
Institut d’Investigació en Intel·ligència Artificial
Universitat Politècnica de Catalunya

PhD Program in Artificial Intelligence

Value Engineering for
Autonomous Agents

by Nieves Montes

Directors: Prof. Carles Sierra and Dr. Nardine Osman (IIIA-CSIC)
Tutor: Prof. Cecilio Angulo (UPC)

Paper-Based Thesis
Tesis per compendi d’articles

Barcelona, November 2023





A mis padres,
por todo lo que soy.





Abstract

The topic of this thesis is the engineering of values for autonomous agents. This
is realised through the formulation, design and implementation of new func-
tionalities for autonomous agents that enable reasoning in terms of values. In
particular, we argue for the role of prescriptive norms as value-promoting mech-
anisms. Hence, value-driven agents should be able to autonomously determine
which regulations (such as obligations, permissions or prohibitions) make the
Multiagent System they inhabit better promote some values of interest. We lay
the foundations of our work on Schwartz’s Theory of Basic Human Values to
establish a consequential connection between values and norms, considering
that norms are aligned with respect to values if the outcomes they incentivise
satisfy the goals that capture the meaning of values in a particular context. An-
other feature of Schwartz’s theory that has been previously overlooked in the
literature is the strong social dimension of values. That is, agents should be
able to reason not just in terms of their own, but also of the values of others in
their community. This points to Theory of Mind (i.e. the cognitive ability to
perceive, interpret and reason about others in terms of their mental states) as an
outstanding component of value-based reasoning.

This thesis is structured around three main contributions (published in jour-
nal papers) plus their integration. The first contribution establishes the norm-
value relationship as a consequential one in nature, and proposes a methodology
for the automated synthesis and analysis of optimally value-aligned normative
systems. The second contribution tackles the limitations of the first, and defines
the Action Situation Language to systematically express a wide range of rules
that may be implemented in a Multiagent System. This language is comple-
mented by a game engine that automatically interprets interaction descriptions
and builds their semantics as Extensive Form Games, which are later analysed
with standard game-theoretical tools. This leads to a distribution over game
outcomes, which are evaluated in terms of their desirability with respect to val-

v



ues. The third contribution introduces Theory of Mind-related functionalities
into an existing Belief-Desire-Intetion agent architecture, and combines them
with abductive reasoning capabilities.

The three contributions are integrated in a novel functionality that enables
agents to reason about prescriptive norms in terms of dynamic values. This
means that an autonomous agent can, at runtime, switch its value perspective to
the one it estimates that another agent has. Such perspective-dependent value-
based normative reasoning functionality, with its inherent social orientation,
constitutes a novel contribution to the community of values for autonomous
agents and paves the way for possible applications such as value-based nego-
tiation over normative systems. In summary, value engineering is a principled
and systematic approach to computational ethics, which provides an innovative
tool set for integrating ethical values into the design of autonomous agents.

Keywords – value engineering, values in autonomous agents, norms, normative
multiagent systems, theory of mind

vi



Resumen

El tema de esta tesis es la ingeniería de valores para agentes autónomos, lograda
mediante la formulación, diseño e implementación de nuevas funcionalidades
que permiten a agentes autónomos razonar en términos de valores. En par-
ticular, defendemos el papel de las normas prescriptivas como mecanismos de
promoción de valores. Entonces, los agentes impulsados por valores deben
poder determinar de forma autónoma qué regulaciones (tales como obliga-
ciones, permisos o prohibiciones) promueven mejor algunos valores de interés
en el Sistema Multiagente que habitan. Fundamentamos nuestro trabajo en la
Teoría de Schwartz de Valores Humanos Básicos para establecer una conexión
entre valores y normas basada en consecuencias, considerando que las normas
están alineadas con respecto a los valores si los resultados que incentivan satis-
facen las metas que captan el significado de dichos valores en un determinado
contexto. Otra característica de la teoría de Schwartz que ha sido pasada por
alto previamente en la literatura es la fuerte dimensión social de los valores. Es
decir, los agentes deberían poder razonar, no sólo en términos de sus propios
valores, sino también de los de otros en su comunidad. Esto apunta a la Teoría
de la Mente (es decir, la capacidad cognitiva de percibir, interpretar y razonar
sobre los demás en términos de sus estados mentales) como un componente
destacado del razonamiento basado en valores.

Esta tesis se estructura en torno a tres contribuciones principales (publicadas
en revistas académicas), además de su integración. La primera contribución es-
tablece la relación entre normas y valores mediante consecuencias, y propone
una metodología para la síntesis y análisis automatizado de sistemas norma-
tivos óptimamente alineados con valores. La segunda contribución aborda las
limitaciones de la primero, y define el Action Situation Language para expresar
sistemáticamente una amplia gama de reglas que pueden implementarse en un
Sistema Multiagente. Este lenguage se complementado con un intérprete que
procesa automáticamente la descripción de la interacción y construye su semán-

vii



tica como juego en forma extendida, que luego es analizado con herramientas
estándares de teoría de juegos. Esto conduce a una distribución sobre estados
finales del juego, que se evalúan en términos de su conveniencia con respecto a
ciertos valores. La tercera contribución presenta funcionalidades relacionadas
con la Teoría de la Mente, integrándolas en la arquitectura Belief-Desire-Intention
existente y combinándolas con razonamiento abductivo.

Las tres contribuciones se integran en una novedosa funcionalidad que per-
mite a agentes autónomos razonar sobre normas prescriptivas en términos de
valores dinámicos. Esto significa que un agente autónomo puede, durante su
ejecución, cambiar su perspectiva de valores a la que estima que tiene otro
agente. Este enfoque, basado en valores y con una orientación social inher-
ente, constituye una contribución novedosa a la investigación de valores para
agentes autónomos y allana el camino a posibles aplicaciones como la nego-
ciación automática sobre sistemas normativos basada en valores. En resumen,
la ingeniería de valores es un enfoque sistemático y de principios a la ética com-
putacional, que proporciona un conjunto de herramientas innovadoras para
integrar valores éticos en el diseño de agentes autónomos.

Palabras clave – ingeniería de valores, valores en agente autónomos, normas,
sistemas multiagente normativos, teoría de la mente

viii



Resum

El tema d’aquesta tesi és l’enginyeria de valors per a agents autònoms, acon-
seguida mitjançant la formulació, disseny i implementació de noves funcionali-
tats que permeten a agents autònoms raonar en termes de valors. En particular,
defensem el paper de les normes prescriptives com a mecanismes de promoció
de valors. Aleshores, els agents impulsats per valors deuen poder determinar
de forma autònoma quines regulacions (com ara obligacions, permisos o pro-
hibicions) promouen millor alguns valors d’interès en el Sistema Multiagent que
habiten. Fonamentem el nostre treball a la Teoria de Schwartz de Valors Humans
Bàsics per establir una connexió entre valors i normes basada en conseqüències,
considerant que les normes estan alineades respecte als valors si els resultats
que incentiven satisfan les metes que capten el significat d’aquests valors en
un context determinat. Una altra característica de la teoria de Schwartz que ha
estat passada per alt prèviament a la literatura és la forta dimensió social dels
valors. És a dir, els agents haurien de poder raonar, no només en termes dels
seus propis valors, sinó també dels d’altres a la seva comunitat. Això apunta
a la Teoria de la Ment (és a dir, la capacitat cognitiva de percebre, interpretar i
raonar sobre els altres en termes dels seus estats mentals) com un component
destacat del raonament basat en valors.

Aquesta tesi s’estructura al voltant de tres contribucions principals (publi-
cades en revistes acadèmiques), a més de la seva integració. La primera con-
tribució estableix la relació entre normes i valors mitjançant conseqüències, i
proposa una metodologia per a la síntesi i anàlisi automatitzada de sistemes
normatius òptimament alineats amb valors. La segona contribució aborda les
limitacions de la primera, i defineix l’Action Situation Language per expressar
sistemàticament una àmplia gamma de regles que es poden implementar en
un Sistema Multiagent. Aquest llenguatge es complementa amb un intèrpret
que processa automàticament la descripció de la interacció i construeix la seva
semàntica com un joc en forma estesa, que després és analitzat amb eines es-

ix



tàndards de teoria de jocs. Això condueix a una distribució sobre estats finals
del joc, que s’avaluen en termes de la seva conveniència respecte a certs valors.
La tercera contribució presenta funcionalitats relacionades amb la Teoria de la
Ment, integrant-les a l’arquitectura Belief-Desire-Intention existent i combinant-
les amb raonament abductiu.

Les tres contribucions s’integren en una nova funcionalitat que permet
a agents autònoms raonar sobre normes prescriptives en termes de valors
dinàmics. Això vol dir que un agent autònom pot, durant la seva execució,
canviar la seva perspectiva de valors a la que estima que té un altre agent.
Aquest enfocament, basat en valors i amb una orientació social inherent, con-
stitueix una contribució nova a la investigació de valors per a agents autònoms
i aplana el camí a possibles aplicacions com la negociació automàtica sobre
sistemes normatius basada en valors. En resum, l’enginyeria de valors és un
enfocament sistemàtic i de principis a l’ètica computacional, que proporciona
un conjunt d’eines innovadores per integrar valors ètics al disseny d’agents
autònoms.

Paraules clau – enginyeria de valors, valors en agents autònoms, normes, sis-
temes multiagent normatius, teoria de la ment

x



Acknowledgments

I would like to thank my supervisors Carles Sierra and Nardine Osman for their
guidance and encouragement throughout this thesis. The circumstances under
which this journey started were far from ideal, but we made the most of them.
I would also like to thank Michael Luck and Odinaldo Rodrigues from King’s
College London for their warn welcome and stimulating discussions during
my research visit, and to the TAILOR project’s connectivity fund for providing
the funding. A shout-out also goes out to Pedro Messeguer, for organizing the
wonderful Bojos per la IA seminars at IIIA-CSIC.

Research would be close to impossible without all the supporting staff who
make sure that the lights are on and the gears keep turning. Hence, I would like
to thank all the administrative and IT support staff at IIIA-CSIC, for always help-
ing me and never making any comment about my ignorance on administrative
matters.

Finally, I would like to thank my family, and especially my parents for their
unconditional love and support throughout not just this thesis, but my whole
life. To my friends, for the much-needed distractions, laughs, walks and dinners.
And to Ivan, for his unwavering steadiness and patience through the good and
through the not-so-good.

To all of you, a much deserved Thank you.

xi





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Resumen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Resum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

I Background

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Schwartz’s Theory of Basic Human Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 The Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Classification of Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Motivation: Value Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 The Role of Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 The Role of Theory of Mind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Three Contributions to Value Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 An Optimisation Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.2 A Game Theoretical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.3 A Theory of Mind Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6 Document Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Value-Aligned Norm Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Value-Based Practical Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Reasoning About Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xiii



II Contributions

Synthesis and Properties of Optimally Value-Aligned Normative Systems . 35

A Computational Model of Ostrom’s Institutional Analysis and Develop-
ment Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Combining Theory of Mind and Abductive Reasoning in Agent-Oriented
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

III Closing Remarks

3 Integrating the Three Approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.1 An Integrated Approach to Value Engineering. . . . . . . . . . . . . . . . . . . . . . . . 159
3.2 Formal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
3.3 The Role of the Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
3.4 Computing the Alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
3.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

3.5.1 Modelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.1 Revisiting the Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.2 A Toolbox for Value Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.3 Takeaways and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Acronyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

xiv



Part I

Background





Chapter 1

Introduction

The topic of this thesis is the engineering of values into artificial software agents
and Multiagent System (MAS). To set the stage, it is first necessary to start by
clarifying the topic this thesis is concerned with. To that end, in this chapter we
first introduce the conceptual framework for values that we adhere to. Second, we
present and discuss the topic of value engineering: we clarify what we understand
by the engineering of values, what is the motivation to pursue it, and relate it to
some computational constructs used in the Autonomous Agents and Multiagent
Systems (AAMAS) community. Third, we present the overall research goal that
this thesis aims to attain, and the sub-goals that derive from it. Fourth, we
outline at a high level the strategies pursued to achieve our research goal, and
point to the papers in Part II where they are developed. We conclude this
chapter with an outline of the rest of the document and a summary of all the
publications that have resulted from this thesis.

1.1 Schwartz’s Theory of Basic Human Values

1.1.1 The Framework

This thesis revolves around the concept of values and, in particular, their role in
social life. In other words, we are interested in the functionalities of autonomous
agents that can help them reason and act upon their environment, as well as in
relation to the other agents with whom that environment is shared, in terms of
the values that are deemed most important.

Values are an abstract and fuzzy concept originating in moral philosophy.
However, any potential enactment of values in a computational context needs
to make specific commitments on the implementation strategy that it is going

3



to pursue. Inevitably, the strategies followed to turn the abstract concept of
“values” into computational entities must be grounded in a solid theory of
values, which provides a definition for them, outlines their function in human
social life and hints about how value structures are organised. In this section,
we review one such conceptual framework. Specifically, we rely on Schwartz’s
Theory of Basic Human Values (STBHV) (Schwartz, 1992, 2012), which has been
selected for three main reasons. The first relates to the merits of the theory:
it is a well-established theoretical framework for values in the social sciences,
and many of its features are compatible with those of other frameworks (Rohan,
2000). Second, STBHV is more grounded in the fields of social psychology
and sociology than philosophy, since it conceived values as profoundly social
constructs (as will be reviewed shortly). This feature is particularly relevant to
this thesis since we are interested in the role of values as regulators of social
life, i.e. how do they affect the interactions taking place at the heart of a MAS,
both between an agent and its shared environment and between several agents.
Third and last, not only is Schwartz’s theory popular within the social sciences,
but it has had a very positive reception in the AAMAS community too. Many
previous approaches to values in autonomous agents have adhered to it, as will
be illustrated by the literature review in Section 2.2.

The concept of value has a long history in moral philosophy, resulting in
a variety of definitions for this term (Boudon, 2017, chapter 1). Despite the
confusion that such an abundance of definitions generates, STBHV provides a
succinct characterization of values through the following five features:

Values (1) are concepts or beliefs, (2) pertain to desirable end states
or behaviours, (3) transcend specific situations, (4) guide selection or
evaluation of behaviour and events, and (5) are ordered by relative
importance. (Schwartz, 1992, p. 4)

Hence, Schwartz’s theory conceives values as very general, abstract guid-
ing principles that individuals and groups utilise to generate judgements on a
variety of constructs: actions, strategies, conventions, policies, outcomes... The
features presented above, however, do not fully specify how values become op-
erational, i.e. how are they instantiated in a situation to which they are relevant.
To address this, the STBHV also proposes that the content of every value is
realised into a motivational goal:

(...) the primary content aspect of a value is the type of goal or moti-
vational concern that it expresses. (...) values represent, in the form

4



Figure 1.1: The three main components of Schwartz’s Theory of Basic Human Values and the
relationships among them.

of conscious goals, three universal requirements of human existence
to which all individuals and societies must be responsive: needs of
individuals as biological organisms, requisites of coordinated social
interaction, and survival and welfare needs of groups. (Schwartz,
1992, p. 4)

Thus, values, when activated, take the form of a motivational goal whose
function is to allow an individual and their community at large to thrive. For
example, according to STBHV, the value power is instantiated as the search for
“social status and prestige, control or dominance over people and resources”,
while the value universalism is defined as an “understanding, appreciation tol-
erance, and protection for the welfare of all people and for nature” (Schwartz,
2012).

In summary, the STBHV is composed of the following three concepts: (1)
the abstract values; (2) the defining goals that values motivate in specific situa-
tions; and (3) the ultimate functions that those goals seek to achieve. Figure 1.1
presents a diagram with the relationships among the three concepts. Note the
cloud-shaped box around values underlining their abstract nature. Of the three
concepts outlined in Figure 1.1, the one that is typically the least acknowledged
is the function that values serve (i.e. the universal requirements values fulfil).
When values are instantiated as motivational goals, they serve as heuristics
that help by-pass lengthy (and potentially unfeasible) reasoning about everyday
events and ultimately fulfil universal requirements of human existence. For
example, when asked to justify why you paid for your groceries at the super-
market, most people would answer something along the line of “because it is the
right thing to do”. Very few would state something similar to “refusing to pay
for my items could motivate everyone else to do the same, throwing society into
a down-spiral and eventually landing in a state of anarchy that could threaten

5



my very existence”. It is much more handy (and accounts for much shorter
explanations) to make a moral argument and appeal to a shared sense of duty.

So far, we have covered the parts of STBHV where the features of values
and their operational consequences as motivational goals are defined. Such
motivational goals must be fulfilled or maintained by individuals and are hence
instantiated at the individual agent level. Nonetheless, STBHV conceives values
as profoundly social constructs

Individuals cannot cope successfully with these requirements of hu-
man existence on their own. Rather, people must articulate ap-
propriate goals to cope with them, communicate with others about
them, and gain cooperation in their pursuit. Values are the socially
desirable concepts used to represent these goals mentally and the
vocabulary used to express them in social interaction. (Schwartz,
2012, p.4)

Therefore, values provide a sort of shared vocabulary to help humans coor-
dinate and, ultimately, ensure the survival of the individual and, by extension,
of the group. In essence, values provide a syntax that, if coupled with a shared
semantics, helps humans relate to others by providing an understanding of
what motivates them and what do they consider to be important in life. Having
an idea of what values are important to another agent also generates expecta-
tions about their behaviour and/or their attitudes towards certain rules, laws or
norms that are currently implemented or under discussion for implementation.
Naturally, the accuracy of an agent’s understanding of another in terms of their
values depends on the extent to which their semantics overlap. For example,
consider agents 𝛼 and 𝛽, and value 𝑣. For 𝛽, 𝑣 is grounded as goal 𝑔𝛽𝑣 , while
𝛼 believes that 𝛽 grounds the semantics of 𝑣 as goal 𝑔𝛼,𝛽𝑣 . Fundamentally, the
accuracy of 𝛼’s explanations and/or expectations about 𝛽’s behaviour depends
on the degree to which 𝑔

𝛼,𝛽
𝑣 correctly reflects 𝑔

𝛽
𝑣 .

1.1.2 Classification of Values

The merit of Schwartz’s Theory of Basic Human Values is not only in the con-
ceptualization of values presented earlier. In fact, this theory is often described
as a landmark contribution to the field of intercultural studies. That is the case
because STBHV delineates a set of ten broad value types (achievement, power,
security, conformity, tradition, hedonism, stimulation, self-direction, univer-
salism and benevolence) that have been found to be consistent across all the

6



(a) (b)

Figure 1.2: Organization of Schwartz’s basic values based on (a) their convergence or conflict
relationships and (b) their relationship to anxiety (horizontal axis) and focus (vertical axis).
[Extracted and adapted from Schwartz, 2012, respectively].

world’s major cultures (Schwartz, 2012). In other words, this set of values, along
with their motivational goals and the relationships of conflict and compatibil-
ity among them, is found to be constant across societies with widely different
cultural practices. Additionally, the set of ten value types is comprehensive,
meaning that any justification provided by individuals for their behaviour can
be related to one of the goals that values motivate (Schwartz, 1994). Although
we do not rely on Schwartz’s classification of values to develop the novel agent
functionalities of this thesis, we briefly outline them here for completeness.

Given the set of universal value types mentioned above, STBHV offers several
criteria to classify and arrange them within a value structure. The most pop-
ular ordering criterion is the relationship of congruence or conflict that arises
between goals motivated by different values. This principle gives rise to a cyclic
value structure, where values whose motivational goals are often compatible sit
next to one another, while values that usually enter into conflict are opposite to
one another. The resulting value structure appears in Figure 1.2a.

Another possibility considered by Schwartz is to organise values along a
one-dimensional axis based on their relationship to a particular variable. The
first such ranking variables included in the STBHV is anxiety. According to this
principle, values go from being fully anxiety-based (seeking to avoid conflict,
maintain the current order or actively control threat) to fully anxiety-free values
(pursuing personal growth and self-expansion). This results in one half of the
basic value types (achievement, power, security, conformity and tradition) on
the anxiety-based end of the axis, while the other half (hedonism, stimulation,
self-direction, universalism and benevolence) fall on the anxiety-free end. This

7



classification is displayed in the horizontal axis in Figure 1.2b.
The second ranking variable in the STBHV for organizing value types looks

to their focus, i.e. whose interest a value is serving. On one end of the resulting
one-dimensional axis are the value types with a personal focus: achievement,
power, hedonism, stimulation and self-direction. The motivational goals for
these types regulate how individuals express their own interests and character-
istics. In contrast, on the other end we find values with a social focus: security,
conformity, tradition, universalism and benevolence. These relate to how in-
dividuals interact in social settings, affect and influence one another. This last
organizing principle corresponds to the vertical axis in Figure 1.2b.

1.2 Motivation: Value Engineering

So far, we have introduced the conceptual framework for values that this thesis
follows. However, the aim of this thesis is not to provide arguments for or
against the merits of STBHV, nor to compare it against any other theoretical
framework from moral philosophy. Rather, this thesis is concerned with the
engineering of these values, that is, their conversion from abstract notions into
computational entities and the development of novel agent functionalities that
operate on such value-inspired computational entities.

When we talk about value engineering, we are referring to the collection of
strategies, techniques and methods that can be leveraged to embed values into
autonomous agents. In turn, to embed 𝑎 into 𝑏 means to “make 𝑎 an integral
component of 𝑏”.1 Therefore, to engineer values into autonomous agents and/or
the MAS they compose, these values have to be incorporated as fundamental
constituents of the computational machinery that the system runs on. However,
since values are abstract concepts, there is no straightforward way to map them
to the computational entities that autonomous agent models are built upon.
Although they are deeply intertwined, we loosely differentiate approaches that
engineer values by targeting the individual through agent-level constructs such
as beliefs, goals and plans; and those that target the collective through MAS-level
constructs such as organizations, institutions and some interpretation of norms.

Despite the challenge it presents, we believe that the work on the engineering
of values in autonomous software agents is important, timely, and relevant. The
vision of the AAMAS community is the evolution towards a massive MAS,
where a large set of heterogeneous agents with varying degrees of autonomy

1https://www.merriam-webster.com/dictionary/embed

8

https://www.merriam-webster.com/dictionary/embed


and sophistication interact with one another and with their human users (Sierra,
2022). If the interactions that these software agents engage in are to respect the
values that humans hold dear, it becomes mandatory to incorporate them during
their development. In other words, the values that are deemed to be important,
given the area where an autonomous agent is going to be utilised, have to be
embedded, or engineered, into the system prior to deployment.

The engineering of values into autonomous agents can take place through
a variety of avenues (see Sections 2.1 and 2.2). Remarkably, in this thesis we
want to constantly and explicitly consider the role that values have in social
life, since they ought to be engineered into autonomous agents that will share
their environment with other agents as well as possibly humans. Thus, it is
not enough to consider the engineering of values for a single agent. We must
also establish through which mechanism an agent perceives, reasons about and
relates to the value structures of those around it. This social dimension of values
is barely considered in the current literature on values for autonomous agents,
as manifested by the review of the state-of-the-art in Chapter 2 and the gaps
identified there.

In this thesis we identify two high-level computational constructs to tackle
the challenge of embedding values into autonomous agents. In tandem, these
two entities can work together to achieve the vision of value-aware socially-
oriented agents outlined above. First, we consider the prescriptive norms that
regulate agent behaviour, and subsequently also MAS behaviour. These norms
restrict agent autonomy to a greater or lesser extent, and constitute the institu-
tional environment where agents are situated. Since the regulation of a MAS
through prescriptive norms is applied to the system as a whole, we refer to this
component as being top-down or targeting the collective.

Nonetheless, this thesis is concerned with the development of novel agent
functionalities informed by values and oriented towards the social environment.
Hence, the second component we consider is a cognitive ability which is par-
ticularly important for human social life: Theory of Mind (ToM). This ability,
when implemented for agents, allows them to reason about the mental states
(i.e. the beliefs, goals desires, intentions), and in particular about their values.
As opposed to the previous component, this approach does not target the MAS
level. Rather, it is a bottom-up approach since it targets one by one the constituent
components of a MAS (i.e. the individual agents). Hence, we also refer to the
use of ToM to engineer values into autonomous agents as an individual approach.

9



1.2.1 The Role of Norms

The first component for the engineering of values into autonomous agents and
MASs that we have identified is the set of prescriptive norms implemented in the
MAS. As mentioned, this is a top-down component that focuses on regulations
that apply to the collective.

In a MAS, the interactions that agents have with their environment and with
one another are regulated by the set of norms (or normative system) in place.
In fact, norms are one of the most studied elements to engineer MASs, and
much previous work exists on their representation, synthesis, emergence and
adoption (Aldewereld et al., 2018; Andrighetto et al., 2012). Within the AAMAS
community, the term norms is used to denote two related but distinct concepts:
conventions and prescriptions (Grossi et al., 2012).

Conventions are patterns of behaviour that spread through a population and
emerge as the dominant agent strategy in a bottom-up fashion (Morris-Martin
et al., 2019). In essence, conventions are guidelines on behaviour that agents
acquire through, for example, an imitation process in a social network (Li et
al., 2020). Hence, their representation is usually contained within the agents’
internal data structures.

In contrast, prescriptions are rules and laws that establish obligations, prohi-
bitions or permissions on actions or on the state of affairs of the system. Often,
prescriptions include a pre-condition for the rule to be enforced (for example,
which subset of agents it applies to and under what provisions), a deontic
modality (obligation, permission or prohibition) and the action or formula tar-
geted by it (van der Torre, 2003). Usually, prescriptive norms are represented
in data structures external to the agents, to which they generally have access
to and can reason about. In contrast to conventions, prescriptions are usually
implemented in a top-down fashion, with a central authority or mechanism in
charge of their design and enforcement. Hence, they are frequently not the
result of an emergence process but of a centralised design task, and apply to the
set of agents as a whole. Throughout this thesis, we adopt the prescriptive view
of norms. Therefore, from now on, every time we use the term norms, we are
referring to prescriptions.

In the context of software agents, prescriptive norms may be implemented
using one of two possible enforcement strategies: regimentation or sanction
(Savarimuthu & Cranefield, 2011). Regimented norms render some of the ac-
tions that can be executed by agents and/or the states they are able to achieve

10



impossible. Norms enforced through sanctions establish obligations or prohi-
bitions that cannot be perfectly regimented. To incentivise compliance, they
are always accompanied by sanctions for detected violations or additional re-
wards to praise compliance. Usually, the triggering of a sanction or a reward
creates an additional obligation for an enforcer agent to enact the sanction or
reward in question (Hübner et al., 2011). However, sometimes the enforcement
of sanctions and rewards is abstracted away as part of the platform where the
MAS is executing (Fagundes et al., 2016). Despite there being these two distinct
enforcement mechanisms, within a MAS there may coexist regimented norms
with norms enforced through sanctioning.

Now that we have established what norms are, their classification, and the
precise meaning we adopt, we focus on the role of norms as a potential avenue
to engineer values into autonomous agents and MAS.

While values remain abstract context-independent concepts, norms deal
with concrete actions and states of the system. The operational semantics of
a MAS is defined as that of a transition system (Plotkin, 1981). When a set
of norms is implemented in a MAS, the state transitions that the system un-
dergoes change. This happens because either some transitions are eliminated
altogether (e.g. a regimented prohibition makes an action impossible or a post-
transition state unreachable), or the post-transition state changes (e.g. because
a sanctioning mechanism is triggered or a new obligation to sanction is cre-
ated). Consequently, the ultimate outcomes (i.e. the states at the end of a long
sequence of state transitions) that the system is likely to achieve depend on the
implemented norms. In other words, the probability distribution over the set
of attainable outcomes is a function of the norms that the system is subject to
and the institutional structure that oversees their application (i.e. regimentation
and/or sanctioning).

It is precisely through the norm-dependent outcomes that the connection
between norms and values can be established. Norms can, if carefully designed,
promote the achievement of outcomes where a given value (or a set of values)

Figure 1.3: Relationship between values and norms through outcomes.

11



is being respected, promoted, or abided by. When the implementation of a new
norm 𝑛 increases the likelihood of an outcome that is deemed positive with
respect to value 𝑣, we state that 𝑛 is aligned with respect to 𝑣. Hence, we view
the relationship between norms and values as consequential in nature. A norm
is not moral or social in itself (a position defended by deontological ethics, see
Alexander and Moore, 2021), it is so to the extent that the effects it brings about
in the system are in agreement with the values we are interested in, in this case
these are pro-social values. Hence, the alignment of a set of norms with respect
to a set of values can be empirically evaluated by implementing the norms on the
system (or on a simulated model of it), waiting for it to achieve some outcomes
and evaluating those.

Our position is summarised by Figure 1.3. At the surface, values and norms
form a feedback loop: values legitimise the enforced norms, while norms pro-
mote certain values. However, at a more fundamental level, the two are linked
by the outcomes that norms steer the system towards and that are favourably
evaluated in regard to values.

1.2.2 The Role of Theory of Mind

So far, we have covered the use of prescriptive norms as a possible avenue to
engineer values into autonomous agents. Norms are a top-down or collective
component, that apply at the MAS level. As discussed in the previous Section,
the justification for a norm to be implemented is its alignment with respect to
some values. Therefore, values, which are individual agent constructs, motivate
the adoption of norms for the collective of agents.

In order for this connection to take place, some bridge from the individual
agent values to the collective norms must be established. We envision such a
bridge as a negotiation process, in which agents bargain about which values to
implement in their shared environment based on their degree of alignment with
respect to their values. We do not expect that the norms that the participating
agents eventually agree upon to be optimally aligned with respect to any of the
agent’s values. Rather, they represent an aggregation of the values of the agents
involved.

In a setting where an agent has an incentive to align the norms in place to
its values more closely, even at the expense of compromising and making some
concessions, it is especially useful to be able to reason not just in terms of one
own’s values, but also in terms of the values of others. Even though in this

12



thesis we do not develop any specific negotiation strategies for bargaining over
norms, the ability to evaluate a norm proposal in terms of the value-motivated
goals of the interlocutor is an essential requirement to bring forward proposals
for norms that stand any chance of being accepted. Therefore, agents need
cognitive abilities to be able to cope not just with their values and the goals they
ground, but also with the values of others and the goals they motivate for them.

The human cognitive ability that allows us to perceive, interpret and reason
about others in terms of their mental states (e.g. beliefs, goals, desires, emotions,
intentions) is called Theory of Mind (ToM) (Malle, 2022). Although it is not an
exclusively human capacity, it is considered essential for successful participation
in social life (M. C. Corballis, 2011). In fact, the lack of reciprocity in social
interactions displayed by some people with autism spectrum disorder is, in
part, attributed to a deficient development of ToM abilities (Baron-Cohen et al.,
1985). Despite its prevalence in social life, ToM is not innate. It is empirically
established that children develop a ToM at around four years old, when they
start to correctly assign false beliefs to others, that they themselves know to be
true, in the famous Sally-Anne test (Korkiakangas et al., 2016).

There exist two distinct accounts of ToM within philosophy and psychology:
Theory-Theory of Mind (TT) and Simulation-Theory of Mind (ST) (Röska-Hardy,
2008). The TT account views the cognitive abilities assigned to ToM as the
consequence of a theory-like body of implicit knowledge. This knowledge is
conceived as a set of general rules and laws about the deployment of mental
concepts, analogous to a theory of folk psychology. In contrast, the ST account
views ToM not as an inference ability, but as the capacity to use one’s own
cognitive processes and mechanisms to build a model of the minds of others
and the processes happening therein. Hence, to attribute mental states, one
imagines oneself as being in the other agent’s position. Once there, humans
apply their own cognitive processes, engaging in a sort of simulation of the
minds of others. This internal simulation is intimately related to empathy, since
it essentially consists of experiencing the world from the perspective of someone
else.

To recap, prescriptive norms can steer a MAS towards outcomes that are bet-
ter aligned with respect to a given set of values. Agents, when reasoning about
which norms to implement, will have to consider not only the alignment with
respect to their values, but also with respect to the values of others, since norms
are implemented on the MAS as a whole. From this remark, we conclude that
software agents, just as humans, will need to be endowed with ToM capabilities

13



if they are to successfully reason about norms and values from the perspective
of their peers. However, traditional agent architectures such as Belief-Desire-
Intetion (BDI) (Rao, 1996) and Reinforcement Learning (RL) (Sutton & Barto,
2018) do not include ToM as an essential functionality. Therefore, in order to
develop value-aware socially-oriented agents, it is necessary to either expand
existing agent architectures or design new ones with dedicated components to
achieve functionalities analogous to those that ToM provides in humans.

1.3 Research Goals

The topic of this thesis is the engineering of values in autonomous agents and
MASs. We advocate to achieve this through the use of prescriptive norms and to
maintain a strong social orientation for this capability.

Main Research Goal (MRG): Develop a novel agent functionality to em-
power software agents to reason about the alignment (i.e. the suitability) of a
set of prescriptive norms (or normative system) with respect to a value or set
of values, either from the perspective of the agent’s own values (i.e. the values
that have been handed down to it by its user) or from the perspective of other
agents it shares its environment with.

In order to achieve the MRG, it is best to split into smaller sub-goals or
research questions that need to be answered, to tackle the several aspects that
the MRG touches upon:

Research Question #1: How should values be represented in a way that is
suitable to evaluate outcomes (that may refer to a variety of contexts or domains)
in terms of their adherence to the value in question?

Research Question #2: How should norms be represented in a way that allows
to connect them (either exactly or approximately) to the possible outcomes that
the MAS may achieve, which are evaluated in terms of their value promotion
by the value representation provided in RQ#1?

Research Question #3: Derived from the previous two research questions,
how can prescriptive norms be designed, given a set of value representations,
to maximise their alignment with respect to the given values? How can this
process be automated?

Research Question #4: How can existing agent architectures be expanded
with Theory of Mind capabilities so that software agents can perceive the state
of the system from the perspective of other agents situated in their same envi-
ronment?

14



Research Question #5: Following from RQ#4, how can an agent’s Theory
of Mind capabilities be used to evaluate the alignment of a set of norms with
respect to the values held by other agents in the MAS?

The research developed in this thesis does not focus on any Artificial Intel-
ligence (AI) technique in particular. Rather, it explores how already existing
techniques can be adapted and/or expanded for the purpose of engineering
values into autonomous agents.

This thesis aims to contribute to the field of Artificial Social Intelligence
(ASI). ASI is an emergent sub-field within AI that deviates from the traditional
paradigm of a single agent situated in an environment pursuing its individual
goals, and takes as its starting point an agent situated within a larger commu-
nity integrated by other software agents and also, possibly, humans. Despite its
youth, ASI (which is sometimes referred to as cooperative intelligence) is a nascent
field that nonetheless has been gaining traction recently, as researchers advocate
for its importance in the current day and age (Dafoe et al., 2021) and research
programs are being crafted (Dafoe et al., 2020; Paiva, n.d.). Within this research
landscape, this thesis starts from the assumption that socially competent soft-
ware agents have to incorporate values explicitly while being able to reason
empathetically.

1.4 Three Contributions to Value Engineering

The main content of this thesis in Part II is constituted by three journal pa-
pers. These are standalone and self-contained publications. The contributions
transition from a mostly collective perspective (focused on the representation of
norms and values, and the optimisation of the alignment of norms with respect
to values from a social planner perspective) to a mostly individual perspective
(focused on the reasoning abilities of agents about their peers). These are all
finally integrated in Part III. In this section, we briefly outline the contributions
made in each paper, itemised by the techniques that they use. Naturally, all the
details can be found in the complete papers included in Part II. We also indicate
which research goals are addressed by each contribution, however the reader
can find a detailed discussion on this issue in Chapter 4.

15



1.4.1 An Optimisation Approach

The first contribution to value engineering in this thesis focuses on leveraging
prescriptive norms to ensure that a MAS as a whole abides by certain desirable
values. It starts from the assumption, exposed in Section 1.2.1, that norms have
the potential to promote values by steering the system towards certain outcomes
where the values that we deem important are respected to a large degree. When
this is the case, we state that the normative system in place is aligned with respect
to some value 𝑣.

However, the challenge of finding which norms are the most aligned with
respect to some given value 𝑣 remains. To tackle this problem, we present a sys-
tematic norm synthesis methodology based on the maximisation of their degree
of value alignment. We describe the problem building upon previous research for
computing alignment (Sierra et al., 2019) and frame it as an optimisation task:

𝑁 ∗ = argmax
𝑁∈𝒩

Algn𝑁,𝑉 (1.1)

where 𝒩 is the space of possible normative systems, 𝑉 is the set of values
of interest and Algn𝑁,𝑉 is the degree of alignment of normative system 𝑁 (an
element in𝒩) with respect to 𝑉 .

The general methodology we propose follows clear steps concerned with
formulating the problem and its resolution. As part of the problem formula-
tion, we define the set of norms or normative system 𝑁 = {𝑛𝑖} that regulate the
transitions between consecutive states. Every norm 𝑛𝑖 is tied to a set of normative
parameters 𝑃𝑖 . For example, a norm that regulate electoral processes is param-
eterised on the minimum age of participants that are allowed to vote. All the
normative parameters

⋃
𝑖

𝑃𝑖 , together with their domains and constraints, define

the search space of Equation (1.1). Also, we define the set of values of interest
𝑉 . Formally, the meaning of value 𝑣 in some domain is captured by its semantics
function, 𝑓𝑣 : 𝒮 → [−1, 1]. This function evaluates states of the system, with
𝑓𝑣(𝑠) ≈ −1, 0, 1 indicating that state 𝑠 strongly opposes, is neutral or strongly
promotes value 𝑣.

Besides the norm synthesis methodology, we also provide an analytical
toolbox to examine the results. This toolbox is composed of two instruments: the
Shapley values of individual norms, and the degree of compatibility between
values. The Shapley value of individual norms is a metric imported from
cooperative game theory. Given a normative system 𝑁 = {𝑛𝑖} that has been

16



optimised for value 𝑣, the Shapley value of norm 𝑛𝑖 ∈ 𝑁 with respect to value
𝑣 quantifies how much credit should be given to norm 𝑛𝑖 for the degree of
alignment with respect to 𝑣 achieved by the overall set of norms. In addition
to its definition, we also examine which properties of the Shapley value in the
context of cooperative game theory can be imported to our framework.

The second tool in our toolbox is the compatibility between values. Given
a normative system 𝑁 ∗ that has been optimised for a specific value 𝑣1, how
capable is it of promoting a different value 𝑣2? This metric quantifies how good
is a normative system at compromising between different values. Following the
lead of value compatibility, we define the Compatibility Maximizing Normative
System (CMNS) as the set of norms that do not align optimally with respect
to any value in particular, but that rather maintain the maximum degree of
compatibility among all values within set 𝑉 .

The journal paper with a detailed exposition of this work, accompanied by
the code implementing our methodology, the analysis toolbox and a running ex-
ample is included as Contribution 1 in Part II of this thesis and can be referenced
as:

Montes, N., & Sierra, C. (2022a). Synthesis and properties of optimally
value-aligned normative systems. Journal of Artificial Intelligence Research,
74, 1739–1774. https://doi.org/10.1613/jair.1.13487

Contribution 1 lays out the representation of values that we adhere to
through this thesis (RQ#1), as well as a suitable representation of norms to enable
reasoning about them with respect to values (RQ#2). Despite its limitations, the
methodology we present enables the automated synthesis of normative systems
using their degree of value alignment as the search target (RQ#3).

1.4.2 A Game Theoretical Approach

The previous piece of research has a major limitation: since norms are repre-
sented as sets of optimizable parameters, every time a user wants to introduce
an additional regulation into the normative system, the methodology has to
be re-executed from scratch. This hinders the ability of agents to dynamically
examine the effects of implementing or retracting norms in the MAS where they
participate.

To address this limitation, in the next piece of research we define a much
more flexible and comprehensive norm representation and interpretation sys-

17

https://doi.org/10.1613/jair.1.13487


tem. We name it the Action Situation Language (ASL), which is inspired by
the Institutional Analysis and Development (IAD) framework developed by Os-
trom, 2005. The IAD framework is a policy analysis theory that identifies and
delineates the generic building blocks that make up all social interactions. Ac-
cording to this framework, social interactions are determined by three sets of
exogenous variables: the biophysical conditions, the attributes of the community and
the rules of the interaction.

The IAD framework is remarkable in its clarity when it comes to differ-
entiating between the components of social interactions, despite there being an
immense variety of situations where humans and other entities engage with one
another. In our work, we leverage this clarity to build a computational model of
the IAD framework. We define the novel Action Situation Language (ASL). This
is a machine-readable logic programming language (implemented in Prolog)
whose syntax is highly tailored to the exogenous variables outlined in the IAD
framework. Its central construct are the rule statements, expressed through an
“if <Condition> then <Consequence> where <Constraints>” syntax.

Rule priorities are an important innovation of ASL. When interpreting an
action situation description, rules with higher priority prevail over rules of lower
priority if the two enter in conflict. This allows action situation descriptions to
be extended in order to examine the impact that the introduction of new higher-
priority rules has on the outcomes of the social interaction, without rewriting a
new ASL description from scratch.

Beyond describing its syntax, ASL is complemented by a game engine that
takes as input an action situation description and automatically generates its
semantics as an Extensive Form Game (EFG). During this process, the game
engine queries the rule base and handles conflicts between rules as they arise,
by always following the rule with higher priority. Once the game model has been
built, standard game theoretical tools (e.g. the Nash equilibrium) can be applied
to the game to predict the most likely outcomes. These, then, are evaluated
in terms of their adherence to the values that are deemed important by the
community of agents that participate in the interaction. If this evaluation is not
satisfactory, new rules with higher priorities can be introduced, the subsequent
EFG model built and the new most likely outcomes predicted, in hopes that
they are better aligned with respect to the values of interest.

The journal paper detailing this work is included in this thesis as Contribu-
tion 2 in Part II, including references to the open-source code that implements

18



ASL and its accompanying game engine. It can be found at:

Montes, N., Osman, N., & Sierra, C. (2022b). A computational model of
Ostrom’s Institutional Analysis and Development framework. Artificial
Intelligence, 311, 103756. https://doi.org/10.1016/j.artint.2022.103756

Contribution 2 is mainly directed at providing an expressive norm represen-
tation language (RQ#2). Through its combination with game theoretical tool
and the value representation scheme from Contribution 1, it enables reasoning
about norms in terms of the values they promote or demote.

1.4.3 A Theory of Mind Approach

The two approaches presented so far respond to a collective perspective to value
engineering: reasoning about which norms to implement on a MAS as a whole,
based on their degree of value alignment. Nonetheless, in this thesis we are
interested in implementing these norm reasoning capabilities at the individual
agent level. Furthermore, we believe that for agents to successfully participate in
a MAS in an ethical manner, they need to be able to relate to and reason about
one another in terms of not just their own values, but of the values of their peers
too. In other words, they must be endowed with a Theory of Mind (ToM).

Therefore, in our last contribution we propose a new agent model, which we
call TomAbd. In this model, agent 𝑖 is able to put itself in the shoes of another
agent 𝑙 by building an estimation of the belief base that 𝑙 is operating with:

𝑇𝑖 ,𝑙 = {𝜙 | 𝑇𝑖 |= believes(𝑙 , 𝜙)} (1.2)

where 𝑇𝑖 is the agent’s current belief base logic program (i.e. a logic program
composed of facts and clauses) and 𝑇𝑖 ,𝑙 is the estimation 𝑖 makes of 𝑙’s belief
base.

By adopting the estimated program 𝑇𝑖 ,𝑙 as its own (effectively attempting to
perceive the world in the same way that 𝑙 does), 𝑖 can search for the missing
beliefs that could complement 𝑇𝑖 ,𝑙 to satisfactorily explain the behaviour that 𝑖
observes 𝑙 is displaying. This inference step, from the observation of an action
by a peer to an explanation for it, is called abductive reasoning, and it yields a
set of abductive explanations that the observing agent 𝑖 can then use to build a
more complete representation of the current state of the system and/or of the
other agents within it.

19

https://doi.org/10.1016/j.artint.2022.103756


The reasoning previously outlined uses first-order ToM. In other words, the
agent adopts the perspective of agent 𝑙 “directly”. However, a distinguishing
feature of the TomAbd agent model is that agent 𝑖 can adopt the perspective of
other agents down to an arbitrary level of recursion. For example, a TomAbd
agent 𝑖 may want to understand how an intermediary agent 𝑗 perceives and
reasons about agent 𝑙. This corresponds to second-order ToM reasoning. Analo-
gously, 𝑖 may want to estimate what is 𝑗 estimation of ... 𝑘’s estimation of 𝑙’s belief
base, thus adopting the perspective of the actor 𝑙 through an arbitrary number
of intermediaries. This corresponds to general 𝑛th-order ToM reasoning.

To engage in higher-order ToM, the agent has to iteratively apply Equa-
tion (1.2):

𝑇𝑖 , 𝑗 ,...,𝑘,𝑙 = {𝜙 | 𝑇𝑖 , 𝑗 ,...,𝑘 |= believes(𝑙 , 𝜙)} (1.3)

We have implemented and fully documented the TomAbd agent model in
Jason (Bordini et al., 2007), an agent-oriented programming language based on
the Belief-Desire-Intetion (BDI) architecture. As a benchmark, we have applied
it to the Hanabi domain, a cooperative card game of imperfect information, and
tested its performance in this domain along a number of metrics. The paper
introducing the TomAbd agent model in detail is included as Contribution 3 in
Part II of this thesis. It can be found at:

Montes, N., Luck, M., Osman, N., Rodrigues, O., & Sierra, C. (2023a).
Combining theory of mind and abductive reasoning in agent-oriented
programming. Autonomous Agents and Multi-Agent Systems, 37(2). https:
//doi.org/10.1007/s10458-023-09613-w

Contribution 3 is specialized towards providing the ToM capabilities (RQ#4)
that the novel agent functionality envisioned in our MRG needs.

1.5 Publications

Besides the main publications mentioned in Section 1.4, there are others that are
a direct consequence of the work developed in the course of this thesis, and that
contain initial accounts of the detailed contributions in Part II. First, a reduced
version of Contribution 2 first appeared at:

Montes, N., Osman, N., & Sierra, C. (2021). Enabling game-theoretical
analysis of social rules. In Frontiers in artificial intelligence and applications.

20

https://doi.org/10.1007/s10458-023-09613-w
https://doi.org/10.1007/s10458-023-09613-w


IOS Press. https://doi.org/10.3233/faia210120

Additionally, an extended abstract of Contribution 2 for presentation at an in-
ternational conference was presented at:

Montes, N., Osman, N., & Sierra, C. (2023). A computational model of
Ostrom’s institutional analysis and development framework (extended
abstract). Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence. https://doi.org/10.24963/ĳcai.2023/786

A preliminary account of Contribution 3 was presented as:

Montes, N., Osman, N., & Sierra, C. (2022a). Combining theory of mind
and abduction for cooperation under imperfect information. In Multi-
agent systems (pp. 294–311). Springer International Publishing. https:
//doi.org/10.1007/978-3-031-20614-6_17

Additionally, the participation in the Doctoral Consortium at a couple of inter-
nation conferences yielded the following two publications:

Montes, N. (2022a). Engineering pro-social values in autonomous agents
– collective and individual perspectives. In Multi-agent systems (pp. 431–
434). Springer International Publishing. https://doi.org/10.1007/978-
3-031-20614-6_26

Montes, N. (2022b). Engineering socially-oriented autonomous agents
and multiagent systems. Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence. https://doi.org/10.24963/ĳcai.2022/
833

Finally, a non peer-reviewed pre-print of a position paper presenting our posi-
tion on values, norms and the relationship between the two is available at:

Montes, N., Osman, N., Sierra, C., & Slavkovik, M. (2023). Value en-
gineering for autonomous agents. https://doi.org/10.48550/ARXIV.
2302.08759

21

https://doi.org/10.3233/faia210120
https://doi.org/10.24963/ijcai.2023/786
https://doi.org/10.1007/978-3-031-20614-6_17
https://doi.org/10.1007/978-3-031-20614-6_17
https://doi.org/10.1007/978-3-031-20614-6_26
https://doi.org/10.1007/978-3-031-20614-6_26
https://doi.org/10.24963/ijcai.2022/833
https://doi.org/10.24963/ijcai.2022/833
https://doi.org/10.48550/ARXIV.2302.08759
https://doi.org/10.48550/ARXIV.2302.08759


1.6 Document Outline

This section has introduced the necessary background, motivation, research
goals and research outputs of this thesis. In the rest of this document, the dis-
cussion is structured as follows. In Chapter 2, we review relevant and recent
work related to the topic of value engineering, with special attention to those
approaches that are comparable to ours. Next, Part II includes the three main
contributions of this thesis, which have been presented in Section 1.4. Part III
starts with Chapter 3, which integrates the three contributions into a unified
agent functionality for normative reasoning with respect to value from an arbi-
trary perspective. Finally, Chapter 4 concludes the thesis by reflecting on the
initial research goals, listing the code repositories and functionalities that have
resulted from this work, making an overall evaluation and pointing to potential
future research directions.

22



Chapter 2

State-of-the-Art

The goal of this chapter is to provide the context for the research developed
in this thesis. We review the current state-of-the-art concerning values and
autonomous agents, starting from collective approaches (i.e. norm-related) and
transitioning into individual ones (i.e. proposals to agents’ cognitive abilities).
We start with a review of the literature on norm synthesis and then narrow our
focus to value-guided norm synthesis. Then, we move on to value-based practical
reasoning and follow it up with recent approaches to reasoning about others,
which we have outlined in Chapter 1 as a neglected requirement in the literature
on values for autonomous agents. We conclude the chapter by identifying the
gaps in the literature and the research opportunities that these afford. Given
that values are a relatively recent concern of the AAMAS community, there does
not exist an abundance of publications on the topic. Therefore, we choose to
provide a relatively extensive review of each of the few cited works.

2.1 Value-Aligned Norm Synthesis

In the AAMAS community, norms are represented as obligations, prohibitions
or permissions to perform certain actions, or to achieve some state of the system.
The field of automated norm synthesis has traditionally considered the problem
of finding the set of regimented norms (i.e. constraints) that are designed and
enforced exogenously by an outside authority or mechanism. Pioneering work
by Shoham and Tennenholtz (1995) and Onn and Tennenholtz (1997) defined
the problem of finding the set of restrictions on actions that, for a given domain,
ensure conflict-free operation while still allowing enough leeway for agents
to achieve their goals. Hence, the problem is tightly linked to planning, and

23



prescriptive norms are referred to as “social laws”. The set of social laws is
synthesised offline, i.e. prior to system deployment. The domain originally
considered is the multi-robot navigation problem, where a set of autonomous
goal-oriented robots move around in a grid environment, and collisions should
be avoided.

Following this tradition, recent work by Nir et al. (2020) revisits the problem.
There, authors have the same goal as Shoham and Tennenholtz (1995), i.e. to
find the set of constraints on agent actions that prevent conflicts while still
allowing them to fulfil their goals. The domain of application is formalised
using a multiagent version of the Stanford Research Institute Problem Solver
(STRIPS), a popular planning formalism. Then, the set of possible social laws is
conceived as a mapping within the space of multiagent STRIPS domains, where
the original domain is modified as a consequence of the enforced norms. The
authors frame the problem as a search task through the space of social laws, and
solve it for various benchmark scenarios using various combinations of search
algorithms (greedy best first, breadth first and depth first), heuristics, pruning
techniques, and tie-breaking criteria.

So far, all the reviewed publications perform offline norm synthesis, where
the set of prescriptions to be enforced is computed prior to run-time. However,
offline synthesis is not suitable to regulate open MASs, where agents may enter
and leave the environment during operation, and hence not all the system
parameters (e.g. the number of agents and/or their type) are known a priori.

To address this shortcoming, Morales et al. (2013) present the Intelligent
Robust Norm synthesis (IRON) system for online synthesis of normative systems.
It consists of a norm engine that continuously monitors the system operation.
When a conflict is encountered, it generates the restriction that would have
prevented it. Then, it integrates this new norm into the normative system that
is currently enforced, and applies a generalization step to avoid redundancies.
This results in concise and succinct normative systems where duplicities are
avoided.

Primarily, the objective of both online and offline norm synthesis is to find
the set of effective prescriptions, i.e. those that ensure conflict-free operation.
Other desiderata from the resulting normative system are, for example, com-
pactness and liberalism (i.e. preserving the freedom of choice of the agents as
much as possible, as in Morales et al., 2015). However, the incorporation of
moral values into the norm synthesis process is a much more recent concern
and, consequently, research on the topic is scarce. Furthermore, all existing

24



publications on value-guided norm synthesis consider only the offline scenario.
Implicitly, this entails that the set of values and the preferences over them are
static and do not change whatsoever as the system evolves.

Notably, Serramià et al. have developed complementary approaches (one
quantitative and one qualitative) to incorporate values into the norm synthesis
process. First, Serramià et al. (2018) consider a total preference ordering over
the set 𝑉 that reflects the overall values of the society. From this preference
ordering, every value is assigned an integer utility based on its position in the
ranking. Concerning the norm-value relationship, they define a value support
function, which is provided as an input. This function relates every possible
norm to the set of values supported by it. Then, the utilities of values are
propagated to utilities on norms through the moral support function. This
allows to formulate the problem of finding the most general, compact and value-
aligned normative system as a multi-objective optimization problem. Once this
conversion is complete, the problem can be solved using off-the-shelf solvers.

Second, Serramià et al. (2020) build upon Serramià et al. (2018) to develop a
related but complementary qualitative approach. There, instead of having values
inducing utilities over norms, the preference ordering over values is directly
propagated as a preference ordering over entire normative systems through
the value support function. Hence, the problem becomes to find the sound
normative system that is the most preferred based on the values it promotes, i.e.
the maximally value-aligned set of norms. The resulting problem has a very large
search space (exponential in the number of possible norms), which the authors
encode as a Linear Programming (LP) problem, and solve with off-the-shelf
solvers.

2.2 Value-Based Practical Reasoning

So far, we have reviewed work on value engineering for MASs through pre-
scriptive norms, a type of approach we refer to as collective, since they leverage
a construct that is implemented on the society of agents as a whole. Now, we
transition towards individual approaches, i.e. those that embed values by inte-
grating them in the internal cognitive architecture of autonomous agents. In
the current section, we focus on previous work that incorporates values into the
practical reasoning of agents, i.e. deliberation oriented towards action selection
or the justification of a recently performed action.

Atkinson and Bench-Capon (2016) propose an argumentation scheme for

25



practical reasoning based on an action-labelled transition system augmented
with values. Its basic components are the set of states, the actions that label
transitions between states and an interpretation function that assigns a set of
atomic propositions to each state. Within this system, agents seek to fulfil their
goals (which may be of type achievement, remedy, maintenance or avoidance) while
promoting their values. Values function as a partition on the state transitions.
In other words, given a value 𝑣, all transitions between two arbitrary states 𝑠 and
𝑠′ are classified as promoting, demoting, or being neutral with respect to 𝑣. This
information is encoded into a logic program describing the conditions of the
current state, which the agent uses to reason about which are the best actions to
reach its target goals while abiding by its values.

There exists several publications with proposals to integrate values into
the Belief-Desire-Intetion (BDI) model of practical reasoning. The BDI model
of autonomy is inspired by the philosophical theory of the intentional stance
by Searle (1983) and Dennett (1989), which defends that humans interpret the
behaviour of entities (either alive entities such as other humans and animals, or
technical artefacts) in terms of their mental states, such as their beliefs, desires
and intentions. Most BDI agent architectures maintain a set of beliefs, a set of
goals or desires to be achieved and a library of plans. Essentially, plans are
templates for action that the agent should follow in order to achieve a goal in
some context (Bordini et al., 2007, chapter 3).

In Cranefield et al. (2017), the authors introduce values into the BDI agent
model by adopting the value structure of Schwartz’s Theory of Basic Human
Values (STBHV), presented in Figure 1.2a, and assuming that agents cannot pur-
sue values that are in direct conflict (i.e. that are opposite to one another). Each
value is characterised by its target level of satisfaction, its current level of satisfac-
tion and its current importance. Then, they expand classical BDI goals with the
value-based reasoning annotation𝒱ℬℛ(𝐺) (where 𝐺 is a goal), a construct which
indicates that the agent should consider values and not the default deliberation
function when deciding about which means to select to fulfil 𝐺. 𝒱ℬℛ(𝐺) is
implemented as a set of annotations on the plans responsible for handling 𝐺.
The agent program is then compiled into a set of constraints that capture the
ethical implications of selecting some means to fulfil 𝐺. Hence, when the agent
deliberates about which course of action to take in order to achieve 𝐺, it invokes
an external constraint solver (instead of the default BDI deliberation function)
that selects the plan that is most aligned with its values.

Staying with the BDI model of practical reasoning, Szabo et al. (2020) expand

26



the normative BDI model of Criado et al. (2010) with an explicit representation
of values, based again on the STBHV. Originally, Criado et al. (2010) model
norms as a new component of BDI agents, composed of a deontic operator and a
literal representing the condition that an agent is obliged or prohibited to bring
about. These norms are introduced into the agent reasoning cycle by generating
desires to comply with them, i.e. to reach (avoid) states where the condition that
the norm prescribes (prohibits) is fulfilled. Such desires are generated provided
that the agent’s willingness to comply with the norm in question surpasses a
certain threshold.

In the extension by Szabo et al. (2020), values label ethically relevant proposi-
tional formulas with information about whether they promote or demote some
value, and to which degree. All this information is aggregated into a quantity
that expresses the degree to which states of the world satisfying formula 𝛾 are
aligned with respect to the agent’s overall value system. This aggregated metric
is then incorporated into the BDI reasoning cycle through the computation of
the willingness to comply with norms and the generation of intentions, through
an assessment of the degree of value alignment in the intention’s post-condition.

The practical reasoning approaches reviewed here operate on a lot of sym-
bolic hand-coded information about values and their relationship to states,
transitions, norms, plans and actions. On the upside, they benefit from easy in-
tegration with explainability techniques. Notably, Winikoff et al. (2021) extend
the BDI model with a folk-psychological module that provides explanations for
the behaviour of an agent based on its beliefs, desires and “valuings”. These
valuings are somehow a reflection of the agent’s value system, and they are
implemented (following the lead of Cranefield et al., 2017) as annotations on
goals. These annotations capture the assessment that the agent makes of the
post-conditions associated to the achievement of that goal. In summary, these
valuings establish context-dependent preferences over the options available to
achieve an initial goal, depending on which sub-goals the agent decides to
pursue.

2.3 Reasoning About Others

In the publications reviewed so far, the modelling of values is (i) agnostic with
respect to which specific values are being considered, and (ii) static with respect
to the set of values that the agent is reasoning about. In other words, the agent
has a fixed set of values it uses to reason, and that set is immutable during

27



the agent’s lifetime. However, this thesis is specifically interested in the social
dimension of values. As we argued in Chapter 1, autonomous software agents
need to be able to interact with others in a manner that respects their values
and, down the line, reach agreements. In other words, they need a Theory of
Mind (ToM).

Within AI, implementations of ToM are often included under the umbrella of
modelling others. Work on modelling others borrows the techniques and methods
from other AI disciplines and applies them to building a representation of other
agents (Albrecht & Stone, 2018). As a consequence, work ToM for autonomous
software agents has so far been developed in a somewhat fragmented fashion,
with every camp within the field implementing it according to their own tech-
niques and methods. Furthermore, more often than not these techniques are
solely applied to purely competitive domains, where they are referred to as
opponent modelling (Baarslag et al., 2015; Nashed & Zilberstein, 2022).

In machine learning, prominent work by Rabinowitz et al. (2018) models
ToM as a meta-learning process, where an architecture of several Deep Neural
Network (DNN) components is trained on past trajectories of a variety of agents,
including random, Reinforcement Learning (RL) and goal-directed ones. The
target of the model is to predict an agent’s action at the next time-step given
their prior movements. The component of this architecture responsible for ToM
capabilities is the mental net, which parses trajectory observations into a generic
mental state embedding. Yet, it is not understood what kind of mental states
(i.e. beliefs or goals) these embeddings represent.

Wang et al. (2022) also use an architecture based on DNN models to reach
consensus in multiagent cooperative settings. Their ToM net explicitly estimates
the goal that others are currently pursuing based on local observations. Another
machine learning approach by Jara-Ettinger (2019) proposes to formalise the
acquisition of a ToM as an Inverse Reinforcement Learning (IRL) problem. Yet,
these learning approaches have drawn some criticism for their inability to mimic
the actual operation of the human mind, as the direct mapping from past to
future behaviour bypasses the modelling of relevant mental attitudes, such as
desires and emotions (Cuzzolin et al., 2020).

