
Lower Bounds for QCDCL via Formula Gauge
SAT’21

Benjamin Böhm
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Initial situation

QCDCL is the most used method for QBF solving.

Extension of CDCL.

We want to determine if a given QBF in conjunctive normal
form (short: QCNF) is true or false.

If the QCNF is false, we want to return a (long-distance)
Q-resolution refutation.

In the context of lower bounds, we will concentrate on false
formulas only.
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Initial situation

A QCDCL run can be represented via implication graphs or
trails.

T = (x, y ,⊥)

From each conflict we can learn a clause:

¬x ∨ ¬y ¬x ∨ y

¬x
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Initial situation

It was already shown that (nondeterministic) CDCL and
Resolution are equivalent:

Pipatsrisawat, Darwiche 2010

For each Resolution refutation of a CNF ϕ there exists a CDCL
refutation ι of ϕ with |ι| ∈ O(n3|π|), where n is the number of
variables.

However, this does not hold in the case of QBF:

Beyersdorff, B. 2021

QCDCL and Q-resolution are incomparable.
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Initial situation

A resulting question: What is hard for QCDCL? How can we
achieve hard formulas for QCDCL, whose hardness does not
depend on

propositional hardness or
hardness in long-distance Q-resolution?

In a nutshell: Is there a lower bound technique especially for
QCDCL?
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Our inspiration

There exists a formula for which hardness in QCDCL was
already shown:

Definition (Janota 2015)

The QCNF CRn (Completion Principle) consists of the prefix

∃x(1,1), . . . , x(n,n)∀u∃a1, . . . , an, b1 . . . , bn

and the matrix

x(i ,j) ∨ u ∨ ai ¬a1 ∨ . . . ∨ ¬an
¬x(i ,j) ∨ ¬u ∨ bj ¬b1 ∨ . . . ∨ ¬bn

for i , j = 1, . . . , n.
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Our inspiration

∃x(1,1), . . . , x(n,n)∀u∃a1, . . . , an, b1 . . . , bn
x(i ,j) ∨ u ∨ ai ¬a1 ∨ . . . ∨ ¬an

¬x(i ,j) ∨ ¬u ∨ bj ¬b1 ∨ . . . ∨ ¬bn

A winning strategy for the universal player:

Case 1: For all i there exists a j such that x(i,j) is set to false.
Then set u to false.
Case 2: There exists an i such that for all j the variable x(i,j) is
set to true. Then set u to true.
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Our inspiration

Theorem (Janota 2016)

CRn is hard for QCDCL.

Problem: This result depends on the learning scheme and the
formula CRn itself.

Question

Can we generalize the method of this result, such that it holds for
a bigger class of formulas and for any learning scheme?
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A generalized lower bound for QCDCL

Our result

For each QCNF Φ that fulfils a certain property, there exists a
number gauge(Φ) such that each QCDCL refutation of Φ has size
2Ω(gauge(Φ)).
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What is this certain property?

From now on, let us restrict ourselves to Σb
3 QCNFs with the

prefix ∃X∀U∃T .

Definition

Let Φ be a QCNF of the form ∃X∀U∃T · ϕ. We call a clause C in
the variables of Φ

X-clause, if var(C) ∩ X ̸= ∅, var(C) ∩ U = ∅ and var(C) ∩ T = ∅,
T-clause, if var(C) ∩ X = ∅, var(C) ∩ U = ∅ and var(C) ∩ T ̸= ∅,
XT-clause, if var(C) ∩ X ̸= ∅, var(C) ∩ U = ∅ and var(C) ∩ T ̸= ∅.

We say that Φ fulfils the XT -property if ϕ contains no XT -clauses
as well as no unit T-clauses and there do not exist two T-clauses
that are resolvable.
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What is this certain property?

Definition

We say that Φ fulfils the XT -property if ϕ contains no XT -clauses
as well as no unit T-clauses and there do not exist two T-clauses
that are resolvable.

Intuitively, this says that there is no direct connection between
the X - and T -variables, i.e., Φ does not contain clauses with
X - and T -variables, but no U-variables.

Important: This property is “hereditary”, that means every
learned clause will fulfil this property, as well.
→ This property will hold during the whole QCDCL run.
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gauge(Φ)

Our result

For each Σb
3 QCNF Φ that fulfils the XT-property, there exists a

number gauge(Φ) such that each QCDCL refutation of Φ has size
2Ω(gauge(Φ)).

What is gauge(Φ)?

Definition

For a Σb
3 QCNF Φ with prefix ∃X∀U∃T let WΦ be the set of all

Q-resolution derivations π from Φ of some X-clause such that π
only contains T -resolution and reduction steps. We define the
gauge of Φ as

gauge(Φ) := min{|C | : C is the root of some π ∈ WΦ}.
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gauge(Φ)

Definition

For a Σb
3 QCNF Φ with prefix ∃X∀U∃T let WΦ be the set of all

Q-resolution derivations π from Φ of some X-clause such that π
only contains T -resolution and reduction steps. We define the
gauge of Φ as

gauge(Φ) := min{|C | : C is the root of some π ∈ WΦ}.

Intuitively, gauge(Φ) is the minimal number of X -literals that
are necessarily piled up in a Q-resolution derivation in which
we want to get rid of all T -literals.
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gauge(Φ)

Definition (Janota 2015)

The QCNF CRn (Completion Principle) consists of the prefix

∃x(1,1), . . . , x(n,n)∀u∃a1, . . . , an, b1 . . . , bn

and the matrix

x(i ,j) ∨ u ∨ ai ¬a1 ∨ . . . ∨ ¬an
¬x(i ,j) ∨ ¬u ∨ bj ¬b1 ∨ . . . ∨ ¬bn

for i , j = 1, . . . , n.

CRn fulfils the XT-property and it holds gauge(CRn) = n.
→ CRn is hard for QCDCL.
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Another example

Definition

The formula Equalityn is defined as the QCNF with the prefix

∃x1 . . . xn∀u1 . . . un∃t1 . . . tn

and the matrix

xi ∨ ui ∨ ti ¬t1 ∨ . . . ∨ ¬tn
¬xi ∨ ¬ui ∨ ti

for i = 1, . . . , n.

Equalityn fulfils the XT-property and it holds
gauge(Equalityn) = n.
→ Equalityn is hard for QCDCL.

Olaf Beyersdorff, Benjamin Böhm Friedrich Schiller University Jena

Lower Bounds for QCDCL via Formula Gauge 15 / 17



Our result

Theorem

For each Σb
3 QCNF Φ that fulfils the XT-property, every QCDCL

refutation of Φ has size 2Ω(gauge(Φ)).

With this technique, one can show that formulas like

CRn
Equalityn
ENarrown

are hard for QCDCL under arbitrary learning schemes.
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Fin

Thanks for listening.
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