflow, technical documentation, academic papers, and publicly available books.

86 6. Enhancing a CMSA Heuristic for the MIS Problem with Large Language Models

The specificity of a prompt often influences the sophistication of the output. For in-
stance, a more detailed prompt such as “I need an efficient sorting algorithm for a list of num-
bers in Python, capable of parallel execution and using modern optimization techniques” might
lead GPT-40 to generate a ParallelMergeSort. Further improvements can be obtained
through iterative prompting (e.g., “Find new ways to improve it”), which may result in
versions incorporating NumPy-based memory optimization, hybrid sorting techniques,
or more efficient merging strategies. However, the output could vary if the goal shifts
(e.g., prioritizing memory efficiency over parallelism), highlighting the importance of
both prompt design and interactive refinement [248].

The quality of generated code is closely tied to the training data and scale of the
LLM. As both factors improve, so does performance [238]. Still, no LLM can consis-
tently generate flawless code. For example, even a correct ParallelMergeSort imple-
mentation may include subtle bugs. Debugging through model interaction (e.g., past-
ing runtime errors) remains a necessary step. In some cases, LLMs can even generate
their own test cases to validate outputs. To evaluate LLMs on such tasks, standard-
ized benchmarks like HuMaNEvaAL [44] are commonly used. These include problems
covering algorithmic thinking, basic programming, and mathematics—akin to coding
interviews.

Code generation, however, spans a wide range of domains: data science (e.g., statisti-
cal modeling [222]), systems programming (e.g., memory or low-level operations [97,
52]), frontend development (e.g., UI prototyping [231]), and optimization. Each do-
main presents unique challenges and constraints. Our work focuses on the latter, specif-
ically metaheuristic optimization algorithms.

Within this domain, automatic code generation intersects with a central theoreti-
cal insight: the No Free Lunch Theorem [226], which asserts that no single metaheuris-
tic performs best across all optimization problems. This insight motivates the idea of
LLM:s as tools for generating tailored metaheuristics that adapt to specific problems.
As black-box models, LLMs could assist in discovering novel operators or algorithmic
components that outperform conventional approaches [194].

A seminal contribution in this direction was FunSearch [175], which used LLMs to
evolve novel heuristics for the Bin Packing Problem. However, recent evaluations [190]
suggest that the heuristics discovered lacked generalization. FunSearch begins from an
incomplete base implementation and relies on trial-and-error exploration. In contrast,
our approach starts from a complete, expert-designed implementation and uses LLMs
to discover meaningful variations.

Other notable contributions include LlaMEA [194], a framework combining evo-
lutionary algorithms and LLMs to generate metaheuristics in real-time; LLM-GP [84],
which evolves genetic operators through LLM-assisted programming; and the decom-
position of swarm intelligence techniques via prompting, as explored in [165].

Despite their promise, these works mostly focus on generating new algorithms from
scratch. However, the optimization research community already possesses a vast li-
brary of high-quality, handcrafted algorithms. A quick search for “optimization algo-

6.2. Background 87

rithm” on GitHub yields tens of thousands of repositories. We believe this motivates a
complementary direction: using LLMs to improve existing algorithms.

In this research, we adopt this perspective by treating LLMs as research assistants
capable of working with expert-developed code. Our goal is not to replace but to
augment human insight—helping identify improvements, propose new heuristics, or
simplify complex logic within sophisticated optimization frameworks. This paradigm
leverages the knowledge embedded in LLMs through pretraining and unlocks new op-
portunities for collaboration between human designers and generative models.

6.2.2 Maximum Independent Set (MIS) Problem

To validate our hypothesis that LLMs can enhance existing optimization algorithms,
we focus on solving the Maximum Independent Set (MIS) problem—an NP-hard com-
binatorial problem with well-established applications in network design, scheduling,
and bioinformatics.

Formally, given an undirected graph G = (V, E), the MIS problem seeks the largest
subset S C V such that no two vertices in S are adjacent, i.e., for all u # v € S, there is
no edge (u,v) € E.

Figure 6.2 illustrates three example graphs, each with an optimal MIS solution

(highlighted as non-white nodes).

Figure 6.2: Examples of maximum independent sets.

6.2.3 CMSA

Construct, Merge, Solve & Adapt (CMSA) is a hybrid metaheuristic—also known as a
matheuristic—that integrates classical metaheuristics with exact methods, such as In-
teger Linear Programming (ILP) solvers, for tackling combinatorial optimization prob-
lems [24]. Each iteration of CMSA follows four key phases:

1. Construct: In this initial phase, new candidate solutions are generated. This is
typically achieved through a probabilistic greedy mechanism. Instead of making
purely deterministic choices, the algorithm introduces an element of randomness,

88

6. Enhancing a CMSA Heuristic for the MIS Problem with Large Language Models

where components are selected based on probabilities derived from heuristic in-
formation. This allows for exploration of the search space beyond purely greedy
paths. The quality and diversity of the initial solutions generated in this phase
significantly impact the overall performance of the CMSA framework. This cru-
cial step is revisited and enhanced in the next section.

. Merge: Following the construction of new solutions, the Merge phase aggregates

promising components from these and potentially other high-quality solutions
found so far. The goal is to identify a subset of variables or solution elements
that appear frequently in good solutions. This aggregation process defines a re-
duced, yet representative, subproblem that captures the most critical aspects of
the original problem, making it amenable to exact solution.

Solve: The core of the matheuristic approach lies in this phase. The reduced
subproblem, defined in the Merge phase, is passed to an exact solver. For the
Maximum Independent Set (MIS) problem, this typically involves an Integer Lin-
ear Programming (ILP) solver. The exact solver then finds an optimal solution
for this smaller, well-defined subproblem. This ensures that the most promising
parts of the solution space are explored with guaranteed optimality, leveraging
the power of exact methods.

Adapt: In the final phase, the CMSA framework updates its internal parameters
and data structures based on the quality of the solution obtained from the Solve
phase. This adaptive mechanism is crucial for the metaheuristic’s learning ca-
pability. It might involve adjusting the probabilities used in the Construct phase,
refining the criteria for the Merge phase, or updating other parameters that guide
the search. This feedback loop allows the algorithm to learn from its successes

and failures, continuously improving its search strategy over iterations.

This architecture balances the exploration strengths of metaheuristics with the pre-

cision of exact solvers applied to smaller, focused subspaces.

The behavior of CMSA is governed by several key parameters. Each solution com-

ponent has an associated age, initialized to zero when added to the subproblem. If a

component is not included in the optimal solution returned by the solver, its age in-

creases. The parameter agemax defines the threshold at which aged-out components

are removed, promoting diversity and avoiding stagnation.

Additional parameters include:

n,: Number of solution constructions per iteration.

tmax: Total allowed runtime.

Himit: Time limit for the ILP solver per iteration.

0 < drate < 1: Degree of determinism in the construction phase—higher values

yield more deterministic solutions, while lower values increase randomness.

Proper tuning of these parameters enables effective exploration, exploitation, and

efficient use of computational resources.

6.3. LLM-Enhanced CMSA for MIS 89

CMSA was selected for this study due to its implementation complexity compared
to simpler metaheuristics. Implementing CMSA for the Maximum Independent Set
(MIS) problem in C++ requires precise definition and integration of all four phases,
as well as careful attention to performance and design. This complexity grows with
more challenging optimization problems, demanding expertise in both metaheuristics
and exact methods, as well as advanced programming skills.

For our experiments, we used the original C++ implementation of CMSA for
MIS, developed by the algorithm’s creator and made available on his website (https:
//www.iiia.csic.es/~christian.blum/). This choice serves a dual purpose: ensur-
ing a robust, expert-level baseline and creating a realistic setting to test whether LLMs
can meaningfully improve code written by specialists. Our results are discussed in the

next section.

6.3 LLM-Enhanced CMSA for MIS

This section introduces a methodology for leveraging LLMs to enhance existing, expert-
crafted optimization algorithms. Unlike prior approaches that often generate code
from scratch or rely on simplified implementations, our method focuses on dialog-
based interaction with an LLM via a chatbot interface. This interaction aims to uncover
novel code improvements that even seasoned experts can benefit from. We detail this
process in the following subsections.

6.3.1 Discovering New Heuristics

LLMs excel as pattern-recognition machines [147, 185], and code provides a rich
source of structured textual patterns. This enables LLMs to identify underutilized
code elements—such as variables or functions—that could play a strategic role within a
heuristic. Such insights might be overlooked by human experts, particularly in complex
codebases. These discoveries demand a deep syntactic and semantic understanding of
both the code and the optimization problem, allowing LLMs to suggest meaningful
modifications to heuristic strategies that transcend superficial code changes. In this
capacity, LLMs serve as advanced assistants for optimization algorithm designers, of-
fering novel heuristic improvements informed by reasoning over their vast pretraining
knowledge.

To demonstrate our methodology, we employ an LLM to improve a heuristic within
the CMSA code, specifically for solving the Maximum Independent Set (MIS) problem.
The function generation_solution() implements the solution construction phase of
the CMSA framework [21]:

while (int(positions.size()) > 0) {
double dec = standard_distribution(generator);

int position = O0;

if (dec <= determinism_rate) {

position = *(positions.begin());

https://www.iiia.csic.es/~christian.blum/
https://www.iiia.csic.es/~christian.blum/

90 6. Enhancing a CMSA Heuristic for the MIS Problem with Large Language Models

} else {
int max = candidate_list_size;
if (max > int(positions.size())) {

max = int(positions.size());
¥
double rnum = standard_distribution(generator);
int pos = produce_random_integer (max, rnum);
set<int>::iterator sit2 = positions.begin();
for (int i = 0; i < pos; ++i) {

++sit2;
}
position = *sit2;

greedy_sol.score += 1;
greedy_sol.vertices.insert(increasing_degree_order [position]);

if (agelincreasing_degree_order [position]] == -1) {
age[increasing_degree_order [position]] = 0;

positions.erase(position);

for (auto sit = neighlincreasing_degree_order[position]].begin();

sit != neigh[increasing_degree_order[position]].end(); ++sit) {

positions.erase(position_of [*sit]);

Listing 6.1: Probabilistic greedy algorithm for MIS in CMSA.

It implements a greedy randomized construction heuristic that selects exactly one
vertex v; € V at each step (where V is the set of nodes that can feasibly be chosen),

until the MIS solution is complete:

Umin ifr<a
0; =

Urandom € CL(k) otherwise

where

® Umin is the vertex with minimum degree (among the ones from V)
r is a random number between [0, 1]

« is the determinism rate
CL(k) is a candidate list of size k
® Urandom 1S @ randomly selected vertex from the candidate list

The heuristic combines deterministic greedy selection (based on vertex degree)
with randomization to create diverse solutions. It selects vertices either by taking the
best available vertex (greedy choice) with probability a, or by randomly selecting from
a restricted candidate list with probability (1 — a).

6.3. LLM-Enhanced CMSA for MIS 91

New Heuristic from the LLM

The original greedy heuristic, while computationally efficient, notably overlooked the
age variable—a fundamental component of the CMSA framework. This variable was
solely used for solution restarts, not for guiding the crucial candidate selection mecha-
nism. In Figure 6.3, we present two illustrative dialogues demonstrating our interaction
approach with the LLM.

In the first dialogue, case (a), the LLM proposes an enhanced heuristic that intelli-
gently combines both node degrees and current age values. The vertex selection mech-
anism suggested by the LLM can be formally described as follows:

argmin{Py(v;) | v; € V} ifr<a

i =

roulette-wheel selection w.r.t. Py (.) values otherwise
where Py (v;) is a weighted probability:

w(vj) ~ 1 1
2oV w(vy)’ wlv) = 2+age(v) * 1 + degree(v)

Py(vj) = (6.1)

The weight function w(v) is designed to favor vertices with lower age and degree
values, thereby promoting diversity in the selection process. This demonstrates the
LLM’s ability to modify the original heuristic by integrating age values to diversify
node selection, while simultaneously balancing this with degree information through a
composite weight function. Intuitively, decreasing the probability of selecting solution
components with high age values for newly constructed solutions is a sound strategy.

Despite successfully identifying this previously overlooked application of the age
variable within the CMSA construction heuristic, any dialog-based system inherently
requires human feedback [39]. Consequently, the LLM occasionally makes errors. For
instance, as depicted in Figure 6.3 (a), the line double weight = 1.0 / (1 + agelv])
could lead to a division by zero, as age values in CMSA are set to -1 for solution compo-
nents not belonging to the subproblem. The human-provided fix involved replacing 1
+ age[v] with 2 + age[v]. Remarkably, this specific utilization of the age variable—
despite its initial flaw and the subsequent human correction—had never been consid-
ered by any researchers working on CMSA algorithms before.

This new CMSA variant is henceforth called LLM-CMSA-V1. It was obtained by
replacing the generate_solution() of the original CMSA implementation with
the new function provided by the LLM.

Improving LLM-CMSA-V1 with the LLM

Since our methodology relies on dialog-based interactions with the LLM via a chatbot
interface, itis also possible to request improvements to previously generated code—still
available in the current session context. For example, one might ask: “Are there ways

6. Enhancing a CMSA Heuristic for the MIS Problem with Large Language Models

92

a

Here is the CMSA algorithm in C++ for solving the Maximum
Independent Set (MIS) problem. Please consider the "age”
parameter of CMSA when designing the new heuristic.

{{ Insert the CMSA code }}

Improve the heul

Analyze the function generate_solution()
and identify a better heuristic to
improve its performance.

Optimization
researcher

Provide only the code for a new function
generate_solution(). Ensure the
implementation accounts for the use of
global variables if applicable and
utilizes the function's arguments
effectively. Avoid including any
additional explanations or comments.

Here is an optimized version of the generate_solution function. This
version incorporates the "age" parameter more effectively and applies heuristic
R LLM

void generate_solution(...) {

// Older nodes get lower priority

double weight = 1.0 / (1 + agel[v]);

// Nodes with fewer neighbors get higher priority
weight += 1.0 / (1 + neighl[v].size());

weights[i] = weight;

total_weight += weight;

¥

This heuristic dynamically adjusts vertex selection:
« Age Factor: Older nodes are deprioritized by assigning lower weights,
encouraging selection of newer vertices.
« Degree Factor: Nodes with fewer neighbors are given higher weights, favoring
vertices that are more likely to contribute to an independent set.

‘When not deterministic, weights are normalized into probabilities, and a vertex is
selected using a probabilistic approach. This ensures diversity while balancing

exploration and exploitation.

Let me know if you need additional adjustments or explanations!

In the line 'double weight = 1.0 / (1 + age[v]);' I replaced the 1 with

a 2, to avoid having infinite values because all age values are

N = initialized to -1. Now the new heuristic works very well, thank
il]

You're very welcome! I'm glad the new heuristic worked well for you. If you need
further adjustments or help with any other part of your project, feel free to reach
out! Happy coding and good luck with your work!

Entering a function name or selecting a
checkbox automatically loads a pre-built

b

Here is the CMSA algorithm in C:++ for solving the Maximum Independent
Set (MIS) problem.

Optimization

researcher {{ The CMSA code incorporating the new heuristic, LLM-CMSA-v1 }}

What to improve? 0 Heuristic C++ code

Which function needs improvement? |generate_solution

7 Improve C++ code

Given the following heuristic
implemented in Ci+
(generate_solution()), without altering
its core logic or functionality, please
analyze the code to identify potential
improvements in the use of data
structures, cache optimization, and
other low-level optimizations. Focus on
enhancing performance by suggesting more
efficient data structures, reducing
memory overhead, improving data
locality, and leveraging modern C++

Here's the optimized generate_solution function for the Maximum Independent Set
(MIS) problem. This version introduces a more sophisticated heuristic by considering the
"age" parameter and optimizes the C++ data structures for better performance. I made
improvements to reduce computation time by leveraging more efficient data structures
and operations.

<oEmm:mﬂmnmlmoucio:ﬁ:pﬁ

)

This approach maintains the algorithm's logic while improving runtime efficiency and
respecting the role of the "age" parameter.

features where applicable. Please
provide an updated version of the code
with comments explaining each
optimization.

LLM

Provide only the code for a new function
generate_solution(). Ensure the
implementation accounts for the use of
global variables if applicable and
utilizes the function's arguments
effectively. Avoid including any
additional explanations or comments.

1 got an error: “segmentation fault (core dumped)”.

A segmentation fault usually indicates that the program is attempting to access memory it
shouldn't. Let's debug and refine the code to ensure stability.

Here's a safer and corrected version of the generate_solution function with added
checks to avoid segmentation faults:

void generate_solution(...) {

3

Let me know if further refinements are needed!

£ 2 | The code goes fast but the new heuristic does not generate better solutions
575 | than the original heuristic.

To enhance the quality of solutions generated by the heuristic while maintaining
efficiency, we can incorporate a more informed selection process. A good heuristic often
balances rand: with domain-specific k ledge to guide the algorithm toward
better solutions.

«.ﬁa generate_solution(...) {

}

Run the updated function and observe its performance. If necessary, further fine-tuning
can involve testing different weights for age and degree in the comparator. Let me know if
you need additional adjustments!

_ Now it works better. Thanks!

You're welcome! #: I'm glad the improved heuristic worked better for your problem. If
you need further optimizations, have questions about other parts of the algorithm, or
want to explore additional strategies, feel free to ask. Happy coding and best of luck with
your work on MIS and CMSA! %

©

Figure 6.3: Two LLM interaction patterns: (a) a direct request to improve a heuristic using CMSA’s age parameter, and (b) an iterative dialogue to enhance both heuristic
quality and C++ performance through error correction. Both use in-context learning as a prompting strategy [58, 115].

6.3. LLM-Enhanced CMSA for MIS 93

to enhance the dynamic selection heuristic to allow for a more diverse and advanced search?”
The LLM responds with several suggestions, one of which involves incorporating the
concept of entropy. The C++ code provided by the LLM is characterized by a corre-
sponding change, which involves replacing the definition of Py(.) (see Equation 6.1)
with the following entropy-adjusted probabilities:

ZZJZ’EV Pw(vl) +H '

Pp(vj) =

where

H == " Py(vr)log(Pu(vr) -

v eV

The entropy adjustment increases selection diversity by adding the system’s uncer-
tainty to each probability.

This CMSA variant is henceforth called LLM-CMSA-V2. We directly replaced the
generate_solution() function of the original CMSA with the LLM-generated
code.

6.3.2 Code Optimization Strategies

After discovering the two new CMSA variants with the help of the LLM, it is also possi-
ble to request a different kind of improvement—not in terms of proposing new algorith-
mic heuristics, but rather in enhancing the underlying C++ code. These enhancements
may involve the use of more efficient data structures, changes in data types, or other
low-level optimizations that preserve the algorithmic logic. For instance, one might
ask: “Could the LLM create an improvement at the C++ code level?” In other words, is
there a more efficient way to implement the new CMSA variants without altering their
core behavior?

It is reasonable to assume that, since the LLM has been pretrained on vast amounts
of source code, it could suggest highly optimized C++ implementations—even for con-
texts such as optimization algorithm design (e.g., metaheuristics), where low-level im-
provements to data structures or code organization are not typically the focus of human
designers. This leads us to the next prompt, which we apply to both previously gener-
ated heuristics, LLM-CMSA-V1 and LLM-CMSA-V2:!

Given the following heuristic implemented in C++ (generate_solution()),
without altering its core logic or functionality, please analyze the code to identify
potential improvements in the use of data structures, cache optimization, and
other low-level optimizations. Focus on enhancing performance by suggesting

1 This prompt uses the “C++ code” checkbox, as shown in Figure 6.3 (b).

94 6. Enhancing a CMSA Heuristic for the MIS Problem with Large Language Models

more efficient data structures, reducing memory overhead, improving data lo-
cality, and leveraging modern C++ features where applicable. Please provide
an updated version of the code with comments explaining each optimization.

However, dialog-based interactions with the LLM are not free from hallucinations—
that is, the model may generate code with bugs or memory management issues in C++
(as shown in Figure 6.3 (b)). One effective way to address these problems is through
human feedback, engaging in a trial-and-error refinement process with the model—a
common practice in code generation workflows (see [39]). Eventually, the LLM pro-
duces code that compiles successfully. Upon reviewing the final output, it becomes
evident that the generated code is more complex, less readable, and incorporates un-
conventional or less familiar programming techniques. For example, it replaces the

set and vector data structures with more advanced, low-level alternatives:?

#include <bitset>

// Constants for optimization
constexpr size_t BLOCK_SIZE = 64;

// Bitset for boolean operations

std::bitset<32768> available;

// Adjust size based on max n_of_vertices
available.set();

// Aligned vector to optimize cache usage

alignas (BLOCK_SIZE) std::vector<int> active_vertices;

active_vertices.reserve(n_of_vertices);

Listing 6.2: Fragment code optimization suggested by LLM.

Meanwhile, the original code is shown in the following listing.

set<int> positions;

vector<int> position_of (n_of_vertices, 0);

for (int i = 0; i < n_of_vertices; ++i) {
positions.insert(i);

position_of [increasing_degree_order[il] = i;

Listing 6.3: Fragment of original code from CMSA.

The logic remains the same, except for changes in variable names: positions is
replaced with available, and position_of is substituted with active_vertices. 3

Although the changes do not affect the heuristic’s logic but rather the underlying
C++ structures, they do not always lead to measurable improvements in efficiency,
specifically in reducing the runtime, which in practice would allow us to explore better
candidates when building a valid CMSA solution. Nevertheless, the generated code

compiles and runs correctly.*

2 The comments in the code were generated by the LLM.
3 Explicitly instructing the prompt to retain the variable names might have avoided this issue.
4 Visit our project website for more details on the C++ optimizations suggested by GPT-4o.

6.4. Empirical Evaluation 95

The two new CMSA variants with these performance improvements will be
named: LLM-CMSA-V1-PERF and LLM-CMSA-V2-PERF.

This iterative process with the LLM, asking it to identify underutilized variables or
functions in the existing code, demonstrates its potential as a sophisticated assistant
for optimization experts. For instance, in this case, the LLM proposes a new CMSA
construction heuristic utilizing the age parameter. Unlike simple code generation, the
LLM enhances not only the algorithm itself but also the existing code (e.g., C++ imple-
mentations), suggesting improvements without altering its logic. This opens the door
to using LLMs not just for developing optimization algorithms but also for updating
and refining sophisticated legacy code, leveraging the extensive knowledge embedded
in LLMs.

6.3.3 Reproducibility

Although it is not possible to replicate the exact results of an LLM, due to their au-
toregressive nature that predicts the most probable token based on a probability dis-
tribution (with the next token being determined stochastically) [101], it is possible to
reproduce similar responses by using the same prompts, the same LLM, and its pa-
rameters. For this reason, our repository (https://imp-opt-algo-1llms.surge.sh/)
includes a chatbot that implements the same prompts used in our research (as shown
in Figure 6.3). In fact, each element in Figure 6.3 (textbox and checkbox) loads pre-built
prompts, known as in-context prompts [58, 115], to eliminate the need for manual in-
put. Thus, our chatbot features two types of in-context prompts: (1) external ones,
related to the C++ CMSA code for the MIS, and (2) internal ones, focused on improv-
ing the heuristic, the C++ code, and specifying which function in the code requires
enhancement. Next, we will assess the quality of the heuristics proposed by the LLM.

6.4 Empirical Evaluation

This section is divided into two parts: the preliminary phase (setup, benchmark, and
CMSA parameter tuning) and the results.

6.4.1 Preliminary

Our experimental setup involved selecting an appropriate LLM and defining the bench-
mark and computational environment.

LLM Selection and Parameters

We initially explored various LLMs using Chatbot Arena [47] to identify a suitable
model without incurring costs.” Ultimately, we selected GPT-40 (version: 2024-11-20)

5https://lmarena.ai/

https://imp-opt-algo-llms.surge.sh/
https://lmarena.ai/

6. Enhancing a CMSA Heuristic for the MIS Problem with Large Language Models

96

Objective function value

V|=500

m=2

285- ¢
280~
275~
270~

3 =

3 2

o

:

E

V| = 1000

m=2
560 -
550~
540~

3 =

3 2

o

:

3

V| = 1500

m=2
830~
820~

810- | +

3 =

3 2

o

:

3

V] =2000

m=2

.
1120~
1110~
1100~
1090

1080- =

3 3

3 2

<Q

:

3

LLm-CMsa-v2 = LLm-CMsa-v2 = LLm-Cusa-v2 =

Lim-Cusav2= @

IV|=500
m=3
255-
250~
245~
240~
235-

CMSA -
Lum-Cusa-v1 =

V| =1000

490~

480~

470-

CMSA -
Lum-Cusa-v1 =

V| = 1500
m=3
. ®
750~
740-
730~
720-
710-

CMSA -
Lum-Cusa-v1 =

V| =2000

980~
970~

960~

CMSA -
Lum-Cmsa-v1 =

Lum-Cmsa-v2 =

Lum-Cusa-v2 =

Lum-Cusa-v2 =

Lum-Cusa-v2 =

V| =500

m=5
204-
201-
198~

195- o @

3 3

5 ¢

S

H

3

IV =1000

m=5
410-
400~

390- e -+

3 3

5 ¢

S

H

=]

V] = 1500

m=5
620-
610~
600~

i s

I

s 2

Q

z

=]

V] =2000

m=5
820~
810~
800~

.
790~

S

< =

s 2

Q

z

=)
Algorithm

LLm-CMsa-v2 = LLm-CMsa-v2 =@ LLm-CMsa-v2 =@

Lim-Cmsa-v2 =

(a) Barabdsi-Albert

IVI=500
m=10
1550~
1525~
1500-
1475~
1450~
1425- 0 .
3 3 %
=
5 ¢ ¢
o (s}
:
3 3
v =1000
m=10
305-
300-
295+
290~
3 3 %
=
5 ¢ ¢
o o
R
3 3
V] = 1500
m=10
460 -
455-
450~
445-
440~
3 3 %
=
5 ¢ ¢
o (s}
R
3 3
v =2000
m=10
610~
605+
600~
595-
590~
<
3
=
3

Lum-Cmsa-v1 =
LLm-CMsa-v2 =

Objective function value

2125-
2100~
2075-

205.0-

425-

420-

415-

635~

630~

625~

850~
845~
840~
835~
830~

CMSA-e

CMSA -

CMSA -

CMSA -

1v|=500
k=2

LLm-Cusa-vi -@

V| =1000
k=2

Lum-Cmsa-v1 =

V] = 1500
k=2

Lim-Cumsa-vl =

V] =2000
k=2

LLm-Cmsa-v1 -

Lim-Cmsa-v2 = Lim-Cmsa-v2 = Lim-Cusa-v2 -®

Lim-Cmsa-v2 =

[VI=500 |v|=500
k=3 k=5
1400 .
1775+ 1375+
175.0- 1350~
17254 1325-
P B R
3 3 % g z %
= =
s ¢ ¢ s &t
g S s %
R : i
3 3 3 3
V| = 1000 V|=1000
k=3 k=5
360- o * °
273-

355~ 270

350- 267-

5- @ o e R
3 3 ¢ 3 3 %
= =
5 ¢ 2 s &z

3 3 3 3
: %
3 3 3 3
|V|=1500
k=3
412~
530~ 408-
525- 404
400~

520~ +
< 5 ¥ < 5 ¥
o = H o - 3

Q Q o Q9
R ER
=) 3 3 3
V| =2000 IVI=2000
k=3 k=5
715+ . 550- ©

10-

7o 545-

705+

540-

700~

605 535-

3 3 % g z ¢
= =

s ¢ ¢ s &t

g S s %

R ER

3 3 3 3
Algorithm

(b) Watts—Strogatz

V=500
k=10
92- .
!
90~
- 58
86~ .
3 3 S
= 3
o = W
2 2
: 3
3 3
V| = 1000
k=10
180-

.rl

170
® ' '
3 3 9
=
3 2z ¢
?
? ¢
3 3
V] = 1500
k=10
270~
265~
260 -
255~
250- v "
< 5 §
2 5 3
o = =
Q 9
: 3
3 =
V] =2000
k=10
355~
350~ *
345-
340~
335- . N
g 3 9
=
o w m
Q 9
: ¢
3 3

Objective function value

sdge prob.:0.00416381

310~
305~
300~
295~
g 3 ¢
=
5 ¢ 2
s S
: ¢
= 3
IV|=1000
2dge prob.: 0.00416381
485 -
480 -
475 -
470~
465 -
g 3 ¢
= 3 3
o = H
g 9
: ¢
= 3
V| =1500
2dge prob.:0.00416381
600 -
590 -
3 3 ¢
= 3 3
o s =
g 9
: ¢
3 3
|V|=2000
2dge prob.:0.00416381
710- . .
;
700~
690 -
680 -
< < 9
o s =
e 9
: ¢
3 3

V| =500

sdge prob.:0.00624144
275- o . .

270~ 220-
265+ 216-
260~ 2121
255+
3 3 % 3 3 %
2 2
5 2 2 5 2 2
3 3 5 &
: 3 : 3
= 3 = =
V| = 1000 V| = 1000
adge prob.: 0.00624144 edge prob.:0.0103881
4054 315-
310~
400~
305-
395- 300
3%0- .o205- C
5 = ¢ s 3z ¢
3 3 £ 3 3 %
2 2
5 %2 5 %2
Q 9 Q 9
R : oz
= 3 = =
V| = 1500 V| = 1500
adge prob.: 0.00624144 edge prob.:0.0103881
495+ 370~ **
490~ 3504
485
480~ 3501
475+ . . . 340 " . .
< - & < =&
3 3 £ s 3 %
= 3 3
3 2 2 5 ¢ ¢
3 3 s &
R : oz
= 3 = =
V] =2000 V| =2000
adge prob.: 0.00624144 edge prob.:0.0103881
570- o g 420-
560 + 410+ ++
5504 + 400-
540- 390+
380
530
. 0 . 370~ 0 .
< =& < =&
o s - o - -
3 3 s 3
R : oz
= 3 = =
Algorithm

1V|=500
edge prob.:0.0103881

(¢) Erddés—Rényi

Figure 6.4: Comparative analysis of solution quality: Original CMSA vs. LLM-CMSA variants (V1 and V2).

1v|=500
edge prob.:0.020705
160~
155+
150~
g z ¢
2
o W W
Q 2
: oz
= =
V=100
edge prob.:0.020705
210~
s IP
200- ¢

195- *

g 3 9
2 3
s 2 2
Q <
iz
3 3
V| = 1500
edge prob.;0.020705
240-
230-
0 .
mmo.+
<« T ow
2 5 3
o H =
5 3
iz
3 3
V] =2000
edge prob.:0.020705
260-
250~ +
240-

Lum-Cisa-v =
Lum-Cmisav2 =

6.4. Empirical Evaluation 97

2 3 4 5
| | |
LLM-CMSA-V] —— LLM-CMSA-V2
LLM-CMSA-V1-PERF | LLM-CMSA-V2-PERF
CMSA
(a) Barabdsi—-Albert
2 3 4
| |
o
LLM-CMSA-V] ————————————— LLM-CMSA-V2
LLM-CMSA-V1-PERF LLM-CMSA-V2-PERF
CMSA
(b) Watts—Strogatz
2 3 4 5
L | | |
-
LLM-CMSA-V1 LLM-CMSA-V2
LLM-CMSA-V1-PERF ——] LLM-CMSA-V2-PERF
CMSA

(¢) Erdds—Rényi

Figure 6.5: Critical Difference (CD) plots for different graph types. Algorithms connected by the same
horizontal bar do not exhibit a statistically significant difference in performance. (a) Barabdsi-Albert:
The top-performing group, consisting of LLM-CMSA-V1 and LLM-CMSA-V1-PERF, significantly outper-
forms the lower group (LLM-CMSA-V2 and CMSA). Within each group, performances are statistically
equivalent. LLM-CMSA-V2-PERFranks last. (b) Watts-Strogatz and (c) Erd6s-Rényi: In both graph
types, LLM-CMSA-V1 and LLM-CMSA-V1-PERF are the top performers and do not differ significantly from
each other. Both significantly outperform the other methods, while LLM-CMSA-V2 and CMSA exhibit the
lowest performance.

98 6. Enhancing a CMSA Heuristic for the MIS Problem with Large Language Models

for our experiments, given its status as one of the top-performing models currently
available. The LLM was used with its default parameters:

e temperature = 0.7 (controlling response randomness),
e top-p = 1 (nucleus sampling threshold),
e max-output-tokens = 2048 (maximum output tokens)

Computational Environment and Benchmarks

Experiments for algorithm variants CMSA, LLM-CMSA-V1, and LLM-CMSA-V2 were con-
ducted on a cluster equipped with Intel® Xeon® CPU 5670 processors (12 cores at
2.933 GHz) and 32 GB of RAM.

Our benchmark set comprises three graph types: Barabasi-Albert, Watts-Strogatz,
and Erdés-Rényi. For each type, we used four different sizes and four density levels
(see Figure 6.4). This resulted in 1 tuning instance and 30 testing instances for each
size-density combination, totaling 48 tuning instances and 1440 testing instances. The
parameters for all three CMSA variants (CMSA, LLM-CMSA-V1, LLM-CMSA-V2) were tuned
using irace [129]. Computation time limits were set at 150, 300, 450, and 600 CPU
seconds for the four different graph sizes, respectively.

6.4.2 Numerical Results

In addition to the three tuned algorithms, we evaluated two variants,
LLM-CMSA-V1-PERF and LLM-CMSA-V2-PERF, derived from the efficiency-improved
C++ codes (Section 6.3.2). Each of the five algorithms was run once per testing
instance. Figure 6.4 presents box plots for the main three variants, indicating graph
size and density. A key observation is that both LLM-generated CMSA variants
consistently outperform the standard CMSA as graph size and density increase. This
strongly supports the LLM’s suggestion to utilize age values for solution component
selection during construction.

To establish statistical significance, we generated critical difference (CD) plots (Fig-
ure 6.5). These plots are based on the Nemenyi post-hoc test, which follows a Fried-
man test for multiple comparisons. The Friedman test first ranks algorithms across
multiple problem instances. The Nemenyi test then identifies statistically significant
differences between these ranked algorithms. In the CD plots, whiskers represent
average algorithm rankings across problem instances. Crucially, algorithms whose
whiskers are connected by a bold horizontal bar are considered statistically equivalent
according to the Nemenyi test at a significance level of @ = 0.05.

Figure 6.5 shows three CD plots, one per graph type, including the efficiency-
optimized LLM-generated CMSA variants. Observations: Both LLM-CMSA-V1 and
LLM-CMSA-V2 significantly outperform CMSA across all graph types. However,
LLM-CMSA-V1 consistently outperforms LLM-CMSA-V2, indicating that using entropy
of selection probabilities was not beneficial. Furthermore, the efficiency-optimized

6.4. Empirical Evaluation 99

350

340 A

w0
&
=3

320

310

Solution Quality

290 — CMSA
—— LLM_CMSA_V1
280 4 —— LLM_CMSA_V2

('J 160 ‘2(‘)0 360 'l(‘)O 560 5(‘)0
Time (seconds)

(a) Watts—Strogatz (n2000, k10)

250

240 A

»
8

Solution Quality

o
=

—— CMSA
—— LLM_CMSA_V1
—— LLM_CMSA_V2

200

(‘J 1 60 260 360 460 560 660
Time (seconds)

(b) Erdds—Rényi (12000, 020705)

Figure 6.6: Examples of algorithm evolution over time.

variants are statistically equivalent to their non-optimized counterparts. This suggests
that while they might offer RAM savings (an untested hypothesis), they do not yield
better results. Preliminary checks also showed no significant runtime improvements
from these C++ optimizations in our test environment, implying the original expert
implementation was already highly efficient or the specific low-level changes had

minimal impact.

Finally, Figure 6.6 displays two representative convergence examples from 10 runs
of the three main CMSA variants. In both cases, the LLM-generated CMSA variants
rapidly achieve solution qualities that standard CMSA does not reach even by the end

of its runs.

100 6. Enhancing a CMSA Heuristic for the MIS Problem with Large Language Models

6.5 Discussion

Our study demonstrates LLMs’ capacity for algorithmic reasoning, successfully iden-
tifying conceptual enhancements for CMSA. Specifically, the LLM-CMSA-V1 heuristic
outperformed the expert baseline. Interestingly, the LLM’s subsequent, more complex
suggestion incorporating entropy (LLM-CMSA-V2), while plausible, proved less effec-
tive. This highlights that added complexity may not always be beneficial, reinforcing
the need for rigorous empirical validation of any proposed heuristic. Our study, how-
ever, has limitations: we only tested GPT-40 for CMSA improvements due to space con-
straints; future work should compare additional LLMs, especially open-weight ones,
and explore enhancing other complex algorithms for diverse optimization problems.
These limitations could be addressed in an extended article. Despite these, our com-
prehensive analysis of CMSA with new heuristics for MIS instances opens promising

new research avenues:

1. Specialized Benchmarks. Our study, while demonstrating LLMs’ potential in
enhancing CMSA for the MIS problem, highlights a broader gap in the field: the
scarcity of benchmarks specifically designed for LLMs in optimization. General-
purpose code generation benefits immensely from standardized benchmarks that
allow for consistent evaluation and comparison of models. Similarly, to rigor-
ously assess and advance LLMs’ ability to discover and implement improved
heuristics for complex optimization problems, we urgently need domain-specific
benchmarks. These benchmarks should encompass a diverse range of problem
types, instance sizes, and performance metrics, moving beyond simple code cor-
rectness to evaluate true algorithmic innovation and efficiency.

2. LLM-Based Agent Integration. Figure 6.3 depicts a manual, human-in-the-loop
interaction with the LLM. However, the potential for autonomous agents to han-
dle repetitive or complex tasks, such as code execution, debugging, and iterative
refinement, is immense. Imagine a sophisticated platform where multiple LLM-
powered agents collaborate, each specializing in a different aspect of algorithm
improvement (e.g., one for heuristic discovery, another for code optimization, a
third for performance testing). Such a collaborative multi-agent system could
significantly accelerate the discovery and refinement of existing optimization al-
gorithms, potentially leading to major breakthroughs in efficiency and solution
quality [96, 124]. This paradigm shift could transform how optimization algo-
rithms are designed and deployed.

3. Programming Language Translation. Optimization algorithms, especially high-
performance ones, are often implemented in languages like C++ for speed, but
might need to be translated to other languages (e.g., Python for prototyping, Java
for enterprise systems) for broader applicability, easier integration, or improved
maintainability. This translation process is typically labor-intensive and prone
to errors. LLMs, with their advanced understanding of code syntax and seman-

6.6. Conclusions 101

tics, can significantly assist in this process [160, 109]. They could automate large
parts of the translation, identify potential performance bottlenecks in the target
language, and even suggest idiomatic translations that preserve or enhance effi-
ciency. While LLMs offer a powerful starting point, domain-specific fine-tuning
on optimization codebases might be necessary to achieve highly optimized and
bug-free translations.

An important question arises: should the LLM receive credit for discovering a su-
perior heuristic compared to a human expert’s best implementation? While prompt de-
sign influences outcomes, questions concerning authorship, ownership, and Al’s role

in scientific discovery warrant further consideration [215].

6.6 Conclusions

Our research demonstrates the effective application of LLMs to enhance existing op-
timization algorithms. Using the non-trivial C++ implementation of the Construct,
Merge, Solve, and Adapt (CMSA) algorithm for the Maximum Independent Set prob-
lem, GPT-40 successfully understood its operational context via in-context prompts. It
then proposed conceptually new heuristics for the probabilistic construction phase. A
thorough comparative analysis showed these LLM-suggested heuristics outperformed
expert-implemented ones, highlighting LLMs’” potential not merely as tools, but as in-
telligent collaborators in complex algorithm design.

This study demonstrates the feasibility of using LLMs as assistants in the design
of complex hybrid metaheuristics like CMSA. Leveraging their semantic anal-
ysis capabilities, LLMs can detect underutilized variables or structures within
the code and suggest meaningful ways to integrate them into other parts of the
implementation.

Once this work was completed, in early 2025, I wanted to continue along this
line of research. I believed (and still believe) that it could be highly valuable
not only for researchers but also for people without a strong theoretical back-
ground in computational optimization. This led to my next investigation—see
the following chapter.

Improvement of Optimization
Algorithms with Large Language
Models by Non-expert Users

Foundational Work for This Chapter

This chapter is based on the following publication:

e Title: Combinatorial Optimization for All: Using LLMs to Aid Non-Experts in
Improving Optimization Algorithms

e Published in: arXiv

e Type: Journal Paper (under revision)

e Year: 2025

e Optimization algorithms used: Ant Colony Optimization (ACO)

e Main contribution: Boost the effectiveness of optimization algorithms by
assisting non-expert users in generating better code through Large Lan-
guage Models

e Problem addressed: Travelling Salesman Problem

e Type of contribution: Methodological

e DOI: https://arxiv.org/abs/2503.10968

7.1 Introduction

Large Language Models (LLMs) possess vast knowledge, including the implementa-
tion details of a wide range of algorithms. One might therefore assume that if an
LLM can meaningfully assist in improving a lesser known algorithm like CMSA—with
limited examples available online (see previous Chapter 6)— its suggestions for well-
known classical algorithms could be even more effective.

102

https://arxiv.org/abs/2503.10968

7.2. Background 103

Thus, we decided to go beyond testing a single metaheuristic and instead evaluate
multiple optimization algorithms for a well-known combinatorial problem: the Trav-
elling Salesman Problem (TSP). Our selection includes metaheuristics, reinforcement
learning algorithms, deterministic heuristics, and exact methods, evaluated using var-
ious state-of-the-art LLMs. As such, this work adopts a benchmarking perspective,
systematically assessing the capabilities of LLMs to improve or modernize classic im-
plementations across a diverse set of algorithmic families.

I must admit that working on this project was incredibly enjoyable—not only be-
cause of what we discovered (that LLMs can successfully update optimization algo-
rithm implementations written in Python!) but also because it suggests a broader im-
plication: when properly integrated, an LLM could meaningfully assist individuals
without theoretical knowledge of combinatorial optimization.

% % %

In this work, we present the first large-scale, systematic evaluation of LLMs’ ability
to upgrade classical algorithms across diverse families—including metaheuristics, re-
inforcement learning, deterministic heuristics, and exact methods. Our study centers
on the canonical Travelling Salesman Problem (TSP), using a simple and reproducible
prompting strategy via a chatbot interface. Although our experiments focus on the TSP,
its foundational nature as a permutation problem makes it a representative case for a
wide range of combinatorial problems, such as the Vehicle Routing Problem, Hamilto-
nian Cycle Problem, and Sequential Ordering Problem. All of these share a core chal-
lenge: determining the optimal order in which tasks should be performed to minimize
total cost.

Our findings show that LLMs can propose and implement meaningful en-
hancements, including modernizing algorithmic components and optimizing data
structures—often reducing code complexity compared to the original implementation.
Importantly, these improvements are applied not to isolated heuristic snippets, as
in prior work, but to full algorithmic codebases. We also analyze instances where
the suggested improvements were marginal or ineffective, highlighting the current
boundaries of the approach.

Ultimately, this work demonstrates a practical methodology that enables practition-
ers without deep expertise in optimization to access high-performance algorithmic de-
signs, harnessing the extensive embedded knowledge of modern LLMs. A conceptual
overview of our framework using a Genetic Algorithm is shown in Figure 7.1.