ToM approaches have also been investigated from a game theoretical per-
spective, in particular the effect of the ToM level used. To understand what
the “level of ToM” is, we need to grasp the order of ToM statements. Formally,
ToM statements can be expressed using the language of epistemic logic, which
studies the logical properties of knowledge, belief, and related concepts (van

28



der Hoek, 1993). For example, the belief of agent 𝑖 is expressed using modal
operator 𝐵𝑖 . Then, formula 𝐵𝑖𝜙 is read as “agent 𝑖 believes 𝜙”.

ToM statements can be expressed by nesting beliefs about the state of the
world. Therefore, statement 𝐵𝑖𝐵 𝑗𝜙 is read as “𝑖 believes that 𝑗 believes 𝜙”. This
corresponds to a first-order ToM statement from the perspective of 𝑖. Subsequent
nesting results in statements of higher order. For example, 𝐵𝑖𝐵 𝑗𝐵𝑘𝜙 is read as
“𝑖 believes that 𝑗 believes that 𝑘 believes 𝜙”, a second-order ToM statement. This
recursion can be extended down to an arbitrary level. In general, an 𝑛-th order
ToM statement is expressed as 𝐵𝑖𝐵 𝑗1 . . . 𝐵 𝑗𝑛−1𝐵 𝑗𝑛𝜙 and is read as “𝑖 believes that
𝑗1 believes . . . that 𝑗𝑛−1 believes that 𝑗𝑛 believes 𝜙”.

In de Weerd et al. (2012) and de Weerd and Verheĳ (2011), the authors prove
that while first-order and second-order ToM present a clear advantage with
respect to opponents with ToM abilities of lower order (or no ToM capacity at
all), the benefits of using higher-order ToM are outweighed by the complexity
it entails. de Weerd et al. (2022) also prove that high-order ToM is beneficial
in highly dynamic negotiation domains, and that the magnitude of the benefit
increases with the uncertainty of the scenario.

Additionally, symbolic approaches to ToM have for the most part built upon
the BDI model of agency. This is a natural choice since ToM aims to estimate
mental states, like beliefs, desires and intentions, that are explicitly modelled
in BDI languages. For example, A. Panisson et al. (2018) implement ToM for
deceptive purposes by studying the effects that announcements have on the
beliefs of others and their ripple-down effects on their desires and actions in
response. They focus on the requesting and sharing of (possibly untruthful)
information, and provide the operational semantics on the agent’s transition
system (which includes the models of others that the agent maintains) for these
communicative actions (A. R. Panisson et al., 2019). Their approach is very
much in line with Theory-Theory of Mind (TT). They use dedicated predicates
to infer mental states, such as desires, given prior beliefs. These inferences are
made from within the agent program, a feature which we consider qualifies as
adherence to the theoretical version of ToM.

Sarkadi et al. (2019) extend the previous model by incorporating elements
of trust and the modelling of several agent profiles based on their attitudes.
In this extension, they distinguish between Theory- and Simulation-Theory of
Mind (ST) components within their model. They argue that the TT component
handles the assignment of prior beliefs to other agents, while the ST component
handles belief additions based on agent announcements and the inferences

29



derived from them.
Finally, Harbers et al. (2009) establish a different criterion for classifying

ToM approaches into TT and ST. They develop two separate ToM implementa-
tions, one identified with TT and the other with ST, for applications in virtual
training systems. Both architectures maintain knowledge bases for the beliefs,
logical rules and goals of other agents. The difference between the ST and TT
approaches is found in the reasoner that is applied to the knowledge bases as-
signed to other agents. The TT architecture applies rules about how other agents
combine their beliefs, goals and plans, which are explicitly included as part of
the agent’s own knowledge. In contrast, the ST architecture uses the agent’s
native reasoner, making it more lightweight. Besides this, other advantages are
found for the ST architecture with respect to the TT one, namely code reusability
and flexibility to deal with non-BDI agents.

2.4 Takeaways

As is natural with any emergent research field, there are several gaps in the
current literature on values in AAMAS. First, concerning norm synthesis ap-
proaches reviewed in Section 2.1, the view adopted on the norm-value rela-
tionship is predominantly deontological (Serramià et al., 2020; Serramià et al.,
2018). The set of values a norm promotes is provided as an input to the problem
through the value support function, with no consideration of the states brought
about by the norms. This is at odds with the consequentialist position derived
form the STBHV. In other words, value-guided norm synthesis approaches do
not really consider the meaning that a value acquires in a particular context. As
a result, values end up being used as inert labels on which it is not possible to
reason.

Meanwhile, some approaches to value-based practical reasoning do adopt
a more consequentialist position of the norm-value relationship. e.g. Szabo
et al. (2020) use values to label propositional formulas that either apply or not to
the state of the system. However, the reviewed individual approaches conceive
an autonomous agent in isolation, reasoning exclusively about its own actions,
plans or conventions to adhere to. They do not conceive the possibility that
autonomous agents might need to reason with respect to a set of values that
does not reflect to their own position, but that of their peers. In all the reviewed
literature, software agents are provided with the set of values they should
consider at initialization time, and this set remains unchanged throughout the

30



agent’s lifetime.
In contrast, it is the position of this thesis that, in order to incorporate the

social dimension of values into autonomous agents, it is necessary to endow
them with the necessary machinery to switch their value position at run-time,
to put themselves in the shoes of other agents and try to understand the world in
terms of their values. Hence, it is necessary to introduce an artificial Theory of
Mind that allows agents to relate to one another by reasoning from each other’s
perspectives.

However, while we consider ToM to be a necessity for socially and value-
oriented autonomous agents, a functioning ToM does not automatically guaran-
tee that agents will abandon their individual pursues in favour of a compromise
with their larger group or that they will act in a more pro-social manner. This
is made abundantly clear by the many applications of techniques for modelling
others in adversarial domains, while applications for cooperative teamwork are
still a minority. Also, it is important to note that none of the existing approaches
for estimating other agents’ beliefs in the BDI architecture (which we favour in
this thesis since beliefs are explicitly represented using first-order logic and are
thus interpretable) specifically consider the estimation of value of others, even
though values are, in essence, a particular type of belief.

Considering the discussion above, we believe there is an opportunity to
develop research that addresses some of these deficiencies. In particular, by
linking norms and values through the consequences brought about by norms
and evaluated with respect to values, and by enabling agents to dynamically
switch their value position using ToM, the capabilities of current approaches
to values in autonomous agents can be significantly enhanced. In Part II we
include three publications, first presented in Section 1.4, that make gradual
contributions in this direction, and which culminate in Chapter 3 of Part III of
this thesis.

31





Part II

Contributions





Contribution 1

Synthesis and Properties of Optimally
Value-Aligned Normative Systems

Journal of Artificial Intelligence Research

Full citation:
Montes, N., & Sierra, C. (2022a). Synthesis and properties of optimally value-
aligned normative systems. Journal of Artificial Intelligence Research, 74, 1739–
1774. https://doi.org/10.1613/jair.1.13487

35

https://doi.org/10.1613/jair.1.13487




Journal of Artificial Intelligence Research 74 (2022) 1739-1774 Submitted 11/2021; published 07/2022

Synthesis and Properties of Optimally Value-Aligned
Normative Systems

Nieves Montes nmontes@iiia.csic.es

Carles Sierra sierra@iiia.csic.es

Artificial Intelligence Research Institute (IIIA-CSIC)

Campus UAB Carrer de Can Planas, Zona 2

08193 Bellaterra, Barcelona

Abstract

The value alignment problem is concerned with the design of systems that provably
abide by our human values. One approach to this challenge is through the leverage of
prescriptive norms that, if carefully designed, are able to steer a multiagent system away
from harmful outcomes and towards more beneficial ones. In this work, we first present
a general methodology for the automated synthesis of value aligned normative systems,
based on a consequentialist view of values. In the second part, we provide analytical tools
to examine such value aligned normative systems, namely the Shapley value of individual
norms and the compatibility of several values under a fixed set of norms. We illustrate all
of our contributions with a running example of a society of agents where taxes are collected
and redistributed according to a set of parametrised norms.

1. Introduction

In recent years, the term value alignment has been used to refer to the challenge of building
artificial intelligence (AI) systems that comply, uphold, and respect the moral values that
our societies care most about. This concern is rooted in the increasing power, autonomy
and ubiquity of these technologies. The complexity of some of the algorithms that power
AI systems, coupled with the sensitivity of the areas where they are deployed, entail the
risk that us, the humans, might lose control over the systems whose primary purpose is
precisely to serve us.

Within the multiagent systems (MAS) community, the value alignment problem trans-
lates into ensuring that the interactions at the heart of a society of agents are ethically
appropriate. At least a subset of these agents are assumed to be software-enabled. Some
approaches to value alignment in MAS introduce values as central elements in the reasoning
schemes of agents’ architectures (Atkinson & Bench-Capon, 2016). However, these meth-
ods assume complete access to the inner workings of the agents, a perk that does not apply
in situations where the host of the interaction platform is not in charge of developing the
agents.

To overcome this limitation, we turn to a widely studied element within the MAS liter-
ature: prescriptive norms (Savarimuthu & Cranefield, 2011). Prescriptive norms consist of
regulations, constraints and directives on the behaviour of agents, possibly accompanied by
monitoring and sanctioning provisions for detected violations. Usually, prescriptive norms
are imposed by a system designer or central authority. When prescriptive norms are ap-

©2022 AI Access Foundation. All rights reserved.



Montes & Sierra

plied to software-enabled agents, they are often referred to as technical norms (van de Poel,
2020).

In this work, we claim that prescriptive norms have the potential to act as the main
value-promoting mechanism within a MAS and that they should be leveraged to ensure that
the moral values we deem most relevant are upheld by the system. If suitably designed,
prescriptive norms are able to steer a MAS towards more ethically compliant outcomes,
and are therefore a splendid avenue to engineer moral values into a society of agents. As
we elaborate further in the text, prescriptive norms promote or demote end-states, which
must then be assessed in terms of their degree of compliance with respect to some value.
For this reason, we conceive value alignment to be a property of the implemented norms
with respect to the values we intend to embed.

Even under the assumption that norms have the potential and should be aligned with
respect to values, the challenge remains in finding which norms are actually the most aligned.
The work presented in this paper tackles this problem by defining and deploying a novel and
general methodology to automatically synthesise normative systems based on their degree
of value promotion. Furthermore, we also provide an analytical toolbox to help the MAS
designer to extract insights about the optimal normative systems that are returned by the
value-guided search. Hence, the contributions of this paper are two-fold:

1. First, we present a systematic methodology to synthesise normative systems based
on maximal value alignment. Formally, we seek to solve the following optimisation
problem:

N∗ = arg max
N∈N

AlgnN,V (1)

where N is the space of possible normative systems, V is the set of values of interest
and AlgnN,V is the degree of alignment of normative system N (an element in N )
with respect to the values in V .

Our approach is differentiated from previous ones in that we take an explicitly conse-
quentialist view of the relationship between norms and values. We present and discuss
the underlying assumptions of our methodology, to help the reader understand the
engineering choices that are made later on. This conceptual commitment allows us
to quantify the value alignment of a set of norms with respect to a value (or set of
values) through state features that are designated as proxies for the value in question.

Despite unequivocally adopting a consequentialist position, the methodology we put
forward is general enough to be applied to a wide range of MAS, from very simple ones
with blindly obedient agents, to others where participants are endowed with complex
decision-making models. Our automated synthesis can be applied to either situation,
as long as the norms governing the transitions between consecutive states are linked
to a set of optimisable parameters. Moreover, no restrictions are placed on the values
that such parameters may take: they can be either continuous or categorical, bounded
within a domain or not.

The main steps of our synthesis approach are:

1740



Optimally Aligned Normative Systems

(a) Define the set of variables that completely specify the state of the MAS. These
variables define the state space S that the system will visit as it transitions due
to the actions taken by its populating agents and the norms in place.

(b) Define the norms ni in the normative system N that regulate the transitions
between consecutive states of the MAS. Every norm targets a particular aspect
of the transition. All norms are parametric on a set of values, whose domains
and constraints have to be specified. This parametrisation provides the search
space N over which the maximising search in eq. (1) is performed.

(c) Define the set of values of interest V and the functions that capture their meaning
in the context of the MAS. This step provides the alignment target function for
the search in eq. (1).

(d) Choose a suitable optimisation algorithm and perform one maximising search
for every value of interest. Use the search space defined in step (b) and the
alignment established in step (c) as the objective function for the search.

2. In the second part of the paper, we provide analytical tools to examine the resulting
optimal normative systems. These tools are intended to shine light on how are the
optimal normative systems previously obtained operating in order to achieve their
(hopefully) large degree of alignment, and whether they represent a good compromise
between several competing values. Such insights should help the system designer re-
flect on the choices made prior to running the normative system search, and adapt
accordingly if any of the information provided by these tools is deemed as unaccept-
able.

The analytical toolbox we contribute to enrich the synthesis methodology is made up
of two complementary metrics:

(a) The concept of Shapley value of an individual norm within a given normative
system is made possible by adopting the notion that any optimal normative
system is a coalition of individual norms working together to promote some value.
Our notion of Shapley value is imported straight from the cooperative game
theory literature. It examines the interactions among the individual norms, given
an alignment function with respect to some value. It helps establish whether an
individual norm is critical or unimportant when it comes to promoting a specific
value.

(b) The notion of value compatibility quantifies how successful or neglectful of other
values are norms that have been optimised for different goals. In other words,
how much of a compromise is a normative system able to achieve between com-
peting interests. This metric is complementary to the Shapley value. Just as
the Shapley values examine the interaction among individual norms for a fixed
value, compatibility looks at interactions between values under a fixed set of
norms. Additionally, we also present and discuss the compatibility maximising
normative system, which is intended to achieve the largest degree of harmony
among values.

This paper is organised as follows. In Section 2 we review other works from the literature
related to ours. Then, in Section 3 we discuss the philosophical assumptions that our value

1741



Montes & Sierra

alignment formal model is built upon. The formal model itself is presented in Section 4.
Next, the optimisation that searches the most value-aligned normative systems is addressed
in Section 5. The second part of this paper is comprised of Sections 6 and 7, which examine
the Shapley values of individual norms and the compatibility among values, respectively.
Finally, the main take-away points, conclusions and future work are presented in Section 8.
All of our contributions are illustrated with a running example of a toy social model.

2. Related Work

In the AI literature, the most straightforward approach to incorporate values into au-
tonomous agents comes from the practical reasoning community (Atkinson & Bench-Capon,
2016). There, values are explicitly incorporated into the reasoning schemes of agents for
action and plan selection (van der Weide et al., 2010; Visser et al., 2015; Teze et al., 2019)
and decisions on rule compliance (Szabo et al., 2020; Bench-Capon & Modgil, 2017). The
upside of these strategies for value embedding is their easy explainability and transparency.
On the downside, they require a lot of explicitly encoded information, as well as complete
access to the inner architecture of the agents. This perk might not be available in some
cases, particularly when the host of the platform where agents interact is not in charge for
the development of the participating agents.

To address this shortcoming, an alternative approach focuses on the design and imple-
mentation of adequate norms for value promotion. Norms in multiagent systems are viewed
from one of two perspectives: conventions and prescriptions (Conte & Castelfranchi, 1999;
Grossi et al., 2012). Conventions are patterns of behaviour that spread through a population
and emerge as the dominant agent strategy (Morris-Martin et al., 2019), often following an
evolutionary process (Sandholm, 2009). Hence, conventions are part of the agents’ internal
constructs that emerge as the result of an adaptation process, without a central authority
involved in the adoption of the convention.

In contrast, prescriptive norms are obligations, prohibitions and permissions that provide
guidance on the behaviour of agents. This guidance may be either regimented, where
forbidden behaviours are rendered unavailable when the prescription is implemented; or
non-regimented, where agents have the ability to disobey a rule, though they might be
encouraged to abide by it through some monitoring and sanctioning mechanism (Morris-
Martin et al., 2019). Although work on prescriptive norms usually sticks to one of two
models, regimented norms can be viewed as an extreme case of non-regimented norms. For
example, the representation used by Fagundes et al. (2016) includes a detection probability
for every norm. A norm can be made regimented by imposing perfect enforcement, i.e.
probability of detection equal to 1. Overwhelmingly, prescriptive norms are synthesised
and imposed on the agents forming a MAS by a central authority or mechanism (see e.g.
all works cited in the following paragraph), according to some notion of optimality.

Originally, the purpose of prescriptive norms (also referred to as social laws) was to
ensure conflict-free, coordinated operation of a team of robots (Shoham & Tennenholtz,
1995; Onn & Tennenholtz, 1997). Subsequent more contemporary solutions to achieving
coordination through rules include online design that modifies and refines the norms in place
at run-time in an open MAS (Morales et al., 2013), and guarantees on the evolutionary
stability of the resulting normative system (Morales et al., 2018).

1742



Optimally Aligned Normative Systems

Despite their popularity as coordination mechanisms, the leverage of prescriptive norms
as an avenue to embed moral values into a MAS is only recently being explored. Most
notably, work by Serramià et al. has tackled this problem both from a qualitative (Serramià
et al., 2020) and a quantitative utility-based (Serramià et al., 2018) perspective. Theirs is
the work most similar to the one we present here. A key difference should be noted between
their approach and ours. Serramià et al. implicitly assume a deontological view of the
norm-value relationship. The values supported by every candidate norm are encoded in a
value support function, without further justification. This function is then fed as an input
to the problem-solving algorithm, which is responsible for finding the most value-aligned set
of norms under some consistency requirements. This deontological view is also implicitly
adopted by Ajmeri et al. (2020). In their work, personal assistant agents reason about the
norms in place, and the values and goals of the user (including preferences over values) to
select ethically appropriate actions.

In contrast to their approach, in this work we take an explicitly consequentialist view of
the norm-value relationship. We claim that the support that a norm has for a value has to
be empirically assessed by the outcomes that are brought about by it. Hence, computation
of value alignment is based on features of the MAS state that serve as proxies for the value
under examination.

In this paper, we extend our previous work on the synthesis of value-aligned normative
systems (Montes & Sierra, 2021) on several fronts. First, we fully develop the philosophical
foundations on values and norms (Section 3) that underlie many of the technical decisions
made later on. Second, we exemplify value alignment with respect to an aggregation of
two values, in addition to alignment with respect to both values separately (Section 4.2).
Third, we expand the discussion on the Shapley value of individual norms (Section 6) by
examining its properties from the cooperative game theory literature, and assessing which
of these are relevant in our value alignment context. Finally, we also expand the discussion
on value compatibility (Section 7) by introducing the Compatibility Maximising Normative
System (CMNS) and running an optimisation search to find it in the context of our running
example.

3. Underlying Assumptions

Before jumping to the technical part of the paper, we present the philosophical foundations
that underlie our formal model of value alignment. With this exercise, we intend to build
robust foundations for our computational model and provide sound justifications for the
choices we will make during its formulation (Section 4). Our formalisation of values is
built on two main points. The first relates to the concept of values as formal objects and
their function within a society of agents. The second concerns the concept of norms, their
function and their relationship to values.

3.1 The Nature of Values

First, we present our assumptions on values. Values are very abstract concepts that have
been the object of intense study in philosophy for centuries (Macintyre, 1998). Currently,
one of the most widely accepted theories of moral values in psychology and sociology is
Schwartz’s theory of basic human values (Schwartz, 1992, 2012). The main success of this

1743



Montes & Sierra

Figure 1: The three components of Schwartz’s theory of basic human values and their re-
lationships.

framework has been the identification of a spectrum of moral values that is universally
reproduced across cultures. Nevertheless, the conceptualisation of values that it works with
is also quite standard across the social sciences and humanities, and explicitly states the
characteristics of values that are often implicit in other theories of morality (Rokeach, 1972;
Feather, 1995; Spates, 1983). Schwartz’s theory establishes the main features of values in
relation to the goals that instantiate their meaning in a particular context and the ultimate
purpose that they serve. The three concepts are deeply interrelated and their connections
are displayed in schematic form in Figure 1.

The features of values that Schwartz’s theory outlines and that are relevant to our for-
malisation are: values (1) are concepts or beliefs; (2) transcend specific situations; (3) refer
to desirable goals, end states or behaviours; and (4) serve as evaluation criteria. Features
(1) and (2) establish the nature of values and their relationship to physical (or virtual) real-
ity. Values are general, abstract guiding principles (note the cloud-shaped box in Figure 1)
that are not linked to any particular social context. Values are omnipresent constructs, that
may or may not be relevant to the current context. When a value is relevant to a specific
situation, it instantiates an explicit goal (bottom left in Figure 1) whose attainment helps
further that value. For example, value “equality” in a tax policy context can refer to the
effective redistribution of wealth, while in a domestic context it might relate to the even
split of house chores between partners. Although the value itself remains unchanged and it
is relevant to both this scenarios, its “content” is tailored to the scenario it applies to. To
express the relationship between an abstract value and the meaning it takes in a particular
context, we say that an explicit goal g grounds the semantics of value v in context C.

Features (3) and (4) state the usage of values. Essentially, values serve as moral mea-
suring standards to make judgments about the outcome of a plan, the current state of
the world and/or the actions that lead to it. All of these judgments evaluate adherence
to a moral stance: whether they respect, uphold and promote the value of interest. Of
course, the specific criteria that evaluates whether an action or a situation complies with
a value depends on the context where the judgment is made. Since values are instantiated
as situation-dependent goals, in order to assess whether the current state of the world or a
particular strategy adhere to a value, we should examine how close they are or lead to the
goal that is grounding the meaning of the value in that context.

1744



Optimally Aligned Normative Systems

In summary, values are abstract concepts that become operational in the form of explicit
goals in a particular context to enable judgments on the world around us. However, beyond
values and their grounding goals, there is another fundamental aspect of values left: their
purpose. According to Schwartz’s theory, values are socially desirable constructs to help us
cope with three requirements of human existence: the biological needs of individuals, req-
uisites of coordinated social interactions, and survival and welfare needs of groups. Luckily,
many of us do not have to think about sheer survival when making everyday decisions.
Rather, we justify our actions in terms of our moral values, even if by acting ethically we
are, down the line, engaging in beneficial behaviour from an evolutionary perspective.

We argue that, of the three concepts discussed thus far, the goals that capture the
meaning of values are the best avenue to derive a mathematical formalisation to be em-
bedded into an artificial MAS, for three reasons. First, although values are very abstract,
their grounding goals are not, and their fulfilment can be empirically evaluated. Second,
we choose goals over purpose since, for technically enabled agents, concerns about evolu-
tionary survival do not really apply. Third, by modelling the goals that ground values, we
grant complete control on the meaning of values over to the system designer. Agents do not
learn how to gradually de-abstract values depending on the context they are in. Rather,
the designer is responsible for deciding how does a particular value manifest in the context
where the MAS will be operating.

3.2 The Role of Norms

Now that we have established the characteristics of values and how we intend to represent
them, we turn to the other main protagonist of this work: norms. As introduced early
on, we approach norms from the prescriptive perspective: rules and regulations handed out
by a central authority or system designer, that dictate or provide guidance the behaviour
of agents, and that affect the outcomes they are able to achieve. This view of norms as
prescriptions is differentiated to the view of norms as conventions, where they refer to
socially acceptable and expected behaviour emanating from the agents themselves. From
here on, whenever we use the word “norms”, we are talking about prescriptions.

In this work, we accept the possibility of norms to be regimented, i.e. perfectly enforce-
able. Although regimented norms are not very representative of real-life interactions, in
virtual environments they are often technically possible to achieve. In fact, in our running
example we will assume norm regimentation, so that we do not need to add extra degrees
of freedom related to the agents’ decision-making models.

Norms play a central role in our value alignment model because, in our view, they have
the potential to ensure ethically compliant outcomes in a society of agents. By modifying
incentives and providing opportunities, norms have the ability to steer a community of
agents towards particular outcomes. When norms are implemented, the incentive structure
and constraints they impose on the agents causes some states to be promoted over others,
by making them obligatory or more desirable (e.g. by assigning a penalty to alternative
states). Hence, it is expected that some states will be more likely and easily achievable
than others. Consequently, the resulting outcome (i.e. the last state visited by the MAS) is
strongly dependent on the norms currently implemented. If norms are carefully designed,
they facilitate the achievement of outcomes where the goals that ground the meaning of

1745



Montes & Sierra

Figure 2: The relationship between norms and values goes through the grounding goals and
the achieved outcomes.

values are fulfilled to a greater extent than if no regulations were imposed. When a set
of norms are successful in this endeavour, we say that they are aligned with respect to the
values they sought to promote. Hence, we conceive alignment as being a property of norms
with respect to values.

Figure 2 illustrates the relationship between values and norms as a diagram. At a
shallow level, the two form a feedback loop: norms promote values, and values legitimise
the enforcement of norms. At a deeper level, however, the relationship between norms and
values is held together by the outcomes that norms steer the system towards and that are
favourably evaluated by values. Note that, while norms are context-dependent (they are
crafted with a particular domain, e.g. online trade, in mind), values are not. Therefore,
values should first be de-abstracted into their grounding goals. Then, these goals can be
employed as the standards for which the eventual outcomes (and consequently the norms
that lead to them) are held against.

4. Formal Model of Value Alignment

Our computational model to quantify the alignment of a set of norms (or normative system)
with respect to some value is inspired by Sierra et al. (2019). In the present framework, a
MAS consists of a set of agents G that interact with one another and their environment.
The world is modelled as a labelled transition system (Gorrieri, 2017):

Definition 1. The world is a tuple (S,A, T ), where S is a set of states, A is a set of actions
and T ⊆ S ×A× S is a set of transitions between states labelled by an action.

At any point in time, the MAS is in state s ∈ S. This is understood as a global state,
encoding all the information there is to know about the system. Among S, the initial state
is denoted by s0. Changes in the global state of the system are brought about by the
actions A that agents take. Just as s is understood to be the global state of the system,
action a ∈ A refers to the joint action profile that is executed by the whole of the agents.
Executing joint action a in state s moves the system to a new state s′. We denote transition
(s, a, s′) with the notation s

a−→ s′.

1746



Optimally Aligned Normative Systems

To simulate long-term evolution of the system, single transitions are not enough. Rather,
several transitions are concatenated forming a path:

Definition 2. A path p = s0
a1−→ s1

a2−→ ...
an−→ sn over the world (S,A, T ) is a sequence of

transitions in T between states in S, starting at initial state s0.

We denote the set of paths over the world (S,A, T ) of length n (visiting n+ 1 states) as
Pn. The set of all paths (of any length) over the world is denoted as P. Given a path p ∈ P,
the function out : P → S returns the last state (or the outcome) of path p, out(p) = sn.

Running Example

We illustrate all of our contributions with a running example of a toy social model, remi-
niscent of the public goods game. In this society, a set of technologically-enabled agents are
endowed with some initial wealth. To facilitate the exchange of resources, a common fund
is set up. Agents contribute to the common fund with a tax amount that is dependent on
their economic status. However, a subset of evader agents try to skip the payment. They
might get caught and obliged to pay the original taxes plus an additional fine. Finally,
the common fund is invested, grown by a fix amount and redistributed back to the agents,
regardless of their evading tendencies, in a way that is also dependent on the economic
status of the individuals.

In our running example, the MAS is composed of a set of 200 agents G = {1, 2, ..., 200}.
Of these 200, we set 10 to be “evader” agents, which will try to skip payment when the tax
collection and redistribution scheme is imposed. This composition of the society (10 out of
200 evader agents) is an arbitrary choice made for exemplification purposes.

All agents have some wealth, which is initialised randomly according to a uniform dis-
tribution between 0 and 100. At any given time-step, every agent is characterised by its
current wealth xi as well as an integer that denotes the wealth segment it belongs to. To
find the wealth segments, all agents are ranked from highest to lowest wealth and then split
into 5 equally populated groups. The agents that belong to the poorest group are assigned
to segment #1, while those in the wealthiest group are assigned segment #5. Therefore, an
agent at any state is characterised by the tuple (xi, seg i) ∈ (R+ × {1, 2, 3, 4, 5}), where xi
is agent i’s wealth (which is always non-negative) and seg i is the wealth segment or group

it is assigned to. Consequently, the global state space is S = (R+ × {1, 2, 3, 4, 5})|G|, where
|G| is the number of agents (200). In principle, in the unregulated situation agents can
exchange money as they see fit at any transition.

4.1 Norms

In an unregulated world, actions may lead to undesired outcomes. As we have already
argued, to avoid this we introduce normative systems as a way to steer the system away
from harmful results and in the direction of valued outcomes.

Normative systems are composed of individual norms. An individual norm ni is a
regulation that targets a specific aspect of a state transition. The distinction between
different aspects of a state transition will be clarified when we go through the norms in the
running example. For the time being, we simply consider a norm to be a regulation that
constraints how transitions T between states in S take place. The complete transition is

1747



Montes & Sierra

determined by the norms plus the decision-making models of the agents, who choose among
the actions available to them.

In this paper, we work with parametric norms. Every ni is linked to a set of normative
parameters Pi, alongside with their domains and any possible constraints. When we talk
about norms, we refer to the uninstantiated parameters, with no quantities assigned. As
an instance closely related to our running example, consider income taxes, which partially
determine your wealth increment from one month to the next. In many countries, income
tax rates are regulated by a norm that taxes in an incremental way with respect to salary.
To instantiate it in a concrete case, numerical parameters have to be set to, for example,
decide how the income range is divided into several groups and which rate is applied to
every group.

A normative system N is a set of individual norms {ni} with all of their parameters
instantiated to some quantity, respecting any domain-dependent constraints. Every norm in
N is responsible for regulating an aspect of a transition between two states. Together, the
application of the norms in N to the world (S,A, T ) restricts the original set of transitions
to a subset of those, T N ⊆ T . Consequently, the set of possible paths P is also restricted to

a subset of the original, PN ⊆ P. We use notation s
N−→ s′ to denote the transition between

two states as regulated by normative system N .

Note that individual norms by themselves do not determine transitions. Rather, a
coalition of (in general) several norms is necessary. Also note that the individual norms
that make up a normative system are fully instantiated, as all the parameters they depend
on are assigned a quantity. Any normative system N , then, belongs to the family N of all
normative systems composed of the same set of norms but whose parameters take different
quantities. The dimensionality of N depends on the number of parameters needed to specify
all norms of a normative system. Essentially, the family of normative systems N defines a
search space consisting of the domains of the normative parameters of its individual norms.

Our methodology does not indicate how should the various aspects of state transitions
be itemised into several norms. This is an engineering choice that must be made by the
system designer. There is, nonetheless, a guideline that we believe should be respected when
formulating the normative system. If there are constraints involving several parameters,
these parameters should all be related to the same individual norm. An example of this
restriction being respected can be found next, in norm n2 of our running example.

Running Example

In our social model, we introduce a set of norms (1) to regulate the collection and redis-
tribution of taxes and (2) to randomly detect evader agents and impose a fine on top of
their taxes. Thus, within this model, transitions happen under the regulation of normative
system N = {n1, n2, n3, n4}, where:

n1 is the norm specifying the tax rate for every wealth segment. It is parametric on the
set P1 = {collectj}j=1,...,5, where collectj corresponds to the fraction of their current
wealth that every member of wealth segment j must contribute to the common fund
at every transition. All collectj components have their values bounded in the range
[0, 1].

1748



Optimally Aligned Normative Systems

n2 is the norm specifying how should the invested funds (which grow by a fixed 5%
rate) be redistributed back to the agents. It is parametric on the set P2 = {
redistributej}j=1,...,5, where redistributej corresponds to the fraction of the invested
common fund that is allocated to the j-th wealth segment. This reimbursement is then
shared equally among all agents in the group. Again, all redistributej components
are bounded in the range [0, 1]. Also, the following linear constraint holds:

5∑

j=1

redistributej = 1 (2)

implying that the totality of the common fund is reimbursed back to the agents.

n3 is the norm that determines the probability of detecting evaders, who at every tran-
sition attempt to skip payment. It is parametric on a single value P3 = {catch},
which corresponds to the probability that any evader agent will be detected and be
made to pay its corresponding taxes plus an additional fine on any state transition.
To emulate the struggle of fiscal authorities, the range of catch is bounded in [0, 1/2],
despite corresponding to a probability that could in principle take values in the range
[0, 1].

n4 is the norm specifying how harsh should the punishment be on the detected evaders.
Similarly to n3, it is parametric on a single value, P4 = {fine}. Whenever an evader
is caught, the amount that it is obliged to contribute to the common fund is equal to
the taxes it was trying to evade in the first place (that are dependent on its wealth
segment), plus the additional fraction given by fine. If the total payment would result
in the agent having to contribute with an amount greater than its total current wealth,
then the payment equals to the totality of the current wealth of the agent. The value
of fine is bounded in the range [0, 1].

This example shows how to define a parametric normative system as a set of norms, each
of them targeting a concrete aspect of the system’s transitions. The family of normative sys-
tems N we work with is the one with components {n1, n2, n3, n4}. Our search space, then,
is determined by the domains of the normative parameters PN = {collectj , redistributej ,
catch,fine}j=1,...,5 plus the constraint in eq. (2). It should be noted that, despite bearing a
remote resemblance with real-life tax codes, the example model is not intended to be a reli-
able reflection of actual tax policy. It is just a simple example to illustrate our methodology
in action.

Second, in our example we do not consider any reasoning schemes by the agents. Evader
agents always attempt to evade their payment, while non-evader agents are always compliant
and pay their part. This choice is not a feature of our general methodology, but of this
example only. We have made this choice in order to reduce the degrees of freedom of our
example and focus on the main topic of this work, the synthesis of value-aligned norms.

4.2 Value Alignment

So far, we have modelled a society as a set of agents that transition between states by
executing actions. Also, we have introduced norms as restrictions on the feasible transitions.

1749



Montes & Sierra

Now, we want to quantify how effective are those norms at promoting the values we want to
embed in the system, i.e. how well aligned they are with respect to some values of interest.

In the underlying assumptions of our model (Section 3), we established that values
are grounded as goals that evaluate, among other objects, the outcomes that the system
achieves. Mathematically, we model these grounding goals as functions over the states of
the system that ought to be maximised. As the state space S is different depending on the
MAS in question, the goal that encapsulates the meaning of any value has to be defined
in terms of features of that state space, and will not, in general, be applicable to other
contexts.

Definition 3. Given a world (S,A, T ) and a set of values V , the semantics of value v ∈ V
in the world is a function fv : S → [−1, 1] that evaluates the states of the world, where
fv(s) ∼ −1, 0,+1 indicates that state s strongly opposes, is neutral or strongly promotes
value v, respectively.

Note that Definition 3 entails, as anticipated in Section 3.1, that values need first to be
de-abstracted into a function that captures its meaning for the particular domain at hand.
Our approach demands this step, and is unable to work with abstract values that have not
been grounded first.

As the semantics of any value are given by a function that grades the states of the world,
the goal capturing the meaning of the value, then, aims at maximising the corresponding
function, by achieving a state that is as compliant towards the value in question as possible.
Often, however, one is not just interested in promoting a single value, but rather would like
to achieve compliance with respect to several values. Given a set of values V = {v1, ..., vm}
and their semantics functions f1, ..., fm, we propose that the semantics of the set of values
in V should be grounded by an aggregation function FV : [−1, 1]m → [−1, 1]. FV takes in
the compliance with respect to every individual value and merges them into a single metric.
To shorten notation, we denote FV (f1(s), ..., fm(s)) as FV (s).

We set the range of all value semantics functions to be bounded in order to facilitate
comparison between values. This will become particularly relevant in Section 7, when we
look into incompatibilities between values. If the range was unbounded, it would be difficult
to establish which value is being actually more aggressively pursued. Therefore, it is highly
convenient to grade states in a continuous bounded domain. The choice of the bounds at
±1 is made out of convenience for the ease of working with unit quantities.

In summary, values evaluate states. How to extend such an assessment to the norms in
place? Figure 2 gives a clear hint. Norms steer the system towards (hopefully) beneficial
outcomes, that are assessed with the semantics function that capture the meaning of a value
in that particular world. Mathematically, we understand an outcome to be the final state of
a path p in the world, i.e. out(p). Since norms restrict the available paths, they also limit
the final states where they can end. And, just like any other state, the outcome of a path
can be graded according to the semantics function of a value.

We put all of these ideas together to define the alignment of a normative system with
respect to a value:

Definition 4. Given a world (S,A, T ), a normative system N that applies to it, and a
set of values V = {v1, ..., vn} with semantics functions f1, ..., fn, the alignment AlgnN,v of

1750



Optimally Aligned Normative Systems

normative system N with respect to value v ∈ V is computed as:

AlgnN,v = E
[
fv
(
out(PN )

)]
(3)

where PN is the random variable of the subset of paths restricted under the normative
system N .

Equation (3) states that, in order to compute the alignment of a set of norms with respect
to some value, the evolution of the system under the norms in N has to be simulated and
let to achieve some outcome. Then, this final state is assessed in terms of the meaning
that value v takes in the world, the semantics function fv. In order to have a statistically
significant quantity, the expected value should be computed over a sufficiently large random
sample of norm-regulated paths using, e.g. Monte Carlo sampling (Lemieux, 2009). For
computational convenience, we also propose to restrict the length of the sampled paths to
a fixed number, and hence compute the expected value over PNn , for some fixed n.

In line with the consequentialist view we present in Section 3, the alignment in eq. (3)
is computed by considering the ultimate consequences (i.e. the end-state) that the imple-
mentation of a set of norms brings about. However, other alternatives are possible. For
example, one may prefer to compute the alignment by considering the value semantics func-
tion applied to all the states that are visited during a path. In that case, one would also
need to specify how to aggregate the evaluation of fv over all the visited states (e.g. average,
minimum...).

Once the alignment for a normative system has been established in absolute terms, we
can compare several norm sets with one another. To do so, we define the relative alignment
between two normative systems:

Definition 5. Given a world (S,A, T ), two normative systems N1 and N2 that apply to
it, and a value v with semantics function fv, the relative alignment between N1 and N2

RAlgnN1/N2,v with respect to value v is computed as:

RAlgnN1/N2,v = AlgnN1,v − AlgnN2,v (4)

Equations (3) and (4) can be readily extended to compute the (relative) alignment with
respect to a set of values V . Instead of fv, the evaluation of path outcomes is made with
an aggregation function FV .

Running Example

In our example tax model, we are interested in the two values V = {equality , fairness}.
We define semantics functions with respect to the two values individually and for their
aggregation as well. These two values will exemplify goals that are not correlated and that
are achieved through different taxing strategies.

First, we ground the meaning of value equality in the context of our model as, of course,
economic equality. To do so, we use the well-known Gini index indicator (Gini, 1912), a
widespread metric to quantify wealth and income inequality (The World Bank, Development
Research Group, 2019). The Gini index is bounded between 0 (for perfect equality) and
1 (for perfect inequality). In our model, we consider that a normative system N is highly

1751



Montes & Sierra

aligned with respect to equality if, by the end of a fixed-length path, the Gini index is as
low as possible:

feq(s) = 1− 2 ·GI(s) (5)

where GI(s) is the Gini index for the wealth distribution at global state s, which is computed
as:

GI(s) =

∑
i,j∈G2

|xi − xj |

2 · |G|2 · x̄ (6)

where xi denotes the wealth of agent i ∈ G and x̄ the average of the distribution. Note that
in eq. (5) we introduce an affine transformation in order to map perfect equality (GI ∼ 0)
to maximum alignment (feq ∼ 1) and perfect inequality (GI ∼ 1) to minimum alignment
(feq ∼ −1).

Second, we ground the semantics of value fairness to mean that evader individuals should
be punished for their evasion. Hence, we consider that fairness is being highly promoted if,
by the end of a fixed-length path, as many evaders as possible belong to the poorest wealth
segment:

ffair (s) = 2 · P̂ [seg i = 1|evaderi]− 1 (7)

where P̂ [seg i = 1|evaderi] denotes the estimated probability that the wealth segment of
an agent i is the lowest one, provided that they are an evader agent. This estimation is
computed as the proportion of evader agents in segment 1 at the final global state. Again,
an affine transformation is introduced to map the probability range [0, 1] to the alignment
range [−1, 1].

Given that, in our virtual society, there are more agents per wealth group at any time-
step (40) than evader agents (10), in the best-case scenario all evaders would end up in
segment #1. Consequently, the upper bound for function (7) is +1. If there were more
evaders than agents per wealth segment, the semantics function would need to be modified
so that the potential maximum alignment does not fall below 1.

Third, we turn to the alignment for the aggregation of both values equality and fair-
ness. Here we take a demanding position. We consider that the set of values V =
{equality , fairness} are being upheld overall when both values are being simultaneously
promoted:

FV (s) =

{
−feq(s) · ffair (s) if feq(s) < 0 and ffair (s) < 0

feq(s) · ffair (s) otherwise
(8)

where feq(s) and ffair (s) correspond to the semantics functions in eqs. (5) and (7) re-
spectively. The piece-wise definition of FV (s) is necessary in order to avoid that negative
alignment with respect to both equality and fairness would result in positive alignment with
respect to their aggregation.

5. Search of Optimal Normative Systems

The purpose of this section is to demonstrate how to find optimally aligned normative
systems with respect to some values, as stated in eq. (1). The search space is determined by
the normative parameters, with their domains and constraints, and the objective function

1752



Optimally Aligned Normative Systems

to optimise corresponds to the alignment with respect to the value of interest, computed by
eq. (3) as the expectation of the value semantics function on a sample of outcome states.

To perform the search, in this paper we use a Genetic Algorithm (GA) as our optimi-
sation method. This choice, however, is not a defining feature of our methodology. Any
optimisation strategy that is suitable, given the domains and constraints of the normative
parameters, is apt to perform the task.

Genetic Algorithms (Luke, 2013) are a family of versatile search methods where a pop-
ulation of candidate solutions is maintained. Given the nature of our problem, a candidate
in this population consists of a fully instantiated normative system, with a numerical quan-
tity assigned to all of its parameters. Candidates are selected for breeding based on their
fitness, i.e. how well aligned is the N instance with respect to the value for which we are
optimising. A crossover operation is performed over highly aligned normative systems, in
hopes of generating two even better instances. When enough offspring are generated, they
substitute the original population. The process is repeated iteratively until some stopping
criteria is met.

We initialise our population of candidate normative systems randomly within the bounds
allowed for every parameter. For the selection with replacement step, we employ the 1 vs.
1 tournament technique (Miller & Goldberg, 1995). Two normative systems are drawn at
random from the population, and the fittest of the two is selected for crossover. This step
is repeated once more, to select the other parent to breed with the winner of the previous
tournament.

Typically, the crossover step is performed with bit-wise operations, since GAs are mostly
employed in optimisation tasks over discrete search spaces. In the case concerning this
work, however, we are dealing with a continuous search space defined by the bounds and
constraints of the normative parameters as described in Section 4.1. To handle this, we
turn to a crossover technique suitable for continuous spaces, intermediate recombination
(Mühlenbein & Schlierkamp-Voosen, 1993). This method is controlled by hyperparameter
p ≥ 0, which determines the explorability of the search. The larger p is, the more exploratory
the search is. Additional tweaks are introduced in order to ensure that the linear constraint
(2) is satisfied.

To enhance the exploitability of the search, we introduce elitism (Baluja & Caruana,
1995) into the algorithm. This technique consists of replacing a small number of the worst
newly generated candidates with the same number of the best aligned candidates from
their parent generation. This popular variant of genetic optimisation guarantees that the
alignment of the most promising normative system will not decrease from one generation
to the next. We denote by k the number of “elite” candidates that are carried over from
one generation to the next.

For the stopping criteria, we take advantage of the fact that the target alignment func-
tions are bounded up to 1, and hence we set the search to stop when a very promising
normative system instance with alignment over some high threshold is found. In order to
avoid excessively long searches, the algorithm is halted after a large number of total itera-
tions, and a moderate number of partial iterations, i.e. rounds of the search for which the
most promising candidate is not updated. An overview of the hyperparameters of our GA
implementation is presented in Table 5 in Appendix A.

1753



Montes & Sierra

Table 1: Optimisation results for the running example with respect to the two values of
interest plus their aggregation: optimal normative parameters defining the nor-
mative system, and their associated optimal alignment.

Value and semantics function Optimal normative parameters Optimal alignment Algn∗N,v

Equality, eq. (5)

collect = [20%, 29%, 26%, 35%, 27%]

0.95
redistribute = [20%, 22%, 19%, 26%, 13%]

catch = 44%
fine = 61%

Fairness, eq. (7)

collect = [1%, 30%, 37%, 72%, 66%]

0.93
redistribute = [2%, 23%, 42%, 24%, 9%]

catch = 45%
fine = 56%

Aggregation, eq. (8)

collect = [2%, 79%, 56%, 65%, 59%]

0.66
redistribute = [2%, 28%, 25%, 35%, 10%]

catch = 31%
fine = 77%

Other than their versatility (for example in adapting the search to a continuous search
space like ours), GAs are particularly attractive for the task at hand because they do not
require the analytical formulae of the gradient of the target function with respect to their
arguments, i.e. the normative parameters in our case. In other search methods, particularly
those based on gradient ascent/descent (Ruder, 2016), disposing of the gradient function
is extremely desirable, if not outright necessary. Yet, given the nature of the problem we
are tackling, obtaining such an expression is an unnecessarily demanding task, as it would
require deriving an expression of the alignment explicitly as a function of the normative
parameters.

Although our running example is relatively small, we resort to inexact methods for
the optimisation task. In fact, we would encourage readers interested in implementing
this methodology for larger, more complex scenarios to stick with meta-heuristics methods
(like the GA implemented here or simulated annealing), precisely because they do not
impose any requirements of the optimisation target concerning continuity or differentiability.
Regardless of the domain on is working with, the optimisation target that this methodology
needs to maximise is the alignment, which is empirically estimated by generating a sample
of simulation runs and evaluating their outcomes. Hence, this optimisation target is not
differentiable. However, note that the computational requirements for the optimisation
search are expected to grow with the size of the social model one is working with. Deriving
this growth in resources for the optimisation search as a function of the size of the MAS is
object for future work.

Running Example: Optimisation Results

In the context of our running example, searching the optimally aligned normative systems
means finding which taxing policies maximise the promotion of values equality and fairness
(and their aggregation), according to the meaning we have imbued in these values in eqs. (5)
and (7).

1754



Optimally Aligned Normative Systems

Figure 3: Wealth distribution and rug plot indicating the location of law-abiding agents
(regular black marks) and evaders (longer red marks), at the initial state (left)
and after a sample path of 10 transitions under the optimal normative system
for equality (right first), for fairness (second), for their aggregation (third) and
for the normative system that preserves the maximum compatibility between the
two values (fourth, see Section 7).

Table 1 presents the optimisation results for the two values we have modelled (equality
and fairness) plus their aggregation. The optimal alignment for equality and fairness sepa-
rately are very satisfactory, with large positive values > 0.9. For the aggregation of values,
the optimal alignment is still fairly good, over 0.6. This decrease in the optimal alignment

1755



Montes & Sierra

for the aggregation with respect to the values individually speaks to how demanding the
aggregation of values in eq. (8) is, as it is necessary that both equality and fairness be
promoted to a large degree simultaneously in order for the alignment with respect to their
aggregation be also high.

We provide an intuitive interpretation of the optimal normative parameters obtained.
For equality, the differences between the components of collect are small across wealth
groups. In practice, this means that wealthier agents contribute to the common fund with
more resources in absolute terms, as their wealth is larger. The even redistribution rates
across groups then ensure that all agents receive a similar portion of the invested funds.
The moderate values for the collect and redistribute parameters in the optimal model with
respect to equality correspond to a compromise between funnelling enough resources from
rich to poor agents in order to shrink the wealth distribution, but not channelling too many
as to swap them, which would be detrimental towards lowering the Gini index.

For fairness, the normative parameters indicate that another mechanism is in place
in order to push evaders towards the poorest group. It is worth noting that neither the
probability of catching evaders nor the fine they are imposed are particularly large, they
are similar or even smaller than those found for the optimal normative system with respect
to equality. Rather, it appears that evaders are pushed towards group #1 by retrieving
a lot of resources from the upper wealth groups, where undetected evaders manage to
sneak, and then redirecting them towards the middle class. This middle segment is vastly
composed of law-abiding citizens, since detected evaders belong to the lower groups and
undetected ones belong to the upper ones. Hence, the norms enforce fairness by identifying
the wealth groups most likely to include cheaters and directing their wealth elsewhere. It
does not collect many taxes from group #1, but the norms keep the cash flow in and out
of that group very limited, so that already poor evaders do not have any avenue to enrich
themselves.

The optimal parameters with respect to the aggregation of the two values are the most
difficult of the three to interpret, since they have to achieve a compromise between effectively
punishing evaders and keeping wealth inequality under control. On one hand, the cash flow
in and out of wealth group #1 is extremely limited (both collect1 and redistribute1 are
∼ 0.02). Since this feature is common to the optimal parameters with respect to fairness,
we suspect that its function is similar to the one it played in the optimal norms for fairness
only: keep evaders in the lowest wealth segment once they have been detected and pushed
there. Additionally, the fine rate to achieve the aggregation of both values is the highest
across all optimal normative systems, close to 80%. This indicates that in order to achieve
fairness without hurting equality too much, the norms promoting the aggregation of the
two values rely more on fines that exclusively target evaders in order to punish them, while
the normative system optimised for fairness alone did not consider the collateral harm it
could inflict on non-evader agents.

On the other hand, the trends of the collect and redistribute parameters for the wealth
segments other than #1 are somewhat parallel between the optimal normative system for
equality alone and the aggregated values. This observation seems to indicate that equality
is mostly promoted through a similar taxing strategy to the case when it was only that
value being considered.

1756



Optimally Aligned Normative Systems

Figure 3 provides a visual representation of the evolution of the society under each of the
three optimal normative systems.1 These plots visually transmit the fact that the different
norm sets lead the system towards different outcomes. Clearly, the final distribution under
the optimal normative system for equality is very narrow, but does allow most evaders to
become the richest individuals in the population. On the contrary, the final wealth distri-
bution under the optimal norms for fairness is much broader but does push evaders towards
the lower positions. The final distribution under the optimal norms for the aggregation of
the two values is somewhat in the middle, with a compromise between a moderately narrow
wealth distribution and pushing evaders towards the lowest positions in the wealth ranking.

6. Shapley Values of Individual Norms

So far, we have been able to synthesise, in an automated fashion, normative systems that are
optimally aligned with respect to values. We have illustrated the methodology in the context
of our running example. This synthesis is always contingent on the understanding we have
of those values in the context where the MAS operates. Now, the second part of this work
begins, where we provide an analytical toolbox to examine the optimal normative systems
we have attained more closely. These tools are aimed at providing insights to the system
designer on the output of the synthesis process. In particular, we quantify the contribution
of every individual norm in an optimal normative system to the overall alignment through
their Shapley values in this section. In Section 7 we examine value compatibility, i.e. how
successful an overall set of norms is at compromising between competing values. These
metrics should help the system designer reflect on the engineering choices made prior to the
automated search and inform any changes to the choice of normative parameters and/or
alignment function, before iterating the synthesis-analysis process until satisfactory results
are obtained, both regarding a high degree of alignment of the norms with respect to the
values of interest and acceptable metrics regarding their Shapley values and compatibility
measurements.

In this section, we look at the interaction between individual norms through their Shap-
ley values. We are interested in quantifying how much is a particular norm contributing
towards the overall alignment of a normative system with respect to some value. For ex-
ample, are the rate of evader detection and the fine imposed relevant when it comes to
achieving equality, or are they not?

In order to quantify the importance of individual norms, we take the view of any nor-
mative system N as a grand coalition of individual norms {ni} working together to achieve
high alignment with respect to some value. In order to allocate the credit to the different
norms for achieving such promotion, we import the notion of Shapley value (Shapley, 1951)
from cooperative game theory, and adapt it to our context:

Definition 6. Given a normative system N = {ni}, a value v for which the semantics
function fv in world (S,A, T ) has been defined, the Shapley value of norm ni with respect

1. Short videos displaying all the intermediate states between the initial and the final global states of a
sample path are available, for the four normative systems in Figure 3, at https://github.com/nmontesg/
aamas21/tree/main/videos and at the online appendix.

1757



Montes & Sierra

to value v is given by:

φi(v) =
∑

N ′⊆N\{ni}

|N ′|! (|N | − |N ′| − 1)!

|N |! ·
(
AlgnN ′∪{ni},v − AlgnN ′,v

)
=

=
∑

N ′⊆N\{ni}

|N ′|! (|N | − |N ′| − 1)!

|N |! · RAlgnN ′∪{ni}/N ′,v
(9)

Definition 6 can be readily extended to a set of values V for which an aggregation
function FV has been defined.

The sum in eq. (9) is taken over all normative systems N ′ from which at least individual
norm ni is not included. Then, the Shapley value for ni is computed through the relative
alignment between the introduction of norm ni (AlgnN ′∪{ni},v) and its absence (AlgnN ′,v).
Not that if other norms besides ni are absent from N ′, they are not to be reintroduced in
N ′ ∪ {ni}.

Two issues need to be addressed to clarify how the computation ought to be performed:
(i) what does it mean for an individual norm ni to be absent from a normative system N ′;
and (ii) which normative systems should the sum in eq. (9) include. We address (i) first to
be able to answer (ii) later.

Consider an arbitrary normative system instance N , from which we wish to remove
some subset of individual norms {ni, nj , nk...} to obtain a new normative system N ′ =
N\{ni, nj , nk...}. We denote the numerical quantities upon which norm ni is parametric

in normative system N as P
(N)
i . To proceed with the removal, we first need to introduce

another normative system instance, Nbsl, which we refer to as the baseline normative system.
Nbsl belongs to the same family of normative systems as N , meaning that it has the same
set of individual norms {ni} related to the same parameters and subject to the same bounds
and constraints. However, the numerical quantities for the parameters linked to Nbsl are
(manually) set in a way as to reflect the lack of evolution. That is, when Nbsl is implemented
on the MAS, the initial state remains unchanged after an arbitrary number of transitions.

Once Nbsl is defined, to remove norm subset {ni, nj , nk...} from N we substitute the

values of the parameters of all the norms in the removal set, P
(N)
i , P

(N)
j , P

(N)
k ... , by their

baseline counterparts, P
(bsl)
i , P

(bsl)
j , P

(bsl)
k ... . Consequently, the normative parameters of

system N ′ = N \{ni, nj , nk...} is composed of the original parameter quantities for the non-

removed norms, P
(N)
l for nl /∈ {ni, nj , nk...}, plus the baseline parameters for the removed

norms, P
(bsl)
m for nm ∈ {ni, nj , nk...}.

Now that we know how to remove subsets of norms from a normative system, we have
answered question (i). Essentially, a norm is absent when the quantities of the parameters
it depends upon have been substituted by their baseline counterparts. Now we are in a
position to provide a straightforward answer to issue (ii). The sum in eq. (9) is taken over
N ′ ⊆ N \ {ni}, i.e. all normative systems similar to the input normative system N from
which at least the individual norm ni has been removed. Hence, to obtain all terms in
the summation, one must first remove ni from N by substituting its parameters by their
baseline. Then, substitute the parameters linked to other norms according to all possible

combinations of the remaining ones {nj}j 6=i. Finally, N ′ ∪{ni} is obtained by setting P
(bsl)
i

back to the original parameter values P
(N)
i . This final step is only performed for ni, not for

1758



Optimally Aligned Normative Systems

any other norms nj 6= ni that may also be absent from N ′. Therefore, the sum in eq. (9)
contains 2|N |−1 terms.

Finally, we clarify that the Shapley value includes factorial terms on the size of the
original normative system |N | (which is a fixed quantity across all normative systems in the
same family) and to the trimmed one |N ′|. It should be noted that |N ′| only counts the
individual norms that have not been substituted by baselines, as those that have been are
considered as absent.

Concerning the baseline normative system, for the time being we do not provide a
systematic method to find an adequate baseline given an arbitrary normative system family.
The only restriction we impose is that the baseline normative system, just as all other
normative systems in the same family, has to respect the domain-dependent constraints.
For our running example, luckily, the simplicity of the scenario allows to define Nbsl from
mere intuition. However, we assert that a good choice for a baseline normative system is one
such that, for any sampled path, the initial global state is kept unchanged after a sequence
of transitions of arbitrary length:

s0
Nbsl−−→ s0

Nbsl−−→ ...
Nbsl−−→ s0 (10)

This is a fairly demanding requirement, since we are not referring to the expectation over
a sample of random paths, but to deterministic equality over every single possible path.
Provided we are able to design a baseline where the above property holds, then the alignment
of the baseline normative system simply corresponds to the assessment of the initial state
according to the semantics function of value v:

AlgnNbsl,v = fv (s0) (11)

Running Example

In our example model, setting the baseline parameters can be manually made thanks to its
simplicity:

Nbaseline =





n1 ∼ collect = [0, ..., 0]
n2 ∼ redistribute = [1

5 , ...,
1
5 ]

n3 ∼ catch = 0
n4 ∼ fine = 0





(12)

Note that the choice of the redistribute list respects constraint (2). We have experimentally
checked that this choice of parameters does indeed leave the initial global state of the system
unchanged.

6.1 Properties of the Shapley Value

In the context of traditional cooperative game theory, it can be proven that the Shapley
value is the only payoff distribution scheme that fulfils all of the following properties (Peters,
2008):

1. Efficiency: All of the payoff obtained by the coalition is allocated to some player.

2. Null player: If a player is null, then his Shapley value equals to zero.

1759



Montes & Sierra

3. Symmetry: If two players are symmetrical, then their Shapley values are equal.

4. Additivity: For any player, the Shapley value in the additive cooperative game equals
to the sum of the Shapley values of the separate games.

Next, we review these properties in the context of normative systems, and provide def-
initions for these concepts within our value alignment context. Some of these properties
can be readily integrated with our norm synthesis methodology and provide valuable in-
sights. Others are not so interesting. All results are expressed in terms of alignment with
respect to a single value, however they are all extensible to the alignment with respect to
the aggregation of values.

First, we start with the efficiency property (1). A payoff distribution is efficient if all the
reward achieved by the coalition is distributed back to its members. In our value alignment
context, it is not material reward that we are allocating but recognition of a norm as crucial
to effectively promote some value.

As formulated in Definition 6, the Shapley value for an individual norm is actually not
efficient with respect to the absolute alignment of the normative system it belongs to:

∑

ni∈N
φi(v) 6= AlgnN,v (13)

However, the Shapley value of individual norms does maintain the efficiency property with
respect to the relative alignment between the normative system being examined and the
baseline:

Proposition 1. Given a normative system instance N , a baseline Nbsl for the family
of normative systems to which N belongs and a value v (with semantics function fv), the
Shapley values of individual norms ni ∈ N are efficient with respect to the relative alignment
between N and Nbsl:

∑

ni∈N
φi(v) = AlgnN,v − AlgnNbsl,v = RAlgnN/Nbsl,v (14)

The proof is provided in Appendix A.
Given the result in Proposition 1, the interpretation of the Shapley value in the norma-

tive systems context is slightly different from the one made in classical cooperative game
theory. In that field, it is routinely assumed that the empty coalition does not achieve any
utility. In our context, the “norm-less” situation (where all the normative parameters are
set to their baseline values) may, in general, have non-zero alignment.

Therefore, the Shapley values of individual norms are not allocating credit for the abso-
lute alignment that the normative system achieves. Instead, the Shapley value is allocating
credit for alignment relative to the baseline. As explained previously, the baseline norma-
tive system should be set in a way as to halt the progress of the MAS under study (i.e.
the initial state is kept unchanged after an arbitrary number of consecutive transitions).
Consequently, the Shapley values are allocating the credit for the progress, from an ethical
standpoint, from the initial state to the outcome achieved by the norms in place.

In case we wanted to have the Shapley values of individual norms be efficient with
respect to the absolute alignment (i.e. have eq. (13) be fulfilled with an equality symbol), it

1760



Optimally Aligned Normative Systems

would be necessary to design a baseline such that AlgnNbsl,v = 0. Computationally, it is an
open question whether such a baseline exists given an arbitrary value semantics function,
and whether its uniqueness is guaranteed. Additionally, from an interpretation perspective,
we expect that the resulting baseline values for the normative parameters might be difficult
to interpret and justify, since it would not reflect the lack of progress in the system, but
rather the introduction of just enough regulation as to shift the system towards an ethically
neutral outcome. Therefore, despite one might think that it is more desirable to have the
Shapley values be efficient with respect to the absolute alignment, we believe that it is
actually more informative to have them be efficient with respect to the relative alignment
between N and Nbsl.

