Hash-based Preprocessing and Inprocessing Techniques in SAT Solvers

Henrik Cao
Deparment of Computer Science
Aalto University

June 27, 2021

Content

- Hash-based methods (Section 3)
- Probabilistic analysis (Section 4)
- Experimental results (Section 5)

Hash-based methods

Processing techniques

- Subsumption algorithms
[Bayardo and Panda, 2011]
- Variable Elimination [Eén and Biere, 2005]
- Blocked Clause Elimination [Järvisalo et al., 2010]

Subsumption

$C \subseteq D$ for clauses C, D.

Tautological resolvency

$C \otimes_{l} D=\mathrm{T}$ for clauses C, D with $l \in C$ and $\bar{l} \in D$.

Hash functions

$$
\begin{aligned}
& h(C)=\sum_{i \in[C]_{m}} 2^{i} \\
& {[C]_{m}=\{|l| \bmod m \mid l \in C\}}
\end{aligned}
$$

$|8| \bmod 8=0$
$|13| \bmod 8=5$
$|18| \bmod 8=2$
$|5| \bmod 8=5$
$|22| \bmod 8=6$
$|-22| \bmod 8=6$

Collision signature

Collision signature

The collision signature $u(C)$ of a clause C and hash map h is the m-bit signature with the i th bit marked if h maps at least two literals in C to the corresponding index.

$$
\begin{aligned}
& \{16, \overline{13}, 2,11,14,10,6, \overline{6}\} \\
& u(C) \\
& \begin{array}{l|l|l|l|l|l|l|l}
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Clause relations

Subsumption

$C \subseteq D$ for clauses C, D.

Tautological resolvency

$C \otimes_{l} D=\top$ for clauses C, D with
 $l \in C$ and $\bar{l} \in D$.

Clause relations

Subsumption

$C \subseteq D$ for clauses C, D.

Tautological resolvency

$C \otimes_{l} D=\mathrm{T}$ for clauses C, D with

$$
l \in C \text { and } \bar{l} \in D .
$$

$$
\begin{array}{l|l|l|l|l|l|l|l|}
\hline h(C) \\
\hline 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{array}
$$

\Longrightarrow Inadmissible due to non-injectiveness of h.

Clause relations

Non-subsumption
$C \nsubseteq D$ for clauses C, D.

Non-tautological resolvency
$C \otimes_{l} D \neq \mathrm{T}$ for clauses C, D with $l \in C$ and $\bar{l} \in D$.

Non-Subsumption $C \nsubseteq D$

$$
\begin{aligned}
& \{8,29,5,7\} \\
& \{8,29,18,5,22\}
\end{aligned}
$$

Non-Subsumption $C \nsubseteq D$

$$
\begin{aligned}
& \{8,29,5,7\} \\
& \{8,29,18,5,22\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
\sim
\end{array}\right)
\end{aligned}
$$

Non-Subsumption $C \nsubseteq D$

$$
\begin{aligned}
& \{8,29,5,7\} \quad\{8,29,18,5,22\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{|l|l|l|l|l|l|l|}
\hline 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right] \sim h(D) \\
& h(C) \& \sim h(D) \\
& \begin{array}{lll|l|l|l|l}
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\end{aligned}
$$

Non-Subsumption $C \nsubseteq D$

$$
\begin{aligned}
& \{8,29,5,7\} \quad\{8,29,18,5,22\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{|l|l|l|l|l|l|l}
\hline 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right] \sim h(D)
\end{aligned}
$$

Non-tautological Resolvency $C \otimes_{l} D \neq \top$

$$
\begin{aligned}
& \{8,28,4,7\} \\
& \{\overline{8}, 23,18, \overline{5}\}
\end{aligned}
$$

Non-tautological Resolvency $C \otimes_{l} D \neq \top$

$$
\begin{aligned}
& \{8,28,4,7\} \quad\{\overline{8}, 23,18, \overline{5}\}
\end{aligned}
$$