7.2 Background

7.2.1 Large Language Models in Combinatorial Optimization

Large Language Models (LLMs) have recently shown promise in optimization
tasks [235, 126, 89] by exploiting the vast knowledge gained during their pre-training

7. Improvement of Optimization Algorithms with LLMs by Non-expert Users

104

Table 7.1: Expanded Comparative Analysis of LLM-based Algorithm Design Approaches

Improving Existing
Feature Our Work Optimization = Algo- AlphaEvolve [152] LLaMEA/ReEvo. [194, m::m.mﬁ.,nr\m,\o
. 236] Heuristics [175, 123]
rithms [183]
To provide a large-| To demonstrate a proof To mﬁo:ogoc.m_%
evolve a population To generate new meta- . e
scale benchmark on | of concept through the) : - ... To discover specific
.) .~ of algorithms starting heuristics or heuristic))
. enhancing complete | improvement of a sin- : mathematical functions
Main Goal) from a seed program, components using an L
implementations of | gle, complex heuristic in . . or heuristics from
W . leveraging LLM-based evolutionary computa-
existing algorithms | a state-of-the-art algo- . . . scratch.
. s . agents to discover im- tion loop.
from diverse families. rithm.)
proved variants.
Nv nog_o_mwm\. func- | The noﬂ% lete nm.un_m An initial “seed” algo- A mmﬁ.om p 35@%.8@ A problem description
tional code file from | of a single, high- . . resenting algorithm
LLM Input rithm and a fitness func- and a code skeleton for
a well-known frame- | performance algo- . components (e.g., oper- e .
. tion. a specific function.
work [162]. rithm. ators).
. Evolutionary loop Evolutionary loop
Interactive LLM-driven FKBQ.E@ :.LZ where the LLM acts as where the LLM acts as Program search - tree
prompting to refine where the LLM pro-

Improvement Process

User’s Role

Key Contribution

prompting and refine-
ment of full algorithms.

Practitioner/Non-
expert: Provides base
code, validates final
solution.

A systematic bench-

mark demonstrating
that a single, prompt-
based methodology
can holistically im-
prove algorithms
from diverse families
without specialized

theoretical knowledge.

a specific heuristic or
function.

Expert: Seeks to
enhance a specific,
already-strong algo-

rithm.

A case study demon-
strating the feasibility
of LLM-based enhance-
ment on a complex,
expert-level algorithm.

an advanced mutation
operator to generate
new programs.

Expert: Designs the
evolutionary process
and fitness function.

An evolutionary
framework for auto-
mated program search
and algorithm improve-
ment.

a crossover/mutation
operator on algorithm
components.

Expert: Designs the
evolutionary frame-
work and component
prompts.

A framework for the
automatic generation of
algorithms.

poses new function
implementations.

Expert: Defines the
problem, evaluator,
and code structure.

A method for the auto-
matic discovery of func-
tions/heuristics.

7.2. Background 105

Incorporated new techniques
Pre-builts prompts

Initialization with nearest

/ neighbor heuristic
ﬁ

— { } > Memetic local search

New Genetic .
Algorithm New adaptive operator

selection

Improve this Genetic
Algorlthm
=
v=
v N
ln- o

Non-expert user

Baseline version

@_.

Genetic
Algorithm

Interactions

Figure 7.1: A non-expert user’s interaction with an LLM can enhance an existing genetic algorithm by
incorporating modern techniques.

phase. Beyond guiding the optimization process, LLMs excel at detecting patterns,
identifying key features in problem instances, and refining search spaces. They
have also shown to be able to generate new heuristics tailored to specific problems.
Furthermore, LLMs offer valuable insights by explaining the results of optimization
problems, making them versatile tools for both solving and interpreting complex
tasks.

As in previous chapters of this thesis, we focus on a specific type of optimization
problem: combinatorial problems. These problems have unique properties that set
them apart: many valid solutions (including the existence of equivalent or similar
solutions), decomposability (some problems can be broken down into smaller, more
manageable subproblems), constraint handling (a set of rules that define valid solu-
tions), and search space structure (the presence of multiple local optima, requiring
well-chosen search strategies to avoid getting trapped in suboptimal solutions), among
others.

As aresult, researchers in this field must not only be knowledgeable about combina-
torial optimization problems but also highly proficient in implementing optimization
algorithms. Given the importance of computational efficiency, factors such as memory
optimization, effective data structure management, minimizing unnecessary abstrac-
tions, and carefully selecting the right programming language play a crucial role in the
design and development of these algorithms.

The rapid advancements in using LLMs as black-box collaborators for optimization
demand a clear positioning of new methodologies. Table 7.1 delineates our work’s
unique contributions in this crowded landscape. Specifically, our approach is distin-
guished by:

e Systematic Scope over Anecdotal Evidence. Where prior work often provides
proofs-of-concept on a limited set of algorithms, we deliver a systematic bench-

106 7. Improvement of Optimization Algorithms with LLMs by Non-expert Users

mark across ten algorithms spanning four distinct families. We prove that a
straightforward, reproducible prompting strategy is robust enough to yield sig-
nificant performance gains across this diverse set without compromising code
stability.

e Practitioner-Centric Design over Expert-Centric Frameworks. Our methodol-
ogy marks a fundamental departure from expert-centric systems that require
designing complex evolutionary loops or prompt engineering strategies. It is
uniquely designed for the practitioner—a user with programming skills but lack-
ing deep theoretical expertise. Our work is the first to demonstrate a path for
these users to upgrade complete, monolithic codebases, rather than just optimiz-
ing isolated functions. This holistic approach significantly lowers the barrier for
applying state-of-the-art optimization techniques.

To introduce this novel research direction, the next two subsections present a clas-
sic combinatorial optimization problem along with ten traditional optimization algo-
rithms, grouped into four distinct categories. Then, in the methodology section, Sec-
tion 7.3, we demonstrate how LLMs can be leveraged to enhance these ten algorithms,

improving both performance and efficiency while streamlining their implementations.

7.2.2 Problem Definition

The Travelling Salesman Problem (TSP) is one of the most iconic and extensively stud-
ied problems in combinatorial optimization, serving as a foundational pillar in both
Artificial Intelligence and Operations Research. Its simplicity in definition belies its
profound computational complexity, making it a benchmark for evaluating new al-
gorithmic paradigms. Formally, let C = {c1,c2,...,c,} be a set of n cities, and let
D : C xC — Ry be a function that assigns a non-negative distance between each
pair of cities. This distance function can represent Euclidean distances, road distances,
or any other relevant metric. The objective of the TSP is to find a permutation 7 of
the indices {1, 2, ..., n} that minimizes the total travel distance of a closed tour, where
each city is visited exactly once before returning to the starting city. This objective is
formally defined as:

mES,

n—1
min {Z D(cn(iy, Cr(i+1)) + D(Crny, C?‘((l))} ,
p

where S, denotes the set of all possible permutations of {1,2,...,n}. The problem is
known to be NP-hard, meaning that no polynomial-time algorithm is known to find
the optimal solution for large instances, necessitating the use of heuristics and meta-
heuristics.

For this study, we specifically selected the TSP due to the vast amount of high-
quality implementations available online. This includes extensive public code reposito-
ries (e.g., GitHub), numerous textbooks, and a multitude of scientific articles detailing

7.2. Background 107

various exact and approximate solution techniques. This widespread availability of
code and conceptual knowledge strongly suggests that LLMs likely possess extensive
pre-training knowledge regarding effective strategies and implementations for solving
the TSP [132]. This makes it an ideal candidate for exploring LLMs’ capabilities in code
generation and optimization within a well-understood domain.

7.2.3 Traditional Optimization Algorithms for the TSP

Algorithms for solving the TSP encompass a broad variety of forms and approaches, re-
flecting decades of research in combinatorial optimization. For this study, we have care-
tully chosen ten distinct optimization algorithms, summarized in Table 7.2. These algo-
rithms are specifically categorized into four fundamental groups: metaheuristic meth-
ods (which are stochastic, iterative optimization algorithms), reinforcement learning
(representing policy-driven approaches), deterministic heuristics (simple, rule-based
methods), and an exact algorithm (guaranteeing optimality). These four algorithm
categories can be briefly characterized as follows:

1. Metaheuristics [22] are high-level problem-independent algorithmic frame-
works that provide a set of guidelines or strategies to develop specific optimiza-
tion algorithms. They are versatile optimization methods that use heuristic
and stochastic principles to explore vast solution spaces. While they do not
guarantee finding the global optimum, they are highly effective in efficiently
finding high-quality, near-optimal solutions for complex, NP-hard problems
within reasonable computational time. Examples include Genetic Algorithms,
Simulated Annealing, and Ant Colony Optimization.

2. Reinforcement Learning (RL) [224] is a machine learning paradigm where an
autonomous agent learns optimal decision-making by interacting with an envi-
ronment. The agent performs actions, receives feedback in the form of rewards or
penalties, and iteratively adjusts its policy to maximize cumulative rewards over
time. In the context of combinatorial optimization, RL agents can learn to con-
struct or improve solutions by making sequential decisions, often outperforming
traditional heuristics by adapting to problem structures.

3. Deterministic heuristics [139] are among the most basic and computationally
inexpensive algorithms for combinatorial optimization. They operate by follow-
ing a fixed set of rules or a greedy strategy at each step to construct a solution
from scratch. Unlike metaheuristics, they do not involve randomness or iterative
improvement. They generally produce only one solution, making a myopic, de-
terministic decision at each step. While fast, they often get stuck in local optima
and do not guarantee solution quality. Examples include Nearest Neighbor and
Cheapest Insertion.

4. Exact algorithms [139] are designed to find the provably optimal solution for a
given problem instance. They ensure optimality by exhaustively exploring the
entire solution space, either explicitly or implicitly (e.g., through pruning tech-

7. Improvement of Optimization Algorithms with LLMs by Non-expert Users

108

Table 7.2: Overview of Selected Algorithms for Solving the Travelling Salesman Problem (TSP)

Algorithm Characteristics Application to TSP
Metaheuristic
Simulates ants’ foraging behavior where solutions
Ant Colony Optimization (ACO) [59] Probabilisticc ~ pheromone-based (routes) are constructed based on pheromone trails left
learning by previous solutions.

Genetic Algorithm (GA) [167]

Adaptive Large Neighborhood Search (ALNS) [176]

Tabu Search (TABU) [73]

Simulated Annealing (SA) [104]

Population-based, crossover, muta-
tion

Adaptive destruction and recon-
struction

Use of memory structures (tabu
lists)

Probabilistic,
search”

temperature-based

Generates a population of routes and evolves them
through selection, crossover, and mutation to find near-
optimal solutions.

Iteratively destroys and reconstructs routes, dynamically
adjusting strategies based on previous performance.

Iteratively modifies routes while keeping a list of features
of previously visited solutions to prevent revisits.

Iteratively refines a route by accepting worse solutions
with a decreasing probability to escape local optima.

Reinforcement Learning

Q_Learning [216]

SARSA [216]

Value-based learning, exploration-
exploitation trade-off

On-policy learning, continuous up-
dates

Learns an optimal routing policy by iteratively updating
action-value functions based on rewards from different
paths.

Uses an on-policy approach to learning optimal routing
strategies based on real-time interactions with the environ-
ment.

Deterministic Heuristic

Christofides [48]

Convex Hull [61]

Guarantees 1.5-optimality, MST-

based

Geometric approach

Constructs a minimum spanning tree, finds perfect match-
ing, and combines them to form a tour.

Starts with a convex hull and incrementally inserts remain-
ing points in a way that minimizes travel distance.

Exact

Branch and Bound (BB) [148]

Systematic enumeration, pruning

Explores all possible solutions while pruning suboptimal
paths to guarantee optimality.

7.3. Methodology 109

niques like branch-and-bound). While they guarantee the best possible solution,
their computational complexity typically grows exponentially with problem size,
making them impractical for large-scale instances of NP-hard problems like the
TSP.

The deliberate choice of algorithms from these four diverse categories guarantees that
our LLM-based improvement framework is tested across a broad spectrum of method-
ologies. This is crucial because, although all selected algorithms address the same prob-
lem (TSP), they vary fundamentally in their underlying principles, search strategies,
and computational characteristics, providing a robust testbed for LLM capabilities.

724 Selected Implementations

To minimize the possibility of implementation errors in the ten algorithms for solving
the TSP, and to ensure that these implementations are being utilized by the community,
we employed pyCombinatorial [162].! This Python library, which includes a whole
range of optimization algorithms for solving the TSP, has received over 100 stars on
GitHub and was created by Valdecy Pereira. Each implementation is based on a stan-
dard algorithm variant, providing us with an excellent testing environment for attempt-
ing to improve them using LLMs. In the next section, we detail our methodology for
improving optimization algorithms.

7.3 Methodology

7.3.1 Enhancing Traditional Optimization Algorithms with Large Lan-
guage Models

We introduce a methodology based on LLM interactions to generate enhanced versions
of the 10 before-mentioned algorithms, building upon and extending the approach
proposed by [183] (see Figure 7.1). This process can be replicated using the chatbot
available at the project URL.?

Given the initial set {A; | i = 1,...,10} of 10 original algorithm codes and an LLM,
the algorithm improvement process can technically be stated as follows. First, a prompt
P; is generated based on our general prompt template T (shown in the second column
of this page), the algorithm name N;, the signature of the main function S;, and the
algorithm code A;:

P; = Probuce_Promer(T,N;, S;, A;), i=1,...,10 (7.1)

Then, the generated prompt P; is executed by the LLM given a set of hyperparameters

1 https://github.com/Valdecy/pyCombinatorial
2https://camilochs.github.io/comb-opt-for-all/

https://scholar.google.com/citations?user=YPvpg9UAAAAJ&hl=pt-BR
https://github.com/Valdecy/pyCombinatorial
https://camilochs.github.io/comb-opt-for-all/

110 7. Improvement of Optimization Algorithms with LLMs by Non-expert Users

0, resulting in a changed/updated implementation A’:
A: = LLMexecute(Pi/ 9)/ i=1,...,10

To ensure correctness, each A7 undergoes a validation process (see below). If an
output fails validation, the refinement process is repeated iteratively until a valid ver-

sion is obtained.

Code Validation

The validation of A’ may fail for two reasons:

1. Execution errors: These lead to immediate failures during code runtime.
2. Logical inconsistencies: The algorithm executes without errors but produces
invalid TSP solutions.

In the first case, an error message e is generated, and the LLM refines the code based
on this feedback:
A: = LLMexecute(A;z 0,e)

For the second case, where the execution is error-free but the generated solutions are
invalid,® an explicit prompt requesting a correction is passed to the LLM, such as:

“The provided code generates invalid solutions; please verify and return a corrected version.”

The refinement loop proceeds until a valid code A’ is obtained. This process is carried
out through an interactive conversation with an LLM-based chatbot. To increase the
chances of generating a valid code with each retry, we begin with a high-temperature
setting, which is then progressively lowered in each iteration of the process.

In LLMSs, temperature controls the randomness of the model’s output. A higher
temperature (e.g., 1.0 or 2.0) makes the model’s responses more diverse and less
predictable, while a lower temperature (e.g., 0.2) makes the output more deter-
ministic and stable.

Table 7.3 shows the results of this procedure for the five selected LLMs.* A green
checkmark () indicates that the first obtained A} was valid, while a red cross (X) sig-
nifies that corrections were necessary due to either of the two code failures. A double
red cross (%) indicates that both failures occurred. Moreover, in the case of correc-
tions, the number of necessary corrections is provided in a second column. Note that
Table 7.3, below the LLM names, also indicates the initial temperature setting.

3 To validate whether a solution is invalid, one must use a function that checks its feasibility. For example,
in the case of the TSP, a requirement could be that each city appears exactly once in the tour.
4 The reasoning behind selecting these five LLMs (rather than others) will be explained in Section 7.4.

7.3. Methodology 111

Table 7.3: Analysis of the Code Generation Process

Claude-3.5-Sonnet Gemini-exp-1206 Llama-3.3-70B GPT-01 DeepSeek-R1

Algorithm (temp =1.0) (temp = 2.0) (temp =1.0) (temp =1.0) (temp =1.0)
Success Success Success Success Success

1st Try # Attempts | 1st Try # Attempts | 1st Try # Attempts | 1st Try # Attempts | 1st Try # Attempts
ACO X 1 v - v - v - v -
GA v - X 1 v < 3 v -
ALNS X 1 v - v - v - < 3
TABU v - v - v - v - v -
SA v - v - v - v - v -
Q_Learning X - v - v - v - v -
SARSA X - v - v - v - v -
Christofides X - v - v - v - v -
Convex Hull X 1 v - v - v - v -
Branch and Bound v - ‘ < 4 ‘ v - ‘ v - ‘ v -

7.3.2 Prompt Design: A Focus on Simplicity and Accessibility

A central hypothesis of this study is that significant algorithmic improvements can be
achieved without requiring users to possess deep expertise in prompt engineering. To
test this, we developed a single, standardized prompt template. The design of this
prompt is intentionally basic.

Our objective is not to engage in an exhaustive search for the “optimal” algorithm
variant through elaborate prompting, which constitutes a separate research direction.
Instead, our goal is to establish a reproducible baseline for what LLMs can achieve
when prompted by a non-expert user. This approach directly aligns with our focus on
accessibility and allows us to isolate the LLM’s intrinsic ability to enhance code.

Despite its simplicity, the prompt’s formulation provides clear, high-level directives.
It focuses the LLM on two critical performance axes—(1) improving solution quality
and (2) accelerating convergence—and explicitly encourages the integration of state-
of-the-art techniques to achieve these goals. The template is shown below:

Prompt Template

You are an optimization algorithm expert.

I need to improve this {{algorithm
name}} implementation for the travelling salesman problem (TSP

) by incorporating state-of-the-art techniques. Focus on:

1. Finding better quality solutions

2. Faster convergence time

112 7. Improvement of Optimization Algorithms with LLMs by Non-expert Users

Requirements:
- Keep the main function signature: {{the signature of an the main
function}}
- Include detailed docstrings explaining:
* What improvement is implemented
* How it enhances performance
* Which state-of-the-art technique it is based on
- All explanations must be within docstrings, no additional text

- Check that there are no errors in the code

IMPORTANT :

- Return ONLY Python code

- Any explanation or discussion must be inside docstrings
- At the end, include a comment block listing unmodified

functions from the original code

Current implementation:
{{algorithm codel}}

The prompt template begins with “You are an optimization algorithm expert,” a tech-
nique known as “role prompting”, which has been empirically shown to guide LLMs
toward a specific behavior or specialization [108, 11]. By setting a clear context from
the outset, it enhances both the relevance and quality of the model’s response.

This approach aligns with “in-context learning” [58, 115, 187], combining an exter-
nal context (the user-provided code in the prompt) with an internal one (the LLM’s
knowledge of various techniques to improve the TSP algorithm).

An important insight: supplying a complete algorithm code within the prompt
works like a ‘map,” guiding the model on how to update the code. The LLM
must preserve the overall structure, making modifications only in the relevant
sections without breaking the logic. Without this external context (the provided
algorithm), the model’s solution would likely be more constrained and less ef-
fective, as it would have to generate everything from scratch. In contrast, with
an initial codebase, the model can focus on refining and improving specific areas
rather than rebuilding the entire algorithm code from scratch. In other words,
the provided code influences the update proposed by the LLM [58, 183].

As technically indicated already in Eq. 7.1, the prompt template receives three dy-
namic variables that are placed in the corresponding positions in the prompt template
(enclosed within {{ ... }}):

e Algorithm’s name: steers the LLM toward a specific context.
e Main function’s signature: ensures the initial function’s input arguments, out-

put values, and name remain unchanged, preventing unintended modifications

7.4. Experimental evaluation 113

that could affect compatibility with the original code.
e Algorithm code: the optimization algorithm’s original implementation in
Python.

Additionally, we explicitly instruct the LLM to report the modifications it makes (“In-
clude detailed docstrings explaining: ...”). This step is essential, as it enables us—as shown
in Section 7.4—to understand why a particular LLM’ code outperforms the original or
another model’s code.

7.4 Experimental evaluation

In this section, we present experiments with the 10 previously mentioned optimiza-
tion algorithm codes taken from pyCombinatorial. We describe our setup for utilizing
LLMs, the parameter tuning of the stochastic algorithms, the TSP datasets and evalua-
tion metrics employed, and the comparative analysis of the results. We highlight key
details from the generation process and conclude with an analysis concerning code
complexity.

7.4.1 Setup
LLMs Environment

We selected five leading code-generation LLMs: Anthropic Claude-3.5-Sonnet [202],
Google Gemini-exp-1206 [204], Meta Llama-3.3-70b [206], OpenAl GPT-O1 [156], and
DeepSeek-R1 [203]. For simplicity, we will refer to the models as Claude, Gemini,
Llama, O1, and R1 throughout the remainder of this work. Note that these LLMs
rank among the top models in the LiveBench benchmark [223], which is immune to
both test set contamination and the biases of LLM-based and human crowdsourced
evaluations (as of February 2025). Using the OpenRouter API, we executed identical
prompts across all models, enabling straightforward model switching for transparent
experimentation. This produced 50 new algorithm codes which, combined with the
10 original algorithm codes from the pyCombinatorial framework, gave us 60 Python
files ready for evaluation.

Hardware Environment
All experiments, including parameter tuning, are conducted on a cluster equipped with
Intel® Xeon® CPU 5670 processors (12 cores at 2.933 GHz) and 32 GB of RAM.

Parameter Tuning

While the deterministic heuristics and the branch and bound method are parameter-
less, the seven probabilistic approaches (five metaheuristics and two reinforcement
learning algorithms) require careful parameter tuning to perform well. Consequently,
we tuned all 42 stochastic algorithm codes: the 7 original versions and the 35 new

114 7. Improvement of Optimization Algorithms with LLMs by Non-expert Users

variants generated by the LLMs. To ensure a fair and robust comparison, we employed
irace [129], a well-established automatic algorithm configuration tool. The tuning
process was executed as parallel jobs on the SLURM cluster described in Section 7.4.1.
For each algorithm execution during the tuning phase, the CPU time limit was set to
the number of cities in the instance (in seconds). Table 7.4 details the parameter ranges
considered for tuning each algorithm variant, as well as the final best configurations
selected by irace.

Parameter tuning in stochastic algorithms with parameters is essential, as subop-
timal configurations can lead to poor performance regardless of the algorithm’s
inherent quality. For instance, in ACO, we tune key parameters—m (number
of ants), a, B, and p (pheromone decay)—for all six code variants (five LLM-
generated ones plus the original) to ensure they operate under optimal condi-
tions for the TSP problem. This guarantees a fair evaluation, as each code variant
is assessed using its best possible configuration.

7.4.2 Benchmark Datasets and Evaluation Metrics

To evaluate all algorithm codes, we use problem instances from the well-known TSPLib
library [172]. We select 10 instances from the available ones, ranging from a small in-
stance with 99 cities to a large one with 1084 cities.” This selection ensures a comparison
across a diverse set of problem instance sizes.

As an evaluation metric, we used the objective function value of the best-found so-
lution in all cases except for the Branch and Bound (BB) codes. This is because BB
is an exact algorithm that, if given enough computation time, will always find an op-
timal solution. Therefore, we use runtime as the evaluation metric in the case of BB.
Moreover, as the runtime of BB for the 10 selected problem instances is very high, we
instead generate 10 random TSP instances with 10 to 15 cities for the evaluation of the
BB codes. Interestingly, as we will see in the comparative analysis subsection, some
LLM-generated versions of BB incorporate heuristic mechanisms during algorithm ini-

tialization, leading to significant improvements in runtime performance.

7.4.3 Experimental Design

The experiments were designed as follows:

e Stochastic Algorithms. Each of the metaheuristics and reinforcement learning
codes is applied 30 times independently to each of the 10 problem instances. The
output of each run is the best solution found. Performing 30 independent al-
gorithm executions for each problem instance is a common practice in the opti-
mization community to obtain a reliable estimate of the algorithm’s performance.

5 TSPLib names of the selected TSP instances: ra199, B1ER127, D198, 280, F417, ALI535, GR666, U724, Pr1002,
and vm1084.

7.4. Experimental evaluation

115

Table 7.4: Parameter values obtained by tuning with irace. Ranges show minimum /maximum values

considered for tuning.

R
£ S
=3 /M
O =
x® . v
- «s ¢ @ g
< A - D =)
g g g & Q 4
13 2 g = =~ &
‘B — 7} = A)
Algorithm | Parameter Range © v © ~ © A
Metaheuristics
ACO m (ants) (2,20) 7 4 2 3 17 20
a (alpha) (1.0,2.0) 1.34 1.72 1.67 1.46 1.72 1.22
B (beta) (1.0,2.0) 1.59 1.24 1.98 1.97 1.93 1.55
p (decay) (0.01,0.3) 0.24 0.12 0.24 0.29 0.06 0.05
GA N (population size) (5,100) 97 14 97 84 55 58
U (mutation rate) (0.01,0.2) 0.02 0.04 0.16 0.16 0.01 0.13
e (elite) (1,5) 4 2 5 2 3 5
ALNS A (removal fraction) (0.05,0.3) 0.27 0.05 0.26 0.29 0.22 0.29
p (tho) (0.01,0.3) 0.27 0.25 0.04 0.2 0.27 0.02
TABU T (tabu tenure) (3,30) 8 12 30 15 10 9
SA Tp (initial temperature) (1, 50) 12 49 9 30 35 50
Ty (final temperature) (0.0001,0.1) | 0.0547 0.0464 0.074 0.056 0.0433 0.048
a (cooling rate) (0.8,0.99) 0.9895 0.8732 0.8956 0.8131 0.9154 0.8777
Reinforcement Learning
RL_QL Ir (learning rate) (0.01, 0.5) 0.44 0.15 0.26 0.49 0.46 0.34
df (decay factor) (0.8,0.99) 0.97 0.82 0.98 0.87 0.98 0.82
€ (epsilon) (0.01,0.3) 0.09 0.28 0.03 0.24 0.21 0.13
E (episodes) (1000,10000) | 4266 1082 4906 2474 1294 1989
SARSA Ir (learning rate) (0.01, 0.5) 0.04 0.36 0.49 0.19 0.41 0.29
df (decay factor) (0.8,0.99) 0.86 091 0.80 0.88 0.83 0.87
€ (epsilon) (0.01,0.3) 0.23 0.18 0.16 0.08 0.12 0.16
E (episodes) (100, 5000) 105 156 1850 137 124 1711

Moreover, the CPU time limit for each algorithm execution is set to the number

of cities (in seconds) of the tackled problem instance. For example, the run-time

limit for rRAT99 is 99 seconds. This method, which aligns execution time with the

instance size, is a common practice for comparing algorithms that solve the TSP.

e Deterministic Heuristics. Christofides and Convex Hull, since they are deter-

ministic heuristics, always yield the same result for a given problem instance.

Therefore, all corresponding codes are executed exactly once per instance.

116 7. Improvement of Optimization Algorithms with LLMs by Non-expert Users

e Branch and Bound. As previously mentioned, since Branch and Bound is an
exact algorithm, the focus is on runtime rather than solution quality. All Branch
and Bound codes are applied 30 times to each of the small problem instances
specifically generated for the evaluation of the Branch and Bound codes.

7.4.4 Comparative Analysis with Original Algorithm Codes

The comparative analysis between the LLM-updated algorithm codes and the original
algorithm codes (referred to as ‘original” from now on) is studied in the following in a
separate way depending on the type of optimization algorithm.

Metaheuristics

The results of all metaheuristic codes are shown by means of boxplots in Figure 7.2.
Note that the y-axes are shown in a logarithmic scale.

1. ACO: Apart from the first problem instance (rRa199) where the LLM-generated
codes of Gemini, O1, and R1 perform similarly to the original code, in all other
problem instances the LLM-generated codes of the mentioned three LLMs out-
perform the original code with statistical significance. It also appears that the
LLM-generated codes of Ol and R1 are somewhat more robust than the origi-
nal code, which can be seen in smaller boxes. In contrast, the code generated by
Claude, apart from the first problem instance, performs always worse than the
original code. Finally, the Llama-generated code generally performs similarly to
the original code, with the exception of the first problem instance.

2. GA: The original code exhibits very low robustness for the first two problem in-
stances, which can be seen by the large boxes. Generally, most codes (except
for R1) are quickly trapped in local optima which they cannot escape. The R1-
generated code clearly outperforms all others, including the original.

3. ALNS: Generally, the best-performing codes are those by Claude and Gemini,
with a slight advantage for Gemini in the last two instances. Another noteworthy
aspect is the low robustness of the Ol-generated code in this case.

4. TABU: Like in the case of GA, also the TABU code generated by R1 significantly
outperforms the remaining codes. Only the Ol-generated code can compete for
the smallest two problem instances. This suggests that R1 excels at generating
efficient optimization algorithms.

5. SA: The Claude-generated codes clearly show the weakest performance here. In
contrast, the R1-generated code again outperforms the remaining ones.

Reinforcement Learning (RL)

In Figure 7.3, the RL codes generated by the LLMs are compared with the original RL
codes. The displayed results differ from the metaheuristics case presented before in two
key aspects. First, some LLM-generated codes fail to produce a result for all problem

7.4. Experimental evaluation 117

rat99 bier127 d198 a280 fla17 ali535 gr666 u724 pr1002 vm1084
- 13ex10® 32x10 o 288x10° .
8 ° o " i, "
o, o - 17ax0* - 2510 N e’ san0’ M a3x10
E 0 . 17210t e 7 2ase10’ o soxc? e saent azewt
= - l P 170 oe10’) pen s’ . soe’
05~ | , " -
; - Ao > ’ 1
E=P o [T e o) preew)
S :)) 5 i
1225%10° ° 16x10° ae ° 215%10" ° ° o .
oo o ot e
- _
Y 6x10° Y = e = == ~e—= - === o -— - - ——— —% oo
>
2
5 et -
3 4x10°
«C ane + .)
u C 30
) s -
3 °
é - 2 -| - = & - N N |
- -
P P 3 o . . . B °
2 o . 8 o e . .
= ax10’
© ©°
2 suid
2 & oo . e .
- c
<8 2erd oal— R | | me .
= .
©
» 8 4 ° . . .
e FL] B e amll ;-1'1' 2 %{-&§ {. ?-‘i ks ’--'i # FoE L e *Q&i =| e L
. - - it
onio -
° ® ?{.-I- g gt gt e P ———
>, s A % &
=
= 8
>3 1h
@ e -)
<< -
g
S -
3 . B . i
&5 *i - 8-1- 2 2 = - 2 -
oot - - -
22010 o - sss sz 9?4--5-& = _==3 I— Y P— P
c s
Z umr s
© e .
S roew
«C 1ssnsd
Pt ° e -
3 e h ¥ .
N T PR 8
X 8T om0 o - - kil &) 2 = -
vl
SEEESL S SE OIS SEESEE LSS EAE S SE LIS SEEEAE S EESSE SEESEE SSESSL S SESSE
G L S S S T S A S 5
o B B0 % y Y 27 9 5 o
ST A S LG 2 U A o S
Algorithm Codes

W Original W Claude-3.5-Sonnet B Gemini-exp-1206 B LLaMA-3.3-70B s GPT-O1 W DeepSeek-R1

Figure 7.2: Comparison of the metaheuristic codes generated by the five LLMs with the original codes.
Remember that the TSP is a minimization problem, that is, the lower the values, the better. The y-axes
are shown in a logarithmic scale.

instances within the time limit. These cases are marked as N/A. Second, especially in
the case of Q_Learning the original code performs more competitively. We analyze
these aspects below:

6. Q_learning: The original code is actually the best-performing one in this case.
The Llama-generated code is the only one that achieves a nearly comparable
performance—an unexpected result given Llama’s poor performance in the case
of the metaheuristics. In addition, the Claude-generated code outperforms the
original one on the raT99 and 280 instances.

7. SARSA: The general picture here aligns more with that observed in the case of
the metaheuristics. The original code struggles (in comparison to some LLM-
generated codes) as instance sizes grow larger. The R1-generated code fails to
produce results for the largest three instances. The only code maintaining a stable

118 7. Improvement of Optimization Algorithms with LLMs by Non-expert Users
rat99 bier127 d198 a280 fl417 ali535 gr666 u724 pr1002 vm1084
, 14x%10° 26x10" L] o & - _% = | —
U)E 136 10" 35w 10" 240 % 6x10°
£, - SR ! 3
g5 s25x10) i & - oot o
s wet| | oflq| 7) S] |
=5 oo ° ax0 “a
o5, I ° .
B - ; o8 L@ i .
an0 - ot T - % . = B9 o = e
1.42x10° o 134 10° 4x0 8 e = = 3 % - = e
° i; 2x10° %% i %'-I- 2 %2 * éé +
> o 1.32x10° ° % sx1®
E) o) o
a CC’ a6 7o
L0 o 120010 o o~
S . .
NS5 o . g > i
5 é 0| B g
I | o ; o
s T e # £ 4 : 5 . 3
SEELI S S SELLN D St RN AN Lo AN SR SSELR D S &L
SHE T ST Y SRR ST oW ST T S
ST RS S e AN - - G A
Algorithm Codes
Original I Claude-3.5-Sonnet BN Gemini-exp-1206 I LLaMA-3.3-70B I GPT-O1 DeepSeek-R1

Figure 7.3: Comparison of the reinforcement learning (RL) codes generated by the five LLMs with the
original codes. Remember that the TSP is a minimization problem, that is, the lower the values, the better.
The y-axes is shown in logarithmic scale.

and strong performance across all 10 instances is the Ol-generated one.

Deterministic/Heuristic

Remember that, as the chosen heuristics are deterministic, there is no need to analyze

the distribution of their results over multiple runs. Therefore, in Figure 7.4, we simply

compare the GAP of the results produced by the LLM-generated codes (in percent)

relative to the results of the original codes. A positive value indicates that the respec-

tive

LLM-generated code outperforms the original, while a negative value suggests the

opposite.

8. Christofides (see Figure 7.4 (a)): While the Llama-generated code produces very

similar results to the original code over the whole instance range, the Gemini-
generated code is (apart from instance p198) always inferior. Moreover, its rel-
ative performance decreases as instance size grows. Concerning O1 and R1, it
can be stated that the performance of their codes is slightly inferior to the one
of the original code for rather small problem instances. However, with growing
instance size, they clearly outperform the original code.

. Convex Hull (see Figure 7.4 (b)): In contrast to Christofides, the Convex Hull

codes generated by O1 and R1 perform rather poorly. In fact, the best code for
Convex Hull is the one generated by Gemini. This code has slight disadvantages
for smaller instances but increasingly outperforms the original code with growing
instance size. The code generated by Claude shows the opposite pattern. While
it outperforms the original code for smaller problem instances, its performance
strongly decreases with growing instance size.

7.4. Experimental evaluation 119

GAP % (vs Original)

GAP % (vs Original)

Performance Gap Compared to Original Code

=20 Algorithm Codes

B Claude-3.5-Sonnet
-25 . Gemini-exp-1206

B | LaMA-3.3-70B

= GPT-O1
—301 mmm DeepSeek-R1

‘9% (1’,\ Q"b q:bQ b"(\ ~°:>r§) Q)éo ,\q/‘x QQ"]/ Q‘bb‘
& & Q' N N S8 N N N
O <Q N
Instances
(a) Christofides
Performance Gap Compared to Original Code
24
04
_24
_44
Algorithm Codes

—6{ === Claude-3.5-Sonnet

I Gemini-exp-1206

e | aMA-3.3-70B
_g| == cPTO1

W DeepSeek-R1

6 O o O o

9O A D O A
9 NN <R Mt
' N N N N
K4 2 ¢ L

N
& ‘&é >
Instances

(b) Convex Hull

Figure 7.4: Comparison of the deterministic heuristic codes generated by the five LLMs with the original
codes. The bar plots show the performance gaps (in percent) relative to the original codes. Note that a
positive value indicates that the LLM-generated code produces a better solution.

120 7. Improvement of Optimization Algorithms with LLMs by Non-expert Users

Exact Approach

As already mentioned in Section 7.4.3 (Experimental Design), in the context of the

exact BB method, the comparison is based on computation time.

10. Branch and Bound: Figure 7.5 shows that the codes generated by O1 and R1
outperform both the original code. Notably, R1—an open-weight LLM—achieves
the best performance, surpassing all proprietary models. In contrast to O1 and
R1, the other LLM-generated codes perform worse than the original code.

, i ° Algorithm Codes
10 ; P Original
I Claude-3.5-Sonnet
0 B Gemini-exp-1206
1 i I | LaMA-3.3-70B
10 1 B GPT-O1
o [DeepSeek-R1
'-ga 0 0 L]
| 0
c 10
=
(14
-1
10
-2
10 |

Figure 7.5: Comparison of the BB codes generated by the five chosen LLMSs with the original BB code (in
terms of computation time). Each code was applied 30 times, and the y-axis is shown in a logarithmic

scale.

Summary: A notable conclusion is that LLMs can produce improved versions
of baseline algorithms, resulting in performance improvements without necessi-
tating specialized expertise in each algorithm. In the following subsection, we
showcase examples of code improvements achieved, for example, by integrating

more sophisticated algorithmic components.

7.4.5 Key Insights in Code Generation

Next, we explore why certain LLM-generated (or LLM-updated) codes outperform
the original ones. Our focus was to understand if this was due to optimized data struc-
tures, for example, or due to adding different algorithmic components. In particular,
we analyze four cases to address these questions on the basis of the LLM-generated

codes.

7.4. Experimental evaluation 121

Case 1: GA (R1-generated code)

The R1-generated version of GA features the following improvements, as stated by the
model itself by means of a docstring in the code, as requested in the prompt.

Improvements:

1. Hybrid initialization with nearest neighbor heuristic
Rank-based fitness + tournament selection

Adaptive operator selection (0X, ER, BCR)

Memetic local search with stochastic 2-opt

a > W N

Diversity preservation mechanisms

In particular, R1-generated GA is the only LLM-generated code that introduces
a modification to the population initialization by incorporating the nearest neighbor
heuristic. In contrast, both the original code and all other LLM-generated variants use
the following initialization function:

Function: Initial Population
def initial_population(population_size, distance_matrix):
population = []
for i in range (0, population_size):
seed = seed_function(distance_matrix)
population.append(seed)

return population

Instead, R1-generated GA features the following initialization that leads to an im-

proved performance.6

1def initial_population(population_size, distance_matrix):
2 """Initialize population with mix of random and heuristic solutions. Combines
diversity (random) with quality (NN) for better exploration. Implements hybrid

population initialization from modern metaheuristics."""

3 population = []

4 if population_size >= 5: # Include 207 NN seeds

5 for _ in range(max(l, population_size//5)):

6 population.append(nearest_neighbor_seed(distance_matrix))
7

8

9 return population

10 def nearest_neighbor_seed(distance_matrix):

11 """Generate initial solution using Nearest Neighbor heuristic. Provides high-
quality initial seeds to accelerate convergence. Based on constructive heuristic
methods commonly used in TSP."""

12

In particular, the GA is initialized with 20% nearest neighbor solutions for population
sizes of at least five individuals. This well-known TSP heuristic significantly speeds up
convergence. In this way, R1 shows its ability to ‘dig” into its knowledge base to choose

an alternative population initialization method and implement it effectively.

Case 2: SA (R1-generated code)

Also in the case of SA, R1 identifies and utilizes two well-known mechanisms rec-
ognized for their efficiency in solving the TSP: (1) the Lundy-Mees adaptive cool-

® Note that, in all Python code snippets shown in this work, “..” indicates omitted parts that are not
relevant.

122 7. Improvement of Optimization Algorithms with LLMs by Non-expert Users

ing schedule for improved temperature control, introduced years after the original
SA [131], and (2) the nearest neighbor heuristic for TSP. In the latter case, R1 inte-
grates the nearest neighbor heuristic for the TSP in a way similar to what it did in the
case of the GA, demonstrating a consistent pattern in leveraging effective initialization
strategies.

Case 3: SARSA (O1-generated code)

The Ol-generated SARSA code achieved the best results among the competitors. This
is due to being the only code to make use of Boltzmann Exploration (see code below).
Unfortunately, LLMs do not have the capacity to identify the exact source (book, sci-
entific article, etc) from which the information about Boltzmann Exploration was ex-
tracted. However, after reviewing the code, it is likely that it was sourced from a 2017
paper (see [9]), which suggests a Boltzmann operator for SARSA applied to the TSP.

In fact, the code below shows that, unlike the original code, O1 not only applies
a random operator to select the next unvisited city but also assigns a probability—
derived from the q_table data structure—to this choice (line 8), making the selection
more dynamic. Moreover, it avoids unnecessary abstractions (e.g., extra data struc-
tures) that could slow down the Python code.

1

2
3

O 0 N O Ul

10
11
12

while len(visited) < num_cities:
unvisited = [city for city in range(num_cities) if city not in visited]
Boltzmann exploration
g_values = q_table[current_city, unvisited]
exp_q = np.exp(qg_values / temperature)
probabilities = exp_q / np.sum(exp_q)
next_city = np.random.choice(unvisited, p=probabilities)
reward = -distance_matrix_normalized[current_city, next_city]

visited.add(next_city)

route.append(next_city)

13 ...

Case 4: BB (R1-generated code)

When studying why the BB code of R1 was faster than the original code, first we no-
ticed that, like in cases 7.4.5 and 7.4.5, R1 made use of the nearest neighbor heuristic for
initialization. Moreover, R1 modified the explore_path function of BB by dynamically
sorting the next candidates by edge weight to prioritize the cheapest/nearest extensions
tirst. Both updates are not trivial. R1 notes the following in the code comments: “En-
hancements reduce unnecessary branching and accelerate convergence through early solution
bias.” 7

In addition, the code snippet below is not present in the original code. O1 intro-
duces current_node and candidates efficiently, using slicing (lines 4 and 5) and sort-

ing with a lambda function (line 6) to enhance path exploration in BB. This new array-

7 This can be seen in line 48 of file bb_deepseek_r1.py of our online repository URL.

7.4. Experimental evaluation 123

based data structure is both efficient and implemented in a Pythonic style to improve
performance.

1 def explore_path(route, distance, distance_matrix, bound, weight, level, path, visited,

minil_list, min2_list):

current_node = path[level - 1]
candidates = [i for i in range(distance_matrix.shapel[0])
if distance_matrix[current_node, i] > 0 and not visited[il]

candidates = sorted(candidates, key=lambda x: distance_matrix[current_node, x])

N O Uk WN

7.4.6 Code complexity

In the previous subsection, we analyzed the LLM-generated codes in terms of their
performance. But do these codes also offer better readability and reduced complexity
in comparison to the original codes? To address this question, we evaluate their cyclo-
matic complexity—a metric that quantifies the number of independent paths through
a program’s source code. Through empirical research, Chen [40] demonstrated that
a high cyclomatic complexity correlates with an increased bug prevalence. For our
measurements, we employ the Rapon library for Python.®

As shown in Table 7.5, the Claude-generated codes have the lowest average cyclo-
matic complexity (5.60 points), which improves code readability but, as shown before,
comes at the cost of performance. The other models’ codes and the original code have
complexity scores between 6.84 (O1) and 7.51 (R1), which is still considered low and
well-structured according to standard software engineering metrics. The values in the
Risk Category column are taken from the documentation of the Rapon library.’

Finally, Figure 7.6 reveals that there are cases—such as the R1-generates codes in
the case of GA and Christofides, or the Ol-generated code for SARSA—in which the
LLM-generated codes not only outperform the original codes, but also decrease the

cyclomatic complexity.