The second desirable property of the Shapley value that we examine is the role of null
norms (2). The result from classical cooperative game theory is directly importable into our
normative systems context. First, we define what a null norm is, in analogy to the concept
of a null player:

Definition 7. A norm ni is a null norm within normative system N with respect to value
v if, for any N ′ ⊆ N \ {ni}, it holds that AlgnN ′∪{ni},v = AlgnN ′,v.

It is straightforward to prove from the above definition and eq. (9) that any null norm
has zero Shapley value, φi(v) = 0, meaning that it should not be given any credit for steering
the system towards an ethically compliant state. However, the opposite is not necessarily
true. A Shapley value of zero is only indicative of a null norm if the normative system it
belongs to is monotone:

Definition 8. A normative system N is monotone with respect to value v (with semantics
function fv) if AlgnN2,v ≥ AlgnN1,v, ∀N1, N2 ⊆ N such that N1 ⊂ N2. (It is strictly
monotone if AlgnN2,v > AlgnN1,v).

In a monotone normative system, switching any normative parameter from the baseline
back to the original quantities necessarily increases the alignment. It can be interpreted
as a normative system where all of its individual norms, to a greater or lesser extent, are
contributing towards the alignment whenever they are reintroduced into the coalition.

In a monotone normative systems, the following holds:

Proposition 2. If normative system N is monotone with respect to value v and norm ni
has zero Shapley value with respect to v, φi(v) = 0, then ni is a null norm with respect to
v.

The proof is provided in Appendix A.

Property (3) of the traditional Shapley value states that symmetrical players have iden-
tical Shapley values. In the context of normative systems, we have:

Definition 9. Two different norms ni, nj ∈ N are symmetric with respect to value v if, for
any N ′ ⊆ N \ {ni, nj}, it holds that AlgnN ′∪{ni},v = AlgnN ′∪{nj},v.

Indeed, norms that achieve the same level of promotion after they are separately intro-
duced should be allocated the same amount of credit for the alignment realised:

1761



Montes & Sierra

Table 2: Shapley values for all the individual norms conforming the optimal normative
systems with respect to the value for which they are optimised.

Value Norm Shapley value

Equality

n1 0.50
n2 0.03
n3 0.07
n4 0.01

Fairness

n1 0.19
n2 0.45
n3 0.46
n4 0.42

Aggregation

n1 0.00
n2 0.27
n3 0.25
n4 0.31

Proposition 3. If ni, nj ∈ N are two symmetric norms with respect to value v, then
φi(v) = φj(v).

Again, Proposition 3 is proven in Appendix A.

Finally, property (4) of the Shapley value that sets it apart from other payoff allocation
schemes is the additivity property. However, this property is not as interesting as the other
ones in our context, as its applicability is very limited. It could be applied in cases where
aggregation functions over sets of values are defined as linear combinations of the individual
values. To illustrate the limited scope of this property, we point to the running example in
this paper, where we have defined an aggregation function for two values, however not as a
linear combination. For this reason, we will not analyse this property in detail.

Running Example

Table 2 presents the Shapley values of every individual norm in the optimal normative sys-
tems in Table 1, with respect to the value for which they have been optimised. Additionally,
for the three cases it has been experimentally checked that the efficiency property in eq. (14)
holds. Those results are presented in Table 6 in Appendix A.

For value equality, the norm with the highest Shapley value is by far n1, which is related
to the collection of taxes. All other norms have Shapley values ∼ 0, including the other
norm of economic nature, n2, linked to the redistribution of the common fund. These results
reinforce our explanation for the optimal normative parameters with respect to equality in
Table 1, where we conjectured that the wealth distribution is shrunk right after taxes are
collected.

In contrast, for value fairness, the situation is the opposite, with norms n2, n3 and
n4 all having similar and large Shapley values, significantly above that of norm n1. This
would indicate that to punish evaders, it is most important to detect them (n3), as unde-

1762



Optimally Aligned Normative Systems

tected evaders would automatically rise as the wealthiest members in the society. Then,
the common fund needs to be very unevenly redistributed (see the optimal parameters in
Table 1) towards the middle class, which is mostly composed by law-abiding citizens, as we
have argued in Section 5. Note that imposing a fine on evaders is important, yet it is on
approximately the same level as the redistribution of taxes. This indicates that, when it
comes to punishing evaders, the norms that exclusively target them (n3 and n4) are just as
relevant as the rule n2 that directs their resources elsewhere, even at the expense of harming
non-evader agents.

Last of all, the Shapley values for the optimal norms with respect to the aggregated
values appear to be closer to those for fairness, with similar quantities for n2, n3 and n4.
Surprisingly, the norms related to tax recollection n1, which stood out when it came to
value equality, has Shapley value of zero for the aggregation.

6.2 Monotonicity in Low Dimensional Normative Systems

In order to assert whether the norms with zero Shapley values are actually null or not, we
check the monotonic behaviour of every optimal normative system with respect to the value
for which it has been optimised. To do so, we use a rather inelegant, brute-force approach.
Due to the reduced number of parameters of our running example, however, this approach
is still feasible, although not recommended in general.

The pseudo-code to check whether the optimal normative systems N∗ are monotonic
appears in Algorithm 1. Note that we only check pairs of subsets N1, N2 (being N1 included
within N2, N1 ⊂ N2) for which N2 includes only one more individual norm than N1. It can
be very easily proven that the check in Algorithm 1 is equivalent to a monotonic normative
system:

Proposition 4. Given a normative system N and a value v (with semantics function fv),
if ∀N ′ ⊂ N , ∀n ∈ N \ N ′ it holds that AlgnN ′∪{n},v ≥ AlgnN ′,v (i.e. Algorithm 1 returns
True) iff N is monotone with respect to v.

Proof. The forward implication (Algorithm 1 returns True =⇒ N monotone) can be proven
by considering that consecutively adding new individual norms must at least maintain or
improve the alignment, for any N2, N1 ⊆ N such that |N2| > |N1| it must hold that
AlgnN2,v ≥ AlgnN1,v.

Algorithm 1: Brute-force approach to check the monotonic behaviour of an op-
timal normative system.

1 foreach N1 ⊂ N do
2 compute AlgnN1,v

3 foreach ni ∈ N \N1 do
4 N2 ← N1 ∪ {ni}
5 compute AlgnN2,v

6 if AlgnN1,v > AlgnN2,v then

7 return False

8 return True

1763



Montes & Sierra

The reverse implication (N monotone =⇒ Algorithm 1 returns True) follows from
the fact that, because N is monotone, ∀N1, N2 ⊂ N such that N1 ⊆ N2 then AlgnN2,v ≥
AlgnN1,v, this is in particular true for cases such that |N2| = |N1|+ 1.

One may think that monotonic normative systems are a promising subclass of norma-
tive systems for which optimisation with the target of maximum value alignment can be
simplified. That is to say, instead of optimising for all normative parameters at once (like
we do with the GA in our running example), one could start at the baseline normative
system and optimise for one normative parameter at a time.

However, in order for this procedure to be correct, it would need to hold that the optimal
normative system in a family with respect to the value of interest is indeed monotonic, even
before such an optimal normative system has been computed. At this point, we are unable
to provide such a guarantee, and hence recommend users of this methodology to stick with
meta-heuristic methods. In fact, the following results concerning our running example prove
that of the three optimal set of norms computed, only one is monotonic.

Running Example

Running Algorithm 1 over all the optimal normative systems (using the alignment function
for the values for which they have been optimised) returns the following results: N∗equality is
indeed monotone, while N∗fairness and N∗aggregation are not.

By the results reported in Table 2, we can assert that for value equality, all individual
norms except n1 (related to tax collection) are null norms (or close to null). This observation
reinforces the dominant role that the collect rates have when it comes to promoting equality.
By the optimal parameters in Table 1, we already hypothesised that the wealth distribution
is shrunk right after taxes are collected. This conjecture seems to be supported by the
finding that n1 is the only non-null norm when it comes to equality (under its optimal
normative system).

7. Value Compatibility

The Shapley values have allowed us to examine, given a value and its semantics, the rela-
tionships between the constituent norms in a normative system. In this section, we study
an analogous issue: given a normative system, what is the relationship among several values
that may (or not) be supported by it.

Schwartz’s theory of basic human values establishes that actions executed in pursue
of some value may have consequences that are either congruent or in conflict with other
values (Schwartz, 2012). Such thinking can be extended to our policy design context.
Implementing normative systems that aggressively promote some value might have collateral
consequences, either positive or negative, for the promotion of other values. To quantify
such relationships, we introduce the concept of value compatibility as an extension to the
framework presented in Section 4.

Definition 10. Given a normative system N , a set of values V = {v1, v2, ..., vk} with
semantics functions f1, f2, ..., fk are compatible to degree d (or d-compatible) under N if, for
all values in V , it holds that AlgnN,v ≥ d.

1764



Optimally Aligned Normative Systems

It immediately follows that, if some set of values are compatible to degree d, they are also
compatible to any degree d′ ≤ d. If a normative system is highly specialised towards some
value at the expense of others, the compatibility will be low, possibly negative. Normative
systems that reach a compromise will presumably maintain much higher compatibility be-
tween the values, even if not aligned with any of them to the maximum possible amount
∼ 1.

The concept of compatibility works with alignment functions with respect to single
values, AlgnN,v. Nonetheless, we can easily expand it to aggregations over sets of values:

Definition 11. Given a set V of d-compatible values under normative system N , an aggre-
gation function FV : [−1, 1]n → [−1, 1] is said to preserve the compatibility if AlgnN,V ≥ d.

Trivially, aggregation functions based on linear combinations of the alignment for the
individual values do preserve d-compatibility by setting d = minv∈V AlgnN,v.

In our framework, the concept of value compatibility makes sense and can potentially
provide a lot of insight into the optimal normative systems obtained. However, an analogous
concept for norms (i.e. norm compatibility, see e.g. the relationship among exclusive norms
in Serramià et al., 2020) is not applicable in our approach. By construction, norms in a
normative system control different aspects of a state transition. Intuitively, all the individual
norms that make up a normative system are compatible with one another by construction.

Running Example

The compatibility computations for the optimal normative systems obtained in our tax pol-
icy model are presented in Table 3. It clearly manifests that the optimal normative system
for equality is very neglectful of the fairness of the system, as it has negative alignment
with respect to it. Unsurprisingly, its alignment with respect to the aggregation of values
is also very poor. Hence, despite being very effective at reducing wealth inequality, under
the optimal norms for equality the values equality and fairness are very incompatible.

Meanwhile, the norms optimised for fairness do uphold equality to a much larger extent
than the other way around. Under this optimal normative system, the two values are
compatible to degree ∼ 0.6. This is a purely collateral effect, since the semantics function
for fairness in eq. (7) does not encode any information related to the width of the wealth
distribution. This result is visually confirmed by the second row in Figure 3. In its quest

Table 3: The optimal normative system with respect to value vi (see Table 1) has its align-
ment computed with respect to values vj. For example, in the first row the optimal
normative system with respect to equality is examined from the perspective of fair-
ness and the aggregation of both values.

vj

Equality Fairness Aggregation

vi

Equality - -0.28 -0.26
Fairness 0.60 - 0.56

Aggregation 0.71 0.88 -

1765



Montes & Sierra

to treat evader agents harshly, the optimal normative system for fairness also impoverishes
many law-abiding citizens, most of which end up in the lower half of the wealth range.
This happens because the retrieval of resources is, at least in part, done through a very
uneven redistribution of taxes, a policy that affect all agents equally regardless of their
evader status. Hence, the initial wealth distribution is narrowed as a consequence and the
Gini index is decreased, although this is not the primary objective of the optimal norms for
fairness.

Last row in Table 3 displays the alignment under the optimal norms for our aggregation
function of the two values. It stands out as the one with the highest quantities: actually,
the optimisation for the aggregation of the two values leads to a much higher compatibil-
ity degree than the optimisation for any of the two values separately, over 0.7. This is a
consequence of our demanding aggregation function in eq. (8). The downside of this ambi-
tious approach is that it does not preserve the compatibility as established in Definition 11,
except under the optimal normative system for equality (for which the values are actually
incompatible).

Also, the last row in Table 3 shows that the optimal normative system for the aggregation
of values is more aligned with respect to fairness than equality. Similarly, the Shapley values
in Table 2 for the aggregation of values are most similar to those of the optimal norms for
fairness. Hence, we can conclude that the aggregation of values is definitely relying more
on the promotion of fairness than equality.

7.1 Compatibility Maximising Normative System

Of course, we are most interested in finding the maximum compatibility degree for an
arbitrary set of values. In fact, given a normative system N and a set of values V , their
maximum compatibility degree is given by:

dmax = min
v∈V

AlgnN,v (15)

Equation (15) can, just as any other function, serve as an optimisation target. By
finding the normative system that maximises the right-hand side of eq. (15), we obtain the
normative system for which the set of values in question are the most compatible. Then,
we can define the compatibility maximising normative system (CMNS) N ‡ as:

N ‡ = arg max
N∈N

min
v∈V

AlgnN,v (16)

Note that eq. (16) is actually not an optimisation for an alignment function, as defined
by the formal model in Section 4. One could think of taking a set of values V = {v1, ..., vn}
with semantics functions f1, ..., fn, setting their aggregation function as the minimum
FV (s) = minv∈V fv(s), and then performing an optimisation of the type we have presented
in Section 5. However, this would not be equivalent to searching the CMNS, since the
expected value and the minimum operators are not in general commutable.

The notion of the CMNS echoes that of Pareto optimality (Lockwood, 2008). In the
game theory literature, an outcome is Pareto optimal if there is no other outcome in which
all participants are at least as well off, and at least one participant is better off. In this work,
the CMNS is the normative system such that no other normative system can simultaneously

1766



Optimally Aligned Normative Systems

have larger alignment with respect to all values of interest. Therefore, Pareto optimality and
compatibility maximisation are analogous, although not identical, concepts. While Pareto
optimality fails if at least one participant in a game is better off (while all others retain the
same utility), the CMNS fails if an alternative normative systems is encountered such that
alignment with respect to all values is improved.

Running Example

To find the CMNS of our running example, we run the optimisation search using the
same version of a GA as in Section 5, but taking eq. (16) as the target function. The
set of values for which the alignment is computed (and then the minimum taken) is V =
{equality , fairness}. To compute the expected values for the alignment, we again perform
Monte-Carlo sampling with a sample of 500 paths of 10 transitions each.

Table 4: Optimisation results for the CMNS: optimal normative parameters and maximum
compatibility degree, and alignments with respect to values equality, fairness and
their aggregation.

N‡

collect = [4%, 60%, 74%, 33%, 58%]
redistribute = [3%, 37%, 35%, 16%, 9%]

catch = 45%
fine = 85%

d‡max 0.74

AlgnN‡,eq 0.74

AlgnN‡,fair 0.74

AlgnN‡,aggr 0.56

The results of the optimisation for maximum alignment appear in Table 4. First, the
optimal compatibility degree is at 0.74, slightly higher than the compatibility achieved under
the optimal normative system for the aggregated values. Also, this compatibility degree is
attained by promoting both values equally, although this requirement was not originally
encoded in the objective function of the search. In summary, the CMNS does keep the
compatibility degree between the two values (equality and fairness) to the largest degree
among all optimal normative systems found in this work. However, the compatibility degree
achieved by the optimal norms for the aggregation is only slightly below, where promotion
of fairness is significantly boosted at the expense of a minor misalignment with respect to
equality.

Second, we review the optimal parameters for the CMNS. The trends of the collect and
redistribute parameters with the wealth segments are most similar to those of the optimal
norms for the aggregation of values (see Table 1). Surprisingly, N ‡ is the normative system
that treats evaders the harshest. It has one of the highest catch rates (tied with that
from the optimal normative system for fairness), and the largest fine across all normative
systems analysed. However, despite being the most punitive norm set, its alignment for value
fairness is actually lower than that of N∗aggregation. This finding reinforces our observation
that evaders are not actually punished by exclusively targeting them through n3 and n4, as
we hypothesised in Section 5.

In Figure 3, bottom right row, the outcome that is reached under the CMNS is shown.
The comparison with the optimal normative system for the aggregation of values shows that,
despite some qualitative similarities in the normative parameters, the outcomes they lead to

1767



Montes & Sierra

are definitely different. Instead of reaching a wealth distribution halfway between N∗equality

and N∗fairness, N
‡ splits agents into two wealth groups by their wealth (above and below 50

units). Evaders all fall into the first group, hence ensuring fairness is at least moderately
promoted. Meanwhile, because the two peaks, although separate, are still narrow, equality
is also maintained.

8. Conclusions

In this work, we have proposed a solution to the problem of automated synthesis of norma-
tive systems based on value promotion. To do so, we have committed to a consequentialist
position regarding the relationship between norms and values, and have delegated the re-
sponsibility to provide the meaning of values to the system designer. The methodology we
have presented to tackle the task is fairly general and allows the designer to tailor it to
the MAS at hand: choices need to be made regarding the norms in place, the semantics
function of values and the optimisation strategy to perform the search.

The running example to illustrate our methodology shows how to apply each step of the
methodology to a very simple model. In it, we have not introduced any reasoning schemes by
the agents that would allow them to decide whether or not to abide by the norms, and which
action to take among those that are designated as legal. We have omitted the introduction
of individual reasoning schemes to keep the work focused on the automated synthesis of
norms. However, we anticipate that the optimal normative system will depend on the
composition of the society, namely the concrete reasoning schemes that are implemented
and the proportion among them, analogously to the results obtained by Fagundes et al.
(2016).

The results obtained in our running example for our alignment-maximising search have
been very satisfactory, although the model has a reduced number of normative parameters
and hence the search space is relatively small. Although it is possible to hypothesise about
the role of the obtained normative parameters (i.e. with the aid of visual representations),
the interpretability of the resulting normative parameters quantities is very much aided by
the Shapley values of individual norms. The role that this indicator plays in our normative
systems context is similar to the explainable AI literature, particularly in the estimation of
feature importance in supervised machine learning models (Štrumbelj & Kononenko, 2013;
Lundberg & Lee, 2017). Additionally, some of the desirable properties that give the Shapley
value a privileged position in cooperative game theory have been proven to apply to the
area of this work.

The last contribution of this paper is a numerical quantification in the compatibility
between values. We have defined this concept formally and then performed a search for
the normative system that maximises it in our running example. However, one could argue
that the results for the CMNS are not much of an improvement over those obtained with a
demanding aggregation function, and a “regular” optimisation using the derived alignment
function as the search target.

Overall, this paper contains a substantial contribution to the field of automated synthesis
of value-aligned normative systems, a field where there is not a load of work to build upon.
We foresee that extensions of this work will study the scalability of our methodology to
more complex models dependent upon more normative parameters, and the application

1768



Optimally Aligned Normative Systems

to real-life problems of policy design and analysis. Interesting future work should also
attempt to integrate the synthesis methodology presented here with a framework that,
prior to running the optimising search, automatically de-abstracts the value of interest into
a semantics function, taking into account the domain at hand. Such an integration would
allow practitioners to work with values directly as abstract entities.

Code Availability

All the code to go along with this work has been integrally developed in Python 3. It
is available under an MIT license at https://github.com/nmontesg/aamas21 and as an
online appendix.

Acknowledgments

This work has been supported by the AppPhil project (RecerCaixa 2017), the CIMBVAL
project (funded by the Spanish government, project #TIN2017-89758-R), the EU WeNet
project (H2020 FET Proactive project #823783) and the EU TAILOR project (H2020
#952215).

Appendix A. Supplementary Information

Table 5: Hyperparameters of the Genetic Algorithm to find the optimally value-aligned
normative systems. The first six refer to hyperparameters of the GA itself, and
are covered in Section 5. The latter two refer to the Monte Carlo sampling: number
of state transitions per path and total amount of paths sampled to compute the
alignment.

Hyperparameter Value

Population size 100

p (intermediate recombination) 0.25

k (elitism) 5

Maximum total iterations 500

Maximum partial iterations 50

Fitness threshold 0.9

Path length 10

Path sample size 500

Proofs of Propositions 1 to 3

In order to prove Propositions 1 to 3, we will use an equivalent definition of the Shapley
value from the one in eq. (9). For a complete formulation of the Shapley value solution

1769



Montes & Sierra

Table 6: Optimal alignment found for every value, alignment of the baseline normative
system and sum over the Shapley values with respect to that value. It can be
checked that the sum over the Shapley values is efficient with respect to the relative
alignment between the optimal normative system and the baseline, see eq. (14).

Value Algn∗N,v AlgnNbsl,v

∑
ni∈N∗

φi(v)

Equality 0.95 0.34 0.61

Fairness 0.93 -0.59 1.52

Aggregation 0.66 -0.22 0.88

concept from the perspective of classical cooperative game theory, the reader is directed to
Chalkiadakis et al. (2011, Ch. 2).

Given a normative system N , we denote by ΠN the set of all permutations over N .
There are |N |! permutations in total. For a permutation π ∈ ΠN , we denote by Sπ(ni) the
set of predecessors of norm ni in permutation π. For example, in the social model considered
throughout the paper, we have N = {n1, n2, n3, n4}. A permutation is π = (n1, n3, n4, n2).
Then, Sπ(n1) = {}, Sπ(n2) = {n1, n3, n4}, Sπ(n3) = {n1} and Sπ(n4) = {n1, n3}.

The marginal contribution of norm ni to the alignment for value v in permutation π is
defined as:

∆v
π (ni) = AlgnSπ(ni)∪{ni},v − AlgnSπ(ni),v = RAlgnSπ(ni)∪{ni}/Sπ(ni),v (17)

∆v
π measures the improvement in the alignment (with respect to value v) when norm ni

joins its predecessors in permutation π.

Then, the Shapley value for norm ni can be defined as the average over all permutation
of its marginal contribution to the alignment:

φi(v) =
1

|N |!
∑

π∈ΠN

∆v
π(ni) (18)

1770



Optimally Aligned Normative Systems

Proof of Proposition 1. πj denotes the norm in the j-th position in permutation π.

∑

ni∈N
φi(v) =

∑

ni∈N

1

|N |!
∑

π∈ΠN

∆v
π(ni) =

=
1

|N |!
∑

π∈ΠN

∑

ni∈N
∆v
π(ni) =

=
1

|N |!
∑

π∈ΠN

Algn{π1},v − Algn{},v + Algn{π1,π2},v − Algn{π1},v+

+ ...+ Algn{π1,...,πn},v − Algn{π1,...,πn−1},v =

=
1

|N |!
∑

π∈ΠN

Algn{π1,...,πn},v − Algn{},v =

=
1

|N |!
∑

π∈ΠN

AlgnN,v − AlgnNbsl,v =

=
1

|N |! |N |!
(
AlgnN,v − AlgnNbsl,v

)
= RAlgnN/Nbsl,v

Proof of Proposition 2. Because N is monotone (see Definition 8), it must be that ∆v
π(ni) ≥

0, ∀π ∈ Πn, ∀ni ∈ N .

Then, if a norm has φi(v) = 1
|N |!

∑
π∈ΠN

∆v
π(ni) = 0, it must be that every term equals

zero, ∆v
π(ni) = 0, ∀π ∈ ΠN . This is equivalent to having AlgnN ′∪{ni},v = AlgnN ′,v, ∀N ′ ⊆

N\{ni}, as every N ′ ⊆ N\{ni} can be identified with Sπ(ni) for some π ∈ ΠN . This
derivation corresponds to ni being a null norm (see Definition 7).

Proof of Proposition 3. Suppose ni, nj ∈ N are symmetric norms (see Definition 9). Given
a permutation π, we denote by π′ the permutation that is obtained from π by swapping ni
and nj . First, we prove that ∆v

π(ni) = ∆v
π′(nj).

Suppose ni precedes nj in π. Then, Sπ(ni) = Sπ′(nj) = N ′:

∆v
π(ni) = AlgnN ′∪{ni},v − AlgnN ′,v

∆v
π′(nj) = AlgnN ′∪{nj},v − AlgnN ′,v

Because ni and nj are symmetric, it holds that AlgnN ′∪{ni},v = AlgnN ′∪{nj},v. Consequently,
∆v
π(ni) = ∆v

π′(nj).

Now suppose that ni goes after nj in π. Now, N ′ = Sπ(ni)\{nj}:

∆v
π(ni) = AlgnN ′∪{nj}∪{ni},v − AlgnN ′∪{nj},v

∆v
π′(nj) = AlgnN ′∪{ni}∪{nj},v − AlgnN ′∪{ni},v

Again, because ni and nj are symmetric, the second terms of the right-hand sides are equal,
and ∆v

π(ni) = ∆v
π′(nj).

1771



Montes & Sierra

Then, because the map between π and its swapped permutation π′ is one-to-one, we
have:

φi(v) =
1

|N |!
∑

π∈ΠN

∆v
π(ni) =

1

|N |!
∑

π∈ΠN

∆v
π′(nv) = φj(v)

References

Ajmeri, N., Guo, H., Murukannaiah, P. K., & Singh, M. P. (2020). Elessar: Ethics in norm-
aware agents. In Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’20, p. 16–24, Richland, SC. International
Foundation for Autonomous Agents and Multiagent Systems.

Atkinson, K., & Bench-Capon, T. (2016). States, goals and values: Revisiting practical
reasoning. Argument & Computation, 7 (2-3), 135–154.

Baluja, S., & Caruana, R. (1995). Removing the genetics from the standard genetic algo-
rithm. In Proceedings of the Twelfth International Conference on International Con-
ference on Machine Learning, ICML’95, p. 38–46, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Bench-Capon, T., & Modgil, S. (2017). Norms and value based reasoning: justifying com-
pliance and violation. Artificial Intelligence and Law, 25 (1), 29–64.

Chalkiadakis, G., Elkind, E., & Wooldridge, M. (2011). Computational aspects of coopera-
tive game theory. Synthesis Lectures on Artificial Intelligence and Machine Learning,
5 (6), 1–168.

Conte, R., & Castelfranchi, C. (1999). From conventions to prescription. towards an inte-
grated view of norms. Artificial Intelligence and Law, 7 (4), 323–340.

Fagundes, M. S., Ossowski, S., Cerquides, J., & Noriega, P. (2016). Design and evaluation
of norm-aware agents based on normative markov decision processes. International
Journal of Approximate Reasoning, 78, 33–61.

Feather, N. T. (1995). Values, valences, and choice: The influences of values on the per-
ceived attractiveness and choice of alternatives.. Journal of Personality and Social
Psychology, 68 (6), 1135–1151.

Gini, C. (1912). Variabilità e Mutuabilità. Contributo allo Studio delle Distribuzioni e delle
Relazioni Statistiche. Facoltà di Giurisprudenza della R. Università di Cagliari.

Gorrieri, R. (2017). Labeled transition systems. In Monographs in Theoretical Computer
Science. An EATCS Series, pp. 15–34. Springer International Publishing.

Grossi, D., Tummolini, L., & Turrini, P. (2012). Norms in Game Theory, chap. Chapter
12, pp. 191–197. No. 8 in Law, Governance and Technology. Springer, Dordrecht.

Lemieux, C. (2009). Monte Carlo and Quasi-Monte Carlo Sampling. Springer New York.

Lockwood, B. (2008). Pareto efficiency. In The New Palgrave Dictionary of Economics, pp.
1–5. Palgrave Macmillan UK.

1772



Optimally Aligned Normative Systems

Luke, S. (2013). Essentials of Metaheuristics (second edition). Lulu.

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions.
In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, p. 4768–4777, Red Hook, NY, USA. Curran Associates Inc.

Macintyre, A. (1998). A Short History of Ethics: A History of Moral Philosophy from the
Homeric Age to the Twentieth Century. University of Notre Dame Press.

Miller, B. L., & Goldberg, D. E. (1995). Genetic algorithms, tournament selection, and the
effects of noise. Complex Syst., 9.

Montes, N., & Sierra, C. (2021). Value-guided synthesis of parametric normative systems.
In Proceedings of the 20th International Conference on Autonomous Agents and Mul-
tiagent Systems, AAMAS ’21, p. 907–915, Richland, SC. International Foundation for
Autonomous Agents and Multiagent Systems. (Best paper award finalist).

Morales, J., López-Sanchez, M., Rodŕıguez-Aguilar, J. A., Wooldridge, M., & Vasconcelos,
W. (2013). Automated synthesis of normative systems. In Proceedings of the 2013
International Conference on Autonomous Agents and Multi-Agent Systems, AAMAS
’13, p. 483–490, Richland, SC. International Foundation for Autonomous Agents and
Multiagent Systems.

Morales, J., Wooldridge, M., Rodŕıguez-Aguilar, J. A., & López-Sánchez, M. (2018). Off-
line synthesis of evolutionarily stable normative systems. Autonomous Agents and
Multi-Agent Systems, 32 (5), 635–671.

Morris-Martin, A., Vos, M. D., & Padget, J. (2019). Norm emergence in multiagent systems:
a viewpoint paper. Autonomous Agents and Multi-Agent Systems, 33 (6), 706–749.

Mühlenbein, H., & Schlierkamp-Voosen, D. (1993). Predictive models for the breeder genetic
algorithm i. continuous parameter optimization. Evolutionary Computation, 1 (1), 25–
49.

Onn, S., & Tennenholtz, M. (1997). Determination of social laws for multi-agent mobiliza-
tion. Artificial Intelligence, 95 (1), 155–167.

Peters, H. (2008). The shapley value. In Game Theory, pp. 241–258. Springer Berlin
Heidelberg.

Rokeach, M. (1972). The nature of human values. Free Press.

Ruder, S. (2016). An overview of gradient descent optimization algorithms..

Sandholm, W. H. (2009). Evolutionary game theory. In Encyclopedia of Complexity and
Systems Science, pp. 3176–3205. Springer New York.

Savarimuthu, B. T. R., & Cranefield, S. (2011). Norm creation, spreading and emergence:
A survey of simulation models of norms in multi-agent systems. Multiagent and Grid
Systems, 7 (1), 21–54.

Schwartz, S. H. (1992). Universals in the content and structure of values: Theoretical
advances and empirical tests in 20 countries. In Advances in Experimental Social
Psychology, pp. 1–65. Elsevier.

1773



Montes & Sierra

Schwartz, S. H. (2012). An overview of the Schwartz theory of basic values. Online Readings
in Psychology and Culture, 2 (1).

Serramià, M., López-Sánchez, M., & Rodŕıguez-Aguilar, J. A. (2020). A qualitative ap-
proach to composing value-aligned norm systems. In Proceedings of the 19th Inter-
national Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’20,
p. 1233–1241, Richland, SC. International Foundation for Autonomous Agents and
Multiagent Systems.

Serramià, M., López-Sánchez, M., Rodŕıguez-Aguilar, J. A., Morales, J., Wooldridge, M.,
& Ansotegui, C. (2018). Exploiting moral values to choose the right norms. In
Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. ACM.

Shapley, L. S. (1951). Notes on the N-Person Game - II: The Value of an N-Person Game.
RAND Corporation, Santa Monica, CA.

Shoham, Y., & Tennenholtz, M. (1995). On social laws for artificial agent societies: off-line
design. Artificial Intelligence, 73 (1-2), 231–252.

Sierra, C., Osman, N., Noriega, P., Sabater-Mir, J., & Perelló-Moragues, A. (2019). Value
alignment: A formal approach. In Responsible Artificial Intelligence Agents Workshop
(RAIA) in AAMAS 2019.

Spates, J. L. (1983). The sociology of values. Annual Review of Sociology, 9 (1), 27–49.

Štrumbelj, E., & Kononenko, I. (2013). Explaining prediction models and individual predic-
tions with feature contributions. Knowledge and Information Systems, 41 (3), 647–665.

Szabo, J., Such, J. M., & Criado, N. (2020). Understanding the role of values and norms
in practical reasoning. In Bassiliades, N., Chalkiadakis, G., & de Jonge, D. (Eds.),
Multi-Agent Systems and Agreement Technologies, pp. 431–439, Cham. Springer In-
ternational Publishing.

Teze, J. C. L., Perelló-Moragues, A., Godo, L., & Noriega, P. (2019). Practical reasoning
using values: an argumentative approach based on a hierarchy of values. Annals of
Mathematics and Artificial Intelligence, 87 (3), 293–319.

The World Bank, Development Research Group (2019). Gini index (world bank estimate,
1967-2019).. Accessed 7th June 2021, http://data.worldbank.org/indicator/SI.
POV.GINI.

van de Poel, I. (2020). Embedding values in artificial intelligence (AI) systems. Minds and
Machines, 30 (3), 385–409.

van der Weide, T. L., Dignum, F., Meyer, J. J. C., Prakken, H., & Vreeswijk, G. A. W.
(2010). Practical reasoning using values. In Lecture Notes in Computer Science, pp.
79–93. Springer Berlin Heidelberg.

Visser, S., Thangarajah, J., Harland, J., & Dignum, F. (2015). Preference-based reasoning
in BDI agent systems. Autonomous Agents and Multi-Agent Systems, 30 (2), 291–330.

1774



Contribution 2

A Computational Model of Ostrom’s
Institutional Analysis and Development
Framework

Artificial Intelligence

Full citation:
Montes, N., Osman, N., & Sierra, C. (2022b). A computational model of Ostrom’s
Institutional Analysis and Development framework. Artificial Intelligence, 311,
103756. https://doi.org/10.1016/j.artint.2022.103756

73

https://doi.org/10.1016/j.artint.2022.103756




Artificial Intelligence 311 (2022) 103756

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

A computational model of Ostrom’s Institutional Analysis and 

Development framework

Nieves Montes ∗, Nardine Osman, Carles Sierra

Artificial Intelligence Research Institute (IIIA-CSIC), UAB Campus, Carrer de Can Planas, Zona 2, 08193 Bellaterra (Barcelona), Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 November 2021
Received in revised form 28 June 2022
Accepted 1 July 2022
Available online 8 July 2022

Keywords:
Institutional Analysis and Development 
framework
Rules
Normative multiagent systems
Game theory
Logic programming

The Institutional Analysis and Development (IAD) framework developed by Elinor Ostrom 
and colleagues provides great conceptual clarity on the immensely varied topic of social 
interactions. In this work, we propose a computational model to examine the impact that 
any of the variables outlined in the IAD framework has on the resulting social interactions. 
Of particular interest are the rules adopted by a community of agents, as they are the 
variables most susceptible to change in the short term. To provide systematic descriptions 
of social interactions, we define the Action Situation Language (ASL) and provide a game 
engine capable of automatically generating formal game-theoretical models out of ASL 
descriptions. Then, by incorporating any agent decision-making models, the connection 
from a rule configuration description to the outcomes encouraged by it is complete. Overall, 
our model enables any community of agents to perform what-if analysis, where they can 
foresee and examine the impact that a set of regulations will have on the social interaction 
they are engaging in. Hence, they can decide whether their implementation is desirable.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Institutional Analysis and Development (IAD) framework is a conceptual toolbox put forward by Elinor Ostrom and 
colleagues in an effort to identify and delineate the universal common variables that underlie the immense variety of human 
interactions [1]. The framework identifies rules as one of the core constructs that determine the structure of interactions, 
and acknowledges their potential to steer a community towards more beneficial and socially desirable outcomes.

This work presents the first attempt to turn the IAD framework into a computational model that allows communities of 
agents to perform what-if analysis on a given rule configuration. To do so, we define the Action Situation Language (ASL) 
whose syntax is highly tailored to the components of the IAD framework and that is used to write formal descriptions 
of social interactions. The ASL is complemented by a game engine that generates the semantics of social interactions as 
extensive-form games (EFGs). These EFGs can then be analyzed with the standard game-theoretical tools to predict which 
outcomes are being most incentivized, and evaluated according to the overall social benefit they bring about. All the code 
to go along with this work is open-sourced under an MIT license on the AI4EU platform and GitHub. Beyond the implemen-
tation of the fundamental algorithms, we include support for customized visualization of the generated game trees.

* Corresponding author.
E-mail address: nmontes@iiia.csic.es (N. Montes).

https://doi.org/10.1016/j.artint.2022.103756
0004-3702/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Fig. 1. Outline of the Institutional Analysis and Development framework, adapted from [2, p. 15]. Colored text outside boxes indicates either the scripts that 
contain information on the boxed component, or the game-theoretical concepts that represent it.

This paper is organized as follows. We start by presenting the necessary background on the IAD framework, outline our 
contributions and review some related work in the rest of this Introduction. Then, we present the syntax of the Action 
Situation Language in Section 2. Next, in Section 3, we provide a detailed explanation of the process of rule interpretation 
– a crucial step to turn action situation descriptions into games – and go through the game semantics generation process. 
The last technical part, Section 4, reviews some issues related to implementation and the integration of the resulting game 
representations with game-theoretical tools. Finally, we close with some illustrative examples in Section 6 and make our 
concluding remarks in Section 7.

1.1. The Institutional Analysis and Development framework

Within the field of policy analysis, the Institutional Analysis and Development (IAD) framework, put forward by Ostrom 
and colleagues [2], represents a comprehensive theoretical effort to identify and delineate the universal building blocks that 
make up any social interaction. Its outline is presented in Fig. 1. In the center part, any social interaction is referred to as 
an action arena. In it, a set of participants (the agents) find themselves in an action situation, which is the social space they 
may enter, take actions in and jointly bring about outcomes.

According to the IAD framework, action arenas are affected by three sets of exogenous variables that jointly combine to 
structure it (Fig. 1 left). These are the biophysical conditions, the attributes of the community and the rules of the interaction. 
The first two are fairly straightforward to define. The biophysical conditions refer to the relevant characteristics of the 
environment where the interaction takes place, such as land topology and location of resources. The attributes of the 
community encompass variables intrinsically linked to the participants, such as age, gender, ethnicity and/or belonging 
to one or several subgroups. Last of all, the meaning of the term rules is wide enough to require a detailed clarification that 
we provide below.

The IAD framework acknowledges the four common uses of the term rules in everyday language [3, Ch. 6], according 
to their scope: instructions, precepts, regulations and principles. First, instructions are understood as a set of steps to 
effectively achieve some desirable outcome in a given context. Good contemporary examples are Ikea assembly guides. In 
second place, precepts are somewhat similar to instructions, in the sense that they also directly concern the actions to be 
taken by an agent. However, their scope is more general. Instead of specifying the particular actions that an agent should 
perform in a specific situation or context, precepts provide widely applicable principles to help guide decision-making in 
a range of situations. Good examples are the five precepts from the Buddhist faith [4], which should be regarded by any 
person adhering to Buddhism regardless of the situation they are confronted with.

In the third place, regulations are, possibly, the most intuitive meaning of rules. They refer to statutes and ordinances 
that constrain or provide alternative avenues for a course of action. Typically, regulative rules are understood as being 
passed down from a central authority responsible for their crafting and enforcement. However, small communities can also 
self-impose regulations on themselves in order to ensure sustainability, fairness, and other desirable goals. For example, 
there are many cases of small communities of fishers, loggers and crop farmers who craft their own regulations regarding 
how much fish, wood or water is each member entitled to [5].

Finally, the last of the meanings that rules take are as physical principles. These refer to the laws of nature that in-
evitably play a part in determining what actions and/or outcomes are physically possible and the effects they have on the 
environment. If you drop an object, it will fall downwards. Additionally, if it is made of a fragile material such as glass or 
ceramic, it will most certainly break.

2



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Fig. 2. Internal structure of an action situation, adapted from [2, p. 33].

There is a major difference between the first two and the last two meanings. While instructions and precepts indicate 
to an agent (either directly as instructions, or indirectly as precepts) what actions to perform provided the situation at 
hand, regulations and principles condition the structure of the situation itself. Together, regulations and physical principles 
jointly determine what actions are possible and/or allowed, what their effects are, potential sanctions if a prohibited action 
is performed (or failure to perform an obliged action) and, consequently, which outcomes may be attained. Once all of that 
information is gathered, instructions and precepts are invoked on that specific situation to output the particular course of 
action to take. Hence, instructions and precepts directly target the actions to take given a social situation, while regulations 
and principles determine the social situation itself.

In this work, we take the view that the function of rules is to mold the structure of the situation agents find them-
selves in, i.e. to modify the incentives and opportunities they face. Hence, the term rule will be used to encapsulate 
both regulations and natural principles. There is a fundamental difference, however, between the two. While regulations 
are human-made, and hence subject to revision and change, natural principles are not and therefore they are essentially 
untouchable. We address this distinction in our logical language by distinguishing between default rules and additional 
regulations through a priority relationship between rule statements. Also, we make the distinction between rules that 
reflect natural principles and the biophysical conditions introduced early on. Physical laws control the dynamics of the 
environment (drop an object and it will land on the ground) while biophysical conditions refer to static elements (like land 
topology).

In the computational model of the IAD framework we present, we leave out instructions and precepts, since our Action 
Situation Language does not include an avenue to model them in a systematic manner. We make this choice because we are 
interested in the constructs that shape the social interactions (i.e. regulations and physical laws). Therefore, this work is not 
concerned with the individual decision-making (which takes into account instructions and precepts) that agents perform 
once they are faced some situation. For decision-making, we rely on game-theoretic schemes, which are directly applicable 
on the extensive-form game representations of social interactions that are automatically built by our tool.

In addition to identifying the variables that condition an action arena, the IAD framework also determines the compo-
nents that together make up any action situation. There are in total seven variables at play (see Fig. 2): (1) the participants 
who are allowed to enter; (2) the positions or roles that they take on; (3) the actions assigned to those roles; (4) the poten-
tial outcomes that may be reached; (5) the linkage between actions (or sequences of actions) to outcomes and the control 
that agents have over it; (6) the information available to participants about all other variables (including what information 
is available to others); and (7) the material reward and costs assigned to outcomes and/or actions.

Once participants populate an action situation, it becomes fully instantiated. By introducing some decision-making model 
for every agent (such as traditional rationality notions like the Nash equilibrium), a prediction of how the interaction is 
expected to play out and the eventual outcomes (the “Interactions” and “Outcomes” boxes in Fig. 1) that are likely to be 
reached can be constructed. Finally, these outcomes can be evaluated in terms of some desirable properties (“Evaluation 
criteria” box in Fig. 1), such as optimality, efficiency, or various metrics of social welfare [6].

3



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

If the evaluation is not satisfactory, changes to the exogenous variables should be made in pursue of more desirable 
outcomes (according to the evaluation criteria of choice). Of the three sets of exogenous variables, biophysical conditions 
and the attributes of the community are fixed in the short term. In contrast, rules are relatively malleable. In particular, 
human-crafted regulations are very much susceptible to review and modification. However, the “default” rules (those that 
reflect natural principles) cannot be changed.

Despite being introduced several decades ago [7], the IAD framework is currently being used in policy analysis studies. 
Most recent examples include scenarios of pollution and waste management in widely diverse areas of the world [8,9] as 
well as conservation policy [10]. Research efforts on the theoretical front are also on-going in order to better integrate the 
IAD framework with existing formal legal systems [11].

1.2. Contributions

The main contribution of this work is a computational model of Ostrom’s IAD framework. This model enables communi-
ties of agents to formally perform what-if analysis of potential new regulatory rules they may be considering to adopt. We 
provide new tools and integrate them with existing concepts, to compose the complete connection from rule specification 
to evaluation in terms of the joint outcomes that are encouraged by the regulations in place.

In order to write rule configurations in a systematic manner, we present our novel Action Situation Language (ASL). This 
is a machine-readable logical language (implemented in Prolog) whose syntax is highly tailored to the exogenous variables 
outlined in the IAD framework (see Fig. 1). ASL is complemented by a game engine that takes as input a valid action 
situation description and automatically generates its semantics as an extensive-form game (EFG). EFGs are abstract and very 
general models, prevalent in the microeconomics field [12, Ch.9], that can be instantiated to represent a wide variety of 
social interactions among an arbitrary number of agents. Although environmental and community attributes also play a role 
in generating the EFG semantics, we are particularly interested in the impact that rules have on the resulting formal model. 
In fact, an essential component of the game engine is a rule interpreter, whose function is to query the rule base, process 
their implications and solve conflicts between contradicting rules.

In fact, the two main innovations we present (ASL plus its game engine) bridge the gap between the normative multi-
agent systems (norMAS) and game theory fields. In norMAS, a great deal of work has been devoted to the study of norms, 
rules and other constraining mechanisms to achieve coordination and socially beneficial behavior among autonomous agents 
[13–15]. In parallel, game theory has provided a powerful toolbox to model multiagent interactions of competitive, cooper-
ative and hybrid nature. Very well established game theoretical solution concepts are prevalent across the MAS literature 
(e.g. [16,17]). However, in game theory, the rules that configure the structure of the interaction become irrelevant once the 
formal model has been built, and they are often expressed in non-systematic, plain natural language. With ASL, such rules 
can be expressed in a systematic manner and their semantically equivalent formal game is automatically generated by the 
game engine.

The choice of EFGs as the semantics for an ASL description is motivated by the availability of many game-theoretical 
solution concepts, such as traditional rationality notions (e.g. Nash or correlated equilibrium, subgame perfect equilibria, 
etc.) and social properties of outcomes (e.g. Pareto efficiency, social welfare), that can be readily applied to any model built 
by the game engine. Due to the prevalence of these well-established concepts in the game theory literature, we do not see 
the need to provide new solution concepts of our own. Introducing such models of agent decision-making (either “rational” 
in the traditional sense or not) amounts to modeling the participant component of an action arena (see Fig. 1). This step 
then paves the way to compute the most likely outcomes and evaluating them according to their optimality, efficiency, or 
social welfare. At this point, the process that takes in a rule configuration and evaluates its impact is complete, and the 
community of agents involved is informed about the repercussion that such regulations would have on them, were they to 
be adopted.

1.3. Related work

Originally, the IAD framework was complemented by the Institutional Grammar (IG) [18]. The IG parses institutional 
statements (which include strategies, norms in the sense of conventions, and regulative rules) into five fields: the attributes 
(A) of the participants to whom the statement applies; the deontic (D) modality (permitted, forbidden or obliged); the 
aim (I) of the statement, meaning the action or outcome to whom the deontic applies; the condition (C) under which the 
statement applies; and the or-else (O) field which states the consequences of non-compliance. Put together, these fields 
constitute the ADICO syntax. The three types of institutional statements are distinguished by the fields that are necessary 
to describe them: AIC for strategies, ADIC for conventions and ADICO for rules. Lately, the IG has spurred renewed interest, 
with extensions to the original proposal including the nesting of statements [19] and the distinction between different levels 
of granularity in the parsing [20].

Although the early version of the IG did contain examples of formal games built from institutional statements [see 2, 
Ch. 5-6], no attention has been paid at automating this process, as the ADICO syntax is not designed as a machine-readable 
language. However, one of its most interesting features, which we will import into ASL to some extent, is the classification 
of rules based on the component of the action situation that they target, according to the aim (I) field.

4



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Although not being machine-readable, some works have attempted to make the ADICO syntax operational in agent-
based models [21,22]. There, the ADICO syntax is used to represent agents’ strategies and shared conventions. However, 
these works are limited in scope, since they use very restricted forms of institutional statements (AIC and ADIC statements 
obtained from combinations of a pre-defined set of possibilities for every field) and only target the modeling of common-
pool resource situations, i.e. natural resources that are jointly exploited by a community of farmers, fishers, loggers, etc., and 
whose easy access makes it very difficult to forcefully exclude anyone from accessing it [5]. Although the IAD framework 
indeed accounts for the analysis of this type of scenarios, it is intended to identify and analyze the components of a wide 
variety of social interactions. Due to the limitations in these previous works, we choose not to build on top of them and 
move away from the ADICO syntax by defining our own machine-readable language which is able to model a large range of 
action situations by leveraging the generality of game theoretical models.

Another work with the same objective as ours (turning the IAD framework into a general-purpose operational computa-
tional tool) has been developed by [23] as the Modeling Agent systems based on Institutional Analysis (MAIA) framework. 
Itsworkflow is somewhat similar to ours: input an action situation description into a web application (we feed an ASL de-
scription into the game engine) that automatically generates an executable script for an agent-based simulation (our engine 
generates a game theoretical model). Beyond technical differences ([23] employs Java plus HTML, while we use a combina-
tion of Prolog and Python), our contributions diverge in the encoding of institutional statements, as [23] stick to the ADICO 
syntax, while we propose a new if-then-where syntax.

However, the most significant difference between [23] and the present work lies in the approach to the “Participants” 
component in Fig. 1. Our computational model of the IAD framework is agnostic with respect to the decision-making model 
participants follow once they find themselves within an action arena. Hence, modeling participants and generating an action 
situation representation are independent tasks and, in principle, the same decision-making model can be applied across a 
wide diversity of situations, e.g. Nash equilibria computation can be applied to any extensive-form game. In contrast, the 
MAIA framework requires a criterion for decision-making to be explicitly provided as an input to their simulation generator, 
and therefore it needs for the participants to be modeled beforehand and crafted for every particular simulation. Such 
criterion is tailored to the context at hand, and is not, in principle, exportable to other situations.

On another front, the field of General Game Playing (GGP) within the AI community has come up through the years with 
machine-processable languages for the specification of general games. Most prominently, the Game Description Language 
(GDL) [24] is a high-level language for the specification of games with a finite number of players and legal moves. GDL 
provides compact descriptions of deterministic classical games (such as chess and checkers) and also admits a form of 
restricted imperfect information in the form of simultaneous moves, a feature that we incorporate into our language.

Since its creation, some extensions have been added to GDL in order to improve its expressive power. Most notably, 
GDL-II [25] incorporates the possibility of imperfect information and random moves by nature, although limiting those to a 
uniform probability distribution. Later, yet another addition resulted in the introduction of GDL-III, where epistemic games 
in which the rules depend on the knowledge of the agents can be represented by introducing player introspection [26]. 
Beyond game playing, GDL (in its original version) has been used for more socially relevant applications, such as mediated 
dispute resolution [27] and automated negotiation [28].

For comparison purposes, ASL and GSL descriptions of the benchmark Iterated Prisoner’s Dilemma game are displayed 
in Listings 1 to 4. Although both GDL and our ASL are logical languages for game specification, some of the features of 
ASL make it much better suited than GDL for modeling socioeconomic interactions. First, when using the term “rules of the 
game” in relation to GDL, it is referring to the complete game description (i.e. the logical program). In contrast, by “rules” in 
this work we refer to one of the components describing an action situation, i.e. to the exogenous variable “rules” in Fig. 1, 
separate from biophysical conditions and attributes of the community.

Second, although the authors in [25] include a qualitative description of a procedure to turn GDL descriptions into 
extensive-form games (and vice-versa), this is not a central contribution of their work. Instead, they provide a logic for 
reasoning about GDL game descriptions based on a variant of the Situation Calculus [29]. Differently, we put a lot of focus 
on the interpretation and the translation of ASL descriptions into EFGs. These are the most prevalent models to represent 
social interactions in microeconomics and policy analysis (see the examples in Section 6). They are abstract and general 
enough to capture a wide variety of interactions, while at the same time being amenable for analysis by implementing 
notions of rationality that are prevalent across the social sciences.

Finally, the feature that sets ASL apart from GDL is the fact that ASL descriptions are meant to be extensible. That is, an 
ASL description is intended to be expanded with additional higher-priority rules. In other words, the same ASL description 
can give rise to two different multiagent interactions, depending on whether new rules in addition to the default ones are 
included or not. Differently, GDL game descriptions are static and not meant for modification. This is reflected in the fact 
that GDL does not incorporate any mechanism to solve conflicts between rules, while ASL does.

5



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

A game description system previous to GDL was the Game Language (Gala) [30]. The focus of the Gala system was 
on the efficient computation of solutions of large imperfect information game trees, and it suffers from some of the same 
drawbacks that make it unsuitable for the representation of socioeconomic interactions. In particular, Gala does not consider 
the rules of the game separate from other relevant exogenous variables either, nor are its descriptions meant to be extended.

2. ASL syntax

Our intention is to define the syntax of ASL as fully machine-readable, yet also relatively syntactically friendly to make 
it accessible to social science scholars. In order to completely describe an action situation, our language must specify the 
three sets of exogenous variables that affect it (see Fig. 1):

• Attributes of the community: the agents susceptible of taking part in the interaction, plus any relevant characteristics: 
age, gender, ethnicity, etc.

• Biophysical and environmental conditions: land topology, location of resources, etc.
• The rules structuring the situation, in particular the following four types, according to which aspect of the action 

situation they address:
– Boundary rules: which agents are allowed to enter the action situation. For example, in many countries it is required 

to be over 18 years old to participate in an electoral process.
– Position rules: what roles do the participants take on. For example, candidate, voter, etc.
– Choice rules: what actions are available to the various roles under the current conditions. For example, an agent with 

the role voter can take the action to vote for one (or none) of the candidates.
– Control rules: what are the effects of those actions. In a majority rule electoral process, the candidate with the most 

votes gets appointed to the position in contention.

Additionally, the following information is also necessary:

• The initial conditions when the interaction starts.
• The termination conditions under which the interaction halts.
• Which facts describing the state of the system can be simultaneously true (for example, an agent cannot be at two 

different locations at the same time).

As explained in Section 1.1, we consider rules in the sense of regulations and physical principles. Concerning the former, 
rule statements in ASL completely encapsulate human-made regulations. In fact, boundary, position and choice rules (which 
deal with providing agents with access to the social interaction, a role in it and actions to affect it, respectively) are not 
in any way related to the natural principles governing the environment. Concerning physical principles, these are captured 
both by control rules that dictate the dynamics of the system (see Section 3) and incompatibilities between facts, which are 
expressed through a dedicated predicate symbol.

ASL descriptions follow the standard syntax of logic programming and are thus composed of constant symbols, function 
symbols, predicate symbols and variables. Expressions are classified as one of the following:

• A term is a variable, or a function symbol with terms as arguments.
• A literal is a predicate symbol (or its negation) with terms as arguments. Terms and literals that do not contain any free 

variables are called ground terms and ground literals respectively.
• A clause is an expression of the form h : −b1, ..., bn , where the head h is a non-negated literal and the body b1, ..., bn

are literals, with the meaning that b1, ..., bn together imply h.

Also, it is worth mentioning lists, which are ordered sets of elements are enclosed by “[” and “]” (the empty list is written 
as “[]”). Also, the anonymous variable is represented by a single underscore _. Its different occurrences may represent 
different literals. Regular variables, in contrast, start with a capital letter (e.g. Agent, Action) and their occurrences are 
all instantiated to the same ground literal within the scope of a clause.

ASL descriptions define, primarily, how a multiagent system evolves and transitions between states. A state st is defined 
as a finite set of ground literals, st = { f1, ..., fn} (if p is an m-ary predicate symbol and α1, ..., αm are ground terms, then 
p(α1, ..., αm) is a ground term). The predicate symbols used to describe a particular action situation depend on the domain 
at hand and are a design choice by the user. Hence, the truth of a fact (i.e. a ground literal) f i in state st holds iff f i ∈ st . How 
the facts are initialized and evolve is a matter for the building of the EFG semantics from the ASL description (Section 4.2) 
and the interpretation of control rules (Section 3.2).

The keywords of ASL are gathered in Table 1. Most of these appear in rule/4 arguments, and only agent/1, ini-
tially/1, terminal/0 and incompatible/2 are used as standalone predicates. In fact, the agent/1 predicate 
symbol appears both within rule statement and as a standalone predicate. We start by reviewing the predicates that 
do not appear within rules. First, agent(Ag) denotes Ag as an individual susceptible of entering the action situation. 

6



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Table 1
Action Situation Language keywords, sorted into reserved predicate symbols (with their 
arity) and operators (with their type in parentheses).

Predicates Operators

agent/1 rule/4
participates/1 role/2 if (prefix) then (infix)
can/2 does/2 where (infix) ∼ (prefix)
initially/1 terminal/0 withProb (infix) and (infix)
incompatible/2

Thus, this predicate provides information on the attributes of the community. If needed, domain-dependent predicates of 
the type feature_name(Ag,Val) can be added to encode agent attributes. For example, age(alice,34).

Second, initially(F) indicates that literal F holds true at the start of the interaction, prior to any action being 
executed. For example, to indicate that at the start of the interaction, all agents, regardless of their role, are at the origin of 
coordinates, we need to include the clause initially(at(Ag, position(0,0))) :- role(Ag,_). terminal/0
plays the opposite role, as it returns true whenever the conditions for halting the interaction are met. For example, to 
indicate that the interaction stops the moment an agent makes it to a finish line placed horizontally at some height y f l , we 
need to include the clause terminal :- at(Ag, position(_,Y)), Y>= y_fl.

Finally, incompatible(F,L) states that literal F cannot be simultaneously true with the literals in list L. Formally, 
incompatible( f , L) means that f /∈ st , where st = {li | li ∈ L} is the state built from the literals in list L. For example, 
to indicate that agents cannot be at two different positions simultaneously, we need to include the clause incompati-
ble(at(Ag,Pos1),L) :- member(at(Ag,Pos2),L), Pos1\==Pos2.

This example may raise the doubt of why we have chosen to have the second argument to incompatible/2 literals 
be a list, instead of just a literal. We believe that having a list allows for greater flexibility in ASL descriptions. For example, 
suppose fact f1 is only incompatible with facts f2 and f3 simultaneously, meaning that f1 cannot be part of a state only if 
f2 and f3 are both part of it. This statement could not be expressed if the second argument to incompatible/2 were 
a single literal. With our current syntax, it can be captured by the clause incompatible( f1,L) :- member( f2,L), 
member( f3,L).

We move on now to rule/4 predicates. All of its clauses, regardless of the component they target, follow the general 
template in Fig. 3, with the following four arguments:

1. An identifier Id that denotes the action situation where the rule is to be applied.
2. The Type of the rule, one of either boundary, position, choice or control.
3. The Priority of the rule. This is a non-negative integer that determines which statement is to prevail in case several 

rules lead to contradicting consequences. The rule statements that are supposed to reflect the physical principles of 
the domain are assigned priority 0 and are referred to as the default rules, while additional human-made regulations 
have strictly positive priorities. The reserved overwriting operator ~ is introduced in order to have high priority rule 
nullify the effects of lower priority rules. We use the term overwriting instead of negation operator since ASL, as a logic 
programming language, follows negation as failure.

4. The content of the rule is expressed with an if-then-where statement (the three are all ASL reserved operators, see 
Table 1). The content of the Condition and Consequence fields is subject to syntactic constraints according to the 
type of the rule in question. We review these syntactic constraints in detail in the next section. The Constraints field 
always consists of a list of literals and constraints, whose free variables unify with those in Condition and Conse-
quence. The separation of rule pre-conditions into a short Condition and a Constraints field is not technically 
indispensable, but rather a stylistic choice to help keep the syntax concise.

Besides predicate symbols, Table 1 also displays reserved operators, all of which appear within the scope of rule/4
literals. Since ASL is implemented in Prolog, action situation descriptions can also make use of built-in Prolog predicates 
(notably member(Elem,List), which has already been invoked) and operators, such as those for comparing terms. The 
least familiar of these are Term1@<Term2 (also @<=, @>, @>=), which is interpreted as Term1 preceding Term2 in the 
standard order of terms (i.e. also considering characters). Additionally, The Prolog library for constraint logic programming 

Rule ::= rule(
Id,
Type,
Priority,
if Condition then Consequence where Constraints

).
Type ::= boundary | position | choice | control

Priority ::= 0 | 1 | ... | ∞

Fig. 3. General syntax for if-then-where rules.

7



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Table 2
Syntactic restrictions for the Condition and Consequence fields for every of the proposed rule 
types. α stands for a literal, i.e. a predicate symbol with terms as arguments.

Rule type Condition Consequence

Boundary agent(Ag) [∼]participates(Ag)
Position participates(Ag) [∼]role(Ag,R)
Choice role(Ag,R) [∼]can(Ag,Ac)
Control joint_action [consequence1 withProb

p1,
consequence2 withProb p2,
...]

joint_action ::= does(Ag,Ac) [and joint_action]
consequence ::= α [and consequence]

over real numbers is autoloaded with the ASL interpreter, part of the game engine. This library provides support for numer-
ical constraints with syntax {Constraints} (for example, {Payoff< 10}).

2.1. Syntax by rule type

As introduced, ASL considers four rule types (boundary, position, choice and control) that target different action situation 
components in Fig. 2. First, the boundary rules are aimed at regulating the participants (1) components of action situations, 
as they designate which agents are able to enter the interaction. Second, position rules are responsible for assigning partic-
ipants to their roles or positions (2). A participant may take on multiple roles. Third, choice rules assign actions (3) to roles, 
not to participants nor agents directly. Hence, an agent that is designated as a participant but is not assigned any role is 
irrelevant to the evolution of the interaction. Finally, control rules state what is the effect of actions on the system. Hence, 
this last rule type is directly responsible for the control (5) component of action situations.