Non-tautological Resolvency $C \otimes_{l} D \neq \top$

$$
\begin{aligned}
& \{\overline{16}, 8,28,4,7\} \\
& \{16, \overline{8}, 23,18, \overline{5}\} \\
& h(C) \begin{array}{cc|c|c|c|c|c|c}
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array} \\
& \left.\begin{array}{l|l|l|l|l|l|l}
1 & 0 & 1 & 0 & 0 & 1 & 0
\end{array}\right] \quad h(D) \\
& \begin{array}{|l|l|l|l|l|ll}
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} 0
\end{aligned}
$$

$$
C \otimes_{8} D=\top
$$

Non-tautological Resolvency $C \otimes_{l} D \neq \top$

$$
\begin{aligned}
& \{8,28,4,7\} \quad\{\overline{8}, 23,18, \overline{5}\}
\end{aligned}
$$

Non-tautological Resolvency $C \otimes_{l} D \neq \top$

$$
\{8,28,4,7\} \quad\{\overline{8}, 23,18, \overline{5}\}
$$

$$
u(C) \begin{array}{l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}
$$

$$
\left.\begin{array}{|l|l|l|l|l|l|l}
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \quad u(D)
$$

Non-tautological Resolvency $C \otimes_{l} D \neq \top$

$$
\{8,28,4,7\} \quad\{\overline{8}, 23,18, \overline{5}\}
$$

$$
\left.\begin{array}{ll|l|l|l|l|l|l|l|l|l|l}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}\right) \&(D) \& h(8)=0
$$

Comparing Signatures

Proposition 1 (Non-subsumption)

$$
\text { Let } h \in \mathcal{H} \text {. If } h(C) \& \sim h(D) \neq 0 \text { or } u(C) \& \sim u(D) \neq 0 \text {, then } C \nsubseteq D \text {. }
$$

Proposition 2 (Disjointness)

Let $h \in \mathcal{H}$. If $h(C) \& h(D)=0$, then $C \cap D=\emptyset$.
Proposition 3 (Non-tautological resolvency)
Let $h \in \mathcal{H}, l \in C$ and $\bar{l} \in D$. If $h(C) \& h(D)=h(l)$ and $u(C) \& u(D) \& h(l)=0$, then $C \otimes_{l} D$ is non-tautological.

Proposition 4 (Non-membership)
Let $h \in \mathcal{H}$. If $h(C) \& h(l)=0$, then $l \notin D$.

Probabilistic Analysis

A family of hash functions

- $h \in \mathcal{H}$ maps variables indepdendently and uniformly at random.
- $h(l)=h(\bar{l})$, i.e., l and \bar{l} map to the same index.
- $\|h(C)\|=$ number of bits set in $h(C)$.

Clause signatures

Non-subsumption

Non-tautological resolvency

Experimental Results

Experimental Results

- Implementations of Subsumption, Blocked Clause Elimination (BCE) and Bounded Variable Elimination (BVE) as preprocessing techniques utilizing Propositions 1-4
- Report gain in processing time $\left(t_{\text {base }}-t_{\text {hash }}\right) / t_{\text {base }}$, where $t_{\text {hash }}$ and $t_{\text {base }}$ are the processing times (per instance) with signature-checks enabled / disabled respectively.

Processing time

Fraction of Signature Checks

Conclusion

- Signature-based checking useful for subsumption / BCE
- Probably counter-productive for BVE
- Other areas of application in SAT

Thank you!

References

[Bayardo, R. J. and Panda, B. (2011).
Fast algorithms for finding extremal sets.
In Proceedings of the 2011 SIAM International Conference on Data Mining, pages 25-34. SIAM.

嗇 Eén, N. and Biere, A. (2005).
Effective preprocessing in sat through variable and clause elimination. In International conference on theory and applications of satisfiability testing, pages 61-75. Springer.

圕 Järvisalo, M., Biere, A., and Heule, M. (2010).
Blocked clause elimination.
In International conference on tools and algorithms for the construction and analysis of systems, pages 129-144. Springer.