Table 7.5: Average Cyclomatic Complexity of the codes

Algorithm Codes Average Complexity Risk Category

Original 6.95 B (Low - Well structured)
Claude-3.5-Sonnet 5.60 A (Low - Simple)
. Gemini-exp-1206 7.34 B (Low - Well structured)
é Llama-3.3-70b 7.38 B (Low - Well structured)
GPT-O1 6.84 B (Low - Well structured)
DeepSeek-R1 7.51 B (Low - Well structured)

8https://pypi.org/project/radon/.
9 https://radon.readthedocs.io/en/latest/commandline.html#the-cc-command

https://pypi.org/project/radon/
https://radon.readthedocs.io/en/latest/commandline.html#the-cc-command

124 7. Improvement of Optimization Algorithms with LLMs by Non-expert Users

20
18
d) 16
O TABU - 3.67 4.75
o -14 2
O 3
SA- 5.20 s
& ‘128
= g
& RL_ QL- 825 10.00 .-
- 5
81 SARSA - 9.50 10.00 10.00 9.50 8.50 10.50

CHRISTOFIDES- 1233

CONVEX_HULL- 967

BB -

N\

N

o® 5
:)) B) N 00 &
& &S S 9
\o Q) >
C &
\0
AV

Figure 7.6: Cyclomatic Complexity

Summary: Based on all evaluations presented in this research, we can state that
among the five LLMs tested, R1 generally delivered the best results, followed
by O1. Gemini performed well in certain cases—such as ACO and ALNS—but
underperformed in others, notably in Christofides. Among all tested models,
Claude exhibited the weakest performance.

In summary, LLM-enhanced code versions clearly outperformed the original implemen-
tations in nine out of ten cases/algorithms. Only for Q_Learning were none of the
models able to improve the original code. In that case, Llama matched the per-
formance of the original implementation.

7.5 Discussion

Recent research has convincingly demonstrated that LLMs can be powerful tools for
creating and enhancing complex optimization algorithms [183, 152, 194, 236, 175,
123]. To situate our current work within this rapidly evolving field and clearly de-
lineate its unique contributions, we provide a comprehensive comparative analysis of
these state-of-the-art approaches in Table 7.1. Building upon our own initial proof-
of-concept [183], this work significantly expands the investigation by conducting a

7.5. Discussion 125

large-scale, systematic study across 10 classical algorithms from four diverse families.
Our findings confirm that the principle of LLM-driven improvement is not an isolated
phenomenon but a broadly applicable technique for the Travelling Salesman Problem.
However, our analysis also reveals several critical limitations and methodological con-
siderations that warrant a deeper discussion.

7.5.1 Limitations and Methodological Considerations

While our results are promising, a nuanced understanding of the challenges is crucial
for the practical application and future development of this approach.

e The “Black Box” Nature and Its Risks. A primary challenge, highlighted
in [103], is that LLMs cannot precisely trace the sources of their suggestions. This
opacity makes it difficult to pinpoint which specific modifications led to perfor-
mance gains. More importantly, it introduces the risk of the LLM generating
“hallucinated” algorithmic components or incorrectly combining concepts from
different sources, potentially leading to subtle logical flaws that are not immedi-
ately apparent through basic testing. Exploring the question of “where specifically
does the generated code come from?” is therefore not just a fascinating research av-
enue but a critical step towards building more reliable systems.

o The Practical Costs of Iterative Refinement. Our “simple prompt” strategy suc-
cessfully lowers the barrier to entry, but the overall process is not without cost.
As shown in Table 7.3, several algorithms required multiple manual correction
rounds to become functional. This iterative cycle of generating, testing, and pro-
viding feedback demands significant user time and effort. This reveals a key
trade-off: the ease of initial prompting versus the manual cost of validation. For
this methodology to be truly effective in practice, the efficiency of this human-in-
the-loop refinement process must be considered.

e Performance Variability and Failure Analysis. Our results reveal significant
performance variability among LLMs and highlight specific failure cases, as
promised in our introduction. For instance, the general failure of all tested LLMs
to improve upon the Q-learning baseline (Figure 7.3) suggests that current mod-
els may struggle with algorithms whose performance is highly sensitive to spe-
cific state-space representations or reward structures. Similarly, the weaker per-
formance of some models on complex algorithms like ALNS may point to a
scarcity of high-quality, specialized training data for such intricate heuristics. Un-
derstanding these failure modes is essential for defining the boundaries of where
LLM-based improvement is most effective. Conversely, it is particularly notable
that improved performance does not always correlate with increased code com-
plexity. In cases such as the GA code generated by R1, our analysis shows that
the LLM simultaneously enhanced the solution quality while decreasing the cy-
clomatic complexity (Figure 7.6), suggesting that these models can also act as ef-
fective code refactorizers—a significant benefit beyond pure algorithmic enhance-

126 7. Improvement of Optimization Algorithms with LLMs by Non-expert Users

ment.

e Positioning within the State-of-the-Art. As detailed in Table 7.1, our work is
methodologically distinct from other recent approaches. While prominent frame-
works like LLaMEA /ReEvo, AlphaEvolve, and FunSearch employ complex, auto-
mated systems—such as evolutionary loops or program search trees—to generate
or discover new algorithmic components, our approach uses a simple, interactive
prompting strategy. This reflects a fundamental difference in objective and user
role: expert-centric frameworks focus on automated algorithm discovery or gen-
eration, requiring users to design a sophisticated search process. In contrast, our
practitioner-centric method centers on the collaborative enhancement of complete,
existing codebases. Furthermore, while the work [183] established the feasibility of
this concept in a single case study, the present research validates its effectiveness
systematically across a broad and diverse range of algorithms.

7.5.2 Directions for Future Research

The limitations identified above naturally lead to several exciting directions for future
research.

e Broadening the Problem Scope. A crucial next step, addressing a limitation of
our current study, is to validate these findings beyond the TSP. Applying this
methodology to combinatorial optimization problems with different structures,
such as the Vehicle Routing Problem (VRP) or the Knapsack Problem, is essential
to determine the true generality of this approach.

e Automating the Refinement Loop. To mitigate the manual effort of validation
and correction, future work should focus on automating the feedback cycle. This
could involve developing systems where an LLM agent can not only generate
code but also autonomously execute it against a benchmark suite, analyze the
results (including errors and performance metrics), and iteratively refine its own
suggestions.

e Specialized Models and Benchmarks. As LLMs evolve, it will be necessary to
continuously test their capabilities in a structured way. The creation of special-
ized benchmarks with baseline implementations for multiple optimization prob-
lems would be invaluable. Furthermore, developing fine-tuned LLMs specialized
in optimization could overcome the data scarcity issues observed for complex or
less-common algorithms, potentially leading to even more significant and reli-
able improvements. This aligns with trends towards “reasoning models” that

prioritize response quality over speed [192].

7.6 Conclusion

This benchmark study demonstrates that Large Language Models (LLMs) can serve
as effective collaborators for enhancing classical optimization algorithms. Through a

7.6. Conclusion 127

simple and reproducible prompting strategy, we improved ten baseline algorithms for
the Travelling Salesman Problem—frequently achieving better solution quality, faster
execution times, and reduced code complexity. Notably, these improvements were ap-
plied holistically across full codebases, often through the integration of modern heuris-
tics and more efficient data structures.

Our methodology is fully reproducible and accessible via the chatbot interface on
our project website (https://camilochs.github.io/comb-opt-for-all/), offering a
practical tool for practitioners—especially those without deep theoretical expertise—to
upgrade complex algorithms.

Looking ahead, we aim to extend this approach to a broader range of combinatorial
optimization problems to assess its generalizability. Additionally, to address the cost
of manual prompting and refinement, future work will explore the use of LLM-driven

agents for automating and iteratively improving existing algorithmic implementations.

At the time of writing this thesis (June 2025), this work and the previous one
(Chapter 6) are still under peer review, following initial rejections. In the note
at the end of Chapter 5, I pointed out that this shift in direction might raise
doubts about the practical value of such an integration. The main criticism has
centered on the simplicity of the approach, something I consider not a weakness,
but rather a strength. It is evident that if I had developed a sophisticated frame-
work for generating optimization algorithms using LLMs—something that only
a few could reproduce—the reception might have been more favorable. Yet not
all scientific contributions must be complex to be valuable. It always depends
on the problem at hand, and in this case, I believe the goal was simply to demon-
strate how LLMs can enhance optimization algorithms in a straightforward way:.
Perhaps simple enough that someone might think: “Isn’t this too easy?”

https://camilochs.github.io/comb-opt-for-all/

Part 11
Visualization Tools

Introduction

In recent years, visualization has emerged as a powerful and increasingly necessary
tool in the analysis and development of optimization algorithms, particularly meta-
heuristics [71, 22]. As these algorithms often operate as black boxes, understanding
their behavior beyond numerical performance metrics remains a significant challenge.
Visualization techniques aim to bridge this gap by offering intuitive, interpretable rep-
resentations of algorithm dynamics across the search space.

A notable contribution in this direction is the concept of Search Trajectory Networks
(STNs), a method designed to trace and visualize the behavior of optimization algo-
rithms on specific problem instances, whether combinatorial or continuous [154, 155].
The key strength of STNs lies in their ability to reveal how the structure of a problem in-
stance shapes the search behavior of an algorithm, thereby enabling researchers to gain
insights into why certain methods succeed or fail. This information is critical for re-
fining algorithm design, identifying structural biases, and understanding performance
bottlenecks.

STNs go beyond traditional performance plots by representing the sequence of ex-
plored solutions as a directed graph, where—in the most basic form—nodes corre-
spond to unique solutions and edges represent transitions driven by the algorithm.
This graphical abstraction allows researchers to analyze patterns of convergence, stag-
nation, or exploration across the landscape, revealing subtleties not easily detected or
interpreted through numerical analysis alone.

Building upon this idea, our work introduced STNWeb [33] (see Chapters 9
and 10), a web-based platform that automates the generation and analysis of STNs. In
addition to facilitating visualization, STNWeb includes features such as automatic tex-
tual descriptions of the generated plots, making interpretation accessible even to non-
expert users. This enhances its pedagogical value and supports rigorous comparative
analysis, enabling users to systematically demonstrate, for example, the superiority of
a newly proposed algorithm over baselines in structurally diverse scenarios.

Thus, visualization tools like STNWeb are not merely illustrative; they function
as analytical instruments that complement statistical evaluation and support deeper

133

134 8. Introduction

methodological insight. They represent a shift toward explainability and interpretabil-
ity in optimization, areas that are increasingly vital as algorithmic complexity and prob-

lem diversity grow.

8.1 LLMs for Automated Analysis in Optimization Tools

A parallel and significant development involves integrating Large Language Models
(LLMs) to enhance the explainability of optimization algorithm results. While prior
work in this thesis focused on LLMs improving metaheuristic solution quality, a trend
emerged in 2024 to leverage LLMs for better understanding and analyzing algorithm
behavior.

A prime example is our paper “Large Language Models for the Automated Anal-
ysis of Optimization Algorithms” [35] (see Chapter 11), published in GECCO 2024.
This work integrates an LLM into STNWeb [33], a web-based tool utilizing Search Tra-
jectory Networks (STNs) for metaheuristic analysis. The application addresses a criti-
cal question: how to determine the superiority of one stochastic/heuristic optimization
algorithm over another for a given problem instance.

STNWeb visualizes algorithm behavior as a graph, but its interpretation requires
specialized knowledge. To overcome this, we implemented an LLM-powered inter-
pretation layer. Lacking widely available powerful multimodal LLMs at the time, we
devised the following solution: the system programmatically extracts key visual fea-
tures from the graph to construct a detailed text prompt. The LLM then interprets this
prompt to generate a natural language explanation. Consequently, users receive not
just a complex image, but a clear analysis of the data—e.g., why one algorithm outper-
forms another. The LLM acts as a virtual expert, verbalizing insights from the STNWeb
visualization. This paper stimulated subsequent work incorporating LLMs as analysis
systems to facilitate diverse optimization tools.

Since 2024, LLM integration with Al explainability within metaheuristics has pri-
marily focused on genetic programming (GP) or other evolutionary techniques. Rep-
resentative works include:

e In March 2024, Maddigan et al. [135] introduced a tool to improve the inter-
pretability of GP-based non-linear dimensionality reduction. Their web-based in-
terface, GP4NLDR, combines GP with an LLM-powered chatbot to provide users
with a coherent understanding and explanation of dimensionality within a ge-
netic process.

e The more recent work, “Code Evolution Graphs” [196], adds an interpretability
layer to code generation within an evolutionary framework. The authors, also
behind LLaMEA [194], identified this opportunity to incorporate interpretability
into their framework (though broadly applicable). They showed that LLMs tend
to produce increasingly complex code with repeated prompts, which can some-
times degrade algorithmic performance. Their approach enables traceability of

8.2. Future Directions: Leveraging LVLMs for Enhanced STNWeb Analysis 135

each LLM response, allowing for detailed analysis of generated code quality over

time.

8.2 Future Directions: Leveraging LVLMs for Enhanced
STNWeb Analysis

Currently, STNWeb’s LLM-based interpretation depends on converting visual features
into textual prompts. However, the advent of advanced Large Vision-Language Mod-
els (LVLMs) presents exciting new opportunities. As we investigated in our work on
VisGraphVar (see Chapter 13), LVLMs are increasingly capable of performing direct
visual-spatial reasoning on graph images. This points to a promising research direc-
tion for STNWeb: incorporating LVLMs to analyze STN visualizations directly. Such
models could interpret complex visual patterns—like overlapping trajectories, distinct
cluster structures, or the distribution of optimal solutions—and produce detailed natu-
ral language explanations without relying on explicit programmatic feature extraction.
For example, an LVLM might observe:

“In the lower-right section, Algorithm_A’s trajectories cluster tightly, indicating
entrapment in a suboptimal area, while Algorithm_B’s paths spread widely, re-
flecting stronger exploration and superior outcomes.”

This kind of direct visual comprehension would greatly deepen STNWeb’s analyti-
cal capabilities and make it more accessible, steering it toward an intuitive and intelli-
gent visualization platform.

Search Trajectory Networks Meet the
Web

Foundational Work for This Chapter

This chapter is based on the following publication:

o Title: Search Trajectory Networks Meet the Web: A Web Application for the Vi-
sual Comparison of Optimization Algorithms

e Published in: International Conference on Software and Computer Appli-
cations (ICSCA)

e Type: Conference Paper

e Year: 2023

e Main contribution: Details the integration process of STNs within a web-
based architecture

e Problem addressed: Facilitate the use of STNs

o Type of contribution: Tool/software

e DOI: https://doi.org/10.1145/3587828.3587843

e Current number of citations in Google Scholar: 6

9.1 Introduction

This work initiated the second research line of my doctoral project. My involvement
in developing the tool presented in this chapter originated from a suggestion by my
supervisor: to enhance the accessibility of Search Trajectory Networks (STNs). As a
software engineer before becoming a researcher, I viewed this challenge not as overly
complex, but as a practical opportunity to contribute to the research community and
build confidence in my thesis. My goal was to bring STNs to the web, leading to the
creation of STNWeb.

136

https://doi.org/10.1145/3587828.3587843

9.2. Background: Search Trajectory Networks 137

In this chapter, we analyze the integration of STNs into a web-based environment.
It is, in many ways, more of an engineering effort than a scientific one, but one that is
likely to be more useful to scientists than to engineers.

% % %

A popular adage states that a picture is worth a thousand words. While not univer-
sally true, this certainly applies to the visual tool for comparing and understanding
optimization algorithm behavior, which is the subject of this work. For decades, the
standard approach to comparing optimization algorithms has relied on numerical re-
sult tables and classical data visualizations (e.g., line, bar, and scatter plots). How-
ever, to properly understand the behavior of complex optimization algorithms, such as
metaheuristics [71, 22]—which are typically non-deterministic due to their stochastic
components—researchers have increasingly emphasized the use of tools that enhance
interpretability, with a particular focus on visual analytics [155].

Early techniques for visualizing search algorithm behavior were presented in [49,
166, 144, 130]. These approaches utilized dimensionality reduction to map search
spaces into two or three dimensions, thereby tracking search progress. The latest ad-
vancement, Search Trajectory Networks (STNs), was introduced in [154, 155]. STNs share
a similar aim with earlier methods, but fundamentally differ by representing search tra-
jectories as graph objects with nodes and edges that can be analyzed and visualized,
rather than reducing the entire search space to a Cartesian plane. Specifically, STNs
graphically display trajectories of different runs of optimization algorithms applied to
the same problem instance as a directed network, relying heavily on graph-based visu-
alization. The authors of [155] provided a set of scripts written in R, a free software
environment for statistical computing and graphics.

Nevertheless, the original STNs tool, in its R script form, presented several incon-
veniences, most notably its difficulty of use. Generating the final graphics required
multiple manual steps involving the execution of a series of R scripts. In this work, we
alleviate this problem—among other improvements—by developing a web application
that automates this entire process, significantly enhancing usability and accessibility.

9.2 Background: Search Trajectory Networks

Understanding and comparing stochastic optimization algorithms, like metaheuristics,
is complex and cannot be fully achieved through numerical result tables alone. To
address this, some co-authors of this research introduced Search Trajectory Networks
(STNs) [154, 155], a methodology for graphically comparing algorithm trajectories.
R scripts for generating STN graphics are available at https://github.com/gabro8a/
STNs.

Figure 9.1 shows STN examples comparing three algorithms applied to a p-median
problem instance, displaying 10 runs per algorithm. Network vertices correspond to
either single solutions (Figure 9.1a) or defined solution subsets (Figure 9.1b).

https://github.com/gabro8a/STNs
https://github.com/gabro8a/STNs

138 9. Search Trajectory Networks Meet the Web

Start Start
AEnd A End
@ Best @ Best
ACO ACO
® BRKGA ® BRKGA
®iLs ® LS
Shared Shared

(a) No search space partitioning (b) With search space partitioning

Figure 9.1: Examples of STN graphics comparing three different algorithms applied 10 times to the same
problem instance.

e Algorithm trajectories are color-coded (e.g., ACO: orange, BRKGA: blue, ILS:
green).

e Trajectory starting points are yellow squares.

e Endpoints are dark-grey triangles (not best solution) or red circles (best solu-
tion).

e Light-grey vertices indicate trajectories from at least two different algorithms
passing through.

e Vertex size indicates the number of trajectories passing through it (larger size =
more trajectories).

The difference between Figure 9.1a and Figure 9.1b lies in search space partition-
ing. Figure 9.1a displays STNs without partitioning, where vertices are individual so-
lutions. Figure 9.1b shows the same 30 trajectories with partitioning, simplifying STNs
by grouping solutions into search states. Advantages of partitioning are evident:

e Vertex count reduction, useful for cluttered STNs.

e Clearer identification of overlaps (multiple trajectories passing through the same
vertex/solution set). For instance, ACO trajectories show minimal overlap with-
out partitioning (Figure 9.1a) but significant overlap after partitioning (Fig-
ure 9.1b), indicating convergence to the same search area.

e Lack of overlaps within an algorithm’s trajectories (even after partitioning) in-
dicates poor robustness, as each run explores a different search space area (e.g.,
BRKGA in Figure 9.1).

e Overlaps only within the same trajectory (after partitioning) suggest the algo-
rithm struggles to escape low-quality local optima.

STN graphics in Figure 9.1 use the Fruchterman-Reingold [69] layout from R'’s

9.2. Background: Search Trajectory Networks 139

Search Trajectory Networks (STNs)

LE

3 3 merge.R i |
b Analysing two or three algorithms i |
| ‘j—/\ lmwwl

| Foldercontains | | oo

the file of each I Analysing a single algorithm | !
| algorithm P | |
| plotalgR |

R Code | metrics-alg.R 3

Manual Process

Figure 9.2: The graphic shows the workflow of the original STNs tool. It is divided into three phases
(from left to right): (a) a folder must be created, containing a result file for each algorithm to be included
in the comparison; (b) then two different R scripts must be executed in a given order, and depending
on how many algorithms are included in the comparison (i.e., one versus multiple); (c) finally, the
corresponding STN graphics are generated and provided in terms of a PDF file.

igraph package [51]; the tool also offers Kamada-Kawai [100] layout, with suitability
depending on STN structure.

In the following, we outline the limitations of the original R scripts (https://
github.com/gabro8a/STNs) before describing our developed web application.

9.2.1 Limitations

The current STNs tool based on R scripts has both limitations in terms of its usability
and in terms of features. Here we describe three relevant issues.

Hard to Use

There are three main difficulties concerning the usability of the R scripts:

1. The workflow for producing STNs involves the iterative use of several R scripts
(see Figure 9.2). It assumes that for generating the graphics for displaying the
behaviour of one or multiple algorithms, the user must execute (from a terminal)
a series of files in a given order. As a consequence, this process is error-prone
and, at the same time, rather slow.

2. Given the need to execute R scripts, the user is supposed to have the same version
of all packages installed in his local environment. Hence, if the user has a different
operating system or a different R version, unintentional errors may occur due to
having different prerequisites than those needed to use the current STNs tool.

3. If we look at Figure 9.3, we can see that the input file format is verbose and con-

tains redundant information. For example, the FirNess2 and SoLution2 columns

https://github.com/gabro8a/STNs
https://github.com/gabro8a/STNs

140 9. Search Trajectory Networks Meet the Web

Run Fitness1 Solution1 Fitness2 Solution2
1 5 0101100011 6 0101101011+
1 6 0101101011 7 1101101011

S Redundant Information

New Input Data Format @

Run Fitness Solution
1 5 0101100011
1 6 0101101011

1 7 1101101011

Figure 9.3: At the top is the old input format containing redundant information. The new and simpler
version (as implemented in our web application) is below.

are unnecessary because they are repeated under Frrness1 and Sorutiond in the
subsequent row.

Limitation to maximally three algorithms

The R scripts of the original STNs tool do not allow comparing more than three algo-
rithms. That is, the scripts do not accept more than three input files. Naturally, this
presents a limitation as it is not uncommon in the area of metaheuristics to compare
more than three algorithms. Therefore, this is neither scalable nor flexible.

Search space partitioning is not integrated

Search space partitioning is a central feature for taking profit from the STNs tool (see
the previous section). However, the current R scripts do not perform this process au-
tomatically. Instead, this important feature is only described in [154] and users of the
current STNs tool have to implement search space partitioning themselves in order
to produce the corresponding input data files for producing the STN graphics. This
makes it a challenging endeavour to take full profit of the advantages offered by STNs
for the understanding of stochastic optimization algorithm behaviour.

9.3 Integration Into the Web

The section is divided into two parts. First, we will present the architecture of the new
STNs web application. Then, we will describe the features that the web application
incorporates.

One of the strong points of a web application is that the user does not have to in-
stall all the necessary prerequisites in his local system. The user only requires a mod-

9.3. Integration Into the Web 141

/" Limitations: \

/ = Hard to use A
/ = Limitation to maximally three \
(algorithms |
! = Non-automatic coarsening)

————_——_— — — — — — — — — — — —

\— /
(Local Environment \
| |
\ l
| |
\)

Old Architecture R Scripts

.

—_——————— ——— — — — — — — —

(Web Environment \
| R Scripts ‘
. Python Scripts
| | New Architecture U Rest Kpl l
| Website |
\ J
- 1
(|
! Improvements: 1
\ = User-friendly interface)
. = More than three algorithms can J
N be compared L
“<~_ = Coarsening automatic =~ -~

Figure 9.4: The architecture of the original STNs tool, consisting of R scripts, along with its limitations
is displayed in the upper part. At the bottom, the new STNs architecture is characterized, consisting
additionally of Python scripts, a Rest API, and a website along with additional improvements.

ern web browser and the URL of the web application in order to get started. In other
words, a web environment furnishes interoperability and easy maintenance, even for
small applications [213]. In order to achieve this in the case of the original STNs tool,
it is required to change the system architecture in order to bridge the R scripts with a
web application. This is mandatory, not only for new features but also for additional
changes in the future. Henceforth, we refer to our new web application as Search Tra-
jectory Networks on the Web (STNWeb). !

9.3.1 New system architecture

The new architecture incorporates Python scripts, a Rest API, and a website. The first
two components are part of the backend, while the website is part of the frontend.
Figure 9.4 shows the old architecture with a synthesis of its limitations and the new ar-
chitecture with its improvements. All components of the new architecture are outlined

IThe URL of the web application can be found in the following repository: https://github.com/
gabro8a/STNs

https://github.com/gabro8a/STNs
https://github.com/gabro8a/STNs

142 9. Search Trajectory Networks Meet the Web

Automatic Process

Web Application PN /" New version of STNs
/ \ {
/ \ |
”””” (" Search Trajectory Networks (STNs)
) Query 3 - BN e
1 ! ! [| | |]
Website I E— Rest API ! || NewFeatures ~—> | oyt | i o [N
| [| |
| | | | M ! i | Output | !
| I
|___PDF__ |
| Metrics |
| ! ST e
Python Scripts R Scripts
Frontend Backend

Figure 9.5: The web application architecture incorporates a Rest API and new features implemented in
Python to the original STNs tool. Unlike the original STNs tool, this version requires just one query to
the API in order to execute the three phases of the formerly manual process: creating a folder with the
input files, executing the corresponding R scripts, and generating a PDF or metrics file.

in more detail in the following.

Backend: Rest API and new features implemented in Python

We chose Python for the implementation of the new features because of its rich ecosys-
tem of libraries [163]. In particular, this choice allowed the use of the same program-
ming language (Python) to create the Rest API and for implementing the new source
code, for example, for automatic search space partitioning. We used Flask to imple-
ment the Rest API, a micro web framework for Python [77]. See also Figure 9.5, which
shows that the new features are separated from the original STNs R scripts and a Rest
API manages the automation of the whole process.

The Rest API opens a TCP/IP socket with a predefined port, which will receive
requests from users. Moreover, it can handle multiple requests in parallel, as each
new request generates a unique hash from a different user. Thus, it avoids undesired
collisions, and later, the Rest API will return the data stream in PDF format, which will
materialize in an embedded form on the website. Another advantage of using a Rest
API is that it reduces application coupling by separating the user requests from the
STNs source code.

Next we present more details about the endpoints of Rest API, both of which are
POST requests:

e /stn - The parameters appended to this endpoint are those shown on the left-
hand side of Figure 9.6. The invocation of this request occurs when clicking on
the GENERATE button. In particular, parameters include the type of optimization
problem (maximization vs. minimization), the value of the best-known solution

for the considered problem instance (if known), the number of algorithms runs

9.3. Integration Into the Web 143

to be used from the input data,” the relative size of the vertices in STN graphic,
the layout of the STN graphic (normal layout vs. tree layout), the percentage of
search space partitioning, and the algorithm names, colours and input data files.

e /metrics - The hash generated from the previous endpoint becomes the parame-
ter of this endpoint. This implies that this endpoint can only be reached after the
/stn endpoint is executed. The hash allows finding and returning the metrics file
created before by clicking on the GENERATE button.

Frontend: Website

We used Angular 10 to build the web platform and Bootstrap 5 for styling. The app is
designed to have all elements on one page with a bunch of essential HTML elements:
a form, input types (e.g., text, button, range, colour, checkbox, and data file), select,
and an embedded PDF viewer which is a component of Angular 54+ named ng2-pdf-
viewer. In short, the website enables two operations after clicking on the GENERATE
button: downloading the embedded PDF file, and downloading a stylesheet file in
.x1s format which contains the metrics of the displayed STN. All of this is indicated
in Figure 9.6.

9.3.2 New Features

The new functionalities offered by STNWeb in comparison to the original STNs tool
are described in the following.

Updated Data Input Format

As mentioned in the previous section and as shown in Figure 9.3, the input data for-
mat has slightly changed by removing redundant information. In particular, while the
original STNs tool required an arc-based data format which contained two solutions
(the origin and destination) at each row, the STNWeb tool simply requires a sequence
of solutions (together with their fitness values) as input. This had the advantage that
the files to be uploaded are significantly smaller, which is especially beneficial when
the internet connection of the user is not that powerful.

Multiple data type formats

The application accepts not only .txt files, but also .csv files. The most important
point is that tar compressed files are accepted. This is very beneficial for those situ-
ations in which solutions are very large (that is, consist of values for a large number
of variables). Once the Rest API receives such a compressed file, it will decompress it
and dispatch it to the STN tool process.

2 In case this information is not provided by the user, all possible runs—that is, algorithm executions—
from the input files are utilized.

https://github.com/VadimDez/ng2-pdf-viewer
https://github.com/VadimDez/ng2-pdf-viewer

144

9. Search Trajectory Networks Meet the Web

/" Typeof problem)

Advanced options

value best-known solution (if any) 0

number of runs 0

vertex size 1 ~

tree layout?

search space ® 0%
partitioning

(0% = no partitioning)

suondo pasueapy

A
AN

Name #1
Color

Choose File No file chosen

The file extension allow: .csv, .tx, .tar*

)

%

s9|14 sinduj

FR layout
Start
A End P i N
@ Best o
® Aco » s ! e
BRKGA q P) . .
Shared - ¢ L}
R J ' v
s
. P R T m
4 ¥
- o q
! . R 8
s > §
. . s 4 TS\ o
3 J o . o
s <} ..
'Y o 2 ° [1]
§ LSNP B R4 I . \ -2
. ‘_,/ * ¢ é J -U
° & L)
P / p P =}
? o \d ¢
J . \ ,k\; IS - i M
. o Pe o s
S AT R 0 s
‘v S i “ . $ H
’ ») > N S
.‘ Y o el J ®
o - ol ¢
1 - LAY . p
> * > » &
b > ° d LY , &
§ . s g
A o g oo ¢
- » N o 4
-
200 .
Ll »
\ oo
> < "'
. g

Figure 9.6: The layout of the web application in the web browser has three main parts. In the upper part
on the left the user can specify the type of optimization problem (maximization vs. minimization) and a
number of advanced options (see text). At the bottom left, the user can add one algorithm after the other
(clicking the ApD button). For each algorithm, a name, colour and the input data file must be provided.
Finally, the right-hand side includes an embedded PDF viewer that shows the STN visualization once
the user has clicked on the GENERATE button.

9.4. Case Studies 145

A User-friendly Interface

The implemented interface allows the user to customize the generation of the visualiza-
tions. This concerns, for example, the possibility for the user to choose the trajectories’
colour and the nodes’ size. In the original version of the STNs tool, these issues were
only possible by modifying the R scripts directly. Moreover, all the additional infor-
mation that is required for the generation of the STNs can be provided by the user via
the website: type of problem (maximization vs. minimization), the value of the best-
known solution, the number of algorithm runs to be used, the type of the STN layout,
and the percentage of search space partitioning, are included in the STNWeb.

In addition, a HeLp button opens a pop-up window with instructions for the use
and the application of the tool in case of doubts.

Possible Comparison of More Than Three Algorithms

The R scripts from the original STNs tool were modified in order to accept more
than three algorithms for the comparisons. The strategy used for this was to apply
reflection. This is a metaprogramming technique that allows changing a program’s
structure without the need to add extra code [120]. Thus, this gave flexibility to the

scripts mentioned above.

Automatized Search Space Partitioning

As mentioned before, search space partitioning to display STNs in a partitioned search
space in order to improve their interpretability was completely left to the user in the
original STNs tool. This is, the user had to implement the code for transforming the
original algorithm trajectories into trajectories of a partitioned search space. Differently
to the original STNs tool, our new STNWeb tool implements this function in Python.
Moreover, the web interface allows the user to provide a value between 0% (deacti-
vated) to 100% of search space partitioning through a slider. The higher this percentage
the higher the degree of search space partitioning.

9.4 Case Studies

In this section, we offer some case studies, ranging from a rather simple one to a more
complex one, in order to show the utility of the use of this tool.

The case studies discussed below use a force-directed layout algorithm—in par-
ticular, Fruchterman—Reingold [69]—to visualize the network in the integrated PDF
viewer. Note that this is an algorithm based on physical simulations. In particular,
it does not rely on any prior assumptions about the structure of the networks. The
STNWeb application provides us with different options. We may require a rather sim-
ple analysis of a single algorithm, for example. On the other side, STNWeb also allows
a much more complex analysis of multiple runs of multiple algorithms.

146 9. Search Trajectory Networks Meet the Web

Case studies: p-median problem

p
[-
. / / # \
N i J / /)] X \ i 4 P
\ ¥ f 2 f foo / -
iy ¢ ¥ pi ¢ i § o
. ¢ < ¢ / ¢ + f i
. / - i ay
) LI L / i ¢ f { - Q
oA b E \ ¢ ¢ . g
\E" . .»,/"”?{7 — i / p Y < A
- ..~.N~.,,ﬁ"g\'“ Ve .~ > As‘ P /R: =
N / 7 ? R . B FERY. N =
» } e ~) / y 3
e 4 1 T \ =4
e : \ / AN / K ®
? N e AR -~ e \ B
? . - > [e 4 \ =
} AN / - \ Pl %
N b’ ’/ y Ve \ Fi %
Y i ~ 3,
4
(a) No search space partitioning (b) 70% search space partitioning (c) 50% search space partitioning. (d) 30% search space partitioning
» .
15
. ‘- 4
(4 » » .
“ A i . o
Ty
y I 3 { I
s { 3 o
¥ Joe 2
.ot 4 o 3
¥ - o
- P ©
\ oy 2
i N
e, 1 %
(a) No search space partitioning. (b) 70% search space partitioning. (c) 50% search space partitioning. (d) 30% search space partitioning
R
~y -
}
e o
o
7]
- o
3
3
=
)
2
w

(d) 30% search space partitioning

(b) 70% search space partitioning (c) 50% search space partitioning.

(a) No search space partitioning

Figure 9.7: This graphic presents three case studies with different percentages of search space partition-
ing generated by STNWeb. First, a single algorithm when applied 10 times to the same problem instance
is analyzed in the upper row. In the middle row, we can see the behaviour of two algorithms by means
of different levels of search space partitioning. Finally, the new STNWeb feature was tested with four
algorithms (the original STN tool did not support more than the three algorithms), which is graphically

shown in the bottom row.

9.4. Case Studies 147

The three cases presented hereafter make use of three levels of search space parti-
tioning: 70%, 50%, and 30%, in addition to the default case which does not make use of
search space partitioning. All test cases are from an example application known as the
p-median problem. The first (simple) case uses only the ACO algorithm; the BRKGA
algorithm is added to ACO in the second case; and finally, ACO, BRKGA, ILS, and a
standard genetic algorithm (called GA) are compared in the last case.

9.4.1 Case 1: A Simple Study

In STNWeb, when a single algorithm is analysed, the resulting STN graphic(s) essen-
tially shows(s) a representation of the algorithms” behaviour. In the upper row of
graphics in Figure 9.7 (case 1) only the ACO algorithm is analyzed. Notice that, in
comparison to the other case studies that deal with the comparison of two or more al-
gorithms, the colour of the arcs has a specific meaning in the case of a single algorithm
comparison. In particular, grey arcs indicate transitions to better search states (solu-
tions, or subsets of solutions), while blue arcs show transitions to equally good search
states and green arcs show transitions to search states worse than the current one. In
contrast, when multiple algorithms are compared, the colour of the arcs indicates the
algorithm which has produced the corresponding trajectory.

1. Figure 9.7 (a) - upper row. This graphic was produced without search space
partitioning, that is, nodes correspond to solutions. There are several interesting
things to be observed. First, all algorithm trajectories seem to be attracted by the
same area of the search space. Second, there are two best solutions (red circles)
than are identified by the algorithm. In particular, two trajectories end up in the
smaller red circle (more to the left), and three trajectories end up in the larger
red circle (more on the right). All the trajectories keep improving (gray arrows).
This indicates that the algorithm does not easily get trapped in a local optimum.
Finally, there are not many overlaps between the algorithms’ trajectories, at least
not during the early stages of the search process.

2. Figure 9.7 (b-d) - upper row. In the others cases, different percentages of search
space partitioning are utilized. The first aspect that deserves being mentioned
is that the number of trajectory overlaps increases with an increasing percent-
age of search space partitioning. This indicates that, even though the different
algorithm runs take different routes to the best-found solutions, they still pass
through similar areas of the search space. Green arcs can be explained by the
fact that nodes now represent subsets of solutions (instead of single solutions).
Therefore, better solutions are joined with worse solutions, causing green arcs to

appear.
9.4.2 Case 2: Comparison of Two Algorithms

In contrast to the previous case, in this case we compare two algorithms: ACO (green
arcs) and BRKGA (orange arcs). This example is very illustrative for the usefulness of

148 9. Search Trajectory Networks Meet the Web

STNWeb because the STN graphics allow immediately to confirm that ACO is, in this
specific case, a much better algorithm than BRKGA. The best solutions (red circles) are
only found by ACO trajectories. This indicates that ACO can discover areas of better
quality without falling into local optima. In fact, the overlaps within the same trajectory
of BRKGA (Figure 9.7 (b) - middle row) indicate that the algorithm tends to get stuck
in certain areas of the search space.

9.4.3 Case 3: Complex Analysis

Apart from the automatization and the ease of use, one of the main advantages of
STNWeb over its original non-web version is that it can analyze more than three algo-
rithms. Moreover, search space partitioning is an essential aspect for the comparison
of rather many algorithms.

1. Figure 9.7 (a) - lower row. The first thing that can be observed is that BRKGA
cannot compete with the other algorithms. In addition, it can be seen that there
is a shared solution (grey circle besides the large red circle) between ACO and
GA. Although ACO, GA, and ILS find best solutions for this problem (the two red
circles), there is no clear winner between ACO, GA, and ILS as their paths that
do not find best solutions end up close (black triangles) to the best solutions.

2. Figure 9.7 (c-d) - lower row. When the search space partition is equal to or less
than 50% (cases c-d) the resulting STNs are not so different from the STN pro-
duced without search space partitioning. Nevertheless, one interesting aspect is
that the trajectories of GA, for example, neither become shorter nor do they show
overlaps with a search space partitioning of 30% and 50%. This means the path
taken by GA to find good solutions is, every time, rather different. Moreover, the
algorithm tends to make rather large steps in the search space. On the other side,
the trajectories of ACO clearly become shorter and show overlaps, for example,
at a search space partitioning of 50%. This is because ACO algorithms include a
strong heuristic bias which makes them start their trajectories in the same area
of the search space. GA, on the other side, may start at any point of the search
space.

3. Figure 9.7 (b) - lower row. This graphic shows that a search space partitioning
of 30% is clearly too much for this case. In fact, there are so many trajectories
overlaps now that the graphic becomes very hard to be analysed. However, it is
interesting to see that there are three rather large grey circles (and some smaller
ones). These large grey circles indicate that there are common attractors in the
search space for several algorithms. However, all algorithms that are attracted by
these regions are able to leave them in favour of regions containing even better

solutions.

9.5. Conclusion 149

9.5 Conclusion

In this work, we introduced a new web-based implementation of the Search Trajectory
Networks (STNs) tool. The application enables the generation of informative visual-
izations to support the comparison of stochastic optimization algorithms.

Our web implementation offers several key advantages over the original STNs tool.
First, it automates previously manual processes, increasing usability and reducing the
risk of human error. Second, it provides greater customization options—for example,
in the choice of colors used to distinguish algorithms—allowing users to tailor visu-
alizations to their needs. Third, and importantly, it supports the comparison of more
than three algorithms, extending the tool’s applicability.

Future improvements include transitioning from 2D to 3D rendering and exploring
alternative search space partitioning strategies. In particular, using diverse partition-
ing schemes may reveal new visual patterns that enrich the analysis and deepen our
understanding of algorithmic behavior.

From this work, I especially remember my trip to Kuantan, Malaysia. We pre-
sented it at a relatively “unknown” conference, but one that gave me the oppor-
tunity to discover a different world. I crossed the Kuantan jungle and witnessed
a marching battalion of ants, led by the giant forest ant of Asia (Dinomyrmex),
much to the surprise of my thesis supervisor—perhaps because he had spent
years working on Ant Colony Optimization algorithms. All around us, the sin-
gular sounds of birds and other creatures formed a strange and perfect orches-
tra in that curious place. There were also monkeys near the beach, watching us
closely, seemingly ready to steal something at the first chance.

It was, in short, a once-in-a-lifetime experience.

This research would become the first of three works related to STNWeb and
marked the beginning of the second research line in my dissertation. A line that
left me quite satisfied—though not completely (see the final note of Chapter 12).

10

STNWeb: A new visualization tool

for analyzing optimization algorithms

Foundational Work for This Chapter

This chapter is based on the following publication:

Title: Search Trajectory Networks Meet the Web: A Web Application for the Vi-
sual Comparison of Optimization Algorithms

Published in: Software Impacts

Type: Journal Paper

Year: 2023

Main contribution: Provide a web-accessible version of the Search Trajec-
tory Networks (STNs)

Problem addressed: Lower the barriers to adoption of STNs

Type of contribution: Tool/software

DOI: https://doi.org/10.1016/j.simpa.2023.100558

Current number of citations in Google Scholar: 13

10.1 Introduction

Unlike the previous chapter, where STNWeb was presented from a more technical,

software engineering perspective, this shorter chapter offers a concise overview of

STNWeb’s functionalities rather than its implementation details. All of my work on

STNWeb originated as a suggestion from my thesis supervisor, following my earlier ef-

forts with GNNs and metaheuristics (Chapters 3 and 4). He suspected I wasn’t particu-

larly enthusiastic about that research direction (he was right! LLMs hadn’t yet entered

my life).

As mentioned before, STNWeb was, overall, more of an engineering effort than a

150

https://doi.org/10.1016/j.simpa.2023.100558

10.2. STNWeb Architecture 151

scientific one—perhaps with the exception of the next chapter. I have always been good
at building tools. This was important because it gave me the confidence to pursue new
publications and, more importantly, to feel that the PhD had meaning for me. Without
purpose, I would rather do nothing.

%% %

Visual representations significantly enhance our comprehension of complex digital
information across Computer Science and Al. However, the combinatorial optimiza-
tion community has historically lagged in developing visual tools, despite a growing
need for new methods to compare optimization algorithms. For decades, algorithm
comparison relied on numerical data tables and classical charts (e.g., line, bar, scat-
ter plots), often complemented by statistical analysis. Yet, a consensus has emerged:
truly understanding stochastic optimization algorithms, like metaheuristics [71, 22],
requires additional, user-friendly graphical tools.

While visual tools for optimization algorithms have been scarce, some attempts in-
clude [49, 166, 144, 130], which used dimensionality reduction for rudimentary search
progress tracking. The most advanced tool, Search Trajectory Networks (STNs) [154,155],
was introduced more recently. STNs utilize directed graph objects to visualize and an-
alyze search progress, displaying multiple trajectories from various optimization algo-
rithms applied to the same problem instance. This graph-based visualization approach
comes with R scripts provided by the authors at https://github.com/gabro8a/STNs.

However, the original STNs tool’s R script implementation presented significant us-
ability challenges, primarily due to its multi-step manual process for generating graph-
ics. To overcome this and add new features, we developed STNWeb [30], a web appli-
cation that automates this process. STNWeb can be run locally via Docker from Code
Ocean (see code metadata) or accessed online at:

https://www.stn-analytics.com/

For an introduction to STNWeb through practical examples, see the previous
chapter.