Note that there is some disconnection between our four rule types and the seven variables within an action situation 
in Fig. 2. There are no dedicated rule types for the outcomes (4), costs and benefits (7), and information (6) variables. For 
the first two (outcomes, and costs and benefits), we argue that control rules are in charge. As they effectively regulate how 
does the state of the world evolve, they are also indirectly determining what outcomes are possible. Additionally, if one 
considers monetary and material rewards to be relevant in the current action situation, it is just enough to introduce a 
payoff predicate, initialized, for example, with initially(payoff(Ag,0)) :- role(Ag,some_role). Then, its evolution 
can be regulated with control rules, that map (possibly joint) actions to monetary gains. A simple example of the use of 
control rules to regulate payoffs comes with the Iterated Prisoner’s Dilemma example in Section 2.3.

As for the information component, it is left unaddressed in this early version of ASL. As we explain in Section 4, we 
only consider a restricted version of imperfect information in the semantics of any ASL description (much like in GDL 
game specifications). Although introducing information constraints to limit players’ observability would certainly make for 
an interesting extension, we do not include it here as we anticipate that it would greatly increase the complexity of the 
resulting formal games, potentially opening the door for incomplete information and imperfect recall games.

As previously announced, the content of rule statements follows the syntax if Condition then Consequence 
where Constraints, with additional restrictions on the Condition and Consequence fields depending on the rule 
type. These restrictions are displayed in Table 2. Note that the boundary, position and choice rules all have an analogous 
syntax: one agent/1, participates/1 or role/2 literal as the Condition, and participates/1, role/2 or
can/2 as the Consequence, respectively. Also, their Consequence literal might be preceded by the overwriting operator 
∼, although it only makes sense to use it with non-default rules. The overwriting operator ∼ should not be confused with 
strong negation. The operator ∼ is used to have higher priority rules overwrite lower priority rules in case conflict arises 
between the consequences of different rule statements. Our computational model still uses the closed-world assumption 
and consequently negation as failure.

In contrast to the other rule types, control rules may have in their Condition multiple does/2 literals concatenated 
by the and operator to account for the possibility that some effects are only brought about by joint actions, i.e. by hav-
ing several agents perform some action simultaneously. If one wished to express the fact that several different actions
Act1 ... Actn , performed by several different agents Ag1 ... Agn , lead to the same effect (analogous to an or operator), 
one needs to include several control rules, one per each agent-action pair: if does(Ag1,Act1) then Conseq, ..., if 
does(Agn,Actn) then Conseq.

The Consequence of control rules, instead of a single literal, is a list where each of its members consists of (possibly 
several) literals concatenated with the and operator. In contrast with the other rule types, the literals that can be included 
in the Consequence field of control rule are not syntactically restricted. In general, they contain domain-specific predicate 
symbols, chosen to specifically reflect the state properties that are relevant to the action situation at hand.

The whole conjunction of predicates that makes up one potential consequence is assigned some probability with the 
operator withProb. The introduction of this operator is completely motivated by the desire to make control rules expres-
sive enough as to encapsulate non-deterministic environments, where actions performed by the agents may have random 

8



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

effects. In order for a control rule to be valid, the probability distribution over the potential consequences must be well-
defined, i.e. pi must fall in the range [0, 1] for all i and must add up to unity.1 Of course, deterministic environments can be 
expressed by having all control rules have one single consequence in their Consequence list, assigned probability equal 
to one.

In addition to stochastic effects, actions performed by agents may have different effects depending on the context where 
they are performed, i.e. the facts that hold true in the current state of the system. Such dependencies are handled through 
the Constraints field. Suppose the joint action profile μ = does(ag1, ac1) and does(ag2, ac2), ... has consequences c1
when the state of the system is in s1, consequences c2 when in s2, etc. To reflect this, the action situation description would 
need to include one control rule for every ci , si pair, with the following content: if μ then ci where [si].

Regimentation and deontic modalities In the norMAS field, the term norms often refers to constraints and prescriptions on 
the behavior of agents intended to coordinate their actions [13]. Typically, norms are represented using a deontic modality
(prohibited (P) or obliged (O), following [31]). Although the terminology “deontic modality” is inspired by deontic logic 
[32], P and O are rather used as operators to express constraints on actions (as in [33]) or states (as in [34,35]). This is 
in line with the operational semantics that we define for ASL in Section 4. Additionally, such normative constraints can 
be regimented or not [36]. In regimented domains, the nature of the application allows for the perfect enforcement of the 
desired constraints. Meanwhile, in non-regimented domains, some monitoring and sanctioning mechanism is implemented 
in order to deter agents from violating the norms.

In this short section, we provide guidelines on how prohibitions and obligations on actions can be specified through 
ASL rule statements, both in the regimented and sanctioning versions. We should note that, in order for any action to be 
possible in the first place, it needs to be explicitly included in a choice rule and assigned to the role capable of executing it.

Regimented constraints are addressed through choice rules, as they effectively allow or deny the possibility to execute 
some action. For example, suppose that the default rules (that model the “unconstrained” situation) are to be overwritten in 
order to prohibit some action, by banning the possibility of executing it. This situation is equivalent to introducing a higher 
priority choice rule of the form:

rule(Id,choice,N,if role(Ag,Role) then ~can(Ag,forbidden_action) where [ConditionsForProhibition
]).

where N is a strictly positive integer and Role is the position (following Fig. 2) that was originally assigned the action in 
question.

Similarly, regimented obligation can also be modeled through choice rules. To do so, we use the following equivalence 
between prohibition and obligation:

O (ai | ψ) ⇔ P
(
a j | ψ)

, ∀a j �= ai (1)

which states that, provided that some condition ψ holds true at the current state, the obligation to perform action ai is 
equivalent to the prohibition of performing any other action a j . Then, a regimented obligation can be expressed in ASL as:

rule(Id,choice,N,if role(Ag,Role) then ~can(Ag,Ac)
where [Ac\=obliged_action,ConditionsForObligation]).

Non-regimented norms assume that it is not possible to completely ban the execution of forbidden actions, and in-
stead they attempt to discourage agents away from them. In ASL, this approach can be expressed through control rules. A 
deterrence for a forbidden action follows the template:

rule(Id,control,N,if does(Ag,forbidden_action) then [Punishment withProb P,
NoPunishment withProb 1-P] where [ConditionsForProhibition]).

where P is the probability of detection violation.
Similarly to regimented norms, the leap from non-regimented prohibition to obligations is made thanks to Equation (1):

rule(Id,control,N,if does(Ag,Ac) then [Punishment withProb P, NoPunishment withProb 1-P]
where [Ac\=obliged_action,ConditionsForObligation]).

The addition of rules following the templates provided in this section is useful if one wishes to analyze the effects of 
introducing prohibition and obligation norms, either regimented or not, on a (possibly) unregulated social interaction. That 
is the reason why the priority N must be strictly positive, so it overwrites any conflicting default rules representing the 
unregulated interaction. This provides a big point of contact between this work and the concerns of the norMAS community 
[15], that deals with the representation and implementation of norms (obligations and prohibitions) in multiagent systems.

1 If that is not the case, the game engine that interprets the rules will raise an error, and the game that corresponds to that ASL description will not be 
generated.

9



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

2.2. Valid ASL descriptions

Following the syntax of ASL, a valid action situation description A can be written as logic program composed of a finite 
set of clauses. We organize them into three exclusive subsets, one for every set of exogenous variables determining the 
structure of an action situation (see Fig. 1):

A = � ∪ � ∪ � (2)

where:

• � is the agents base, which includes the information on the agents and their attributes.
• � is the states base, which includes the information on biophysical features, plus clauses with initially/1, termi-
nal/0 and incompatible/2 predicate symbols in their heads.

• � is the rules base, which contains the rule/4 literals (i.e. bodyless clauses).

In order to ensure the unambiguous interpretation of an action situation description, some limitations are placed on the 
use of the reserved predicates within the body of clauses. Additionally, some minor directives are intended to ensure the 
clear separation between the community attributes, the biophysical features and the rules into three separate knowledge 
bases.

Definition 1 (valid ASL description). A valid ASL description A is a finite set of clauses split into three exclusive subsets � ∪
� ∪ �, where:

• agent/1 predicate symbols appear only as the head of clauses in �.
• initially/1, terminal/0 and incompatible/2 predicate symbols appear only in the head of clauses in �. 

Also, initially/1 clauses do not contain can/1 nor does/2 predicates in their bodies. This restriction reflects 
the fact that the initial state has to be completely determined before agents inspect what actions are at their disposal 
(can/2) or they choose one of those actions to perform (does/2). Furthermore, incompatible/2 does not have a 
reserved predicate symbol as its first argument.

• rule/4 predicate symbols appear only as literals (clauses with no body) in �, plus they follow the syntactic restrictions 
exposed in Table 2.

2.3. First example: iterated Prisoner’s Dilemma

The best way to get a grasp on the ASL syntax is to go through a simple illustrative example. In this section, we show 
how the iterated version of the benchmark Prisoner’s Dilemma game can be specified in ASL. Additionally, we take the 
opportunity to compare ASL to GDL in more detail, by differentiating the descriptions that both languages make of this 
benchmark. Its simplicity and familiarity to a wide range of audiences makes it a perfect candidate to be the first described 
with our language. Other more sophisticated examples are presented in Section 6.

In the Prisoner’s Dilemma game, two agents are put in identical positions, where they can choose one of two actions 
(either “cooperate” or “defect”), with no prior opportunity to communicate with one another. The normal and extensive-
form representation of the game appear in Fig. 4. If an agent cheats on the other, the defector receives a large temptation 
payoff (T = 9) at the expense of the sucker (S = 0). If the two agents cooperate, they both receive identical reward payoffs 
(R = 6) that are larger than the punishment payoff (P = 3) they get when both choose to defect. This game has attracted 
a lot of interest from scholars in a wide range of disciplines because, although the most socially beneficial thing to do is 
for both agents to cooperate with one another, rational behavior stipulates that they should both defect, leading to worse 
individual and group reward. In game theoretical terms, the Nash equilibrium is not Pareto optimal. In its iterated version, 
agents typically start with wealth equal to zero. They play several consecutive rounds of the one-shot game, and their wealth 
is increased by the reward they get at every round. The interaction is halted after some pre-defined number of rounds have 
been completed.

The ASL description of the iterated Prisoner’s Dilemma game appears in Listings 1 to 3. First, the agents and states 
knowledge bases appear in Listings 1 and 2 respectively. In the agents base, two agents are declared with no additional 
attributes. In the states base, the initial conditions are set to zero wealth for all prisoners. Also, a counter for the number of 
rounds is initialized. Finally, the incompatible/2 clauses indicate that there can only be one rounds/1 literal, as well 
as one payoff/2 literal per agent in a state.

Second, the rule base is displayed in Listing 3. There are 8 rules in total: 1 boundary, 1 position, 2 choice and 4 control. 
They are all identified by the tag ipd and have priority equal to zero since they are the defaults. The boundary, position 
and choice rules are all very generic. All agents are allowed to participate by the boundary rules, they take on one role (that 
of a prisoner) according to the position rules and they are allowed to cooperate or defect with no further constraints by the 
choice rules.

10



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

cooperate defect

cooperate 6,6 0,9
defect 9,0 3,3

(a)

(b)

Fig. 4. The Prisoner’s Dilemma game in the (a) normal-form and (b) extensive-form representations. Note the use of an information set (defined in Sec-
tion 4.1) for player 2, denoted with the dashed line joining nodes 2 and 3, to capture the simultaneous nature of the moves.

1 agent(alice).
2 agent(bob).

Listing 1: Agents base � for the iterated Prisoner’s Dilemma ASL description.

1 initially(payoff(P,0)) :- role(P,prisoner).
2 initially(rounds(0)).
3 terminal :- rounds(N),N>=3.
4 incompatible(rounds(_),L) :- member(rounds(_),L).
5 incompatible(payoff(P,_),L) :- member(payoff(P,_),L).

Listing 2: States base � for the iterated Prisoner’s Dilemma ASL description, played for a total of three rounds.

1 rule(ipd,boundary,0,if agent(A) then participates(A) where []).
2

3 rule(ipd,position,0,if participates(A) then role(A,prisoner) where []).
4

5 rule(ipd,choice,0,if role(P,prisoner) then can(P,cooperate) where []).
6 rule(ipd,choice,0,if role(P,prisoner) then can(P,defect) where []).
7

8 % P1@<P2 avoids equivalent instantiations of some control rules
9 rule(ipd,control,0,if does(P1,_) and does(P2,_) then [rounds(M) withProb 1] where [P1@<P2,rounds(

N),{M=N+1}]).
10 rule(ipd,control,0,if does(P1,cooperate) and does(P2,cooperate)then [payoff(P1,Y1) and payoff(P2,

Y2) withProb 1] where [P1@<P2,payoff(P1,X1),payoff(P2,X2),{Y1=X1+6,Y2=X2+6}]).
11 rule(ipd,control,0,if does(P1,defect) and does(P2,defect) then [payoff(P1,Y1) and payoff(P2,Y2)

withProb 1] where [P1@<P2,payoff(P1,X1),payoff(P2,X2),{Y1=X1+3,Y2=X2+3}]).
12 rule(ipd,control,0,if does(P1,cooperate) and does(P2,defect) then [payoff(P1,Y1) and payoff(P2,Y2

) withProb 1] where [payoff(P1,X1),payoff(P2,X2),{Y1=X1+0,Y2=X2+9}]).

Listing 3: Rule base for the iterated Prisoner’s Dilemma ASL description.

The control rules exemplify the use of the Constraints field. The first one declares that, in order for the rounds 
counter to advance, two distinct participants must take some action. The other three control rules have identical structures 
as they all control the rewards received as a function of the joint actions at every stage of the game. Although there are four 
possibilities in the Prisoner’s Dilemma game (see Fig. 4a), due to symmetry we need only three control rules. The dynamics 
of this environment are deterministic, hence all control rules have one single consequence with probability equal to unity.

Now that the syntax of ASL has been thoroughly explained, we are able to provide a comparison with that of GDL, whose 
description for the iterated Prisoner’s Dilemma appears in Listing 4. The first small difference is that the GDL description 
is not split into components like the ASL one. Also, ASL separates the notions of agent, participants and role. In contrast, 
GDL merges the three concepts and declares any player participating in the game using the predicate role/1. Concerning 

11



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

1 role(alice).
2 role(bob).
3

4 init(payoff(Ag,0)) :- role(Ag).
5 init(rounds(0)).
6 terminal :- rounds(N),N>=3.
7

8 legal(Ag,cooperate) :- role(Ag).
9 legal(Ag,defect) :- role(Ag).

10

11 next(rounds(M)) :- true(rounds(N)), M=N+1.
12 next(payoff(Ag1, Y)) :- does(Ag1,cooperate),does(Ag2,cooperate),role(Ag1),role(Ag2),Ag1@<Ag2,true

(payoff(Ag1,X)),Y=X+6.
13 next(payoff(Ag1, Y)) :- does(Ag1,defect),does(Ag2,defect),role(Ag1),role(Ag2),Ag1@<Ag2,true(

payoff(Ag1,X)),Y=X+3.
14 next(payoff(Ag1, Y)) :- does(Ag1,cooperate),does(Ag2,defect),role(Ag1),role(Ag2),true(payoff(Ag1,

X)),Y=X+0.
15 next(payoff(Ag1, Y)) :- does(Ag1,defect),does(Ag2,cooperate),role(Ag1),role(Ag2),true(payoff(Ag1,

X)),Y=X+9.

Listing 4: GDL description of the Iterated Prisoner’s Dilemma game in infix syntax.

similarities, the initially/1 and terminal/0 clauses in ASL have the same function (and also practically the same 
spelling) as init/1 and terminal/0 clauses in GDL.

Regarding the rule/4 literals in GDL, boundary and position rules do not have an equivalent in GDL since, as we have 
already mentioned, this latter language does not distinguish between agents, participants and roles, as it is not grounded 
in any social science theory but rather developed by and for the General Game Playing community. Choice rules in ASL are 
analogous to legal/2 clauses in GDL, as both have the function of assigning actions to roles. Finally, control rules in ASL 
are analogous to next/1 clauses in GDL, which contain as argument a literal that will hold true provided that actions in
does/2 predicates are performed and the facts included in true/1 predicates are true in the current state.

The reader will have noticed that GDL clauses do not contain anything analogous to the rule priority introduced in ASL. 
This feature, we believe, sets ASL apart from GDL. It allows ASL description to be extended with, for instance, additional 
norms such as the ones suggested in the previous discussion on obligations and prohibitions. Therefore, it makes ASL much 
more suitable to the analysis of socioeconomic scenarios, where the interest is on the effect that changes in regulations will 
have on a given scenario, rather than on the construction of a new interaction model from scratch.

3. Rule interpretation

As introduced early on, an ASL description has its semantics automatically generated as a formal game model by a 
computational engine. To do so, the game engine has to repeatedly interpret the rules in place. This task is performed by 
the “interpreter.pl” script (see Fig. 1).

In this section, we go through the rule interpretation process in detail. We split it into two steps: (1) rule activation 
and (2) processing of consequences. Throughout, we denote an action situation description, split into its three components, 
again as A = � ∪ � ∪ �. On several occasions, this set of clauses is expanded by ground literals on the participants φ =
{participates(ag1), ...}, their roles ρ = {role(ag1, r1), ...}, the current state of the system st = { f1, ..., fn} (where n
is the number of necessary literals to completely describe the state of the system) and the actions executed by agents 
μ = {does(ag1, ac1), ...}. All of these sets (φ, ρ , st and μ) have a finite number of elements and do not belong to any of 
the components of the description (�, � or �), but are appended to the action situation description as a whole at concrete 
moments during the game construction procedure. As we will see in Section 4, the participants φ and roles ρ remain 
constant throughout the interaction, while the joint actions μ and the current state st change as the system evolves. Since 
the literals in st and μ change as the system evolve, we refer to them as fluents.

First, the interpreter has to find which rules in � are active given the current state of the system. In general, rule/4
statements contain free variables that have to be instantiated to constants given the ASL description A and the current state 
of the system. When processing boundary rules, A does not need to be expanded. However, when processing position rules, 
the set of participant atoms φ has to be appended to A. For processing choice rules, in addition to the set of participants 
φ, the set of roles ρ and the current state of the system st are necessary. Finally, for control rules, all of the previous 
extensions are necessary, plus the fluents denoting what actions μ agents are taking. When a rule is fully instantiated, we 
say that it has been activated or triggered. A rule may be activated multiple times, as many as possible instantiations of its 
free variables are possible.

The clause responsible for finding out active rules is query_rule(Rule), shown in Listing 5. Its examination reveals 
that, in fact, a rule in ASL:

12



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

1 query_rule(rule(ID,Type,Priority,if Condition then Consequence where Constraints)) :-
2 rule(ID,Type,Priority,if Condition then Consequence where Constraints),
3 maplist(query,[Condition|Constraints]).
4

5 query(Q) :- call(Q).
6 query(A and B) :- query(A),query(B).

Listing 5: Prolog interpreter predicates to find which rules are activated given the current state of the system st .

rule(..., if Condition then Consequence where [Constraint1, Constraint2 ...]).

is equivalent to a traditional clause:

Consequence :- Condition, Constraint1, Constraint2, ... .

However, beyond its friendlier syntax as compared to traditional clauses, rule/4 statements contain a Type argument, 
that allows to activate different kinds of rules depending on the step of the game construction process that the engine is in. 
Additionally, the Priority field helps sort out conflicts between norms with contradicting or incompatible consequences, 
and also filter out rules whose priority is over some threshold.

The rule activation step is common to all rule types, and it helps retrieve the consequences that rules have and that will 
have some effect on the resulting interaction. But first, these consequences need to be processed. Since boundary, position 
and choice rules all have analogous syntactic restrictions, the processing of their derived consequences is also shared. We 
deal with these three separately from the more complex control rules.

3.1. Processing of boundary, position and choice rules

As displayed in Table 2, boundary, position and choice rules have similar syntactic restrictions as their Consequence
field contains a single literal. The consequences for all of these rule types are processed by the function Get-Simple-Conseqs

(see Algorithm 1 in Appendix A). First, the (extended) action situation description is queried in order to find the active rules 
of the input type (Line 3). The pr : f pairs are stored (where pr is the integer rule priority and f is the ground literal 
derived from the rule’s Consequence field), and those whose priority is over some input threshold are ignored (Line 4).

The inclusion of such a threshold argument is, essentially, for convenience purposes. The reader will note that such an 
argument appears in all other algorithms presented in this work. The aim of this threshold is to allow an ASL user to write 
a single action situation description with rules of several priorities, and effortlessly obtain the formal representations of the 
social interaction when different rules are included, simply by tuning the threshold argument. This avoids the need to write 
(or uncomment) higher priority rules every time their impact in the interaction of interest wants to be assessed.

Next, the pr : f pairs are ordered in descending order of Priority value (ties broken arbitrarily, Line 5). Then, the 
atom f derived from Conseqs is added to the output set if neither that same predicate nor its overwriting (with the prefix 
operator ∼ f ) have already been added to the output set by a higher priority rule (Lines 7-8). Finally, literals preceded by 
the overwriting operator are deleted before the set of facts is returned (Lines 9-10).

The rule interpreter relies on the fact that boundary, position and choice rules are sound. This means that � cannot 
contain two rules of the same type and priority with contradicting consequences (i.e. one rule overwrites the consequences 
of the other). For example, the following two rules should not both be included in the database:

rule(...,boundary,1,if agent(Ag) then participates(Ag) where [age(Ag,N),N>18]).

rule(...,boundary,1,if agent(Ag) then ~participates(Ag) where [age(Ag,N),N>18]).

If such rules were included, the output set of Get-Simple-Conseqs(..., boundary, 1) would not be deterministic, as it would 
depend on how the ties during the sorting procedure are broken.

Note that the ASL description A alone, without any additional fluents, is enough to process only the boundary rules. 
The set of participants φ = {participates(ag1), ...} should be added to the action situation description before processing 
the consequences of position rules. Likewise, in order to process the consequences of choice rules both the roles ρ =
{role(ag1, r1), ...} and the current state st = { f1, ..., fn} have to be added to A. This data is necessary to ensure the proper 
activation of the various rule types.

To conclude the interpretation of simple rules, we illustrate how Algorithm 1 enforces the constraints of regimented 
prohibitions and obligations presented in Section 2.1, which are expressed through choice rules. We exemplify regimented 
prohibitions, the procedure for regimented obligations is analogous. Consider the following two choice rules:

rule(...,choice,0,if role(Ag,role) then can(Ag,ac) where []).

13



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

rule(...,choice,1,if role(Ag,role) then ~can(Ag,ac) where [condition_for_prohibition]).

The first is a default rule that assigns a generic action to a role regardless of the circumstances (note the empty list in the
Constraints field). The second is a higher priority rule that bans these actions under some conditions.

Consider the execution of Algorithm 1 (with argument type = control) with an action situation description including the 
two rules above. Additionally, assume that the state description st = { f1, ..., fn} fulfills the conditions for the second rule to 
be activated (i.e. f1 ∧ ... ∧ fn |= condition_for_prohibition). Then, kv on Line 6 of Algorithm 1 is assigned to:

kv ← [1 :∼ can(ag,ac),0 : can(ag,ac)]

where we are assuming a generic instantiation Ag→ ag .
Then, the loop over kv in Line 7 of Algorithm 1 proceeds as follows:

Iteration

1 C = {∼ can(ag,ac)}
2 f = can(ag,ac) and ∼ f ∈ C → C = {∼ can(ag,ac)}

Finally, ∼ can(ag, ac) is erased from C as it is a literal preceded by ∼. In the final output set, can(ag, ac) is not 
included. Consequently, the constraint expressed by the rule with priority 1 has effectively removed action ac from the 
possible action available to an agent with some role role. This is indeed equivalent to a regimented prohibition.

3.2. Processing of control rules

Control rules have quite different syntax with respect to the other types, hence their consequences are processed by a 
different function, Get-Control-Conseqs (see Algorithm 2 in Appendix A). The added difficulty arises from the fact that 
possibly joint actions have, in general, stochastic consequences. In turn, every potential consequence does not just corre-
spond to a single literal, but to several. Thus, it is not enough to simply return a set of ground literals, but rather a set of 
potential next states and a probability distribution over those, where every state is characterized by a set of fluents.

As control rules regulate how the state of the system transitions due to the actions performed by the agents, the pre-
transition state st = { f1, ..., fn} as well as the joint action whose execution we are examining μ = {does(agi, aci), ...} need 
to be added to the ASL description A. Additionally, it must hold that for any participant ag performing some action aci (i.e. 
∃does(ag, aci) ∈ μ), then ag cannot be taking any other action simultaneously (i.e. �does(ag, ac j) for any ac j �= aci ).

The processing of control rule consequences starts off just as that of the other rule types. First, the instantiations of 
activated control rules are stored, together with their priority as a key (excluding those exceeding some input threshold) 
and sorted by descending priority (Lines 3-5). The set of potential next states St+1 is initialized as a set containing only the 
empty set and unity probability assigned to the empty set (Lines 6-7).

Then, the function loops over the activated rules (Line 8). Every rule is composed of a probability distribution over joint 
consequences, which in turn contain several fluents concatenated by the and operator. The following check is performed 
(Lines 9-12): if any of the literals in any of the potential joint consequences is found to be incompatible with any literal in 
any of the provisional next states in St+1, then that rule, despite having been activated, is ignored. This is done in order 
to avoid inconsistencies in the final probability distribution over the post-transition states. This check guarantees that the 
final probability distribution over St+1 is correct, i.e. adds up to unity, provided that every control rule also has a proper 
probability distribution over its set of consequences.

If an activated control rule passes the check, its consequences are added to the set of potential next states (Lines 13-19). 
Every provisional post-transition state st+1 ∈ St+1 has its set of literals expanded with each of the joint consequences of the 
control rule being examined (Lines 16-17). The probability of the new expanded state is updated as the product between 
the probability of st+1 prior to expansion times that of the joint consequences, provided by the active control rule (Line 18).

One final step is performed before returning the post-transition states and their probability distribution. A loop is run 
over the pairs of pre-transition state literals and the post-transition states (Line 20). If a pre-transition state literal is found 
to be compatible with the literals in the provisional post-transition state, it is dragged over and added to the potential 
next state (Line 21). When this loop is complete, the set of post-transition states St+1 alongside with their probability 
distribution is returned. Note that, because of this final step, if we were to call Get-Control-Conseqs but no control rules 
were activated, the function would just return the pre-transition state (St+1 = {st}) with unit probability (P(st) = 1).

The use of incompatible/2 clauses together with the dragging of pre-transition state literals is the approach that ASL 
takes to tackle one of the problems that any action formalism has to inevitably address: the frame problem [37]. The frame 
problem states that when the state of an action is axiomatized, it should not be necessary to refer to the facts that are not 
affected by it. In ASL, control rules need only include the facts that do change in their Consequence field. By introducing 
the incompatible/2 predicate symbol and having the rule interpreter drag the old ground literals that are consistent 
with those newly derived, the ASL allows for natural expression of control rules where only the facts affected by the actions 
in the Condition field need to be stated.

14



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

This approach to the frame problem that ASL takes is totally different from that taken by GDL. In GDL, given a state 
characterized by a set of fluents st = { f1, ..., fn}, all of the post-transition state literals have to be explicitly derived from
next/1 clauses (which, as explained in Section 2.3, are analogous to ASL’s control rules). GDL does not make use of a 
predicate symbol analogous to ASL’s incompatible/2, and therefore every fact that holds true after a transition from 
state st to state st+1 has to be explicitly stated.

In the discussion of the previous Section 3.1 we introduced the notion of soundness for boundary, position and choice 
rules. An analogous concept applies to control rules. However, due to the more general nature of control rules in comparison 
with the other types (i.e. the literals in their Consequence can be anything), the soundness of control rules relies not on 
the direct comparison of their consequence literals, but on the use of the incompatible/2 clauses.

To illustrate the notion of soundness in control rules, picture the following:

rule(...,control,N1,if does(Ag1,act1) and does(Ag2,act2) then Conseq1 ...).

rule(...,control,N2,if does(Ag1,act1) then Conseq2 where ...).

where Conseq1 and Conseq2 are lists of conjunctions of literals with a well-formed probability attached to each of them. 
The Constraints field has been omitted, and for the sake of discussion, assume it is equal for the two rules. Hence, since 
the conditions of the first rule imply those of the second, if the first rule is activated, then necessarily the second will be 
activated too.

When the two rules are triggered, three possible scenarios arise. First, the two rules may have compatible conse-
quences. In this case, all the literals that appear in the consequence of one rule are compatible with all the literals in 
the consequences of the other. In this case, regardless of their priorities N1 and N2, both rules will be processed by Get-

Control-Conseqs.
Second, the two rules might not have compatible consequences, but the priority of one of them is strictly larger than 

the other (Ni > N j). Then, the rule with the larger priority prevails, and the other is effectively discarded by Get-Control-

Conseqs. The two scenarios discussed so far present no problem and are examples of sound control rules.
The third case corresponds to the different control rules having identical priorities and incompatibilities in their conse-

quences. In this case, one of the two rules will prevail and the other discarded. However, it is not straightforward to predict 
which one will overcome the other, as that depends on the order in which they appear in the rule base � and/or the 
tie-breaking mechanism of the sorting subroutine in Line 5 of Algorithm 2. This is the problematic situation which we refer 
to as an unsound set of control rules.

We close this section by illustrating how the interpretation of control rules by Get-Control-Conseqs enforces the non-
regimented norms presented in Section 2. Again, we illustrate punishment to deter participants from executing a forbidden 
action. The procedure for non-regimented obligations is analogous. Consider the two following control rules:

rule(...,control,0,if does(Ag,act) then [default1 withProb D1, ..., defaultN withProb DN] where
[]).

rule(...,control,1,if does(Ag,act) then [default1 withProb D1*(1-P), ..., defaultN withProb DN

*(1-P), Punish withProb P] where []).

The first rule expresses the effects on a generic action by some agent. In general, such an action is non-deterministic, with 
a set of default consequences each assigned a probability. To simplify the discussion, we leave the Constraints field as 
blank.

The second rule expresses the non-regimented prohibition of the generic action by a higher-priority control rule. Now, 
the probability of incurring punishment corresponds to P , while the probability of being undetected stands at 1 − P . The 
relative proportion of the probabilities for the default consequences is preserved in the prohibiting rule with respect to the 
default one.

Additionally, consider the following set of incompatible/2 clauses:

incompatible(default1, Punish).
.
.
.

incompatible(defaultN, Punish).

When Get-Control-Conseqs is called on an ASL description containing such rules (with argument threshold ≥ 1, and 
assuming that the conditions are such to trigger the rules under discussion), the execution of the algorithm up to Line 7 
(where the activated control rules are gathered), results in the kv local variable:

kv ← [ 1: [default1 withProb D1 ∗ (1 − P ), ..., default1 withProb D N ∗ (1 − P ), Punish withProb P ],

0: [default1 withProb D1, ..., defaultN withProb D N ] ]

15



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Then, the main loop in Get-Control-Conseqs (Lines 8 to 19 in Algorithm 2) first processes the first element in kv , 
i.e. the consequences derived from the rule with priority 1. This step results in the following post-transition states with 
probabilities:

St+1 = {{default1}, ..., {defaultN}, Punish}
P({default1}) = D1 ∗ (1 − P )

.

.

.

P({defaultN}) = DN ∗ (1 − P )

P(Punish) = P

By the time the consequences derived from the control rule with priority 0 are processed, the incompatibility check in 
Lines 9 to 12 of Algorithm 2 returns true and discards the consequences derived from the default rule. Hence (and omitting 
the final steps of the algorithm, Lines 20-21), the returned post-transition states and their probabilities are the ones outlined 
above, where the punishment consequence is assigned some non-zero probability. The forbidden action is still a possibility 
by the acting agent (as the action is not banned by choice rules), but its execution might lead to the default consequences 
or to a deterring punishment.

4. ASL semantics

As reiterated throughout the text, an action situation description has its semantics grounded as an extensive-form game 
(EFG) with a restricted use of imperfect information. Furthermore, the formal game representation is augmented with a set 
of literals at those tree nodes that directly correspond to states of the system. In order not to get ahead of ourselves, we 
first need to review some common definitions from game theory and complement them with some definitions unique to 
this work. We then take a deep dive at how a formal game is built from an arbitrary action situation description, and which 
properties it is ensured to have as a consequence of the building mechanism. Finally, we present the complexity all the 
algorithms necessary to build the EFGs, included those introduced in Section 3.

4.1. Background on game theory

In the field of game theory, the simplest model of a multiagent interaction is provided by a normal-form game:

Definition 2 (normal-form game). A normal-form game is a tuple:

NFG = (P , (Ai)i∈P , (Ui)i∈P )

where:

• P is the set of players (or agents).
• Ai is the set of actions available to player i.
• Ui : A →R is the utility function for player i, which maps every possible joint action profile in A =×i∈P Ai to a numeric 

quantity.

Normal-form games have been widely studied in a variety of fields, from microeconomics to evolutionary theory. How-
ever, they are not suitable to capture sequential interactions where agents might take several actions at different times. 
For this reason, normal-form games are sometimes referred to as stateless games. Moreover, normal-form games do not 
explicitly store information on possible random effects of joint actions.

To address these shortcomings, it is necessary to work with extensive-form games, where the strategic interaction is 
represented as a tree that agents transverse as they take actions. To account for stochastic effects, a new artificial player p0
is added to the set of players, which is usually referred to as “nature” or “chance”. We follow the notation by [38]:

Definition 3 (extensive-form game). An extensive-form game is a tuple:

EFG = (P , (X, E), T , W ,A , p, U )

where:

• P is the set of players (or agents).
• (X, E) is the game tree, where X is the set of nodes (or vertices) and E ⊆ X × X is the set of directed edges. One of 

the nodes x0 ∈ X is the root of the tree (with no incoming edges), such that for all other nodes x ∈ X \ {x0} there is a 
unique path from x0 to x. The subset of nodes Z ⊆ X with no outgoing edges are called the terminal (or leaf ) nodes.

16



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

• T : X \ Z → P ∪ {p0} is the turn function, which assigns every non-terminal node to the player responsible for taking 
an action at that node, including chance moves. The turn function induces a partition 	 = {	0, 	1, ..., 	|P |} over the 
non-terminal nodes, by sorting them into subsets according to the player whose turn it is:

	i = {x ∈ X \ Z | T (x) = i}
• W = {W i}i∈P is the information partition which, for every player i ∈ P , W i corresponds to a partition of 	i . W i splits all 

the nodes where i makes a move into mutually exclusive sets. Every w ∈ W i is called an information set. When player i
makes a move, the information and actions available to i are exactly the same at any of the nodes that belong to the 
same information set.
A game where all information sets are singletons is called a perfect information game. In this case, a player always 
knows precisely what state they are in before making the move. When that is not the case, games are said to have 
imperfect information. The information that is available to a player at a given information set is totally determined by 
the particular game being analyzed. Although information partitions are typically interpreted as partial observability, 
they can also be employed to simulate simultaneous moves. The prototype for this case can be found in the extensive 
form of the one-shot Prisoner’s Dilemma game (see Fig. 4).

• A = (A(w))w∈W denotes the actions available to the players, where A(w) is the set of actions available at information 
set w for the player whose turn it is to move at that set. Actions label the outgoing edges from a decision (non-chance) 
node.

• p is a function that assigns to every chance node x ∈ 	0 a probability distribution over its outgoing edges. Hence, it 
describes the nature of the environment and its stochastic effects.

• U = (Ui)i∈P is the utility function which assigns, for every agent, a numerical payoff for every terminal node, Ui : Z →
R.

EFGs provide much richer representations of multiagent interactions than normal-form games. To generate the semantics 
of an ASL description, we will use a restricted form of EFGs to model all the possible ways by which a state st can evolve 
given the actions available to the participants at that state. We name this restricted form of EFGs as game rounds:

Definition 4 (game round). A game round is an extensive-form game with the following characteristics:

1. The root node is never a chance node.
2. There is, at most, one information set per player, W i = {	i}, ∀i ∈ P (players that do not take any action in a particular 

game round have an empty information partition).
3. For any two nodes x1, x2 that belong to the same information set, the length of the path from the root to x1 and from 

the root to x2 must be equal.
4. If T (x) = p0 (x is a chance node), then all of its child nodes are terminal.

In practice, by condition 2 in Definition 4, in a game round every player has the opportunity to take only one action. 
Every depth level corresponds to the information set of one player (excluding the terminal nodes and possibly their im-
mediate parents, which might be chance nodes). In a game round, every path of play corresponds to a joint action (i.e. 
every player only has the chance to select and perform one action), and the sequence of players whose turn it is to take is 
constant across paths. If the joint action has deterministic results, then the decision vertices are succeeded by a leaf node. 
Otherwise, if the joint action has stochastic effects, then a chance node succeeds the last decision node, before leading to a 
leaf node. Note that condition 3 ensures that game rounds always have perfect recall. This requirement will greatly facilitate 
the equilibria computations later on.

For example, the game in Fig. 4b holds the requirements to be a game round. Pointing this example raises the following 
question: why have we not chosen to model the interaction at a single time-step as a normal-form game, instead of going 
to the extent of using the much more loaded extensive form and then restricting it?

The answer is motivated by the ability of EFGs to explicitly store the information on probabilistic effects. This is not 
possible in normal-form games, where every action profile is mapped to a single payoff vector. Consider a joint action 
profile that leads to several reward allocations, each with some non-zero probability. In the normal-form representation, the 
payoff assigned to such an action profile would correspond to the weighted average over all the potential rewards, hence 
losing all information concerning the probability distribution over the outcomes. In our opinion, the loss of this information 
rules out normal-form games as suitable representations for action situations.

Given a state of the world, a game round models all the possible ways by which, through a single action each, agents 
might alter the state of the system. Since we want to model relatively complex action situations, with agents executing 
actions not just once but multiple times, several game rounds will be concatenated and merged into a larger extensive-form 
game. Next, we explain how game rounds are built from an action situation description and merged into an extensive-form 
game that grounds the semantics of an ASL description.

17



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

4.2. From action situation descriptions to games

Now, we move on to the process that takes an ASL description as input and constructs its game model semantics. This 
process is performed by the sequential generation of single game rounds that are concatenated into a larger game structure.

First, we address how a single game round is built by the function Build-Game-Round (see Algorithm 3 in Appendix A). 
It starts off with the set of facts that characterize the pre-transition state st , which corresponds to the root of the game 
round tree. Then, the game tree is built in a breadth-first manner, by iterating over the agents that are able to take some 
action at st according to the choice rules (Lines 4-5 and 8-17). One information set is added for each of them (Line 9). At 
every iteration of this loop, the depth of the game round tree is increased by one level (Lines 11-16).

Once the tree skeleton has been built, it is time to find out which fluents hold true at the potential post-transition states 
St+1 (Lines 19-32). Every terminal node corresponds to a different joint action executed from st , μ = {does(ag1, ac1), ...}. 
Then, for every terminal node the joint action that leads to it from the root node is retrieved and added to the action 
situation description A (Lines 20-21). Next, Get-Control-Conseqs is called in order to find out the post-transition states 
that may be reached from that action profile (Line 23). In case there are no stochastic effects (|St+1| = 1), the fluents of the 
single next state are assigned to the terminal node (Line 24). Otherwise, the terminal node is converted into a chance node, 
and additional descendants are added, one for every potential next state st+1 ∈ St+1 (Lines 25-31). The fluents at these 
new terminal nodes and the probabilities of the edge from the parent chance node are computed by Get-Control-Conseqs. 
Finally, the joint actions are deleted from the database before moving on to the next terminal node (Line 32).

By construction, the extensive-form game returned by Build-Game-Round fulfills the properties of a game round accord-
ing to Definition 4. Note that in every game round built by this function, only the root and terminal nodes correspond to 
actual states of the system, and they are assigned the fluents that hold true at that state (in fact the fluents that hold true 
at the root node are assigned before the tree emanating from it is constructed). The intermediate nodes between the root 
and the leafs do not correspond to actual states of the system. Hence, they are not assigned any fluents. They are auxiliary 
nodes, whose function is to capture the simultaneous nature of joint moves and the possibility for random effects in the 
environment.

Build-Game-Round manages one last important point. For every joint action profile that is available at st , it checks 
whether executing joint action μ from st leads to termination (Line 22). If that is the case, the terminal node that cor-
responds to the execution of μ in state st will not be considered for further expansion (i.e. the construction of the game 
rounds that emanates from it) when the complete game for the action situation semantics is built.

Now that we know how to model the possible ways by which a state of the system st might evolve, the only step that 
is left is to concatenate multiple rounds into a larger game tree. This is precisely what the function Build-Full-Game does 
(see Algorithm 4). It only needs an action situation description as data, and maintains a queue of states susceptible to be 
expanded by Build-Game-Round. The queue is initialized with the initial state of the interaction (Line 12), which is derived 
as the instantiations of the query initially(F) (Line 7). This is done after the participants and their roles have been 
added to the action situation description according to the boundary (Line 2) and position (Line 4) rules respectively, by 
calling Get-Simple-Conseqs with the appropriate type argument. As new game rounds are built, their respective terminal 
nodes are pushed to the queue as long as the joint actions leading to them from the root node in their game round do not 
trigger termination (Lines 28-30).

Additionally, every time a state is popped from the queue (Line 14) and its fluents added to the ASL description (Line 
17), Build-Full-Game checks whether the termination conditions hold, prior to the execution of any action (Line 18). Adding 
this check to the one performed in Build-Game-Round shows that, in an ASL description, a state may lead to termination 
either because the facts that characterize it command it, or because of the actions that have led to it from its pre-transition 
state.

Also, Build-Full-Game takes in a max argument that controls the maximum depth of the resulting game tree. The 
motivation for including this argument is as a safety stop in case the conditions for terminal/2 clauses to return true 
are not met at all paths emanating from the root of the tree. If the action situation description is written in a such a way 
that the above situation arises, having a maximum allowed depth for the game tree being grown ensures termination of
Build-Full-Game. Users confident in their ability to write action situation description where termination will always be 
dictated by terminal/2 clauses returning true and do not wish for their EFGs representations to be cut short can use 
argument max → ∞.

Finally, Build-Full-Game returns the extensive-form game that represents the action situation description, augmented 
by the facts that characterize the nodes that directly correspond to states of the system (those that are the root of game 
rounds plus the leafs). Hence, we can define the semantics of a valid ASL description by construction:

Definition 5 (ASL semantics). The semantics of a valid ASL description A correspond to an extensive-form game 
 with a 
restricted use of imperfect information, and a function F over a subset of the nodes in 
. 
 and F are computed exactly by
Build-Full-Game. 
 is built as the concatenation of game rounds, and is augmented with F , which assigns a set of fluents 
for every node in 
 that correspond to a proper state of the system.

It should be noted that Build-Full-Game does not deal with the utilities assigned to the leaf nodes of the game tree. 
We choose not to assign utilities at construction time in order to allow flexibility in the valuations that agents make of 

18



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

outcomes. If one is conducting a classical game-theoretical analysis based on material or monetary rewards, a predicate 
standing for such variable can be introduced and its evolution modeled through control rules, as stated in Section 2.1. 
Then, for every agent, the utility at a terminal node is extracted from the payoff(Ag,x) fluents assigned to that node. 
Alternatively, if one wishes to model other values that the agents might take into consideration in the particular action 
situation, the utilities can be assigned as a function of the fluents that hold true at every terminal node and/or the path of 
play from the root to the terminal node.

4.3. From games to action situation descriptions

Definition 5 specifies the semantics of any action situation description A as an EFG that respects the validity conditions 
outlined in Definition 1. To show the expressive power of the Action Situation Language, we now prove the equivalence 
between valid action situation description and extensive-form games that can be identified as a concatenation of game 
rounds. Despite that the focus of this work is on the transformation from an action situation description to an extensive-
form game, we discuss here the inverse process for completeness purposes.

In order to continue, we must first clarify when an EFG is identifiable as a concatenation of game rounds. Consider an 
EFG 
, and any of its subgames γ .2 Now, take the largest subgame within γ , if any, and replace it by a terminal node. If 
after this transformation is applied to any of the subgames in 
, it fulfills the conditions for a game round in Definition 4, 
then the overall game 
 is identified as a concatenation of game rounds.

We are now ready to establish the equivalence between EFGs and action situation descriptions:

Theorem 1. An extensive-form game 
 is a concatenation of game rounds if and only if there exists an action situation description A
such that A has its semantics grounded as 
 by Build-Full-Game.

Proof. The reverse implication follows directly by construction from Definition 5. For the forward implication, we construct 
an action situation description ad hoc, and then prove that it certainly has its semantics grounded as the game in question.

Given 
, start by having all of its players as agents: add agent(p) to the agent base �, ∀p ∈ P . Second, all agents 
have to be admitted as participants of the action situation and assigned a distinct role. Although in some cases (e.g. the 
Prisoner’s Dilemma example in Section 2.3) several agents are designated the same role, for the sake of generality we assign 
a distinct role the every agent, named after themselves. Hence, the following two rules per participant are added to �:

rule(id,boundary,0,if agent(P) then participates(P) where []).
rule(id,position,0,if participates(P) then role(P,P) where []).

Third, denote the initial state as s0 and denote all states as incompatible with one another. To do so, write the predicates
initially(s0) and incompatible(_,L) :- length(L,1) to the states base � (i.e. only one fluent si per state).

In the worst case, the input EFG 
 does not contain any regularities whatsoever, and so dedicated choice and control 
have to be added for every game round. To do so, it is necessary to first identify the chunks of the game tree that correspond 
to game rounds. Then, the dedicated rules need to be written for each of them.

The checking procedure discussed previously to identify whether an EFG corresponds to a concatenation of game rounds 
can be used to identify them. Take any subgame of the original extensive-form game, and replace its largest subgames into 
terminal nodes. The result corresponds to a game round.

Once every game round is delimited, denote its root as state si . For every player that takes some action within that game 
round, write a set of choice rules that assign to it the available actions, following the template:

rule(id,choice,0,if role(P,p) then can(P,ap
i j) where [si]).

where ap
i j denotes the j-th action that player p can take in state si .

The rule base � is completed by adding the control rules. In the worst case, one control rule has to be added for 
every joint action profile that players can take in every game round. Given a chunk of the overall game tree that has been 
identified as a game round, traverse it until either a chance node or a terminal node is encountered, whichever is first. 
Each distinct traversal will lead to a new control rule. Consider one of these paths from the root to either a chance or a 
terminal node in the game round. For every decision node x, add the literal does(T (x), act) to the Condition field of the 
control rule, where T (x) is the turn function at node x and act is the action label of the outgoing edge. If the path ends 
in a terminal (non-chance) node, set the Consequence field to [si+k withProb 1] (k = 1, 2...). Otherwise, if a chance 
node is encountered, for every of its outgoing edges, append [si+k+m withProb pm] m = 1, 2... to the Consequence
list. Finally, set Constraint to [si], to indicate that the control rules only apply to the game round emanating from node 
si . Last of all, the individual terminal nodes of the overall game tree have to be designated as such, by adding terminal 
:- sT clauses to �, one per terminal node.

2 For a definition of subgame of an EFG, see [39, p.45].

19



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Table 3
Time complexity of the algorithms presented in Appendix A.

Algorithm Complexity

Get-Simple-Conseqs(..., type=“boundary”, ...) O(Rb · log Rb)

Get-Simple-Conseqs(..., type=“position”, ...) O(R p · log R p)

Get-Simple-Conseqs(..., type=“choice”, ...) O(Rch · log Rch)

Get-Control-Conseqs O(C Rcnt · (C · L + F ))

Build-Game-Round O((Rch)Ag · C Rcnt · (C · L + F ))

Build-Full-Game O((Rch)(max+1)Ag · C (max+1)Rcnt · (C · L + F ))

To prove that the ad hoc ASL description constructed above has its semantics grounded by Build-Full-Game as the 
original EFG 
, we combine empirical and induction arguments. For an EFG that consists of n = 1 game rounds, we ex-
perimentally prove that such an action situation description has its semantics correctly grounded.3 For a larger game with 
n > 1 game rounds, the subsequent game rounds are also individually correctly built, by the results obtained for n = 1. The 
subsequent game rounds are appended to the first one (whose root equals to the root node of the overall game tree) by 
changing the i sub-index in the action and state atoms (aP

i j and si respectively) of the choice and control rules. �

The construction procedure outlined above is very tedious and results in a large ASL description (i.e. with a large amount 
of rule/4), even for small extensive-form games. However, it is generally expected that the extensive-form game will 
contain some symmetries or regularities that will avoid the need for a set of distinct choice and control rules per every 
game round.

In their original formulation, EFGs do not carry information on their nodes. However, according to the ad hoc ASL de-
scription above and the Build-Full-Game function, the resulting EFG will be expanded with a generic state fluent function 
F that assigns a generic state fluent si to those nodes that correspond to roots of game rounds. Also, in order to completely 
recover the original game, it is necessary to assign a posteriori the utilities to its terminal nodes. However, none of these 
two minor differences between the input EFG and the semantics grounded from the constructed ASL description are related 
to the structure of the game, i.e. the topology of the game tree.

4.4. Game construction complexity

Now that all the algorithms in this work have been reviewed, we discuss the complexity of grounding the semantics of 
an action situation description as an extensive-form game. Complexity results for the algorithms included in this work are 
presented in Table 3, which follows the following notation:

• Rb/p/ch/cnt : number of boundary/position/choice/control rules.
• C : maximum number of consequences per control rule (i.e. length of the Consequences list in control rules).
• L: maximum number of literals per consequence in control rules.
• F : maximum number of fluents that describe a state.
• Ag: number of agents in the agent base �.
• max: maximum allowed depth of the game tree, passed as a parameter to Build-Full-Game.

The complexity of Get-Simple-Conseqs is dominated by the sorting procedure in line 5 of Algorithm 1. Assuming that 
the Merge-Sort algorithm is employed, the complexity is R log R , where R is the number of activated boundary, position 
and choice rules, which is assumed to be equal to the total number of rules of each type in the worst case. For the other 
algorithms, the complexity is dominated by the iterations over activated control rules, the number of consequences in their
Consequence field C and the number of literals in every consequence L. To derive the complexity of Build-Game-Round

and Build-Full-Game, we assume that the number of actions available to every agent equals the number of choice rules in 
the ASL description.

The most important function for the purposes of this work is Build-Full-Game, as it is called once per every action 
situation configuration that we wish to assess. The complexity of this algorithm scales exponentially with the number 
of agents, the number of control rules, and the maximum allowed depth for the resulting EFG. Despite the exponential 
explosion, Build-Full-Game is well-suited for parallelization. The game rounds at every depth level of the overall game tree 
can be constructed independently from one another, i.e. the calls to Build-Game-Round made within Build-Full-Game can 
be distributed over several computing nodes. Furthermore, information sets are, by construction, contained within one game 
round and do not include nodes belonging to different game rounds. Therefore, information sets do not need to be stored 
during computation and the construction of the overall EFG can be efficiently parallelized.

3 See the examples/adhoc directory of the ASL distribution.

20



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

1 rule(ipd,choice,1,if role(P,prisoner) then ~can(P,defect) where [consecutiveDefections(P,N),N
>=2]).

2 rule(ipd,control,1,if does(P,defect) then [consecutiveDefections(P,M) withProb 1] where [
consecutiveDefections(P,N),{M=N+1}]).

3 rule(ipd,control,1,if does(P,cooperate) then [consecutiveDefections(P,0) withProb 1] where []).
4

5 initially(consecutiveDefections(P,0)) :- role(P,prisoner).
6 incompatible(consecutiveDefections(P,_),L) :- member(consecutiveDefections(P,_),L).
7

8 % rules to change the outcome of mutual defection
9 rule(ipd,choice,2,if role(P,prisoner) then can(P,defect) where []).

10 rule(ipd,control,2,if does(P1,defect) and does(P2,defect)
11 then [payoff(P1,Y11) and payoff(P2,Y12) withProb 0.5,
12 payoff(P1,Y21) and payoff(P2,Y22) withProb 0.5]
13 where [P1@<P2,payoff(P1,X1),payoff(P2,X2),{Y11=X1+0,Y12=X2+9,Y21=X1+9,Y22=X2+0}]).

Listing 6: Additional regulations with priority 1 to limit the number of consecutive defections (top), and with priority 2 to 
change the outcome of the mutual defection (bottom).

In the best-case scenario, there are more processing units than the maximum number of game rounds that have to be 
built at any depth level of the game tree. In such a case, the time complexity of Build-Full-Game would be reduced to that 
of Build-Game-Round, plus some communication overhead (i.e. the state fluents of a terminal node have to be transmitted 
to the host in charge of expanding the game round emanating from that node).

As an example, take the iterated Prisoner’s Dilemma first introduced in Section 2.3. Its action situation description has 
the following parameter assignments: Rb = R p = 1, Rch = 2, Rcnt = 4, C = 1, L = 2, F = 3, Ag = 2 and max = 3. Hence, the 
complexity of Build-Full-Game for this ASL description is O(5 ·28). If parallelization infrastructure is available and there are 
enough processing units (“enough” in this case meaning at least 16, which is the number of game rounds at the broadest 
level), then the complexity is reduced to that of Build-Game-Round, O(5 · 22), a reduction by a factor of 26.

4.5. Follow-up on the iterated Prisoner’s Dilemma

As an example of ASL semantics generation, we go back to the iterated Prisoner’s Dilemma example presented earlier. 
The extensive form game built from the default rules presented there is shown in Fig. B.6 (B.1). The utilities that appear 
below the terminal nodes have been set by the payoff(Agent,X) fluents assigned to it.

To illustrate the introduction of higher priority rules and the impact that these have on the semantics, we propose two 
examples. First, we consider a ban on the number of consecutive defections that agents can take. Second, we introduce 
random changes to the outcome resulting from both agents playing “defect”, where the outcome of the “defect”-“defect” 
joint action is as if one participant had defected while the other kept cooperating. The cheater and the sucker rewards are 
assigned randomly to the two agents. The intuition behind the first set of higher-priority rule is fairly straightforward, as it 
is a simple example of regimented norm (in this case a prohibition) to avoid the executing of too many actions considered 
to be detrimental.

The intuition behind the second set of higher-priority rules is not so obvious. To illustrate a possible real-world example 
that is captured by such rules, consider the following scenario. International talks to implement pollution-reduction policy 
to fight climate change (and the relatively little progress made during such talks) have often been identified as a Prisoner’s 
Dilemma-type situation [40]. Consider two nations with competing economies that could introduce new regulations to 
reduce emissions, at an expense to their economic output. If they both, simultaneously, cooperate (i.e. transform their 
economies to reduce emissions), they will both be better off in the long run. If one defects (i.e. keeps polluting) while the 
other introduces environmental policy, the cooperator is expected to suffer a loss in competitiveness and therefore a hit 
to their economy, which the polluter takes advantage of. Finally, if both countries avoid emission reduction, the pollution 
levels will result in extreme weather events at an unmanageable frequency. Such events can partly destroy infrastructure, 
hence highly hindering the economic capacity of the location hit by them and providing an advantage to the country that 
has not suffered it, who can expect to sell their goods at a higher price. However, such events will, most likely, only hit 
infrastructure in one of the two countries at a time. Assuming that the two countries are equally likely to suffer from 
extreme weather events, this situation can be encapsulated by a random change in the “defect”-“defect” (or, in this case 
“keep polluting”-“keep polluting”) outcome.

The additional rules needed to introduce those regulations appear in Listing 6. At the top, in order to limit the number 
of consecutive defections, it is enough to introduce one new choice rule with priority 1 that turns the action “defect” 
unavailable if the agent in question has defected twice in a row. This is an example of a prohibition rule in the regimented 
modality. Additionally, there are two new control rules that control the evolution of the consecutiveDefections/2 
literals, as well as their initialization and the consideration that there may only be one consecutiveDefections/2 

21



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Fig. 5. Implementation of the computational model of the IAD framework.

literal per agent. The EFG that results from the interaction of this rule appears in Fig. B.7. Now, at some game rounds some 
agents only have action “cooperate” at their disposal, and the symmetry of the game tree is broken.

At the bottom of Listing 6, the rules that change the outcome of the mutual defection are introduced with priority 2. 
First, they need to undo the ban on several consecutive defections through a choice rule that recovers the action “defect” 
under any circumstances. Then, we present the control rule that is most representative of this regulation. Now, if both 
agents defect, the resulting outcome is as if one agent had cheated on the other. The selection for who becomes the de facto
cheater and sucker is done by flipping an unbiased coin. The resulting game semantics for this configuration are displayed 
in Fig. B.8.

5. Implementation and computation of equilibria

Now that we have extensively presented the formal syntax and semantics of ASL, we go into the practical aspects of 
writing an action situation description, generating the EFG that derives from it and evaluating its structure.

The complete set-up to perform the what-if analysis of a rule configuration is displayed in Fig. 5. First, we write the ASL 
description with its clauses divided according to the separation A = � ∪ � ∪ � into agents, state-related information, and 
rules into three corresponding files states.pl, agents.pl and rules.pl.

These three files are fed to the game engine, that consists of the rule interpreter plus the game builder. The first is 
a Prolog script directly responsible for querying and processing the activated rules, and contains the implementations of
Get-Simple-Conseqs and Get-Control-Conseqs. The second is a Python script that repeatedly communicates with the rule 
interpreter4 and generates the action situation semantics through its implementation of the Build-Game-Round and Build-

Full-Game functions.
Once the EFG is generated and utilities assigned to its terminal nodes, an assessment of its incentive structure can be 

performed with standard game-theoretical tools. In particular, the construction of EFGs as a concatenation of game rounds 
greatly facilitates their integration with sequential rationality solution concepts. Note that every game round is ensured 
to have perfect recall. Consequently, the resulting game tree also has perfect recall. A classic result in game theory by 
[41] establishes that in imperfect-information EFGs of perfect recall, for every behavioral strategy there is a corresponding 
equivalent mixed strategy, and vice-versa. In game theory, a behavioral strategy over an EFG for player i fixes, for every 
information set w ∈ W i , a probability distribution over the available actions at w . Meanwhile, a mixed strategy for player i
corresponds to a probability distribution over the sequences of actions that player i takes as they transverse the game tree.

Considering this result, we propose to use backward induction to compute the equilibrium strategies in an EFG generated 
from an ASL description. The general procedure operates as follows [39, p.46]:

1. Identify the final subgames of the overall EFG, i.e. those that do not have subgames of their own nested within them. 
Compute the equilibria strategy (or whichever solution concept) for the final subgames. The most common notion of 
rationality in game theory is expressed by the Nash equilibrium [42], however other options are possible, such as 
correlated equilibria [43].

4 The communication between the Prolog script interpreter.pl and the Python script build.py is realized thanks to the open-source PySwip package.

22



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

2. Replace the subgames by terminal nodes whose utilities correspond to the expected average obtained by playing the 
equilibrium strategies.

3. Repeat the previous steps until the root node the expected utilities at the root node are computed.

There are several particularities of the EFGs we work with in this paper that make the above procedure particularly 
well-suited to compute the equilibrium strategies in action situations. First, the roots of all subgames of the overall EFG 
also coincide with the roots of the game rounds that have been concatenated to build it. Additionally, one should first take 
advantage of the fact that the game rounds that are closest to the leaf nodes of the overall game tree are also the smallest 
subgames within the tree, i.e. they are the final subgames of the overall EFG.

Second, these subgames in extensive form can be easily transformed into their induced normal form [44, Ch.5]. This 
is due to the fact that, by construction, players only make one move in a game round, and they are each assigned an 
information set relating “sibling” nodes at the same depth level of the game tree. Then, to compute the normal form from 
the extensive form of a game round, the chance nodes (if any) are substituted by terminal nodes with utility averaged over 
its children. The mapping from every joint action profile to a utility vector 〈Ui〉i∈P is computed by traversing all the paths 
in the game tree. The joint action profile corresponds to the actions by all players that are encountered along the path, 
while the utilities are extracted from the terminal nodes (which have originated from an average over the children of a 
chance node). Note that this procedure to convert an EFG into an NFG is only valid for game rounds fulfilling the properties 
of Definition 4, and does not generally apply to an arbitrary EFG.

