SAT-Based Rigorous Explanations for Decision Lists

Alexey Ignatiev ${ }^{1}$ and Joao Marques-Silva ${ }^{2}$
July 7, 2021 | SAT
${ }^{1}$ Monash University, Melbourne, Australia
${ }^{2}$ IRIT, CNRS, Toulouse, France
eXplainable AI

eXplainable AI

Machine Learning System

This is a cat.

Current Explanation

This is a cat:

- It has fur, whiskers, and claws.
- It has this feature:

XAI Explanation

Why? Status quo...

	A parrot	Machine learning algorithm
Learns random phrases		
Doesn't understand s**t about what it learns		
Occasionally speaks nonsense		

interpretable ML models

e.g. decision trees, lists, sets

interpretable ML models

e.g. decision trees, lists, sets

posthoc explanation of ML models "on the fly"

rule-based models

rule-based models

"transparent" and easy to interpret

rule-based models

"transparent" and easy to interpret

come in handy in XAI
but...

Decision trees aren't interpretable

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{i=1}^{n / 2} x_{2 i-1} \wedge x_{2 i}, \text { with } n=4
$$

Decision trees aren't interpretable

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{\mathfrak{i}=1}^{n / 2} x_{2 i-1} \wedge x_{2 i}, \text { with } n=4
$$

Decision trees aren't interpretable

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{i=1}^{n / 2} x_{2 i-1} \wedge x_{2 i} \text {, with } n=4
$$

instance $\mathbf{v}=(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{1})-4$ literals in the path

Decision trees aren't interpretable

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{\mathfrak{i}=1}^{n / 2} x_{2 i-1} \wedge x_{2 i}, \text { with } n=4
$$

instance $v=(1,0,1,1)-4$ literals in the path

Decision trees aren't interpretable

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{i=1}^{n / 2} x_{2 i-1} \wedge x_{2 i}, \text { with } n=4
$$

instance $v=(1,0,1,1)-4$ literals in the path actual explanation $x_{3}=1 \wedge x_{4}=1-2$ literals

DL explainability

classifier $\tau: \mathbb{F} \rightarrow \mathcal{K}$, instance \mathbf{v} s.t. $\tau(\mathbf{v})=\mathbb{c}$

AXps and CXps

classifier $\tau: \mathbb{F} \rightarrow \mathcal{K}$, instance v s.t. $\tau(v)=c$

$$
\begin{gathered}
\text { abductive explanation } X \\
\forall(\mathbf{x} \in \mathbb{F}) \cdot \bigwedge_{\mathbf{j} \in X}\left(\mathbf{x}_{\mathbf{j}}=\boldsymbol{v}_{\mathfrak{j}}\right) \rightarrow(\boldsymbol{\tau}(\mathbf{x})=\mathbf{c})
\end{gathered}
$$

AXps and CXps

classifier $\tau: \mathbb{F} \rightarrow \mathcal{K}$, instance v s.t. $\tau(v)=c$

$$
\begin{gathered}
\text { abductive explanation } X \\
\forall(\mathbf{x} \in \mathbb{F}) \cdot \bigwedge_{\mathbf{j} \in X}\left(\mathbf{x}_{\mathfrak{j}}=\boldsymbol{v}_{\mathbf{j}}\right) \rightarrow(\boldsymbol{\tau}(\mathbf{x})=\mathbf{c})
\end{gathered}
$$

contrastive explanation y
$\exists(x \in \mathbb{F}) \cdot \bigwedge_{j \notin \mathcal{y}}\left(x_{j}=v_{j}\right) \wedge(\tau(x) \neq c)$

DL example and duality

$$
\mathbb{F}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}^{5} \quad \mathcal{K}=\{\Theta, \oplus\}
$$

DL example and duality

$$
\mathbb{F}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}^{5} \quad \mathcal{K}=\{\ominus, \oplus\}
$$

$\mathrm{R}_{0}:$	IF	$x_{1}=1 \wedge x_{2}=1$	THEN \ominus
$\mathrm{R}_{1}:$	ELSE IF	$x_{3} \neq 1$	THEN \oplus
$\mathrm{R}_{\mathrm{DEF}}:$	ELSE		THEN \ominus

DL example and duality

$$
\mathbb{F}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}^{5} \quad \mathcal{K}=\{\ominus, \oplus\}
$$

$\mathrm{R}_{0}:$	IF	$x_{1}=\mathbf{1} \wedge x_{2}=\mathbf{1}$	THEN \ominus
$\mathrm{R}_{1}:$	ELSE IF	$x_{\mathbf{3}} \neq \mathbf{1}$	THEN \oplus
$\mathrm{R}_{\mathrm{DEF}}:$	ELSE		THEN \ominus

observe $\boldsymbol{\tau}(1,1,1,1,1)=\ominus$

DL example and duality

$$
\mathbb{F}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}^{5} \quad \mathcal{K}=\{\ominus, \oplus\}
$$

$\mathrm{R}_{0}:$	IF	$x_{1}=\mathbf{1} \wedge x_{2}=\mathbf{1}$	THEN \ominus
$\mathrm{R}_{1}:$	ELSE IF	$x_{\mathbf{3}} \neq \mathbf{1}$	THEN \oplus
$\mathrm{R}_{\mathrm{DEF}}:$	ELSE		THEN \ominus

observe $\boldsymbol{\tau}(1,1,1,1,1)=\ominus$

$$
\mathbf{A X p s} \mathbb{X}=\{\{\mathbf{1}, \mathbf{2}\},\{\mathbf{3}\}\}
$$

DL example and duality

$$
\mathbb{F}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}^{5} \quad \mathcal{K}=\{\ominus, \oplus\}
$$