10.2 STNWeb Architecture

STNWeb’s architecture is composed of three core components: the frontend, the back-
end, and the search space partitioning module. The user-friendly frontend enables
users to efficiently input all necessary information regarding the algorithms to be an-
alyzed. The backend communicates with the partitioning module via a REST API to
generate the visualizations. The partitioning module contains specialized algorithms
that divide the search space into meaningful regions—potentially grouping solutions
to reveal patterns not immediately apparent. Figure 10.1 illustrates the interaction be-
tween these three components. Below, we describe each component in detail.

https://github.com/gabro8a/STNs
https://www.stn-analytics.com/

152 10. STNWeb: A new visualization tool for analyzing optimization algorithms

STNWeb Architecture
Frontend Backend Partition Strategy
Configuration Algorithms
+ Continuous Discrete
Upload files Partition Strategy 34 > Standard Shannon Entropy
/ | e {=Type of problem
77 [G |
* Query i I Agglomerative Agglomerative
_»/ T Clustering Clustering
Generate /_ — Generate PDF

PDF & Netric

Visualization

Website

Figure 10.1: After completing the configuration form and uploading the required files for each algorithm
to be compared (frontend), the user can request the generation of visualizations. The REST API (back-
end) receives the request and invokes the selected algorithm to partition the space and generate a PDF
visualization based on the provided configuration. The resulting PDF is then displayed within the em-
bedded viewer in the frontend.

10.2.1 STNWeb Frontend

The frontend was developed using Angular! and TypeScript?, with Bootstrap® for
styling. It is designed as a single-page application. The interface allows users to se-
lect the type of optimization problem (discrete or continuous), choose a search space
partitioning algorithm, and adjust configuration parameters. Users can also customize
the visualization by modifying node colors and sizes. Once configured, the user up-
loads the trajectory data files for each algorithm and clicks the GENERATE button to
produce the visualization. For instructions on how to format these files, please refer to
the STNWeb tutorial (https://github.com/camilochs/stnweb).

10.2.2 STNWeb Backend

The backend was developed using both Python* and R°. Python, with the Flask® micro-
framework, handles the REST API and partitioning module, while R is responsible for
generating the final visualizations in PDF format. Upon receiving the configuration
and trajectory files, the backend validates the input and applies the selected partition-
ing strategy. The processed data is then passed to R for visualization rendering.

10.2.3 REST API

The REST API provides the following two endpoints:

Lhttps://angular.io/
2https://www.typescriptlang.org/
3https://getbootstrap.com/
4https://www.python.org/
5https://www.r—project.org/

6 https://flask.palletsprojects.com

https://github.com/camilochs/stnweb
https://angular.io/
https://www.typescriptlang.org/
https://getbootstrap.com/
https://www.python.org/
https://www.r-project.org/
https://flask.palletsprojects.com

10.2. STNWeb Architecture 153

STNWeb User interaction

1,1050,110110100101010101
1,950 ,010110100101010101
1,931 ,010110100101010101
2,1120,010110100101010101
21100,010110100101010101
2860 010110100101010101
31100,010110100101010101
3,999 010110100101010101
3,800 010110100101010101
2 37901 990 010111100101010101
I 1,950 010110100101010101
1,931 ,010110100101010101
21201 ,010110100101010101
2,1110,010110100101110101

\
|
| FR layout
|
|
|
|
|
|
|
2,860 ,010110100101010101 |
|
|
|
|
|
|
|
|
|
|
|
|
|

3,1100 ,010110100101010101
3,999 ,010110100101010101
3,800 ,010110100101010101
3,790 ,010110100101010101

voMyug

Complete the configuration and

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} upload the files
|

|

\

Figure 10.2: Interacting with STNWeb requires just three steps. First, generate separate data files with
the search trajectories of the algorithms to be compared. Second, configure the analysis and upload the
files on the STNWeb interface. Third, generate and download the visualization in PDF format.

e /stn — Accepts a POST request containing configuration settings and trajectory
files. It returns a PDF visualization.

e /metric — Allows users to download the metrics file (provided in spreadsheet
format) after the /stn endpoint has been called.

Using a REST API abstracts the logic from the user interface, making it easier to
update or redesign the frontend without affecting the core backend functionality. This

modularity ensures a seamless and consistent user experience (see Figure 10.2).

10.2.4 Search Space Partitioning Strategy

In some cases—due to either the problem instance or the algorithm used—search tra-
jectories may become excessively long, resulting in cluttered STN visualizations that
hinder analysis. To address this, STNWeb offers several strategies for partitioning the
search space into clusters or regions that group multiple solutions. These strategies
improve the clarity and informativeness of the resulting graphics. More details can be
found in [155].

Note that search space partitioning is optional. The default configuration does not
apply any partitioning. However, when used, it can significantly improve interpretabil-
ity by focusing the visualization on the essential dynamics of the algorithms.

Partitioning strategies depend on the type of optimization problem. For instance,
some methods—such as Shannon Entropy—are specific to discrete problems, while
others—such as Agglomerative Clustering—can be applied to both discrete and continu-
ous problems.

154 10. STNWeb: A new visualization tool for analyzing optimization algorithms

Partitioning Strategies for Discrete Optimization Problems

STNWeb offers two strategies for discrete optimization problems:

e Shannon Entropy: This method computes entropy values for each decision vari-
able. Variables are then ranked by entropy, and the least informative ones are
discarded from the visualization. See [155] for full details.

o Agglomerative Clustering: STNWeb implements a custom version of agglomerative
clustering that groups solutions based on their distance in the search space and
cluster characteristics such as size and density (refer to Chapter 12).

Partitioning Strategies for Continuous Optimization Problems

For continuous optimization problems, STNWeb provides the following options:

o Standard Partitioning (Hypercubes): The search space is divided into hypercubes.
While intuitive, this approach is only practical for problems with fewer than 5
decision variables and requires box-constrained domains.

o Agglomerative Clustering: Similar to the discrete case, but adapted to continuous

distance metrics.

10.3 Limitations

A current limitation of STNWeb lies in its response time when generating visualiza-
tions, especially when comparing more than four algorithms or making minor adjust-
ments (e.g., resizing or color changes). This delay arises because all visualizations are
rendered server-side. Future versions will address this by incorporating a real-time

web viewer capable of client-side rendering to reduce latency.

10.4 Conclusion

This work presented STNWeb, a web-based application designed to support optimiza-
tion research by enhancing the usability of the original STNs tool introduced in [155].
In addition to simplifying data input and visualization generation, STNWeb incorpo-
rates search space partitioning strategies suitable for both discrete and continuous op-
timization problems. Future work will explore the following enhancements:

1. Incorporating 3D visualization technologies to reveal structural properties not
visible in 2D projections.

2. Enabling real-time, client-side graph modifications to improve interactivity and
analysis depth.

3. Designing and integrating new partitioning strategies to expand analytical capa-
bilities.

10.4. Conclusion 155

This was my first journal paper. Although it might not seem like it because it
was a software paper, and they are typically short. Anyway;, it still counts. As
of today (June 2025), the paper on which this chapter is based is my most cited
paper. And it makes me feel good, especially knowing that researchers are using
the tool.

STNWeb in the Literature. Some studies have employed STNWeb to analyze
optimization behavior. Notable examples include:

1. Zermani et al. “FPGA-based hardware implementation of chaotic
opposition-based arithmetic optimization algorithm.” Applied Soft Comput-
ing [239].

2. Babaagba et al. “Exploring the use of fitness landscape analysis for under-
standing malware evolution.” Genetic and Evolutionary Computation Confer-
ence [10].

3. Akbay et al. “Two examples for the usefulness of STNWeb for analyzing op-
timization algorithm behavior.” Metaheuristics International Conference [3].

11

Enhancing the Explainability of
STNWeb with Large Language Models

Foundational Work for This Chapter

This chapter is based on the following publication:

o Title: Large Language Models for the Automated Analysis of Optimization Algo-
rithms

e Published in: Genetic and Evolutionary Computation Conference
(GECCO) - Core A

e Type: Conference Paper

e Year: 2024

e Main Contribution: Generate a natural language explanation of the
STNWeb graphics using a Large Language Model

e Problem Addressed: Enhancing the explainability of STNWeb graphics
through the use of Large Language Models

e Type of contribution: Methodological

e DOI: https://doi.org/10.1145/3638529.3654086

e Current number of citations in Google Scholar: 9

11.1 Introduction

In late 2023, a compelling talk on Large Language Models (LLMs) at an Al event in
Brussels sparked my interest. Shortly after, having completed research on STNWeb
(see Chapters 9 and 10), I experimented with ChatGPT. I quickly realized LLMs could
solve a key STNWeb challenge: generating explanatory written reports for its visualiza-
tions. This is complex, as STNWeb graphics use a visual terminology requiring prior
understanding. A simple test confirmed LLMs could significantly simplify this task,

156

https://doi.org/10.1145/3638529.3654086

11.2. Background 157

as they could lower the entry barrier for researchers using STNWeb. This initial exper-
iment allowed me to complete the research rather fast, with subsequent work focusing
on methodology.

This work initiated further research integrating LLMs into algorithmic interpreta-
tion and improvement within computational optimization (see subsequent chapters).
This approach adheres to two principles: (1) designing a concise prompt that effec-
tively contextualizes the problem, and (2) integrating the prompt’s output into an ex-
isting system or algorithm.

%% %

Visualization tools, such as Search Trajectory Networks (STNs), are increasingly
used in optimization to analyze metaheuristic algorithms [71, 22]. STNs reveal how
problem characteristics influence algorithm behavior, aiding deeper understanding
and informed algorithm design [154, 155]. The web-based STNWeb [33] automated
STN generation but requires guidance for interpreting the resulting graphics. This re-
search explores using Large Language Models (LLMs) to address this interpretation
gap.

LLMs have revolutionized Natural Language Processing (NLP) with high-quality,
versatile outputs [168]. Models like ChatGPT and DALL-E 2 set industry stan-
dards [157, 170], while GitHub Copilot automates code generation [199, 208]. Beyond
applications like sentiment analysis, text classification, and machine translation [243,
200, 241], LLMs are now designing algorithms, particularly metaheuristics [165]. A
key challenge is LLM ”hallucinations” (unrealistic data), mitigated by prompt engi-
neering. This technique, by carefully crafting inputs, enhances response reliability and
explainability [174, 63, 245], effectively enabling “natural language programming.”

This work integrates LLMs into STNWeb to automatically generate user prompts,
improving comprehension of graphics and algorithm behavior. We also demonstrate
LLMs’ ability to generate basic plots (e.g., bar charts), augmenting the natural lan-
guage reports. The integration process involves three tasks (A, B, C), as depicted in

Figure 11.1.

11.2 Background

11.2.1 Search Trajectory Networks (STNs)

Note

Even though the following introduction to STNs is largely redundant, we de-
cided to keep it due to the example used is different to the one used in earlier
chapters.

11. Enhancing the Explainability of STNWeb with Large Language Models

158

Feature extraction of
algorithms

LLM pipeline

Configuration parameters

Prompt Generator ﬁ’::uc

LLM

Search Trajectory

Networks (STNs) Context

-

output—>

[stN

This problem is most
effectively addressed by
Algorithm_1!

Experiment with these

i parameter configurations for an |

improved visualization!

Figure 11.1: Overview of automating graphics interpretation with Large Language Models (LLMs).

11.2. Background 159

'S
Legend

Start
End
Best

algo_2

(X X A 4

algo_1

Shared
. J

Figure 11.2: Example STN generated by STNWeb for the Rastrigin function.

STNs visualize directed graphs to analyze stochastic optimization algorithms, par-
ticularly metaheuristics. They enable researchers to deeply understand algorithm be-
havior on specific problem instances, revealing traits like attraction to local optima or
limited exploration. The interpretability of STNs, however, hinges on understanding
their visual language. This section details STN interpretation and how LLMs can sim-
plify it.

Figure 11.2 illustrates an STN for two optimization algorithms on the Rastrigin func-
tion. Each vertex represents a search space chunk (formed by clustering), and dots
indicate solutions. The STN’s elements are:

e Trajectories: Depicted in distinct colors (e.g., aALco_1 in green, aLco_2 in purple).

e Start Points: Marked with yellow squares.

e End Points: Dark grey triangles (non-best solutions) and red dots (best solu-
tions).

e Shared Solutions: Pale grey dots represent chunks visited by multiple algo-
rithms.

e Vertex Size: Indicates the number of trajectories passing through it; larger ver-
tices mean more traffic.

The STN in Figure 11.2 highlights aLco_2"s attraction to a specific region, with seven
of its ten trajectories converging there, unlike aLco_1. The lack of overlap in aLco_1"s
trajectories suggests low robustness; in other words, aLco_1’s trajectories tend to di-
verge and fail to consistently reach the best solution, indicating a more unstable behav-
ior compared to ALco_2.

160 11. Enhancing the Explainability of STNWeb with Large Language Models

While STNs offer rapid insights compared to traditional tables, their interpretation
requires familiarity with the original STN literature [155, 30, 33], a time-consuming pre-
requisite. To enhance STN usability by eliminating this knowledge barrier, this work
integrates LLMs to automatically generate natural language reports and supplemen-
tary plots.

11.2.2 Large Language Models (LLMs)

Large Language Models (LLMs) like GPT-4 [157], Mixtral [93], Gemini [205], and
Llama 2 [207] are advanced, parameter-rich models capable of understanding and
generating human language. Practical applications such as ChatGPT, Bing Chat, and
Google Bard demonstrate their significant value.

At their core, LLMs utilize the self-attention mechanism within transformers [209],
the fundamental unit for predicting tokens in language sequences. Transformers have
revolutionized Natural Language Processing (NLP) by efficiently completing text and
leveraging parallel processing on modern hardware to grasp extensive textual depen-
dencies, thereby enhancing contextual quality. As LLMs scale in parameters, emer-
gent abilities have surfaced [219], including few-shot learning [25], zero-shot problem-
solving [107, 179], chain-of-thought reasoning [220], instruction following [158], di-
rectional stimulus [119], and retrieval-augmented generation [113]. These abilities are
accessed via prompts, the primary interface for interacting with LLMs. Prompt engi-
neering [248] is crucial for selecting the appropriate ability to elicit desired responses.

Our approach leverages pre-trained LLMs, allowing us to achieve our objectives
through prompt adjustment [168, 125]. This bypasses the need for costly fine-tuning
or maintaining our own LLM infrastructure, instead utilizing readily available models,
both paid (e.g., OpenAl’s GPT-4) and free (e.g., from Hugging Face).

By selecting suitable emergent abilities, we will develop three distinct prompts.
Each prompt is designed to fulfill a specific function, providing users with informa-
tion to interpret STNWeb graphics. This integration aims to simplify STNWeb’s usage
and significantly reduce the prerequisite knowledge needed for interpreting its visual-
izations.

11.3 Integrating LLMs into STNWeb

Our objective is to leverage Large Language Models (LLMs) to generate interpretations
of Search Trajectory Network (STN) graphics, making them accessible to users without
specialized knowledge. To achieve this, STNWeb has been extended to interact with
LLMs by generating prompts and displaying LLM-generated interpretations (natural
language summaries and supplementary plots). This transforms STNWeb into a more
user-friendly and effective analysis tool for both beginners and experts.

The integration process involves two stages: prompt template engineering and fea-
ture extraction. STNWeb autonomously executes both, gathering data on algorithm

11.3. Integrating LLMs into STNWeb 161

behavior and search space partitioning parameters from input files. It then creates tai-
lored prompts for the LLM, which generates the interpretation.

11.3.1 Prompt Engineering

Prompting offers an intuitive interface for interacting with generalist models like LLMs.
However, effective LLM guidance requires careful engineering, as their interpretation
can differ from human understanding [218]. Prompt engineering is thus akin to “pro-
gramming in natural language” [174].

We developed three prompt templates (Tasks A, B, and C) to leverage STN graphic
information for the following;:

(A) Determining a clear winner among compared algorithms.

(B) Suggesting improved agglomerative clustering parameters for more interpretable
STN graphics.

(C) Generating an automated summary with plots for Tasks A and B.

These templates are automatically instantiated by STNWeb. As shown in Fig-
ure 11.3, Tasks A and B templates use tags with static (cyan) and dynamic (orange)
instructions. Dynamic tags adapt to STN features and user parameters. This struc-
tured approach aims to mitigate LLM hallucinations and enhance response coherence.

Task A: Algorithm Comparison

The prompt begins with a [CONTEXT] tag describing STNWeb, setting the LLM’s un-
derstanding of terminology. The [RULES] tag outlines algorithm superiority criteria
(detailed in Table 11.1). The dynamic [DATA] tag includes three algorithm-specific fea-
tures extracted from the STN. Finally, the [QUERIES] tag guides the LLM on response
formatting and content.

Task B: Parameter Tuning

Similar to Task A, this template starts with [CONTEXT]. The [PARAMETERS DEFINI-
TIONS] tag describes the four agglomerative clustering parameters (Table 11.1), fol-
lowed by the [DATA] tag containing user-selected parameter values. The [QUERIES]
tag guides the response format.

Task C: Summary and Plots

This task uses two concise, static templates. Each prompts the LLM to generate a plot
based on instructions and a CSV data file. The first template generates a grouped bar
plot comparing algorithm performance (Task A data), while the second visualizes pa-
rameter settings (Task B data). This task leverages Chat2VIS [137, 136] for plot gener-

ation.

11. Enhancing the Explainability of STNWeb with Large Language Models

162

Prompt Template / Task A

[BEGIN CONTEXT}——__
[STN_Description]

]

[END CONTE

[BEGIN TASK A]

[Rules]—

[F

ures/Data] N

[END TASK A]

[BEGIN QUERI

U0 J1IR]S } { Ju2ju0d orureuk (g }

[TASK A - Instructions to respond]

[END QUERIES]

[BEGIN CONTEXT]

STNWeb is a new web tool for the visualization [...]

[END CONTEXT]

[BEGIN TASK A]

[BEGIN RULES]

These are the general rules of the system: [...]

[END RULES]

[BEGIN DATA]

Problem:

This is a {{problem_type}} problem.

Features:

- {{algo_name_1}} has {{best_fitness}} nodes pointing of the best fitness.

- {{algo_name_1}} has {{connectivity}} connectivity among all the nodes.

- {{algo_name_1}

- {{algo_name_2}} has {{best_fitness}} nodes pointing of the best fitness.

- {{algo_name_2}} has {{connectivity}} connectivity among all the nodes.
}

- {{algo_name_2}} has an average fitness of {{average}} across {{total}} trajectories.

[END DATA]
[END TASK A]
[BEGIN QUERIES]
Task A: Identify the most effective algorithm for the problem and provide
detailed insights in the context of STNWeb.

Instructions for your response: [...]
[END QUERIES]

} has an average fitness of {{average}} across {{total}} trajectories.

Prompt Template / Task B

[BEGIN CONTEXT]
[STN_Description]
[END CONTEXT]

[BEGIN TASK B]

[Parameter/De

[F

ures/Data]

[END TASK B]

[BEGIN QUERIES}—— —»
[TASK B - Instructions to respond]

[END QUERIES]

[BEGIN CONTEXT]

STNWeb is a new web tool for the visualization [...]

[END CONTEXT]

[BEGIN TASK B]

[BEGIN DEFINITION]

Agglomerative clustering involves four key parameters: [...]

[END DEFINITION]

[BEGIN DATA]

These are the parameters of the agglomerative clustering algorithm:

- cluster size: {{cluster_size_value}}

- volume size: {{volume_size_value}}

- distance measure: {{distance_measure}}

- cluster number: {{cluster_number}}

These are the resulting limits:

- minimum possible number of cluster: {{minimum_number_of_cluster_value}}
- maximum possible number of cluster: {{maximum_number_of_cluster_value}}
[END DATA]

[END TASK B]

[BEGIN QUERIES]

Task B: Provide the revised numerical parameters for agglomerative clustering, aiming

to improve the visualization outcomes within the context of the optimization pr

and STNWeb. Additionally, explain the reasoning behind these modifications.
Instructions for your response: [...]

[END QUERIES]

JURU0D drureuk([J

|

JURUOD IS

oblem

Prompt Template / Task C
S .
Generate a grouped bar plot, considering both best-performance (in || &
sky blue) and average-performance (in orange). | &
X-axis text = "algorithms" 8
Y-axis text = "features” mﬂ
+ Task A
o
algorithm | best-performance | average-performance | problem-type overlap ,mG
algo_1 10 102 maximisation 429 5
g
algo_2 2 8.1 maximisation 491 m
I
5
_ u 2
Csv.
! Generate a grouped bar plot with the X-axis representing the
i old_configuration and new_configuration, and the Y-axis 12
! representing cluster-size (in sky blue), volumen-size (in orange), W
i and cluster-number (in magenta). 3
! X-axis text = "configuration" B
| Y-axis text = "values” il
+ Task B
! IR
5
old_configuration 50 50 euclidean 60 m
g
new_configuration 30 30 euclidean 100 3
El
o
m'
Ow<u

Figure 11.3: Prompt templates automatically generated by STNWeb for each task.

11.3. Integrating LLMs into STNWeb 163

Table 11.1: LLM Tasks for STN Interpretation: Guidelines and Expected Inferences

Task A: Algorithm Winner Determination

Inference: LLM identifies the best algorithm based on three rules and STNWeb-computed metrics
(quality, robustness, average fitness). It acknowledges ties if algorithms perform similarly.

Rule Prompt Instruction

1 Higher quality: More nodes pointing to best-fitness nodes.

2 More robust: Higher inter-trajectory connectivity, if finding best-fitness nodes.

3 Superiority: Favors lower average fitness (minimization) or higher (maximization).

Task B: Agglomerative Clustering Parameter Tuning

Inference: LLM suggests improved parameters for search space partitioning based on four control
parameters and user-provided values.

Parameter Description

1 Cluster size (%): Max cluster size relative to total solutions.
Volume size (%): Max cluster size relative to search space volume.

Distance measure: Solution distance metric (Hamming, Euclidean, Manhattan).

=~ W N

Cluster number: Number of clusters; ideal is above minimum but not maximum.

Task C: Automated Summary with Plots

Inference: LLM generates plots and a summary, suggesting parameters for Task B to demonstrate
changes. It uses prompts and STNWeb data to create visualizations.

Plot Type Specification

1 Grouped bar plot: Best performance (sky blue) vs. average performance (orange).

Grouped bar plot: X-axis (old/new config), Y-axis (cluster-size, volume-size, cluster-
number).

Table 11.1 details the STNWeb-specific rules and expected LLM inferences for each
task. While these prompts are basic, they serve as a proof of concept for LLM-driven
STN interpretation.

These prompts are designed for zero-shot learning [107, 179], meaning the LLM
must make decisions based solely on the provided rules and data, without explicit
examples.

11.3.2 Feature Extraction
The dynamic elements of our prompt templates ([DATA] tags for Tasks A/B, CSV files
for Task C) require feature extraction from STNWeb’s data.

Task A: Algorithm Performance Features

STNWeb extracts three key features to help users identify the better-performing algo-
rithm. The LLM uses these to automatically determine a winner or indicate a [draw |

164 11. Enhancing the Explainability of STNWeb with Large Language Models

Model Input Model Output GPT 4 turbo)

Task A [BEGIN TASK A]
[BEGIN CONTEXT]

STNch is a new web tool for the visualization of the behavior
ation algorithms such as metaheuristics. 1

[winner—algo 2]: Based on the information
provided and the rules of the system. we can
determine the most effective algorithm for this
tion problem.

minimiz

[BEGIN RUL!
These are the general rules of the system:

has one node pointing to the best

. ~ - . . which. according to Rule (1), indicates
(1) The more nodes point to nodes of the best fitness (this higher quality alporithm as it can find boettor
doesn’t assume that it represents the global optimum), the results. This is particularly important in the
higher the algorithm's quality because it can find better result. oot Of ST b o hiore the o ization of
(2) The algorithm that has more connectivity is likely to be more hodes pointing to the bost fitness can help in
robust. If and only if it finds nodes of the best fitnes: understanding algorithm behavior.

(3) For a minimization problem, indicating that an algorithm is

superior involves favoring a smaller average fitness value. Algo

s connectivity of 0.62 is also greater

Whereas in the case of maximization, declaring an algorithm as lha,,f,lg071 s 0.0, which. in accordance with
better necessitates a higher average fitness value. Rule (2), suggests that algo_ 2 is likely more
[END RUIL |:> robust. This robustness is only relevant since
[BEGIN DATA] algo_2 finds nodes of the best fitness, which it
Problem: does.

- This is a minimization problem.

: Finally, Rule (3) states that for a minimization
0 nodes pointing of the best fitn problem, a smaller average fitness value

0.0 connectivity among all the nodes. indicates a superior algorithm. Algo_:

- algo_1 has an average fitness of 95.411 across 10 trajectories. average fitness value of 78.081 is significantly
1 nodes pointing of the best fitnes lower than algo_1's 95.411, further supporting
0.62 connectivity among all the nodes. the conclusion that algo_2 is the more effective
- algo_2 has an average fitness of 78.081 across 10 trajectories. algorithm for this pr oblem when analyzed

ND DATA] through STNWeb.
[END TASK A]
[BEGIN QUERIES] [END TASK A]

Task A: Identify the most effective algorithm for the problem
and provide detailed insights in the context of STNWeb.

Instructions for your response

- Clearly specify the winning algorithm by enclosing its name in

square brackets with the following structure:

[winner=algorithm_name]: in case of a tie, denote [draw]

- Present your response between [BEGIN TASK A] and [END [BEGIN TASK B]
TASK A].
[END QUERII

1 [BEGIN NEW CONFIG]
[cluster_size=10¢
[volume_size=10%

I

sk B

- [distance measure—Manhattan]
STNWeb is a new web tool for the visualization of the behavior [eluster number—300]
of optimization algorithms such as metaheuristics. [...] —[11£N‘ > NEW C ‘b'\}”_ “{'1} . ifieats .
[END CONTEXT] L l‘l:‘ reasoning behind these modifications is as
[BEGIN TASK B] ,,"[et 1021 Tnere: .
[BEGIN DEFINITION] clusten 5 olr mere : stz
L - to 10% allows for larger cluster. - v

-ative clustering involves four key parameters: ‘ 3
S , © - help in identifying broader p:
(1) Cluster size (percentage): Maximal cluster size in terms of

: Sf the alporithme. Thi
the percentage of all solutions a cluster contains. altiple xur the i

provide a clearer visualization of where the

(2) Volume size (percentage): Maximal cluster size in terms of i o e e KRG
h tage of the covered search space volume spanned b majority of solutions are being clustered.
the percentag; 5 d sea T spa Y = [volume_s 10%]: Similarly, increasing the
the solutions a cluster contains. . volume size to 10% allows the clusters
(3) Distance measure: This is a function that measures the Th
distance between solutions, influencing the creation of clusters. -
Po

[BEGIN CONT

larger volume of the search space.
in visualizing how the solutions
sible values: Hamming, Euclidean, Manhattan. throughout the space and might reveal more

(4) Cluster number: Number of clusters obtained for these about the nature of the search space and the
solutions (from lowest to highest partitioning). The maximum areas where the algorithm is coneentrating its
number implies no partitioning is applied. Lower values result in search.

increased partitioning. Good results are obtained when the ~ [distance_measure—=Manhattan]: Changing
cluster number is above the minimum value number of clusters the distance measure to Manhattan could offer
but far from the highest maximum. a different perspective on clustering, as

[END DEFINITION] EED Liulaies distance based on paths I)drdllcl to
[BEGIN DATA] the axes. In some cases, especially in

These are the parameters of the agglomerative clustering high-dimensional spaces or when certain types
algorithm of structure are present in the data. the

- cluster size: 5% Manhattan distance can provide more

- volumen size: 5% meaningful clusters

- distance measure: Euclidean * [cluster_number=300]: Reducing the cluster
- cluster number: 400 number to 300 from 400 aims to strike a

The re the configuration con:s balance between too much and too little
- minimum po partitioning. While the provided data indicates
maximum possible number of cluster: 574 that the minimum possible number of clusters

[END DATA] is 207 and the maximum is 574, selecting a
[END TASK B] number that is not too close to cither extreme
[BEGIN QUERIES] can provide a moderate level of granularity.
Task B: Provide the revised numerical parameters for This can help in identifying distinct groups of

solutions without overcomplicating the
ualization with too many clusters.
These changes are designed to improve the

agglomerative clustering, aiming to improve the visualization

outcomes within the context of the optimization problem and
STNWeb. Additionally, explain the reasoning behind these

visualization outcomes on STNWeb by offering
Tnstructions for your response: a different perspective on the clustering of the
solutions provided by the optimization

- Use the label [BEGIN NEW CONFIG] and [END NEW
CONFIG] to encapsulate the new numerical values.

- The new numerical values must be in the following format:
[name_paramet new_value
- Present your response between [BEGIN TASK B] and [END
TASK B].

[END QUERIES]

algorithms. The adjustments to the numer
rameters

wre intended to enh

understanding of the behavior of S
algorithms through the visual analysis tool

[END TASK B]

ask C

Generate a grouped bar plot, considering both
best-performance (in sky blue) and the average performance

(in orange). -+

Xaxis text — algorithms”
e t atures"” |:>
e a grouped bar plot with the X-axis representing the :
B e iy -
5 e, —

Il G . D)
configuration” C i - T =
s ,

Figure 11.4: Example prompts and GPT-4-turbo outputs for the STN in Figure 11.2.

if no clear preference exists.
The extracted features and their corresponding prompt sentences are:

Feature 1: Total Best Global Fitness. Counts trajectories ending in the globally
best-found fitness. Higher counts suggest a better algorithm.

| M|
TotalBestGlobalFitness,;co x = Z I(BestFitnessy ; = BestGlobalFitness), (11.1)

11.4. Empirical Evaluation 165

Example sentence: ALGo_2 has 1 nodes pointing to nodes with the best fitness.
Feature 2: Inter-trajectory Connectivity. Measures overlap between an algorithm’s
distinct trajectories. Higher connectivity suggests greater robustness.

#pairs T # T’ € My with an overlap
(IMg| - (IMk| = 1))/2 '

Connectivity, . = (11.2)

Example sentence (for a value of 0.62): aLco_2 has 0.62 connectivity among all the nodes.

Feature 3: Average Fitness. The mean of the best fitness values from all trajectories
of an algorithm. A better average fitness generally indicates a superior algorithm.

M
1
AvgFitness, .. = M Z BestFitnessy ; (11.3)
_ P
i=1

Example sentence (for a value of 78.081 with 10 trajectories): ALGo_2 has an average
fitness of 78.081 across 10 trajectories.

Task B: Clustering Parameter Configuration

This task extracts user-selected agglomerative clustering parameters for search space
partitioning. The prompt includes these parameters and their ranges.

Agglomerative clustering parameters:
- cluster size: 5%
- volume size: 5%

- distance measure: Euclidean
- cluster number: 400 (range: [207, 574])

The LLM uses this information to suggest improved parameters.

Task C: Plot Generation

Prompts are static, but CSV files containing data for Tasks A and B are dynamic. Us-
ing Chat2VIS [137, 136], the LLM generates plots based on these prompts and files.
Examples are in Figure 11.3 and Figure 11.4.

LLMs can process numerical data and keywords to link them to rules. However,
complex mathematical reasoning can be challenging [114, 220]. Our approach uses
simple, task-specific rules to enhance LLM reasoning accuracy.

11.4 Empirical Evaluation

We evaluate prompt quality for Tasks A, B, and C through a combined system and
human evaluation approach. System evaluation compares LLM outputs against ex-
pected results and specific query formats. Human evaluation, conducted by STN ex-

166 11. Enhancing the Explainability of STNWeb with Large Language Models

perts (the authors of this paper), assesses prompt clarity, specificity, and effectiveness.
This evaluation is crucial because LLMs can produce text that varies widely in detail
and organization—some LLMs may generate lengthy outputs without conveying rele-
vant information. For example, an LLM might return a well-written description of an
STNWeb graph that, nevertheless, provides an incorrect or inadequate interpretation
of the data.

11.4.1 Setup

We utilize web platforms for generating multiple LLM outputs.

Tasks A and B: LLM Comparison

For Tasks A and B, we use Chatbot Arena [246], an open-source platform from LMSYS
and UC Berkeley SkyLab, offering over twenty LLMs. We selected GPT-4-turbo [157],
Mixtral-8x7b-instruct-v0.1 [93], and Tulu-2-dpo-70b [92]. Chatbot Arena’s Leader-
board ranks LLMs based on user-voted response quality. We chose GPT-4-turbo (cur-
rently ranked first) and the next two highest-ranking open-source models to ensure a
comprehensive performance overview.

Task C: Plot Generation

As mentioned, we use Chat2VIS [137, 136], a tool for generating data visualizations
via natural language. It supports OpenAl’'s GPT models [25, 157] and Meta’s Code
Llama [177]. Plot generation relies on LLM-generated Python code, highlighting their
coding abilities [247].

11.4.2 Methodology

We created four prompts for Tasks A and B (two easy, two hard) based on selected
STNWeb graphics and templates. Prompt difficulty is determined by the dynamic
[DATA] section. Each prompt is run five times per LLM to account for output stochas-
ticity. Task C uses a single prompt with human evaluation only, as its output (bar plots)
is not natural language. The methodology is illustrated in Figure 11.5.

Task A: Winner Determination

Easy prompts compare two algorithms with a clear winner; hard prompts compare
three with two performing comparably. The [QUERIES] tag specifies output format:

[ALGORITHM_NAME | for a winner or [praw] for ties.

e System Evaluation: Score LLM; = %mt per LLM, where correct is the number

of accurate outputs out of five.
wins

e Human Evaluation: Score LLM; = “Z* per LLM, where wins is the number of

times the LLM was judged superior.

11.4. Empirical Evaluation 167
Table 11.2: LLMs evaluations for tasks.
Evaluation
System Human
Task Pfr;glgt LLM Score (T) LLM Score (T)
GPT-4-turbo 1 GPT-4-turbo 0.6
A 1/Easy | mixtral-8x7b-instruct-v0.1 0.8 mixtral-8x7b-instruct-v0.1 0.4
tulu-2-dpo-70b 1 tulu-2-dpo-70b 0
GPT-4-turbo 0.8 GPT-4-turbo 1
A 2/Hard | ixtral-8x7b-instruct-v0.1 0.4 mixtral-8x7b-instruct-v0.1 0
tulu-2-dpo-70b 0.1 tulu-2-dpo-70b 0
GPT-4-turbo 1 GPT-4-turbo 1
B 1/Easy | mixtral-8x7b-instruct-v0.1 0 mixtral-8x7b-instruct-v0.1 0
tulu-2-dpo-70b 0 tulu-2-dpo-70b 0
GPT-4-turbo 0.6 GPT-4-turbo 1
B 2/Hard | 1ixtral-8x7b-instruct-v0.1 0 mixtral-8x7b-instruct-v0.1 0
tulu-2-dpo-70b 0 tulu-2-dpo-70b 0

Human evaluation

Task LLM Score (T)
C GPT-4 1
Codellama-34b-Instruct-hf 1

Task B: Parameter Tuning

Similar to Task A, we use two prompts (easy/hard). System evaluation checks LLM

output compliance with task rules (Table 11.1) against the prompt’s parameter settings.

Both system and human evaluations are employed.

Task C: Plot Quality

Plot quality and correctness are assessed solely through human evaluation, as the out-
put is not text-based.

168 11. Enhancing the Explainability of STNWeb with Large Language Models

/ LLM Model Evaluations \

Input Data Prompts Template Model Tested Output

gpt-4-turbo
Task A Response 1
Prompt easy
E:> mixtral-8x7b E:> Response ...
Prompt hard
Task B Response n

tulu-2-dpo-70b

gpt-4 Response 1

Prompt E:> Task C E:> E:> Response ...
K CodeLlama-34b Response n/

Figure 11.5: Methodology for evaluating LLMs across tasks.

11.4.3 Results

This section summarizes quantitative evaluation results. Detailed prompts, LLM
outputs, and response variations are in the supplementary material and at https:
//github.com/camilochs/explainability-LLM-stnweb. Figure 11.4 shows example
LLM responses.

Table 11.2 presents the evaluation. GPT-4-turbo excels in Tasks A and B, handling
both easy and hard prompts proficiently. For hard Task A prompts (three algorithms,
two similar), GPT-4-turbo was the only model to correctly identify a draw, unlike oth-
ers’ consistent inaccuracies. For easy Task A prompts, while all models performed
similarly, GPT-4-turbo’s response was judged superior by human evaluators for its con-
ciseness and directness. It provided the answer first, then justification, unlike others
that explained first. A partial score of 0.6 for GPT-4-turbo on an easy Task A prompt
(human evaluation) reflects its correct winner identification but non-standard paren-
thetical referencing of other algorithms.

In Task B, only GPT-4-turbo adhered to the specified format for reporting improved
parameters: ‘[parameter_name=new_value]’. Other models used ”:” instead of ="
and omitted parentheses. Figure 11.4 shows a complete GPT-4-turbo response.

For Task C, GPTs and Code Llama via Chat2VIS showed no significant performance
differences, likely due to the simplicity of our prompts and data.

11.5 Discussion
Applying LLMs to optimization tools like STNWeb involves three key considerations:

1. Limitations and Trustworthiness: LLMs have inherent limitations in complex

mathematical reasoning [114, 220] and can produce inaccuracies or hallucina-

https://github.com/camilochs/explainability-LLM-stnweb
https://github.com/camilochs/explainability-LLM-stnweb

11.6. Conclusion 169

tions, especially with unstructured or subjective prompts [88]. Robust bench-
marking frameworks [249, 121, 197] are essential for evaluating LLM perfor-
mance and ensuring trustworthiness.

2. Open-Source LLMs: While proprietary models like GPT-4 often outperform
open-source alternatives [25, 174], their capabilities can be enhanced through
few-shot learning, prompt tuning, and advanced prompt engineering [112]. Fu-
ture research should focus on improving open-source LLM performance and ac-
cessibility.

3. Explainability: LLMs can bridge the knowledge gap by enhancing tool usability
and explainability, potentially through multimodal outputs [237]. However, our
findings show prompt engineering effectiveness is tied to the LLM’s reasoning
ability; GPT-4's strength with simple rules was key. Integrating external infor-
mation, such as related articles via Retrieval-Augmented Generation (RAG) [70],
can further improve LLM accuracy and explainability by providing context not

present in the prompt itself.

11.6 Conclusion

This research leveraged Large Language Models (LLMs) to automate the generation
of text and plots for STNWeb. This significantly reduces the prerequisite knowledge
needed to analyze optimization algorithm comparisons, making STNWeb more accessi-
ble for both discrete and continuous problems. Our findings demonstrate that meticu-
lous prompt engineering can yield LLM-generated reports with enhanced trustworthi-
ness and explainability, even when dealing with LLMs” known limitations in complex

mathematical reasoning.

Future work will focus on augmenting the extracted algorithmic features to improve
LLM insights and explainability. Additionally, we plan to explore multimodal LLMs to
directly interpret STNWeb graphs, enriching textual descriptions with visual analysis.

170 11. Enhancing the Explainability of STNWeb with Large Language Models

I presented this work at GECCO 2024, held in Melbourne, Australia, which, un-
known to me at the time, would be my last conference before submitting this the-
sis. I remember a strong excitement surrounding this research, coinciding with
the peak of discussions on large language models (LLMs). Unintentionally, we
were at the forefront of a new application: leveraging LLMs as assistants to en-
hance the interpretation of optimization tools’ results, a development that gave
me great personal satisfaction.

This enthusiasm arose from identifying a clearly impactful use case: employing
LLM:s to simplify and clarify complex textual information—an ability easily ver-
ified by anyone who has used ChatGPT or other LLMs. Although I could have
chosen to continue this line of work, I wanted to explore other applications of
LLMs in optimization (life is too short!); this was the last project in my PhD
where I focused on interpretability using LLMs.

In contrast, my future research with LLMs, such as code generation or optimiza-
tion (as a continuation of Chapters 6 and 7), will require considerable effort, not
so much in implementation, which is relatively straightforward, but in convinc-

ingly demonstrating its practical value. This is still viewed by many.

12

Improving STNWeb Graphical via

Hierarchical Agglomerative Clustering

of the Search Space

Foundational Work for This Chapter

This chapter is based on the following publication:

Title: An Extension of STNWeb Functionality: On the Use of Hierarchical Ag-
glomerative Clustering as an Advanced Search Space Partitioning Strategy
Published in: Genetic and Evolutionary Computation Conference
(GECCO) - Core A

Type: Conference Paper

Year: 2024

Main Contribution: Integration of an advanced search space partitioning
strategy into STNWeb

Problem Addressed: In some instances, optimization algorithm results fail
to result in useful visualizations in STNWeb

Type of contribution: Algorithmic & Methodological

DOI: https://doi.org/10.1145/3638529.3654084

Current number of citations in Google Scholar: 1

12.1 Introduction

This contribution focuses not on modifying the STNWeb interface itself, but on im-
proving the underlying behavior of the STN model embedded within it. The work was
driven by the need to improve the interpretability of STNWeb’s visualizations, which,
in certain cases, failed to provide meaningful insights. Specifically, the absence of a

171

https://doi.org/10.1145/3638529.3654084

172 12. Improving STNWeb Graphical via HAC of the Search Space

2D spac

[2]
®o
(X J
©
uonesay K19a0 ur afiop

(A) (B) ©) (D)

weaSorpuacy

Figure 12.1: Example illustrating single-linkage HAC. At each step, the two clusters with the minimum
distance (according to a distance metric) are merged. The illustration starts after the first two steps are
already performed (to shorten the procedure).

more advanced partitioning algorithm often resulted in visualizations that lacked rele-
vant structure, making them ineffective for researchers. This limitation, initially identi-
fied by my PhD supervisor, motivated the enhancement presented here. To address it,
I integrated the Hierarchical Agglomerative Clustering (HAC) algorithm into the STN
construction process. This integration allowed the model to reveal deeper structural
patterns in complex instances, significantly enhancing the clarity and usefulness of the

resulting visualizations.

% % %

In this work, we enhance STNWeb’s interpretive capabilities by introducing a novel
search space partitioning strategy. This innovation enables the creation of improved
visualizations, specifically addressing challenges posed by large discrete solutions or

an increased number of dimensions in continuous optimization problems.

12.2 Contextual Overview: Search Trajectory Networks

12.2.1 Search Space Partitioning Schemes

STNs based on original search trajectories are sometimes hard to visualize and/or in-
terpret. The reasons for this are manifold. When computation times are long, or algo-
rithms conduct rather small steps at each iteration, search trajectories might be very
long, leading to cluttered STN visualizations. In addition, in continuous optimization
problems, for example, hardly any solution is repeated in different search trajectories,
because the floating point values of decision variables hardly ever coincide exactly.
Therefore, often no overlaps are detected between different search trajectories. Search
space partitioning schemes are therefore essential for extracting and visualizing the
essential features of STNs.

This concept is analogous to zooming in on an image, enabling the observation of
intricate details such as pixels and specific error types that might otherwise be challeng-
ing to discern. In the context of STNs, the concept of search space partitioning aligns

12.2. Contextual Overview: Search Trajectory Networks 173

with this analogy. In this scenario, the “image” is the entirety of representative solu-
tions across all considered search trajectories, and the “pixels” signify a condensed set
of solutions modelling the search space after merging different representative solutions
into common locations.

12.2.2 Standard Strategies for Partitioning

The initial STN article [155] proposed a standard search space partitioning (respec-
tively, solution merging) scheme both for discrete and continuous problems. In the
discrete case, Shannon Entropy is employed for this operation, along with a parameter
representing the partitioning percentage. In the continuous case, search space parti-
tioning is accomplished through a division of the search space into hypercubes, based
on a so-called partitioning factor. Below we provide short descriptions of both cases.
However, for a more in-depth understanding, we refer the interested reader to [155].
For simplicity, we shall refer to both of these original strategies as the standard partition-
ing strategies.