Once the final game round has been converted from extensive into normal form, compute the equilibrium strategies 
at these normal-form game, using whichever solution concepts one deems appropriate. Finally, substitute the whole game 
round by a terminal node. Set its utilities to the average of the distribution induced by the previous equilibrium strategies 
together with the probabilities over chance nodes. Repeat these steps until the root of the original EFG is reached.

Note that the resulting equilibrium strategies computed by this procedure are given as behavioral strategies. For every 
game round, player i is assigned some probability distribution over the actions available to them at the only information set 
of player i at that game round. Consequently, the backward induction procedure assigns, for every information set in the 
game tree, one probability distribution for the actions available at that information set. This is precisely the definition of 
a behavioral strategy. Thus, following [41], we are guaranteed that there is some equivalent mixed strategy for the overall 
EFG.

Note also that the resulting equilibria strategies are not just rational but also sequentially rational. They correspond not 
just to equilibria over the whole game tree, but the restriction of the computed strategy to every subgame is also an 
equilibrium over it. This property is referred to as subgame perfect equilibrium.

So actually, limiting the use of imperfect information to simultaneous moves (hence ensuring perfect recall) does limit 
the expressive power of our language, but has major advantages when it comes to computing the equilibria that the game 
structure incentivizes. First, only “small” subgames have to be converted from the extensive to the normal form, as in every 
subgame any agent has at most one information set. Although this transformation can lead to exponential blow-up in the 
general case, we keep this complexity under control since it is single game rounds (where players take just one action) that 
have to be converted.

Second, instead of needing one big transformation from the whole EFG to a normal-form representation to find the 
mixed equilibria strategies directly, we can compute the equivalent behavioral strategies by performing several less inten-
sive transformations over the game rounds only. An added advantage is that this approach avoids the contradictions often 
generated when turning a complex EFG into its normal-form representation. The computation of equilibria on the normal-
form representation of a complete EFG may lead to equilibria that, although being rational are not sequentially rational, and 
hence constitute non-credible threats [45].

Once the resulting equilibria strategies are available, it is straightforward to find the probability distribution they induce, 
together with the probabilities assigned to chance moves, over the terminal nodes Z of the game tree (see the “Outcome 
distribution” box in Fig. 5). Finally, an evaluation criteria (which we generically denote as a function f over the leaf nodes Z ) 
is defined, and its expected value is computed given the induced outcome distribution. This simple computation concludes 
the process from a rule configuration (an ASL description) to its evaluation. Now, the communities of agents involved can 
quantify whether the rules in place are in accordance with their idea of a “good” outcome.

The backward induction procedure outlined previously in this section is included with our ASL distribution. Step 2 of 
the procedure (i.e. the computation of Nash equilibria at every normal form subgame) is achieved by applying the incentive 
minimization approach of [44, p. 104]. Also, the computation of distribution over outcomes given the subgame perfect 
equilibria strategies is also included as part of the code distribution. The distribution over outcomes is computed as the 
product of the probabilities of all the action in the path from the root to that terminal node (or the probability of nature 
moves, if there are any). For all the example in this paper, we use the Nash equilibria and the computation of the distribution 
over outcomes implemented alongside the ASL distribution.

To exemplify the implementation issues presented in this section, we turn to the iterated Prisoner’s Dilemma running ex-
ample. We verify that the different rule configuration we have presented (the default ones in Section 2.3 and the additional 

23



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

rules in Section 4.5) do indeed encourage different behaviors by the agents and hence lead to different outcomes. These 
results are presented in Tables B.4 to B.6 for the default rules, the rules limiting the number of consecutive defections and 
the rules banning the mutual defection, respectively. Tables B.4 to B.6 show, for every rule configuration, the equilibrium 
strategy induced by the structure of the EFG (obtained as the Nash equilibria) and the probability distribution that these 
equilibrium strategies induce over the terminal nodes. Note that equilibrium strategies are presented as behavioral strategies 
(i.e. a probability distribution over the action available at every information set).

As expected, the default Prisoner’s Dilemma game has its equilibrium at pure defection by all players at all rounds of 
the game. However, the introduction of the limit on consecutive defections does encourage some cooperative actions by the 
participants at some decision points, and hence the outcomes with non-zero probability all lead to higher payoffs for both 
players. Finally, with the rules implementing the ban on mutual defection, agents go back to defecting at all rounds of the 
game. However, because of the randomness introduced, several outcomes are equally likely, with unequal distribution of 
payoffs.

6. Further examples

Before presenting the final conclusions, we illustrate the versatility of the ASL language with two more examples. These 
are more sophisticated than the very generic Prisoner’s Dilemma, and also more interesting from the policy analysis and 
socio-economics perspective.

6.1. Axelrod’s (meta)-norms game

First, we use ASL to model the norms and metanorms games, originally proposed by Robert Axelrod [46].5 This action 
situation can be seen as a more elaborated version of the Prisoner’s Dilemma. In the norms game, an individual i has the 
opportunity to defect and benefit at the expense of others. If they do not defect, no benefits or costs are incurred by anyone. 
If they do defect, then there is a fixed probability that they will be detected by a monitor j. If the cheater is detected, then 
the monitor can choose to punish them at a cost to themselves, but also imposing a large loss to the cheater.

In an extension called the metanorms game, the monitor j is themselves being watched by a meta-monitor k. Similarly 
to the norms game, the meta-monitor may detect with some probability if the monitor has neglected their duty (i.e. has 
chosen not to sanction i despite detecting their defection). In that case, the meta-monitor may decide whether to punish 
the monitor or not.

The norms and metanorms games are interesting examples for two reasons. First, they illustrate the use of non-
regimented norms, as “bad” actions (defection by an individual or neglect by the monitor) always remain feasible actions. 
Furthermore, the agency of those responsible for monitoring and sanctioning is explicitly introduced into the game, instead 
of being idealized away as part of the environment dynamics (as in e.g. [34]).

The rules structuring the norms game are designated as the default ones and hence have priority zero. The meta-
monitoring is introduced with additional regulations of priority 1. The resulting games and state fluent semantics appear in 
Fig. B.9 (see Appendix B.2). The norms and metanorms game trees are constructed with Build-Full-Game using arguments 
threshold=0 and threshold=1 respectively. The utilities that appear below the terminal nodes are set from payoff(Ag,X)
literals, assigning to agent Ag the utility value X.

The state fluents for the nodes that correspond to actual states of the systems are also shown. For the terminal nodes, 
the probability distribution over the leaf nodes induced by the equilibrium strategies given the utilities appears next to their 
fluents. The equilibrium strategies themselves are displayed in Table B.7. These results show that, given the current payoff 
structure of this action situation, the introduction of a meta-monitor does not have any positive effect. Before k joins the 
interaction, agent i chooses to defect and the monitor j chooses not to sanction i if detected. However, the addition of k
does nothing more that perpetuate “bad” agent behavior, as k chooses not to sanction j if their negligence is detected.

6.2. Ostrom’s fishing game

The last example for which we write an ASL description first appeared in [47, Ch. 4].6 It illustrates a theoretical analysis 
of how community-crafted rules are capable of transforming the opportunity structure that individuals face in common-pool 
resource environments. This is the richest example we present of this work, as it illustrates the use of community attributes, 
non-default position rules and biophysical features.

In this example, two fishers have access to an open-water fishery. Starting at the shore, they may go to one of two 
fishing spots (one is assumed to be more productive than the other). If, after the first trip, both fishers meet at the same 
spot, they can choose to stay or leave. If they meet yet again at the same spot after that second action, they inevitably fight. 
The winner of the fight is determined by flipping a biased coin, whose probabilities depend on the relative strengths of 
every fisher.

5 See the examples/metanorms directory of the ASL distribution.
6 See the examples/fishers directory of the ASL distribution.

24



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

This is the first example that utilizes agent attributes (speed/2 and strength/2). The relative difference between the 
strength and speed of the two agents is used to compute the probability that one will win a fight or a race over one of 
the fishing spots. Also, this is the first example that adds biophysical conditions (two fishing spots declared with predicate
fishing_spot/1). The declaration of fishing spots determines some of the actions that the fishers may take, since they 
can only leave the shore for one of them. Overall, both the community attributes and the biophysical conditions in this 
example strongly influence the resulting EFG, however we keep them constant throughout the analysis as they are assumed 
to be non-changeable in the short to medium term. Also, note how the user is free to choose the predicate symbols (as 
long as they are not reserved keywords, see Table 1) for community attributes and biophysical conditions. This is the case 
because, unlike rules, community attributes and biophysical conditions do not require custom querying and interpretation 
functions.

The boundary and position rules in this action situation are analogous to the other examples, i.e. all agents participate 
and they all take on the same role, that of fisher. Initially, both agents start at the shore. The interaction halts when each 
fisher is in a different spot, or when a fight has occurred. At every state, one fisher may only be at one place, and there can 
only be one loser and one winner of fights or races (the introduction of a racing condition is introduced when we introduce 
higher-order rules).

The choice rules are also very easy to interpret. They state that fishers at the shore can go to any of the fishing spots. 
Once there, they may choose to stay or leave. As for the control rules, they assume that fishers always get to wherever they 
intended to go (i.e. boat engines never break down). The last control rule states that, if fishers are at the same fishing spot 
and they both take the same action, a fight will ensue (since they meet again either at the same spot or at another one). 
The semantics of this ASL description (using the rules with priority equal to zero) are displayed in Fig. B.10.

In order to avoid violent fights, additional higher priority rules can be introduced. The first option is to implement a 
first-in-time, first-in-right scheme. Now, if fishers depart from the shore with the same destination spot, they race to get 
there. The first to get there is guaranteed to keep the spot, while the slower fisher has to leave. The winner of the racing 
contest is not determined by their strength/2 attribute, but by their speed/2 instead. The corresponding semantics of 
this rule configuration appear in Fig. B.11.

Another possibility is the implementation of a first-to-announce, first-in-right scheme. In this case, one of the participating 
agents is randomly assigned to a new role, which we refer to as announcer. Before anyone has left the shore, the announcer 
has to broadcast the spot where they intend to fish. Then, if they hold their promise and go there, they are guaranteed it, 
i.e. they always win the race to get there. If the announcer goes to a different spot than the one they have broadcast, a race 
ensues between the two fishers, analogous to the first-in-time, first-in-right scheme.

The first-to-announce, first-in-right scheme shows the first instance of a non-default position rule. In this case, one ran-
domly chosen fisher is designated as the announcer. Assuming this additional role provides the participant with new actions, 
as well as conditions the actions of others (e.g. fishers cannot leave the shore before the announcer has announced their 
fishing spot of choice). Note that the announcer role is in addition to the role of fisher, not in substitution of it. This extra 
position rule effectively breaks the symmetry that participants previously had, when they both assumed the same roles and 
hence could execute the same actions. This feature definitely adds to the richness and complexity of the interaction.

Note that rules for this latter configuration have priority 2, since they are added on top of the rules for the previous 
first-in-time, first-in-right scheme. This is the first example that illustrates a non-default position rule, such as the one that 
creates the announcer role. The game semantics for this rule configuration appear in Fig. B.12.

The utilities at the terminal nodes of Figs. B.10 to B.12 are set by assigning the following costs and benefits to actions and 
outcomes: a fisher keeps a spot to themselves or wins the fight over it (v1 = 10, v2 = 5), a fisher looses a fight (d = −6), 
a fisher travels between spots (c = −2). The resulting equilibrium strategies, obtained with an identical computation to the 
previous examples, appear under the corresponding game trees.

We evaluate the resulting outcome distributions qualitatively. For the default rule configuration, violent outcomes are 
predicted for over 50% of the paths of play (terminal nodes 14 through 27). Both the first-in-time, first-in-right and the first-
to-announce, first-in-right schemes avoid violence, and hence promote more socially desirable outcomes. However, for the 
first-in-time, first-in-right configuration the fishers still go to the same spot and compete for it. This outcome is avoided in 
the first-to-announce, first-in-right scheme. Now, the announcer prefers to proclaim the most productive spot (spot 1) and re-
mains faithful to their announcement. The other fisher, then, chooses to go for the other spot. Hence, honest announcements 
are encouraged, and any sort of competition is prevented with the first-to-announce, first-in-right scheme.

7. Conclusions

In this work, we have presented a complete computational model of Elinor Ostrom’s Institutional Analysis and Devel-
opment framework. It is based on the Action Situation Language, a novel logical language for the description of action 
situations, whose friendly syntax is highly tailored to the components identified in the IAD framework. In particular, the 
IAD framework identifies three sets of exogenous variables that are responsible for shaping social interaction: biophysical 
conditions, attributes of the community, and rules. The computational model we propose respects this distinction and stores 
the knowledge corresponding to each of the three exogenous variables separately. In this work, special attention is paid to 
the rules variable, as this is the only one susceptible to changes in the short term. Consequently, the Action Situation Lan-

25



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

guage includes a mechanism to solve conflicts between contradicting rules, that allows new rules with higher priority to 
override older rules with lower priority.

The Action Situation Language is complemented with a game engine that automatically generates the semantics of a 
description as an extensive-form game. The resulting EFG has some self-imposed limitations, however these greatly facilitate 
the computation of equilibrium strategies, the distribution over outcomes and their evaluation. We have illustrated the use 
of ASL and the complete process from an action situation description to the evaluation of its impact with some examples. 
Notably, the fishers action situation of Section 6.2 demonstrates the complete analysis, where the outcomes are evaluated in 
terms of the avoidance of violence, competition, and honesty by the participants. Additionally, it shows how the introduction 
of suitable regulations is able to steer the system towards more desirable end states.

The work presented here has several limitations and is susceptible to extensions in several directions. We point to five 
potential research directions that may take the work presented in this paper as a starting point:

1. The incorporation of an information rule type could greatly enhance the expressive capabilities of ASL, as it could 
potentially provide the syntax for games with imperfect information (beyond simultaneous moves), or games with 
imperfect recall. Work in this direction should explore what changes need to be incorporated to the Build-Full-Game

algorithm to include more sophisticated schemes of information accessibility.
2. The possibility for dynamic boundary and position rules that are queried not just before the interaction kicks off, but also 

while it is ongoing. Such a refinement would allow agents to get in and out of an action situation and/or switch roles 
dynamically.

3. Studies on the relationship between ASL and logical action formalisms such as Situation Calculus, to expand the reasoning 
schemes applicable to an ASL description. For example, how should ASL rule statements be translated into Situation 
Calculus domain axiomatizations?

4. Work on the formal verification of an action situation description, in terms of its validity, soundness and relevance of the 
included rules. For example, a position rule assigning a participant to an agent with no actions available has no effect 
on the outcomes of the interaction. Interesting work could be developed to define this sort of mutual dependencies 
between rule statements and other components of the action situation description.

5. Studies on the nesting of action situations. In this work, we have focused on operational action situations, where agents 
interact directly with one another and their shared environment. However, ASL could also be used to describe collective-
choice action situations (e.g. a negotiation domain or a voting procedure), whose outcomes result in the implementation 
of new rule statements on an operational action situation. The linkages between two such ASL descriptions are also 
worth exploring.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

This work has been supported by the EU WeNet project (H2020 FET Proactive project #823783), the EU TAILOR project 
(H2020 #952215), the RHYMAS project (funded by the Spanish government, project #PID2020-113594RB-100) and the 
VALAWAI project (Horizon #101070930).

Appendix A. Algorithms

For every algorithm pseudo-code, the following is specified:

• Input: its arguments.
• Output: its return value(s) and/or data structure(s).
• Data: the information stored in the database being consulted. In general, all functions call upon the original action 

situation description A. Additionally, the facts corresponding to the current state st and/or the action profile executed 
μ might also be necessary.

• Description: Short documentation on the procedure implemented by the function.

26



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Algorithm 1: Function Get-Simple-Conseqs(id, type, thres).
Input : id � string

type � one of either “boundary”, “position” or “choice”
thres � non-negative integer

Output : C � a set of ground atoms
Data : A � an action situation description

φ = {participates(agi)} � set of participant fluents (if type=“position”)
ρ = {role(agi , ri)} � set of role fluents (if type=“choice”)
st = { f1, ..., fn} � set of state fluents (if type=“choice”)

Description : Get the participants, roles or available actions entailed by the boundary, position or choice rules respectively.
1 Function Get-Simple-Conseqs(id, type, thres):
2 kv ← []
3 foreach instance of ?-query_rule(rule(id,type,pr,if Cond then Conseq where Constr)) do
4 if pr ≤ thres then kv .Append(pr : Conseq)

5 kv ← Sort-By-Descending-Key(kv)

6 C ← {}
7 for (pr : f ) pair in kv do
8 if f /∈ C and ∼ f /∈ C then C ← C ∪ { f }
9 C ← {c ∈ C | c �=∼ f }

10 return C

Algorithm 2: Function Get-Control-Conseqs(id, thres).
Input : id � string

thres � non-negative integer
Output : St+1 = {s1

t+1, s2
t+1, ...} � the set of potential next states, each corresponds to a set of fluents

P : St+1 → [0, 1] � a probability distribution over the next states
Data : A � action situation description

st = {f1, f2, ...} � set of facts that hold true at the current state
μ = {does(ag1, ac1), does(ag2, ac2), ...} � joint action profile

Description : Get the post-transition state fluents and their probabilities that derive from performing some joint action in a pre-transition state.
1 Function Get-Control-Conseqs(id, thres):
2 kv ← []
3 foreach instance of ?-query_rule(rule(id,control,pr,if Cond then Conseqs where Constr)) do
4 if n ≤ thres then kv .Append(pr : Conseqs)

5 kv ← Sort-By-Descending-Key(kv)

6 St+1 ← {{}}
7 P({}) = 1
8 for (pr : conseqs) pair in kv do // loop over activated control rules

/* conseqs = [c11 and c12 and ... withProb p1,
c21 and c22 and ... withProb p2,
...] */

/* check that every fluent in the consequences is consistent with the facts already established in 
the potential next states */

9 for (ci1 and ci2 and ... withProb pi ) in conseqs do
/* ci j refers to the j-th fluent of the i-th consequence in the list of consequences induced by 

the control rule */
10 Ci ← {ci j}ci=ci1 and ci2 and ...

11 for (ci j , st+1) in Ci × St+1 do
12 if ?-incompatible(ci j , st+1) returns true then move to the next (pr : conseqs) pair // aka go to line 8

/* the activated rule consequences are consistent with St+1 */
13 S ′

t+1 ← {}
14 for st+1 ∈ St+1 do
15 for (ci1 and ci2 and ... withProb pi ) in conseqs do
16 Ci ← {ci j}ci=ci1 and ci2 and ...

17 S ′
t+1 ← S ′

t+1 ∪ {st+1 ∪ Ci}
18 P(st+1 ∪ Ci) ← P(st+1) · pi

19 St+1 ← S ′
t+1

20 for (fi, st+1) ∈ st × St+1 do // drag compatible facts from st over to st+1

21 if ?-incompatible(fi , st+1) returns false then st+1 ← st+1 ∪ {fi}
22 return St+1, P

27



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Algorithm 3: Function Build-Game-Round(id, thres).
Input : id � string

thres � non-negative integer
Output : γ � game round

F � set of fluents assigned to γ ’s terminal nodes
τ : Z → {0, 1} � function mapping whether termination conditions are met at a terminal node (τ = 1) or not (τ = 0).

Data : A � action situation description
st = {f1, f2, ...} � set of facts

Description : Given a state characterized by a set of facts, model all the ways by which it may evolve as a game round.
1 Function Build-Game-Round(id, thres):
2 k ← 1, X ← {k}, x0 ← k, k + +
3 E ← {}

/* set players to be those participants that can take some action */
4 M ← Get-Simple-Conseqs(id, choice, thres) = {can(ag1, ac1), can(ag2, ac2), ...}
5 P ← {agi | ∃can(agi , ac) ∈ M}

/* STEP 1: Build the game tree in a breadth-first manner */
6 w ← {x0}, w ′ ← {} // current and next information sets
7 W ← {}, A ← {} // information partition and actions
8 for player ∈ P do
9 Wplayer ← {w}, W ← W ∪ {Wplayer}

10 A(w) ← {ac | can(player, ac) ∈ M}, A ← A ∪ {A(w)}
11 for x ∈ w do
12 T (x) ← player
13 for action ∈ A(w) do
14 X ← X ∪ {k}, w ′ ← w ′ ∪ {k}
15 E ← E ∪ {(x, k)}, label(x, k) ← action
16 k + +
17 w ← w ′ , w ′ ← {}

/* STEP 2: Get the facts and chance moves at the terminal nodes */
18 p ← {} // probability over chance moves
19 for z ∈ Z ⊆ X do // Z is the subset of terminal nodes

// action profile from root to terminal node
20 μ = {does(ag, ac)}∀ag=T (xi ), ac=label(xi ,xi+1) | (xi ,xi+1)∈Path(x0,z)

21 A ←A ∪ μ // assert action profile into database
22 if ?-terminal returns true then t ← 1 else t ← 0
23 St+1, P = Get-Control-Conseqs(id, thres)
24 if St+1 = {st+1} then F (z) = st+1, τ (z) = t // no stochastic effects
25 else // stochastic effects
26 T (z) ← chance

27 for si
t+1 ∈ St+1 do

28 X ← X ∪ {k}, E ← E ∪ {(z, k)}
29 pz(z, k) ← P

(
si

t+1

)

30 F (k) ← si
t+1, τ (k) ← t , k + +

31 p ← p ∪ {pz}
32 A ←A \ μ // remove actions from the database
33 γ = (P , (X, E), T , W ,A , p)

34 return γ , F , τ

28



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Algorithm 4: Function Build-Full-Game(id, thres, max).
Input : id � string

thres � non-negative integer
max � non-negative integer

Output : 
 � extensive-form game
F � set of fluents assigned to γ ’s state nodes

Data : A � action situation description
Description : Given an action situation description, generate its extensive-form game semantics.

1 Function Build-Game-Round(id, thres, max):
2 φ ← Get-Simple-Conseqs(id, boundary, thres) = {participates(ag1), ...}
3 A ←A ∪ φ

4 ρ ← Get-Simple-Conseqs(id, position, thres) = {role(ag1, r1), ...}
5 A ←A ∪ ρ
6 s0 ← {}
7 foreach instantiation f i of ?-initially(F) do s0 ← s0 ∪ { f i} // initial facts
8 P = {agi}∀participates(agi )∈φ

9 X ← {1}, x0 ← 1, E ← {}, W ← {{}, ..., {}}∀i∈P , A ← {}, p ← {}
10 F(1) ← s0

11 round(1) ← 0
12 Q ← Queue(1)

13 while Q is not empty do
14 n ← Q.Pop()

15 if round(n) ≥ max then continue
16 st ← F(n)

17 A ←A ∪ {st } // assert node facts into database
18 if ?-terminal returns true then A ←A \ {st }, continue
19 γ , F , τ ← Build-Game-Round(id, thres)
20 A ←A \ {st }

/* append game round to overall game tree - superindex γ denotes the elements from the game round
*/

21 for x ∈ Xγ do x ← x + n − 1 // node re-labeling
22 X ← X ∪ Xγ , E ← E ∪ Eγ

23 for x ∈ Xγ \ Zγ do T (x) ← T γ (x)

24 for p ∈ P do W p ← W p ∪ W γ
p

25 for A(w) ∈ A γ do A ← A ∪ {A(w)}
26 forall x ∈ Xγ | T (x) = chance do p ← p ∪ {pγ

x }
27 for z ∈ Zγ do F(z) ← F (z)
28 forall z ∈ Zγ do
29 round(z) ← round(n) + 1
30 if τ (z) = 0 then Q.Push(z)

31 
 = (P , (X, E), T , W ,A , p)

32 return 
, F

29



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Appendix B. Example game semantics

B.1. Iterated Prisoner’s Dilemma

Fig. B.6. Game semantics for the iterated Prisoner’s Dilemma with the default rule configuration.

Table B.4
Equilibrium strategies (top) and distribution over outcomes (bottom) for the default 
rule configuration of the iterated Prisoner’s Dilemma game.

Agent Information set Action Probability

alice all
cooperate 0
defect 1

bob all
cooperate 0
defect 1

Terminal node(s) State fluents Probability

127 payoff(alice,9), payoff(bob,9) 1

Fig. B.7. Game semantics for the iterated Prisoner’s Dilemma with an additional rule for restricting to 2 the number of consecutive defections.

30



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Table B.5
Equilibrium strategies (top) and distribution over outcomes (bottom) for the iterated Pris-
oner’s Dilemma with an additional rule for restricting the number of consecutive defec-
tions. For the bottom table, only the state fluents that are common to all the outcomes 
with non-zero probability are shown.

Agent Information set Action Probability

alice

{1}, {6}, {7} cooperate 1/2
defect 1/2

{24}, {25}, {30}, {31} cooperate 1
defect 0

all others
cooperate 0
defect 1

bob

{2,3}, {26,27}, {14,15} cooperate 1/2
defect 1/2

{62,63}, {72,73}, {100,101}, {107} cooperate 1
defect 0

all others
cooperate 0
defect 1

Terminal node(s) State fluents Probability

55
payoff(alice,12), payoff(bob,12), ...

1
71, 75, 87, 93 0.125
99, 103, 106, 108 0.0625

Fig. B.8. Game semantics for the iterated Prisoner’s Dilemma with additional rules to change the outcome of a consecutive defection. For visualization 
purposes, termination conditions are met after agents play two game rounds instead of three.

Table B.6
Equilibrium strategies (top) and distribution over outcomes (bottom) for the iterated Pris-
oner’s Dilemma with additional rules to change the outcome of a consecutive defection.

Agent Information set Action Probability

alice all
cooperate 0
defect 1

bob all
cooperate 0
defect 1

Terminal node(s) State fluents Probability

40 payoff(alice,18), payoff(bob,0) 0.25
41 payoff(alice,9), payoff(bob,9) 0.25
48 payoff(alice,9), payoff(bob,9) 0.25
49 payoff(alice,0), payoff(bob,18) 0.25

31



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

B.2. Axelrod’s (meta)-norms game

(a)

State fluents p

1 payoff(i,0), payoff(j,0), payoff(k,0), time(0) -
3 payoff(i,0), payoff(j,0), payoff(k,0), time(1) 0
4 payoff(i,3), payoff(j,-1), payoff(k,-1), 

time(1), (seen(j,i))
0.4

5 payoff(i,3), payoff(j,-1), payoff(k,-1), 
seen(j,i), time(1)

-

6 payoff(i,-6), payoff(j,-3), payoff(k,-1), 
time(2)

0

7 payoff(i,3), payoff(j,-1), payoff(k,-1), 
time(2)

0.6

(b)

(c)

State fluents p

1 payoff(i,0), payoff(j,0), payoff(k,0), time(0) -
3 payoff(i,0), payoff(j,0), payoff(k,0), time(1) 0
4 payoff(i,3), payoff(j,-1), payoff(k,-1), 

time(1), (seen(j,i))
0.4

5 payoff(i,3), payoff(j,-1), payoff(k,-1), 
seen(j,i), time(1)

-

6 payoff(i,-6), payoff(j,-3), payoff(k,-1), 
time(2)

0

8 payoff(i,3), payoff(j,-1), payoff(k,-1), 
time(2), (seen(k,j))

0.24

9 payoff(i,3), payoff(j,-1), payoff(k,-1), 
seen(k,j), time(2)

-

10 payoff(i,3), payoff(j,-10), payoff(k,-3), 
time(3)

0

11 payoff(i,3), payoff(j,-1), payoff(k,-1), 
time(3)

0.36

(d)

Fig. B.9. Semantics for Axelrod’s norms (top) and metanorms (bottom) action situations, with the extensive game tree (left) and the corresponding state 
fluents (right). For the terminal nodes, their probability p induced by the equilibrium strategies and chance moves is also given.

Table B.7
Equilibrium strategies for Axelrod’s norms and meta-norms games. For the norms game, only 
the first two rows apply (strategies for i and j). For the meta-norms game, all rows apply.

Agent Information set Action Probability

i {1} defect 1
∼defect 0

j {5} sanction(i) 0
∼sanction(i) 1

k {9} sanction(j) 0
∼sanction(j) 1

32



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

B.3. Ostrom’s fishing game

(a)

Agent Information set Action Probability

alice

{1} go_to_spot(spot1) 0.71
go_to_spot(spot2) 0.29

{4} stay 0.82
leave 0.18

{7} stay 0.41
leave 0.59

bob

{2,3} go_to_spot(spot1) 0.84
go_to_spot(spot2) 0.16

{8,9} stay 1
leave 0

{18,19} stay 0.30
leave 0.70

(b)

State fluents p State fluents p

1 at(alice, shore), at(bob, shore) - 14 at(alice, spot1), at(bob, spot1), won_fight(bob) 0.18
4 at(alice, spot1), at(bob, spot1) - 15 at(alice, spot1), at(bob, spot1), won_fight(alice) 0.31
5 at(alice, spot1), at(bob, spot2) 0.11 16 at(alice, spot2), at(bob, spot2), won_fight(bob) 0
6 at(alice, spot2), at(bob, spot1) 0.25 17 at(alice, spot2), at(bob, spot2), won_fight(alice) 0
7 at(alice, spot2), at(bob, spot2) - 24 at(alice, spot2), at(bob, spot2), won_fight(bob) 0
11 at(alice, spot1), at(bob, spot2) 0 25 at(alice, spot2), at(bob, spot2), won_fight(alice) 0
12 at(alice, spot2), at(bob, spot1) 0.11 26 at(alice, spot1), at(bob, spot1), won_fight(bob) 0.01
21 at(alice, spot2), at(bob, spot1) 0.01 27 at(alice, spot1), at(bob, spot1), won_fight(alice) 0.01
22 at(alice, spot1), at(bob, spot2) 0.01

(c)

Fig. B.10. Semantics for the fishers default action situation: game tree (a), equilibrium strategies (b) and state fluents with the probabilities over the terminal 
nodes induced by the equilibrium strategies and chance moves (c).

33



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

(a)

Agent Information set Action Probability

alice
{1} go_to_spot(spot1) 1

go_to_spot(spot2) 0
{8} leave 1
{9} stay 1

bob
{2,3} go_to_spot(spot1) 1

go_to_spot(spot2) 0
{12} stay 1
{14} leave 1

(b)

State fluents p

1 at(alice, shore), at(bob, shore) -
5 at(alice, spot1), at(bob, spot2) 0
6 at(alice, spot2), at(bob, spot1) 0
8 at(alice, spot1), at(bob, spot1), won_race(bob) -
9 at(alice, spot1), at(bob, spot1), won_race(alice) -
10 at(alice, spot2), at(bob, spot2), won_race(bob) -
11 at(alice, spot2), at(bob, spot2), won_race(alice) -
13 at(alice, spot2), at(bob, spot1), won_race(bob) 0.62
15 at(alice, spot1), at(bob, spot2), won_race(alice) 0.38
17 at(alice, spot1), at(bob, spot2), won_race(bob) 0
19 at(alice, spot2), at(bob, spot1), won_race(alice) 0

(c)

Fig. B.11. Semantics for the fishers first-in-time, first-in-right action situation: game tree (a), equilibrium strategies (b) and state fluents with the probabilities 
over the terminal nodes induced by the equilibrium strategies and chance moves (c). The equilibrium strategies for information sets {10}, {11}, {16} and 
{18} have been omitted since they are not relevant for the game (i.e. agents never choose to go to spot 2).

34



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

(a)

Agent Information set Action Probability

alice {2} go_to_spot(spot1) 0
go_to_spot(spot2) 1

bob
{1} announce_spot(spot1) 1

announce_spot(spot2) 0

{4,5} go_to_spot(spot1) 1
go_to_spot(spot2) 0

(b)

State fluents p

1 at(alice, shore), at(bob, shore) -
2 announced(bob, spot1), at(alice, shore), at(bob, shore) -
3 announced(bob, spot2), at(alice, shore), at(bob, shore) -
6 announced(bob, spot1), at(alice, spot1), at(bob, spot1), won_race(bob) -
7 announced(bob, spot1), at(alice, spot1), at(bob, spot2) 0
8 announced(bob, spot1), at(alice, spot2), at(bob, spot1) 1.00
10 announced(bob, spot1), at(alice, spot2), at(bob, spot2), won_race(bob) -
11 announced(bob, spot1), at(alice, spot2), at(bob, spot2), won_race(alice) -
15 announced(bob, spot2), at(alice, spot1), at(bob, spot2) 0
16 announced(bob, spot2), at(alice, spot2), at(bob, spot1) 0
17 announced(bob, spot2), at(alice, spot2), at(bob, spot2), won_race(bob) -
18 announced(bob, spot2), at(alice, spot1), at(bob, spot1), won_race(bob) -
19 announced(bob, spot2), at(alice, spot1), at(bob, spot1), won_race(alice) -
21 announced(bob, spot1), at(alice, spot2), at(bob, spot1), won_race(bob) 0
23 announced(bob, spot1), at(alice, spot1), at(bob, spot2), won_race(bob) 0
25 announced(bob, spot1), at(alice, spot2), at(bob, spot1), won_race(alice) 0
27 announced(bob, spot2), at(alice, spot1), at(bob, spot2), won_race(bob) 0
29 announced(bob, spot2), at(alice, spot2), at(bob, spot1), won_race(bob) 0
31 announced(bob, spot2), at(alice, spot1), at(bob, spot2), won_race(alice) 0

(c)

Fig. B.12. Semantics for the fishers first-to-announce, first-in-right action situation: game tree (a), equilibrium strategies (b) and state fluents with the 
probabilities induced over the terminal nodes by the equilibrium strategies and chance moves (c). Only the equilibrium strategies for the information sets 
that are actually visited during game play are included.

35



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

References

[1] E. Ostrom, Background on the Institutional Analysis and Development framework, Policy Stud. J. 39 (1) (2011) 7–27, https://doi .org /10 .1111 /j .1541 -
0072 .2010 .00394 .x.

[2] E. Ostrom, Understanding Institutional Diversity, Princeton University Press, 2005.
[3] M. Black, Models and Metaphors: Studies in Language and Philosophy, Cornell University Press, Ithaca, NY, 1962.
[4] D. Cozort, J.M. Shields (Eds.), The Oxford Handbook of Buddhist Ethics, Oxford University Press, 2018.
[5] E. Ostrom, Governing the Commons, Cambridge University Press, 1990.
[6] J. Weymark, Social Welfare Functions, Oxford University Press, 2016, pp. 126–159, Ch. 5.
[7] L.L. Kiser, E. Ostrom, The Three Worlds of Action: A Metatheoretical Synthesis of Institutional Approaches, Michigan University Press, Ann Arbor, 1982, 

pp. 56–88, Ch. 2.
[8] S. Sarr, B. Hayes, D.A. DeCaro, Applying Ostrom’s Institutional Analysis and Development framework, and design principles for co-production to pollu-

tion management in Louisville’s Rubbertown, Kentucky, Land Use Policy 104 (2021) 105383, https://doi .org /10 .1016 /j .lusepol .2021.105383.
[9] T. Nguyen, T. Watanabe, Autonomous motivation for the successful implementation of waste management policy: an examination using an adapted 

Institutional Analysis and Development framework in Thua Thien Hue, Vietnam, Sustainability 12 (7) (2020) 2724, https://doi .org /10 .3390 /su12072724.
[10] D.N. Barton, K. Benavides, A. Chacon-Cascante, J.F. Le Coq, M.M. Quiros, I. Porras, E. Primmer, I. Ring, Payments for ecosystem services as a policy mix: 

demonstrating the Institutional Analysis and Development framework on conservation policy instruments, Environ. Policy Gov. 27 (5) (2017) 404–421, 
https://doi .org /10 .1002 /eet .1769.

[11] D.H. Cole, Laws, norms, and the Institutional Analysis and Development framework, J. Inst. Econ. 13 (4) (2017) 829–847, https://doi .org /10 .1017 /
s1744137417000030.

[12] A. Mas-Colell, M.D. Whinston, J.R. Green, Microeconomic Theory, Oxford University Press, New York, 1995.
[13] Y. Shoham, M. Tennenholtz, On social laws for artificial agent societies: off-line design, Artif. Intell. 73 (1–2) (1995) 231–252, https://doi .org /10 .1016 /

0004 -3702(94 )00007 -n.
[14] S. Onn, M. Tennenholtz, Determination of social laws for multi-agent mobilization, Artif. Intell. 95 (1) (1997) 155–167, https://doi .org /10 .1016 /s0004 -

3702(97 )00045 -3.
[15] G. Andrighetto, G. Governatori, P. Noriega, L. van der Torre, Normative multi-agent systems (Dagstuhl seminar 12111), Dagstuhl Rep. 2 (3) (2012) 

23–49, https://doi .org /10 .4230 /DagRep .2 .3 .23, http://drops .dagstuhl .de /opus /volltexte /2012 /3535.
[16] C. Hahn, T. Phan, S. Feld, C. Roch, F. Ritz, A. Sedlmeier, T. Gabor, C. Linnhoff-Popien, Nash equilibria in multi-agent swarms, in: Proceedings of the 12th 

International Conference on Agents and Artificial Intelligence, SCITEPRESS - Science and Technology Publications, 2020, pp. 234–241.
[17] P. Caillou, S. Aknine, S. Pinson, Searching Pareto optimal solutions for the problem of forming and restructuring coalitions in multi-agent systems, 

Group Decis. Negot. 19 (1) (2009) 7–37, https://doi .org /10 .1007 /s10726 -009 -9183 -9.
[18] S.E.S. Crawford, E. Ostrom, A grammar of institutions, Am. Polit. Sci. Rev. 89 (3) (1995) 582–600, https://doi .org /10 .2307 /2082975.
[19] C. Frantz, M.K. Purvis, M. Nowostawski, B.T.R. Savarimuthu, nADICO: a nested grammar of institutions, in: Lecture Notes in Computer Science, Springer 

Berlin Heidelberg, 2013, pp. 429–436.
[20] C.K. Frantz, S. Siddiki, Institutional Grammar 2.0: A Specification for Encoding and Analyzing Institutional Design, Public Administration, 2021.
[21] A. Ghorbani, G. Bravo, Managing the commons: a simple model of the emergence of institutions through collective action, Int. J. Commons 10 (1) 

(2016) 200–219, https://doi .org /10 .18352 /ijc .606.
[22] A. Smajgl, L.R. Izquierdo, M. Huigne, Modeling endogenous rule changes in an institutional context: the adico sequence, Adv. Complex Syst. 11 (02) 

(2008) 199–215, https://doi .org /10 .1142 /s021952590800157x.
[23] A. Ghorbani, P. Bots, V. Dignum, G. Dijkema, MAIA: a framework for developing agent-based social simulations, J. Artif. Soc. Soc. Simul. 16 (2) (2013), 

https://doi .org /10 .18564 /jasss .2166.
[24] M. Genesereth, N. Love, B. Pell, General game playing: overview of the AAAI competition, AI Mag. 26 (2005) 62–72, https://doi .org /10 .1609 /aimag .

v26i2 .1813.
[25] S. Schiffel, M. Thielscher, Representing and reasoning about the rules of general games with imperfect information, J. Artif. Intell. Res. 49 (2014) 

171–206, https://doi .org /10 .1613 /jair.4115.
[26] M. Thielscher, GDL-III: a description language for epistemic general game playing, in: Proceedings of the Twenty-Sixth International Joint Conference 

on Artificial Intelligence, International Joint Conferences on Artificial Intelligence Organization, 2017, pp. 1276–1282.
[27] D. de Jonge, T. Trescak, C. Sierra, S. Simoff, R.L. de Mántaras, Using game description language for mediated dispute resolution, AI Soc. 34 (4) (2017) 

767–784, https://doi .org /10 .1007 /s00146 -017 -0790 -8.
[28] D. de Jonge, D. Zhang, GDL as a unifying domain description language for declarative automated negotiation, Auton. Agents Multi-Agent Syst. 35 (1) 

(2021), https://doi .org /10 .1007 /s10458 -020 -09491 -6.
[29] R.B. Scherl, H.J. Levesque, Knowledge, action, and the frame problem, Artif. Intell. 144 (1–2) (2003) 1–39, https://doi .org /10 .1016 /s0004 -3702(02 )00365 -

x.
[30] D. Koller, A. Pfeffer, Representations and solutions for game-theoretic problems, Artif. Intell. 94 (1–2) (1997) 167–215, https://doi .org /10 .1016 /s0004 -

3702(97 )00023 -4.
[31] G.H. von Wright, Deontic logic, Mind 60 (237) (1951) 1–15, http://www.jstor.org /stable /2251395.
[32] M. Belzer, Deontic logic, in: Routledge Encyclopedia of Philosophy, Routledge, 1998.
[33] J. Morales, M. Lopez-Sanchez, J.A. Rodriguez-Aguilar, M. Wooldridge, W. Vasconcelos, Automated synthesis of normative systems, in: Proceedings of 

the 2013 International Conference on Autonomous Agents and Multi-Agent Systems, AAMAS ’13, International Foundation for Autonomous Agents and 
Multiagent Systems, Richland, SC, 2013, pp. 483–490.

[34] M.S. Fagundes, S. Ossowski, J. Cerquides, P. Noriega, Design and evaluation of norm-aware agents based on normative Markov decision processes, Int. 
J. Approx. Reason. 78 (2016) 33–61, https://doi .org /10 .1016 /j .ijar.2016 .06 .005.

[35] J. Szabo, J.M. Such, N. Criado, Understanding the role of values and norms in practical reasoning, in: N. Bassiliades, G. Chalkiadakis, D. de Jonge (Eds.), 
Multi-Agent Systems and Agreement Technologies, Springer International Publishing, Cham, 2020, pp. 431–439.

[36] D. Grossi, D. Gabbay, L. van der Torre, The norm implementation problem in normative multi-agent systems, in: Specification and Verification of 
Multi-agent Systems, Springer US, 2010, pp. 195–224.

[37] F. Lin, Situation Calculus, Foundations of Artificial Intelligence, vol. 3, Elsevier, 2008, pp. 649–669, Ch. 16.
[38] J. González-Díaz, I. García-Jurado, M.G. Fiestras-Janeiro, An Introductory Course on Mathematical Game Theory, American Mathematical Society and 

Real Sociedad Matemática Española, Providence, Rhode Island, USA and Madrid, 2010.
[39] S. Fatima, S. Kraus, M. Wooldridge, Principles of Automated Negotiation, Cambridge University Press, 2009.
[40] N. Gronewold, Game theory: climate talks destined to fail (Dec 2010), https://www.scientificamerican .com /article /game -theorist -predicts -failure -at -

climate -talks/.
[41] H.W. Kuhn, 11. Extensive games and the problem of information, in: Contributions to the Theory of Games (AM-28), Vol. II, Princeton University Press, 

1953, pp. 193–216.

36



N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

[42] J.F. Nash, Equilibrium points in n-person games, Proc. Natl. Acad. Sci. USA 36 (1) (1950) 48–49, http://www.jstor.org /stable /88031.
[43] R.J. Aumann, Subjectivity and correlation in randomized strategies, J. Math. Econ. 1 (1) (1974) 67–96, https://doi .org /10 .1016 /0304 -4068(74 )90037 -8.
[44] Y. Shoham, K. Leyton-Brown, Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations, Cambridge University Press, 2014.
[45] L. Hammond, J. Fox, T. Everitt, A. Abate, M. Wooldridge, Equilibrium refinements for multi-agent influence diagrams: theory and practice, in: Pro-

ceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’21, International Foundation for Autonomous 
Agents and Multiagent Systems, Richland, SC, 2021, pp. 574–582.

[46] R. Axelrod, An evolutionary approach to norms, Am. Polit. Sci. Rev. 80 (04) (1986) 1095–1111, https://doi .org /10 .2307 /1960858.
[47] E. Ostrom, R. Gardner, J. Walker, Rules, Games, and Common-Pool Resources, University of Michigan Press, 1994.

37





Contribution 3

Combining Theory of Mind and
Abductive Reasoning in Agent-Oriented
Programming

Autonomous Agents and Multi-Agent Systems

Full citation:
Montes, N., Luck, M., Osman, N., Rodrigues, O., & Sierra, C. (2023a). Combin-
ing theory of mind and abductive reasoning in agent-oriented programming.
Autonomous Agents and Multi-Agent Systems, 37(2). https://doi.org/10.1007/
s10458-023-09613-w

113

https://doi.org/10.1007/s10458-023-09613-w
https://doi.org/10.1007/s10458-023-09613-w




Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems           (2023) 37:36 
https://doi.org/10.1007/s10458-023-09613-w

1 3

Combining theory of mind and abductive reasoning 
in agent‑oriented programming

Nieves Montes1 · Michael Luck2 · Nardine Osman1 · Odinaldo Rodrigues2 · 
Carles Sierra1

Accepted: 6 July 2023 
© The Author(s) 2023

Abstract
This paper presents a novel model, called TomAbd, that endows autonomous agents with 
Theory of Mind capabilities. TomAbd agents are able to simulate the perspective of the 
world that their peers have and reason from their perspective. Furthermore, TomAbd agents 
can reason from the perspective of others down to an arbitrary level of recursion, using 
Theory of Mind of nth order. By combining the previous capability with abductive rea-
soning, TomAbd agents can infer the beliefs that others were relying upon to select their 
actions, hence putting them in a more informed position when it comes to their own deci-
sion-making. We have tested the TomAbd model in the challenging domain of Hanabi, a 
game characterised by cooperation and imperfect information. Our results show that the 
abilities granted by the TomAbd model boost the performance of the team along a variety 
of metrics, including final score, efficiency of communication, and uncertainty reduction.

Keywords Theory of mind · Abductive reasoning · Agent-oriented programming · Social 
AI · Hanabi

N. Montes: Part of this work was done when the author was on a research visit to the Department of 
Informatics at King’s College London.

 * Nieves Montes 
 nmontes@iiia.csic.es

 Michael Luck 
 michael.luck@kcl.ac.uk

 Nardine Osman 
 nardine@iiia.csic.es

 Odinaldo Rodrigues 
 odinaldo.rodrigues@kcl.ac.uk

 Carles Sierra 
 sierra@iiia.csic.es

1 Department of Multi-Agent Systems, Artificial Intelligence Research Institute (IIIA-CSIC), 
Campus de la UAB, 08193 Bellaterra, Barcelona, Spain

2 Department of Informatics, King’s College London, Bush House, London WC2B 4BG, UK



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 2 of 41

1 Introduction

The emergent field of social AI deals with the formulation and implementation of autono-
mous agents that can successfully act as part of a larger society, made up of other software 
agents as well as humans [1, 2]. In human social life, an essential requirement for effective 
participation is the ability to interpret and predict the behaviour of others in terms of their 
mental states, such as their beliefs, goals and desires. This ability to put oneself in the posi-
tion of others and reason from their perspective is called Theory of Mind (ToM) and is 
closely related to feelings of empathy [3] and moral judgements [4].

The work presented here starts from the assumption that, just as humans need a func-
tioning ToM, if autonomous software agents are to operate satisfactorily in social contexts, 
they also need some implementation of the abilities that ToM endows humans with [5]. 
In particular, in domains where agents have to deal with partial observability, agents can 
benefit by engaging in the type of reasoning pictured in Fig. 1: agents can infer additional 

Fig. 1  Outline of the reasoning process captured by the TomAbd agent model



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 3 of 41    36 

knowledge from observing the actions performed by others and deducing the beliefs that 
their peers were relying upon to select those actions. This process can be achieved directly 
as in Fig. 1a, where an observer adopts the perspective of an actor to provide an explana-
tion for their action, or through one (Fig. 1b) or more (Fig. 1c) intermediaries, where the 
observer adopts the perspective of the actor through an arbitrary number of agents. Hence, 
agents can use other agents as “sensors” with the purpose of being in a more informed 
position when it comes to their own decision-making. The backward inference from obser-
vations (actions by others) to their underlying motivations is called abductive reasoning 
and, together with ToM, is a central component of the agent model presented here.

The main contribution of this work is the TomAbd agent model, which combines the 
two capacities mentioned above (Theory of Mind and abduction) to provide the reasoning 
displayed in Fig. 1. This paper builds on a previous, much-reduced, preliminary version 
[6]. Here, we propose a completely domain-independent model where agents observe the 
actions of others, adopt their perspective and generate explanations that justify their choice 
of action. We cover all the steps involved in this reasoning process: from the switch from 
the agent’s perspective to that of a peer’s, to the generation, post-processing and update 
of previous explanations as the state of the system evolves. In addition, we also provide a 
complementary decision-making function that takes into account the gathered abductive 
explanations.

We implement the TomAbd agent model in Jason [7], an agent-oriented programming 
language based on the Belief- Desire-Intention (BDI) architecture. Given the functionali-
ties of our model, the ToM capabilities of TomAbd agents are strongly skewed towards the 
perception step of the BDI reasoning cycle (i.e. upon observation of an action by another 
agent, generate a plausible explanation for it). Nonetheless, we open up an avenue to intro-
duce ToM reasoning into the deliberation step of the BDI cycle as well through a comple-
mentary decision-making function.

Furthermore, we have applied the TomAbd agent model to Hanabi, a cooperative card 
game that we use as our benchmark. We clearly indicate the specific domain-dependent 
choices necessary in this application, that need not be shared for other domains. We ana-
lyse the model’s performance on a number of metrics, namely absolute team score and 
information gain and value. Our assessment quantifies the gains that can be unequivocally 
attributed to the ToM abilities of the agents.

This paper is organised as follows. In Sect.  2 we provide the necessary background 
on Theory of Mind, abductive reasoning and the Hanabi game. The central contribution 
of this paper, the TomAbd agent model, is exposed in detail in Sect. 3. Then, in Sect. 4 
we cover some issues related to the implementation and potential customisations of the 
model components. Section 5 presents the performance results of the TomAbd agent model 
applied to the Hanabi domain. Finally, Sect. 6 compares our work with related approaches, 
and we conclude in Sect. 7.

2  Background

2.1  Theory of mind

The first building block of the TomAbd agent model is Theory of Mind (ToM). Broadly 
defined, ToM is the human cognitive ability to perceive, understand and interpret others in 
terms of their mental attitudes, such as their beliefs, emotions, desires and intentions [8]. 



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 4 of 41

Humans routinely interpret the behaviour of others in terms of their mental states, and this 
ability is considered essential for language and participation in social life [3].

ToM is not an innate ability. It is an empirically established fact that children develop a 
ToM at around the age of 4 [9]. It has been demonstrated that around this age, children are 
able to assign false beliefs to others, by having them undertake the Sally-Anne test [10]. 
The child is told the following story, accompanied by dolls or puppets: Sally puts her ball 
in a basket and goes out to play; while she is outside Anne takes the ball from the basket 
and puts it in a box; then Sally comes back in. The child is asked where will Sally look for 
her ball. Children with a developed ToM are able to identify that Sally will look for her ball 
inside the basket, thus correctly assigning a false belief to the character, that they them-
selves know to be untrue.

During the 1980s, the ToM hypothesis of autism gained traction, which states that defi-
cits in the development of ToM satisfactorily explain the main symptoms of autism. This 
hypothesis argues that the inability to process mental states leads to a lack of reciprocity 
in social interactions [10]. Although a deficiency in the identification and interpretation of 
mental states remains uncontested as a cause of autism, it is no longer viewed as the only 
one, and the disorder is now studied as a complex condition involving a variety of cogni-
tive mechanisms [11, 12].

Within philosophy and psychology, two distinct accounts of ToM exist: Theory ToM 
(TT) and Simulation ToM (ST) [13]. The TT account views the cognitive abilities assigned 
to ToM as the consequence of a theory-like body of implicit knowledge. This knowledge 
is conceived as a set of general rules and laws concerned with the deployment of mental 
concepts, analogous to a theory of folk psychology. This theory is applied inferentially to 
attribute beliefs, goals, and other mental states and predict subsequent actions.

In contrast, the ST account views the predictions of ToM not as a result of inference, but 
through the use of one’s own cognitive processes and mechanisms to build a model of the 
minds of others and the processes happening therein. Hence, to attribute mental states and 
predict the actions of others, one imagines oneself as being in the other agent’s position. 
Once there, humans apply their own cognitive processes, engaging in a sort of simulation 
of the minds of others. This internal simulation is very closely related to empathy, since it 
essentially consists of experiencing the world from the perspective of someone else. In this 
work, we adhere more closely to the ST account than to the TT one, as we view the former 
as having a clearer path to becoming operational. In our TomAbd model, agents simulate 
themselves to be in the position of another, and then apply abductive reasoning (covered in 
Sect. 2.2) to infer their beliefs.

Formally, ToM statements can be expressed using the language of epistemic logic, 
which studies the logical properties of knowledge, belief, and related concepts [14, 15]. 
The belief of agent i is expressed using modal operator Bi . Although modal operators also 
exist for other mental states such as desires and intentions [16], we focus on B, since the 
ToM abilities of our agent model are manifested by having the agent’s own beliefs replaced 
by an estimation of the beliefs of others. Then, the statement Bi� is read as “agent i 
believes that �”.

ToM statements can be expressed by nesting the previous beliefs about the state of 
the world. Therefore, statement BiBj� is read as “i believes that j believes � ”. This cor-
responds to a first-order ToM statement from the perspective of i. Subsequent nesting 
results in statements of higher order. For example, BiBjBk� is read as “i believes that j 
believes that k believes � ”, a second-order ToM statement. This recursion can be extended 
down to an arbitrary nesting level. In general, an n-th order ToM statement is expressed 
as BiBj1

…Bjn−1
Bjn

� and is read as “i believes that j1 believes … that jn−1 believes that 



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 5 of 41    36 

jn believes � ”. The psychologist Corballis argued that, in fact, the ability to think recur-
sively beyond the first nesting level, as in ToM statements of second order and beyond, is a 
uniquely human capacity that sets us apart from all other species [17, 18].

Within AI, implementations of ToM are often categorised under the umbrella of tech-
niques for modelling others [19]. In the majority of cases, these techniques are applied to 
competitive domains, where they are referred to as opponent modelling [20, 21]. ToM for 
autonomous software agents has so far been developed in a somewhat fragmented fashion, 
with every camp within the field implementing it according to their own techniques and 
methods.

In machine learning, prominent work by Rabinowitz et al. [22] has modelled ToM as 
a meta-learning process, where an architecture composed of several deep neural networks 
(DNN) is trained on past trajectories of a variety of agents, including random, reinforce-
ment learning (RL) and goal-directed agents, to predict action at the next time-step. The 
component of the architecture most related to ToM is the mental net, which parses trajec-
tory observations into a generic mental state embedding. It is not specified what kind of 
mental states (i.e. beliefs or goals) these embeddings represent. In contrast, Wang et  al. 
[23] also use an architecture based on DNNs for reaching consensus in multi-agent cooper-
ative settings. Their ToM net explicitly estimates the goal that others are currently pursuing 
based on local observations. Finally, an alternative approach by Jara-Ettinger [24] proposes 
to formalise the acquisition of a ToM as an inverse reinforcement learning (IRL) prob-
lem. However, these approaches have drawn some criticism for their inability to mimic the 
actual operation of the human mind, as the direct mapping from past to future behaviour 
bypasses the modelling of relevant mental attitudes, such as desires and emotions [25]. By 
contrast, in our work ToM is used to derive explicit beliefs. We leave the expansion of the 
model to include other mental states, such as desires and intentions, for future work.

ToM approaches have also been investigated from an analytical game theoretical per-
spective. De Weerd et  al. [26, 27] show that the marginal benefits of employing ToM 
diminish with the nesting level in competitive scenarios. In particular, while first-order and 
second-order ToM present a clear advantage with respect to opponents with ToM abilities 
of lower order (or no ToM capacity at all), the benefits of using higher-order ToM are out-
weighed by the complexity it entails. The same authors also prove that high-order ToM is 
beneficial in dynamic environments, with the magnitude of the benefits increasing with the 
uncertainty of the scenario [28]. It is therefore important to devise techniques that attempt 
to measure the information gained through the addition of ToM of any order, a concern 
also considered in this paper.

Finally, symbolic approaches to ToM have studied the effects of announcements on the 
beliefs of others and the ripple-down effects on their desires and the actions they motivate 
in response, for the purposes of deception and manipulation [29, 30].

2.2  Abductive logic programming

The second main component of the TomAbd agent model is abductive reasoning. Abduc-
tion is a logical inference paradigm that differs from traditional deductive reasoning [31]. 
Classical deduction makes inference following the modus ponens rule: from knowledge of 
� and of the implication � → � , � is inferred as true. In contrast, abduction makes infer-
ences in the opposite direction: from knowledge of the implication � → � and the observa-
tion of � , � is inferred as a possible explanation for �.



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 6 of 41

Hence, instead of inferring conclusions deductively, abduction is concerned with the 
derivation of hypothesis that can satisfactorily explain an observed phenomenon. For 
this reason, abduction is broadly defined as “inference to the best explanation” [32], 
where the notion of best needs to be specified by some domain-dependent optimality 
criterion. Abduction is also distinct from the inference paradigm of inductive reason-
ing [33]. While induction works on a body of observations to derive a general princi-
ple, explanations inferred in abductive reasoning consist of extensional knowledge, i.e. 
knowledge that only applies to the domain under examination.

In the context of logic programming, the implementation of abductive reasoning is 
called Abductive Logic Programming (ALP) [34, 35], defined as follows.

Definition 1 An Abductive Logic Programming theory is a tuple ⟨T ,A, IC⟩ , where:

• T is a logic program representing expert knowledge in the domain;
• A is a set of ground abducibles (which are often defined by their predicate symbol), 

with the restriction that no element in A appears as the head of a clause in T; and
• IC is a set of integrity constraints, i.e. a set of formulas that cannot be violated.

Then, an abductive explanation is defined as follows.

Definition 2 Given an ALP theory ⟨T ,A, IC⟩ and an observation Q, an abductive explana-
tion Δ for Q is a subset of abducibles Δ ⊆ A such that:

• T ∪ Δ ⊧ Q ; and
• T ∪ Δ verifies IC.

The verification mentioned in Definition  2 can take one of two views [34]. First, 
the stronger entailment view states that the extension of T with explanation Δ needs to 
derive the set of constraints, T ∪ Δ ⊧ IC . Second, the weaker consistency view states 
that it is enough for the extended logic program not to violate IC, i.e. T ∪ Δ ∪ IC is 
satisfiable, or T ∪ Δ ̸⊧ ¬IC . In this work, we adhere to the latter view. We do not model 
integrity constraints directly but rather their negation. We introduce into the agent pro-
gram formulas that should never hold true through special rules called impossibility 
clauses. More details on this are provided in Sect. 3.1. Taking the consistency position 
allows us to work with incomplete abductive explanations that need not complement the 
current knowledge base to the extent that IC can be derived, but that nonetheless pro-
vide valuable information.

In practice, most existing ALP frameworks compute abductive explanations using 
some extension of classical Selective Linear Definite (SLD) clause resolution, or its 
negation-as-failure counterpart SLDNF [36–39]. The current state-of-the-art integrates 
abduction in Probabilistic Logic Programming (PLP), where the optimal explanation 
is considered to be the one that is compatible with the constraints and simultaneously 
maximises the joint probability of the query and the constraints [40].

The purpose of computing abductive explanations is to expand an existing knowledge 
base KB, which may or may not correspond to the logic program T used to compute 
explanation Δ in the first place. During knowledge expansion, which occurs one formula 
at a time, the following four scenarios may arise [34]. 



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 7 of 41    36 

1. The new information can already be derived from the existing explanation, 
KB ∪ Δ ≡ KB , and hence Δ is uninformative.

2. KB can be split into two disjoint parts, KB = KB1 ∪ KB2 , such that one of them, together 
with the new information, implies the second, KB1 ∪ Δ ⊧ KB2 . In the worst case, the 
addition of Δ renders a part of the original knowledge base redundant.

3. The new information Δ violates the logical consistency of KB. To integrate the two, it is 
necessary to modify and/or reject a number of the assumptions in KB or in Δ that lead 
to the inconsistency.

4. Δ is independent and compatible with KB. This is the most desirable case, as Δ can be 
assimilated into KB in a straightforward manner.

In the TomAbd agent model, we deal with scenarios 1 and 3 through the post-process-
ing of the generated abductive explanations by the explanation revision function (ERF). 
Essentially, uninformative explanations (scenario 1) as well as explanations that violate the 
integrity of the current belief base (scenario 3) are discarded. More details are provided in 
Sect. 3.3.