Discrete/Combinatorial Case. The principal idea of the standard partitioning strat-
egy is to achieve a merging of representative solutions from the search trajectories by
removing certain decision variables from the search space. More specifically, the Shan-
non entropy of all decision variables is calculated based on their value settings in all
representative solutions found in the considered search trajectories. Variables are then
sorted according to non-decreasing Shannon entropy values. Note, in this context, that
variables that have the same value in many representative solutions have a low Shan-
non entropy, that is, their information content is low, and they might be considered for
being removed. Accordingly, variables are sorted with respect to non-increasing Shan-
non entropy values and a percentage (PP) of the variables with the lowest Shannon
entropy are removed.

Continuous Case. The standard partitioning strategy in the continuous case was
defined for problems with box constraints. That is, we assume that the values for the
variable of each dimension are limited t0 [Xmin, Xmax]- The search space is divided into
hypercubes of width 107* in each dimension, where PF is the so-called partitioning
factor. All representative solutions that fall into the same hypercube are then assigned
to the same location. In [155], PF was formulated as a function of the domain range
(Xmax — Xmin) and the problem dimension (D) as follows: PF was set to n — 2, where n
is the largest integer satisfying the condition (Xmax — Xmin) X D > 10". For example, for a
twenty-dimensional problem with a box constraint of [-100, 100] in all dimensions, the
PF would be set to 1, given that 200 x 20 > 103.! From the offset, these standard search
space partitioning methods have the following disadvantages. First, discrete and con-
tinuous problems are handled in very different ways. It might be convenient to have a
method that works well in both cases. Second, the method based on Shannon entropy
in the discrete case will not work very well, for example, for problems based on a few

1 In STNWeb, the user interface automatically computes the potential range for PF.

174 12. Improving STNWeb Graphical via HAC of the Search Space

variables with large domains. The fewer variables a problem has, the less fine-grained
is the search space partitioning method. Third, identification of the hypercubes (loca-

tions) in the continuous case becomes impractical with a growing problem dimension.

12.3 Partitioning By Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering (HAC) is a clustering approach that adopts a
bottom-up strategy [149]. Initially, each data point is treated as an individual “clus-
ter”. The algorithm systematically operates according to a designated linkage criterion,
potentially employing a range of different metrics—such as complete linkage, single
linkage, average linkage, or Ward linkage—to decide which clusters should be merged
at each step. For search space partitioning, we use single-linkage HAC extended with
a mechanism that filters out those pairs of current clusters whose merging would re-
sult in a cluster that is too large with respect to, at least, one out of two different size
measures (defined below).

In the following, we first introduce standard single-linkage HAC before we outline
our extension. HAC is an algorithm for hierarchical clustering that constructs a tree of
clusters (see Figure 12.1). The algorithm iteratively merges the closest clusters until a
single cluster, encompassing all data points, is formed. Here is a detailed breakdown
of the algorithm:

1. Initialization: Start by treating each data point (solution) as a separate singleton
cluster.

2. Identify Closest Clusters: Determine the two closest clusters based on a distance
measure d(.,.) between clusters.

3. Merge Closest Clusters: Combine the two nearest clusters into a new cluster.
The original two clusters are replaced by the new one.

4. Iterate: Repeat steps 2 to 4 until only a single cluster remains, forming a hierarchy
or dendrogram.

Note that, in practice, distances between clusters are stored in memory and, at each
iteration, only the distances between the new cluster (the result of the merging process)
and the remaining old clusters must be newly calculated. The outcome of the process
described above is a tree-like structure (dendrogram) visually representing relation-
ships between clusters at varying levels of granularity. The algorithm is provided in
more technical terms as a pseudo-code in Algorithm 3.

When applying this algorithm to search space partitioning in the context of STNs,
the set of data points (S) consists of all unique representative solutions from the set of
considered search trajectories, that is, S does not contain any duplicates of representa-

tive solutions.

12.3. Partitioning By Hierarchical Agglomerative Clustering 175

Algorithm 3 HAC with Single Linkage

Require: Set of data points S := {x1,x2,...,Xx,}
Ensure: Dendrogram representing the hierarchical clustering
1: Initial cluster set: C := {{x1}, {x2}, ..., {xn}}
2: stop « false
3: while stop = false do
P «—{(Cx,C)) | Cx #Cy, Ci,CreC}
if P = (then
stop < true
else
(Ci, Cj) « argmin{d(Cy, Cy) | (Ck, Ci) € P}
C'«C;U C]'
10: C<C \{Ci,Cj}U{C/}
11: end if
12: end while
13: return Dendrogram representation of the clustering

Y X N a e

Non-Numeric Representations in Discrete Optimization

Note that if solutions are non-numeric vectors, which happens in the case of
some discrete problems, they must first be converted to numerical vectors to be
processed by the visualization and analysis tools. STNWeb’s data loaders handle
this conversion automatically.

Discrete Solution Spaces:

For discrete problems where solutions are represented as strings of characters
(e.g., permutations like "C-A-B", symbolic sequences, or bitstrings), a direct
character-to-integer mapping is applied. Functionally, the conversion mecha-
nism processes each solution string character by character, mapping it to its cor-
responding integer ordinal value (such as its standard ASCII or Unicode code
point).

e Example: A solution string "CAB" is transformed into the numerical vector
[67, 65, 66], where 67, 65, and 66 are the ASCII values for 'C’, ’A’, and 'B’
respectively.

e Outcome: This process yields a numerical representation for each solution,
enabling distance calculations and projection into the 2D space.

However, sets of data points extracted from several search trajectories have specific
characteristics. At the start of the search process, for example, search algorithms tend
to make rather large steps. In contrast, search trajectories often converge to areas of
attraction, causing most of the produced solutions to be rather close together in a con-
fined area of attraction. We conjecture that such data point distributions would favor

the creation of a super-cluster in the area of attraction while clustering at the beginning

176 12. Improving STNWeb Graphical via HAC of the Search Space

of search trajectories would basically not happen.

Therefore, we added the following mechanism to the HAC algorithm to adapt it to
the characteristics of search trajectories. In particular, we add the following instruction
between lines 6 and 7 of Algorithm 3:

P := Filter(P)

This function filters out (removes) a cluster pair (Cg, C;) from P if one of the two fol-
lowing conditions is fulfilled.

1. w > CS, where CS € [0,100] is a user-defined parameter called cluster
size limit. Hereby, the size of a cluster is the number of solutions it contains.
2. W > VS. Hereby, My is the matrix obtained by including all solutions

from Cy and C; as rows (or columns), and Ms is the matrix obtained by adding
all solutions from S. Moreover, ||.||r is the Frobenius norm, which is a measure
of the size, respectively the magnitude, of a matrix. Finally, VS € [0,100] is a
user-defined parameter called the cluster volume limit.

The filtering operation based on these two measures avoids the creation of clusters that

are too large.

12.4 Experimental Results

The extended version of HAC was implemented in Python 3.11 and incorporated into
STNWeb,? which served as a test lab for the experiments described in the following.
In this context, note that in addition to using STNWeb online, it is also possible to run
STNWeb locally, following the instructions outlined in the GitHub repository https:
//github.com/camilochs/stnweb/.

12.4.1 Methodology and Setup

To evaluate the proposed search space partitioning method, we employ both visual
and quantitative comparisons across discrete and continuous optimization problems.
All STNWeb visualizations follow a consistent encoding:

e Trajectories from different algorithms are shown in distinct colors (as per the
legend).

e Yellow squares indicate starting points.

e Endpoints are marked as dark grey triangles (non-optimal) or red dots (best-
found solutions).

e Pale grey dots highlight shared locations traversed by at least two algorithms.

e Node size reflects the number of trajectories passing through it: larger nodes
represent more frequent traversal.

2https://www.stn-analytics.com

https://github.com/camilochs/stnweb/
https://github.com/camilochs/stnweb/
https://www.stn-analytics.com

12.4. Experimental Results 177

Figures 12.2 and 12.3 (discrete problems) are structured into four rows:

1. Row 1: Plot (A) shows the original STN (without partitioning), along with a
table reporting STN metrics.

2. Row 2: Plots (B), (C), and (D) display STNs produced using standard partition-
ing, with increasing partitioning intensity from left to right.

3. Row 3: Plots (E), (F), and (G) show STNs generated via hierarchical agglomera-
tive clustering (HAC), matching the partitioning levels of Row 2.

4. Row 4: Bar plots indicate, for each column, the number of nodes in the partitioned
STNs (Rows 2-3) that contain multiple solutions from the original STN (Row 1).
See the next section for interpretation. These plots provide a quantitative view
of how our partitioning method organizes solutions, showing the way it groups

multiple original solutions within single nodes.
Figure 12.4 (continuous problems) follows a similar structure:

1. Row 0: Tables with benchmark functions (left) and STN metrics (right).
2. Rows 1-3: Original STNs and their partitioned versions using standard (A-B)
and HAC (C-D), shown under two partitioning levels.

Case 1: Minimum Dominating Set (MDS)

Given an undirected graph G, the MDS problem seeks the smallest subset D of vertices
such that every node not in D is adjacent to at least one node in D. We evaluated three
algorithms over 10 runs each: aLco_1 (magenta), aLco_2 (green), and ALco_3 (cyan).

(B) vs. (E): Low partitioning. aLco_1 and aLco_3 consistently find the best solu-
tions, unlike aLco_2. Agglomerative clustering identifies structural similarities across
solutions, grouping them into only 3 clusters, compared to the standard method which
removes 96% of variables but fails to capture this.

(C) vs. (F): Medium partitioning. Agglomerative clustering condenses best solu-
tions into 2 STN nodes, while standard partitioning still produces 8, despite removing
97% of variables. Shared nodes (gray dots) suggest convergence to a common region
for aLco_1 and arco_3.

(D) vs. (G): High partitioning. With 98% variable reduction, standard partition-
ing loses essential structural insight. Agglomerative clustering retains relevant infor-
mation with only 120 STN nodes.

Notably, clustering preserves the strength (normalized incoming weight) of key
nodes, unlike standard partitioning. Final bar plots show clustering effectively groups
solutions near attractors, which standard partitioning fails to reveal.

Case 2: 2E-EVRP-TW

This logistics problem aims to optimize deliveries via electric vehicles using over 14,000
binary variables [4]. Figure 12.3 shows results for 10 runs each of aLco_1 (magenta)

178 12. Improving STNWeb Graphical via HAC of the Search Space

§20%0%00%0, \v‘
g N .«\:{,‘}] IN] |E|" |Nsharea| |Npest| |Nena|l components strength
o’y .:.' by .,3 i
o . ; (A) 358 328 0 19 11 30 0.63
ap o b 3 !
£ :':m (4 IR . [3 (B) 269 253 3 12 9 18 0.7
5 LR %,4° 1
3 i ¢ . beled S !
=T :\ LNy '3‘.‘ ‘3 i (©) 248 238 5 8 9 13 0.73
0)= ° X % e i
© ' e '
1 i D 186 218 23 6 7 1 0.9
BRI AT Rl
Z 'j'i“ % ot ,.‘"%. i i (E) 237 222 2 4 11 15 0.63
s > 1
ofig T e :
PR SR RN i (F) 175 167 5 2 11 10 0.63
CNE S e 1
v '
™ () 120 126 9 2 9 7 0.66
#
»."") .“‘N“ ‘.!
. { F oy K s . % 3
7% o n ! P h) % oo f
_ S Peee P P - 3 s
S 2 § "‘.Q: :"("‘: IR N ;.5 ¥
£= o7 S o s
E SRR, AL S
L] e A ’ . —& e
1 s, ',,-) | A ALY Je N $ e, o R
Legend = P A : IS S g AN
= 3 i PAPSRR e o
< Wt '._ P AN 0N ,{f\
N £ S, 3 ¥ty o o 3
Start 2 ", ‘} P e %3
PR
. $
} End
' (D) 98% (10 variables) .,
@ Best e
® o3 | ([s
. algo_2
@ ot
. Shared 2
—
Jom. 1= g Strategies
1 - 14— 14—
2 = 2o w0
o ;a :
o £ £ S £ S
E ey 3 o= -
o = [e
2 . — —
E —
———— —
] = —
01 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Total Total Total
(B) vs. (E) (©) vs. (F) (D) vs. (G)

Figure 12.2: Comparison of standard partitioning vs. agglomerative clustering for MDS.

and arco_2 (green). In (A), aLco_2 finds the best solution in 9 out of 10 runs, while
aLco_l1 fails to reach it.

(B) vs. (E): Low partitioning. Clustering reveals trajectory overlap and proximity
of aLco_1 solutions, which is obscured by standard partitioning.

(C) vs. (F): Medium partitioning. Clustering shows attraction of aLco_1 to a re-
gion near the optimum, even though it is not reached. Standard partitioning fails to
reflect this.

(D) vs. (G): High partitioning. Clustering continues to highlight meaningful
structure, whereas standard partitioning does not.

The bar plots (bottom row of Figures 12.2 and 12.3) confirm the robustness of ag-

glomerative clustering across problem domains.

12.4. Experimental Results 179

4 T SOUA R 2 7
3 J{»«-.«“‘x::? ; INI 1El |Noared| |Noesi| |Newa| components strength
o 2, (A) 273 267 1 1 9 8 045
2 (B) 272 266 1 1 9 8 045
0 2 (©) 268 262 1 1 9 8 0.45
g (D) 262 257 1 1 9 8 045
2 (E) 222 232 3 1 8 3 045
(F) 162 171 3 1 5 1 0.45
(©) 111 125 3 1 5 1 045
N\
(1
. i
3 {ﬁ o \ i
¢ AR IR] 3 !
= o { 3 4 { LY ‘#}\ Q\‘ 3 » 1S \ ;
2 H ¢ \ 1 S) Y N !
2 SRS ANR R | RN
g W SRS { @y
S $ S AR R
1) o i :7’ S| et e N AR T
1y . p
Legend _§ Y . o \ 4 ;’ “} \ :‘- &\f\:‘w $:\‘p ,—‘1}4‘ \'}:{ ; :
g R et 4 $ ol
LRERNY): P s SN
Start {{“\‘“} "’ Cx» :} § A::‘/’ ::: \“:\";}’r’

End | (B) 99.0% (149 variables) (C) 99.3% (105 variables) (D) 99.6% (60 variables)

Best

algo_2 oo by
g o N\ ./
; 1 a AR kY S oo
N \

algo_1

XXX A 4
™

Shared

Agglomerative clustering

= 3 gm- 3
P2 = 58]
T & £ 2 - :

g z Zm :
- 3 - i

| 2) r :
_/ 2 i
01 2345

Total '

] (€) vs. (F) /

N T T)

Figure 12.3: Standard search space partitioning vs. agglomerative clustering in the context of 2E-EVRP-
TW results.

180 12. Improving STNWeb Graphical via HAC of the Search Space

3 - . IN| |El" |Nsharea| |Nbesi| |Nenal components strength
(0) General information
) @) 303 | 284 0 1 19 20 0.05
() 301 282 0 1 19 20 005
. . . ©) 207 230 4 1 17 7 005
function |D| domain definition o o o p : " 7 P
(E) 479 460 0 1 19 19 0.05
Rastrigin | 20 | [-5.12.512] f(X) =10n+ Z?:l [xxz - IOCOS(Z”XI')] (F) 423 449 0 1 19 1 0.1
©) 323 | 369 0 1 13 11 085
Griewank | 10 | 1-600,600] fx)= ﬁ PRS- | i cos(%) +1 @ | s | s 0 1 i u 13
[0 354 | 382 10 1 18 13 055
) 224 282 15 1 7 1 11
Salomon | 3 | (~100,100] fO=1- cos(zm /3, x,z) +0.14/30, %7 © P e ” ; P . P
) 419 | a0 1 1 19 19 01
No partitioning Standard method Agglomerative clustering

Rastrigin

ter and volume size: 5% | (D) cluster and volume size: 5

Legend

Start

End
Best

algo_2
algo_1

(XX XA 4

Shared

(G) cluster and volume size: 5% | (H) cluster and volume si

Figure 12.4: Standard search space partitioning vs. agglomerative clustering in the context of continu-
ous optimization problems.

12.5. Conclusion 181

12.4.2 Continuous Optimization Problems

To evaluate the effectiveness of agglomerative clustering in continuous domains, we
consider three well-known minimization functions: Rastrigin (20D), Griewank (10D),
and Salomon (3D) [164]. Each was optimized using 10 runs of two nature-inspired
algorithms, denoted as aLco_1 (magenta) and aLco_2 (green), implemented via the
Metaheuristics.jl framework [142]. Results are shown in Figure 12.4, following the
structure described in Section 12.4.1.

Case 1: Rastrigin (20D)

The Rastrigin function is highly multimodal and non-convex, with numerous local min-
ima and a rugged search space. Standard partitioning (plots A and B; PF = 0 and 1)
yields STNs similar to the unpartitioned baseline, indicating its limited effectiveness
in high dimensions. In contrast, agglomerative clustering (C and D) reveals clear tra-
jectory convergence of ALGo_2 to an attractor region, highlighting its superior perfor-
mance. Trajectories from aLco_1, however, remain dispersed.

Case 2: Griewank (10D)

Also multimodal and non-convex, the Griewank function has fewer dimensions. Here,
standard partitioning (E, F) begins to capture some structure—particularly aLco_2’s
trajectory overlap in (F). Yet, clustering-based partitioning (G, H) provides a clearer
picture: ALGo_2 trajectories consistently converge to the same region in the search
space.

Case 3: Salomon (3D)

The Salomon function is smooth and unimodal, lacking the complexity of the previous
two. This is the only case where standard partitioning (I, PF = —1) performs compa-
rably or better. While aLco_2 still finds the best solution, standard partitioning also
reveals that several aLco_1 runs end near that optimum—a detail lost in clustering-
based STNs (K, L).

Summary: Agglomerative clustering outperforms standard partitioning in higher-
dimensional, rugged landscapes—typical of real-world problems—by better revealing
structural patterns in the search space.

12.5 Conclusion

This study introduced a novel search space partitioning scheme for Search Trajectory
Networks (STNs), a tool designed for interpreting and analyzing optimization algo-
rithm behavior. This new scheme, implemented in Python 3.11, was integrated into
the open-source STNWeb tool, which served as our experimental platform. Our anal-
ysis, encompassing both discrete and continuous optimization problems, consistently

https://github.com/jmejia8/Metaheuristics.jl

182 12. Improving STNWeb Graphical via HAC of the Search Space

demonstrated the superiority of the new partitioning method across all cases (except
for a unimodal smooth function), significantly enhancing STNs’ interpretive capacity.

Several avenues exist for future research. Extending STN visualizations from 2D
to 3D could further improve their utility for algorithm comparison. Additionally, inte-
grating auto-generated natural language explanations could enhance user-friendliness
by providing detailed insights into graph elements, thereby reducing the need for prior
domain knowledge.

This was the final piece of work I developed related to STNWeb during my thesis,
and it was accepted at GECCO 2024 (as was the work presented in Chapter 11).
It was also the last opportunity I had during my PhD to collaborate with Gabriela
Ochoa, which was a truly rewarding experience.

However, as discussed in Chapter 9, although this line of research on visual tools
has been a rewarding part of my doctoral journey;, it also feels incomplete. I had
planned to develop a fully reimplemented version of STNWeb that included a
3D visualization mode, enhancing many existing features and redesigning oth-
ers from scratch. One of the key improvements was the integration of real-time,
in-browser rendering using D3.js”, which would have significantly increased
plotting speed and allowed users to interactively edit the visualizations. Fur-
thermore, moving from 2D to 3D would have enabled richer, more expressive
representations by revealing additional structural insights in the algorithmic tra-
jectories.

Unfortunately, due to the approaching end of my PhD fellowship, I ran out of
time to complete it, although I managed to implement approximately 30% of the
planned improvements. Moreover, my focus had increasingly shifted toward
research involving Large Language Models (see Chapters 5 to 7), which I found
intellectually more stimulating at that stage of my doctoral work.

I 'hope to find time in the future to substantially improve STNWeb!

An open-source JavaScript library for visualizing data. https://d3js.org/

https://d3js.org/

13

A Benchmark Generator for
Assessing Variability in Graph Analysis
Using Large Vision-Language Models

Foundational Work for This Chapter

This chapter is based on the following publication:

o Title: VisGraphVar: A Benchmark Generator for Assessing Variability in Graph
Analysis Using Large Vision-Language Models

e Published in: IEEE Access

e Type: Journal Paper

e Year: 2025

e Main contribution: A benchmark generator to evaluate Large Vision-
Language Models (LVLMs) on graph analysis tasks

e Problem addressed: Are LVLMs capable of analyzing graph images?

e Type of contribution: Tool/software & Experimental & Methodological

e DOI: https://doi.org/10.1109/ACCESS.2025.3535837

13.1 Introduction

This research emerged after completing the work presented in Chapter 5, and upon
the suggestion of my supervisors, after discussing the need to advance in the auto-
matic interpretation of STNWeb plots (as explored in Chapter 11). This time, how-
ever, the idea was to use generative multimodal models to analyze the STNWeb graph-
ical directly. Therefore, before applying fine-tuning to a multimodal model to analyze
STNWeb graphs (which are directed graphs), we decided to first examine how mul-
timodal models behave when dealing with different types of graphs. This led to the

183

https://doi.org/10.1109/ACCESS.2025.3535837

184 13. A Benchmark Generator for Assessing Variability in Graph Analysis Using LVLMs

idea of creating VisGraphVar, a benchmark generator designed to test Large Vision-
Language Models (LVLMs), which we will explain in this chapter.

It is worth mentioning that I did not manage to perform the fine-tuning needed to
automatically analyze STNWeb plots, which might have led to a new journal article. As
a result, this work remains somewhat “disconnected” within the context of my thesis.
Nevertheless, it allowed me to discover that it is indeed possible to use LVLMs within
STNWeb!

% % %

One of the most challenging domains for Large Vision-Language Models (LVLMs)
is the analysis of geometric structures, particularly graphs. The complexity of graph-
based data arises from its structural flexibility—nodes and edges can be arranged in
countless configurations, resulting in highly diverse and potentially intricate patterns.
An LVLM'’s ability to interpret such visual graph representations could be transforma-
tive, enabling solutions to complex problems in graph theory with real-world relevance.
Potential applications span the analysis of information propagation in social networks,
communication flow in distributed systems, metabolic pathways in biology, routing
for robotics and autonomous vehicles, circuit design, and the modeling of dynamic
processes. This broad applicability highlights the fundamental role of graphs across a
wide range of scientific and engineering domains [83].

This research aims to address two central questions:

1. Primary question: How robust are LVLMs in interpreting visual representations
of graphs?

2. Secondary question: To what extent do visual stylistic choices—such as node
coloring, labeling, or layout—affect LVLM performance?

To explore these questions, we introduce VisGraphVar (Visual Graph Variability),
a benchmark generator designed to create graph images with controlled variation in
both structure and style. We developed VisGraphVar under the principle that a bench-
mark is only as effective as the lessons it incorporates from prior work. While existing
benchmarks typically focus on narrow tasks (e.g., visual reasoning [221]) or ignore
stylistic variability altogether [225, 118], VisGraphVar adopts a multidimensional eval-
uation framework. Drawing inspiration from [37], we define seven distinct dimensions,

each corresponding to a specific task in visual graph interpretation:

Node and Edge Detection — How many nodes and edges are present in the graph?
Graph Type Classification — What type of graph is depicted?
Segmentation — Which edges constitute the graph’s cut-edges?

L N

Pattern Recognition — Which structural patterns can be identified, and how many
instances of each exist?
Link Prediction — Which pairs of nodes are likely to form future connections?

o o

. Reasoning — What is the shortest path between two given nodes?

13.2. VisGraphVar: A benchmark generator 185

7. Matching — Are two displayed graphs structurally identical, disregarding differences
in color or layout?

Through this structured and comprehensive approach, VisGraphVar offers a rigor-
ous evaluation framework that captures the strengths and limitations of current LVLMs
in handling visual graph tasks. By addressing multiple levels of interpretation, it pro-
vides nuanced insights into how these models perform across different aspects of graph
understanding.

13.1.1 Contributions

Our main contributions—and what differentiates VisGraphVar from existing bench-
marks and benchmark generators—can be summarized as follows:

e VisGraphVar is highly configurable and user-friendly, allowing researchers to
generate datasets that uncover specific weaknesses in LVLMs when applied to
graph-based visual tasks.

e Unlike most prior work that focuses on a single task, VisGraphVar spans seven
distinct tasks, enabling more comprehensive evaluations of model capabilities
across varied graph-related challenges.

e VisGraphVar emphasizes realism by introducing imperfections commonly found
in practical visualizations, such as overlapping nodes or occluded edges. This
design choice ensures that evaluations better reflect the real-world conditions
under which models are expected to perform—conditions that humans typically

navigate with ease.

In short, VisGraphVar extends prior efforts by integrating spatial layout variability
(e.g., node positioning and edge routing) and stylistic diversity (e.g., color schemes,
label formats). We demonstrate that such visual factors significantly influence model
performance across the seven tasks described above, revealing important limitations
and promising directions for future LVLM research in graph analysis.

13.2 VisGraphVar: A benchmark generator

We present VisGraphVar, a customizable benchmark generator for evaluating LVLMs in
multimodal graph analysis. It targets a key challenge: representational variability—how
changes in visual style and structure affect model performance. By spanning seven dis-
tinct tasks, VisGraphVarenables a detailed, task-specific assessment of LVLM robust-

ness in visual graph understanding.

13.2.1 A Custom Synthetic Dataset

VisGraphVar was developed in Python 3.11 using NetworkX for graph generation. Cus-
tomizability and extensibility—core principles of effective benchmark design [105]—

186 13. A Benchmark Generator for Assessing Variability in Graph Analysis Using LVLMs

are supported through a modular architecture. The visualization pipeline offers the
following key configuration options:

1. Layout Selection. Unlike prior benchmarks that rely on default or aesthetic lay-
outs, VisGraphVar emphasizes layout variability, as spatial arrangements can af-
fect LVLM inferences. For example:

e Spring layouts highlight centrality,
o Circular layouts clarify disconnected components,
e Spectral layouts reveal community structures.

Layouts accentuate different graph properties, and LVLMs may yield inconsis-
tent results across them—raising concerns about layout sensitivity in practical
scenarios [18].

2. Graph Complexity. Users can adjust node counts and edge densities to evaluate
how increasing visual complexity affects LVLM performance.

3. Stylistic Variation. Color schemes and text labels are configurable, enabling as-
sessment of whether LVLMs can interpret subtle visual cues—an aspect often
overlooked in other benchmarks.

While GITA [221] includes some visual graph attributes, its evaluation is limited
to reasoning tasks. In contrast, VisGraphVar supports a broader range of styles and
tasks, providing a more comprehensive framework for testing both current and future
LVLMs.

13.2.2 Tasks

Limited benchmarks risk overlooking critical technology shortcomings. To address
this, VisGraphVar implements seven comprehensive evaluation tasks (Figure 13.1),
each assessing distinct aspects of Large Vision-Language Model (LVLM) graph com-
prehension while maintaining customization compatibility. Below, we explain each
task and its rationale.

Task 1: Node and Edge Detection

Proficient LVLMs for graph analysis must accurately detect and count nodes and edges
as a prerequisite for complex reasoning. To rigorously test this, we incorporated diverse
stylistic variations (Figure 13.2), including layouts, arrows, labels, and node colors. An
effective LVLM should strictly adhere to prompt instructions, ensuring attributes like
labels, edge directionality, or colors do not influence counts. However, as shown later,
not all LVLMs meet this criterion.

Visual benchmarks often assume flawless representations [221, 118]. In reality,
visual imperfections, common in large networks, can be intentional or unintentional.
Since humans adapt to these defects, VisGraphVar deliberately incorporates them.
Node/edge overlap exemplifies these challenges. We expect LVLMs to closely approx-

13.2. VisGraphVar: A benchmark generator 187

= VisGraphVar

cyclic graph
(Node and Edge Detection J Y gtap
1 4 nodes 2
T
5 edges Q tree
Pattern Recognition
cliques R2
R1
4 chain

5 Missing Link Shortest path

7

Graph 1

H

Graph 2

Figure 13.1: A general overview of the seven tasks covered by VisGraphVar (1-7), each representing
a different challenge for LVLMs, enabling us to conduct a more detailed performance comparison and
evaluation.

188 13. A Benchmark Generator for Assessing Variability in Graph Analysis Using LVLMs

[Node and Edge Detection Task 1

Arrow type Node Label Color type

circular kamada random spectral

Figure 13.2: Available configurations for generating graph images to evaluate node and edge detection
capabilities.

imate actual element counts even with overlap. For instance, detecting 9 nodes from
10 with three overlapping is better than identifying 8. This mirrors human visual pro-
cessing, where we estimate overlapping elements. LVLMs should match or exceed this,
especially with slight overlap (Figure 13.3), as these imperfections critically test a vi-
sual model’s robustness.

Task 2: Classification

Beyond element detection, LVLMs must classify graph types. This complex task re-
quires global image analysis, considering edge positions and directions to recognize
broader patterns. Such capabilities are crucial for comprehensive graph analysis. This
is essential, as demonstrated by LVLMs interpreting various chart types [140, 91] and
in real-world applications like medical image classification [86]. Classification is fun-
damental for any robust vision model.

To evaluate LVLM proficiency in understanding higher-order node/edge relation-

13.2. VisGraphVar: A benchmark generator 189

E——
Four nodes and) ,‘
image > Vv ’ two edges. N\
:; -
g

EEEE—
Three nodes 6
How many and two edges.
prompt = | nodesand edges _

are there?

Figure 13.3: LVLM execution of Task 1 with overlapping nodes and prompt input.

ships, we assess its ability to classify seven fundamental graph types (Figure 13.4):

Acyclic graphs: Graphs without loops.

Cyclic graphs: Graphs containing loops.

Bipartite graphs: Nodes partitioned into two sets, with edges only between sets.
Complete graphs: Every node connected to all others.

Meshes: Regular, grid-like structures.

Planar graphs: Graphs drawable without edge crossings.

NS U L=

Trees: Hierarchical graphs branching from a root, without cycles.

Each graph type presents unique analytical challenges. Our selection includes
clearly distinct and subtly different graphs to enhance analysis thoroughness. Iden-
tifying cycles requires tracing paths; recognizing bipartite structures demands under-
standing node groupings; tree classification requires comprehending hierarchical rela-
tionships. LVLMs must possess these analytical capabilities to accurately classify graph
structures and understand their inherent properties, forming a crucial foundation for
complex visual reasoning.

Unlike VisionGraph'’s focus on cycle detection within reasoning tasks [118], our
benchmark generator offers six additional graph types for classification. This differ-
ence arises because VisGraphVar reserves reasoning tasks primarily for Task 7 (Sec-
tion 13.2.2).

Task 3: Segmentation

Beyond classification, LVLMs must identify critical graph regions, such as cut-edges
(bridges). A cut-edge, whose removal increases connected components [76, 17], effec-
tively segments the graph. As Camilus et al. [28] stated, “Image segmentation can sim-
ply result in an image partition composed of relevant regions.” Dividing a graph into
relevant regions has numerous applications, including analyzing connectivity [212],
optimizing routing [146], and identifying network failure points [106].

A main challenge is accurately detecting cut-edges. As nodes increase, identify-

190 13. A Benchmark Generator for Assessing Variability in Graph Analysis Using LVLMs

Figure 13.5: Networks with an increasing number of nodes and a single cut-edge: the graph on the left
has cut-edge (6, 7); the one in the center has (1, 19); and the most complex one to detect, on the right,
has (4, 23).

ing cut-edges becomes harder due to overlaps (Figure 13.5), challenging even humans.
Thus, a rapid visual method to pinpoint bridge nodes would greatly aid analysis. An
LVLM correctly detecting a bridge demonstrates its ability to analyze the graph glob-
ally and identify specific nodes whose removal increases connected components. This
signifies a nuanced understanding of both overall structure and critical connectivity
points.

13.2. VisGraphVar: A benchmark generator 191

Pattern recognition . Task 4
oo o af?@:
9 ®
o
096
O @ o @.®
G o0 oy &
2 chains 3 cliques 4 stars

Figure 13.6: Three graphs with different types of patterns.

Task 4: Pattern Recognition

While cut-edge identification requires precise global analysis, recognizing and count-
ing specific graph patterns introduces higher complexity. Task 4 demands more than
a surface scan; the LVLM must accurately recognize, classify, and count each unique
node/edge pattern (Figure 13.6). This builds on Task 2 (classification, Section 13.2.2)
with added depth, particularly useful for disconnected graphs where understanding
isolated cluster structures is crucial.

Recognizing patterns in mathematical graphs is computationally demanding [189].
LVLMs could reduce this if patterns are efficiently identified via image analysis. This
task also tests LVLM memory retention [244]. Accurately counting patterns requires
storing detected structures and maintaining a tally. A less powerful LVLM might only
identify a single pattern or fail to distinguish types. Thus, this task tests initial pattern

recognition and subsequent accurate tracking.

Task 5: Link Prediction

Beyond memory and pattern recognition, link prediction is a crucial reasoning task in
graph analysis. Graph structure and node/edge positioning often suggest missing con-
nections. By analyzing topology, an LVLM can identify nodes with similar structural
patterns that could logically be connected [138].

Interestingly, link prediction complexity doesn’t always increase with node count
(Figure 13.7). Smaller graphs can be harder due to fewer examples of existing connec-
tions, making replicable pattern identification difficult. Link prediction fundamentally
differs from other graph analysis tasks, requiring deeper LVLM reasoning. Instead of

just recognizing or memorizing, the model must:

e Analyze global graph structure.
e Identify similar topological patterns across node pairs.
e Make logical inferences about potential connections.

192 13. A Benchmark Generator for Assessing Variability in Graph Analysis Using LVLMs

Link prediction Task 5

Figure 13.7: Three types of graphs with different numbers of nodes for which the LVLM is expected to
predict a missing link/edge. The missing link on the left is (4,2), the one in the center is (2, 4), and the
most complex case is (3, 5), on the right.

e Consider local and global network characteristics.
e Apply structural similarity principles to predict missing links.

Current graph link prediction research typically uses abstract mathematical objects,
not visual representations [242, 116]. The advanced reasoning required makes visual
link prediction a valuable benchmark for evaluating an LVLM’s ability to understand
and reason about complex network structures from their visual depictions.

Task 6: Reasoning

While link prediction demands reasoning, asking an LVLM to apply an algorithm to an
image-displayed graph significantly elevates difficulty. This requires genuine algorith-
mic reasoning, not just visual pattern recognition. For example, shortest path finding
involves identifying nodes, detecting edge directions, accurately storing weights, and
determining the shortest path. This task rigorously tests LVLM reasoning and memo-
rization.

This task also necessitates numerical analysis of visual information. LLMs generally
struggle with complex reasoning due to statistical inferences from training data [87].
This is more pronounced for LVLMs, which must simultaneously process and reason
about numerous visual elements, understanding their interrelationships and integrat-
ing this with textual input. New prompting techniques like self-reflection [178] im-
prove reasoning results [134] and have been applied to LVLMs [46].

Figure 13.8 shows examples of shortest path finding using VisGraphVar-generated
graphs with weighted edges and labeled nodes. Given a source-target pair, the LVLM
determines the shortest node sequence. Cases (a) and (b) are easier for humans,
though (b) is slightly harder. Case (c) presents significant visual complexity with
overlapping elements, likely leading to LVLM errors (and human errors). This case is

13.2. VisGraphVar: A benchmark generator 193

‘ Reasoning Task 6

Figure 13.8: Three graphs with varying levels of interpretive difficulty in identifying shortest paths. (a)
and (b) are simpler due to the lack of overlap between nodes and edges, whereas (c) makes it very hard
to locate each node along a shortest path due to element overlap.

invaluable for assessing LVLM behavior in extreme conditions, illustrating how visual
complexity impacts both human and LVLM performance in graph analysis.

VisionGraph [118] includes more reasoning tasks than VisGraphVar. However, our
results (Section 13.3) show even top LVLMs struggle with simpler tasks like shortest
path finding. Thus, adding more complex reasoning tasks may not be justified until
foundational tasks are robustly handled.

Task 7: Matching

Determining if two graphs match is fundamental in graph theory [29]. The LVLM
must identify both graphs’ topologies and accurately align elements to map relation-
ships. This has broad applications in neuroscience [143], computational biology [56],
computer vision [198], and machine learning [117].

Unlike previous tasks, matching involves simultaneously analyzing two graphs for
structural similarity. In this research, graphs match if their structure (including node
labels) is identical, regardless of display style. They do not match if structures differ,
even if isomorphic (Figure 13.9, right). Core LVLM verification steps for graph match-
ing include:

e Analyzing overall graph structure.
e Comparing node and edge counts.

Verifying equivalent connected nodes by labels.

Accounting for edge directionality.

Omitting stylistic details (colors, label size, layout) irrelevant to topology:.

As Figure 13.9 shows, an LVLM should ideally filter out visual details irrelevant to
topology (colors, sizes, layout). When processing the image, the LVLM must focus on

194 13. A Benchmark Generator for Assessing Variability in Graph Analysis Using LVLMs

Matching . Task 7
o o) ® ® ®
® ‘ ®
@ ® ®
@ “
® ® »
o ®

® ® ® ®

match (4 nodes) no match (6 nodes)

Figure 13.9: Graph pairs are shown with the goal for the LVLM to identify matches on the left and
distinctions on the right. Note that, in this work, two graphs in the same image are said to match if their
structure (including node labels) is equal; that is, only their display style might differ. For this reason,
the two graphs on the right do not match, even though they are isomorphic.

the prompt, which clarifies the matching task, guiding it to prioritize relevant structural

information over superficial visual cues.

13.2.3 Dataset Configuration and Statistics

Using VisGraphVar, we generated a dataset of 990 graph images (600x600 px) across
seven tasks. Table 13.1 summarizes the image distribution per task. The number
of images varies depending on task complexity and visual configuration settings in
VisGraphVar.

Table 13.1: Dataset distribution by task.

Task No. | Task Images

1 Detection 560 (56.57%)
2 Classification 70 (7.07%)
3 Segmentation 30 (3.03%)
4 Pattern Recognition | 210 (21.21%)
5 Link Prediction 30 (3.03%)
6 Reasoning 30 (3.03%)
7 Matching 60 (6.06%)

Below is a brief overview of each task’s configuration:
e Task 1 (Detection): 560 images with 10-node graphs and varied styles (colors, ar-
rows, layouts, labels). Edges are added with 2% probability between node pairs.

e Task 2 (Classification): 70 images covering 7 graph types. Node count <10;
edges depend on the graph type.

13.2. VisGraphVar: A benchmark generator 195

e Task 3 (Segmentation): 30 images with 10, 20, or 30 nodes. Two subgraphs
connected by a cut-edge.

e Task 4 (Pattern Recognition): 210 images featuring chains, cliques, or stars (2—4
per image).

e Task 5 (Link Prediction): 30 images of complete graphs (4-6 nodes) with one
missing edge.

e Task 6 (Reasoning): 30 graphs (5-7 nodes), random layout, edges added with
3% probability. Edge weights between 1 and 10.

e Task 7 (Matching): 60 paired-graph images (4-6 nodes), with or without struc-
tural equivalence. Edges added with 4% probability.

For each variation in visual style, 10 images were generated per task setting, enabling
metric averaging (see Section 13.2.4). Given its foundational role, Task 1 was exten-
sively diversified to test the sensitivity of LVLMs to stylistic variation.

13.2.4 Metrics

As described in the previous section, each visual combination is evaluated using a set
of 10 images. We employ three different metrics, which differ by task, so not all tasks
share the same evaluation criteria. Each metric is normalized on a scale from 0 to 1,
where 1 indicates optimal performance (complete alignment with the ground truth),
and 0 indicates the lowest performance (no alignment with the ground truth). Further
details are provided below.

Mean absolute error (MEA). In Task 1, we used the MAE because we are interested
in knowing the degree of error in predicting the number of nodes and edges that the
model infers from the image.

1% X
MAE = — > lyi = i
i=1
MAE
Range’

NMAE =1 — min (1) ,where

(13.1)
max(y) — min(y) if max(y;) # min(y;)
Range =
1 if max(y;) = min(y;)
Hereby, y; is the actual number of elements (either nodes or edges) that appear in
the image, while {; is the value predicted by the model. Moreover, NMAE is the nor-

malization of MAE—using Range—to ensure that predictions closer to the true values
approach a value of 1, while those further away approach 0.

Accuracy. Following Zou et al. [250], we assess model responses in tasks 2-5, and
7 using an accuracy metric, but we extended it to account for both exact and partial

196 13. A Benchmark Generator for Assessing Variability in Graph Analysis Using LVLMs

matches. The accuracy is calculated as:

n
1
Accuracy = — Z m; ,where
n
i=1

L ifyi=5i (13.2)

Mi=10.5 if y; partially matches ;

0 otherwise

This formulation allows us to account for partial correctness in tasks where a pre-
diction may be partially correct. For instance, in task 5 (link prediction), an accuracy
score of 0.5 is assigned if only one of the two nodes of the missing edge is correctly pre-
dicted by the model. The same principle applies to other tasks where partial matches
are possible.

Jaccard Index. Task 6 (reasoning) requires the model to find a shortest path regarding
a sequence of nodes. Therefore, we apply the Jaccard Index to provide a similarity
value between the actual nodes that form a true path with the path predicted by the
model.

|Ptrue N Ppredl

accard Index =
J |Ptrue U Ppredl

) (13.3)

where Py Tepresents the set of nodes in the true path and Ppreq represents the set
of nodes in the predicted path. That way, even if a model only correctly predicted four
nodes of a five-node path, it would have a higher score than a model that only correctly
predicted two nodes out of a five-node path.

13.2.5 Prompt design

Like all multimodal models, LVLMs require both an image and a text prompt to operate.
We will be testing two different prompting approaches: (1) zero-shot, where the model
makes direct predictions without examples) [107]; and (2) chain-of-thought, where
the model explains its reasoning step by step [220]. Vatsal et al. [210] identified up
to 39 prompting strategies available for natural language processing tasks; however,
many of these are derivatives of the zero-shot and chain-of-thought approaches, which
justifies our selection. Thus, this approach requires two distinct prompts for each task,
resulting in 14 prompts in total. To streamline this process, we developed a single basic
prompt per task and then used an LLM to create two versions of each—one using the
zero-shot format and another using the chain-of-thought format. We use these two
prompt versions alongside each image to test all considered LVLMs. Moreover, we
request all model responses in JSON format (as specified in the prompts) to facilitate
a later analysis.

13.3. Experiments and Evaluation 197

13.3 Experiments and Evaluation

In this section, we evaluate six state-of-the-art LVLMs across seven tasks using the
dataset described before and generated by VisGraphVar. More specifically, Sec-
tion 13.3.1 details our experimental setup, execution environment, and the rationale be-
hind our LVLM selection. Finally, we present our quantitative analysis in Section 13.3.2,
followed by qualitative observations in Section 13.3.3.

13.3.1 Environment Setup and LVLM Configuration

We evaluated six top-ranked LVLMs using the 990 graph images from our dataset (see
Section 13.2.3), categorized into seven tasks. Models were accessed via the OpenRouter
API', which enables streamlined multi-model querying.

Model selection was based on the October 2024 Chatbot Arena Vision Leaderboard?,
and includes: GPT-4o0 [228], Gemini-Pro-1.5 [204], Claude-3.5-Sonnet [202], Llama-
3.2-90B-Vision-Instruct [60], Qwen-2-VL-72B-Instruct [234], and Pixtral-12B [1]. The
leaderboard, built by UC Berkeley’s LMSYS and SkyLab, aggregates over 130,000 hu-
man votes across 38 LVLMs.

Each model was tested using two prompting strategies—zero-shot and chain-of-
thought—yielding 1980 evaluations per model (990 images per 2 prompts), and 11,880
evaluations in total. All runs used OpenRouter’s default parameters.

13.3.2 Results

In this section, we present a detailed comparative analysis of the obtained results.
These results are shown regarding the utilized metrics (see Section 13.2.4). However,
note that, for the sake of a better understanding, metric scores are shown in terms of
percentages. Figures 13.12 and 13.13 provide summarized results to easily identify the
leading models across all tasks. Additionally, Figure 13.14 shows the impact of prompt
strategies on the results.

Task-Specific Performance Analysis

In Figure 13.10, we observe that Claude-3.5-Sonnet, Gemini-Pro-1.5, and GPT-40 per-
form similarly across most tasks (70%-80% overall accuracy rate). However, significant
differences are observed in Task 7 and Task 2, where Claude-3.5-Sonnet and GPT-40
outperform Gemini-Pro-1.5. In contrast, Gemini-Pro-1.5 and GPT-40 exhibit a slightly
lower performance in Task 1 and Task 3 when compared to Claude-3.5-Sonnet. Notably,
Gemini-Pro-1.5 clearly outperforms all other models in Task 3 and shows a slight ad-
vantage in Task 1. These results highlight the general advantage of proprietary models
over open-weight alternatives.

1 https://openrouter.ai
2https://lmarena.ai

https://openrouter.ai
https://lmarena.ai

198 13. A Benchmark Generator for Assessing Variability in Graph Analysis Using LVLMs

An interesting observation is that all models show a rather high performance on
Task 4 when compared to their performance on other tasks. Moreover, another eye-
catching finding is Qwen-2-v1l-72B’s performance in Task 6, where it nearly matches the
top three models. Another significant observation concerns Llama3.2-90B, which, de-
spite having substantially more parameters than Qwen-2-VL-72B and especially Pixtral-
12B, exhibits markedly lower performance than both models and ranks below all other
tested models. This outcome confirms the suspicion that simply increasing the num-
ber of model parameters does not necessarily lead to improved performance in visual
analysis tasks; in fact, as noted by McKenzie et al. [141], inverse scaling may occur due
to flaws in the training objective and data.

Performance Distribution Analysis by Task

Figure 13.11 employs violin plots to visualize the performance distribution patterns
across our evaluated models for all seven tasks. The visualization combines two key
elements: individual points representing each model’s average performance score, and
varying plot widths that indicate the density of scores at each performance level. This
dual representation enables comprehensive analysis of both individual model perfor-
mance and the overall distribution patterns across different tasks.

The green violin plots for Tasks 1, 5, 6, and 7 exhibit a narrow and condensed shape,
with an approximate score distribution height of ~ 20% on the y-axis. This indicates
that the six models performed consistently and with a lower variation on these tasks.
The concentrated distribution suggests that the models” responses were more homo-
geneous and closely aligned for these particular tasks. In contrast, purple violin plots
for Tasks 2, 3, and 4 are wider and more dispersed, with an approximate score distribu-
tion height ranging from ~ 40% to ~ 60% on the y-axis. The increased width and height
of these violin plots signify greater performance variability among the six models for
these tasks. The heterogeneous distribution implies that the models generated diverse
responses and exhibited varying performance levels on Tasks 2, 3, and 4.

Task 4 reveals a notably asymmetric distribution pattern characterized by concen-
trated performance scores in the upper range, with five LVLMs demonstrating robust
performance (> 80%). However, the presence of a single outlier at ~ 50% introduces
significant dispersion into the distribution, creating a clear performance dichotomy
among the evaluated models.

These variations demonstrate VisGraphVar’s capability to capture diverse model
behaviors, attributable to its comprehensive task design that spans multiple aspects of
visual analysis.

Aggregate Performance Evaluation

In Figure 13.12, it is shown that multimodal models like Claude-3.5-Sonnet, Gemini-
Pro-1.5, and GPT-40 exhibit similar performance across all tasks, but with a slight
advantage of Claude-3.5-Sonnet. Moreover, there is a significant performance gap of

199

13.3. Experiments and Evaluation

1ONNSUI-q7/-[A-Z-Uomb
q1-Tenxid .
JONNSUI-UOISIA-(()§-7 € -BUIR[]
90-80-7T0T-0t-1d3 wgen
G 1-o1d-rurwo3
JOUUOS-G* €-OPNE[D ~g@=

*(Jasvyvp 230]dwi00) sysvy Uaaas ayj $S0400 2ouvULIOfId INTAT JO Ma12I000 UY QL€ INSLI

(>ser) uoneoryisser)

(1 >yseL) uonoaRQ ‘

%00T %08 #7%09 /= %0F %0T @
(£ >ser) Surgore

§ >
-
/ \ : (¢ ysel) uonu3ooay uraned
(9 yse1) uruoseay y\\

(G vyseL) uonorpad >ury

(¢ yse1) uoneuowIog

N\

(19119 St 9, 19Y31H) sadAT yse], sso1oy uostredwo)) [9pON

200 13. A Benchmark Generator for Assessing Variability in Graph Analysis Using LVLMs

Distribution of Task Performance Across Models

100%

grxyg?l

8|

=]

6

=]
X

40%

Score Distribution (%)

20%

0%

Q) V) N M N Q) A
o ¥ 5 ¥ ¥ = ¥
6% 6%- 6‘& 6‘} 6% é‘b 6‘&
& & & & &))
S S S & S S S
& F & > e & &
o ¥ & N 06 a g
9 S & < ¥ <
O‘b’ %Q)Qo Q' &
.@@ V
F

Figure 13.11: The distribution of average scores across the six LVLMs for each task. The violin plot
is configured with bw_adjust = 0.5 (which adjusts the bandwidth of the kernel density estimation,
making the plot more detailed) and cut = 0 (which ensures the plot is limited to the range of the data
without extending beyond it) using the Seaborn library in Python.

30.47% between the top model, Claude-3.5-Sonnet, and the model with the weakest
performance, Llama3.2-90B. This trend aligns with the fact that all three top models
are proprietary models, further confirming that, at present, these models outperform
open-weight models in visual tasks. This confirms the findings of [78], which demon-
strated that there is currently no way for an open-weight model to match the perfor-
mance of a proprietary model without improvements to its underlying base language
model.

Figure 13.13 shows that Claude-3.5-Sonnet exhibits a mixed performance across
tasks. It excels in Task 4 but shows a relatively lower performance in Tasks 1 and
6. Only for Tasks 4 and 5 an average accuracy of over 80% performance is obtained.
These results indicate that, except for Task 4, future LVLMs have significant room for
improvement, in particular for what concerns detection (Task 1), Reasoning (Task 6),
and Matching (Task 7).

Prompting Strategy Impact Analysis

In Figure 13.14, we observe that different prompting strategies, in general, only slightly
affect model performance. Llama3.2-90B benefits from Col prompting across most
tasks, with two notable exceptions: in Task 2, where 0-shot prompting performs better,
and in Task 3, where both strategies yield comparable results.

Claude-3.5-Sonnet, Gemini-Pro-1.5, and GPT-40 demonstrate consistent perfor-

13.3. Experiments and Evaluation 201

Average Model Performance Across All Tasks

100

78.28% 76.44% 75.73%

S
> 61.34% 58.31%
S 47.81%
%]
&n
2]
g
>
<
0 XN
< o s
& < &
A < o
X N &
0
S & WQQ
& ol
&
\x‘b

Figure 13.12: Average LVLM performance (best to worst from left to right) regarding the VisGraphVar
dataset.

Average Task Performance Score of Claude-3.5-Sonnet Across Tasks

00 97.13%
_ 79.29% 78.33% 82.50% 73.33%
® 80 69.69% 67.67% i
5]
§ 60
5]
& 40
S
< 20

0

A
Q& ‘ﬁ &
06 Q@ ¢ %6
© & &
3 S &
N

9 O@% >

Figure 13.13: Average performance of Claude-3.5-Sonnet for each task from the VisGraphVar dataset.

mance across all tasks, showing minimal variation between different prompting strate-
gies. Similarly, Pixtral-12B and Qwen-2-VL-72B generally exhibit little variation be-
tween prompting methods. However, notable exceptions emerge in the analysis:
Pixtral-12B demonstrates enhanced performance with Col' prompting compared to 0-
shot approaches, achieving a significant 16% improvement in Task 5. Conversely, in
Task 3, we observe a 10% performance advantage when using 0-shot over Col prompt-
ing.

202 13. A Benchmark Generator for Assessing Variability in Graph Analysis Using LVLMs

Chain-of-Thought (CoT) performance
100
Detection (Task 1)

Classification (Task 2)

Segmentation (Task 3)

B e
9]
2
Pattern Recognition (Task 4) §
o
g -4
Link Prediction (Task 5) 2l
Reasoning (Task 6) - 67.00 20
Matching (Task 7) - 62.00
0
X “ (S 9 0 o
R s & 7 &
,,;J) &,Q @b‘ .&Gx Q“& R q}o,\
¥ ¢§‘§ o ’4\% 14\’
i ¥ o
& N &
ok N
&
%&
0-shot performance
100
Detection (Task 1)
Classification (Task 2) 80
Segmentation (Task 3) ~
T _e0
9]
2
Pattern Recognition (Task 4) §
s
g -4
Link Prediction (Task 5) 2l

Reasoning (Task 6) - 63.00

57.00 57.00 20
Matching (Task 7) - 62.00 50.00 48.00
0
N
pY &
> "~
& < N
2° Q“V /\’\}o
¥ N
> A
R W
&
&
&

Figure 13.14: Average scores for each task by prompt strategy, Chain-of-Thought (top) and 0-shot
(bottom). Green indicates strong results, while red denotes poor results.

13.3. Experiments and Evaluation 203

Overall, and somewhat surprisingly, we do not observe any single prompt strat-
egy consistently outperforming the other. Since 0-shot prompts are easier to create
than Col prompts, we recommend beginning with 0-shot testing; if the results are un-
satisfactory, then Col' prompts can be attempted. Other benchmarks in the field sup-
port these findings regarding prompting strategies. VisionGraph [118] similarly fails
to demonstrate clear superiority of either prompting approach. GITA [221] takes a
different approach, focusing solely on 0-shot prompting and fine-tuned LLMs, while
omitting Col evaluation entirely.

Our analysis provides a more detailed and comprehensive examination of this phe-
nomenon, emphasizing that there is no clear superior approach among the most pop-
ular prompting strategies, namely 0-shot and CoT. This finding is important to the on-
going discussion about optimal prompting strategies in visual-language tasks.

13.3.3 Observations

This section analyzes three cases that clarify key aspects of LVLM behavior on our
dataset created with VisGraphVar. We first examine Figures 13.15 and 13.16, which
reveals crucial insights about spectral layout interpretation in Task 1 (Detection). We
then explore Figure 13.17, highlighting distinctive characteristics in Pixtral-12B’s per-
formance on Task 7 (Matching). Finally, Figure 13.18 demonstrates the influence of
node labeling on model performance and accuracy.

The Striking Case of Spectral Layout

The bar plot in Figure 13.15 shows the average score of the best-performing LVLM
(Claude-3.5-Sonnet) on the images of Task 1 (Detection). The scores are separately
shown for graphs displayed in different layouts. Interestingly, we observe a substantial
decline in performance for the spectral layout (48,82%) compared to other layouts.

Figure 13.16 showcases such a graph with a spectral layout, consisting of 10 nodes
and 20 edges. While GPT-40 accurately identifies these elements, Claude-3.5-Sonnet
misidentifies the composition, reporting 9 nodes and 14 edges; see below. Interestingly,
our prompts not only requested a count of elements but also encouraged the models
to provide an analysis justifying their responses.

Output: Claude-3.5-Sonnet

"total_nodes": 9,

"total_edges": 14,

"analysis": "The graph consists of 9 nodes numbered 0-8 in various colors
including pink, red, purple, grey, blue, and teal. The nodes are
connected by 14 black directed edges forming an asymmetric network

structure. The graph has a denser cluster of connections on the left side

[

and sparser connections extending to nodes 6 and 8 on the right."

204 13. A Benchmark Generator for Assessing Variability in Graph Analysis Using LVLMs

Claude-3.5-Sonnet Performance on Task 1 Across Different Layouts

100
79.20% o
74.54% o 7571%
.00%
< 75 67.00% 09:37% 71.00%
2
N’
5]
1 9
S
@ 50
x
®
>
<
0
random spiral circular shell spring kamada spectral
Layouts

Figure 13.15: Average performance of Claude-3.5-Sonnet on Task 1 for each considered graph layout.

Output: GPT-40

“Tjson

"total_nodes": 10,
"total_edges": 20,
"analysis": "The graph contains nodes with various colors including shades of

— purple, red, orange, and blue. Edges are directed and have no colors."

As can be seen, Claude-3.5-Sonnet demonstrates a more comprehensive analysis
than GPT-4o. It successfully identifies the overall node positioning, whereas GPT-40
offers a brief and irrelevant explanation. This observation suggests that when analyz-
ing images with spectral layouts, Claude-3.5-Sonnet tends to be captivated by the lay-
out’s structural form (focusing on the analysis) rather than performing the exact count
requested. This phenomenon could be attributed to the model’s remarkably high per-
formance (97.13%) in pattern recognition (Task 4; see Section 13.3.2), which potentially
biases its analytical approach towards structural interpretation over precise enumera-
tion. Conversely, GPT-40 appears to concentrate specifically on the task at hand.

This behavior was only observed with the spectral layout, where all models worsen
their predictions (see Table 13.2).

13.3. Experiments and Evaluation

205

Figure 13.16: Image from our dataset (Task 1), showcasing a spectral layout with randomly colored

nodes, directed edges, and 10 nodes with 20 edges.

Table 13.2: Performance percentage for each LVLM with the spectral layout.

spectral layout

LVLM

Col' 0-shot
claude-3.5-sonnet 4711 48.82
gemini-pro-1.5 5547 55.11
gpt-40-2024-08-06 64.07 66.04
llama-3.2-90b-vision-instruct 39.99 44.34
pixtral-12b 4471 50.92
qwen-2-vl-72b-instruct 55.78 54.56

206 13. A Benchmark Generator for Assessing Variability in Graph Analysis Using LVLMs

Important

For detailed results for each layout, please visit our supplementary materials at

https://camilochs.github.io/visgraphvar-website.

Pixtral-12B and the Complex Task of Matching

Pixtral-12B failed in all instances of Task 7 (Matching). Remember that this dataset
contains images showing graphs with 4, 5, and 6 nodes. Moreover, it was the only
model to fail for all images. Figure 13.17 shows an example of an image where it failed;

see below for Pixtral-12B’s response.

@

\ e N

\ - AN
I“"I‘ // - \\\ @
og AN

N AN @
\ ©
O] ©

Graph 1 Graph 2

Figure 13.17: Image from the dataset concerning Task 7 (Matching), containing two structurally equal
graphs.

Output: Pixtral-12B

Ilmatchll : llnoll s

"analysis": "Upon examining both graphs, it is clear that they are different.
The structure, the arrangement of nodes, and the connections between the

nodes do not match between Graph 1 and Graph 2. Specifically, the filling
color of the nodes and the type of lines (gray vs. orange) differ in both

O

graphs."

Pixtral-12B consistently makes errors due to a misunderstanding of the prompt
(both in 0-shot and CoT scenarios). The prompts specifically ask for comparing the
graphs based on their identical structure and node connections, not their visual styles.
VisGraphVar presents a significant challenge with this task because it requires the
model to infer that it is about graph matching, rather than comparing their stylistic

https://camilochs.github.io/visgraphvar-website

13.3. Experiments and Evaluation 207

Model performances for graphs with and without node labels
® labeled nodes ™ without node labels

100

76-30%5.35%

73.43%

75
64.41%
60.24%g 350, 59:99%8.98%

50

25

Average score (%)

Figure 13.18: Comparison of the average model performance for graphs with labeled nodes (pink) and
graphs with unlabeled nodes (green) in Task 1.

similarities. Consequently, Pixtral-12B, likely due to its training set, cannot detect sub-
tle nuances in the prompts, such as distinguishing structural equivalence from stylistic
similarity in graphs.

This complexity in detecting a matching task is further highlighted by the task of
detecting that graphs do not match. Paradoxically, Pixtral-12B is the only model that
succeeds in all 30 cases, but for the wrong reasons. Rather than focusing on graph
structure, it simply identifies a stylistic difference between Graph 1 and Graph 2 and
concludes they do not match.

The Impact of Node Labels on Model Performance

In the following, we present an intriguing observation that affects all models. In par-
ticular, this observation concerns possible performance differences the models show
for images with node-labeled graphs and images with unlabeled graphs. Figure 13.18
shows that in Task 1 (Detection), images of graphs with labeled nodes generally result
in higher model performance than images with unlabeled graphs.

To explain this, consider the case of GPT-40, which demonstrates the largest perfor-
mance gap of ~ 9%. In Figure 13.19, the graphs in (a) and (b) both have 10 nodes and

208 13. A Benchmark Generator for Assessing Variability in Graph Analysis Using LVLMs

(a) (b)

Figure 13.19: (a) A node-labeled graph with 10 nodes and 16 edges and random node-colors. (b) A
similar, un-labeled graph. Both belong to the dataset of Task 1.

16 edges. However, GPT-40’s responses produce the following discrepancies:

Output: GPT-40 (for the graph in Figure 13.19a)

"total_nodes": 10,
"total_edges": 18,
"analysis": "The graph contains nodes of various colors, including green,
— pink, blue, yellow, and brown. Edges are directed and represented by

— black arrows connecting the nodes."

Output: GPT-40 (for the graph in Figure 13.19b)

{
"total_nodes": 9,
"total_edges": 23,
"analysis": "The graph contains nodes of various colors, including green,
— blue, and purple, connected by directed edges. Une node is isolated and
— not connected by any edges."

}

When confronted with images of node-labeled graphs, GPT-40 accurately identifies
the total number of nodes (10) and closely estimates the number of edges (18 vs. the
actual 16). However, the total edges are drastically overestimated for images with un-
labeled graphs, reporting 23 instead of 16 (resulting in a difference of 7). This is not an
isolated case, which is shown in Figure 13.18. Although the difference is not substan-
tial, images of graphs with labeled nodes consistently yield better performance across
all models.

13.4. Discussion and Open Questions 209

We hypothesize that models with poorer performance on unlabeled graphs likely
had insufficient exposure to such graphs during training, particularly in analysis tasks.
This suggests an opportunity to fine-tune a model using more unlabeled graph images
to evaluate whether performance improves in these cases.

13.4 Discussion and Open Questions

The expanded potential of LLMs through multimodal capabilities is exemplified by
LVLMs, which now offer detailed, low-cost image analysis via API, from object detec-
tion to comprehensive captioning. However, tasks requiring both vision and inference
remain inherently challenging, with a long history in computer vision. To properly
evaluate emerging LVLMs, testing against visually complex tasks is essential. Flexi-
ble geometric structures like graphs are crucial here, as they can introduce significant
complexity through simple alterations in spatial arrangement or visual representation.

Our study introduced VisGraphVar, a benchmark generator designed to challenge
current LVLMs and serve as a testing platform for future models focused on visual
graph inference. Below, we present open questions from our study that warrant further

exploration:

1. Which visual style changes truly impair a model’s prediction? Our
VisGraphVar dataset provided evidence that visual changes, such as adding
node labels or modifying layout, affect inference performance. However, pre-
cisely identifying which changes harm model performance and quantifying
their impact remains an open question. We believe VisGraphVar can inspire
further research into these questions—beyond just visual graph inference—
through comprehensive analyses to clearly pinpoint which visual styles distort
predictions.

2. Can an LVLM achieve over 90% accuracy across all seven VisGraphVar tasks?
Testing LVLMs against these seven tasks proved challenging; while Claude-3.5-
Sonnet performed best, it is still far from achieving high scores across all tasks.
Potential strategies to improve results on our dataset, or future VisGraphVar-
generated datasets, include:

e Training fine-tuned models capable of handling all seven tasks and varia-
tions in visual styles [240].

e Researching advanced prompt strategies [210, 178] and hypothesizing how
prompt modifications could improve results.

e Moving beyond single prompts to a series of prompts that enable self-
correction within an image context [159], fostering interaction through LLM-
based agents [173].

3. How can LVLMs be incorporated into real-world graph theory applications?
Benchmarks like VisionGraph [118], GITA [221], and our VisGraphVar focus on

210 13. A Benchmark Generator for Assessing Variability in Graph Analysis Using LVLMs

small graphs, as current LVLMs are not yet mature enough for larger scales. Fur-
thermore, for larger or denser graphs, visualization challenges are not unique
to LVLMs but are common limitations for any automated interpretation system.
However, we anticipate that once LVLMs achieve greater precision in various
graph analysis tasks, they will be invaluable for quickly analyzing complex graph
images in domains like social networks, communication networks, and educa-
tional applications. Given the current state of multimodal model technology, it
is already feasible to integrate them into applications for general analytical ques-
tions rather than precise algorithmic operations on an image. The first step for
integration would be to define the specific tasks an LVLM should perform (using
this study as a guide) and then identify the model best suited for those tasks.

13.5 Conclusions

This research evaluated Large Vision-Language Models (LVLMs) using graphs, chosen
for their rich geometric and structural complexity. We introduced VisGraphVar, a cus-
tomizable benchmark generator exploring visual variability across stylistic elements
and graph structures. The framework generates datasets for seven distinct tasks (detec-
tion, classification, segmentation, pattern recognition, link prediction, reasoning, and
matching), comprehensively covering graph interpretation and analysis. Our analysis
reveals two key findings: visual variability significantly impacts LVLM performance,
and current LVLM architectures require fundamental enhancements for complex visual
graph interpretation.

Concrete steps to advance graph analysis with LVLMs include:

e Testing LVLMs in real-world graph analysis applications. LVLMs could sum-
marize graph images and provide general insights (e.g., structure, clusters, den-
sity) in fields like social or biological networks. However, extracting specific data
(e.g., solving algorithms, counting elements in large graphs) remains challenging,
requiring further advancements.

e Fine-tuning. Fine-tuning models with input-output examples could address vi-
sual variability issues, training LVLMs to handle specific scenarios like overlap-
ping shapes.

e Creating more complex datasets using VisGraphVar. As abenchmark generator,
VisGraphVar can design more challenging scenarios with greater visual variabil-
ity to push new models’ limits. An LVLM achieving high average scores across
VisGraphVar’s seven tasks would be ready for real-world graph image analysis,
providing general insights. However, detailed quantitative analysis (e.g., count-
ing nodes in large graphs) remains a significant challenge requiring careful vali-
dation.

13.5. Conclusions 211

Although, as I mentioned at the beginning of this chapter, it remains somewhat
“disconnected” from my thesis, this work proved valuable in demonstrating the
potential of using LVLMs within STNWeb. Given that STNWeb is more com-
plex than the graph images used in this chapter—employing its own unique
symbology—there are promising possibilities to achieve good results through
fine-tuning smaller models (such as Small Language Models like LLaVA?).

I suspect that the textual extraction of graph features generated by STNWeb
(Chapter 11) cannot be fully replaced by LVLMs, but rather should be integrated
with them. Even with fine-tuning, LVLMs may mistake on simple tasks such as
counting the total number of nodes. However, they could prove useful for de-
tecting regions of a graph where overlaps occur; for example, “In the upper-right
corner, there is noticeable overlap in the trajectory of ALcoriram_A.” This kind
of spatial-visual insight is impossible with the purely textual LLM approach pre-
sented in Chapter 11, as it lacks access to visual-spatial information.

I hope to have the opportunity to explore this further in the future!

? https://llava-vl.github.io/

https://llava-vl.github.io/

14

Conclusion

This thesis explored various strategies aimed at mitigating the intrinsic weaknesses of
metaheuristics—namely, their lack of instance-specific information and the difficulty
in interpreting their behavior on particular problems.

To address these challenges, two complementary lines of research were developed.
The first focuses on enhancing the algorithmic performance of metaheuristics by inte-
grating modern machine learning techniques. The second involves the development
of a web-based tool that enables visual analysis of metaheuristic behavior. These two
approaches are mutually reinforcing: improved interpretability helps justify algorith-
mic enhancements, while algorithmic improvements can reveal previously unnoticed
visual patterns worthy of further investigation.

14.1 Discussion of Main Contributions

14.1.1 PartI- Algorithmic Enhancements

My initial exploration into the use of machine learning within metaheuristics focused
on integrating Graph Neural Networks (GNNs). GNNs are particularly well-suited
for this purpose, as they are designed to capture the topological structure of graphs—
a common representation in combinatorial optimization problems. This approach
proved effective in two distinct scenarios: first, by combining GNNs with a Biased
Random-Key Genetic Algorithm (BRKGA) to tackle the Multi-Hop Influence Maxi-
mization problem in social networks (see Chapter 3); and second, by incorporating
GNNss into an Ant Colony Optimization (ACO) framework for the Target Set Selection
problem, also in the context of social networks (see Chapter 4).

A significant advantage of the GNN-based approach is its scalability: it can eval-
uate graphs with millions of nodes without a substantial increase in evaluation time.
However, as with any deep learning model, training requires large amounts of data
and computational resources. These trade-offs must be carefully considered in order
to fully leverage the benefits of this method.

212

14.1. Discussion of Main Contributions 213

Motivated by these limitations, and driven by a curiosity to explore emerging tech-
nologies, I decided to move beyond GNNs and investigate the potential of Large Lan-
guage Models (LLMs) to enhance the quality of solutions produced by metaheuristics.
This shift opened a new line of experimentation, where the generative and reasoning
capabilities of LLMs were used to guide the search process and influence algorithmic
decisions dynamically.

In Chapter 5, we demonstrate that LLMs can be valuable in metaheuristics not only
through code generation but also as pattern recognition engines applied to tabular
data containing graph instance metrics. In this context, the LLM acts as a numeric
pattern detector, identifying which regions of the graph are likely to be more promising
for exploration. To test this hypothesis, we applied a BRKGA to the same problem
addressed in Chapter 3, and the LLM-guided approach outperformed the previous
GNN-based method.

After, we also explored the potential of LLMs to enhance metaheuristics from a dif-
ferent perspective—code improvement. Rather than prompting LLMs to generate algo-
rithms from scratch, we focused on leveraging expert-written code and using LLMs as
collaborators in the design process. This was done in two ways: (1) identifying regions
in the code that could benefit from heuristic modifications (see Chapter 6); and (2)
automatically updating entire algorithm implementations using modern techniques,
drawing on the LLMs’ broad algorithmic knowledge (see Chapter 7).

The main result of this research line (Part I) is the demonstration that metaheuris-
tics can be effectively integrated with LLMs. We also present a method for incorporat-
ing GNNs into metaheuristic frameworks, further developing a direction previously
explored in the literature. Each approach has its own strengths and limitations, and
the choice of hybridization strategy should be guided by the specific characteristics of
the problem at hand. Both approaches can contribute to strengthening metaheuristics
by addressing their weaknesses through the use of modern techniques.

14.1.2 Part II - Enhanced Interpretability

The performance of a metaheuristic is typically evaluated through statistical analysis
and numerical comparisons with other methods, aiming to determine whether it pro-
duces higher-quality solutions for a given problem. However, due to the stochastic
nature of these algorithms, such evaluation alone is often insufficient. Additional lay-
ers of analysis are needed to better understand and justify newly proposed heuristic
strategies.

In this part of the thesis, we focus on research surrounding Search Trajectory Net-
works (STNs). To this end, we developed a tool called STNWeb, which encapsulates
the STN methodology within a user-friendly web interface. Beyond simply making
STNs more accessible, STNWeb introduces new functionalities designed to enrich anal-
ysis and promote broader adoption by the research community.

The STNWeb tool and its purpose are detailed in Chapters 9 and 10. We then intro-

214 14. Conclusion

duce a novel feature designed to lower the entry barrier for new researchers interested
in deepening metaheuristic analysis: the integration of LLMs to generate textual re-
ports that facilitate the interpretation of the visualizations produced by STNWeb (see
Chapter 11).

Additionally, we enhanced the quality of STNWeb’s visual outputs by improving
the concept of search space partitioning. This allows STN to detect finer nuances in
the trajectories of each algorithm run—particularly useful in cases where algorithms
behave similarly or when the solution space is vast (with hundreds of variables). To
achieve this, a clustering algorithm was integrated into STNWeb (see Chapter 12).

This section closes with preliminary research focused on integrating direct visual-
spatial analysis of STNWeb’s graph visualizations. In Chapter 13, we introduce a bench-
mark generator aimed at assessing the capabilities of Large Vision-Language Mod-
els (LVLMs) in analyzing images of various types of graphs. These include both di-
rected and undirected graphs, with or without labels, featuring different node and
edge styles, and exhibiting diverse topologies. This investigation remains preliminary
because STNWeb generates directed graphs with a specialized visual language, pre-
senting unique challenges for LVLM interpretation.

14.2 Limitations and Challenges

14.2.1 Algorithmic Improvement

Based on my experience working with both GNNs and LLMs for algorithmic improve-
ment, the primary limitations and challenges detected with these technologies are as
follows:

e Graph Neural Networks

1. Data Quality and Representativeness: A significant challenge lies in acquir-
ing or constructing a sufficiently high-quality dataset, both in terms of in-
stance quality and their representativeness of the underlying optimization
problem [20]. In our work, we adopted a strategy of generating synthetic
random graphs of various sizes, specifically Erd6s—Rényi graphs, which are
commonly used to capture the topology of social network graphs [19]. How-
ever, “similarity” does not necessarily guarantee that these synthetic graphs
accurately capture the complex topologies and characteristics of real-world
graphs. Furthermore, determining the optimal number of synthetic graphs
required for effective training remains an open question. These limitations
are intrinsically linked to a well-known problem in Deep Learning: the inher-
ent need for vast quantities of high-quality data to achieve adequate predic-
tive performance, a stark contrast to some more traditional machine learning
approaches that can perform well with less data.

2. Sensitivity to Graph Topology: GNNs’ performance can be highly sensitive
to the input graph’s topology. If a graph contains significant noise—such

14.2. Limitations and Challenges 215

as spurious edges, irrelevant or mislabeled nodes, or structural inconsisten-
cies that distort the underlying relational patterns—or if it is highly sparse
or possesses a complex, irregular structure, GNNs may struggle to detect
meaningful patterns in node relationships [99, 53]. This limitation directly
impacts their ability to perform accurate inference on nodes, edges, or sub-
graphs, which is fundamental for guiding optimization algorithms.

e Large Language Models

1. Limited Context Window: A primary constraint for LLMs in optimization
is their limited context window [88]. This restricts the amount of problem-
specific information (e.g., large graph structures, extensive tabular data)
that can be fed into the model in a single prompt. While context windows are
continually expanding, it is important to note that a larger context does not
necessarily guarantee sustained LLM inference quality [85]. Furthermore,
current context windows are not yet large enough to effectively handle very
large-scale optimization instances with millions of nodes, which are com-
mon in real-world applications.

2. High Economic Cost per Token: Despite a general trend of decreasing
prices, the computational cost associated with processing large numbers of
tokens can still be substantial, especially for iterative optimization processes
or when dealing with complex prompts for large instances. This can make
extensive experimentation or deployment economically prohibitive for some
researchers or applications.

In the specific context of LLMs’ application in optimization, the scenario presents
a nuanced trade-off. While LLM costs have generally decreased over time, and they
do not necessitate the laborious construction of problem-specific datasets like GNNSs,
a significant hurdle remains: the current context window limitations prevent LLMs
from effectively evaluating and generating probabilities for individual nodes in graphs
containing millions of elements. This scale is currently feasible with GNNs.

Furthermore, our experiments demonstrate that certain metaheuristics are more
susceptible to LLM-driven enhancements than others. The BRKGA, for instance,
proved highly receptive to subtle biases provided by LLMs, enabling it to explore more
promising search spaces effectively. This was not the case with Ant Colony Optimiza-
tion (ACO); attempts to replicate the LLM-biasing approach from Chapter 5 for ACO
did not yield comparable positive results, unlike when GNNs and Q-learning were in-
corporated into ACO (Chapter 4). This suggests that for population-based metaheuris-
tics like ACO, a static, offline bias value from an LLM might be insufficient. Such al-
gorithms may require more structural changes to their operation or dynamic, iterative
feedback from the LLM, which points towards the first line of future research discussed

in the next section.

216 14. Conclusion

14.2.2 Interpretability Enhanced

Visualization is always open to improvement, particularly because it is, to some extent,
a subjective and context-dependent task. The clarity and usefulness of a visualization often
evolve based on feedback from domain experts and users interested in specific function-
alities. In this sense, STNWeb still offers significant room for enhancement. Below, we
outline some of its current limitations:

e Limited to 2D visualization. One of the main directions for future research (see
next section) is the development of a 3D version of STNWeb. A 3D interface
would allow for a better perception of trajectory intersections across algorithms,
offering richer angles and perspectives compared to the current static 2D layout.
This improvement could help reveal patterns and convergence behaviors that re-
main hidden in two dimensions.

e No temporal representation. Both STN and STNWeb rely on static visualizations
of fitness values throughout the execution. However, they currently lack any en-
coding of temporal dynamics, such as the time required to move from one solution
to another or the convergence speed. Incorporating temporal information would
offer a more complete picture of algorithmic behavior, especially in time-sensitive
or dynamic problem domains.

e Limited support for complex solution structures. Some algorithms—such as
those used in Genetic Programming—evolve highly complex solution structures,
including expression trees, graphs, or full programs. These are difficult to rep-
resent through linear (string-based) encodings and require more sophisticated
visualization models. Extending STNWeb to support such cases would signifi-
cantly broaden its applicability across different classes of metaheuristics and op-

timization problems.

14.3 Future Research Directions

The following are research directions that, unfortunately, I was unable to fully pursue
by the time of submitting this thesis (July 2025). However, some of them already show
promising results and partial progress, which makes it likely that I will have more to
say about them by the time of the defense—possibly even in the form of a publication.

Below, I briefly outline each of them:

14.3.1 STNWeb 3D

The most natural next step for the work presented in Part II of this thesis, which focuses
on STNWeb, is the development of a fully redesigned 3D version. The aim is not only
to add a third dimension to improve the spatial perception of trajectory intersections,
but also to rebuild the entire web application architecture. In particular, the render-

14. Conclusion 217

ing engine would be moved entirely to the frontend, leveraging D3. js!, which would
significantly reduce the latency currently experienced in the 2D version.

At the time of writing, the project is approximately 30% complete. I am optimistic
about being able to finish and release this new version in the near future.

14.3.2 Path-Dependent Runtime Heuristic Steering (PathSteer)

I plan to investigate a novel paradigm, tentatively named PathSteer, focused on the run-
time self-modification of metaheuristic components. Unlike traditional static optimiza-
tion approaches (Chapters 5 to 7), this system would leverage a LLM to dynamically
generate new heuristic functions during execution. For example, in the case of Ant
Colony Optimization, the LLM would synthesize new variants of pheromone update
or exploration strategies based on detailed runtime metrics—such as solution quality
trends, stagnation indicators, or constraint violations.

A key innovation of this approach is the idea of navigating a dynamic graph of
heuristics, where the effectiveness of a given heuristic may depend not only on the cur-
rent problem state, but also on the sequence of previous modifications—its modification
path. Our hypothesis is that this path-dependent adaptation will yield more effective
and problem-specific behaviors than any fixed heuristic configuration.

Initial results are promising: our currentimplementation has already outperformed
state-of-the-art methods for the Target Set Selection problem, as discussed in Chapter 4.

This is arguably the most ambitious idea to emerge from this thesis, as it synthesizes
the insights and results from Chapters 5 to 7 and pushes them beyond static algorithm
design into a radically different paradigm.

Although research on metaheuristics that adapt at runtime already exists [201]—
including coevolutionary algorithms, where different components evolve in response
to each other [169 | —this new approach differs fundamentally: it modifies the actual
structure of the implementation code, not merely its parameter values. In this way, run-
time adaptation, powered by LLMs, transforms heuristics from fixed components into
dynamic, evolving strategies—continuously shaped by live feedback and contextual
performance, and governed by a temporally dependent process, not by an evolution-
ary one as in AlphaEvolve [152].

! Anopen-sourceJavaScript library designed for fast and dynamic data visualization. https://d3js.org/

https://d3js.org/

Appendix

A Brief Guide to Optimization

Optimization problems, understood from a mathematical perspective, focus on finding
the best possible solution to a problem given a set of constraints and objectives. The
simplest case involves maximizing or minimizing a function by selecting input values
(that satisfy the constraints) and computing the function’s value.

Although optimization problems can be purely mathematical in nature, they have
a wide range of real-world applications. In virtually any business, for example, it is
necessary to maximize profits and minimize costs, a classic optimization problem. The
same applies to logistics challenges, such as reducing delivery times within a city that
offers dozens of possible routes from one point to another. Or to airline route plan-
ning, where hundreds of takeoffs and landings must be coordinated without overlap,
while also optimizing fuel consumption by selecting the most efficient path. Even in
social networks with millions of users, it is crucial to identify the subset of individuals
capable of exerting the greatest influence over others. These are just a few examples of
optimization problems that shape our everyday lives—and there are many more.

A.1 Types of Optimization Problems

There are many kinds of optimization problems. One way to classify them is based on
the structure of the solution space.

A.11 Continuous Optimization

In continuous optimization, the decision variables can take any real value within spec-
ified bounds or domains. This contrasts with combinatorial or discrete optimization,
where variables are restricted to a finite or countable set of options. The solution space
in continuous problems is typically a subset of R”, which allows the use of calculus-
based techniques such as gradient descent, Newton’s method, and other analytical ap-
proaches that rely on differentiability and continuity of the objective function.

223

224 A. A Brief Guide to Optimization

Example

Consider the following optimization problem:
Minimize: f(x) = x?
Subjectto: x>1

Solution: The goal is to find the smallest value of f(x) = x? for x > 1. The

minimum occurs at x = 1, and the minimum value is f(1) = 1.

A.1.2 Discrete or Combinatorial Optimization

In discrete (or combinatorial) optimization, the solution space consists of discrete el-
ements, typically drawn from a finite or countably infinite set. Unlike continuous op-
timization, where variables can take any value within an interval, here the decision
variables are often integers, binary values, or categorical choices. The goal is to find
the optimal configuration or selection that satisfies a given set of constraints while op-
timizing an objective function.

Example

Consider the following combinatorial optimization problem:

Problem: Given the graph G = (V,E) where V = {A,B,C,D} and E =
{(A, B),(B,C),(C, D)}, find the largest set of nodes such that no two nodes in
the set are connected.

Solution: An example of an optimal solution is {A, C}. No edge connects these
two nodes, and no larger independent set exists in this graph.

In this thesis, combinatorial optimization problems are primarily used, and contin-
uous problems in specific cases. However, there are also other types of optimization

problems, such as:

e Mixed-Integer Optimization, which involves both continuous and discrete vari-
ables and is commonly used in problems like scheduling and resource allocation.

e Multi-objective Optimization, where more than one objective function must be
optimized simultaneously, often leading to trade-offs between competing goals.

e Stochastic Optimization, which deals with uncertainty in the data or model, re-
quiring solutions that perform well on average or under varying conditions.

e Dynamic Optimization, in which decisions are made over time and each choice

influences future states and outcomes.

A Brief Introduction and Defense of
Metaheuristics

A metaheuristic is a type of optimization algorithm that does not guarantee finding
the global optimum, but aims to quickly provide a sufficiently good approximate so-
lution by employing heuristic operators. The prefix “meta” highlights its emphasis on
generality: metaheuristics are designed as high-level frameworks applicable to a broad
range of optimization problems, rather than being tailored to a specific one.

Metaheuristics typically operate by searching for approximate solutions through
non-deterministic/stochastic processes. They take advantage of the pseudo-random
capabilities of modern computation to strike a balance between exploitation (intensify-
ing the search around promising areas) and exploration (diversifying the search across
the solution space). Notable examples include Genetic Algorithms, Simulated Anneal-
ing, Tabu Search, and Ant Colony Optimization.

The proliferation of metaheuristics over the years has led to two notable outcomes.
First, a wide range of taxonomies has been proposed to classify them—such as dis-
continuous vs. trajectory-based, population-based vs. single-solution, constructive vs.
local search-based, and memory-based vs. memory-less approaches [193]. Second,
and more problematically, there has been a growing misuse of metaphors. Many re-
cent metaheuristics contribute little beyond a catchy name and an associated metaphor,
offering no substantive methodological innovation—a trend increasingly criticized in
the academic literature [8].

225

226 B. A Brief Introduction and Defense of Metaheuristics

A Simple and Formal Example of Metaheuristics

A simple example of a metaheuristic using pseudo-random operators is a variant
of the local search strategy. Consider again the problem of finding the highest
point in a landscape (the global maximum), where the altitude is given by a
function f(x). Instead of always moving in the steepest uphill direction, the al-
gorithm uses pseudo-randomness to probabilistically explore the neighborhood.
Let the process be defined as follows:

1. Choose an initial solution x randomly.

2. Ateach iteration ¢, generate a set of candidate solutions N (x;) in the neigh-
borhood of x; using a pseudo-random sampling mechanism (e.g., Gaus-
sian perturbation, uniform sampling within a radius).

3. Select a candidate x;+1 € N(x;) such that f(x¢+1) > f(x¢), or with some
small probability €, accept a worse solution (to escape local optima).

4. Repeat until a stopping criterion is met (e.g., max iterations or no improve-
ment).

This stochastic variation allows the search to avoid getting trapped in local op-
tima and introduces a balance between exploration and exploitation. The use of
pseudo-randomness makes the process non-deterministic, which is a defining
trait of many metaheuristics such as Simulated Annealing or Evolutionary Algo-

rithms.

However, the field of metaheuristics has not been exempt from criticism. I outline
the main objections commonly raised against their use and argue that, despite these

concerns, metaheuristics continue to be a valuable asset in computational optimization.

1. Opacity. Perhaps the most frequent criticism is one shared with many stochas-

tic and approximation methods: the lack of transparency in how results are ob-
tained.
Response: While metaheuristics often lack a step-by-step theoretical explanation
of how they reach specific solutions—primarily due to their use of pseudo-
random operators—their value lies not in interpretability but in practical effec-
tiveness. Full process transparency, while desirable, is not always necessary to
exploit their results. Nevertheless, this dissertation addresses this challenge in
Part II by incorporating a visual tool aimed at improving the understanding of
metaheuristic result comparisons.

2. Lack of Exactness. As approximation methods, metaheuristics do not guaran-
tee reaching the global optimum, unlike exact algorithms. This limitation, com-
pounded by their stochastic nature, stems from their reliance on randomness to
diversify the search process.

B.1. An Invitation to Metaheuristics 227

Response: As demonstrated in Part I of this thesis—there have been significant ef-
forts to overcome this shortcoming by hybridizing metaheuristics with other tech-
niques. For instance, the integration of machine learning methods allows meta-
heuristics to learn from the structure of specific problems and instances, trans-
forming that knowledge into guiding heuristics that improve performance. Sim-
ilarly, earlier works have explored hybridization with exact methods (see [23]).
3. Lack of rigor. This criticism focuses on the claim that, due to their metaphor-
driven design and lack of exactness, metaheuristics are not considered serious
methods.
Response: Although they may lack rigorous theoretical foundations, metaheuris-
tics have proven effective in practice, as demonstrated by numerous experiments.
In other words, it is a primarily empirical field whose foundation rests on exper-
imental validation. (A similar criticism has been made regarding generative Al,
albeit for different reasons.)
However, this defense has also led to misunderstandings and misuse—namely,
the creation of metaheuristics that offer nothing new beyond a metaphor. There-
fore, a way to strengthen the field is to discourage such poor practices.