Hence, the addition of abductive explanations does not affect the correctness of KB, but 
it may affect its efficiency. The addition of � into the knowledge base may subsume some 
information already there, as anticipated by scenario 2. However, in the TomAbd model, 
we do not check whether a new explanation renders part of the knowledge base redundant. 
We work with dynamic belief bases, which change as agents update their perceptions of 
the environment. When the system evolves and an agent’s perception of it changes, some 
abductive explanations currently in the belief base need to be dropped because they are no 
longer correct, or they are now redundant. This operation is performed by the explanation 
update function (EUF), covered in Sect. 3.3. If, due to the addition of � , a part of the belief 
base had been discarded, it would raise the issue of whether it needs to be recovered once 
the explanation that caused it to become irrelevant is dropped. We bypass this question by 
retaining all of the belief base upon adding an explanation, provided that this explanation 
has previously passed all the redundancy and consistency checks.

2.3  The Hanabi game

In this paper, we use the Hanabi game as a running example for the presentation of the 
TomAbd agent model and to evaluate its performance. Hanabi has been by other AI 
researchers as a testbed to test techniques for multi-agent cooperation [41, 42]. Hanabi is 
an award-winning1 card game, where a team of two to five players work together towards a 
common objective. The goal of the team is to build stacks of cards of five different colours 
(blue, green, yellow, red and white), with the stacks composed of a card of rank 1, followed 
by a card of rank 2, and so on, until the stack is completed with a card of rank 5. A typical 
setup of an ongoing Hanabi game appears in Fig. 2a.

At the start of the game, players are handed four or five cards, depending on the size of 
the team. Players place their cards in a way such that everyone except themselves can see 
them. For example, the setup in Fig. 2a is drawn from the perspective of player Alice, who 
cannot see her own cards but has access to Bob’s and Cathy’s cards. Initially, no stack has 
any card on it (their size is 0). Additionally, eight information tokens (the round blue and 

1 https:// www. spiel- des- jahres. de/ en/ games/ hanabi/.



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 8 of 41

black chips in Fig. 2) and three live tokens (the heart-shaped chips in Fig. 2) are placed on 
the table.

Players take turns in order, one at a time, in which they must perform one of three 
actions. First, they can discard a card (Fig. 2b). Here, the player picks a card from their 
hand and places it in the discard pile, which is observable by everyone. By doing so, they 
recover one spent information token (which is spent by giving hints) and replace the vacant 
slot in their hand with a card drawn from the deck. A player cannot discard a card if there 
are no information tokens to recover.

Second, players can play cards from their hand. They pick a card and place it on the 
stack of the corresponding colour. Players need not state in which stack they are going to 
play their card before they do so. In other words, they are allowed to play “blindly”. There 
are two possible outcomes to this move. The card is correctly played if its rank is exactly 1 

Fig. 2  Basic set-up for the Hanabi game and actions that can be performed



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 9 of 41    36 

unit over the size of the stack of the card’s colour. For example, in Fig. 2c Alice plays her 
white 3 card on the white stack, which has size 2 (i.e. there is a white 1 card at the bottom 
and a white 2 card in top of it). After a card is played correctly, the team score is increased 
by 1 unit (the score corresponds to the sum of the ranks at the top of each stack). Moreover, 
if a player correctly places a card of rank 5 and therefore completes one stack, one infor-
mation token is recovered for the team, assuming there are some tokens left to recover. 
Finally, the player replaces the gap in their hand with a card from the deck.

The card is incorrectly played if the rank does not match the size of the stack plus 1. 
For example, in Fig. 2d Alice attempts to play a blue 5 while the blue stack has size of 2. 
If this happens, the player places the card they attempted to play in the discard pile, and 
replaces it with a new card from the deck. Furthermore, the whole team loses one of their 
life tokens.

Third, players can give hints to one another about the cards they hold. Hints are pub-
licly announced, i.e. everyone hears them. Players can hint to one another about the colour 
(Fig. 2e) or rank of their cards (Fig. 2f). In order to give a hint, the moving player must 
spend one information token. The team must have at least one information token, which 
is spent when the hint is given. When players give hints to others, they must indicate all 
of the receiver’s cards that match the colour or rank being hinted. For example, in Fig. 2e, 
Alice has to tell Bob where all of his white cards are. Alice is not allowed to tell Bob only 
the colour of a card in a single slot if he has other cards of the same colour. Analogously, 
in Fig. 2f, Alice tells Cathy which of her cards have rank 1, not mentioning their colour, 
regardless of any previous hints.

There are three possible ways in which a game of Hanabi might end. First, the players 
might manage to complete all of the stacks up to size 5, hence finishing the game with 
the maximum score of 25. Second, the team might lose all three life tokens. In this case, 
immediately after losing the third life token, the game finishes with the minimum score of 
0. Third and last, after a player has drawn the final card from the deck, all participants take 
one more turn. After that, the game finishes with score equal to the sum of the size of the 
stacks.

The Hanabi game has three features that make it particularly interesting to test tech-
niques for modelling others. This has led some researchers to point to Hanabi as the next 
great challenge to be undertaken by the AI community [41]. The first feature is the purely 
cooperative nature of the game, since all participants have a common goal, which is to 
build the stacks as high as possible. Consequently, players can benefit from understanding 
the mental state of others, such as their intentions with respect to their cards, or the short-
term goals they want to achieve during the course of a game. Additionally, the effective-
ness of the developed approaches can be experimentally assessed through the final score.

Second, players in Hanabi have to cope with partial observability (or imperfect infor-
mation, the preferred term in the game theory community), as players can see every-
one else’s cards but not their own. To cope with this, players provide information to one 
another through hints. There are two facets to these hints. One is the explicit information 
carried by the hint, i.e. the colour or rank of the cards directly involved. The other facet is 
the additional implicit information that can be derived from understanding the intention of 
the player making a move when they provide a hint.

To understand this second facet, consider the situation displayed in Fig. 2a. It is Alice’s 
turn to move, and she decides to give a colour hint to Cathy, pointing to her rightmost card 
as being the only red card she has. In principle, Cathy now only knows that her rightmost 
card is red, and all others are not. However, Cathy may be able to understand that Alice 
would only provide such a hint if she wanted her to play that card, and since it is red and 



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 10 of 41

the red stack has size 3, Cathy’s card must be a red 4. Cathy can draw such a conclusion 
from the observation of the current state of the game, and an assumption about the strategy 
that Alice is following. In the TomAbd agent model, this implicit information is identified 
with the abductive explanations that agents are able to generate by taking the perspective of 
the player making the move.

Finally, the third interesting feature of Hanabi is the fact that the sharing of information 
is quantified through discrete tokens that must be managed as a collective resource. Agents 
must manage the number of hint tokens available altogether, by balancing the need to pro-
vide a hint in the current state of the game versus discarding a card to recover a token that 
then becomes available for another hint.

Previous work on autonomous Hanabi-playing agents has followed one of two 
approaches: rule-based and reinforcement learning (RL) agents. Rule-based Hanabi bots 
[43–47] play following a set of pre-coded rules. In contrast, RL bots [41, 48–50] apply 
single-agent or multi-agent RL techniques to learn a policy for the game. Sarmasi et  al. 
[51] have compiled a database of Hanabi-playing agents developed so far.

Our TomAbd agent models relies on a pre-coded strategy to decide what action to take 
next and hence aligns more closely with the rule-based approach. However, our agent 
model is agnostic with respect to the specifics of the strategy that the agent follows. In 
contrast, previous work on rule-based agents for Hanabi [43–47] has focused on the details 
of the developed strategies. Also, unlike both rule-based and RL agents, our agent model is 
domain-independent, and it is applied to Hanabi as a test case. The type of reasoning that 
TomAbd agents engage in is general but can be useful for this particular game.

Autonomous agents for Hanabi can be evaluated in three different settings: self-play, 
where all the participants of the team follow the same approach and strategy; cross-play, 
where teams are composed of heterogeneous software agents; and human-play, where 
teams include human players. The majority of the current research on Hanabi AI evaluates 
performance during self-play, as we do in this paper. In self-play, RL agents outperform 
rule-based agents, with the former routinely achieving average scores of around 23 points, 
while the latter struggle to break into 20 points for the average score. The current state-of-
the-art for Hanabi AI combines both RL and rule-based techniques, and produced an aver-
age score of 24.6 in self-play [49]. To achieve that, first, one agent learns a game-playing 
policy while all other team members follow the same pre-coded strategy. Second, all agents 
use multi-agent learning, where they perform the same joint policy update after every itera-
tion, if feasible. If not, they fall back on the same set of pre-coded rules.

Although RL agents display superior performance in self-play, they require a compu-
tationally intensive learning process. Additionally, in a recent survey [42] several types of 
rule-based or RL agents were paired with human players, forming teams of 2. Despite there 
being no statistically significant difference in game score between rule-based and RL team-
mates, humans perceived rule-based agents as more reliable and predictable, while express-
ing feelings of confusion and frustration more often when paired with RL teammates.

3  Agent model

In the current section, we detail the TomAbd agent model, which constitutes the core of this 
work. First, we outline the agent architecture, its components and introduce some neces-
sary notation. Later, we explain how these components operate.



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 11 of 41    36 

3.1  Preliminaries

TomAbd is a symbolic, domain-independent agent model with the ability to adopt the point 
of view of fellow agents, down to an arbitrary level of recursion. Consider the traditional 
multi-agent setting, where a set of agents A = {i, j, k,…} operate in a shared environment. 
For the remainder of Sect.  3, the explanations are presented from the perspective of an 
arbitrary observer agent i; i.e. we will be considering the cognitive processes that i autono-
mously undertakes when it observes its fellow agents taking actions.

The main components of the TomAbd agent model are presented in Fig. 3. Rectangles 
represent belief base (BB) data structures. Hexagons represent immutable functions, that 
are not customisable. Diamonds represent functions for whom only default implementa-
tions are provided, and that allow users to customise them according to their application’s 
needs. The rounded square for BUF corresponds to the belief update function, a common 
functionality for situated agents. We do not define this function in our work, but tailor the 
default BUF method in our language of choice to include some operations on the gathered 
abductive explanations. Details on this are provided in Sect. 4.

The agent architecture is composed of the main BB data structure which contains the 
logic program that the agent is currently working with, plus a backup to store the agent’s 
own beliefs when switching to another agent’s perspective. At all times, the BB contains 
a logic program: a set of ground literals representing facts about the world and a set of 
rules representing relationships between literals. We denote by Ti the logic program of 
agent i; i.e. the content of their BB at initialization time. Ti is composed of the following 
components. 

1. Percepts are ground literals that represent the information that the agent receives from 
the environment. Incoming percepts update the BB according to the belief update func-

Fig. 3  Architecture of the TomAbd agent model



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 12 of 41

tion (BUF in Fig. 3). For example, in a situation of Hanabi like the one displayed in 
Fig. 2, agent Alice would receive the following percepts:

  These indicate that Alice observes Bob having a card of colour blue and rank 3 in his 
fourth slot (counting from the left). We assume, implicitly, that the agents are limited 
by partial observability, meaning that they do not perceive all the information there is 
to know about the environment. In general, different agents will have access to differ-
ent parts of the environment, and will receive different percepts. In the Hanabi game 
in particular, players do not a priori know about their own cards or about the order of 
cards in the deck.

2. Domain-related clauses are traditional logic programming rules that establish relation-
ships between facts in the domain. For example, the following clause expresses that, in 
Hanabi, a card of colour C and rank R is playable if the size Sz of the corresponding 
stack is one unit below the rank of the card.

3. Impossibility clauses have atom imp as their head and whose body contains literals that 
cannot hold simultaneously true. They capture the constraints of the domain, if there are 
any. For example, in the Hanabi game, the following clause states that a player P cannot 
have cards of two different colours, C1 and C2, in the same slot S.2

  As stated in Sect. 2.2, we adopt the consistency view when it comes to verifying the 
expansion of the belief base with an abductive explanation. To incorporate integrity 
constraints into an agent’s program, we need a mechanism that triggers an exceptional 
event when one or several constraints are violated. This is precisely the role of the 
impossibility clauses.

  To clarify, consider an impossibility clause . The conjunction Conj 
in its body corresponds to a formula that should never hold true. In other words, its 
negation ¬���� is equivalent to a traditional integrity constraint IC that can never be 
violated. Therefore, the derivation of imp indicates that IC has been violated. To avoid 
this, the generated abductive explanations undergo post-processing operations where 
they are filtered out if their expansion into the program causes the derivation of imp.

4. Theory of mind clauses are rules that are essential to the agent’s cognitive ability to put 
itself in the shoes of others. They function as a meta-interpreter on the agent’s current 
program to generate an estimation of another agent’s program. ToM clauses have the 
literal believes(Ag,F) as their head, to express the fact that agent i believes that 
agent Ag knows about some fact F. In the Hanabi domain, the following ToM clause 

2 Note that Jason, our implementation language of choice, does not include any default mechanisms 
to check the consistency of an agent’s BB, i.e. an agent may simultaneously believe b and ∼ b . It hence 
becomes the responsibility of the agent developer to implement, if needed, additional mechanisms to avoid 
such inconsistencies, which the TomAbd agent model achieves through the introduction of impossibility 
clauses.



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 13 of 41    36 

indicates that agent i believes that player Agj can see the card that a third player Agk 
has in their S-th slot, and, in particular, Agj can observe its colour C.

5. Abducible clauses have literal abducible(F) at their head, and express what missing 
beliefs can potentially be added to agent i’s BB to obtain a more detailed representa-
tion of the state of the system. The definition of the literals that may be missing from 
an agent’s BB is a domain-dependent component of the program. For example, in the 
Hanabi domain, the following belief indicates that, from the viewpoint of i, a player P 
may have, in their S-th slot, a card of colour C if i does not already hold a belief about 
the colour of the card in S, nor does i explicitly hold a belief explicitly indicating that 
P does not have a card of colour C in S.3

6. Action selection clauses are a set of rules with head action(Ag,Act) 
[priority(n)] that indicate the pre-conditions for agent Ag to select and execute 
action Act. These clauses correspond to agent i’s beliefs about the other agents’ strate-
gies (for instances where �� = j, j ≠ i ) as well as, potentially, agent i’s own strategy (for 
instance when �� = i ). The head is annotated with a priority(n) literal, where  n  is 
a number (any number, not necessarily an integer). These priorities state in which order 
the action selection clauses should be considered when they are queried. Details about 
the action selection are provided in Sect. 3.4.

  As an example for the Hanabi domain, the following clause indicates that a participant 
P should play their card in slot S if it is of a playable colour C and rank R.

  The action selection clauses are used by TomAbd agents to compute abductive expla-
nations from the observation of actions by other agents. Hence, it is compulsory that 
they capture agent i’s beliefs about the strategy agent j ≠ i is following. Nonetheless, 
the TomAbd model is flexible concerning whether such action selection clauses also 
implement agent i’s own strategy. The action selection function presented in Sect. 3.4 
certainly provides an avenue to use action selection clauses during the agent’s own 
practical reasoning. However, this is a complement to the TomAbd model (whose focus 
is on the generation and maintenance of abductive explanations using ToM) rather than 
a fundamental component.

3 We distinguish between strong negation ( ∼ Fact) and negation as failure (not Fact). In epistemic 
logic notation, they are expressed as B

i
[∼ �] and ∼ B

i
� , respectively.



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 14 of 41

So far, we have presented the components of the logical program of a TomAbd agent. Now, 
we move on to explain how they are utilised. The distinguishing feature of our agent model 
is the ability to put themselves in the shoes of others. For example, when engaging in first-
order ToM (recursive level 1), agent i changes their perception of the world to the way in 
which they believe that some other agent j is perceiving it. In epistemic logic notation, 
these are the beliefs denoted by BiBj� . In other words, in an attempt to perceive the world 
how i believes j is perceiving it, agent i’s BB changes to BBj

i
= {� ∣ ��������(j,�)} , 

where BBj

i
 denotes i’s estimation of j’s BB given i’s current logic program.

However, the TomAbd agent model is not limited to first-order ToM. It can, in 
fact, switch its perception of the world to that of another agent down to an arbitrary 
level of recursion. For example, agent i may want to view the world in the way that 
they believe j believes that k is perceiving it. This corresponds to second-order ToM 
and is expressed as BiBjBk� in epistemic logic notation. In particular, i may want to 
estimate j’s estimation of itself. This is equivalent to the previous case BiBjBk� with 
i = k , BiBjBi�.

The nesting exposed in the previous paragraph can be extended to an arbitrary level 
of recursion: agent i attempts to view the world how it believes that j believes … that 
k believes that l views it. This is denoted by BiBj …BkBl� . We define the sequence of 
agent perspectives [j, ..., k, l] recursively adopted by i as a viewpoint:

Definition 3 For agent i, a viewpoint is an ordered sequence of agent designators [j, ..., k, l] 
where there are no two consecutive equal elements and the first element is different from i.

Hence, when we talk about agent i adopting viewpoint [j,… , k, l] we mean the pro-
cess by which agent i switches its own perspective of the world by the one it believes 
that j believes … that k believes that l has. To do this, agent i has to modify its own 
program Ti , contained in its main BB, by the estimation that it can build of j’s esti-
mation … of k’s estimation of l’s program. This new program will, in general, indeed 
be an estimation since agents have access to (possibly) overlapping but different fea-
tures of the environment. We denote this estimated program by Ti,j,…,k, and define it as 
follows:

Definition 4 Given agent i with logic program Ti , i’s estimation of viewpoint [j, ..., k, l] is a 
new logic program Ti,j,…,k,l:

Equation  (1) indicates that, in order to estimate the BB of the next agent whose per-
spective is to be adopted, the agent must query its current BB to find all the ground lit-
erals that, according to the ToM rules, the next agent knows about. Therefore, agent 
i must substitute their current program by the set of unifications to the second variable 
in believes(Ag,F). In other words, agent i runs the query believes(ag ,F) in 
its BB and obtains a set of unifications for F as output, {� ↦ �1,… , � ↦ �n} , where �i , 
i = 1,… , n denotes a groud literal (e.g. has_card_colour(alice,3,red), has_
card_rank(bob,1,5)). Then, agent i substitutes the contents in its BB by the set 
{�1,… ,�n}.

(1)Ti,j,…,k,l = {𝜙 ∣ Ti,j,…,k ⊧ ��������(l,𝜙)}



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 15 of 41    36 

The operationalisation of Definition 4 is presented in function AdoptViEwpoint, Algorithm 1. 
It takes as its only argument a viewpoint as defined in Definition 3. Given this viewpoint, agent 
i adopts it, first, by saving a copy of its own BB in the backup. Then, i queries the ToM clauses 
with the next agent whose perspective is to be estimated as their first argument. The result of this 
operation becomes agent i’s new BB, and they move on to the next iteration.

3.2  The TomAbductionTask function

Function AdoptViEwpoint captures the nth-order Theory of Mind capabilities in the TomAbd 
agent model, for arbitrary integer value of n. However, the purpose of switching one’s perspec-
tive is to be able to reason from the point of view of another agent. Therefore, it is not enough for 
i to invoke AdoptpERspEctiVE. It should, once the switch has occurred, infer the motivation for 
the actions taken by the other. This reasoning process is implemented in the core function of the 
TomAbd agent model, TomAbdUctionTAsk, in Algorithm 2.



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 16 of 41

TomAbdUctiontAsk takes three arguments as input: an observer viewpoint, an act-
ing agent l and the action l took al . The last two are straightforward to understand. The 
observer viewpoint is a list as defined in Definition  3. It indicates what ToM order i 
is engaging in, and through which other agents it is estimating the perception that the 
actor l has of the world. For example, suppose i would like to understand why l chose al 
directly. In this case, i observes its peer’s action from its own perspective. The observer 
viewpoint would, in this case, correspond to the empty list (“[ ]”). However, i might 
want to understand why a third agent j thinks that l made their choice. Then, i is observ-
ing l’s action through j, and hence the observer viewpoint is [j]. This viewpoint can be 
subsequently extended to any desired level of recursion. For example, agent i may want 
to estimate the impression that actor l thinks they are making on agent j when executing 
al . This corresponds to observer viewpoint [l, j].

The first step of TomAbdUctiontAsk (Lines 1 and 2) is to build the actor’s viewpoint 
by simply appending actor agent l to the observer viewpoint and to adopt it by calling 
AdoptpERspEctiVE. Now, agent i is in a position to reason from the perspective of the 
actor, possibly through a number of intermediate observers. In the simplest case, agent 
i is switching its logical program Ti to the program it estimates actor l to be working 
with, i.e. Ti,l . This case corresponds to agent i engaging in first-order ToM at the time 
of adopting the actor’s viewpoint. Alternatively, agent i may switch its program Ti to 
the program they estimate that j1 estimates that … jn−1 estimates that jn is working with, 
Ti,j1,…,jn−1,jn

 , this time engaging in nth-order ToM.
Once the actor’s viewpoint has been adopted, the agent uses ALP to generate abduc-

tive explanations that justify agent l’s action al . The ALP theory that the agent uses 
is composed of its current BB (in the general case, Ti,j,…,k,l ), and the set of abducibles 
derived from it, which we denote as Ai,j,…,k,l:

The set of plausible abductive explanations is computed by function AbdUcE in Line 4 
of Algorithm  2, using the set of abducibles defined in Eq.  (2). The pseudocode for this 
function is not provided, as it does not constitute any technical innovation. The input to 
this function is the query Q = ������(l, al) . The AbdUcE function consists of an abduc-
tive meta-interpreter, based on classical SLD clause resolution with a small extension. To 
compute abductive explanations, this meta-interpreter attempts to prove the query Q as a 
traditional goal in SLD clause resolution. However, when it encounters a sub-goal that is 
not provable, before failing the query, it checks whether this sub-goal can be unified to any 
element in the set of abducibles Ai,j,…,k,l . If so, the sub-goal is added to the explanation 
under construction in the branch being currently explored.

Function AbdUcE backtracks upon failure or completion of the query, just as tradi-
tional SLD solvers. Consequently, the output of this function is a set � of m potential 
explanations. At the same time, every element in � is itself a set of ground abducibles 
from Ai,j,…,k,l:

Once the abductive explanations have been computed, they are first refined through the 
application of the explanation revision function, EERF, in Line 5. Then, they are trans-
formed into a literal, that is, to a format suitable to be added to a logical program, through 

(2)Ai,j,…,k,l = {𝛼 ∣ Ti,j,…,k,l ⊧ ���������(𝛼)}

(3)
� = {Φ1,… ,Φm}, where Φh = {�h1,… ,�hnh

}

and �hg ∈ Ai,j,…,k,l,∀h, g



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 17 of 41    36 

the bUildAbdlit function in Line 6. Both of these steps are reviewed in detail in the next 
section.

At this point, the abductive explanations have been computed and post-processed, 
all from the perspective of the actor, i.e. whilst agent i’s BB contains Ti,j,…,k,l . How-
ever, agent i does not derive this information only so that it can build a better estima-
tion of the actor’s BB. It also reasons about how this information affects beliefs at the 
observer’s viewpoint level. Therefore, agent i has to first return to its original program 
Ti by retrieving it from the backup (Line 7). Then, it adopts the observer’s viewpoint 
(Line 9) and perform the same post-processing steps (explanation revision in Line 10 
and format transformation in Line 11) from this new perspective. Eventually, agent i 
recovers its original program Ti from the backup in Line 12.

It should be noted that the TomAbdUctiontAsk function does not, by default, add 
the abductive explanations (or rather, the associated literals generated by bUildAb-
dlit) to agent i’s program Ti (observe the dashed arrow from TomAbdUctiontAsk to 
the BB in Fig. 3). Rather, the function returns the revised explanations and their for-
matted literals. This choice has been made to allow flexibility to potential users. If nec-
essary, users can perform further reasoning and modifications to the returned explana-
tions. For example, agent i can decide whether to append the returned literals to their 
BB based on some trust metric it has towards the actor.

3.3  Explanation revision, assimilation and update

This section reviews the post-processing operations that are performed on the raw 
abductive explanations returned by the AbdUcE function. In the cases where the imple-
mentations provided are defaults, this is clearly indicated. Details of how these defaults 
can be overridden are provided in Sect. 4.

During the execution of TomAbdUctiontAsk, two calls are made to the explanation 
revision function (EERF), one from the point of view of the actor and one from the 
point of view of the observer. The purpose of this function is to refine and/or filter the 
raw explanations based on the current content of agent i’s BB, which is either the esti-
mation of the actor’s program Ti,j,…,k,l or the estimation of the observer’s program Ti,j,…,k.



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 18 of 41

The default implementation of the EERF function appears in Algorithm  3 and 
consists of two steps. First, in Line 3, the agent trims every explanation Φh (a set of 
ground abducibles) to remove uninformative atoms. Admittedly, this step only makes 
a difference when EERF is called from the perspective of the observer (Line 10 in 
Algorithm 2), and not from the perspective of the actor (Line 5 in Algorithm 2). The 
abduction meta-interpreter does not add proven sub-goals to the explanation under con-
struction. Therefore, from the perspective of the actor (where the raw abductive expla-
nations are actually computed), there cannot be uninformative facts in the explanation 
sets.

The second step is a consistency check (Lines 4 to 6 in Algorithm  3). This check 
takes in every trimmed explanation and inspects whether it, together with agent i’s cur-
rent BB, entails any impossibility clause. Recall from the discussion in Sect. 3.1 that the 
derivation of imp is equivalent to an integrity constraint IC being violated. The impos-
sibility clauses that this check considers include both domain-related and impossibility 
clauses derived from prior executions of TomAbdUctiontAsk. If no violation occurs, the 
explanation is returned as part of the set of revised explanations.

Here, we have only presented a basic EERF implementation that can be customised 
if needed. For example, the EERF could annotate every explanation Φh with an uncer-
tainty metric. Alternatively, it could operate differently depending on whether it is being 
called while the agent is working under the actor or the observer point of view. In fact, 
the belief addition operations in Lines 3 and 9 of Algorithm  2 are there precisely to 
allow for this possibility. Further details are provided in Sect. 4.

The set of revised explanations �′ is, like the set of raw explanations � , a set of sets of 
ground abducibles, see Eq. (3). Therefore, it is not in a suitable format to be added to agent 
i’s BB, which is a logical program composed of facts and clauses. The conversion from 
a set of sets to a clause that can be added to a logical program is performed by function 
bUildAbdlit (short for “build abductive literal”) in Algorithm 4.

To understand how this function operates, consider that a (revised) abductive explana-
tion � = {{�11,… ,�1n1

},… , {�m1,… ,�mnm
}} can be written as the following disjunctive 

normal form (DNF):



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 19 of 41    36 

The formula in Eq. (4) must hold, meaning it has the status of a traditional IC discussed 
in Sect. 2.2. Therefore, its negation ¬� must never hold true. If ¬� is derived from the 
agent’s program, it means that the formula in Eq. (4) has been violated, and an exceptional 
event (i.e. the derivation of imp) should be triggered. This observation leads to the use 
of ¬� to build a new impossibility clause. This new clause has the same format as the 
domain-related impossibility clauses presented in Sect. 3.1 but its head imp is annotated 
with source(abduction) to denote that it is not domain-specific but derived from an 
abductive reasoning process. This step corresponds to Line 1 in Algorithm 4.

Nonetheless, this new impossibility clause does not consider the level of recursion, 
or, in other words, the viewpoint, where the explanation was generated. This information 
needs to be incorporated in Lines 2 to 6. In summary, if the agent is operating under view-
point 

[
j,… , k, l

]
 , bUildAbdlit nests the abductive impossibility clause constructed in Line 

1 into the following literal:

Therefore, the next time agent i adopts viewpoint 
[
j,… , k, l

]
 , the bare imp 

[source(abduction)] clause will become part of their BB (assuming the user has 
decided to add it to Ti in the first place).

Finally, there is one last operation performed on the clauses and literals derived from 
TomAbdUctiontAsk, which is the update of those that have been incorporated into the 
original BB of the agent, Ti , as new percepts are received. We refer to this operation as the 
explanation update function (EEUF). In contrast to the other functions presented in this 
section, the EEUF is not executed within TomAbdUctiontAsk, but is called from the belief 
update function (BUF, see Fig. 3). The BUF is a standard function of the BDI agent rea-
soning cycle whose purpose is to update the BB depending on the percepts received from 
the environment and the messages passed on by other agents. Therefore, upon receiving 
percepts from the environment, the agent first modifies its ground percept beliefs, and then 

(4)� =
(
�11 ∧… ∧ �1n1

)
∨… ∨

(
�m1 ∧… ∧ �mnm

)

(5)
��������(j,… , ��������(k, ��������(l, {���[������(���������)] ∶ −

(¬�11 ∣ … ∣ ¬�1n1
) , … , (¬�m1 ∣ … ∣ ¬�mnm

)}))…).



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 20 of 41

updates clauses and literals derived from previous executions of TomAbdUctiontAsk, if 
there are any.

The default implementation of EEUF appears in Algorithm  5. In it, agent i discards 
previous abductive explanations if they are deemed to be no longer informative at the view-
point at which they were generated. To do so, the agent loops over all the literals that origi-
nated from an abductive reasoning process, denoted by the tuple ⟨vp,�, ���⟩ composed of 
the viewpoint vp where the explanation � originated and the associated literal (or clause) 
lit (Line 2). Agent i then adopts viewpoint vp with a routine call to AdoptViEwpoint, and 
checks if explanation � can be derived from the current BB, T[i∣vp].4 If so, the explanation is 
deemed to be no longer informative and its associated literal lit is added to a removal set.

3.4  Action selection

The functions presented so far constitute the agent’s core cognitive abilities combining 
Theory of Mind and abductive reasoning. However, the purpose of undergoing all this 
cognitive work is for agent i to be in a more informed position when it comes to i’s own 
decision-making. To do so, agent i needs to consider the generated abductive explanations 

4 We use Prolog notation for lists [H ∣ T] , where H is the first element (head) and T is the tail of the list, 
which is itself another list, possibly empty.



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 21 of 41    36 

when reasoning about which action to perform next. We provide such a function, sElEc-
tAction in Algorithm  6, which takes into account all the impossibility clauses in the 
agent’s BB, including those coming from the output of TomAbdUctiontAsk.

Similarly to the EERF and EEUF, the provided implementation is a basic one, and it 
is customisable. The user can, for example, reason probabilistically about which action to 
take next, in case they have associated an uncertainty metric to the generated abductive 
explanations. The default implementation in Algorithm 6 takes a cautious approach, where 
an action is only selected if it is the action prescribed by the action selection clauses in all 
the possible worlds.

Additionally, the sElEctAction function presented here is a complement to the other 
functionalities of the TomAbd agent model, and not a core component of the model. 
We provide a default querying mechanism to select an action given the action selection 
clauses and the set of current impossibility constraints. However, the agent developer 
might decide to use an alternative implementation that, for instance, does not use the 
action selection clauses to pick the action to execute next, or they might decide to not 
use the sElEctAction function at all. This is enabled by the fact that this function has 
been wrapped in an internal action (IA) that can be called from within the agent code. 
More details on this point are provided in Sect. 4.

Algorithm 6 proceeds as follows. First, in Line 1, it retrieves action selection clauses 
in descending order of priority, so rules with higher priority take precendence over rules 
with lower priority. Then, the variable at the first argument in the head is unified with 
the identity of agent i in Line 2.

Second, the body of the clause is retrieved (Line 3) and the set of skolemised abducibles 
is built. This is done by function skolEmisEdAbdUciblEs (whose pseudo-code is not pro-
vided) in Line 4. This means that whenever an abducible in the rule body cannot be proven 
by the agent’s BB (i.e. Ti ), its free variables are substituted by Skolem constants. In gen-
eral, one action selection clause will generate several skolemised forms of its abducibles.

Third, the agent searches for all of the potential instantiations of every skolemised 
form. This corresponds to the call to function instAntiAtE in Line 6. Again, for every 
set of skolemised abducibles, there will be, in general, several possible ways of binding 
their variables. Each of these possible instantiations provides additional beliefs that can 
partly complement the agent’s BB to obtain a more complete view of the current state 
of the world. However, it is not necessary to complement the agent view to the point of 
complete observability, just to add enough information to be able to query the action 
selection clause currently under consideration.

The agent only considers the complete instantiations of abducibles that, together with 
agent i’s BB, do not lead to an impossibility clause. This check takes place in Line 9. 
For those instantiations that pass the check, agent i queries for the action of maximum 
priority that is entailed if the grounded abducibles were part of the BB. As we have 
seen, for this default implementation, action selection clauses with higher priority take 
precedence over clauses with lower priority. Hence, when querying for actions, the one 
with the highest priority is returned.

So, every action selection clause (i.e. an iteration of the loop in Line 1) leads to several 
sets of skolemised abducibles. In its turn, every set of skolemised abducibles (i.e. an itera-
tion of the loop in Line 5) leads to several sets of ground abducibles. If each of these instan-
tiations leads to the same action (Line 14), the sElEctAction function returns the action in 
question and execution continues from the point where the function had been called.

If all the action selection clauses have been processed and no action has been 
selected, the sElEctAction function returns null. The user is advised to deal with this 



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 22 of 41

situation by including some contingency measure, e.g. use a default action when sElEc-
tAction return null. Further details are provided in Sect. 4.

To illustrate how the default sElEctAction function works, consider the action selec-
tion clause provided as an example in Sect. 3.1:

Then, after the execution of Line 3, we have: 

Now, suppose agent Alice, in the setting of Fig. 2a, has the following information in 
her BB, derived from a hint:

This means that Alice knows that she has cards of rank 3 in her 2nd and 4th slots, 
and that she has cards of rank different from 3 at all others.

Then, after execution of Line 4, we have:

where skn are Skolem constants.
In addition, suppose that she has in her BB the following IC, derived from a previous 

execution of TomAbdUctiontAsk:

This IC would have been derived by bUildAbdlit (Algorithm 4) from the following 
set of (revised) abductive explanations:



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 23 of 41    36 

meaning that, from a previous move by another player, agent i interpreted that they 
must have either a blue or a white car in the second slot.

Then, when looping through the second element of Γ , in Line 6, the following instan-
tiations will be generated:

Of all the instantiations in Π , only two are compatible with the previous IC:

When querying for which action to select, the two previous instantiations will lead to 
play_card(2) (due to the action clauses with priority 3.0), and this will be the return 
value of the function sElEctAction.

4  Implementation

Listing 1: Usage of the tomabd.agent.tom_abduction_task IA. A “+” precedes
variables that must be bound at invocation time, while a “-” precedes variables
that are bound by the IA.

The agent model presented in Sect.  3 has been implemented in Jason [7], an agent-ori-
ented programming language based on the BDI architecture. Jason implements and extends 
the abstract AgentSpeak language [52], offering a wide range of features and options for 
customisation. To utilize the TomAbd in their projects, the user is required to have prior 
knowledge on the Jason programming language [7, Chapter 3], the basics of the Jason rea-
soning cycle [7, Chapter 4] and the customisation of Jason components [7, Chapter 7]. Our 



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 24 of 41

implementation is documented and publicly available under a Creative Commons license.5 
It has been packaged into a Java Archive (.jar) file to facilitate its use as an external library 
for developers who want to include it in their applications.

The core of the implementation consists of the  class, a 
subclass of Jason’s default agent class. It contains all the methods to implement the func-
tions in Fig. 3 (plus some auxiliaries). Besides the main BB (inherited from Jason’s default 
agent class),  also has a backup BB. The BUF is part of 
Jason’s default agent class, which we override in our implementation to include a call to 
EEUF after percepts have been updated. The abductive reasoner implementing the AbdUcE 
function is included as a set of Prolog-like rules in an AgentSpeak file, which the agent 
class automatically includes at initialization time.

A call to the main function of this agent model (TomAbdUctiontAsk) is not included 
within Jason’s native reasoning cycle, and hence does not constrain it in any way. Instead, 
an internal action (IA), , is provided as an interface to the 
agent’s method. The usage of this IA is illustrated in Listing 1. Calling TomAbdUctiontAsk 
through an IA allows the agent developer flexibility and control over when to trigger it 
from within the application-specific agent code. Furthermore, the invocation of TomAb-
dUctiontAsk from an IA ensures that the whole function is executed within one  step 
of the BDI reasoning cycle. Therefore, its execution does not interfere with changes in the 
BB that happen during other  or  steps (e.g. belief removal or addition opera-
tions) of the BDI reasoning cycle.

We have exposed the reasons why TomAbdUctiontAsk is not called from within the 
agent’s reasoning cycle, but using an IA interface. In summary, through an IA the Tom-
Abd agent model provides additional functionalities to Jason agents, without restrict-
ing the use of other custom components nor placing constraints on the BDI reason-
ing cycle. Similar remarks apply to the sElEctAction function and its counterpart IA 

 (also included in our implementation), which operates similarly 
to  but provides an interface to sElEctAction instead. It 
is called as , where  is a free variable bounded by the IA to 
the return value of sElEctAction.

Listing 2: Usage of the tomabd.agent.select_action IA and a possible contingency
plan to handle its failure.

5 https:// github. com/ nmont esg/ tomabd.



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 25 of 41    36 

As covered in Sect. 3.4, if using the default implementation of sElEctAction (or any 
other implementation that may return null), contingency measures should be put into 
place to handle the possibility of failure. In Listing 2 we propose a strategy to do this. In 
the first plan, the agent uses the  to decide which action to 
perform next. If the IA is successful, the agent goes on to execute it as a standard action 
on the environment. If not, the second plan in Listing 2 handles the failure. The anno-
tations in this plan, namely the  and  literals, ensure that this plan handles 
only the failure of , not of any other source of failure in the 
previous plan (e.g. the failure of execution of  on the environment). In Listing 2, if 

 fails, the agent queries its BB to look for a default action, and 
executes it on the environment.

Listing 3: Customisation of the ERF function, based on whether the agent
is currently adopting the actor or the observer’s viewpoint.

In Listings 1 and 2, the IAs  and 
 are invoked as part of the body of agent plans. Nonetheless, 

similarly to standard Jason IAs, they may also appear in the context of plans. If that is the 
case, the execution of the corresponding TomAbdUctiontAsk and sElEctAction would be 
moved to the  step of the BDI reasoning cycle. Whether it is more desirable to 
have the mentioned functions execute in an  step (by placing their corresponding IAs 
in the plan body) or in a  step (by placing them in the plan context) is a decision 
for the agent developer to take.

In summary, of the agent functions displayed in Fig.  3, only TomAbdUctiontAsk 
and sElEctAction have a correspondinging IA interface, with sElEctAction being the 
only one of the two that is customisable. Additionally, the EERF and the EEUF are 
also customisable, but these are called from within other functions and hence are not 
accompanied by an IA interface.

To override the default implementation of any of these functions, the devel-
oper needs to write new ,  and  methods in an agent subclass of 

. For example, Listing 3 provides an agent subclass with an 



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 26 of 41

alternative implementation of EERF that applies a different revision function depending on 
whether the agent is currently working at the observer’s or at the actor’s perspective.

5  Results

5.1  Experimental setting

As a proof of concept, we have applied the TomAbd agent model to the Hanabi domain 
presented in Sect. 2.3, for teams of 2 to 5 players in self-play mode.6 This means that the 
teams are homogeneous, composed exclusively of TomAbd agents. As for the action/2 
clauses that implement the team strategy, Hanabi has a thriving community of online play-
ers that have gathered a set of conventions for the game, called the H-group conventions.7 
These conventions comprise definitions (e.g. what constitutes a save hint or a play hint) 
and guidelines to follow during game play. We have taken inspiration from these conven-
tions to devise our action selection clauses. However, while these conventions are itemised 
according to player experience, we have only made use of the introductory-level ones. Our 
goal is not to synthesise the playing strategy that achieves the maximum possible score, but 
to explore the usefulness of the capabilities of the TomAbd model in an example domain. 
We leave the exploration of more sophisticated conventions for future work.

To trigger the execution of the TomAbdUctiontAsk function, participants publicly 
broadcast their action of choice prior to execution. To handle these announcements, we 
define a Knowledge Query and Manipulation Language (KQML) custom performa-
tive, . Agents react to messages with this performative by executing the 

 IA using first-order ToM. This means that, when adopt-
ing the other acting agent’s viewpoint, agents do not take that perspective through any 
intermediate agents. Hence, agents work with program Ti,l , where i is the observer and l 
is the acting agent, when adopting the actor’s viewpoint to generate explanations. Conse-
quently, the variable  in Algorithm 2 is bound to the empty list “ [ ] ”. Additionally, all 
the generated literals from the abductive explanations are immediately incorporated into 
the agent’s program.

We evaluate the performance of the TomAbd agent model for the Hanabi domain, using 
the basic set of H-group conventions and first-order ToM. We ran 500 games with random 
seed 0 to 499, for every team size and switching on/off the call to TomAbdUctiontAsk. The 
simulations were distributed over 10 nodes at the high performance computing cluster at 
IIIA-CSIC.8

5.2  Score and efficiency

The results are first evaluated in terms of the absolute score at the end of every game. This 
is the most straightforward performance metric and one that allows comparison with other 
work on Hanabi AI. Beyond the absolute score, we also evaluate teams according to their 

6 The code that applies the TomAbd model to Hanabi is available at https:// github. com/ nmont esg/ tomabd/ 
examp les/ hanabi.
7 https:// hanabi. github. io/.
8 https:// www. iiia. csic. es/ en- us/ resea rch/ ars- magna/.



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 27 of 41    36 

communication efficiency, which we define as the ratio between the final score and the total 
number of hints given during the course of a complete game. This metric quantifies how 
efficient the team is at turning communication (i.e. hints) into utility (i.e. score). Intuitively, 
a lower bound for the efficiency metric is 1

2
 , as two hints are needed (one for colour and one 

for rank) to completely learn about a card’s identity and be able to safely play it.
Box plots for the results of performance in terms of score and efficiency are displayed 

in Fig. 4. Additionally, the experimental distributions are available in Fig. 8 in the Supple-
mentary information. Visually, Fig. 4 conveys that the incorporation of ToM and abductive 
reasoning capabilities boosts performance, both in terms of score and efficiency. Further-
more, regardless of team size, the efficiency is over the lower bound for over 75% of the 
games when the ToM and abduction capabilities are used. In contrast, when these cogni-
tive abilities are switched off, the efficiency falls below the lower bound for approximately 
75% of the runs.

In Table  1 the means and standard deviations for the score and communication effi-
ciency are provided. Moreover, the average percentage increase (comparing pairs of games 
with the same random seed with and without calls to TomAbdUctiontAsk) is displayed 
in the Improvement row for every team size. The average scores in Table 1, even with the 
ToM and abductive reasoning switched on, are still far from the current state-of-the-art in 
Hanabi AI, with average score of up to 24.6 [49]. Nonetheless, they are in line with the 
performance of current rule-based Hanabi-playing bots (see Table  1 by Siu et  al. [42]). 
Moreover, recall that the goal of this work is not to synthesise the optimal team strategy for 
Hanabi, but to develop a domain-independent agent model capable of putting itself in the 
shoes of other agents and reasoning from their perspective. The Hanabi game was selected 
as a test bed for this model, alongside a very simplistic playing strategy. Yet, we antici-
pate that the results presented here could be improved through the introduction of more 
advanced playing conventions, such as “prompts” and “finesses”.

To confirm the observation that performance is better when agents make use of the Tom-
AbdUctiontAsk function, we used statistical testing. First, we applied the Shapiro-Wilk test 
of normality [53] to test that the score and efficiency distributions in Fig. 8 are normally 
distributed, under all the experimental conditions. We confirm that this is indeed the case 
for confidence level 99%. Second, we used the paired samples t-test [54] to confirm that the 
averages for the score and the efficiency, across all team sizes, are significantly better when 
the TomAbdUction function is used. We used the paired samples version of the t-test, rather 
than the independent samples, because games with equal random seeds are related as far as 
the sequence of cards that are dealt from the deck is the same for all. The results confirm 
that the averages for the score and the efficiency are significantly better when the TomAb-
dUctiontAsk function is called with respect to when it is not, across all team sizes and for 
confidence level 99%. Therefore, we conclude that the use of the TomAbdUctiontAsk func-
tion quantitatively boosts the performance of teams, independently of their size.

Once we confirmed that, indeed, the execution of the TomAbdUctiontAsk function pro-
duces significantly better performance in terms of score and efficiency, we sought to quan-
tify this improvement. As explained earlier, games of equal team size and random seed 
are related since the sequence of dealt cards is the same for both. For this reason, it makes 
sense to compare the score and the efficiency for games with the ToM capabilities on and 
off, while controlling for team size and seed. To do this, we computed the percentage 
increase in the score and efficiency when using the TomAbdUctiontAsk function, and then 
aggregated these values into the average across all random seed. These results are displayed 
in the Improvement row in Table 1. They show that there is indeed a notable percentage 
increase in both score and efficiency, and this improvement increases monotonically with 



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 28 of 41

team size. For example, the increase in score is around 30% for teams of two players while 
it reaches almost 60% for the largest teams (five players).

Fig. 4  Results for the score (a) and communication efficiency (b). Cyan ruled boxes correspond to games 
where agents make use of the capabilities of the TomAbd agent model, and yellow dotted boxes correspond 
to games where they do not. The dashed line on the efficiency plot indicates the bound of two hints per 
score point (Color figure online)

Table 1  Average, standard 
deviation and improvement when 
using the TomAbdUctiontAsk 
function for the score and 
communication efficiency

Paired samples t-test confirmed that the average score and efficiency 
are significantly better when the TomAbdUctiontAsk function is used, 
regardless of team size

Num. players TomAbductionTask Score Efficiency

2 Yes 18.61 ± 5.92 0.71 ± 0.22

No 14.57 ± 2.93 0.46 ± 0.10

Improvement 27% 54%
3 Yes 17.97 ± 1.94 0.70 ± 0.10

No 12.52 ± 1.56 0.42 ± 0.07

Improvement 45% 71%
4 Yes 16.50 ± 1.61 0.64 ± 0.09

No 11.23 ± 1.36 0.38 ± 0.06

Improvement 49% 75%
5 Yes 14.42 ± 1.37 0.62 ± 0.09

No 9.23 ± 1.30 0.33 ± 0.06

Improvement 59% 91%



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 29 of 41    36 

5.3  Elapsed time

The results presented in the previous section clearly prove that the use of the TomAbdUc-
tiontAsk function (using first-order ToM and with the selected action selection rules) has 
a positive effect on the team performance, both in their final score and the efficiency of 
communication. In this section, we analyse the computational load associated to this per-
formance boost.

In Fig. 5 we present the results for the elapsed time of the TomAbdUctiontAsk function. 
Every box contains data on at least 4,000 runs of the function. The samples in Fig. 5 cor-
respond to the execution of the TomAbdUctiontAsk function across different games with 
different random seeds, and at different stages of the game.

In all cases, the execution of the function has magnitude in the hundreds of millisec-
onds. As expected, the elapsed time tends to increase and fall within a larger range as the 
team size increases. This is due to the larger BB that agents have to manage when they are 
part of a larger team. This results in a larger space to search through in order to construct 
the abductive explanations. For example, for teams of size 2, agents have 10 percepts con-
cerning the rank and colour of the cards of their fellow player. Meanwhile, for teams of size 
5, agents have 32 percepts about the cards of others.

As explained in Sect.  4, the TomAbdUctiontAsk function (and also sElEctAction) is 
executed through an IA at the discretion of the developer. Hence, it is not natively inte-
grated into the BDI reasoning cycle. Nonetheless, there is one TomAbd-specific function 
that is called from the BDI reasoning cycle: EEUF, which is called from BUF, a central 
component of the sensing step in the Jason reasoning cycle. Hence, to quantify the burden 
put on the BDI reasoning cycle by the TomAbd agent model, we have to analyse the perfor-
mance of EEUF.

In Fig. 6 we present the results for the elapsed time of EEUF. Every box contains at 
least 750 data points. The results are itemized by the number of explanations in the agent’s 
BB at the time EEUF was executed, since our default implementation of EEUF loops over 
the literals in the BB that originated from an abductive reasoning process. There were no 
instances found with 4 or more explanations. The results in Fig. 6 show that, for the first 
order ToM we are using for the Hanabi domain, EEUF entails a negligible overhead on 
the execution time of the Jason reasoning cycle. Its execution time is around two orders of 
magnitude smaller than that of TomAbdUctiontAsk and, as expected, follows an approxi-
mately linear trend with respect to the number of abductive explanations in the BB. 
Nonetheless, we expect the execution time of EEUF to increase as higher-order ToM is 
introduced.

5.4  Information gain

The previous analyses quantify the overall outcome of a game, either in terms of score or 
efficiency, and their computational requirements. Now, in the current and the following 
section, we would like to quantify the amount and the value of the information that agents 
derive from the execution of the TomAbdUctiontAsk function.

The analysis that follows relies on some features that are specific to Hanabi and hence 
not generally exportable to other domains where the TomAbd agent model may be applied. 
The first enabling feature is the fact that Hanabi has a well-defined set of states that the 
game might be in at any given moment. These states are defined by the heights of the 
stacks, the available information tokens, the number of lives remaining and the cards in the 



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 30 of 41

discard pile, which are all observable by all players. Additionally, states are also character-
ised by the cards at each player’s hand, which are not common knowledge.9

In game theoretical terms, the above feature is referred to as Hanabi being a game of 
imperfect yet complete information. In other words, players in Hanabi do not in general 
have access to all the information characterising the current state of the game, but they 
can infer a finite set of states the game might be in. Additionally, using domain knowledge 
(namely, the number of duplicate identical cards, which depends on their rank) and, poten-
tially, the abductive explanations currently in their BB, agents can compute, for every slot 
S in their hand, the marginal probability distribution for the colour and the rank of their 
card in S. By examining these probability distributions and comparing them to the true one 
(which assigns unit probability to the colour and rank of the actual card a player holds in S, 
and zero otherwise), we can quantify the information gain, which we present in the present 
section.

The second feature of Hanabi that enables the analysis on information value in 
Sect. 5.5 is the fact that, as any classical game, Hanabi has a set of well-defined end-
states with an assigned numerical utility or score. This characteristic, together with the 
previous one, allows us to relate the reduction in uncertainty of the probability distri-
butions over the cards in player’s slots with the increase in score when the ToM and 
abductive reasoning capabilities of the TomAbd agent model are introduced.

We begin, then, by quantifying the gain in information derived from the combina-
tion of ToM and abductive reasoning. To help with this, consider Fig. 7. Agents main-
tain a marginal probability distribution over the identity of the card at each of their 
slots, i.e. the tuple (C,R) of random variables corresponding to the card’s colour and 
rank. At every turn of the game, there are three distributions to consider: the pre-action 
distribution before the action is executed ℙpreAct

S
 , the post-action distribution after the 

action is executed ℙpostAct

S
 , and the post-explanation distribution after the action is exe-

cuted and the abductive literals derived from the TomAbdUctiontAsk function have 

Fig. 5  Execution time of the 
TomAbdUctiontAsk function for 
the Hanabi domain with different 
team sizes

9 The sequence of cards in the deck, which is hidden to all players, might also be considered as part of the 
state description in Hanabi. However, we prefer to view it as a randomising device rather than as part of the 
state description. In any case, its treatment is not relevant to the analysis in Sects. 5.4 and 5.5.



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 31 of 41    36 

been introduced into the agent’s BB ℙpostExpl

S
 . In addition to these three distributions, 

the true identity of a card at slot S is denoted as (CS,RS) . We refer to (CS,RS) as the 
ground truth for slot S. Trivially, the true probability distribution can be considered to 
be ℙ∗

S
(CS,RS) = 1 and 0 otherwise.

To quantify the distance between two probability distributions, we use the Kull-
back–Leibler divergence [55], which defines the relative entropy from distribution Q to 
distribution P as:

If P(xi) = 0 for some i, the contribution of the i-th term is assumed to be null.
The Kullback–Leibler distance quantifies how much information is lost when approx-

imating P using Q or, alternatively, how much information is gained by refining Q into 
P. In the Hanabi game, we are working with probability distributions over the domain of 
card identities, which has size 25 (5 colours × 5 ranks). Therefore, for all our computa-
tions we take the logarithm in Eq. (6) with base 25.

We evaluate the gain provided by the abductive explanations by comparing the distance 
to the ground truth between the post-action and the post-explanation distributions at every 
game turn. Since the ground truth corresponds to a single card identity with probability 
1, the Kullback–Leibler distance from the two aforementioned distributions to the ground 
truth is reduced to:

The results for the percentage reduction in distance between the post-action and the 
post-explanation distribution to the ground truth appear in Table 2. The reduction in dis-
tance is large across all teams sizes, starting at around 85% for teams of 2 players, and 
increasing monotonically with team size up to a 91% for teams of 5 players.

(6)DKL(P‖Q) =
�

xi∈X

P(xi) log

�
P(xi)

Q(xi)

�

(7)DKL(ℙ∗
S
‖ℙ{⋅}

S
) = − log

�
ℙ{⋅}
S
(CS,RS)

�

Fig. 6  Execution time of the 
EEUF for the Hanabi domain, 
as a function of the abductive 
explanations in the agent’s BB at 
execution time



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 32 of 41

5.5  Information value

The previous results indicate that the incorporation of abductive explanations does shrink 
the distance to the ground truth to a very large extent. However, the analysis does not indi-
cate how valuable the information derived from these abductive explanations is. In other 
words, how much score are agents able to draw from the information provided by abduc-
tive explanations.

To quantify the score value of abductive explanations, we define the two following 
quantities (see Fig. 7). First, we define the explicit information gain as the Kullback-Leibler 
distance from the pre-action distribution to the post-action distribution. Second, we define 
the implicit information gain as the Kullback–Leibler distance from the post-action dis-
tribution to the post-explanation distribution. The explicit information gain quantifies the 
knowledge acquired just from observing the progress of the game, as new cards are drawn 
and revealed. Meanwhile, the implicit information gain quantifies the knowledge derived 
only from the abductive explanations.

Next, we define the total explicit information gain (TEIG) as the sum across all slots S 
and moves mi over the course of a game of the explicit information gain:

Fig. 7  Outline of the probabilistic analysis of the simulation results

Table 2  Reduction is distance to 
the ground truth from the post-
action to the post-explanation 
distribution

Num. players %

2 85.33
3 88.29
4 89.43
5 91.49



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 33 of 41    36 

The total implicit information gain (TIIG) is defined analogously to Eq. (8), but using the 
distance from the post-action to the post-explanation distribution, DKL(ℙ

postExpl

S
‖ℙpostAct

S
) , 

instead. The TEIG is defined for all games, regardless of whether agents are using the Tom-
AbdUctiontAsk function. The TIIG is defined only for games where the mentioned func-
tion is active. For these games, we compute the percentage of information that is derived 
from the ToM and abduction capabilities as:

Then, to quantify the contribution of each type of information to score, we start by com-
puting the explicit score rate (ESR) as the ratio of the score to the TEIG, for games where 
agents are not using the TomAbdUctiontAsk function. Once we have the ESR, we turn to 
games where agents are using this function, and we estimate the residual score that cannot 
be explained away by the explicit information that agents acquire by observing the evolu-
tion of the system as:

where ESRseed is the ESR for the game without calls to TomAbdUctiontAsk with the same 
random seed, and TEIG (TIIG) is the total explicit (implicit) information gain for the game 
that employs the TomAbdUctiontAsk function. We use the ratio between the residual score 
in Eq. (10) and the total score as the estimation of the contribution of the implicit informa-
tion to the overall performance of the team.

The results for the average percentage of implicit information and the average percent-
age score that can be assigned to this explicit information appear in Table 3, for games 
where agents use the TomAbdUctiontAsk function. Across all team sizes, the information 
derived from the ToM and abduction capabilities accounts for between 15% and 20% of the 
total information. However, this implicit information accounts for disproportionate amount 
of the final score, between 27% and 40% of it. Therefore, when agents use the capabilities 
of the TomAbd model, the information derived from these capabilities ends up being over-
represented in the final score by a factor of between ×1.7 and ×2.0.

6  Related work

This section compares our contribution with related approaches. Previous work on Theory 
of Mind implementations in agent-oriented programming have, for the most part, used lan-
guages based on the BDI architecture [29, 30, 56, 57]. This is a natural choice that we share, 

(8)TEIG =
�

mi

�

S

DKL(ℙ
postAct

S
‖ℙpreAct

S
)

(9)% implicit info. =
TIIG

TIIG + TEIG
⋅ 100

(10)residual score = score − ESRseed ⋅ TEIG

Table 3  Average percentage of 
implicit information and average 
score assigned to this implicit 
information

Num. players % implicit info. % implicit score

2 15.15 27.80
3 15.51 30.55
4 18.79 32.24
5 19.40 38.37



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 34 of 41

since BDI-based languages provide constructs for the mental states that ToM estimates and 
operates on. Specifically, some ToM implementations are, like our TomAbd agent model, 
developed in Jason [29, 30, 56]. In contrast, other work uses Extended 2APL [57].

Panisson et al. [30] implement ToM for deceptive purposes. They focus on the commu-
nicative interventions, i.e. the requesting and sharing of (possibly untruthful) information, 
and provide operational semantics [56] for the effects that these actions have of the mod-
els that agents maintain of one another. Their approach is very much in line with the TT 
account of ToM. It uses dedicated predicates to infer additional mental states, such as goals 
and future actions, given prior beliefs. These inferences are made from within the agent 

Fig. 8  Experimental distributions of the absolute score and the communication efficiency. Cyan ruled boxes 
correspond to games where agents make use of the capabilities of the TomAbd agent model, and yellow 
dotted boxes correspond to games where they do not. The Shapiro-Wilk test confirmed that all experimental 
histograms follow a normal distribution (Color figure online)



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 35 of 41    36 

program, a feature which we consider qualifies as adherence to the theoretical version of 
ToM.

Sarkadi et  al. [29] extend the previous model by incorporating elements of trust and 
modelling several agent profiles based on their attitudes. In this extension, they distinguish 
between TT and ST components within their model. They argue that the TT component 
handles the assignment of prior beliefs to other agents, while the ST component handles 
inferences based on those. In our work, we do not distinguish between TT and ST compo-
nents, but consider that our approach overall aligns more closely with the ST account of 
ToM than with the TT account.

Harbers et  al. [57] establish a different criterion for classifying ToM approaches into 
TT and ST. They develop two separate ToM implementations, one identified with TT and 
the other with ST, for applications in virtual training systems. Both architectures maintain 
knowledge bases for the beliefs, logical rules and goals of other agents. The difference 
between the ST and TT approaches is found in the reasoner that is applied to the knowledge 
bases assigned to other agents. The TT architecture applies rules about how other agents 
combine their beliefs, goals and plans, which are explicitly included as part of the agent’s 
own knowledge. In contrast, the ST architecture uses the agent’s native reasoner, making it 
more lightweight. Besides this, other advantages were found for the ST architecture with 
respect to the TT one, namely code reusability and flexibility to deal with non-BDI agents.

The choice to maintain belief bases for other agents, in addition to the agent’s own 
belief base, is very different to the TomAbd agent model, where we generate estimations 
of the beliefs of others on demand at run-time, using the set of ToM rules as a meta-inter-
preter. This allows the TomAbd model to engage in higher-order ToM by recursively apply-
ing the set of ToM rules. In comparison, the maintenance of belief bases for other agents 
hinders the use of ToM beyond first-order. For every recursive path that the agent would 
like to take into account, i.e. what we refer to as the viewpoint in Definition 3, a different 
knowledge base would have to be initialised and updated throughout the agent’s lifetime, 
resulting in a rapid combinatorial explosion in memory requirements. This limitation to 
first-order ToM is also shared by other work [29, 30].

There is an important difference in the focus of ToM between the works reviewed in 
this section and the TomAbd agent model of this paper. In related work [29, 30, 56, 57], the 
purpose of the ToM functionalities is to compute the action that best pursues the agent’s 
goal, whether it is to deceive an opponent or to provide explanation to assist in staff train-
ing. Hence, ToM is directed towards the deliberation step of the BDI reasoning cycle. 
In contrast, in our approach, ToM is directed towards the sensing step, with the TomAbd 
model computationally implementing the cognitive processes to use other agents as sen-
sors. Accordingly, the core function of the TomAbd agent model is TomAbdUctiontAsk, 
which uses abduction to compute explanations either about the state of the environment or 
the mental state of other agents. The execution of this function results in the agent being in 
a more informed position when it comes to its own decision-making.

It should be noted that, even if at this current stage the TomAbd agent model strongly 
links ToM with sensing, it provides an avenue to include these capabilities into the agent’s 
deliberation stage too. The component directed towards practical reasoning, the sElEctAc-
tion function, has not thus far received as much attention as TomAbdUctiontAsk. None-
theless, as mentioned previously, this function is a customisable component of the model. 
This leaves a lot of room to develop further implementations that more explicitly use the 
ToM capabilities of the agent during the deliberation stage, for example by making calls to 
the AdoptpERspEctiVE procedure within sElEctAction.



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 36 of 41

To summarise, the publications reviewed so far orient the ToM capabilities of agents 
towards deliberation. Nonetheless, work by Sindlar et al. [58], similarly to ours in its goals, 
focuses on mental state abduction, i.e. the inference of beliefs and goals of BDI agents 
given a sequence of observed actions. They use the APL agent programming language, 
where an agent is composed, among others, of goals achievement rules, analogous to Jason 
plans. An agent program and its observed actions are translated into an Answer Set Pro-
gramming (ASP) program, which is then resolved with an off-the-shelf ASP solver. The 
authors argue that the ToM capabilities provided through this mode of reasoning have 
potential to enhance the social awareness and credibility of non-player characters in role-
playing games [59].

In contrast to our current work, the approach by Sindlar et al. is restricted to first-order 
ToM and, in our opinion, leans heavily towards the theoretical account of ToM (TT), pre-
sented in Sect.  2.1. Finally, compared with the work we cite previously (where ToM is 
oriented towards action selection), Sindlar et al. do not offer details about how the obtained 
explanations are integrated into the abducing agent’s own knowledge or decision-making.

7  Conclusions

In this paper, we have presented the novel TomAbd model, an agent architecture combining 
Theory of Mind and abductive reasoning. Its main functionality is the ability to perceive 
the state of the system through the eyes of their peers, and infer the beliefs that account for 
their most recent action using abductive reasoning. This core functionality is accompanied 
by other functions that handle how the abductive explanations are refined, updated and 
used during practical reasoning.

There are four features that make the TomAbd agent model stand out. First, the model 
is able to handle ToM of an arbitrary order without additional memory requirements. Sec-
ond, our approach has a strong preference for a simulation account of ToM over a theory 
account. Third, we emphasise the role of ToM for sensing over deliberation. The goal of 
ToM in our model is to extract the information as perceived by other agents, hence using 
them as proxies for obtaining data about the world. Finally, we would like to highlight the 
user-friendliness and the flexibility of our implementation, which allows customisation of 
many of its components.

We have tested our model in the benchmark domain of Hanabi. Our results show that 
teams whose agents use ToM consistently perform better than those that do not, both in 
terms of absolute score and efficiency of communication. In terms of information gain, our 
analysis shows that the knowledge derived from the abductive reasoning component of the 
model greatly reduces uncertainty. Additionally, the information derived from the combi-
nation of ToM and abductive reasoning contributes to the final score in a disproportionate 
amount, with respect to the explicit information derived from the observation of the evolu-
tion of the game alone.

The TomAbd agent model presented here offers several directions for future work. First, 
within the Hanabi game domain, an option would be to investigate more sophisticated 
action selection rules. Additionally, it would be interesting to investigate the perception 
that human players have of TomAbd teammates, for strategies of different skill levels. This 
research could shine light on how well is human ToM captured by the agents, and how 
compatible is human ToM and the artificial ToM we have presented here.



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 37 of 41    36 

Second, the TomAbd agent model can be applied to other domains where ToM capabili-
ties may entail a potential benefit, with the goal of extracting the common general features 
that a domain must have in order for ToM to result in improved performance. This research 
could also expand the set of customised functions for explanation revision and update, as 
well as the incorporation of ToM in the deliberation stage. Furthermore, the application to 
other domains would require the development of additional metrics to quantify the benefits 
entailed by the agents’ ToM capabilities, analogous to the information gain and informa-
tion value metrics we present in this paper for Hanabi. Such metrics would naturally need 
to consider the domain properties such as whether there is a closed set of states and/or any 
heuristics available to quantify the value of MAS states.

Third, the flexibility of the TomAbd model could be enhanced by extending the type 
of constructs for which the TomAbd agent model is able to provide explanations. In other 
words, with small additional functionality, TomAbd agents could be adapted to compute 
abductive explanations not just for actions, but for mental states such as beliefs, goals and 
intentions. Of course, the mental state that is taken as input to the machinery of the Tom-
Abd agent model must either be the result of some observation (e.g. agent i overhears agent 
j discuss its goals with a third party), or of other techniques, such as goal recognition, that 
aggregate granular observations into a mental state, i.e. a sequence of atomic actions into 
the goal or intention pursued by those actions.

Regardless of the modality of the observation, the process of generating an explanation for 
it would be analogous to that presented in the TomAbd agent model for actions. In summary, 
as long as some agent i has an input about another agent j (such as an action j has taken, a 
belief or a desire j holds, or an intention j is pursuing) and an estimation of the inference rules 
that j is using, i can provide an explanation for the input. Of course, its precision will depend 
on the accuracy of the input and of the inference rules that i believes j to have.

Last but not least, the computational requirements versus the performance benefits of 
using higher-order Theory of Mind, in the Hanabi game or in other domains, presents an 
interesting challenge. Note that, in the TomAbd agent model, the same mechanism that ena-
bles an agent to use first-order ToM also enables it to use ToM of any order (i.e. query-
ing the believes(Ag, Fact) clauses and substituting the contents of its belief base), 
hence the ToM level that a TomAbd agent uses is, by construction, unbounded. Here too, 
many questions arise. For example, does performance plateau around a particular recur-
sion level npl ? Is npl a domain-independent quantity? How does it compare with respect to 
the maximum order of ToM that humans usually apply? Does this have any evolutionary 
implications? In other words, did humans develop ToM just far enough to obtain the maxi-
mum evolutionary advantage, but not any further to save resources?

To conclude, our work presents and tests a novel model for agents with Theory of Mind. 
It provides the cognitive machinery to adopt the perspective of a peer and reason from its 
perspective. It is inspired by the though processes that humans engage in when trying to 
understand the motivations for the behaviour of others. Our model endows autonomous 
agents with essential social abilities, that are becoming increasingly important in the cur-
rent AI landscape (Fig. 8).

Acknowledgements N. Montes, N. Osman and C. Sierra would like to thank the TAILOR connectivity fund 
for funding their research visit to KCL.

Author Contributions N. Montes wrote the main manuscript text. All authors reviewed the manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. 
N. Montes, N. Osmain and C. Sierra acknowledge funding from the Spanish funded VAE project 



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 38 of 41

(#TED2021-131295B-C31), the EU VALAWAI project (HORIZON #101070930), and the EU TAILOR 
project (H2020 #952215).

Availability of data and materials All the code accompanying this work can be freely accessed https:// 
github. com/ nmont esg/ tomabd. All the simulation data generated is freely available https:// drive. google. com/ 
file/d/ 1W66e ZD-t- 5YeQ4 M4SHm dBuX6 0wRu1 e0k/ view? usp= shari ng.

Declarations 

Conflict of interest The authors declare that they have no competing interests that could have influence this 
work.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Dafoe, A., Bachrach, Y., Hadfield, G., Horvitz, E., Larson, K., & Graepel, T. (2021). Cooperative 
AI: machines must learn to find common ground. Nature, 593(7857), 33–36. https:// doi. org/ 10. 1038/ 
d41586- 021- 01170-0

 2. Paiva, A., et al. (2020). WP6 – Social AI: Learning and reasoning in social contexts. ICT-48 TAILOR: 
Foundations of Trustworthy AI - Integrating Reasoning, Learning and Optimization. https:// www. tai-
lor- social- ai. eu/ home

 3. Malle, B. (2022). In R. Biswas-Diener & E. Diener (Eds.), Theory of mind. Champagne, IL: DEF 
publishers.

 4. Knobe, J. (2005). Theory of mind and moral cognition: Exploring the connections. Trends in Cognitive 
Sciences, 9(8), 357–359. https:// doi. org/ 10. 1016/j. tics. 2005. 06. 011

 5. Williams, J., Fiore, S. M., & Jentsch, F. (2022). Supporting artificial social intelligence with theory of 
mind. Frontiers in Artificial Intelligence. https:// doi. org/ 10. 3389/ frai. 2022. 750763

 6. Montes, N., Osman, N., & Sierra, C. (2022). Combining theory of mind and abduction for cooperation 
under imperfect information. arXiv: 2209. 15279 [cs.MA].

 7. Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). Programming multi-agent systems in agent 
speak using Jason. New York, NY: Wiley.

 8. Frith, C., & Frith, U. (2005). Theory of mind. Current Biology, 15(17), 644–645. https:// doi. org/ 10. 
1016/j. cub. 2005. 08. 041

 9. Korkiakangas, T., Dindar, K., Laitila, A., & Kärnä, E. (2016). The Sally-Anne test: An interactional 
analysis of a dyadic assessment. International Journal of Language & Communication Disorders, 
51(6), 685–702. https:// doi. org/ 10. 1111/ 1460- 6984. 12240

 10. Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind’’ ? 
Cognition, 21(1), 37–46. https:// doi. org/ 10. 1016/ 0010- 0277(85) 90022-8

 11. Tager-Flusberg, H. (2007). Evaluating the theory-of-mind hypothesis of autism. Current Directions in 
Psychological Science, 16(6), 311–315. https:// doi. org/ 10. 1111/j. 1467- 8721. 2007. 00527.x

 12. Askham, A. V. (2022). Theory of mind in autism: A research field reborn. Spectrum. https:// doi. org/ 
10. 53053/ gxnc7 576.

 13. Röska-Hardy, L. (2008). Theory theory (simulation theory, theory of mind). In Encyclopedia of neuro-
science (pp. 4064–4067). Berlin: Springer. https:// doi. org/ 10. 1007/ 978-3- 540- 29678-2_ 5984.

 14. van der Hoek, W. (1993). Systems for knowledge and belief. Journal of Logic and Computation, 3(2), 
173–195. https:// doi. org/ 10. 1093/ logcom/ 3.2. 173

 15. Rendsvig, R., & Symons, J. (2021). Epistemic Logic. In Zalta, E.N. (ed.) The stanford encyclopedia of 
philosophy, Summer 2021 edn. Metaphysics Research Lab, Stanford University, Stanford, CA.



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 39 of 41    36 

 16. Meyer, J.-J.C., Broersen, J., & Herzig, A. (2015). BDI logics. In van Ditmarsch, H., Halpern, J.Y., 
van der Hoek, W. (eds.) Handbook of epistemic logics. College Publications, Rickmansworth, WD3 
1DE. Chap. 10.

 17. Corballis, M. (2007). The uniqueness of human recursive thinking. American Scientist, 95(3), 240. 
https:// doi. org/ 10. 1511/ 2007. 65. 240

 18. Corballis, M. C. (2011). The Recursive Mind: The Origins of Human Language, Thought, and Civiliza-
tion (p. 291). Princeton, NJ: Princeton University Press.

 19. Albrecht, S. V., & Stone, P. (2018). Autonomous agents modelling other agents: A comprehensive sur-
vey and open problems. Artificial Intelligence, 258, 66–95. https:// doi. org/ 10. 1016/j. artint. 2018. 01. 002

 20. Baarslag, T., Hendrikx, M. J. C., Hindriks, K. V., & Jonker, C. M. (2015). Learning about the opponent 
in automated bilateral negotiation: A comprehensive survey of opponent modeling techniques. Autono-
mous Agents and Multi-Agent Systems, 30(5), 849–898. https:// doi. org/ 10. 1007/ s10458- 015- 9309-1

 21. Nashed, S., & Zilberstein, S. (2022). A survey of opponent modeling in adversarial domains. Journal 
of Artificial Intelligence Research, 73, 277–327. https:// doi. org/ 10. 1613/ jair.1. 12889

 22. Rabinowitz, N., Perbet, F., Song, F., Zhang, C., Eslami, S.M.A., & Botvinick, M. (2018). Machine the-
ory of mind. In Dy, J., Krause, A. (eds.) Proceedings of the 35th international conference on machine 
learning. Proceedings of machine learning research (Vol. 80, pp. 4218–4227). PMLR, Stockholm, 
Sweden. https:// proce edings. mlr. press/ v80/ rabin owitz 18a. html.

 23. Wang, Y., Zhong, F., Xu, J., & Wang, Y. (2022). Tom2c: Target-oriented multi-agent communication 
and cooperation with theory of mind. In International conference on learning representations. https:// 
openr eview. net/ forum? id= M3tw7 8MH1Bk.

 24. Jara-Ettinger, J. (2019). Theory of mind as inverse reinforcement learning. Current Opinion 
in Behavioral Sciences, 29, 105–110. https:// doi. org/ 10. 1016/j. cobeha. 2019. 04. 010. Artificial 
Intelligence.

 25. Cuzzolin, F., Morelli, A., Cîrstea, B., & Sahakian, B. J. (2020). Knowing me, knowing you: Theory 
of mind in AI. Psychological Medicine, 50(7), 1057–1061. https:// doi. org/ 10. 1017/ s0033 29172 
00008 35

 26. de Weerd, H., & Verheij, B. (2011). The advantage of higher-order theory of mind in the game of 
limited bidding. In Workshop on reasoning about other minds: Logical and cognitive perspectives 
(Vol. 751, pp. 149–164).

 27. de Weerd, H., Verbrugge, R., & Verheij, B. (2012). Higher-order social cognition in the game of 
rock-paper-scissors: A simulation study. In Bonanno, G., Van Ditmarsch, H., Hoek, W. (eds.) Pro-
ceedings of the 10th conference on logic and the foundations of game and decision theory (LOFT 
2012) (pp. 218–232).

 28. de Weerd, H., Verbrugge, R., & Verheij, B. (2022). Higher-order theory of mind is especially use-
ful in unpredictable negotiations. Autonomous Agents and Multi-Agent Systems. https:// doi. org/ 10. 
1007/ s10458- 022- 09558-6

 29. Ştefan Sarkadi, Panisson, A.R., Bordini, R.H., McBurney, P., Parsons, S., & Chapman, M. (2019). 
Modelling deception using theory of mind in multi-agent systems. AI Communications 32, 287–
302. https:// doi. org/ 10. 3233/ AIC- 190615.

 30. Panisson, A., Mcburney, P., Parsons, S., Bordini, R., & Sarkadi, S. (2018). Lies, bullshit, and 
deception in agent-oriented programming languages. In Proceedings of the 20th international trust 
workshop co-located with AAMAS/IJCAI/ECAI/ICML (AAMAS/IJCAI/ECAI/ICML 2018).

 31. Walton, D. (2014). Abductive reasoning (p. 320). Tuscaloosa, AL: University of Alabama Press.
 32. Josephson, J. R., & Josephson, S. G. (1994). Abductive inference: Computation, philosophy, tech-

nology (p. 316). Cambridge, UK: Cambridge University Press.
 33. Flach, P.A., & Kakas, A.C. (eds.): Abduction and induction: Essays on their relation and integra-

tion. Berlin: Springer (2000). https:// doi. org/ 10. 1007/ 978- 94- 017- 0606-3.
 34. Kakas, A., Kowalski, R., & Toni, F. (1993). Abductive logic programming. Journal of Logic and 

Computation, 2(6), 719–770. https:// doi. org/ 10. 1093/ logcom/ 2.6. 719
 35. Denecker, M., & Kakas, A.C. (2002). Abduction in logic programming. In Computational logic: 

Logic programming and beyond, essays in Honour of Robert A. Kowalski, Part I (pp. 402–436). 
Berlin: Springer.

 36. Denecker, M., & de Schreye, D. (1998). Sldnfa: An abductive procedure for abductive logic programs. 
The Journal of Logic Programming, 34(2), 111–167. https:// doi. org/ 10. 1016/ S0743- 1066(97) 00074-5

 37. Ray, O., & Kakas, A. (2006). Prologica: a practical system for abductive logic programming. In 
Proceedings of the 11th International workshop on non-monotonic reasoning (pp. 304–312).

 38. Fung, T. H., & Kowalski, R. (1997). The iff proof procedure for abductive logic programming. The 
Journal of Logic Programming, 33(2), 151–165. https:// doi. org/ 10. 1016/ S0743- 1066(97) 00026-5



 Autonomous Agents and Multi-Agent Systems           (2023) 37:36 

1 3

   36  Page 40 of 41

 39. Sadri, F., & Toni, F. (2000). Abduction with negation as failure for active and reactive rules. In E. 
Lamma & P. Mello (Eds.), AI*IA 99: Advances in artificial intelligence (pp. 49–60). Berlin: Springer.

 40. Azzolini, D., Bellodi, E., Ferilli, S., Riguzzi, F., & Zese, R. (2022). Abduction with probabilistic 
logic programming under the distribution semantics. International Journal of Approximate Reason-
ing, 142, 41–63. https:// doi. org/ 10. 1016/j. ijar. 2021. 11. 003

 41. Bard, N., Foerster, J. N., Chandar, S., Burch, N., Lanctot, M., Song, H. F., Parisotto, E., Dumoulin, 
V., Moitra, S., Hughes, E., Dunning, I., Mourad, S., Larochelle, H., Bellemare, M. G., & Bowl-
ing, M. (2020). The hanabi challenge: A new frontier for AI research. Artificial Intelligence, 280, 
103216. https:// doi. org/ 10. 1016/j. artint. 2019. 103216

 42. Siu, H.C., Peña, J.D., Chang, K.C., Chen, E., Zhou, Y., Lopez, V.J., Palko, K., & Allen, R.E. (2021). 
Evaluation of human-ai teams for learned and rule-based agents in hanabi. CoRR arXiv: 2107. 07630.

 43. O’Dwyer, A. (2017). Quuxplusone/Hanabi: Framework for writing bots that play Hanabi. https:// 
github. com/ Quuxp lusone/ Hanabi/.

 44. Osawa, H. (2015). Solving hanabi: Estimating hands by opponent’s actions in cooperative game 
with incomplete information. In AAAI workshop: Computer poker and imperfect informationhttp:// 
aaai. org/ ocs/ index. php/ WS/ AAAIW 15/ paper/ view/ 10167.

 45. Cox, C., Silva, J. D., Deorsey, P., Kenter, F. H. J., Retter, T., & Tobin, J. (2015). How to make 
the perfect fireworks display: Two strategies for Hanabi. Mathematics Magazine, 88(5), 323–336. 
https:// doi. org/ 10. 4169/ math. mag. 88.5. 323

 46. van den Bergh, M. J. H., Hommelberg, A., Kosters, W. A., & Spieksma, F. M. (2017). Aspects of 
the cooperative card game hanabi. In T. Bosse & B. Bredeweg (Eds.), BNAIC 2016: Artificial Intel-
ligence (pp. 93–105). Cham: Springer.

 47. Walton-Rivers, J., Williams, P. R., Bartle, R., Perez-Liebana, D., & Lucas, S. M. (2017). Evaluating 
and modelling hanabi-playing agents. In 2017 IEEE congress on evolutionary computation (CEC) (pp. 
1382–1389). https:// doi. org/ 10. 1109/ CEC. 2017. 79694 65.

 48. Hu, H., Lerer, A., Peysakhovich, A., & Foerster, J. (2020). “Other-play” for zero-shot coordination. In 
III, H.D., Singh, A. (eds.) Proceedings of the 37th international conference on machine learning. pro-
ceedings of machine learning research (Vol. 119, pp. 4399–4410). PMLR, Virtual event. https:// proce 
edings. mlr. press/ v119/ hu20a. html.

 49. Lerer, A., Hu, H., Foerster, J., & Brown, N. (2020). Improving policies via search in cooperative par-
tially observable games. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, pp. 
7187–7194). https:// doi. org/ 10. 1609/ aaai. v34i05. 6208.

 50. Foerster, J., Song, F., Hughes, E., Burch, N., Dunning, I., Whiteson, S., Botvinick, M., & Bowling, 
M. (2019). Bayesian action decoder for deep multi-agent reinforcement learning. In: Chaudhuri, K., 
Salakhutdinov, R. (eds.) Proceedings of the 36th international conference on machine learning. Pro-
ceedings of machine learning research (Vol. 97, pp. 1942–1951). PMLR, Long Beach, CA. https:// 
proce edings. mlr. press/ v97/ foers ter19a. html.

 51. Sarmasi, A., Zhang, T., Cheng, C.-H., Pham, H., Zhou, X., Nguyen, D., Shekdar, S., & McCoy, J. 
(2021). Hoad: The hanabi open agent dataset. In Proceedings of the 20th international conference on 
autonomous agents and multiagent systems. AAMAS ’21 (pp. 1646–1648). International Foundation for 
Autonomous Agents and Multiagent Systems, Richland, SC.

 52. Rao, A.S. (1996). AgentSpeak(l): BDI agents speak out in a logical computable language. In Lecture 
notes in computer science (pp. 42–55). Berlin: Springer. https:// doi. org/ 10. 1007/ bfb00 31845.

 53. Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). 
Biometrika, 52(3–4), 591–611. https:// doi. org/ 10. 1093/ biomet/ 52.3- 4. 591

 54. Ross, A., & Willson, V. L. (2017). Paired samples T-Test, pp. 17–19. SensePublishers, Rotterdam. 
https:// doi. org/ 10. 1007/ 978- 94- 6351- 086-8_4.

 55. Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical 
Statistics, 22(1), 79–86. https:// doi. org/ 10. 1214/ aoms/ 11777 29694

 56. Panisson, A. R., Ştefan Sarkadi, McBurney, P., Parsons, S., & Bordini, R. H. (2019). On the for-
mal semantics of theory of mind in agent communication. In Agreement technologies (pp. 18–32). 
Springer, Cham. https:// doi. org/ 10. 1007/ 978-3- 030- 17294-7_2.

 57. Harbers, M., Bosch, K.V.d., & Meyer, J.-J. (2009). Modeling agents with a theory of mind. In 2009 
IEEE/WIC/ACM international joint conference on web intelligence and intelligent agent technology 
(Vol. 2, pp. 217–224). https:// doi. org/ 10. 1109/ WI- IAT. 2009. 153.

 58. Sindlar, M., Dastani, M., & Meyer, J.-J. (2011). Programming mental state abduction. In The 10th 
international conference on autonomous agents and multiagent systems - Volume 1. AAMAS ’11 (pp. 
301–308). International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC.



Autonomous Agents and Multi-Agent Systems           (2023) 37:36  

1 3

Page 41 of 41    36 

 59. Sindlar, M. P., Dastani, M. M., & Meyer, J.-J.C. (2009). Bdi-based development of virtual characters 
with a theory of mind. In Z. Ruttkay, M. Kipp, A. Nijholt, & H. H. Vilhjálmsson (Eds.), Intelligent 
Virtual Agents (pp. 34–41). Berlin: Springer.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.





Part III

Closing Remarks





Chapter 3

Integrating the Three
Approaches

In Part II, a variety of contributions are made: a methodology for the auto-
mated synthesis and analysis of norms based on their degree of value alignment
(Contribution 1); a rich framework for representating and automatically inter-
preting norms to examine the outcomes incentivised by them (Contribution 2);
and a ToM-endowed agent model with the ability to adopt and reason from
the perspective of other agents (Contribution 3). In this chapter, we present the
integration of these three approaches into an agent functionality for computing
the degree of alignment of a set of norms with respect to a value (or set of val-
ues) not just from their own perspective, but also from the perspective of other
agents, thus incorporating the strong social dimension of values discussed in
Section 1.1.

3.1 An Integrated Approach to Value Engineering

The goal of this chapter is to integrate the contributions made in Part II into
a novel agent functionality for computing the alignment of a set of norms (or
normative system) with respect to a value of choice from any perspective, i.e. to
reason about the alignment of norms not just from the agent’s own value per-
spective, but also that of other agents. An agent endowed with such functionality
will be able to perform value-alignment computations from an eminently social
orientation. Formally, an agent 𝛼 should not just be able to compute:

Algn𝛼
𝑁,𝑣 (3.1)

159



which denotes the alignment Algn of the norms 𝑁 with respect to value 𝑣1 from
the perspective of agent 𝛼 itself. Agent 𝛼 should also be able to compute:

Algn𝛼,𝛽
𝑁,𝑣

(3.2)

which denotes the alignment Algn that agent 𝛼 estimates that agent 𝛽 has for the
set of norms in 𝑁 with respect to value 𝑣. That is, Equation (3.2) denotes
the alignment that 𝛼 computes from the perspective of 𝛽. Therefore, in order
to compute Algn𝛼,𝛽

𝑁,𝑣
, agent 𝛼 will have to use first-order ToM capabilities (like

those provided by Contribution 3) to change its perception on the proposed
norms 𝑁 to an estimation of 𝛽’s perception of them. While the computation
of the alignment from one’s own perspective (i.e. Algn𝛼

𝑁,𝑣) does not require, in
principle, such perspective switching capabilities, they become necessary once
agents need to estimate the opinion of their peers.

Furthermore, Equation (3.2) can be extended to an arbitrary level of recursion
(analogously to Equation (1) in Contribution 3):

Algn𝑃
𝑁,𝑣 where 𝑃 = 𝛼, 𝛽, . . . , 𝛾, 𝛿 (3.3)

which denotes the alignment for norms in 𝑁 with respect to value 𝑣 from the
perspective of 𝑃,2 i.e. the alignment that 𝛼 estimates that 𝛽 estimates that ... 𝛾

estimates that 𝛿 has. Thus, just as the computation of Equation (3.2) required
first-order ToM capabilities, to compute Equation (3.3) agent 𝛼 must be endowed
with 𝑛-th order ToM capabilities (again, like those provided by Contribution
3). The reader should keep in mind that the agent actually performing the
computation of Equation (3.3) is 𝛼, i.e. the head element of 𝑃.

To compute Equation (3.1), we select the most important features of the
contributions in Part II and integrate them into a new agent functionality, namely
the computation of the alignment of a set of norms with respect to a value from any
perspective. Mainly, the features selected from Part II are:

• From Contribution 1: The computation of value alignment as an expec-
tation over outcome states of the semantics function that grounds the
meaning of the value of interest in a particular context.

• From Contribution 2: The rich norm representation language (i.e. the

1The discussion on alignment with respect to a value 𝑣 throughout this chapter can be trivially
extended to the alignment with respect to the aggregation of values in set 𝑉 .

2See Definition 3 in Contribution 3.

160



Figure 3.1: Integration overview.

Action Situation Language, ASL) and its accompanying game engine to
interpret ASL descriptions. Together with a game theoretical solution
concept, the probability distribution over outcome states (i.e. the set of
terminal nodes in the resulting EFG tree) is automatically predicted.

• From Contribution 3: The 𝑛-th order ToM capabilities of the TomAbd
agent model, i.e. its ability to switch its view by building an estimation
of the perspective that other agents have, and in general to perform such
perspective switches down to an arbitrary level of recursion.

Figure 3.1 presents the integration of the three contributions of Part II as a
diagram. Contribution 1 provides the grounding of values as a set of semantics
functions that evaluate outcomes, while Contribution 3 changes the perspective
that the agent has while doing this evaluation. Meanwhile, Contribution 2
provides a framework to predict the outcomes based on the set of norms in
place.

Note that the integration proposed in this chapter materialises as a new agent
functionality, and hence it is an agent-centred integration. While the agent model
developed in Contribution 3 is naturally agent-centred, Contribution 1 and Con-
tribution 2 correspond to general frameworks that are originally applied from
the perspective of a social planner or a community of agents at large. Therefore,
they need to be adapted such that their functionalities can be employed from
within an agent’s operation.

The main application that is envisioned for the agent functionality proposed
here is value-guided automated negotiation over normative systems. There,
two or more autonomous agents bargain over the set of norms to implement
in the domain where they are interacting, based on the degree of alignment of

161



those norms with respect to their values. In order to make proposals that stand a
chance of being accepted, an agent must be able to view proposals for normative
systems in terms of their alignment with respect to several values from its own
as well as the perspective of others, thus requiring ToM capabilities.

An interesting perspective on the process of negotiating over norms men-
tioned above is as a value-aggregating process. Agents come in to the bargain
equipped with their individual values, which might be very diverse both on
their meaning and priorities. From the negotiation process should come out a
set of norms that are implemented on the system as a whole and that determine
which outcomes are more likely to be reached. The selected norms, then, de-
pend on the value preferences and interpretations that the participating agents
have, and merge all of them into a single shared regulative body. However,
whether the agreed-upon norms will be more responsive to a subset of agents
over another will depend on how the negotiation is set up, and how much power
does each individual hold within that process.

3.2 Formal Model

Mathematically, the alignment Algn of a set of norms 𝑁 with respect to value 𝑣

from perspective 𝑃 is a function of the following:

Algn𝑃
𝑁,𝑣 = 𝐹 (𝑁, 𝑣, 𝑃 | 𝐺,ℒ ,𝒰 ,𝒮𝒞 ,𝔗𝔐) (3.4)

where:

• 𝑁 is the set of norms (or normative system) whose alignment is being
computed.

• 𝑣 is the value of interest with respect to whom the alignment is being
computed.

• 𝑃 is the perspective from which the alignment is being computed. 𝑃 is an
ordered subset of 𝐺, where

• 𝐺 = {𝛼, 𝛽, 𝛾, 𝛿, ...} is the set of agents in the system.

• ℒ is the logical language that agent 𝛼 (i.e. the one computing the alignment,
the head element in 𝑃, see Equation (3.3)) uses to describe the system, i.e.
the set of facts that jointly characterise a state according to 𝛼.

162



• 𝒰 : Pow(ℒ) × 𝐺 → R is the utility assignment function. Given a state s
described by a set of facts expressed in language ℒ and an agent 𝜔 ∈ 𝐺,
𝒰(s, 𝜔) returns the utility that agent 𝜔 has for state s. As a reminder, the
agent utilities are a set of functions {𝑈𝑔}𝑔∈𝐺 where 𝑈𝑔 : 𝑍 ← R and 𝐺 is
the set of players in an Extensive Form Game (EFG) Γ and 𝑍 is the set of
terminal nodes of the game tree in Γ. We understand these utilities in the
classical game-theoretical sense as financial rewards or payoffs.

• 𝒮𝒞 is a game theoretical solution concept. Given a game model in normal
or extensive form, 𝒮𝒞 predicts the equilibrium strategies that agents will
converge to based on the utilities of the possible outcomes.

• 𝔗𝔐 : Pow(ℒ) × 𝐺 → Pow(ℒ) is the Theory of Mind function. Given the
current state of 𝛼’s belief base 𝐵𝐵 (i.e. a set of facts and clauses expressed
in language ℒ) and an agent 𝜔 ∈ 𝐺, 𝔗𝔐(𝐵𝐵, 𝜔) returns the set of beliefs
that 𝛼 believes that 𝜔 has, also expressed in language ℒ.

Equation (3.4) makes a distinction between arguments (𝑁 , 𝑣 and 𝑃 before the
“given” sign “|”) and parameters (𝐺,ℒ,𝒰 ,𝒮𝒞 and𝔗𝔐 after the “given” sign “|”).
This distinction is not strict, and it is made because any given agent is expected
to compute the alignment numerous times for different instantiations of the
arguments, while the parameters remain constant. Consider the value-based norm
negotiation application mentioned in Section 3.1. There, a negotiating agent will
have to evaluate, for a given domain, several proposals for 𝑁 with respect to
a variety of values and from a number of different perspectives. Meanwhile,
the set of agents 𝐺, the language ℒ used to describe the domain, the way that
utilities are assigned to outcomes 𝒰 , the decision-making model 𝒮𝒞 and the
mapping from one’s beliefs to those of others (i.e. the information encoded in
𝔗𝔐) are expected to remain constant.

All arguments in Equation (3.4) can be identified with constructs that have
appeared throughout the contributions in Part II. The norms 𝑁 correspond to
the rule base Ω in an Action Situation Language (ASL) description, specified in
Contribution 2. Value 𝑣 has the same meaning as the values with respect to
which norms are optimised in Contribution 1. The perspective 𝑃 also has the
same meaning as in Contribution 3, and it has been revisited in Section 3.1.
The set of agents in 𝐺 are those declared in the agents base Δ of an Action
Situation Language (ASL) description. Meanwhile, the logical languageℒ used
to describe the state of the system is identified with the fluents and clauses
included in an ASL description, and which are initialized by the initially/1

163



clauses in the states baseΣ. Finally, the Theory of Mind function 𝔗𝔐 is expressed
by the Theory of Mind clauses from Contribution 3, which assign beliefs to other
agents based on the state of the agent’s own belief base.

Two parameters in Equation (3.4), namely the utility assignment function 𝒰
and the solution concept 𝒮𝒞, do not have direct equivalents in Part II, although
they are mentioned in Contribution 2. The utility assignment function𝒰 is nec-
essary to complete the EFG model Γ built from an ASL description. The game
engine developed in Contribution 2 is responsible for automatically querying
the ASL description and building the game tree that it entails. However, an EFG
is not completely specified until numerical utilities have been assigned to the
terminal nodes in the game tree. This is the purpose of the utility assignment
function𝒰 . In turn, the solution concept 𝒮𝒞 leans on the utilities assigned by
𝒰 to predict the equilibrium behaviour of agents and the induced probability
distribution over outcomes. By default, the solution concept we apply through-
out this chapter, similarly to Contribution 2, is the Nash equilibrium coupled
with backward induction, i.e. subgame perfect Nash equilibrium.

Equation (3.4) specifies the functional dependencies of Algn𝑃
𝑁,𝑣 , but not the

shape that such function takes. Here, we propose to compute the perspective-
dependent alignment as:

Algn𝑃
𝑁,𝑣 =

∑
𝑧∈𝑍
𝒫(𝑧) · 𝑓 𝑃𝑣 (𝑧) (3.5)

where:

• 𝑍 is the set of outcomes, i.e. the set of terminal nodes in the tree of the EFG
Γ, generated from the automated interpretation of an ASL description.

• 𝒫 : 𝑍→ [0, 1] is the probability distribution over outcomes induced by the
utility assignment function 𝒰 through the solution concept 𝒮𝒞 applied
to Γ, together with any stochastic effects in Γ.

• 𝑓𝑣 : Pow(ℒ) → [−1, 1] is the semantics function of value 𝑣, as defined in
Contribution 1. This function indicates whether a state, and a terminal
state in particular, strongly adheres to (+1), is neutral (∼ 0) or strongly
opposes (-1) value 𝑣. Then, 𝑓 𝑃𝑣 denotes the semantics function of value 𝑣

evaluated from perspective 𝑃. Further details on invoking the semantics
function of a value from different perspectives are provided in Section 3.3.

It should be noted that Equation (3.5) is one proposal, and that other pos-

164



sibilities exist. For example, Equation (3.5) weights every outcome solely by
its probability 𝒫(𝑧). However, in domains where non-aligned outcomes are
particularly detrimental and should be avoided, one may want to assign a large
negative weight to outcomes where 𝑓 𝑃𝑣 (𝑧) ∼ −1. In our proposal, we are not
biased towards or against outcomes based on their evaluation of the semantics
function 𝑓𝑣 , and simply weight every outcome by the probability of it being
realised.

It should be noted that, in our proposal, the utilities obtained from the
utility assignment function 𝒰 and the solution concept 𝒮𝒞 are fixed for the
agent and will not be part of its ToM capabilities. In other words, once the agent
has interpreted an ASL description using the game engine from Contribution
2, it assigns the utilities and predicts the equilibrium strategies with its own
𝒰 and 𝒮𝒞 functions. For the time being, an agent 𝛼 does not work with its
belief of the utility and solution concept of another agent 𝛽 when adopting its
viewpoint, which may yield a different probability distribution 𝒫 than the one
obtained with 𝛼’s own 𝒰 and 𝒮𝒞 functions. Doing so would be equivalent
to possessing a ToM for 𝒰 and 𝒮𝒞 too. In our proposal, the ToM capabilities
are reserved for the semantics function 𝑓𝑣 , thus the interpretation of value does
generally change depending on whose perspective is being adopted. We expose
this point in detail next.

3.3 The Role of the Perspective

Now, we discuss in further detail the ways in which the perspective 𝑃 may affect
the alignment of a set of norms with respect to a set of values. For starters,
consider the base case where agent 𝛼 is evaluating a set of norms 𝑁 with respect
to a value 𝑣 from its own perspective. The resulting Algn𝛼

𝑁,𝑣 will depend on (i)
the semantics function 𝑓𝑣 that 𝛼 has for value 𝑣, and (ii) the data that 𝑓𝑣 takes as
input. The semantics functions for the values of interest are provided through
clauses in the agent’s belief base with the following format:

value(V, Id, Fv) :- 𝑏 (3.6)

indicating that, under the conditions expressed by the clause body 𝑏, a value V
is respected to degree 𝑓𝑣 = Fv in the action situation identified by Id.

For example, consider value equality, whose semantics function were grounded
through the Gini index in Contribution 1. This semantics function is expressed

165



by the following clause:3

value(equality, Id, Degree) :-

.findall(X, income(Ag, X), L) &

gini_index(L, GI) &

Degree = 1 - 2*GI.

(3.7)

where gini_index is an auxiliary predicate that takes in a list L of income
quantities and unifies GI with the corresponding Gini index. Hence, when
computing the alignment with respect to value equality from its own perspective,
𝛼 will take into consideration the set of income/2 facts to which 𝛼 itself has
access. Note that we are not assuming that all action situations will include
income/2 literals to describe the state of the system. We are using them just for
the sake of example.

Now, suppose that 𝛼 wants to compute the alignment with respect to value
equality from the perspective of 𝛽, Algn𝛼,𝛽

𝑁,𝑣
. The first possibility is that 𝛼 believes

that 𝛽 uses the same semantics function in Equation (3.7) to compute alignment
with respect to equality. In other words, 𝛼 believes that 𝛽 has the same interpre-
tation of value equality as itself. If this is the case, the following ToM clause is
included in 𝛼’s belief base:

believes(beta, EqSemFunc, Id) :-

.relevant_rules(value(equality, Id, Degree), LR) &

.member(EqSemFunc, LR).

(3.8)

stating that, in the action situation identified by Id, the clauses that 𝛽 has to
express the semantics function of value equality are those that are already present
in 𝛼’s belief base.

However, the result of computing Algn𝛼,𝛽
𝑁,𝑣

is not, in general, the same as
Algn𝛼

𝑁,𝑣 . That is the case because when 𝛼 adopts the perspective of 𝛽, the set
of income/2 facts to which it will have access will be, typically, different. For
example, 𝛼 may believe that 𝛽 only has access to a subset of the income/2 facts
that 𝛼 itself knows about. Alternatively, 𝛼 may build an estimation of other
income/2 facts to which 𝛽 has access, even if they are not part of 𝛼’s original
belief base and/or they do not accurately reflect 𝛽’s information.

A second possibility is that 𝛼 may believe that 𝛽 grounds the meaning of

3The clauses displayed in this section are written in Jason agent code. It follows a syntax
very similar to that of Prolog, but using ampersand “&” instead of comma for conjunction.
Additionally, Jason built-in predicates are preceded by a dot “.”.

166



value equality through a different semantics function. For example, suppose that
𝛼 believes that 𝛽 conceives value equality as the ratio between the minimum and
the maximum incomes it knows about. This is captured by the following ToM
clause:

believes(

beta,

{value(equality, Id, Degree) :-

.findall(X, income(Ag, X), L) &

.min(L, Min) &

.max(L, Max) &

Ratio = Min / Max &

Degree = 2*Ratio - 1},

Id

).

(3.9)

Hence, even if 𝛼 uses the same income/2 facts to compute the alignment
with respect to value equality from its own and from 𝛽’s perspective, the result
would generally differ due to the different interpretations of this value that are
used for both computations.

In general, computing the alignment from a different perspective will involve
a combination of the two possibilities outlined in this section: a different inter-
pretation of a value when the perspective of another agent is adopted, which
furthermore takes as input different data that do not correspond to the agent’s
original belief base.

3.4 Computing the Alignment

To compute Equation (3.5), we present the Alignment function in Algorithm 1.
This function provides an additional internal functionality to symbolic-based
agents (such as BDI agents), which are assumed to maintain a belief base 𝐵𝐵. As
prerequisites, an agent executing the Alignment function must have access to
(i) the game engine from Contribution 2 to automatically interpret ASL descrip-
tions; and (ii) the ToM-related functionalities of the TomAbd agent model from
Contribution 3. In particular, an agent must be able to copy its current belief
base to a backup and recover it (functions CopyToBackup and RecoverBackup
respectively), as well as replacing its current beliefs by an estimation of the be-
liefs that other agents have (function AdoptViewpoint). For further details on
these functions, see Contribution 3.

167



To compute the perspective-dependent alignment Algn𝑃
𝑁,𝑣 , the agent must

first have access to some data about the domain under examination. This data
corresponds to the parameters in Equation (3.4). First, the agent must have
access to the default ASL description of the domain upon which a new set of
rules is being considered for adoption. This default ASL description is composed
of the agents base Δ, the states base Σ, and the default rule base Ω0. This default
rule base contains the default rules regulating the action situation, i.e. those
whose priority is equal to 0. In terms of the value-based negotiation over
normative systems scenario introduced in Section 3.1, the set of default rules
would correspond to the default outcome of the negotiation (i.e. the result of
the negotiating process in case no agreement on another alternative is reached).
Also, the action situation under examination is identified with identifier id. This
is not a crucial input to Algorithm 1 at the moment, and it is rather made to keep
consistency with Contribution 2 and with a potential extension to multi-context
systems in mind (this point is explained in detail in Section 4.3).

Next, the agent must also take in a utility assignment function 𝒰 to set
the utilities of an EFG generated from an ASL description. Similarly, it must
also have set the solution concept 𝒮𝒞 to compute equilibrium strategies in an
EFG, and from which the probability distribution over outcomes is induced.
Meanwhile, not central to this work is the optional parameter max, which can
be set to limit the depth of the game tree during the game-building process.

Last, Algorithm 1 also has access to a set of Theory of Mind clauses 𝔗𝔐.
Overloading the notation, we refer to this set of clauses using the same symbol
used as for the ToM function in Equation (3.4). In fact, the clauses mentioned
in Algorithm 1 encode the ToM function from Equation (3.4). In other words,
the ToM clauses 𝔗𝔐 allow to build an estimation of another agent’s belief base,
taking as input the current state of the agent’s own belief base. The clauses in
𝔗𝔐 have a very similar format as the ToM clauses from Contribution 3:

believes(Ag, F, Id) :- 𝑏 (3.10)

meaning that agent Ag believes in fact F in the action situation identified by Id if
the conditions in body 𝑏 hold. Compared to Contribution 3, Equation (3.10) only
has a small extension in the additional argument Id to identify the action situa-
tion in which the clause applies. At this stage, this is not a very relevant addition,
but it opens the door to future work on autonomous agents that can operate on
multi-context systems (again, more details are provided in Section 4.3).

168



Algorithm 1: Function Alignment(𝑁 , 𝑣, 𝑃)
Input : N ⊲ tuple ⟨Ω[, thres]⟩ where Ω is a set of higher priority rules written in

ASL, and thres is an optional threshold parameter used as a filter (a
non-negative integer). By default, use thres ∼ ∞.
𝑓𝑣 ⊲ semantics function for value 𝑣.
𝑃 ⊲ viewpoint from which the alignment is computed, as defined in
Equation (3.4).

Data : A = ⟨Δ,Σ,Ω0⟩ ⊲ default ASL description composed of the agents base Δ,
the states base Σ and the default rule base Ω0 containing the set of rules
whose priority equals 0.
id ⊲ string, an identifier for the action situation under examination.
𝒰 ⊲ utility assignment function to set the EFG utilities based on the
fluents declared in Σ, as defined in Equation (3.4).
𝒮𝒞 ⊲ game-theoretical solution concept. By default, subgame perfect
equilibria, as defined in Equation (3.4).
𝔗𝔐 ⊲ set of Theory of Mind clauses, as defined in Equation (3.4).
max ⊲ an optional non-negative integer to limit the depth of the generated
EFG models. By default, max ∼ ∞.

Output : Algn𝑃
𝑁,𝑣 ⊲ the alignment of norms in 𝑁 with respect to value 𝑣 from the

viewpoint of 𝑃 (a double).
1 Function Alignment (𝑁 ,𝑣,𝑃):
2 Ω0 ← Ω0 ∪Ω // add rules to ASL description

3 Γ, ℱ ← Build-Full-Game(id, thres,max) // from Contribution 2

4 for (𝑧, 𝑔) ∈ 𝑍Γ × 𝐺 do // 𝐺 is the set of agents declared in Δ and 𝑍Γ is the set

terminal nodes in Γ

5 𝑈𝑔(𝑧) ← 𝒰(ℱ (𝑧), 𝑝𝑙) // assign utilities to EFG

6 𝒫𝐸 ← 𝒮𝒞(Γ) // equilibrium strategy assigns a probability to every edge in Γ

7 for 𝑧 ∈ 𝑍 do // probability distribution over outcomes

8 𝒫(𝑧) ←
∏

edge∈path(root→𝑧)
𝒫𝐸(edge)

9 𝐵𝐵← 𝔗𝔐, Algn← 0
10 for 𝑧 ∈ 𝑍 do
11 𝐵𝐵← 𝐵𝐵 ∪ ℱ (𝑧)
12 CopyToBackup() // from Contribution 3

13 AdoptViewpoint(𝑃) // from Contribution 3

14 Algn← Algn + 𝒫(𝑧) · 𝑓𝑣(𝐵𝐵) // from Contribution 1

15 RecoverBackup() // from Contribution 3

16 𝐵𝐵← 𝐵𝐵 \ ℱ (𝑧)
17 return Algn



Against the data that Algorithm 1 relies upon, the Alignment function takes
as arguments a set of norms 𝑁 , a value 𝑣 and a perspective 𝑃, and returns the
alignment of the norms in 𝑁 with respect to value 𝑣 from the perspective of
𝑃, Algn𝑃

𝑁,𝑣 . The norms in 𝑁 are encoded as a set of higher priority ASL rules
and, optionally, a threshold to select the maximum priority of the rules to be
considered (by default, all higher-priority rules are included). Value 𝑣 is pro-
vided as a semantics function 𝑓𝑣 , which captures the meaning of 𝑣 in the action
situation under examination, as presented in Equation (3.6). Finally, the view-
point 𝑃 under which the alignment is computed is, as defined in Contribution
3, an ordered sequence of agents [𝛽, 𝛾, . . . , 𝛿]whose perspective is sequentially
adopted when the outcomes of the generated EFG model are analyzed.

Algorithm 1 starts by adding the higher-priority norms in 𝑁 to the default
rule base (Line 2). Then, the game engine from Contribution 2 automatically
builds the EFG model Γ that grounds the semantics of the interaction, provided
that the norms in 𝑁 were adopted (Line 3). To do so, the agent executes the
Build-Full-Game function, thoroughly presented in Contribution 2. As a result
of this execution, function ℱ : 𝑍Γ → Pow(ℒ) is also returned, which maps
every outcome in 𝑍Γ (the set of terminal nodes in the game tree of Γ) to the set
of fluents that characterises it.

As mentioned in Contribution 2, the framework there does not manage
the terminal nodes utilities that fully characterise an EFG. The assignment of
utilities to outcomes is performed by the custom utility assignment function𝒰 ,
which is crafted for the action situation under examination (Lines 4-5). Once the
game utilities are assigned, the solution concept 𝒮𝒞 computes the equilibrium
strategies for Γ, which results in a prediction of the actions that agents will
take in the game. This is represented as the function 𝒫𝐸 : 𝐸Γ → [0, 1], which
assigned to the edges in Γ’s game tree, denoted by 𝐸Γ, to the probability of
that edge being traversed during game play (Line 6). From 𝒫𝐸, the probability
distribution over outcomes 𝒫 : 𝑍 → [0, 1] that is induced by the equilibrium
strategies is computed (Lines 7-8). 𝒫(𝑧) is calculated as the probability of the
path from the root node of the game tree to the terminal node 𝑧, which in turn
is the joint probability of every edge in the path. Since Γ is represented by a tree
(rather than a general graph), there is only one path from the root of the tree to
any of its terminal nodes.

So far, Algorithm 1 builds a game model reflecting the implementation of
the norms in 𝑁 using the framework presented in Contribution 2, and analyses
the effects of such implementation as the distribution over outcomes. Next,

170



the Alignment function evaluates the EFG from perspective 𝑃 with respect to
value 𝑣. This process starts by initializing the agent’s belief base 𝐵𝐵 with the
set of ToM clauses 𝔗𝔐 and the alignment to zero (Line 9). Then, Algorithm 1
loops over the set of outcomes (i.e. the terminal nodes in 𝑍) to examine the
contribution of each outcome to the alignment. At each terminal state, the agent
adds the set of fluents ℱ (𝑧) that characterise it to its belief base (Line 11).

Following that, the agent proceeds to switch its perspective and adopt that
of 𝑃. This is achieved by applying the ToM-related function presented in Con-
tribution 3. First, the agent makes a copy of its current belief base to a backup
using the CopyToBackup function (Line 12), and then it substitutes its belief
base by the estimation it is able to build of the beliefs from 𝑃’s perspective
using function AdoptViewpoint. Both CopyToBackup and AdoptViewpoint are
developed in Contribution 2.

As a reminder of the main ToM-related functionalities that the agent has,
suppose agent 𝛼 is the one computing the alignment from perspective 𝑃 =

[𝛽, . . . , 𝛾, 𝛿]. Then, in Line 13 of Algorithm 1 𝛼 replaces its original belief base
𝐵𝐵𝛼 by:

𝐵𝐵𝛼,𝛽,...,𝛾,𝛿 = {𝜙 | 𝐵𝐵𝛼,𝛽,...,𝛾 |= believes(𝛿, 𝜙, id)} (3.11)

where the first iteration in Equation (3.11) is given by:

𝐵𝐵𝛼,𝛽 = {𝜙 | 𝐵𝐵𝛼 |= believes(𝛽, 𝜙, id)} (3.12)

There is only one small difference between Equations (3.11) and (3.12) and
their counterparts in Contribution 3 (see Equation (1) there), and that is the
identifier id in the ToM clauses. As mentioned previously, this is not a crucial
difference for the time being.

After the execution of Line 13 in Algorithm 1, the agent has in its belief base
the estimation they can make of the view of the world from 𝑃’s perspective.
Now, the agent adds to the alignment Algn the contribution of the terminal node
𝑧 under examination. To do so, it applies the value semantics function to the
current state of its belief base, which generally contains beliefs attributed to
other agents, and weights the result by the probability of the outcome 𝒫(𝑧).
Before moving on to the next outcome in 𝑍, the agent recovers its original belief
base 𝐵𝐵𝛼 using function RecoverBackup (also presented in Contribution 3) and
removes the fluents assigned to the outcome that has just been evaluated to
move on to the next one.

As mentioned at the end of Section 3.2, in our proposal the agent comput-

171



ing the alignment (which we have been denoting as 𝛼) does not consider the
possibility that other agents assign utilities differently or apply a different solu-
tion concept to predict the distribution over outcomes, leaving all the effects of
switching the perspective to fall exclusively in the value semantics function (as
illustrated in Section 3.3). The current version of Algorithm 1 reflects this choice.
Nonetheless, it could be easily modified to allow for the fact that agent 𝛼 believes
that other agents assign utilities and/or predict the outcomes of the game dif-
ferently. This would require changing𝒰 in Line 5 (𝛼’s own utility assignment
function) by𝒰𝑃 (𝛼’s belief about the utility assignment function for perspective
𝑃); and also changing𝒮𝒞 in Line 6 (𝛼’s own solution concept) by𝒮𝒞𝑃 (𝛼’s belief
about the solution concept employed for perspective 𝑃). Obviously, this would
require a substantial amount of additional information at 𝛼’s disposal. To fo-
cus solely on the value-related implications of ToM, we set the agent computing
the Alignment function to work with a single utility assignment function and
solution concept.

Implementation

An agent class called AlgnAgent with the Alignment functionality from Algo-
rithm 1 (as well as the necessary functionalities from the contributions in Part II)
has been implemented in Jason, a Java-based agent-oriented BDI language (Bor-
dini et al., 2007). The Alignment function is implemented as a method of the
agent class. However, its execution can be triggered from the application-specific
agent code through the Jason internal action integration.alignment, presented

+trigger : context
<- ... ;

integration.alignment(
+Value,
+Path,
+Id,
+Threshold,
+UtilityModule,
+UtilityFunction,
+Viewpoint,
-Degree

);
...

Listing 3.1: Usage of the integration.alignment internal action in an arbitrary Jason plan to
compute the perspective-dependent alignment.

172



in Listing 3.1. There, arguments that need to be bound at invokation time are
preceded by “+”, while variables that are instantiated by the internal action are
preceded by “-”.

The internal action integration.alignment has the following arguments:

• Value is a ground term denoting the value (or set of values) with respect to
whom the alignment is computed. Valuemay be bound to an atom refer-
ring to a single value (e.g. equality), or a literal to refer to the aggregation
of several values (e.g. aggregation(equality, fairness)).

• Path is a string pointing to the location of the ASL description.

• Id is an atom denoting the identifier for the action situation under exami-
nation (e.g. ipd, metanorms, fishers from Contribution 2).

• Threshold is an integer to filter the rules considered during computation
of the alignment (i.e. rules whose priority is higher than this threshold
are not used during the game building process).

• UtilityModule is the name of the Python module where the utility as-
signment function is defined, and UtilityFunction is the name of such
function. Both arguments are strings.

• Viewpoint is a list of atoms denoting the agents whose perspectives are
sequentially adopted, e.g. [alice, bob, charles].

• Degree is a double that is bounded by the internal action integration.
alignment. It corresponds to the return value of Algorithm 1, i.e. the
perspective-dependent alignment Algn𝑃

𝑁,𝑣 .

At present, the implementation of the Alignment function does not allow to
tune the solution concept 𝒮𝒞 that is applied to the ASL-generated game, and
it uses the Nash equilibrium coupled with backward induction, i.e. subgame
perfect equilibrium. Beyond the ASL description (whose syntax is extensively
covered in Contribution 2), the agents need the ToM clauses𝔗𝔐 to build estima-
tions of other agent’s belief bases. These clauses follow the structure presented
in Equation (3.10).

3.5 Example

To illustrate the new agent functionality presented in this chapter, we turn
to one of the examples from Contribution 2: the fisher’s game. There, two

173



fisher agents in an open-water fishery compete over fishing spots of varying
productivity, and possibly fight over them in the default rule configuration. In
order to avoid aggressive and inefficient outcomes, agents may introduce higher-
priority rules that establish new allocation schemes to incentivise fairness and
honest behaviour by agents: in the first-in-time, first-in-right configuration, agents
are entitled to fishing at a spot if they win the race to get there; while in the first-
to-announce, first-in-right configuration, one agent is allowed to declare a spot
beforehand and is entitled to it as long as the agent does go to declared spot. For
a detailed description of this action situation, refer to Section 6.1 in Contribution
2. We only make one small change with respect to the description presented
there, and that is that in the first-to-announce, first-in-right rules configuration,
the agent who takes over the role of announcer is no longer chosen at random,
but deterministically assigned to one of the agents, in this case alice.

3.5.1 Modelling

In this section, we evaluate the three rule configurations for the fisher’s action
situation from the perspective of agent alice with no ToM involved (Algn𝑎

𝑁,𝑣)
and from the perspective that agent alice estimates that agent bob has, hence
using first-order ToM (Algn𝑎,𝑏

𝑁,𝑣
). We compute the alignment from these two

perspectives with respect to the following values: equality, achievement, power,
benevolence and conformity. From the perspective of alice, these values take on
the meaning conveyed by following semantics functions:

• Equality:
𝑓eq(𝑧) = 1 − 2 · 𝐺𝐼(𝑈alice(𝑧), 𝑈bob(𝑧)) (3.13)

where𝑈𝑖(𝑧) is the utility of agent 𝑖 at outcome 𝑧 and 𝐺𝐼(·) is the Gini index
given a set of income or wealth data points.

• Achievement:
𝑓ach(𝑧) =

𝑈alice(𝑧)
maxProd

(3.14)

where maxProd is the maximum productivity of the fishing spots in the
environment.

• Power:

𝑓pow(𝑧) =


+1 if alicewins a fight or a race
−1 if alice looses a fight or race
0 otherwise

(3.15)

174



• Benevolence:

𝑓ben(𝑧) =
{
+1 if no fights or races have occurred
−1 if a fight or a race has occurred

(3.16)

• Conformity:

𝑓con(𝑧) =



+1 if alice, in the announcer role,
goes to the announced spot

−1 if alice, in the announcer role,
goes to a spot different from
the one announced

0 otherwise

(3.17)

In the previous modelling, value equality is captured by a similar semantics
function as that used in Contribution 1, i.e. it seeks to minimise the Gini index.
Remember that a Gini index ∼ 0 means perfect equality, while a Gini index
∼ 1 means perfect inequality. Next, value achievement is modelled by alice
as financial success, i.e. what is the ratio between its achieved utility and the
maximum that can in principle be obtained. Finally, the last three values (power,
benevolence and conformity) have two- or three-valued semantics functions. For
alice, value power is manifested by winning any form of competition, while
benevolence is translated as the absence of such competition. Finally, value
conformity for alice means that, if given the opportunity to announce a spot,
such an announcement should be honest (i.e. alice goes to the declared spot).

Of the five values being modelled, only equality is not recognised as a
value category in Schwartz’s Theory of Basic Human Values (STBHV) (see Sec-
tion 1.1.2). In fact, as modelled here, value equality could be considered as a
form of “financial benevolence”. Value benevolence, according to STBHV, refers
to concerns for the well-being of those in agent’s in-group. In contrast, value
universalism represents the concern for all people and nature, regardless of their
kin or affiliation. For this example, value universalism does not apply. However,
value benevolence can take several forms, i.e. concern for the financial well-being
of others in the group, as modelled by Equation (3.13), or concern for the phys-
ical security of others in the group manifested by the absence of competitions,
as modelled by Equation (3.16).

Overall, achievement and power are self-enhancement values with a personal
focus, while benevolence and conformity are socially-focused values. Value benev-

175



olence is opposite to achievement and power in Schwartz’s circumference value
structure. Meanwhile, conformity is adjacent to benevolence, the former being
anxiety-based and the latter being anxiety-free.

So far, we have all the information to compute the alignment of the various
rule configurations with respect to the presented values from the perspective
of agent alice, i.e. with no ToM involved (Algn𝑎

𝑁,𝑣). Nonetheless, we are also
interested in alice’s estimation of bob’s alignment (Algn𝑎,𝑏

𝑁,𝑣
). To do so, alice

must first be able to partially estimate the content of bob’s belief base. For this
example, alice believes that bob shares all of her beliefs, except for when the
two are in different locations. In that case, alice believes that bob assumes that
her utility equals the productivity of the spot where bob is not located:

believes(bob, utility(alice, X), fishers) :-

at(bob, S1) & at(alice, S2) & S1\==S2 & productivity(S2, X).
(3.18)

Bear in mind that this may not be the case, as alicemay have incurred in extra
costs associated with travel between spots.

In addition to the beliefs, alicemust also have an estimation of bob’s value
semantics functions in order to compute the alignment. For values power, benev-
olence and conformity, alice assumes that bob’s interpretation is the same as
hers. In contrast, they differ for values equality and achievement. For equality,
alice assigns the following semantics function to bob:

𝑓eq(𝑧) =


2 ·

min
𝑝𝑙∈𝑃𝑙𝑠

𝑈𝑝𝑙(𝑧)

max
𝑝𝑙∈𝑃𝑙𝑠

𝑈𝑝𝑙(𝑧) − 1 if min
𝑝𝑙∈𝑃𝑙𝑠

𝑈𝑝𝑙(𝑧) > 0

−1 otherwise
(3.19)

In contrast to Equation (3.14), where alice’s sense of achievement depends
only on her own gains, she believes that bob’s sense of achievement depends on
his gains as compared to hers. Therefore, she assigns the following semantics
function to him for value achievement:

𝑓𝑎𝑐ℎ(𝑧) =
2
𝜋
· arctan (𝑈bob(𝑧) −𝑈alice(𝑧)) (3.20)

which is a sigmoid function that takes positive values when 𝑈bob(𝑧) > 𝑈alice

and negative values when 𝑈bob(𝑧) < 𝑈alice. The normalisation constant 2
𝜋 is

added to bound its limits between 1 and -1.

176



Table 3.1: Perspective-dependent alignment results for the fishers example.