This thesis contributes to addressing both criticisms. However, these challenges are
far from settled, and further research is necessary to continue strengthening the field.

B.1 An Invitation to Metaheuristics

If someone asked me why they should study metaheuristics in the context of research,
I would offer the following reasons:

e Alaboratory for algorithm designers. If you enjoy designing and implementing
algorithms, metaheuristics offer a highly flexible and fertile ground for exper-
imentation. Their adaptability makes them ideal for incorporating novel tech-
niques and tools from other domains—as shown in this thesis by integrating
Large Language Models into metaheuristic.

o A preference for simplicity over complexity. There is significant room for incor-
porating tools that enhance the interpretability and transparency of metaheuristic
outputs. Such contributions would not only strengthen the field but also provide
valuable support tools for researchers, as exemplified by the STNWeb tool.

e A balance between theory and practice. Few areas offer such a well-calibrated
balance. Many of the most impactful contributions in metaheuristics arise from
the simple question: “Can it be implemented?” It is a field that rewards those
who enjoy programming, even if the problems tackled are sometimes abstract
rather than directly practical.

e A role in modern technologies. Google DeepMind’s AlphaEvolve uses evolu-
tionary techniques (metaheuristic) to guide its generative Al in the discovery of
new algorithms [152]. The growing number of papers applying principles from

evolutionary computation—along with the increasing use of swarm-based behav-
iors in robots and drones for coordination—opens up fascinating opportunities
for new students: integrating metaheuristics and cutting-edge technologies in
both directions.

228

Bibliography’

[1] Pravesh Agrawal et al. Pixtral 12B. 2024. arXiv: 2410 . 07073 [cs.CV]. URL: https: //
arxiv.org/abs/2410.07073.

[2] Janice Ahn et al. Large Language Models for Mathematical Reasoning: Progresses and Chal-
lenges. 2024. arXiv: 2402.00157 [cs.CL].

[3] Mehmet Anil Akbay and Christian Blum. “Two examples for the usefulness of STNWeb
for analyzing optimization algorithm behavior”. In: Metaheuristics International Confer-
ence. Springer. 2024, pp. 341-346.

[4] Mehmet Anil Akbay et al. “Variable Neighborhood Search for the Two-Echelon Electric
Vehicle Routing Problem with Time Windows”. In: Applied Sciences 12.3 (2022). 1ssN:
2076-3417. por: 10.3390/app12031014. URL: https://www.mdpi.com/2076-3417/12/3/
1014.

[5] Mirko Alicastro et al. “A reinforcement learning iterated local search for makespan
minimization in additive manufacturing machine scheduling problems”. In: Computers
& Operations Research 131 (2021), p. 105272.

[6] GuilhermeF. C. F. Almeida et al. “Exploring the psychology of LLMs’ moral and legal
reasoning”. In: Artificial Intelligence 333 (2024), p. 104145. 1ssn: 0004-3702. por: https :
//doi.org/10.1016/j.artint.2024.104145.

[7] Anthropic. The Claude 3 Model Family: Opus, Sonnet, Haiku. 2024. eprint: https : / /

paperswithcode.com/paper/the-claude-3-model-family-opus-sonnet-haiku.

[8] Claus Aranha et al. “Metaphor-based metaheuristics, a call for action: the elephant in
theroom”. In: Swarm Intelligence 16.1 (Mar. 2022), pp. 1-6. 1ssn: 1935-3820. por: 10.1007/
s11721-021-00202-9. URL: https://doi.org/10.1007/s11721-021-00202-9.

[9] Kavosh Asadiand Michael L. Littman. An Alternative Softmax Operator for Reinforcement
Learning. 2017. arXiv: 1612.05628 [cs.AI]. URL: https://arxiv.org/abs/1612.05628.

[10] Kehinde Babaagba, Ritwik Murali, and Sarah Thomson. “Exploring the use of fitness
landscape analysis for understanding malware evolution”. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion. 2024, pp. 77-78.

[11] Liam Barkley and Brink van der Merwe. Investigating the Role of Prompting and External
Tools in Hallucination Rates of Large Language Models. 2024. arXiv: 2410. 19385 [cs.CL].
URL: https://arxiv.org/abs/2410.19385.

1 References with more than three authors include et al.

231

https://arxiv.org/abs/2410.07073
https://arxiv.org/abs/2410.07073
https://arxiv.org/abs/2410.07073
https://arxiv.org/abs/2402.00157
https://doi.org/10.3390/app12031014
https://www.mdpi.com/2076-3417/12/3/1014
https://www.mdpi.com/2076-3417/12/3/1014
https://doi.org/https://doi.org/10.1016/j.artint.2024.104145
https://doi.org/https://doi.org/10.1016/j.artint.2024.104145
https://paperswithcode.com/paper/the-claude-3-model-family-opus-sonnet-haiku
https://paperswithcode.com/paper/the-claude-3-model-family-opus-sonnet-haiku
https://doi.org/10.1007/s11721-021-00202-9
https://doi.org/10.1007/s11721-021-00202-9
https://doi.org/10.1007/s11721-021-00202-9
https://arxiv.org/abs/1612.05628
https://arxiv.org/abs/1612.05628
https://arxiv.org/abs/2410.19385
https://arxiv.org/abs/2410.19385

B. A Brief Introduction and Defense of Metaheuristics

[17]

[18]

[22]

[23]

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and machine learning: Lim-
itations and opportunities. MIT Press, 2023.

Partha Basuchowdhuri and Subhashis Majumder. “Finding Influential Nodes in Social
Networks Using Minimum k-Hop Dominating Set”. In: Applied Algorithms. Ed. by Pros-
enjit Gupta and Christos Zaroliagis. Cham: Springer International Publishing, 2014,
pp. 137-151. 1sBn: 978-3-319-04126-1. URL: https : //1link . springer . com/ chapter/
10.1007/978-3-319-04126-1_12

Emily M. Bender et al. “On the Dangers of Stochastic Parrots: Can Language Models
Be Too Big?” In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and
Transparency. FAccT '21. Virtual Event, Canada: Association for Computing Machinery,
2021, pp. 610-623. 1sBNn: 9781450383097. por: 10 . 1145/3442188 . 3445922. URL: https:
//doi.org/10.1145/3442188.3445922

Jacob Benesty et al. “Pearson Correlation Coefficient”. In: Noise Reduction in Speech Pro-
cessing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 1-4. 1sBN: 978-3-642-
00296-0. por: 10.1007/978-3-642-00296-0_5. URL: https://doi.org/10.1007/978-3-
642-00296-0_5.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. “Machine learning for combinato-
rial optimization: a methodological tour d’horizon”. In: European Journal of Operational
Research 290.2 (2021), pp. 405-421.

Arthur Benjamin, Gary Chartrand, and Ping Zhang. The fascinating world of graph theory.
en. Princeton, NJ: Princeton University Press, Jan. 2015.

Chris Bennett et al. “The aesthetics of graph visualization”. In: Proceedings of the Third
Eurographics Conference on Computational Aesthetics in Graphics, Visualization and Imaging.
Computational Aesthetics’07. Alberta, Canada: Eurographics Association, 2007, pp. 57—
64. 15BN: 9783905673432.

Lee Bernick. “Modeling human networks using random graphs”. In: (2018).

Christopher M. Bishop and Hugh Bishop. Deep Learning - Foundations and Concepts.
Springer, 2024. 1sBN: 978-3-031-45467-7. por: 10.1007/978-3-031-45468-4. URL: https:
//doi.org/10.1007/978-3-031-45468-4.

Christian Blum. Construct, Merge, Solve & Adapt: A Hybrid Metaheuristic for Combinatorial
Optimization. Computational Intelligence Methods and Applications. Springer Nature
Switzerland, 2024. 1sBN: 9783031601026. urL: https://books . google . es/books?id=
ENCtOAEACAAJ

Christian Blum and Andrea Roli. “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison”. In: ACM Computing Surveys 35.3 (2003),
pp. 268-308.

Christian Blum et al. “Hybrid metaheuristics in combinatorial optimization: A survey”.
In: Applied Soft Computing 11.6 (2011), pp. 4135-4151. 1ssn: 1568-4946. por: https: //
doi.org/10.1016/j.asoc.2011.02.032. URL: https://www.sciencedirect . com/
science/article/pii/S1568494611000962.

Christian Blum et al. “Construct, Merge, Solve & Adapt A new general algorithm for
combinatorial optimization”. In: Computers & Operations Research 68 (2016), pp. 75-88.

https://link.springer.com/chapter/10.1007/978-3-319-04126-1_12
https://link.springer.com/chapter/10.1007/978-3-319-04126-1_12
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.1007/978-3-031-45468-4
https://doi.org/10.1007/978-3-031-45468-4
https://doi.org/10.1007/978-3-031-45468-4
https://books.google.es/books?id=ENCt0AEACAAJ
https://books.google.es/books?id=ENCt0AEACAAJ
https://doi.org/https://doi.org/10.1016/j.asoc.2011.02.032
https://doi.org/https://doi.org/10.1016/j.asoc.2011.02.032
https://www.sciencedirect.com/science/article/pii/S1568494611000962
https://www.sciencedirect.com/science/article/pii/S1568494611000962

B.1. An Invitation to Metaheuristics 233

[25]

[26]

[27]

[29]

[30]

[31]

[32]

[33]

1ssN: 0305-0548. por: https://doi.org/10.1016/j.cor.2015.10.014. URL: https:
//www.sciencedirect.com/science/article/pii/S0305054815002452.

Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv: 2005 . 14165
[cs.CL].

Chen Cai and Yusu Wang. “A Note on Over-Smoothing for Graph Neural Networks”.
In: (2020). arXiv: 2006.13318. URL: http://arxiv.org/abs/2006.13318.

Laura Calvet et al. “Learnheuristics: hybridizing metaheuristics with machine learning
for optimization with dynamic inputs”. In: Open Mathematics 15.1 (2017), pp. 261-280.
por: doi:10.1515/math-2017-0029. URL: https://doi.org/10.1515/math-2017-0029.

Santle Camilus and Valappil Kunnumal Govindan. “A Review on Graph Based Segmen-
tation”. In: International Journal of Image, Graphics and Signal Processing 4 (June 2012). por:
10.5815/ijigsp.2012.05.01.

Raphaél Candelier. “Graph matching based on similarities in structure and attributes”.
In: arXiv [cs.DS] (Sept. 2024).

Camilo Chacon Sartori, Christian Blum, and Gabriela Ochoa. “Search Trajectory Net-
works Meet the Web: A Web Application for the Visual Comparison of Optimization
Algorithms”. In: Proceedings of the 2023 12th International Conference on Software and Com-
puter Applications. ICSCA ’23. Kuantan, Malaysia: Association for Computing Machin-
ery, 2023, pp. 89-96. 1sBN: 9781450398589. por: 10.1145/3587828.3587843. URL: https:
//doi.org/10.1145/3587828.3587843.

Camilo Chacén Sartori and Christian Blum. “Boosting a Genetic Algorithm with Graph
Neural Networks for Multi-Hop Influence Maximization in Social Networks”. In: Pro-
ceedigns of FedCSIS 2022 — 17th Conference on Computer Science and Intelligence Systems.
IEEE. 2022, pp. 363-371.

Camilo Chacén Sartori and Christian Blum. “Boosting a Genetic Algorithm with Graph
Neural Networks for Multi-Hop Influence Maximization in Social Networks”. In: 2022
17th Conference on Computer Science and Intelligence Systems (FedCSIS). 2022, pp. 363-371.
por: 10.15439/2022F78.

Camilo Chacén Sartori, Christian Blum, and Gabriela Ochoa. “STNWeb: A new visu-
alization tool for analyzing optimization algorithms”. In: Software Impacts 17 (2023),
p- 100558. 1ssN: 2665-9638. por: https://doi.org/10.1016/j.simpa.2023.100558. URL:
https://www.sciencedirect.com/science/article/pii/S2665963823000957.

Camilo Chacén Sartori, Christian Blum, and Gabriela Ochoa. “ An Extension of STNWeb
Functionality: On the Use of Hierarchical Agglomerative Clustering as an Advanced
Search Space Partitioning Strategy”. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference. GECCO "24. Melbourne, VIC, Australia: Association for Computing
Machinery, 2024, pp. 151-159. 1sBn: 9798400704949. por: 10 . 1145 /3638529 . 3654084.
URL: https://doi.org/10.1145/3638529.3654084.

Camilo Chacén Sartori, Christian Blum, and Gabriela Ochoa. “Large Language Models
for the Automated Analysis of Optimization Algorithms”. In: Proceedings of the Genetic
and Evolutionary Computation Conference. GECCO '24. Melbourne, VIC, Australia: As-

https://doi.org/https://doi.org/10.1016/j.cor.2015.10.014
https://www.sciencedirect.com/science/article/pii/S0305054815002452
https://www.sciencedirect.com/science/article/pii/S0305054815002452
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2006.13318
http://arxiv.org/abs/2006.13318
https://doi.org/doi:10.1515/math-2017-0029
https://doi.org/10.1515/math-2017-0029
https://doi.org/10.5815/ijigsp.2012.05.01
https://doi.org/10.1145/3587828.3587843
https://doi.org/10.1145/3587828.3587843
https://doi.org/10.1145/3587828.3587843
https://doi.org/10.15439/2022F78
https://doi.org/https://doi.org/10.1016/j.simpa.2023.100558
https://www.sciencedirect.com/science/article/pii/S2665963823000957
https://doi.org/10.1145/3638529.3654084
https://doi.org/10.1145/3638529.3654084

234

B. A Brief Introduction and Defense of Metaheuristics

[36]

[37]

[38]

[48]

[49]

sociation for Computing Machinery, 2024, pp. 160-168. 1sBn: 9798400704949. por: 10 .
1145/3638529.3654086. URL: https://doi.org/10.1145/3638529.3654086.

Moses Charikar, Yonatan Naamad, and Anthony Wirth. “On Approximating Target
Set Selection”. In: Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques (APPROX/RANDOM 2016). Ed. by Klaus Jansen et al. Vol. 60.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016, 4:1-4:16. 1sBn: 978-3-95977-018-7. por:
10.4230/LIPIcs . APPROX-RANDOM. 2016 .4. URL: http://drops.dagstuhl.de/opus/
volltexte/2016/6627.

Gary Chartrand. A First Course in Graph Theory. Dover Books on Mathematics. Mineola,
NY: Dover Publications, Feb. 2012.

Antonio Augusto Chaves and Luiz Henrique Nogueira Lorena. “An adaptive and near
parameter-free BRKGA using Q-learning method”. In: 2021 IEEE Congress on Evolution-
ary Computation (CEC). IEEE. 2021, pp. 2331-2338.

Angelica Chen et al. “Improving code generation by training with natural Language
Feedback”. In: arXiv [cs.SE] (Mar. 2023).

Changgqi Chen. An Empirical Investigation of Correlation between Code Complexity and Bugs.
2019. arXiv: 1912.01142 [cs.SE]. URL: https://arxiv.org/abs/1912.01142.

Deli Chen et al. “Measuring and relieving the over-smoothing problem for graph neural
networks from the topological view”. In: AAAI 2020 - 34th AAAI Conference on Artificial
Intelligence. 2020, pp. 3438-3445. 1sBN: 9781577358350. por: 10.1609/aaai.v34i04.5747.
arXiv: 1909.03211. URL: https://kddcup2016.azurewebsites.net.

Hailin Chen et al. ChatGPT’s One-year Anniversary: Are Open-Source Large Language Mod-
els Catching up? 2024. arXiv: 2311.16989 [cs.CL].

Liguo Chen et al. A Survey on Evaluating Large Language Models in Code Generation Tasks.
2024. arXiv: 2408.16498 [cs.SE]. URL: https://arxiv.org/abs/2408.16498.

Mark Chen and et al. Evaluating Large Language Models Trained on Code. 2021. arXiv: 2107.
03374 [cs.LG]. urL: https://arxiv.org/abs/2107.03374.

Wenhu Chen. Large Language Models are few(1)-shot Table Reasoners. 2023. arXiv: 2210 .
06710 [cs.CL].

Kanzhi Cheng et al. Vision-Language Models Can Self-Improve Reasoning via Reflection.
2024. arXiv: 2411.00855 [cs.LG]. URL: https://arxiv.org/abs/2411.00855.

Wei-Lin Chiang et al. “Chatbot arena: an open platform for evaluating LLMs by hu-
man preference”. In: Proceedings of the 41st International Conference on Machine Learning.
ICML'24. Vienna, Austria: JMLR.org, 2024.

Nicos Christofides. “Worst-Case Analysis of a New Heuristic for the Travelling Sales-
man Problem”. In: Operations Research Forum 3.1 (Mar. 2022), p. 20. 1ssN: 2662-2556. por:
10.1007/s43069-021-00101~-z. URL: https://doi.org/10.1007/s43069-021-00101~

Z.

Trevor D. Collins. “Applying software visualization technology to support the use of
evolutionary algorithms”. In: Journal of Visual Languages & Computing 14.2 (Apr. 2003),

https://doi.org/10.1145/3638529.3654086
https://doi.org/10.1145/3638529.3654086
https://doi.org/10.1145/3638529.3654086
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.4
http://drops.dagstuhl.de/opus/volltexte/2016/6627
http://drops.dagstuhl.de/opus/volltexte/2016/6627
https://arxiv.org/abs/1912.01142
https://arxiv.org/abs/1912.01142
https://doi.org/10.1609/aaai.v34i04.5747
https://arxiv.org/abs/1909.03211
https://kddcup2016.azurewebsites.net
https://arxiv.org/abs/2311.16989
https://arxiv.org/abs/2408.16498
https://arxiv.org/abs/2408.16498
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2210.06710
https://arxiv.org/abs/2210.06710
https://arxiv.org/abs/2411.00855
https://arxiv.org/abs/2411.00855
https://doi.org/10.1007/s43069-021-00101-z
https://doi.org/10.1007/s43069-021-00101-z
https://doi.org/10.1007/s43069-021-00101-z

B.1. An Invitation to Metaheuristics 235

[57]

[60]

[61]

pp- 123-150. por: 10.1016/s1045-926x(02) 00060-5. URL: https://doi.org/10.1016/
51045-926x(02) 00060-5.

Gennaro Cordasco, Luisa Gargano, and Adele Anna Rescigno. “Influence Propaga-
tion over Large Scale Social Networks”. In: Proceedings of the 2015 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining 2015. ASONAM
’15. Paris, France: Association for Computing Machinery, 2015, pp. 1531-1538. 1sBN:
9781450338547. por: 10 . 1145 /2808797 . 2808888. URL: https://doi.org/10.1145/
2808797 .2808888

Gébor Csardi and Tamds Nepusz. “The igraph software package for complex network
research”. In: InterJournal Complex Systems (2006), p. 1695.

Chris Cummins et al. “Large Language Models for compiler optimization”. In: arXiv
[cs.PL] (Sept. 2023).

Enyan Dai et al. Towards Robust Graph Neural Networks for Noisy Graphs with Sparse Labels.
2022. arXiv: 2201.00232 [cs.LG]. URL: https://arxiv.org/abs/2201.00232.

Omid E. David and Iddo Greental. “Genetic Algorithms for Evolving Deep Neural
Networks”. In: Proceedings of the Companion Publication of the 2014 Annual Conference
on Genetic and Evolutionary Computation. GECCO Comp '14. Vancouver, BC, Canada:
Association for Computing Machinery, 2014, pp. 1451-1452. 1sBn: 9781450328814 por:
10.1145/2598394.2602287. URL: https://doi.org/10.1145/2598394.2602287.

Christopher Davis et al. Prompting open-source and commercial language models for gram-
matical error correction of English learner text. 2024. arXiv: 2401.07702 [cs.CL].

Kapil Devkota et al. “Fast Approximate IsoRank for Scalable Global Alignment of Bio-
logical Networks”. In: bioRxiv (2023). por: 10.1101/2023.03.13.532445. eprint: https:
//www.biorxiv.org/content/early/2023/03/15/2023.03.13.532445.full.pdf. URL:
https://www.biorxiv.org/content/early/2023/03/15/2023.03.13.532445.

Shifei Ding, Chunyang Su, and Junzhao Yu. “An optimizing BP neural network algo-
rithm based on genetic algorithm”. In: Artificial Intelligence Review 36.2 (Feb. 2011),
pp- 153-162. por: 10.1007/510462-011-9208-z.

Qingxiu Dong et al. A Survey on In-context Learning. 2024. arXiv: 2301.00234 [cs.CL].
URL: https://arxiv.org/abs/2301.00234.

M. Dorigo and L. M. Gambardella. “Ant colony system: a cooperative learning ap-
proach to the traveling salesman problem”. In: IEEE Transactions on Evolutionary Com-
putation 1.1 (1997), pp. 53-66. por: 10.1109/4235.585892.

Abhimanyu Dubey and et al. The Liama 3 Herd of Models. 2024. arXiv: 2407 . 21783
[cs.AI]. UrRL: https://arxiv.org/abs/2407.21783.

Samuel Eilon et al. “Distribution Management-Mathematical Modelling and Practi-
cal Analysis”. In: IEEE Transactions on Systems, Man, and Cybernetics SMC-4.6 (1974),
pp. 589-589. por: 10.1109/TSMC. 1974 . 4309370.

Paul Erdos and Alfred Renyi. “On the evolution of random graphs”. In: Publ. Math. Inst.
Hungary. Acad. Sci. 5 (1960), pp. 17-61. URL: http://citeseer.ist.psu.edu/viewdoc/
summary?doi=10.1.1.153.5943.

https://doi.org/10.1016/s1045-926x(02)00060-5
https://doi.org/10.1016/s1045-926x(02)00060-5
https://doi.org/10.1016/s1045-926x(02)00060-5
https://doi.org/10.1145/2808797.2808888
https://doi.org/10.1145/2808797.2808888
https://doi.org/10.1145/2808797.2808888
https://arxiv.org/abs/2201.00232
https://arxiv.org/abs/2201.00232
https://doi.org/10.1145/2598394.2602287
https://doi.org/10.1145/2598394.2602287
https://arxiv.org/abs/2401.07702
https://doi.org/10.1101/2023.03.13.532445
https://www.biorxiv.org/content/early/2023/03/15/2023.03.13.532445.full.pdf
https://www.biorxiv.org/content/early/2023/03/15/2023.03.13.532445.full.pdf
https://www.biorxiv.org/content/early/2023/03/15/2023.03.13.532445
https://doi.org/10.1007/s10462-011-9208-z
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2301.00234
https://doi.org/10.1109/4235.585892
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1109/TSMC.1974.4309370
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.153.5943
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.153.5943

236 B. A Brief Introduction and Defense of Metaheuristics

[63] Philip Feldman, James R. Foulds, and Shimei Pan. Trapping LLM Hallucinations Using
Tagged Context Prompts. 2023. arXiv: 2306.06085 [cs.CL].

[64] Adria Fenoy, Filippo Bistaffa, and Alessandro Farinelli. “An attention model for the
formation of collectives in real-world domains”. In: Artificial Intelligence 328 (2024),
p- 104064. 1ssn: 0004-3702. por: https://doi.org/10.1016/j.artint.2023.104064.
URL: https://www.sciencedirect.com/science/article/pii/S0004370223002102.

[65] Matthias Fey and Jan E. Lenssen. “Fast Graph Representation Learning with PyTorch
Geometric”. In: ICLR Workshop on Representation Learning on Graphs and Manifolds. 2019.

[66] PaolaFlocchinietal. “On time versus size for monotone dynamic monopolies in regular
topologies”. In: Journal of Discrete Algorithms 1.2 (2003), pp. 129-150.

[67] Luciano Floridi. “Al as Agency Without Intelligence: On Chatgpt, Large Language Mod-
els, and Other Generative Models”. In: Philosophy and Technology 36.1 (2023), pp. 1-7.
por: 10.1007/s13347-023-00621-y.

[68] Luciano Floridi and Anna C. Nobre. “Anthropomorphising machines and computer-
ising minds: the crosswiring of languages between Artificial Intelligence and Brain &
Cognitive Sciences”. In: SSRN Electron. . (2024).

[69] Thomas M. J. Fruchterman and Edward M. Reingold. “Graph Drawing by Force-
directed Placement”. In: Softw. Pract. Exper. 21.11 (Nov. 1991), pp. 1129-1164.

[70] Yunfan Gao et al. Retrieval-Augmented Generation for Large Language Models: A Survey.
2024. arXiv: 2312.10997 [cs.CL].

[71] Michel Gendreau and Jean-Yves Potvin. “Metaheuristics in combinatorial optimiza-
tion”. In: Annals of Operations Research 140.1 (2005), pp. 189-213.

[72] Michel Gendreau and Jean-Yves Potvin, eds. Handbook of Metaheuristics. 3rd. Springer
Publishing Company, Incorporated, 2019.

[73] Fred W. Glover. “Tabu Search - Part I”. In: INFORMS J. Comput. 1 (1989), pp. 190-206.
URL: https://api.semanticscholar.org/CorpusID:5617719.

[74] José Fernando Gongalves and Mauricio G. C. Resende. “Biased random-key genetic
algorithms for combinatorial optimization”. In: Journal of Heuristics 17.5 (Oct. 2011),
pp. 487-525. 1ssN: 1572-9397. por: 10.1007/s10732-010-9143-1. URL: https://doi .
org/10.1007/s10732-010-9143-1.

[75] Mark Granovetter. “Threshold models of collective behavior”. In: American journal of
sociology 83.6 (1978), pp. 1420-1443.

[76] Darij Grinberg. “An introduction to graph theory”. In: arXiv [math.HO] (Aug. 2023).

[77] Miguel Grinberg. Flask Web Development: Developing Web Applications with Python. 1st.
O'Reilly Media, Inc., 2014. 1sen: 1449372627.

[78] Arnav Gudibande et al. The False Promise of Imitating Proprietary LLMs. 2023. arXiv: 2305.
15717 [cs.CL]. URL: https://arxiv.org/abs/2305.15717.

[79] Taicheng Guo et al. Large Language Model based Multi-Agents: A Survey of Progress and

Challenges. 2024. arXiv: 2402.01680 [cs.CL].

https://arxiv.org/abs/2306.06085
https://doi.org/https://doi.org/10.1016/j.artint.2023.104064
https://www.sciencedirect.com/science/article/pii/S0004370223002102
https://doi.org/10.1007/s13347-023-00621-y
https://arxiv.org/abs/2312.10997
https://api.semanticscholar.org/CorpusID:5617719
https://doi.org/10.1007/s10732-010-9143-1
https://doi.org/10.1007/s10732-010-9143-1
https://doi.org/10.1007/s10732-010-9143-1
https://arxiv.org/abs/2305.15717
https://arxiv.org/abs/2305.15717
https://arxiv.org/abs/2305.15717
https://arxiv.org/abs/2402.01680

B.1. An Invitation to Metaheuristics 237

[80]

[86]

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring Network Structure,
Dynamics, and Function using NetworkX”. In: Proceedings of the 7th Python in Science
Conference. Ed. by Gaél Varoquaux, Travis Vaught, and Jarrod Millman. Pasadena, CA
USA, 2008, pp. 11-15.

Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive Representation Learning on
Large Graphs”. In: Advances in Neural Information Processing Systems. Ed. by 1. Guyon et
al. Vol. 30. Curran Associates, Inc., 2017.

Bahareh Harandizadeh, Abel Salinas, and Fred Morstatter. Risk and Response in Large
Language Models: Evaluating Key Threat Categories. 2024. arXiv: 2403.14988 [cs.CL].

Tim Hegeman and Alexandru losup. Survey of Graph Analysis Applications. 2018. arXiv:
1807.00382 [cs.SI]. URL: https://arxiv.org/abs/1807.00382.

Erik Hemberg, Stephen Moskal, and Una-May O’Reilly. Evolving Code with A Large Lan-
guage Model. 2024. arXiv: 2401 . 07102 [cs.NE]. URL: https://arxiv.org/abs/2401.
07102.

Peyman Hosseini et al. Efficient Solutions For An Intriquing Failure of LLMs: Long Context
Window Does Not Mean LLMs Can Analyze Long Sequences Flawlessly. 2024. arXiv: 2408 .
01866 [cs.CL]. URL: https://arxiv.org/abs/2408.01866.

Yutao Hu et al. OmniMedVQA: A New Large-Scale Comprehensive Evaluation Benchmark
for Medical LVLM. 2024. arXiv: 2402.09181 [eess.IV]. URL: https://arxiv.org/abs/
2402.09181.

Jie Huang and Kevin Chen-Chuan Chang. Towards Reasoning in Large Language Models:
A Survey. 2023. arXiv: 2212.10403 [cs.CL]. URL: https://arxiv.org/abs/2212.10403.

Lei Huang et al. A Survey on Hallucination in Large Language Models: Principles, Taxonomy,
Challenges, and Open Questions. 2023. arXiv: 2311.05232 [cs.CL].

Sen Huang et al. When Large Language Model Meets Optimization. 2024. arXiv: 2405.10098
[cs.NE]. UrRL: https://arxiv.org/abs/2405.10098.

Marc Huber and Giinther R Raidl. “Learning beam search: Utilizing machine learn-
ing to guide beam search for solving combinatorial optimization problems”. In: Inter-
national Conference on Machine Learning, Optimization, and Data Science. Springer. 2021,
pp- 283-298.

Mohammed Saidul Islam et al. Are Large Vision Language Models up to the Challenge of
Chart Comprehension and Reasoning? An Extensive Investigation into the Capabilities and
Limitations of LVLMs. 2024. arXiv: 2406.00257 [cs.CL]. URL: https://arxiv.org/abs/
2406.00257.

Hamish Ivison et al. Camels in a Changing Climate: Enhancing LM Adaptation with Tulu 2.
2023. arXiv: 2311.10702 [cs.CL].

Albert Q. Jiang et al. Mistral 7B. 2023. arXiv: 2310.06825 [cs.CL].

Huiqiang Jiang et al. LLMLingua: Compressing Prompts for Accelerated Inference of Large
Language Models. 2023. arXiv: 2310.05736 [cs.CL].

https://arxiv.org/abs/2403.14988
https://arxiv.org/abs/1807.00382
https://arxiv.org/abs/1807.00382
https://arxiv.org/abs/2401.07102
https://arxiv.org/abs/2401.07102
https://arxiv.org/abs/2401.07102
https://arxiv.org/abs/2408.01866
https://arxiv.org/abs/2408.01866
https://arxiv.org/abs/2408.01866
https://arxiv.org/abs/2402.09181
https://arxiv.org/abs/2402.09181
https://arxiv.org/abs/2402.09181
https://arxiv.org/abs/2212.10403
https://arxiv.org/abs/2212.10403
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2405.10098
https://arxiv.org/abs/2405.10098
https://arxiv.org/abs/2405.10098
https://arxiv.org/abs/2406.00257
https://arxiv.org/abs/2406.00257
https://arxiv.org/abs/2406.00257
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.05736

238

B. A Brief Introduction and Defense of Metaheuristics

[95]

[96]

[97]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Juyong Jiang et al. “A survey on large Language Models for code generation”. In: arXiv
[¢s.CL] (June 2024).

Xue Jiang et al. “Self-planning code generation with large language models”. en. In:
ACM Trans. Softw. Eng. Methodol. 33.7 (Sept. 2024), pp. 1-30.

Sathvik Joel, Jie] W Wu, and Fatemeh H Fard. “A survey on LLM-based code generation
for Low-resource and Domain-specific programming languages”. In: arXiv [cs.SE] (Oct.
2024).

Sathvik Joel, Jie JW Wu, and Fatemeh H. Fard. A Survey on LLM-based Code Generation
for Low-Resource and Domain-Specific Programming Languages. 2024. arXiv: 2410 . 03981
[cs.SE]. URL: https://arxiv.org/abs/2410.03981.

Wei Ju et al. A Survey of Graph Neural Networks in Real world: Imbalance, Noise, Privacy
and OOD Challenges. 2024. arXiv: 2403.04468 [cs.LG]. URL: https://arxiv.org/abs/
2403.04468.

Tomihisa Kamada and Satoru Kawai. “An algorithm for drawing general undirected
graphs”. In: Information Processing Letters 31.1 (1989), pp. 7-15. 1ssn: 0020-0190.

U. Kamath et al. Large Language Models: A Deep Dive: Bridging Theory and Practice.
Springer Nature Switzerland, 2024. 1sBN: 9783031656477. uRL: https://books . google.
es/books?id=kDobEQAAQBAJ.

Maryam Karimi-Mamaghan et al. “Machine learning at the service of meta-heuristics
for solving combinatorial optimization problems: A state-of-the-art”. In: European Jour-
nal of Operational Research 296.2 (2022), pp. 393—422. 1ssn: 0377-2217. por: https://doi.
org/10.1016/j.ejor.2021.04.032. URL: https://www.sciencedirect.com/science/
article/pii/S0377221721003623.

Muhammad Khalifa et al. Source-Aware Training Enables Knowledge Attribution in Lan-
guage Models. 2024. arXiv: 2404 .01019 [cs.CL]. URL: https://arxiv.org/abs/2404.
010109.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated Annealing”.
In: Science 220.4598 (1983), pp. 671-680. por: 10.1126/science.220.4598.671. eprint:
https://www.science.org/doi/pdf/10.1126/science.220.4598.671. URL: https:
//www.science.org/doi/abs/10.1126/science.220.4598.671.

Jéakim v. Kistowski et al. “How to Build a Benchmark”. In: Proceedings of the 6th
ACM/SPEC International Conference on Performance Engineering. ICPE "15. Austin, Texas,
USA: Association for Computing Machinery, 2015, pp. 333-336. 1sen: 9781450332484.
por: 10.1145/2668930.2688819. URL: https://doi.org/10.1145/2668930.2688819.

Jon Kleinberg, Mark Sandler, and Aleksandrs Slivkins. “Network failure detection and
graph connectivity”. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms. SODA "04. New Orleans, Louisiana: Society for Industrial and Applied
Mathematics, 2004, pp. 76-85. 1sBn: 089871558X.

Takeshi Kojima et al. Large Language Models are Zero-Shot Reasoners. 2023. arXiv: 2205 .
11916 [cs.CL]. URL: https://arxiv.org/abs/2205.11916.

https://arxiv.org/abs/2410.03981
https://arxiv.org/abs/2410.03981
https://arxiv.org/abs/2410.03981
https://arxiv.org/abs/2403.04468
https://arxiv.org/abs/2403.04468
https://arxiv.org/abs/2403.04468
https://books.google.es/books?id=kDobEQAAQBAJ
https://books.google.es/books?id=kDobEQAAQBAJ
https://doi.org/https://doi.org/10.1016/j.ejor.2021.04.032
https://doi.org/https://doi.org/10.1016/j.ejor.2021.04.032
https://www.sciencedirect.com/science/article/pii/S0377221721003623
https://www.sciencedirect.com/science/article/pii/S0377221721003623
https://arxiv.org/abs/2404.01019
https://arxiv.org/abs/2404.01019
https://arxiv.org/abs/2404.01019
https://doi.org/10.1126/science.220.4598.671
https://www.science.org/doi/pdf/10.1126/science.220.4598.671
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://doi.org/10.1145/2668930.2688819
https://doi.org/10.1145/2668930.2688819
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916

B.1. An Invitation to Metaheuristics 239

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Aobo Kong et al. Better Zero-Shot Reasoning with Role-Play Prompting. 2024. arXiv: 2308.
07702 [cs.CL]. URL: https://arxiv.org/abs/2308.07702.

Marie-Anne Lachaux et al. “Unsupervised translation of programming languages”. In:
arXiv [cs.CL] (June 2020).

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network Dataset Collection.
http://snap.stanford.edu/data. June 2014.

Jure Leskovec and Rok Sosic. SNAP: A General Purpose Network Analysis and Graph Min-
ing Library. 2016. por: 10 .48550/ARXIV. 1606 .07550. URL: https://arxiv.org/abs/
1606.07550.

Brian Lester, Rami Al-Rfou, and Noah Constant. “The Power of Scale for Parameter-
Efficient Prompt Tuning”. In: Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing. Ed. by Marie-Francine Moens et al. Online and Punta Cana,
Dominican Republic: Association for Computational Linguistics, Nov. 2021, pp. 3045-
3059. por: 10.18653/v1/2021 . emnlp-main.243. URL: https://aclanthology.org/
2021.emnlp-main.243.

Patrick Lewis et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
2021. arXiv: 2005.11401 [cs.CL].

Aitor Lewkowycz et al. Solving Quantitative Reasoning Problems with Language Models.
2022. arXiv: 2206.14858 [cs.CL].

Jia Li et al. “Large language model-Aware In-context learning for code generation”. In:
arXiv [¢s.SE] (Oct. 2023).

Juanhui Li et al. Evaluating Graph Neural Networks for Link Prediction: Current Pitfalls and
New Benchmarking. 2023. arXiv: 2306 . 10453 [cs.LG]. URL: https://arxiv.org/abs/
2306.10453.

Yujia Li et al. Graph Matching Networks for Learning the Similarity of Graph Structured
Objects. 2019. arXiv: 1904.12787 [cs.LG]. URL: https://arxiv.org/abs/1904.12787.

Yunxin Li et al. VisionGraph: Leveraging Large Multimodal Models for Graph Theory Prob-
lems in Visual Context. 2024. arXiv: 2405.04950 [cs.CV]. URL: https://arxiv.org/abs/
2405.04950.

Zekun Li et al. Guiding Large Language Models via Directional Stimulus Prompting. 2023.
arXiv: 2302.11520 [cs.CL].

Yannis Lilis and Anthony Savidis. “A Survey of Metaprogramming Languages”. In:
ACM Comput. Surv. 52.6 (Oct. 2019). 1ssn: 0360-0300. por: 10.1145/3354584. URL: https:
//doi.org/10.1145/3354584.

Yen-Ting Lin and Yun-Nung Chen. LLM-Eval: Unified Multi-Dimensional Automatic Eval-
uation for Open-Domain Conversations with Large Language Models. 2023. arXiv: 2305 .
13711 [cs.CL].

Defeng Liu et al. “A machine learning framework for neighbor generation in meta-
heuristic search”. In: Frontiers in Applied Mathematics and Statistics 9 (2023), p. 1128181.

https://arxiv.org/abs/2308.07702
https://arxiv.org/abs/2308.07702
https://arxiv.org/abs/2308.07702
http://snap.stanford.edu/data
https://doi.org/10.48550/ARXIV.1606.07550
https://arxiv.org/abs/1606.07550
https://arxiv.org/abs/1606.07550
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2306.10453
https://arxiv.org/abs/2306.10453
https://arxiv.org/abs/2306.10453
https://arxiv.org/abs/1904.12787
https://arxiv.org/abs/1904.12787
https://arxiv.org/abs/2405.04950
https://arxiv.org/abs/2405.04950
https://arxiv.org/abs/2405.04950
https://arxiv.org/abs/2302.11520
https://doi.org/10.1145/3354584
https://doi.org/10.1145/3354584
https://doi.org/10.1145/3354584
https://arxiv.org/abs/2305.13711
https://arxiv.org/abs/2305.13711

240

B. A Brief Introduction and Defense of Metaheuristics

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

Fei Liu et al. Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using
Large Language Model. 2024. arXiv: 2401.02051 [cs.NE]. URL: https://arxiv.org/abs/
2401.02051.

Fei Liu et al. LLM4AD: A Platform for Algorithm Design with Large Language Model. 2024.
arXiv: 2412.17287 [cs.AI]. URL: https://arxiv.org/abs/2412.17287.

Pengfei Liu et al. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods
in Natural Language Processing. 2021. arXiv: 2107.13586 [cs.CL].

Shengcai Liu et al. Large Language Models as Evolutionary Optimizers. 2024. arXiv: 2310.
19046 [cs.NE]. URL: https://arxiv.org/abs/2310.19046.

Zhengzhong Liu et al. LLM360: Towards Fully Transparent Open-Source LLMs. 2023. arXiv:
2312.06550 [cs.CL].

Cheng Long and Raymond Chi-Wing Wong. “Minimizing Seed Set for Viral Marketing”.
In: 2011 IEEE 11th International Conference on Data Mining. 2011, pp. 427-436. por: 10 .
1109/ICDM.2011.99.

Manuel Lopez-Ibanez et al. “The irace package: Iterated Racing for Automatic Algo-
rithm Configuration”. In: Operations Research Perspectives 3 (2016), pp. 43-58. por: 10.
1016/ .0rp.2016.09.002.

Andrea De Lorenzo et al. “An analysis of dimensionality reduction techniques for visu-
alizing evolution”. In: Proceedings of the Genetic and Evolutionary Computation Conference
Companion. ACM, July 2019. por: 10.1145/3319619 .3326868. URL: https://doi.org/
10.1145/3319619.3326868.

Margaret Lundy and Alistair lain Mees. “Convergence of an annealing algorithm”. In:
Mathematical Programming 34.1 (Jan. 1986), pp. 111-124. 1ssn: 1436-4646. por: 10.1007/
BF01582166. URL: https://doi.org/10.1007/BF01582166.

Yingwei Ma et al. At Which Training Stage Does Code Data Help LLMs Reasoning? 2023.
arXiv: 2309.16298 [cs.CL]. URL: https://arxiv.org/abs/2309.16298.

Zeyuan Ma et al. LLaMoCo: Instruction Tuning of Large Language Models for Optimization
Code Generation. 2024. arXiv: 2403.01131 [math.0C].

Aman Madaan et al. Self-Refine: Iterative Refinement with Self-Feedback. 2023. arXiv: 2303.
17651 [cs.CL]. URL: https://arxiv.org/abs/2303.17651.

Paula Maddigan, Andrew Lensen, and Bing Xue. Explaining Genetic Programming Trees
using Large Language Models. 2024. arXiv: 2403 . 03397 [cs.NE]. URL: https://arxiv.
org/abs/2403.03397.

Paula Maddigan and Teo Susnjak. Chat2VIS: Fine-Tuning Data Visualisations using Mul-
tilingual Natural Language Text and Pre-Trained Large Language Models. 2023. arXiv: 2303.
14292 [cs.HC].

Paula Maddigan and Teo Susnjak. “Chat2VIS: Generating Data Visualizations via Nat-
ural Language Using ChatGPT, Codex and GPT-3 Large Language Models”. In: IEEE
Access 11 (2023), pp. 45181-45193. por: 10.1109/ACCESS.2023.3274199.

https://arxiv.org/abs/2401.02051
https://arxiv.org/abs/2401.02051
https://arxiv.org/abs/2401.02051
https://arxiv.org/abs/2412.17287
https://arxiv.org/abs/2412.17287
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2310.19046
https://arxiv.org/abs/2310.19046
https://arxiv.org/abs/2310.19046
https://arxiv.org/abs/2312.06550
https://doi.org/10.1109/ICDM.2011.99
https://doi.org/10.1109/ICDM.2011.99
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1145/3319619.3326868
https://doi.org/10.1145/3319619.3326868
https://doi.org/10.1145/3319619.3326868
https://doi.org/10.1007/BF01582166
https://doi.org/10.1007/BF01582166
https://doi.org/10.1007/BF01582166
https://arxiv.org/abs/2309.16298
https://arxiv.org/abs/2309.16298
https://arxiv.org/abs/2403.01131
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2403.03397
https://arxiv.org/abs/2403.03397
https://arxiv.org/abs/2403.03397
https://arxiv.org/abs/2303.14292
https://arxiv.org/abs/2303.14292
https://doi.org/10.1109/ACCESS.2023.3274199

B.1. An Invitation to Metaheuristics 241

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

Haitao Mao et al. Revisiting Link Prediction: A Data Perspective. 2024. arXiv: 2310.00793
[cs.SI]. urRL: https://arxiv.org/abs/2310.00793.