Default First-in-time,
first-in-right

First-to-announce,
first-in-right

Equality Algn𝑎 0.50 0.76 0.84
Algn𝑎,𝑏 -0.51 -0.15 0.00

Achievement Algn𝑎 0.48 0.57 1.0
Algn𝑎,𝑏 0.09 0.19 -0.87

Power Algn𝑎 0.13 -0.24 0.0
Algn𝑎,𝑏 -0.13 0.23 0.0

Benevolence Algn𝑎 -0.02 -1.0 1.0
Algn𝑎,𝑏 -0.02 -1.0 1.0

Conformity Algn𝑎 0.0 0.0 1.0
Algn𝑎,𝑏 0.0 0.0 0.0

Sum Algn𝑎 1.09 0.09 3.84
Algn𝑎,𝑏 -0.57 -0.73 0.13

3.5.2 Results

The results of computing the alignment, with no ToM and with first-order ToM,
for all rule configurations in the fishers example and with respect to all values
modelled in the previous section are presented in Table 3.1.

Looking at the alignment from alice’s perspective (Algn𝑎
𝑁,𝑣), the most value-

aligned rule configuration is the first-to-announce, first-in-right one. We can
provide two pieces of evidence to support this claim. First, this is the rule
configuration with the largest degree of alignment for all values except power,
with respect to whom the alignment is neutral. Second, the first-to-announce,
first-in-right rule configuration is the Pareto optimal for alice. In other words,
if the rule configuration changed in order to pursue a higher alignment with
respect to power (for instance, by adopting the default rule configuration), then
the alignment with respect to at least one other value, and in fact several other
values, would decrease.

When using first-order ToM and adopting the perspective of bob, alicefinds
that the three rule configurations are Pareto optimal with respect to values. This
means that, for any set of norms 𝑁1 in Table 3.1, switching to a different set of
norms 𝑁2 does always improve the alignment with respect to some value, but at
the expense of diminishing it with respect to others. Hence, Pareto optimality
cannot be the criteria that alice uses to determine which rule configuration is
preferred by bob.

However, alice might conclude that the first-to-announce, first-in-right rule

177



configuration is the one preferred by bob, since the sum of its alignment across
all values is the largest of the three rule sets examined (see the last row of
Table 3.1). Hence, when engaged in negotiation, alice would propose first-
to-announce, first-in-right rules since they best fit the alignment with respect to
her values, while at the same time believing that bob perceives them as the
best possible alternative. Nonetheless, the accuracy of this assessment by alice
depends on her ability to estimate with exactitude bob’s alignment, which in
turn depends on her ability to make sensible estimations of bob’s beliefs and his
interpretation of values.

For this example, we are using a summation operation to aggregate the align-
ment with respect to all the value of interest. Thus, we are implicitly assuming
all values to have the same degree of importance for alice. Nonetheless, this
choice is just intended as an example. Naturally, alice could aggregate the
alignment with respect to all the values under consideration differently, e.g. by
weighing more heavily those that she considers more pressing. Unfortunately,
an in-depth examination of the alignment aggregation process across values is
outside the scope of the current work.

3.6 Conclusions

In this chapter, we have combined the contributions made in Part II of this thesis
into a novel agent functionality. This new functionality enables autonomous
agents to reason about the value alignment of a set of norms from any perspec-
tive. In other words, the agent can reason about the alignment of a set of norms
with respect to its own values, or it can reason about the alignment with respect
to the values it believes another agent holds. This has been achieved through
the formulation and implementation of the Alignment function to compute the
perspective-dependent value alignment of norms. This function combines the
norm interpretation system of Contribution 2, the ToM abilities of Contribution
3 and the grounding of values as devices to assess outcomes of Contribution 1.

The integration work undertaken in this chapter addresses one of the main
gaps in the literature on value and autonomous agents identified in Section 2.4:
the fact that value-guided reasoning for agents is limited to a value structure and
representation that is provided prior to run-time and remains static throughout
the agent’s lifetime. In our integration, through the use of ToM rules, the agent
can compute the alignment with respect to a dynamic set of values that is gener-
ally constructed at run-time and that can be triggered on-demand, through the

178



provided internal action interface to the Alignment function. Even though in
this thesis we focus on ToM, the dynamic nature of the values under considera-
tion may also come from the agent’s own evolving values or a prior agreement
in a community on which value ought to be upheld.

179





Chapter 4

Conclusions

In this last chapter, we wrap-up this thesis. We first reflect on the contributions
made with respect to the initial research goals and the larger AAMAS landscape.
Second, we enumerate the software tools accompanying the contributions, and
point to documentation with guidelines on their usage. Finally, we conclude
with a high-level view on the main takeaways from this work, and point to
future directions that could follow from it.

4.1 Revisiting the Research Goals

We begin by examining one by one the research questions presented in Sec-
tion 1.3, and we then move on to evaluating the overall research goal. We
reproduce here the research questions and answer them in relation to the con-
tributions in Part II.

Research Question #1: How should values be represented in a way that is
suitable to evaluate outcomes (that may refer to a variety of contexts or domains) in
terms of their adherence so the value in question?

RQ#1 has been entirely addressed in Contribution 1. There, we establish
that values are grounded as a semantics function, which can take on different
forms depending on the context where the value is applied and/or the designer
criteria. Such semantics functions evaluate states of a MAS, and in particular
end-states or outcomes, considering the features that describe it. We adhere
to this approach, which is originally presented in Contribution 1, throughout
this whole thesis, and in particular during the integration of functionalities
presented in Chapter 3.

Research Question #2: How should norms be represented in a way that allows

181



to connect them (either exactly or approximately) to the possible outcomes that the
MAS may achieve, which are evaluated in terms of their value promotion by the value
representation provided in RQ#1?

The first attempt at answering RQ#2 has happened in Contribution 1, where
norms are represented as a set of normative parameters that are bounded to a
value in a given domain and, possibly, subject to some constraints. However, that
is not an expressive norm representation language, and it was not clear how the
introduction and/or retrieval of norms ought to be formalised. For this reason,
we have opted to represent norms using the Action Situation Language (ASL)
presented in Contribution 2. The ASL provides a syntactically friendly, flexible
and extensible norms representation. In other words, it integrates mechanisms
to handle the introduction or removal of norms to an existing normative system,
thus bringing it closer to real-world policy-making where new rules and laws
are introduced into an existing corpus.

Research Question #3: Derived from the previous two research questions, how can
prescriptive norms be designed, given a set of value representations, to maximise their
alignment with respect to the given values? How can this process be automated?

The synthesis of prescriptive norms based on their degree of value alignment
has been completely automated in Contribution 1, albeit at the expense of using
a norm representation scheme with limited expressiveness (see the response
to RQ#2). The ASL has not, in the course of this thesis, been integrated with
any automation tool to find the normative system most aligned with respect to
an input value. Rather, exhaustive searches through the set of potential new
regulations have been performed. Therefore, this research question has only
been partially satisfied and could be pursued in future work.

Research Question #4: How can existing agent architectures be expanded with
Theory of Mind capabilities so that software agents can perceive the state of the system
from the perspective of other agents situated in their same environment?

This point has been extensively developed in Contribution 3. In particular,
using the AdoptViewpoint function of the TomAbd agent model, an agent can
adopt the perspective of another. Furthermore, this switch in perspective can
happen at multiple levels of recursion (using high-order ToM), imposes minimal
additional memory requirements, and happens on-demand at run-time, thus
allowing agents to dynamically adopt and reason from the perspectives of many
other agents.

Research Question #5: Following from RQ#4, how can an agent’s Theory of Mind
capabilities be used to evaluate the alignment of a set of norms with respect to the values

182



held by other agents in the MAS?
RQ#5 has been addressed in the previous Chapter 3. There, we have com-

bined the value representation scheme of Contribution 1, the norms representa-
tion and interpretation framework of Contribution 2 and the ToM capabilities of
Contribution 3 to enable agents to reason about the outcomes most incentivised
by a set of norms not just from their own values, but from the value perspective
of other agents.

By progressively addressing the Research Questions articulated at the begin-
ning of this thesis, we believe we have satisfactorily fulfilled the Main Research
Goal:

Main Research Goal (MRG): Develop a novel agent functionality to empower
software agents to reason about the alignment (i.e. the suitability) of a set of prescriptive
norms (or normative system) with respect to a value or set of values, either from the
perspective of the agent’s own values (i.e. the values that have been handed down to it
by its user) or from the perspective of another agent’s values it shares its environment
with.

The functionality that the MRG refers to is the one formulated, implemented
and illustrated in Chapter 3. We have provided an overview of the integration
approach there in the response to RQ#5, which essentially culminates all the
work developed in answering the previous research questions.

4.2 A Toolbox for Value Engineering

All the software developed in the course of this thesis is open-source, docu-
mented and publicly available for researchers to inspect and build upon. In this
section, we gather and link to the available repositories and provide an overview
of their functionality.

1. The repository accompanying Contribution 1 includes the scripts to re-
produce the results there and additional materials such as animations
displaying the evolution of the wealth distribution for the various opti-
mal normative systems.1 A user who wishes to optimise and analyse a
normative system for their custom MAS has to define the domains of the
normative parameters and implement how they affect the state transitions.
Nonetheless, the optimisation and analysis on Shapley values and value

1https://github.com/nmontesg/normsynth

183

https://github.com/nmontesg/normsynth


compatibility can be performed using the same scripts as we did for the
example in Contribution 1.

2. The implementation of the ASL language, the automated game engine and
some additional functionalities for the analysis of Extensive Form Game
(EFG) is included in the code accompanying Contribution 2.2 Users can
write their own ASL descriptions following the syntax presented in Con-
tribution 2 and use the automated game engine to build the corresponding
EFG model. Besides that, users can also use complementary functions to
compute the equilibrium strategies and the distribution over outcomes
induced by those. Furthermore, users can define their custom evalua-
tion functions over end-states and leverage the outcome probabilities to
compute its expected value and other metrics.

3. The code implementing the TomAbd agent model from Contribution 3 is
suited to be used in Jason or JaCaMo projects.3 It includes the agent class
with all the functionalities exposed in Contribution 3, together with the
internal actions to trigger such functionalities. In order to facilitate its
integration with MAS projects, it has been packaged into a Java Archive
(.jar) file that only needs to be appended to the classpath of the project to
be used.

4. Finally, the code implementing the integration of the three contributions
from Part II presented in Chapter 3 is also suited to be used in Jason or
JaCaMo projects.4 It is built as an extension of the agent class implement-
ing the TomAbd agent model from Contribution 3. Therefore, its usage
(which is exposed in Section 3.4) needs only to add the compiled .jar file
to the project classpath.

4.3 Takeaways and Future Work

In this thesis, we have provided a new outlook on values for autonomous agents
by incorporating the emphatically social dimensions of values identified by
Schwartz’s Theory of Basic Human Values. By fulfilling our Main Research
Goal, we have contributed to filling the gap in the literature on values and

2https://github.com/nmontesg/norms-games
3https://github.com/nmontesg/tomabd
4https://github.com/nmontesg/integration

184

https://github.com/nmontesg/norms-games
https://github.com/nmontesg/tomabd
https://github.com/nmontesg/integration


AAMAS identified in Section 2.4. That is, the embedding of values into au-
tonomous agents under the implicit assumption that the agents’ value systems
are isolated from one another, static and unchangeable. Instead, we strongly
link prescriptive norms to values (since norms are the concrete, system-wide
construct that is actually implemented in a MAS) and allow normative reason-
ing to be performed from the agent’s own perspective, or that of another agent
it shares its environment with. Hence, we have developed a functionality to
perform socially-oriented value-based normative reasoning.

The work developed in the course of this thesis leaves the door open for
many future research directions. The first and most obvious one is the use
of the functionality culminating this thesis (the one presented in Chapter 3) in
value-driven negotiation over normative systems. There, agents would evaluate
proposals for the introduction of norms based on their degree of alignment,
interpreting norms using the framework in Contribution 2 and evaluating their
subsequent outcomes as in Contribution 1. The use of ToM would be useful for
agents in order to make proposals that stand a chance of being accepted by their
interlocutors, by analysing their degree of alignment with respect to the values
of other before proposing them.

Second, we should note that in this thesis we have solely introduced val-
ues into autonomous agents through prescriptive norms. For example, in the
analysis of the models generated from ASL descriptions, we have used game-
theoretical models to predict the distribution over outcomes, without any con-
sideration on how values may play a role in the agents’ decision-making process.
Hence, future research could extend the current work and incorporate values
into several constructs, such as prescriptions (covered here), conventions and
actions.

The third and last direction for future research relates to multi-context sys-
tems. In this thesis, we have assumed from beginning to end that agents are
situated in one and only one domain, environment or context, such as the tax
collection and redistribution example in Contribution 1 or the fishers example
in Contribution 2. Nonetheless, autonomous agents can be enhanced by en-
abling them to operate in various domains simultaneously. Even though we
argue for the grounding of values for every context separately, we foresee the
possibility that values in different contexts dynamically relate to one another
through some kind of bridge rules, as those utilised in multi-context systems
(Sabater, 2002). For example, low value satisfaction in one context might drive
an agent to seek high alignment with respect to that value in another context

185



by increasing its priority, in a process analogous to the phenomenon of psycho-
logical compensation (Bäckman & Dixon, 1992). Future work could formalise
the syntax, semantics and implementation of rules bridging values that apply
to different domains.

186



Acronyms

AAMAS Autonomous Agents and Multiagent Systems

AI Artificial Intelligence

ASI Artificial Social Intelligence

ASL Action Situation Language

BDI Belief-Desire-Intetion

CMNS Compatibility Maximizing Normative System

DNN Deep Neural Network

EFG Extensive Form Game

IAD Institutional Analysis and Development

IRL Inverse Reinforcement Learning

IRON Intelligent Robust Norm synthesis

LP Linear Programming

MAS Multiagent System

RL Reinforcement Learning

ST Simulation-Theory of Mind

STBHV Schwartz’s Theory of Basic Human Values

STRIPS Stanford Research Institute Problem Solver

ToM Theory of Mind

TT Theory-Theory of Mind

187





Bibliography

Albrecht, S. V., & Stone, P. (2018). Autonomous agents modelling other agents: A comprehensive
survey and open problems. Artificial Intelligence, 258, 66–95. https://doi.org/10.1016/j.artint.
2018.01.002

Aldewereld, H., Boissier, O., Dignum, V., Noriega, P., & Padget, J. (2018). Social coordination
frameworks for social technical systems. Springer.

Alexander, L., & Moore, M. (2021). Deontological Ethics. In E. N. Zalta (Ed.), The Stanford encyclo-
pedia of philosophy (Winter 2021). Metaphysics Research Lab, Stanford University.

Andrighetto, G., Governatori, G., Noriega, P., & van der Torre, L. (2012). Normative Multi-Agent
Systems (Dagstuhl Seminar 12111) (G. Andrighetto, G. Governatori, P. Noriega, & L. van der
Torre, Eds.). Dagstuhl Reports, 2(3), 23–49. https://doi.org/10.4230/DagRep.2.3.23

Askham, A. V. (2022). ‘Theory of mind’ in autism: A research field reborn. Spectrum. https :
//doi.org/10.53053/gxnc7576

Atkinson, K., & Bench-Capon, T. (2016). States, goals and values: Revisiting practical reasoning
(K. Atkinson, F. Cerutti, P. McBurney, S. Parsons, & I. Rahwan, Eds.). Argument & Computation,
7(2-3), 135–154. https://doi.org/10.3233/aac-160011

Aumann, R. J. (1974). Subjectivity and correlation in randomized strategies. Journal of Mathematical
Economics, 1(1), 67–96. https://doi.org/10.1016/0304-4068(74)90037-8

Axelrod, R. (1986). An evolutionary approach to norms. American Political Science Review, 80(04),
1095–1111. https://doi.org/10.2307/1960858

Azzolini, D., Bellodi, E., Ferilli, S., Riguzzi, F., & Zese, R. (2022). Abduction with probabilistic logic
programming under the distribution semantics. International Journal of Approximate Reasoning,
142, 41–63. https://doi.org/https://doi.org/10.1016/j.ĳar.2021.11.003

Baarslag, T., Hendrikx, M. J. C., Hindriks, K. V., & Jonker, C. M. (2015). Learning about the
opponent in automated bilateral negotiation: A comprehensive survey of opponent modeling
techniques. Autonomous Agents and Multi-Agent Systems, 30(5), 849–898. https://doi.org/10.
1007/s10458-015-9309-1

Bäckman, L., & Dixon, R. A. (1992). Psychological compensation: A theoretical framework. Psy-
chological Bulletin, 112(2), 259–283. https://doi.org/10.1037/0033-2909.112.2.259

Baluja, S., & Caruana, R. (1995). Removing the genetics from the standard genetic algorithm.
Proceedings of the Twelfth International Conference on International Conference on Machine Learning,
38–46.

Bard, N., Foerster, J. N., Chandar, S., Burch, N., Lanctot, M., Song, H. F., Parisotto, E., Dumoulin, V.,
Moitra, S., Hughes, E., Dunning, I., Mourad, S., Larochelle, H., Bellemare, M. G., & Bowling, M.
(2020). The hanabi challenge: A new frontier for AI research. Artificial Intelligence, 280, 103216.
https://doi.org/10.1016/j.artint.2019.103216

189

https://doi.org/10.1016/j.artint.2018.01.002
https://doi.org/10.1016/j.artint.2018.01.002
https://doi.org/10.4230/DagRep.2.3.23
https://doi.org/10.53053/gxnc7576
https://doi.org/10.53053/gxnc7576
https://doi.org/10.3233/aac-160011
https://doi.org/10.1016/0304-4068(74)90037-8
https://doi.org/10.2307/1960858
https://doi.org/https://doi.org/10.1016/j.ijar.2021.11.003
https://doi.org/10.1007/s10458-015-9309-1
https://doi.org/10.1007/s10458-015-9309-1
https://doi.org/10.1037/0033-2909.112.2.259
https://doi.org/10.1016/j.artint.2019.103216


Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”
? Cognition, 21(1), 37–46. https://doi.org/https://doi.org/10.1016/0010-0277(85)90022-8

Barton, D. N., Benavides, K., Chacon-Cascante, A., Le Coq, J. F., Quiros, M. M., Porras, I., Prim-
mer, E., & Ring, I. (2017). Payments for ecosystem services as a policy mix: Demonstrating
the institutional analysis and development framework on conservation policy instruments.
Environmental Policy and Governance, 27(5), 404–421. https://doi.org/10.1002/eet.1769

Belzer, M. (1998). Deontic logic. In Routledge encyclopedia of philosophy. Routledge. https://doi.
org/10.4324/9780415249126-y043-1

Bench-Capon, T., & Modgil, S. (2017). Norms and value based reasoning: Justifying compliance
and violation. Artificial Intelligence and Law, 25(1), 29–64. https://doi.org/10.1007/s10506-017-
9194-9

Black, M. (1962). Models and metaphors: Studies in language and philosophy. Cornell University Press.
Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). Programming multi-agent systems in agentspeak

using jason. John Wiley & Sons.
Boudon, R. (2017). The origin of values: Sociology and philosophy of beliefs. Routledge. https://doi.

org/10.4324/9781315133645
Caillou, P., Aknine, S., & Pinson, S. (2009). Searching pareto optimal solutions for the problem

of forming and restructuring coalitions in multi-agent systems. Group Decision and Negotiation,
19(1), 7–37. https://doi.org/10.1007/s10726-009-9183-9

Chalkiadakis, G., Elkind, E., & Wooldridge, M. (2011). Computational aspects of cooperative
game theory. Synthesis Lectures on Artificial Intelligence and Machine Learning, 5(6), 1–168. https:
//doi.org/10.2200/s00355ed1v01y201107aim016

Cole, D. H. (2017). Laws, norms, and the institutional analysis and development framework.
Journal of Institutional Economics, 13(4), 829–847. https://doi.org/10.1017/s1744137417000030

Conte, R., & Castelfranchi, C. (1999). From conventions to prescription. towards an integrated
view of norms. Artificial Intelligence and Law, 7(4), 323–340. https ://doi . org/10 . 1023/a :
1008310107755

Corballis, M. (2007). The uniqueness of human recursive thinking. American Scientist, 95(3), 240.
https://doi.org/10.1511/2007.65.240

Corballis, M. C. (2011). The recursive mind: The origins of human language, thought, and civilization:
The origins of human language, thought, and civilization. Princeton University Press.

Cox, C., Silva, J. D., Deorsey, P., Kenter, F. H. J., Retter, T., & Tobin, J. (2015). How to make
the perfect fireworks display: Two strategies for Hanabi. Mathematics Magazine, 88(5), 323–336.
https://doi.org/10.4169/math.mag.88.5.323

Cozort, D., & Shields, J. M. (Eds.). (2018). The oxford handbook of buddhist ethics. Oxford University
Press. https://doi.org/10.1093/oxfordhb/9780198746140.001.0001

Cranefield, S., Winikoff, M., Dignum, V., & Dignum, F. (2017). No pizza for you: Value-based plan
selection in BDI agents. Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence. https://doi.org/10.24963/ĳcai.2017/26

Crawford, S. E. S., & Ostrom, E. (1995). A grammar of institutions. American Political Science
Review, 89(3), 582–600. https://doi.org/10.2307/2082975

Criado, N., Argente, E., & Botti, V. (2010). A bdi architecture for normative decision making.
Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems:
Volume 1 - Volume 1, 1383–1384.

190

https://doi.org/https://doi.org/10.1016/0010-0277(85)90022-8
https://doi.org/10.1002/eet.1769
https://doi.org/10.4324/9780415249126-y043-1
https://doi.org/10.4324/9780415249126-y043-1
https://doi.org/10.1007/s10506-017-9194-9
https://doi.org/10.1007/s10506-017-9194-9
https://doi.org/10.4324/9781315133645
https://doi.org/10.4324/9781315133645
https://doi.org/10.1007/s10726-009-9183-9
https://doi.org/10.2200/s00355ed1v01y201107aim016
https://doi.org/10.2200/s00355ed1v01y201107aim016
https://doi.org/10.1017/s1744137417000030
https://doi.org/10.1023/a:1008310107755
https://doi.org/10.1023/a:1008310107755
https://doi.org/10.1511/2007.65.240
https://doi.org/10.4169/math.mag.88.5.323
https://doi.org/10.1093/oxfordhb/9780198746140.001.0001
https://doi.org/10.24963/ijcai.2017/26
https://doi.org/10.2307/2082975


Cuzzolin, F., Morelli, A., Cirstea, B., & Sahakian, B. J. (2020). Knowing me, knowing you: The-
ory of mind in AI. Psychological Medicine, 50(7), 1057–1061. https : / / doi . org / 10 . 1017 /
s0033291720000835

Dafoe, A., Bachrach, Y., Hadfield, G., Horvitz, E., Larson, K., & Graepel, T. (2021). Cooperative
AI: Machines must learn to find common ground. Nature, 593(7857), 33–36. https://doi.org/
10.1038/d41586-021-01170-0

Dafoe, A., Hughes, E., Bachrach, Y., Collins, T., McKee, K. R., Leibo, J. Z., Larson, K., & Graepel, T.
(2020). Open problems in cooperative AI.

de Jonge, D., Trescak, T., Sierra, C., Simoff, S., & de Mántaras, R. L. (2017). Using game description
language for mediated dispute resolution. AI & SOCIETY, 34(4), 767–784. https://doi.org/10.
1007/s00146-017-0790-8

de Jonge, D., & Zhang, D. (2021). GDL as a unifying domain description language for declarative
automated negotiation. Autonomous Agents and Multi-Agent Systems, 35(1). https://doi.org/10.
1007/s10458-020-09491-6

Denecker, M., & de Schreye, D. (1998). Sldnfa: An abductive procedure for abductive logic pro-
grams. The Journal of Logic Programming, 34(2), 111–167. https://doi.org/https://doi.org/10.
1016/S0743-1066(97)00074-5

Denecker, M., & Kakas, A. C. (2002). Abduction in logic programming. Computational Logic: Logic
Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part I, 402–436.

Dennett, D. C. (1989). The intentional stance (7. printing). MIT Press.
de Weerd, H., Verbrugge, R., & Verheĳ, B. (2012). Higher-order social cognition in the game of

rock-paper-scissors: A simulation study. In G. Bonanno, H. Van Ditmarsch, & W. Hoek (Eds.),
Proceedings of the 10th conference on logic and the foundations of game and decision theory (loft 2012)
(pp. 218–232).

de Weerd, H., Verbrugge, R., & Verheĳ, B. (2015). Negotiating with other minds: The role of
recursive theory of mind in negotiation with incomplete information. Autonomous Agents and
Multi-Agent Systems, 31(2), 250–287. https://doi.org/10.1007/s10458-015-9317-1

de Weerd, H., Verbrugge, R., & Verheĳ, B. (2022). Higher-order theory of mind is especially
useful in unpredictable negotiations. Autonomous Agents and Multi-Agent Systems, 36(2). https:
//doi.org/10.1007/s10458-022-09558-6

de Weerd, H., & Verheĳ, B. (2011). The advantage of higher-order theory of mind in the game
of limited bidding. Workshop on Reasoning About Other Minds: Logical and Cognitive Perspectives,
751, 149–164.

Fagundes, M. S., Ossowski, S., Cerquides, J., & Noriega, P. (2016). Design and evaluation of
norm-aware agents based on normative markov decision processes. International Journal of
Approximate Reasoning, 78, 33–61. https://doi.org/10.1016/j.ĳar.2016.06.005

Fatima, S., Kraus, S., & Wooldridge, M. (2009). Principles of automated negotiation. Cambridge
University Press. https://doi.org/10.1017/cbo9780511751691

Feather, N. T. (1995). Values, valences, and choice: The influences of values on the perceived
attractiveness and choice of alternatives. Journal of Personality and Social Psychology, 68(6), 1135–
1151. https://doi.org/10.1037/0022-3514.68.6.1135

Flach, P. A., & Kakas, A. C. (Eds.). (2000). Abduction and induction: Essays on their relation and
integration. Springer. https://doi.org/10.1007/978-94-017-0606-3

Foerster, J., Song, F., Hughes, E., Burch, N., Dunning, I., Whiteson, S., Botvinick, M., & Bowling, M.
(2019). Bayesian action decoder for deep multi-agent reinforcement learning. In K. Chaudhuri

191

https://doi.org/10.1017/s0033291720000835
https://doi.org/10.1017/s0033291720000835
https://doi.org/10.1038/d41586-021-01170-0
https://doi.org/10.1038/d41586-021-01170-0
https://doi.org/10.1007/s00146-017-0790-8
https://doi.org/10.1007/s00146-017-0790-8
https://doi.org/10.1007/s10458-020-09491-6
https://doi.org/10.1007/s10458-020-09491-6
https://doi.org/https://doi.org/10.1016/S0743-1066(97)00074-5
https://doi.org/https://doi.org/10.1016/S0743-1066(97)00074-5
https://doi.org/10.1007/s10458-015-9317-1
https://doi.org/10.1007/s10458-022-09558-6
https://doi.org/10.1007/s10458-022-09558-6
https://doi.org/10.1016/j.ijar.2016.06.005
https://doi.org/10.1017/cbo9780511751691
https://doi.org/10.1037/0022-3514.68.6.1135
https://doi.org/10.1007/978-94-017-0606-3


& R. Salakhutdinov (Eds.), Proceedings of the 36th international conference on machine learning
(pp. 1942–1951). PMLR. https://proceedings.mlr.press/v97/foerster19a.html

Frantz, C., Purvis, M. K., Nowostawski, M., & Savarimuthu, B. T. R. (2013). nADICO: A nested
grammar of institutions. In Lecture notes in computer science (pp. 429–436). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-642-44927-7_31

Frantz, C. K., & Siddiki, S. (2021). Institutional grammar 2.0: A specification for encoding and
analyzing institutional design. Public Administration. https://doi.org/10.1111/padm.12719

Frith, C., & Frith, U. (2005). Theory of mind. Current Biology, 15(17), R644–R645. https://doi.org/
10.1016/j.cub.2005.08.041

Fung, T. H., & Kowalski, R. (1997). The iff proof procedure for abductive logic programming. The
Journal of Logic Programming, 33(2), 151–165. https://doi.org/https://doi.org/10.1016/S0743-
1066(97)00026-5

Genesereth, M., Love, N., & Pell, B. (2005). General game playing: Overview of the aaai competi-
tion. AI Magazine, 26, 62–72. https://doi.org/10.1609/aimag.v26i2.1813

Ghorbani, A., Bots, P., Dignum, V., & Dĳkema, G. (2013). MAIA: A framework for developing
agent-based social simulations. Journal of Artificial Societies and Social Simulation, 16(2). https:
//doi.org/10.18564/jasss.2166

Ghorbani, A., & Bravo, G. (2016). Managing the commons: A simple model of the emergence
of institutions through collective action. International Journal of the Commons, 10(1), 200–219.
https://doi.org/10.18352/ĳc.606

Gini, C. (1912). Variabilità e mutuabilità. contributo allo studio delle distribuzioni e delle relazioni
statistiche. Facoltà di Giurisprudenza della R. Università di Cagliari.

González-Díaz, J., García-Jurado, I., & Fiestras-Janeiro, M. G. (2010). An introductory course on
mathematical game theory. American Mathematical Society; Real Sociedad Matemática Española.

Gorrieri, R. (2017). Labeled transition systems. In Monographs in theoretical computer science. an
EATCS series (pp. 15–34). Springer International Publishing. https://doi.org/10.1007/978-3-
319-55559-1_2

Gronewold, N. (2010). Game theory: Climate talks destined to fail. https://www.scientificamerican.
com/article/game-theorist-predicts-failure-at-climate-talks/

Grossi, D., Gabbay, D., & van der Torre, L. (2010). The norm implementation problem in normative
multi-agent systems. In Specification and verification of multi-agent systems (pp. 195–224). Springer
US. https://doi.org/10.1007/978-1-4419-6984-2_7

Grossi, D., Tummolini, L., & Turrini, P. (2012). Norms in game theory. In Agreement technologies
(pp. 191–197). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5583-3\_12

Hahn, C., Phan, T., Feld, S., Roch, C., Ritz, F., Sedlmeier, A., Gabor, T., & Linnhoff-Popien, C.
(2020). Nash equilibria in multi-agent swarms. Proceedings of the 12th International Conference on
Agents and Artificial Intelligence, 234–241. https://doi.org/10.5220/0008990802340241

Harbers, M., Bosch, K. v. d., & Meyer, J.-J. (2009). Modeling agents with a theory of mind. 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology,
2, 217–224. https://doi.org/10.1109/WI-IAT.2009.153

Hu, H., Lerer, A., Peysakhovich, A., & Foerster, J. (2020). “Other-play” for zero-shot coordination.
In H. D. III & A. Singh (Eds.), Proceedings of the 37th international conference on machine learning
(pp. 4399–4410). PMLR. https://proceedings.mlr.press/v119/hu20a.html

192

https://proceedings.mlr.press/v97/foerster19a.html
https://doi.org/10.1007/978-3-642-44927-7_31
https://doi.org/10.1111/padm.12719
https://doi.org/10.1016/j.cub.2005.08.041
https://doi.org/10.1016/j.cub.2005.08.041
https://doi.org/https://doi.org/10.1016/S0743-1066(97)00026-5
https://doi.org/https://doi.org/10.1016/S0743-1066(97)00026-5
https://doi.org/10.1609/aimag.v26i2.1813
https://doi.org/10.18564/jasss.2166
https://doi.org/10.18564/jasss.2166
https://doi.org/10.18352/ijc.606
https://doi.org/10.1007/978-3-319-55559-1_2
https://doi.org/10.1007/978-3-319-55559-1_2
https://www.scientificamerican.com/article/game-theorist-predicts-failure-at-climate-talks/
https://www.scientificamerican.com/article/game-theorist-predicts-failure-at-climate-talks/
https://doi.org/10.1007/978-1-4419-6984-2_7
https://doi.org/10.1007/978-94-007-5583-3\_12
https://doi.org/10.5220/0008990802340241
https://doi.org/10.1109/WI-IAT.2009.153
https://proceedings.mlr.press/v119/hu20a.html


Hübner, J. F., Boissier, O., & Bordini, R. H. (2011). A normative programming language for
multi-agent organisations. Annals of Mathematics and Artificial Intelligence, 62(1-2), 27–53. https:
//doi.org/10.1007/s10472-011-9251-0

Jara-Ettinger, J. (2019). Theory of mind as inverse reinforcement learning [Artificial Intelligence].
Current Opinion in Behavioral Sciences, 29, 105–110. https://doi.org/https://doi.org/10.1016/
j.cobeha.2019.04.010

Josephson, J. R., & Josephson, S. G. (1994). Abductive inference: Computation, philosophy, technology.
Cambridge University Press.

Kakas, A., Kowalski, R., & Toni, F. (1993). Abductive logic programming. Journal of Logic and
Computation, 2(6), 719–770. https://doi.org/10.1093/logcom/2.6.719

Kiser, L. L., & Ostrom, E. (1982). The three worlds of action: A metatheoretical synthesis of
institutional approaches. Michigan University Press.

Knobe, J. (2005). Theory of mind and moral cognition: Exploring the connections. Trends in
Cognitive Sciences, 9(8), 357–359. https://doi.org/10.1016/j.tics.2005.06.011

Koller, D., & Pfeffer, A. (1997). Representations and solutions for game-theoretic problems. Arti-
ficial Intelligence, 94(1-2), 167–215. https://doi.org/10.1016/s0004-3702(97)00023-4

Korkiakangas, T., Dindar, K., Laitila, A., & Kärnä, E. (2016). The Sally–Anne test: An interactional
analysis of a dyadic assessment. International Journal of Language & Communication Disorders,
51(6), 685–702. https://doi.org/https://doi.org/10.1111/1460-6984.12240

Kuhn, H. W. (1953). 11. extensive games and the problem of information. In Contributions to the
theory of games (AM-28), volume II (pp. 193–216). Princeton University Press. https://doi.org/
10.1515/9781400881970-012

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical
Statistics, 22(1), 79–86. https://doi.org/10.1214/aoms/1177729694

Lemieux, C. (2009). Monte carlo and quasi-monte carlo sampling. Springer New York.
Lerer, A., Hu, H., Foerster, J., & Brown, N. (2020). Improving policies via search in cooperative

partially observable games. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 7187–
7194. https://doi.org/10.1609/aaai.v34i05.6208

Li, A., Zhou, L., Su, Q., Cornelius, S. P., Liu, Y.-Y., Wang, L., & Levin, S. A. (2020). Evolution of
cooperation on temporal networks. Nature Communications, 11(1). https://doi.org/10.1038/
s41467-020-16088-w

Lin, F. (2008). Situation calculus. In Handbook of knowledge representation (pp. 649–669). Elsevier.
https://doi.org/10.1016/s1574-6526(07)03016-7

Lockwood, B. (2008). Pareto efficiency. In The new palgrave dictionary of economics (pp. 1–5). Palgrave
Macmillan UK. https://doi.org/10.1057/978-1-349-95121-5_1823-2

Luke, S. (2013). Essentials of metaheuristics (second). Lulu.
Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Pro-

ceedings of the 31st International Conference on Neural Information Processing Systems, 4768–4777.
Macintyre, A. (1998). A short history of ethics: A history of moral philosophy from the homeric age to the

twentieth century. University of Notre Dame Press.
Malle, B. (2022). Theory of mind. In R. Biswas-Diener & E. Diener (Eds.), Noba textbook series:

Psychology. DEF publishers.
Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic theory. Oxford University

Press.

193

https://doi.org/10.1007/s10472-011-9251-0
https://doi.org/10.1007/s10472-011-9251-0
https://doi.org/https://doi.org/10.1016/j.cobeha.2019.04.010
https://doi.org/https://doi.org/10.1016/j.cobeha.2019.04.010
https://doi.org/10.1093/logcom/2.6.719
https://doi.org/10.1016/j.tics.2005.06.011
https://doi.org/10.1016/s0004-3702(97)00023-4
https://doi.org/https://doi.org/10.1111/1460-6984.12240
https://doi.org/10.1515/9781400881970-012
https://doi.org/10.1515/9781400881970-012
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1609/aaai.v34i05.6208
https://doi.org/10.1038/s41467-020-16088-w
https://doi.org/10.1038/s41467-020-16088-w
https://doi.org/10.1016/s1574-6526(07)03016-7
https://doi.org/10.1057/978-1-349-95121-5_1823-2


Meyer, J.-J. C., Broersen, J., & Herzig, A. (2015). BDI logics. In H. van Ditmarsch, J. Y. Halpern, &
W. van der Hoek (Eds.), Handbook of epistemic logics. College Publications.

Miller, B. L., & Goldberg, D. E. (1995). Genetic algorithms, tournament selection, and the effects
of noise. Complex Syst., 9.

Montes, N. (2022a). Engineering pro-social values in autonomous agents – collective and indi-
vidual perspectives. In Multi-agent systems (pp. 431–434). Springer International Publishing.
https://doi.org/10.1007/978-3-031-20614-6_26

Montes, N. (2022b). Engineering socially-oriented autonomous agents and multiagent systems.
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence. https://doi.
org/10.24963/ĳcai.2022/833

Montes, N., Luck, M., Osman, N., Rodrigues, O., & Sierra, C. (2023a). Combining theory of mind
and abductive reasoning in agent-oriented programming. Autonomous Agents and Multi-Agent
Systems, 37(2). https://doi.org/10.1007/s10458-023-09613-w

Montes, N., Osman, N., & Sierra, C. (2021). Enabling game-theoretical analysis of social rules. In
Frontiers in artificial intelligence and applications. IOS Press. https://doi.org/10.3233/faia210120

Montes, N., Osman, N., & Sierra, C. (2022a). Combining theory of mind and abduction for cooper-
ation under imperfect information. In Multi-agent systems (pp. 294–311). Springer International
Publishing. https://doi.org/10.1007/978-3-031-20614-6_17

Montes, N., Osman, N., & Sierra, C. (2022b). A computational model of Ostrom’s Institutional
Analysis and Development framework. Artificial Intelligence, 311, 103756. https://doi.org/10.
1016/j.artint.2022.103756

Montes, N., Osman, N., & Sierra, C. (2023). A computational model of Ostrom’s institutional
analysis and development framework (extended abstract). Proceedings of the Thirty-Second In-
ternational Joint Conference on Artificial Intelligence. https://doi.org/10.24963/ĳcai.2023/786

Montes, N., Osman, N., Sierra, C., & Slavkovik, M. (2023). Value engineering for autonomous
agents. https://doi.org/10.48550/ARXIV.2302.08759

Montes, N., & Sierra, C. (2022a). Synthesis and properties of optimally value-aligned normative
systems. Journal of Artificial Intelligence Research, 74, 1739–1774. https://doi.org/10.1613/jair.1.
13487

Morales, J., López-Sanchez, M., Rodríguez-Aguilar, J. A., Wooldridge, M., & Vasconcelos, W.
(2013). Automated synthesis of normative systems. Proceedings of the 2013 International Confer-
ence on Autonomous Agents and Multi-Agent Systems, 483–490.

Morales, J., López-Sánchez, M., Rodríguez-Aguilar, J. A., Wooldridge, M., & Vasconcelos, W.
(2015). Synthesising liberal normative systems. Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems, 433–441.

Morales, J., Wooldridge, M., Rodríguez-Aguilar, J. A., & López-Sánchez, M. (2018). Off-line syn-
thesis of evolutionarily stable normative systems. Autonomous Agents and Multi-Agent Systems,
32(5), 635–671. https://doi.org/10.1007/s10458-018-9390-3

Morris-Martin, A., Vos, M. D., & Padget, J. (2019). Norm emergence in multiagent systems: A
viewpoint paper. Autonomous Agents and Multi-Agent Systems, 33(6), 706–749. https://doi.org/
10.1007/s10458-019-09422-0

Mühlenbein, H., & Schlierkamp-Voosen, D. (1993). Predictive models for the breeder genetic
algorithm i. continuous parameter optimization. Evolutionary Computation, 1(1), 25–49. https:
//doi.org/10.1162/evco.1993.1.1.25

194

https://doi.org/10.1007/978-3-031-20614-6_26
https://doi.org/10.24963/ijcai.2022/833
https://doi.org/10.24963/ijcai.2022/833
https://doi.org/10.1007/s10458-023-09613-w
https://doi.org/10.3233/faia210120
https://doi.org/10.1007/978-3-031-20614-6_17
https://doi.org/10.1016/j.artint.2022.103756
https://doi.org/10.1016/j.artint.2022.103756
https://doi.org/10.24963/ijcai.2023/786
https://doi.org/10.48550/ARXIV.2302.08759
https://doi.org/10.1613/jair.1.13487
https://doi.org/10.1613/jair.1.13487
https://doi.org/10.1007/s10458-018-9390-3
https://doi.org/10.1007/s10458-019-09422-0
https://doi.org/10.1007/s10458-019-09422-0
https://doi.org/10.1162/evco.1993.1.1.25
https://doi.org/10.1162/evco.1993.1.1.25


Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences of the United States of America, 36(1), 48–49. http://www.jstor.org/stable/88031

Nashed, S., & Zilberstein, S. (2022). A survey of opponent modeling in adversarial domains.
Journal of Artificial Intelligence Research, 73, 277–327. https://doi.org/10.1613/jair.1.12889

Nguyen, T., & Watanabe, T. (2020). Autonomous motivation for the successful implementation
of waste management policy: An examination using an adapted institutional analysis and
development framework in thua thien hue, vietnam. Sustainability, 12(7), 2724. https://doi.
org/10.3390/su12072724

Nir, R., Shleyfman, A., & Karpas, E. (2020). Automated synthesis of social laws in strips. Proceedings
of the AAAI Conference on Artificial Intelligence, 34(06), 9941–9948. https://doi.org/10.1609/
aaai.v34i06.6549

O’Dwyer, A. (2017). Quuxplusone/Hanabi: Framework for writing bots that play Hanabi.
Onn, S., & Tennenholtz, M. (1997). Determination of social laws for multi-agent mobilization.

Artificial Intelligence, 95(1), 155–167. https://doi.org/10.1016/s0004-3702(97)00045-3
Osawa, H. (2015). Solving hanabi: Estimating hands by opponent’s actions in cooperative game

with incomplete information. AAAI Workshop: Computer Poker and Imperfect Information. http:
//aaai.org/ocs/index.php/WS/AAAIW15/paper/view/10167

Ostrom, E. (1990). Governing the commons. Cambridge University Press. https://doi.org/10.1017/
cbo9780511807763

Ostrom, E. (2005). Understanding institutional diversity. Princeton University Press.
Ostrom, E. (2011). Background on the institutional analysis and development framework. Policy

Studies Journal, 39(1), 7–27. https://doi.org/10.1111/j.1541-0072.2010.00394.x
Ostrom, E., Gardner, R., & Walker, J. (1994). Rules, games, and common-pool resources. University of

Michigan Press. https://doi.org/10.3998/mpub.9739
Paiva, A. (n.d.). Social ai: Learning and reasoning in social contexts. https://www.tailor-social-

ai.eu/home
Paiva, A., et al. (2020). Wp6 – social ai: Learning and reasoning in social contexts [ICT-48 TAILOR:

Foundations of Trustworthy AI – Integrating Reasoning, Learning and Optimization].
Panisson, A., Mcburney, P., Parsons, S., Bordini, R., & Sarkadi, S. (2018). Lies, bullshit, and

deception in agent-oriented programming languages. Proceedings of the 20th International Trust
Workshop co-located with AAMAS/ĲCAI/ECAI/ICML (AAMAS/ĲCAI/ECAI/ICML 2018).

Panisson, A. R., Sarkadi, S, ., McBurney, P., Parsons, S., & Bordini, R. H. (2019). On the formal
semantics of theory of mind in agent communication. In Agreement technologies (pp. 18–32).
Springer International Publishing. https://doi.org/10.1007/978-3-030-17294-7_2

Peters, H. (2008). The shapley value. In Game theory (pp. 241–258). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-69291-1_17

Plotkin, G. D. (1981). A structural approach to operational semantics. Aarhus University.
Rabinowitz, N., Perbet, F., Song, F., Zhang, C., Eslami, S. M. A., & Botvinick, M. (2018). Machine

theory of mind. In J. Dy & A. Krause (Eds.), Proceedings of the 35th international conference on
machine learning (pp. 4218–4227). PMLR. https://proceedings.mlr.press/v80/rabinowitz18a.
html

Rao, A. S. (1996). AgentSpeak(l): BDI agents speak out in a logical computable language. In Lecture
notes in computer science (pp. 42–55). Springer Berlin Heidelberg. https://doi.org/10.1007/
bfb0031845

195

http://www.jstor.org/stable/88031
https://doi.org/10.1613/jair.1.12889
https://doi.org/10.3390/su12072724
https://doi.org/10.3390/su12072724
https://doi.org/10.1609/aaai.v34i06.6549
https://doi.org/10.1609/aaai.v34i06.6549
https://doi.org/10.1016/s0004-3702(97)00045-3
http://aaai.org/ocs/index.php/WS/AAAIW15/paper/view/10167
http://aaai.org/ocs/index.php/WS/AAAIW15/paper/view/10167
https://doi.org/10.1017/cbo9780511807763
https://doi.org/10.1017/cbo9780511807763
https://doi.org/10.1111/j.1541-0072.2010.00394.x
https://doi.org/10.3998/mpub.9739
https://www.tailor-social-ai.eu/home
https://www.tailor-social-ai.eu/home
https://doi.org/10.1007/978-3-030-17294-7_2
https://doi.org/10.1007/978-3-540-69291-1_17
https://proceedings.mlr.press/v80/rabinowitz18a.html
https://proceedings.mlr.press/v80/rabinowitz18a.html
https://doi.org/10.1007/bfb0031845
https://doi.org/10.1007/bfb0031845


Ray, O., & Kakas, A. (2006). Prologica: A practical system for abductive logic programming.
Proceedings of the 11th International Workshop on Non-monotonic Reasoning, 304–312.

Rendsvig, R., & Symons, J. (2021). Epistemic Logic. In E. N. Zalta (Ed.), The Stanford encyclopedia
of philosophy (Summer 2021). Metaphysics Research Lab, Stanford University.

Rohan, M. J. (2000). A rose by any name? the values construct. Personality and Social Psychology
Review, 4(3), 255–277. https://doi.org/10.1207/s15327957pspr0403_4

Rokeach, M. (1972). The nature of human values. Free Press.
Röska-Hardy, L. (2008). Theory theory (simulation theory, theory of mind). In Encyclopedia of

neuroscience (pp. 4064–4067). Springer. https://doi.org/10.1007/978-3-540-29678-2_5984
Ross, A., & Willson, V. L. (2017). Paired samples t-test. In Basic and advanced statistical tests: Writing

results sections and creating tables and figures (pp. 17–19). SensePublishers. https://doi.org/10.
1007/978-94-6351-086-8_4

Ruder, S. (2016). An overview of gradient descent optimization algorithms.
Sabater, J. (2002). Engineering executable agents using multi-context systems. Journal of Logic and

Computation, 12(3), 413–442. https://doi.org/10.1093/logcom/12.3.413
Sadri, F., & Toni, F. (2000). Abduction with negation as failure for active and reactive rules. In E.

Lamma & P. Mello (Eds.), Ai*ia 99: Advances in artificial intelligence (pp. 49–60). Springer Berlin
Heidelberg.

Sandholm, W. H. (2009). Evolutionary game theory. In Encyclopedia of complexity and systems science
(pp. 3176–3205). Springer New York. https://doi.org/10.1007/978-0-387-30440-3_188

Sarkadi, S., Panisson, A. R., Bordini, R. H., McBurney, P., Parsons, S., & Chapman, M. (2019).
Modelling deception using theory of mind in multi-agent systems. AI Communications, 32,
287–302. https://doi.org/10.3233/AIC-190615

Sarmasi, A., Zhang, T., Cheng, C.-H., Pham, H., Zhou, X., Nguyen, D., Shekdar, S., & McCoy, J.
(2021). Hoad: The hanabi open agent dataset. Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, 1646–1648.

Sarr, S., Hayes, B., & DeCaro, D. A. (2021). Applying ostrom’s institutional analysis and de-
velopment framework, and design principles for co-production to pollution management in
louisville’s rubbertown, kentucky. Land Use Policy, 104, 105383. https://doi.org/10.1016/j.
lusepol.2021.105383

Savarimuthu, B. T. R., & Cranefield, S. (2011). Norm creation, spreading and emergence: A survey
of simulation models of norms in multi-agent systems. Multiagent and Grid Systems, 7(1), 21–54.
https://doi.org/10.3233/mgs-2011-0167

Scherl, R. B., & Levesque, H. J. (2003). Knowledge, action, and the frame problem. Artificial
Intelligence, 144(1-2), 1–39. https://doi.org/10.1016/s0004-3702(02)00365-x

Schiffel, S., & Thielscher, M. (2014). Representing and reasoning about the rules of general games
with imperfect information. Journal of Artificial Intelligence Research, 49, 171–206. https://doi.
org/10.1613/jair.4115

Schwartz, S. H. (1992). Universals in the content and structure of values: Theoretical advances and
empirical tests in 20 countries. In Advances in experimental social psychology (pp. 1–65). Elsevier.
https://doi.org/10.1016/s0065-2601(08)60281-6

Schwartz, S. H. (1994). Are there universal aspects in the structure and contents of human values?
Journal of Social Issues, 50(4), 19–45. https://doi.org/10.1111/j.1540-4560.1994.tb01196.x

Schwartz, S. H. (2012). An overview of the Schwartz theory of basic values. Online Readings in
Psychology and Culture, 2(1). https://doi.org/10.9707/2307-0919.1116

196

https://doi.org/10.1207/s15327957pspr0403_4
https://doi.org/10.1007/978-3-540-29678-2_5984
https://doi.org/10.1007/978-94-6351-086-8_4
https://doi.org/10.1007/978-94-6351-086-8_4
https://doi.org/10.1093/logcom/12.3.413
https://doi.org/10.1007/978-0-387-30440-3_188
https://doi.org/10.3233/AIC-190615
https://doi.org/10.1016/j.lusepol.2021.105383
https://doi.org/10.1016/j.lusepol.2021.105383
https://doi.org/10.3233/mgs-2011-0167
https://doi.org/10.1016/s0004-3702(02)00365-x
https://doi.org/10.1613/jair.4115
https://doi.org/10.1613/jair.4115
https://doi.org/10.1016/s0065-2601(08)60281-6
https://doi.org/10.1111/j.1540-4560.1994.tb01196.x
https://doi.org/10.9707/2307-0919.1116


Searle, J. R. (1983). Intentionality: An essay in the philosophy of mind. Cambridge University Press.
https://doi.org/10.1017/cbo9781139173452

Serramià, M., López-Sánchez, M., & Rodríguez-Aguilar, J. A. (2020). A qualitative approach
to composing value-aligned norm systems. Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems, 1233–1241.

Serramià, M., López-Sánchez, M., Rodríguez-Aguilar, J. A., Morales, J., Wooldridge, M., & An-
sotegui, C. (2018). Exploiting moral values to choose the right norms. Proceedings of the 2018
AAAI/ACM Conference on AI, Ethics, and Society. https://doi.org/10.1145/3278721.3278735

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples).
Biometrika, 52(3-4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591

Shapley, L. S. (1951). Notes on the n-person game - ii: The value of an n-person game. RAND Corporation.
https://doi.org/10.7249/RM0656

Shoham, Y., & Leyton-Brown, K. (2014). Multiagent systems: Algorithmic, game-theoretic, and logical
foundations. Cambridge University Press.

Shoham, Y., & Tennenholtz, M. (1995). On social laws for artificial agent societies: Off-line design.
Artificial Intelligence, 73(1-2), 231–252. https://doi.org/10.1016/0004-3702(94)00007-n

Sierra, C. (2022). Value engineering in autonomous agents [Invited Talk at the 19th European Con-
ference on Multi-Agent Systems (EuMAS 2022)]. url%20link%20to%20talk%20abstract%20if%
20any

Sierra, C., Osman, N., Noriega, P., Sabater-Mir, J., & Perelló-Moragues, A. (2019). Value alignment:
A formal approach. Responsible Artificial Intelligence Agents Workshop (RAIA) in AAMAS 2019.

Sindlar, M., Dastani, M., & Meyer, J.-J. (2011). Programming mental state abduction. The 10th
International Conference on Autonomous Agents and Multiagent Systems - Volume 1, 301–308.

Sindlar, M. P., Dastani, M. M., & Meyer, J.-J. C. (2009). Bdi-based development of virtual characters
with a theory of mind. In Z. Ruttkay, M. Kipp, A. Nĳholt, & H. H. Vilhjálmsson (Eds.), Intelligent
virtual agents (pp. 34–41). Springer Berlin Heidelberg.

Siu, H. C., Peña, J. D., Chang, K. C., Chen, E., Zhou, Y., Lopez, V. J., Palko, K., & Allen, R. E.
(2021). Evaluation of human-ai teams for learned and rule-based agents in hanabi. CoRR,
abs/2107.07630. https://arxiv.org/abs/2107.07630

Smajgl, A., Izquierdo, L. R., & Huigne, M. (2008). Modeling endogenous rule changes in an
institutional context: The adico sequence. Advances in Complex Systems, 11(02), 199–215. https:
//doi.org/10.1142/s021952590800157x

Spates, J. L. (1983). The sociology of values. Annual Review of Sociology, 9(1), 27–49. https://doi.
org/10.1146/annurev.so.09.080183.000331

Štrumbelj, E., & Kononenko, I. (2013). Explaining prediction models and individual predictions
with feature contributions. Knowledge and Information Systems, 41(3), 647–665. https://doi.org/
10.1007/s10115-013-0679-x

Sukthankar, G., Geib, C., Bui, H., Pynadath, D., & Goldman, R. P. (2014). Plan, activity, and intent
recognition: Theory and practice. Elsevier Science & Technology Books.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction: An introduction. Bradford
Books.

Szabo, J., Such, J. M., & Criado, N. (2020). Understanding the role of values and norms in practical
reasoning. In N. Bassiliades, G. Chalkiadakis, & D. de Jonge (Eds.), Multi-agent systems and
agreement technologies (pp. 431–439). Springer International Publishing.

197

https://doi.org/10.1017/cbo9781139173452
https://doi.org/10.1145/3278721.3278735
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.7249/RM0656
https://doi.org/10.1016/0004-3702(94)00007-n
url%20link%20to%20talk%20abstract%20if%20any
url%20link%20to%20talk%20abstract%20if%20any
https://arxiv.org/abs/2107.07630
https://doi.org/10.1142/s021952590800157x
https://doi.org/10.1142/s021952590800157x
https://doi.org/10.1146/annurev.so.09.080183.000331
https://doi.org/10.1146/annurev.so.09.080183.000331
https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.1007/s10115-013-0679-x


Tager-Flusberg, H. (2007). Evaluating the theory-of-mind hypothesis of autism. Current Directions
in Psychological Science, 16(6), 311–315. https://doi.org/10.1111/j.1467-8721.2007.00527.x

Teze, J. C. L., Perelló-Moragues, A., Godo, L., & Noriega, P. (2019). Practical reasoning using
values: An argumentative approach based on a hierarchy of values. Annals of Mathematics and
Artificial Intelligence, 87(3), 293–319. https://doi.org/10.1007/s10472-019-09660-8

The World Bank, Development Research Group. (2019). Gini index (world bank estimate, 1967-
2019) [Accessed 7th June 2021, http://data.worldbank.org/indicator/SI.POV.GINI].

Thielscher, M. (2017). GDL-III: A description language for epistemic general game playing. Pro-
ceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 1276–1282.
https://doi.org/10.24963/ĳcai.2017/177

van den Bergh, M. J. H., Hommelberg, A., Kosters, W. A., & Spieksma, F. M. (2017). Aspects of the
cooperative card game hanabi. In T. Bosse & B. Bredeweg (Eds.), Bnaic 2016: Artificial intelligence
(pp. 93–105). Springer International Publishing.

van de Poel, I. (2020). Embedding values in artificial intelligence (AI) systems. Minds and Machines,
30(3), 385–409. https://doi.org/10.1007/s11023-020-09537-4

van der Hoek, W. (1993). Systems for knowledge and belief. Journal of Logic and Computation, 3(2),
173–195. https://doi.org/10.1093/logcom/3.2.173

van der Torre, L. (2003). Contextual deontic logic: Normative agents, violations and independence.
Annals of Mathematics and Artificial Intelligence, 37(1/2), 33–63. https://doi.org/10.1023/a:
1020207321544

van der Weide, T. L., Dignum, F., Meyer, J. .-. C., Prakken, H., & Vreeswĳk, G. A. W. (2010).
Practical reasoning using values. In Lecture notes in computer science (pp. 79–93). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-642-12805-9_5

Visser, S., Thangarajah, J., Harland, J., & Dignum, F. (2015). Preference-based reasoning in BDI
agent systems. Autonomous Agents and Multi-Agent Systems, 30(2), 291–330. https://doi.org/
10.1007/s10458-015-9288-2

von Wright, G. H. (1951). Deontic logic. Mind, 60(237), 1–15. http://www.jstor.org/stable/
2251395

Walton, D. (2014). Abductive reasoning. University of Alabama Press.
Walton-Rivers, J., Williams, P. R., Bartle, R., Perez-Liebana, D., & Lucas, S. M. (2017). Evaluating

and modelling hanabi-playing agents. 2017 IEEE Congress on Evolutionary Computation (CEC),
1382–1389. https://doi.org/10.1109/CEC.2017.7969465

Wang, Y., Zhong, F., Xu, J., & Wang, Y. (2022). Tom2c: Target-oriented multi-agent communication
and cooperation with theory of mind. International Conference on Learning Representations. https:
//openreview.net/forum?id=M3tw78MH1Bk

Weymark, J. (2016). Social welfare functions. In The oxford handbook of well-being and public policy
(pp. 126–159). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199325818.
013.5

Williams, J., Fiore, S. M., & Jentsch, F. (2022). Supporting artificial social intelligence with theory
of mind. Frontiers in Artificial Intelligence, 5. https://doi.org/10.3389/frai.2022.750763

Winikoff, M., Sidorenko, G., Dignum, V., & Dignum, F. (2021). Why bad coffee? explaining BDI
agent behaviour with valuings. Artificial Intelligence, 300, 103554. https://doi.org/10.1016/j.
artint.2021.103554

198

https://doi.org/10.1111/j.1467-8721.2007.00527.x
https://doi.org/10.1007/s10472-019-09660-8
http://data.worldbank.org/indicator/SI.POV.GINI
https://doi.org/10.24963/ijcai.2017/177
https://doi.org/10.1007/s11023-020-09537-4
https://doi.org/10.1093/logcom/3.2.173
https://doi.org/10.1023/a:1020207321544
https://doi.org/10.1023/a:1020207321544
https://doi.org/10.1007/978-3-642-12805-9_5
https://doi.org/10.1007/s10458-015-9288-2
https://doi.org/10.1007/s10458-015-9288-2
http://www.jstor.org/stable/2251395
http://www.jstor.org/stable/2251395
https://doi.org/10.1109/CEC.2017.7969465
https://openreview.net/forum?id=M3tw78MH1Bk
https://openreview.net/forum?id=M3tw78MH1Bk
https://doi.org/10.1093/oxfordhb/9780199325818.013.5
https://doi.org/10.1093/oxfordhb/9780199325818.013.5
https://doi.org/10.3389/frai.2022.750763
https://doi.org/10.1016/j.artint.2021.103554
https://doi.org/10.1016/j.artint.2021.103554

	Abstract
	Resumen
	Resum
	Acknowledgments
	Contents
	I Background
	Introduction
	Schwartz's Theory of Basic Human Values
	The Framework
	Classification of Values

	Motivation: Value Engineering
	The Role of Norms
	The Role of Theory of Mind

	Research Goals
	Three Contributions to Value Engineering
	An Optimisation Approach
	A Game Theoretical Approach
	A Theory of Mind Approach

	Publications
	Document Outline

	State-of-the-Art
	Value-Aligned Norm Synthesis
	Value-Based Practical Reasoning
	Reasoning About Others
	Takeaways


	II Contributions
	Synthesis and Properties of Optimally Value-Aligned Normative Systems
	A Computational Model of Ostrom’s Institutional Analysis and Development Framework
	Combining Theory of Mind and Abductive Reasoning in Agent-Oriented Programming

	III Closing Remarks
	Integrating the Three Approaches
	An Integrated Approach to Value Engineering
	Formal Model
	The Role of the Perspective
	Computing the Alignment
	Example
	Modelling
	Results

	Conclusions

	Conclusions
	Revisiting the Research Goals
	A Toolbox for Value Engineering
	Takeaways and Future Work

	Acronyms
	Bibliography