Rafael Marti and Gerhard Reinelt. The Linear Ordering Problem: Exact and Heuristic Meth-
ods in Combinatorial Optimization. Applied Mathematical Sciences. Springer Berlin Hei-
delberg, 2011.

Ahmed Masry et al. “UniChart: A Universal Vision-language Pretrained Model for
Chart Comprehension and Reasoning”. In: The 2023 Conference on Empirical Methods
in Natural Language Processing. 2023. URL: https : / / openreview . net / forum ? id =
4MjZNeTCqZ.

Ian R. McKenzie et al. Inverse Scaling: When Bigger Isn’t Better. 2024. arXiv: 2306 .09479
[cs.CL]. URL: https://arxiv.org/abs/2306.09479.

Jestis-Adolfo Mejia-de-Dios and Efrén Mezura-Montes. “Metaheuristics: A Julia Pack-
age for Single- and Multi-Objective Optimization”. In: Journal of Open Source Software
7.78 (2022), p. 4723. por: 10.21105/ joss . 04723. URL: https://doi.org/10.21105/
joss.04723.

Ahmad Mheich, Fabrice Wendling, and Mahmoud Hassan. “Brain network similarity:
methods and applications”. In: Network Neuroscience 4.3 (July 2020), pp. 507-527. 1ssn:
2472-1751. por: 10.1162/netn_a_00133. eprint: https ://direct .mit . edu/netn/
article-pdf/4/3/507/1867291/netn_a_00133.pdf. urL: https://doi.org/10.
1162/netn’5C_a’%5C_00133.

Krzysztof Michalak. “Low-Dimensional Euclidean Embedding for Visualization of
Search Spaces in Combinatorial Optimization”. In: IEEE Transactions on Evolutionary
Computation 23.2 (Apr. 2019), pp. 232-246. por: 10 . 1109/ tevc . 2018 . 2846636. URL:
https://doi.org/10.1109/tevc.2018.2846636.

Shoma Miki, Daisuke Yamamoto, and Hiroyuki Ebara. “Applying Deep Learning and
Reinforcement Learning to Traveling Salesman Problem”. In: 2018 International Confer-
ence on Computing, Electronics & Communications Engineering (iCCECE). 2018, pp. 65-70.
por: 10.1109/iCCECOME. 2018.8659266.

Benjamin A. Miller et al. “Attacking shortest paths by cutting edges”. In: arXiv [cs.SI]
(Now. 2022).

Suvir Mirchandani et al. Large Language Models as General Pattern Machines. 2023. arXiv:
2307.04721 [cs.AI]. URL: https://arxiv.org/abs/2307.04721.

David R. Morrison et al. “Branch-and-bound algorithms: A survey of recent advances
in searching, branching, and pruning”. In: Discrete Optimization 19 (2016), pp. 79-102.
1ssN: 1572-5286. por: https://doi.org/10.1016/j.disopt.2016.01.005. URL: https:
//www.sciencedirect.com/science/article/pii/S1572528616000062.

Daniel Miillner. Modern hierarchical, agglomerative clustering algorithms. 2011. arXiv: 1109.
2378 [stat.ML].

David Nettleton. “A Synthetic Data Generator for Online Social Network Graphs”. In:
Social Network Analysis and Mining December 2016, (July 2016). por: 10.1007/s13278~
016-0352-y.

https://arxiv.org/abs/2310.00793
https://arxiv.org/abs/2310.00793
https://arxiv.org/abs/2310.00793
https://openreview.net/forum?id=4MjZNeTCqZ
https://openreview.net/forum?id=4MjZNeTCqZ
https://arxiv.org/abs/2306.09479
https://arxiv.org/abs/2306.09479
https://arxiv.org/abs/2306.09479
https://doi.org/10.21105/joss.04723
https://doi.org/10.21105/joss.04723
https://doi.org/10.21105/joss.04723
https://doi.org/10.1162/netn_a_00133
https://direct.mit.edu/netn/article-pdf/4/3/507/1867291/netn_a_00133.pdf
https://direct.mit.edu/netn/article-pdf/4/3/507/1867291/netn_a_00133.pdf
https://doi.org/10.1162/netn%5C_a%5C_00133
https://doi.org/10.1162/netn%5C_a%5C_00133
https://doi.org/10.1109/tevc.2018.2846636
https://doi.org/10.1109/tevc.2018.2846636
https://doi.org/10.1109/iCCECOME.2018.8659266
https://arxiv.org/abs/2307.04721
https://arxiv.org/abs/2307.04721
https://doi.org/https://doi.org/10.1016/j.disopt.2016.01.005
https://www.sciencedirect.com/science/article/pii/S1572528616000062
https://www.sciencedirect.com/science/article/pii/S1572528616000062
https://arxiv.org/abs/1109.2378
https://arxiv.org/abs/1109.2378
https://doi.org/10.1007/s13278-016-0352-y
https://doi.org/10.1007/s13278-016-0352-y

242

B. A Brief Introduction and Defense of Metaheuristics

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]
[162]

[163]

[164]

[165]

Runbo Ni et al. FastCover: An Unsupervised Learning Framework for Multi-Hop Influence
Maximization in Social Networks. 2021. por: 10 .48550/ARXIV.2111.00463. URL: https:
//arxiv.org/abs/2111.00463.

Alexander Novikov et al. “AlphaEvolve : A coding agent for scientific and algorithmic
discovery”. In: (May 2025).

Teddy Nurcahyadi and Christian Blum. “Adding Negative Learning to Ant Colony Op-
timization: A Comprehensive Study”. In: Mathematics 9.4 (2021). 1ssN: 2227-7390. por:
10.3390/math9040361. URL: https://www.mdpi.com/2227-7390/9/4/361.

Gabriela Ochoa, Katherine M. Malan, and Christian Blum. “Search trajectory networks
of population-based algorithms in continuous spaces”. In: Proceedings of EvoApps 2020
— International Conference on the Applications of Evolutionary Computation. Springer. 2020,
pp. 70-85.

Gabriela Ochoa, Katherine M. Malan, and Christian Blum. “Search trajectory networks:
A tool for analysing and visualising the behaviour of metaheuristics”. In: Applied Soft
Computing 109 (2021), p. 107492. 1ssn: 1568-4946. por: https://doi.org/10.1016/7.
asoc.2021.107492. URL: https://www.sciencedirect.com/science/article/pii/
S51568494621004154.

OpenAl et al. GPT-4 Technical Report. 2024. arXiv: 2303 . 08774 [cs.CL]. URL: https :
//arxiv.org/abs/2303.08774.

OpenAl et al. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

Long Ouyang et al. Training language models to follow instructions with human feedback.
2022. arXiv: 2203.02155 [cs.CL].

Liangming Pan et al. “Automatically Correcting Large Language Models: Surveying
the landscape of diverse self-correction strategies”. In: arXiv [¢s.CL] (Aug. 2023).

Rangeet Pan et al. “Lost in translation: A study of bugs introduced by large language
models while translating code”. In: arXiv [¢s.SE] (Aug. 2023).

Erd@s Paul. “On random graphs 1”. In: Publicationes Mathematicae 6 (1959), p. 290.

V. Pereira. pyCombinatorial - A library to solve TSP (Travelling Salesman Problem) us-
ing Exact Algorithms, Heuristics and Metaheuristics. https : // github . com/Valdecy /
pyCombinatorial. Accessed: 2025-03-10. 2022.

Fernando Pérez, Brian E. Granger, and John D. Hunter. “Python: An Ecosystem for
Scientific Computing”. In: Computing in Science & Engineering 13.2 (2011), pp. 13-21.
por: 10.1109/MCSE.2010.119.

Vagelis Plevris and German Solorzano. “A Collection of 30 Multidimensional Functions
for Global Optimization Benchmarking”. In: Data 7.4 (2022). 1ssN: 2306-5729. por: 10 .
3390/data7040046. URL: https://www.mdpi.com/2306-5729/7/4/46.

Michal Pluhacek et al. “Leveraging Large Language Models for the Generation of Novel
Metaheuristic Optimization Algorithms”. In: Proceedings of the Companion Conference on
Genetic and Evolutionary Computation. GECCO "23 Companion. Lisbon, Portugal: Asso-
ciation for Computing Machinery, 2023, pp. 1812-1820. 1sen: 9798400701207. por: 10 .
1145/3583133.3596401. URL: https://doi.org/10.1145/3583133.3596401.

https://doi.org/10.48550/ARXIV.2111.00463
https://arxiv.org/abs/2111.00463
https://arxiv.org/abs/2111.00463
https://doi.org/10.3390/math9040361
https://www.mdpi.com/2227-7390/9/4/361
https://doi.org/https://doi.org/10.1016/j.asoc.2021.107492
https://doi.org/https://doi.org/10.1016/j.asoc.2021.107492
https://www.sciencedirect.com/science/article/pii/S1568494621004154
https://www.sciencedirect.com/science/article/pii/S1568494621004154
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://github.com/Valdecy/pyCombinatorial
https://github.com/Valdecy/pyCombinatorial
https://doi.org/10.1109/MCSE.2010.119
https://doi.org/10.3390/data7040046
https://doi.org/10.3390/data7040046
https://www.mdpi.com/2306-5729/7/4/46
https://doi.org/10.1145/3583133.3596401
https://doi.org/10.1145/3583133.3596401
https://doi.org/10.1145/3583133.3596401

B.1. An Invitation to Metaheuristics 243

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

Hartmut Pohlheim. “Multidimensional scaling for evolutionary algorithms - Visualiza-
tion of the path through search space and solution space using Sammon mapping”. In:
Artificial Life 12 (2 2006), pp. 203-209.

Jean-Yves Potvin. “Genetic algorithms for the traveling salesman problem”. In: Annals
of Operations Research 63.3 (June 1996), pp. 337-370. 1ssn: 1572-9338. por: 10 . 1007 /
BF02125403. URL: https://doi.org/10.1007/BF02125403.

XiPeng Qiu et al. “Pre-trained models for natural language processing: A survey”. In:
Science China Technological Sciences 63.10 (Sept. 2020), pp. 1872-1897. 1ssn: 1869-1900.
por: 10.1007/s11431-020-1647-3. URL: http://dx.doi.org/10.1007/s11431-020-
1647-3.

Kanchan Rajwar, Kusum Deep, and Swagatam Das. “An exhaustive review of the meta-
heuristic algorithms for search and optimization: taxonomy, applications, and open
challenges”. In: Artificial Intelligence Review 56.11 (Nov. 2023), pp. 13187-13257. 1ssn:
1573-7462. por: 10. 1007 /s10462-023-10470-y. URL: https://doi.org/10.1007/
s10462-023-10470-7.

Aditya Ramesh et al. Zero-Shot Text-to-Image Generation. 2021. arXiv: 2102 . 12092
[cs.CV].

Jairo Enrique Ramirez Sanchez, Camilo Chacén Sartori, and Christian Blum. “Q-
Learning Ant Colony Optimization supported by Deep Learning for Target Set Selec-
tion”. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO
’23. Lisbon, Portugal: Association for Computing Machinery, 2023, pp. 357-366. 1sBN:
9798400701191. por: 10 . 1145/3583131 . 3590396. URL: https://doi.org/10.1145/
3583131.3590396.

Gerhard Reinelt. “TSPLIB - A Traveling Salesman Problem Library.” In: INFORMS J.
Comput. 3.4 (1991), pp. 376-384. URL: http://dblp . uni-trier.de/db/ journals/
informs/informs3.html#Reinelt91.

Matthew Renze and Erhan Guven. Self-Reflection in LLM Agents: Effects on Problem-
Solving Performance. 2024. arXiv: 2405 .06682 [cs.CL]. URL: https://arxiv.org/abs/
2405.06682.

Laria Reynolds and Kyle McDonell. “Prompt programming for large language models:
Beyond the few-shot paradigm”. In: arXiv [cs.CL] (Feb. 2021).

Bernardino Romera-Paredes et al. “Mathematical discoveries from program search
with large language models”. In: Nature 625.7995 (Jan. 2024), pp. 468—-475. 1ssn: 1476-
4687. por: 10.1038/s41586-023-06924-6. URL: https://doi.org/10.1038/s41586~
023-06924-6.

Stefan Ropke and David Pisinger. “An Adaptive Large Neighborhood Search Heuristic
for the Pickup and Delivery Problem with Time Windows”. In: Transportation Science
40.4 (2025/02/28/ 2006). Full publication date: November 2006, pp. 455-472. URL: http:
//www.jstor.org/stable/25769321.

Baptiste Roziere et al. “Code Llama: Open foundation models for code”. In: arXiv
[cs.CL] (Aug. 2023).

https://doi.org/10.1007/BF02125403
https://doi.org/10.1007/BF02125403
https://doi.org/10.1007/BF02125403
https://doi.org/10.1007/s11431-020-1647-3
http://dx.doi.org/10.1007/s11431-020-1647-3
http://dx.doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s10462-023-10470-y
https://doi.org/10.1007/s10462-023-10470-y
https://doi.org/10.1007/s10462-023-10470-y
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2102.12092
https://doi.org/10.1145/3583131.3590396
https://doi.org/10.1145/3583131.3590396
https://doi.org/10.1145/3583131.3590396
http://dblp.uni-trier.de/db/journals/informs/informs3.html#Reinelt91
http://dblp.uni-trier.de/db/journals/informs/informs3.html#Reinelt91
https://arxiv.org/abs/2405.06682
https://arxiv.org/abs/2405.06682
https://arxiv.org/abs/2405.06682
https://doi.org/10.1038/s41586-023-06924-6
https://doi.org/10.1038/s41586-023-06924-6
https://doi.org/10.1038/s41586-023-06924-6
http://www.jstor.org/stable/25769321
http://www.jstor.org/stable/25769321

244

B. A Brief Introduction and Defense of Metaheuristics

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

Pranab Sahoo et al. A Systematic Survey of Prompt Engineering in Large Language Models:
Techniques and Applications. 2024. arXiv: 2402.07927 [cs.AI]. URL: https://arxiv.org/
abs/2402.07927.

Victor Sanh et al. Multitask Prompted Training Enables Zero-Shot Task Generalization. 2022.
arXiv: 2110.08207 [cs.LG].

Camilo Chacén Sartori. Architectures of Error: A Philosophical Inquiry into Al-Generated
and Human-Generated Code. https://ssrn.com/abstract=5265751. Available at SSRN:
https://ssrn. com/abstract=5265751 or http://dx.doi.org/10.2139/ssrn.
5265751. May 2025.

Camilo Chacén Sartori and Christian Blum. “STNWeb for the Analysis of Optimization
Algorithms: A Short Introduction”. In: Metaheuristics: 15th International Conference, MIC
2024, Lorient, France, June 4-7, 2024, Proceedings, Part II. Lorient, France: Springer-Verlag,
2024, pp. 367-372. 1sBN: 978-3-031-62921-1. por: 10.1007/978-3-031-62922-8_29. URL:
https://doi.org/10.1007/978-3-031-62922-8_29.

Camilo Chacén Sartori and Christian Blum. Combinatorial Optimization for All: Using
LLMs to Aid Non-Experts in Improving Optimization Algorithms. 2025. arXiv: 2503.10968
[cs.AI]. UurL: https://arxiv.org/abs/2503.10968.

Camilo Chacén Sartori and Christian Blum. Improving Existing Optimization Algorithms
with LLMs. 2025. arXiv: 2502 . 08298 [cs.AI]. URL: https://arxiv.org/abs/2502.
08298.

Camilo Chacén Sartori, Christian Blum, and Filippo Bistaffa. “VisGraphVar: A
benchmark generator for Assessing Variability in Graph Analysis Using Large Vision-
Language Models”. In: IEEE Access 13 (2025), pp. 21788-21810. por: 10.1109/ACCESS.
2025.3535837.

Camilo Chacén Sartori et al. “Metaheuristics and Large Language Models Join Forces:
Toward an Integrated Optimization Approach”. In: IEEE Access 13 (2025), pp. 2058—
2079. por: 10.1109/ACCESS. 2024 .3524176.

Franco Scarselli et al. “The graph neural network model”. In: IEEE transactions on neural
networks 20.1 (2008), pp. 61-80.

Sander Schulhoff, Michael Ilie, and et al. The Prompt Report: A Systematic Survey of Prompt
Engineering Techniques. 2025. arXiv: 2406 . 06608 [cs.CL]. URL: https://arxiv.org/abs/
2406.06608.

Albert Lopez Serrano and Christian Blum. “A biased random key genetic algorithm
applied to target set selection in viral marketing”. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference. GECCO ’22. Boston, Massachusetts: Association for
Computing Machinery, 2022, pp. 241-250. 1sBn: 9781450392372. por: 10.1145/3512290.
3528785. URL: https://doi.org/10.1145/3512290.3528785.

Tianhui Shi et al. “GraphPi: High performance graph pattern matching through effec-
tive redundancy elimination”. In: arXiv [cs.DC] (Sept. 2020).

Kevin Sim, Quentin Renau, and Emma Hart. Beyond the Hype: Benchmarking LLM-Evolved
Heuristics for Bin Packing. 2025. arXiv: 2501.11411 [cs.NE]. URL: https://arxiv.org/
abs/2501.11411.

https://arxiv.org/abs/2402.07927
https://arxiv.org/abs/2402.07927
https://arxiv.org/abs/2402.07927
https://arxiv.org/abs/2110.08207
https://ssrn.com/abstract=5265751
https://ssrn.com/abstract=5265751
http://dx.doi.org/10.2139/ssrn.5265751
http://dx.doi.org/10.2139/ssrn.5265751
https://doi.org/10.1007/978-3-031-62922-8_29
https://doi.org/10.1007/978-3-031-62922-8_29
https://arxiv.org/abs/2503.10968
https://arxiv.org/abs/2503.10968
https://arxiv.org/abs/2503.10968
https://arxiv.org/abs/2502.08298
https://arxiv.org/abs/2502.08298
https://arxiv.org/abs/2502.08298
https://doi.org/10.1109/ACCESS.2025.3535837
https://doi.org/10.1109/ACCESS.2025.3535837
https://doi.org/10.1109/ACCESS.2024.3524176
https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2406.06608
https://doi.org/10.1145/3512290.3528785
https://doi.org/10.1145/3512290.3528785
https://doi.org/10.1145/3512290.3528785
https://arxiv.org/abs/2501.11411
https://arxiv.org/abs/2501.11411
https://arxiv.org/abs/2501.11411

B.1. An Invitation to Metaheuristics 245

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

Chandan Singh et al. Rethinking Interpretability in the Era of Large Language Models. 2024.
arXiv: 2402.01761 [cs.CL].

Charlie Snell et al. Scaling LLM Test-Time Compute Optimally can be More Effective than
Scaling Model Parameters. 2024. arXiv: 2408.03314 [cs.LG]. URL: https://arxiv.org/
abs/2408.03314.

Helena Stegherr, Michael Heider, and J6rg Héahner. “Classifying Metaheuristics: To-
wards a unified multi-level classification system”. In: Natural Computing 21.2 (June
2022), pp. 155-171. 1ssn: 1572-9796. por: 10.1007/s11047-020-09824-0. URL: https:
//doi.org/10.1007/s11047-020-09824-0.

Niki van Stein and Thomas Bédck. “LLaMEA: A Large Language Model Evolutionary
Algorithm for Automatically Generating Metaheuristics”. In: IEEE Transactions on Evo-
lutionary Computation (2024), pp. 1-1. por: 10.1109/TEVC. 2024 .3497793.

Niki van Stein and Thomas Back. LLaMEA: A Large Language Model Evolutionary Algo-
rithm for Automatically Generating Metaheuristics. 2024. arXiv: 2405.20132 [cs.NE]. URL:
https://arxiv.org/abs/2405.20132.

Niki van Stein et al. Code Evolution Graphs: Understanding Large Language Model Driven
Design of Algorithms. 2025. arXiv: 2503.16668 [cs.NE]. URL: https://arxiv.org/abs/
2503.16668.

Hao Sun, Alihan Hiiytik, and Mihaela van der Schaar. Query-Dependent Prompt Evalua-
tion and Optimization with Offline Inverse RL. 2023. arXiv: 2309.06553 [cs.CL].

Hui Sun, Wenju Zhou, and Minrui Fei. “A Survey On Graph Matching In Computer Vi-
sion”. In: 2020 13th International Congress on Image and Signal Processing, BioMedical Engi-
neering and Informatics (CISP-BMEI). 2020, pp. 225-230. por: 10.1109/CISP-BMEI51763.
2020.9263681.

Jiao Sun et al. “Investigating explainability of generative Al for code through scenario-
based design”. In: 27th International Conference on Intelligent User Interfaces. New York,
NY, USA: ACM, Mar. 2022.

Xiaofei Sun et al. Text Classification via Large Language Models. 2023. arXiv: 2305 .08377
[cs.CL].

Vasileios A. Tatsis and Konstantinos E. Parsopoulos. “Dynamic parameter adaptation
in metaheuristics using gradient approximation and line search”. In: Applied Soft Com-
puting 74 (2019), pp. 368-384. 1ssn: 1568-4946. por: https: //doi.org/10.1016/j .
asoc.2018.09.034. URL: https://www.sciencedirect.com/science/article/pii/
51568494618305519.

Anthropic Team. Introducing Claude 3.5 Sonnet — anthropic.com. https : / / www .
anthropic.com/news/claude-3-5-sonnet. [Accessed 02-11-2024]. 2024.

DeepSeek-Al Team. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforce-
ment Learning. 2025. arXiv: 2501.12948 [cs.CL]. URL: https://arxiv.org/abs/2501.
12948.

https://arxiv.org/abs/2402.01761
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://doi.org/10.1007/s11047-020-09824-0
https://doi.org/10.1007/s11047-020-09824-0
https://doi.org/10.1007/s11047-020-09824-0
https://doi.org/10.1109/TEVC.2024.3497793
https://arxiv.org/abs/2405.20132
https://arxiv.org/abs/2405.20132
https://arxiv.org/abs/2503.16668
https://arxiv.org/abs/2503.16668
https://arxiv.org/abs/2503.16668
https://arxiv.org/abs/2309.06553
https://doi.org/10.1109/CISP-BMEI51763.2020.9263681
https://doi.org/10.1109/CISP-BMEI51763.2020.9263681
https://arxiv.org/abs/2305.08377
https://arxiv.org/abs/2305.08377
https://doi.org/https://doi.org/10.1016/j.asoc.2018.09.034
https://doi.org/https://doi.org/10.1016/j.asoc.2018.09.034
https://www.sciencedirect.com/science/article/pii/S1568494618305519
https://www.sciencedirect.com/science/article/pii/S1568494618305519
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

246

B. A Brief Introduction and Defense of Metaheuristics

[204]

[205]

[206]

[207]

[208]

[209]
[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

Gemini Team and et al. Gemini 1.5: Unlocking multimodal understanding across millions of
tokens of context. 2024. arXiv: 2403.05530 [cs.CL]. URL: https://arxiv.org/abs/2403.
05530.

Gemini Team et al. Gemini: A Family of Highly Capable Multimodal Models. 2023. por:
https://doi.org/10.48550/arXiv.2312.11805. arXiv: 2312.11805 [cs.CL].

Meta Team. The Llama 3 Herd of Models. 2024. por: https://doi.org/10.48550/arXiv.
2407.21783. arXiv: 2407.21783 [cs.AI]. URL: https://arxiv.org/abs/2407.21783.

Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. 2023. por:
https://doi.org/10.48550/arXiv.2307.09288. arXiv: 2307.09288 [cs.CL].

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. “Expectation vs. Experi-
ence: Evaluating the Usability of Code Generation Tools Powered by Large Language
Models”. In: Extended Abstracts of the 2022 CHI Conference on Human Factors in Comput-
ing Systems. CHI EA "22. New Otrleans, LA, USA: Association for Computing Machinery,
2022. 1sBN: 9781450391566. por: 10.1145/3491101.3519665. URL: https://doi.org/10.
1145/3491101.3519665.

Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762 [cs.CL].

Shubham Vatsal and Harsh Dubey. A Survey of Prompt Engineering Methods in Large
Language Models for Different NLP Tasks. 2024. arXiv: 2407 . 12994 [cs.CL]. URL: https:
//arxiv.org/abs/2407.12994.

Petar Velickovic et al. Graph Attention Networks. 2017. por: 10.48550/ARXIV.1710.10903.
URL: https://arxiv.org/abs/1710.10903.

Sara Vicente, Vladimir Kolmogorov, and Carsten Rother. “Graph cut based image seg-
mentation with connectivity priors”. In: 2008 IEEE Conference on Computer Vision and
Pattern Recognition. 2008, pp. 1-8. por: 10.1109/CVPR.2008.4587440.

Irena Petrijevcanin Vuksanovic and Bojan Sudarevic. “Use of web application frame-
works in the development of small applications”. In: 2011 Proceedings of the 34th Interna-
tional Convention MIPRO. 2011, pp. 458—-462.

Zhongwei Wan et al. Efficient Large Language Models: A Survey. 2024. arXiv: 2312.03863
[cs.CL].

Hanchen Wang et al. “Scientific discovery in the age of artificial intelligence”. In: Nature
620.7972 (Aug. 2023), pp. 47-60. por: 10 . 1038/s41586- 023~ 06221 ~. URL: https: //
ideas.repec.org/a/nat/nature/v620y2023i7972d10 . 1038 _s41586-023- 06221 -
2.html.

Jiaying Wang et al. “Reinforcement learning for the traveling salesman problem: Per-
formance comparison of three algorithms”. In: The Journal of Engineering (2023). urL:
https://api.semanticscholar.org/CorpusID:261504600.

Christopher J. C. H. Watkins and Peter Dayan. “Q-learning”. In: Machine Learning 8.3
(May 1992), pp. 279-292. 1ssN: 1573-0565. por: 10.1007/BF00992698. URL: https://doi.
org/10.1007/BF00992698.

https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://doi.org/https://doi.org/10.48550/arXiv.2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/https://doi.org/10.48550/arXiv.2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/https://doi.org/10.48550/arXiv.2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2407.12994
https://arxiv.org/abs/2407.12994
https://arxiv.org/abs/2407.12994
https://doi.org/10.48550/ARXIV.1710.10903
https://arxiv.org/abs/1710.10903
https://doi.org/10.1109/CVPR.2008.4587440
https://arxiv.org/abs/2312.03863
https://arxiv.org/abs/2312.03863
https://doi.org/10.1038/s41586-023-06221-
https://ideas.repec.org/a/nat/nature/v620y2023i7972d10.1038_s41586-023-06221-2.html
https://ideas.repec.org/a/nat/nature/v620y2023i7972d10.1038_s41586-023-06221-2.html
https://ideas.repec.org/a/nat/nature/v620y2023i7972d10.1038_s41586-023-06221-2.html
https://api.semanticscholar.org/CorpusID:261504600
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698

B.1. An Invitation to Metaheuristics 247

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

Albert Webson and Ellie Pavlick. “Do Prompt-Based Models Really Understand the
Meaning of their Prompts?” In: CoRR abs/2109.01247 (2021). arXiv: 2109 .01247. URL:
https://arxiv.org/abs/2109.01247.

Jason Wei et al. Emergent Abilities of Large Language Models. 2022. arXiv: 2206 . 07682
[cs.CL].

Jason Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.
2023. arXiv: 2201.11903 [cs.CL]. URL: https://arxiv.org/abs/2201.11903.

Yanbin Wei et al. GITA: Graph to Visual and Textual Integration for Vision-Language Graph
Reasoning. 2024. arXiv: 2402 . 02130 [cs.CL]. URL: https ://arxiv . org/abs /2402 .
02130.

Yeming Wen et al. Grounding Data Science Code Generation with Input-Output Specifica-
tions. 2024. arXiv: 2402.08073 [cs.LG]. URL: https://arxiv.org/abs/2402.08073.

Colin White et al. LiveBench: A Challenging, Contamination-Free LLM Benchmark. 2024.
arXiv: 2406.19314 [cs.CL]. URL: https://arxiv.org/abs/2406.19314.

Marco Wiering and Martijn van Otterlo. Reinforcement Learning: State-of-the-Art.
Springer Publishing Company, Incorporated, 2014.

Evan M. Williams and Kathleen M. Carley. “Multimodal LLMs struggle with basic Vi-
sual Network Analysis: A VNA benchmark”. In: arXiv [cs.CV] (May 2024).

David Hilton Wolpert and William G. Macready. “No free lunch theorems for optimiza-
tion”. In: Trans. Evol. Comp 1.1 (Apr. 1997), pp. 67-82. 1ssNx: 1089-778X. por: 10.1109/
4235.585893. URL: https://doi.org/10.1109/4235.585893.

Lingfei Wu et al., eds. Graph Neural Networks: Foundations, Frontiers, and Applications.
Springer, Singapore, 2022. URL: https://link.springer.com/book/10.1007/978-981~
16-6054-2.

Yiqi Wu et al. GPT-4o: Visual perception performance of multimodal large language models
in piglet activity understanding. 2024. arXiv: 2406 . 09781 [cs.CV]. uRL: https://arxiv.
org/abs/2406.09781.

Zonghan Wu et al. “A Comprehensive Survey on Graph Neural Networks”. In: IEEE
Transactions on Neural Networks and Learning Systems 32.1 (Jan. 2021), pp. 4-24. por: 10.
1109/tnnls.2020.2978386. URL: https://doi.org/10.1109%2Ftnnls.2020.2978386.

Zhiheng Xi et al. The Rise and Potential of Large Language Model Based Agents: A Survey.
2023. arXiv: 2309.07864 [cs.AI].

Shuhong Xiao et al. Prototype2Code: End-to-end Front-end Code Generation from Ul Design
Prototypes. 2024. arXiv: 2405 . 04975 [cs.SE]. URL: https ://arxiv . org/abs /2405 .
04975.

Yingjie Xing et al. “An Improved Adaptive Genetic Algorithm for Job-Shop Scheduling
Problem”. In: Third International Conference on Natural Computation (ICNC 2007). Vol. 4.
2007, pp. 287-291. por: 10.1109/ICNC.2007.202.

Keyulu Xu et al. How Powerful are Graph Neural Networks? 2018. por: 10 .48550/ARXIV .
1810.00826. URL: https://arxiv.org/abs/1810.00826.

https://arxiv.org/abs/2109.01247
https://arxiv.org/abs/2109.01247
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2402.02130
https://arxiv.org/abs/2402.02130
https://arxiv.org/abs/2402.02130
https://arxiv.org/abs/2402.08073
https://arxiv.org/abs/2402.08073
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2406.19314
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://link.springer.com/book/10.1007/978-981-16-6054-2
https://link.springer.com/book/10.1007/978-981-16-6054-2
https://arxiv.org/abs/2406.09781
https://arxiv.org/abs/2406.09781
https://arxiv.org/abs/2406.09781
https://doi.org/10.1109/tnnls.2020.2978386
https://doi.org/10.1109/tnnls.2020.2978386
https://doi.org/10.1109%2Ftnnls.2020.2978386
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2405.04975
https://arxiv.org/abs/2405.04975
https://arxiv.org/abs/2405.04975
https://doi.org/10.1109/ICNC.2007.202
https://doi.org/10.48550/ARXIV.1810.00826
https://doi.org/10.48550/ARXIV.1810.00826
https://arxiv.org/abs/1810.00826

248

B. A Brief Introduction and Defense of Metaheuristics

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

An Yang et al. Qwen2 Technical Report. 2024. arXiv: 2407 . 10671 [cs.CL]. URL: https:
//arxiv.org/abs/2407.10671.

Chengrun Yang et al. “Large Language Models as Optimizers”. In: The Twelfth Inter-
national Conference on Learning Representations. 2024. urL: https: //openreview.net/
forum?id=Bb4VGOWELT.

Haoran Ye et al. “ReEvo: Large Language Models as Hyper-Heuristics with Reflective
Evolution”. In: Advances in Neural Information Processing Systems. Ed. by A. Globerson et
al. Vol. 37. Curran Associates, Inc., 2024, pp. 43571-43608. URL: https://proceedings.
neurips.cc/paper_files/paper/2024/file/4ced59d480e07d290b6£29fc8798£195-
Paper-Conference.pdf.

Shukang Yin et al. A Survey on Multimodal Large Language Models. 2023. arXiv: 2306 .
13549 [cs.CV].

Daoguang Zan et al. Large Language Models Meet NL2Code: A Survey. 2023. arXiv: 2212.
09420 [cs.SE]. URL: https://arxiv.org/abs/2212.09420.

Mohamed Aymen Zermani et al. “FPGA-based hardware implementation of chaotic
opposition-based arithmetic optimization algorithm”. In: Applied Soft Computing 154
(2024), p. 111352.

Yuexiang Zhai et al. Fine-Tuning Large Vision-Language Models as Decision-Making Agents
via Reinforcement Learning. 2024. arXiv: 2405.10292 [cs.AI]. URL: https://arxiv.org/
abs/2405.10292.

Biao Zhang, Barry Haddow, and Alexandra Birch. Prompting Large Language Model for
Machine Translation: A Case Study. 2023. arXiv: 2301.07069 [cs.CL].

Muhan Zhang and Yixin Chen. Link Prediction Based on Graph Neural Networks. 2018.
arXiv: 1802.09691 [cs.LG]. URL: https://arxiv.org/abs/1802.09691.

Wenxuan Zhang et al. Sentiment Analysis in the Era of Large Language Models: A Reality
Check. 2023. arXiv: 2305.15005 [cs.CL].

Zeyu Zhang et al. A Survey on the Memory Mechanism of Large Language Model based
Agents. 2024. arXiv: 2404 .13501 [cs.AI]. URL: https://arxiv.org/abs/2404.13501.

Haiyan Zhao et al. Explainability for Large Language Models: A Survey. 2023. arXiv: 2309.
01029 [cs.CLI.

Lianmin Zheng et al. Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena. 2023.
arXiv: 2306.05685 [cs.CL].

Zibin Zheng et al. A Survey of Large Language Models for Code: Evolution, Benchmarking,
and Future Trends. 2024. arXiv: 2311.10372 [cs.SE].

Yongchao Zhou et al. Large Language Models Are Human-Level Prompt Engineers. 2023.
arXiv: 2211.01910 [cs.LG]. URL: https://arxiv.org/abs/2211.01910.

Kaijie Zhu et al. PromptBench: Towards Evaluating the Robustness of Large Language Models
on Adversarial Prompts. 2023. arXiv: 2306.04528 [cs.CL].

https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=Bb4VGOWELI
https://proceedings.neurips.cc/paper_files/paper/2024/file/4ced59d480e07d290b6f29fc8798f195-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/4ced59d480e07d290b6f29fc8798f195-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/4ced59d480e07d290b6f29fc8798f195-Paper-Conference.pdf
https://arxiv.org/abs/2306.13549
https://arxiv.org/abs/2306.13549
https://arxiv.org/abs/2212.09420
https://arxiv.org/abs/2212.09420
https://arxiv.org/abs/2212.09420
https://arxiv.org/abs/2405.10292
https://arxiv.org/abs/2405.10292
https://arxiv.org/abs/2405.10292
https://arxiv.org/abs/2301.07069
https://arxiv.org/abs/1802.09691
https://arxiv.org/abs/1802.09691
https://arxiv.org/abs/2305.15005
https://arxiv.org/abs/2404.13501
https://arxiv.org/abs/2404.13501
https://arxiv.org/abs/2309.01029
https://arxiv.org/abs/2309.01029
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2311.10372
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2306.04528

B.1. An Invitation to Metaheuristics 249

[250] Chengke Zou et al. DynaMath: A Dynamic Visual Benchmark for Evaluating Mathematical
Reasoning Robustness of Vision Language Models. 2025. arXiv: 2411 .00836 [cs.CV]. URL:
https://arxiv.org/abs/2411.00836.

https://arxiv.org/abs/2411.00836
https://arxiv.org/abs/2411.00836

	Abstract
	Abstract
	Contents
	List of Figures
	List of Tables
	Glossary
	1. Introduction
	1.1. Overview of Optimization Algorithms
	1.1.1. Metaheuristics

	1.2. Contributions
	1.2.1. Algorithmic Improvement
	1.2.2. Interpretability Enhancement through Visualization Tools
	1.2.3. Philosophical Implications

	1.3. Publications Resulting from this Thesis
	1.4. Organization
	1.4.1. Part I - Algorithmic Improvement with Machine Learning (Graph Neural Networks & Large Language Models)
	1.4.2. Part II - Visualization Tools for Algorithm Analysis

	2. Introduction
	2.1. Metaheuristics and Machine Learning
	2.2. Metaheuristics and Deep Learning
	2.2.1. Deep Reinforcement Learning (DRL) in Metaheuristics
	2.2.2. Graph Neural Networks for Combinatorial Optimization

	2.3. Metaheuristics and Large Language Models
	2.3.1. LLMs for Improving Solution Quality

	3. Boosting a Genetic Algorithm using Graph Neural Networks
	3.1. Introduction
	3.2. Problem Definition
	3.3. Methodology
	3.3.1. Biased Random Key Genetic Algorithm
	3.3.2. Graph Neural Network Framework
	3.3.3. The Hybrid BRKGA Algorithm

	3.4. Experimental Evaluation
	3.4.1. Data Preparation and Tuning Process
	3.4.2. Experimental Evaluation
	3.4.3. Analysis

	3.5. Conclusion

	4. Improving Ant Colony Optimization supported by Deep Learning
	4.1. Introduction
	4.2. Problem Definition
	4.3. Methodology
	4.3.1. Solution Construction in MMAS
	4.3.2. Integrating Deep Learning via Q-Learning

	4.4. Generating Deep Learning-Based Node Information
	4.4.1. Selected Features and Training Instances
	4.4.2. SAGE Training

	4.5. Experimental Evaluation
	4.5.1. Experimental setting
	4.5.2. Algorithm tuning
	4.5.3. Numerical results

	4.6. Conclusion

	5. Large Language Models as Assistants for Enhancing Metaheuristics
	5.1. Introduction
	5.1.1. Our Contribution

	5.2. Background
	5.2.1. LLMs as Pattern Recognition Engines

	5.3. Problem Definition
	5.3.1. Multi-Hop Influence Maximization

	5.4. Integration of LLM Output into a Metaheuristic
	5.4.1. Prompt Engineering
	5.4.2. LLM Output
	5.4.3. Using LLM Output to Guide a Metaheuristic

	5.5. Empirical Evaluation
	5.5.1. Experimental Setup
	5.5.2. Analysis of LLM Output
	5.5.3. Visual Comparative Analysis

	5.6. Discussion and Open Questions
	5.7. Conclusion

	6. Enhancing a CMSA Heuristic for the MIS Problem with Large Language Models
	6.1. Introduction
	6.2. Background
	6.2.1. Code Generation with LLMs
	6.2.2. Maximum Independent Set (MIS) Problem
	6.2.3. CMSA

	6.3. LLM-Enhanced CMSA for MIS
	6.3.1. Discovering New Heuristics
	6.3.2. Code Optimization Strategies
	6.3.3. Reproducibility

	6.4. Empirical Evaluation
	6.4.1. Preliminary
	6.4.2. Numerical Results

	6.5. Discussion
	6.6. Conclusions

	7. Improvement of Optimization Algorithms with LLMs by Non-expert Users
	7.1. Introduction
	7.2. Background
	7.2.1. Large Language Models in Combinatorial Optimization
	7.2.2. Problem Definition
	7.2.3. Traditional Optimization Algorithms for the TSP
	7.2.4. Selected Implementations

	7.3. Methodology
	7.3.1. Enhancing Traditional Optimization Algorithms with Large Language Models
	7.3.2. Prompt Design: A Focus on Simplicity and Accessibility

	7.4. Experimental evaluation
	7.4.1. Setup
	7.4.2. Benchmark Datasets and Evaluation Metrics
	7.4.3. Experimental Design
	7.4.4. Comparative Analysis with Original Algorithm Codes
	7.4.5. Key Insights in Code Generation
	7.4.6. Code complexity

	7.5. Discussion
	7.5.1. Limitations and Methodological Considerations
	7.5.2. Directions for Future Research

	7.6. Conclusion

	8. Introduction
	8.1. LLMs for Automated Analysis in Optimization Tools
	8.2. Future Directions: Leveraging LVLMs for Enhanced STNWeb Analysis

	9. Search Trajectory Networks Meet the Web
	9.1. Introduction
	9.2. Background: Search Trajectory Networks
	9.2.1. Limitations

	9.3. Integration Into the Web
	9.3.1. New system architecture
	9.3.2. New Features

	9.4. Case Studies
	9.4.1. Case 1: A Simple Study
	9.4.2. Case 2: Comparison of Two Algorithms
	9.4.3. Case 3: Complex Analysis

	9.5. Conclusion

	10. STNWeb: A new visualization tool for analyzing optimization algorithms
	10.1. Introduction
	10.2. STNWeb Architecture
	10.2.1. STNWeb Frontend
	10.2.2. STNWeb Backend
	10.2.3. REST API
	10.2.4. Search Space Partitioning Strategy

	10.3. Limitations
	10.4. Conclusion

	11. Enhancing the Explainability of STNWeb with Large Language Models
	11.1. Introduction
	11.2. Background
	11.2.1. Search Trajectory Networks (STNs)
	11.2.2. Large Language Models (LLMs)

	11.3. Integrating LLMs into STNWeb
	11.3.1. Prompt Engineering
	11.3.2. Feature Extraction

	11.4. Empirical Evaluation
	11.4.1. Setup
	11.4.2. Methodology
	11.4.3. Results

	11.5. Discussion
	11.6. Conclusion

	12. Improving STNWeb Graphical via HAC of the Search Space
	12.1. Introduction
	12.2. Contextual Overview: Search Trajectory Networks
	12.2.1. Search Space Partitioning Schemes
	12.2.2. Standard Strategies for Partitioning

	12.3. Partitioning By Hierarchical Agglomerative Clustering
	12.4. Experimental Results
	12.4.1. Methodology and Setup
	12.4.2. Continuous Optimization Problems

	12.5. Conclusion

	13. A Benchmark Generator for Assessing Variability in Graph Analysis Using LVLMs
	13.1. Introduction
	13.1.1. Contributions

	13.2. VisGraphVar: A benchmark generator
	13.2.1. A Custom Synthetic Dataset
	13.2.2. Tasks
	13.2.3. Dataset Configuration and Statistics
	13.2.4. Metrics
	13.2.5. Prompt design

	13.3. Experiments and Evaluation
	13.3.1. Environment Setup and LVLM Configuration
	13.3.2. Results
	13.3.3. Observations

	13.4. Discussion and Open Questions
	13.5. Conclusions

	14. Conclusion
	14.1. Discussion of Main Contributions
	14.1.1. Part I – Algorithmic Enhancements
	14.1.2. Part II – Enhanced Interpretability

	14.2. Limitations and Challenges
	14.2.1. Algorithmic Improvement
	14.2.2. Interpretability Enhanced

	14.3. Future Research Directions
	14.3.1. STNWeb 3D
	14.3.2. Path-Dependent Runtime Heuristic Steering (PathSteer)

	A. A Brief Guide to Optimization
	A.1. Types of Optimization Problems
	A.1.1. Continuous Optimization
	A.1.2. Discrete or Combinatorial Optimization

	B. A Brief Introduction and Defense of Metaheuristics
	B.1. An Invitation to Metaheuristics

	Bibliography