$\mathrm{R}_{0}:$	IF	$x_{1}=1 \wedge x_{2}=1$	THEN \ominus
$\mathrm{R}_{1}:$	ELSE IF	$x_{3} \neq 1$	THEN \oplus
$\mathrm{R}_{\mathrm{DEF}}:$	ELSE		THEN \ominus

observe $\boldsymbol{\tau}(1,1,1,1,1)=\ominus$
$\operatorname{AXps} \mathbb{X}=\{\{\mathbf{1}, \mathbf{2}\},\{\mathbf{3}\}\}$
CXps $\mathbb{Y}=\{\{\mathbf{1}, \mathbf{3}\},\{\mathbf{2}, \mathbf{3}\}\}$

DL example and duality

$$
\mathbb{F}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}^{5} \quad \mathcal{K}=\{\ominus, \oplus\}
$$

$\mathrm{R}_{0}:$	IF	$x_{1}=1 \wedge x_{2}=1$	THEN \ominus
$\mathrm{R}_{1}:$	ELSE IF	$x_{\mathbf{3}} \neq \mathbf{1}$	THEN \oplus
$\mathrm{R}_{\mathrm{DEF}}:$	ELSE		THEN \ominus

$$
\text { observe } \boldsymbol{\tau}(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})=\ominus
$$

$$
\begin{aligned}
\mathbf{A X p s} \mathbb{X} & =\{\{\mathbf{1}, \mathbf{2}\},\{\mathbf{3}\}\} \\
\mathbf{C X p s} \mathbb{Y} & =\{\{\mathbf{1}, \mathbf{3}\},\{\mathbf{2}, \mathbf{3}\}\}
\end{aligned}
$$

minimal hitting set duality!

Interpretability issue - just like with DTs

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{i=1}^{n / 2} x_{2 i-1} \wedge x_{2 i} \text {, with } n=4
$$

$\mathrm{R}_{0}:$	IF	$x_{1}=0 \wedge x_{3}=0$	THEN $\mathrm{f}=0$
$\mathbf{R}_{1}:$	ELSE IF	$x_{1}=0 \wedge x_{3}=1 \wedge x_{4}=0$	THEN $\mathrm{f}=0$
$\mathbf{R}_{2}:$	ELSE IF	$x_{1}=0 \wedge x_{3}=1 \wedge x_{4}=1$	THEN $\mathrm{f}=1$
$\mathbf{R}_{3}:$	ELSE IF	$x_{1}=1 \wedge x_{2}=0 \wedge x_{3}=0$	THEN $\mathrm{f}=0$
$\mathbf{R}_{4}:$	ELSE IF	$x_{1}=1 \wedge x_{2}=0 \wedge x_{3}=1 \wedge x_{4}=0$	THEN $\mathrm{f}=0$
$\mathbf{R}_{5}:$	ELSE IF	$x_{1}=1 \wedge x_{2}=0 \wedge x_{3}=1 \wedge x_{4}=1$	THEN $\mathrm{f}=1$
$\mathbf{R}_{6}:$	ELSE IF	$x_{1}=1 \wedge x_{2}=1$	THEN $\mathrm{f}=1$
$\mathbf{R}_{\text {DEF }}:$	ELSE		THEN $\mathrm{f}=1$

Interpretability issue - just like with DTs

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{i=1}^{n / 2} x_{2 i-1} \wedge x_{2 i}, \text { with } n=4
$$

$\mathrm{R}_{0}:$	IF	$x_{1}=0 \wedge x_{3}=0$	THEN $\mathrm{f}=0$
$\mathrm{R}_{1}:$	ELSE IF	$x_{1}=0 \wedge x_{3}=1 \wedge x_{4}=0$	THEN $\mathrm{f}=0$
$\mathrm{R}_{2}:$	ELSE IF	$x_{1}=0 \wedge x_{3}=1 \wedge x_{4}=1$	THEN $\mathrm{f}=1$
$\mathrm{R}_{3}:$	ELSE IF	$x_{1}=1 \wedge x_{2}=0 \wedge x_{3}=0$	THEN $\mathrm{f}=0$
$\mathrm{R}_{4}:$	ELSE IF	$x_{1}=1 \wedge x_{2}=0 \wedge x_{3}=1 \wedge x_{4}=0$	THEN $\mathrm{f}=0$
$R_{5}:$	ELSE IF	$x_{1}=1 \wedge x_{2}=0 \wedge x_{3}=1 \wedge x_{4}=1$	THEN $\mathrm{f}=1$
$R_{6}:$	ELSE IF	$x_{1}=1 \wedge x_{2}=1$	THEN $\mathrm{f}=1$
$R_{\text {DEF }}:$	ELSE		THEN $\mathrm{f}=1$

instance $\mathbf{v}=(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{1})-$ rule R_{5} fires the prediction

Interpretability issue - just like with DTs

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{i=1}^{n / 2} x_{2 i-1} \wedge x_{2 i}, \text { with } n=4
$$

R_{0} :	IF	$x_{1}=0 \wedge \boldsymbol{x}_{\mathbf{3}}=\mathbf{0}$	THEN $\mathrm{f}=0$
R_{1} :	ELSE IF	$x_{1}=0 \wedge x_{3}=1 \wedge \mathbf{x}_{\mathbf{4}}=\mathbf{0}$	THEN $f=0$
R_{2} :	ELSE IF	$x_{1}=0 \wedge x_{3}=1 \wedge x_{4}=1$	THEN $\mathrm{f}=1$
R_{3} :	ELSE IF	$x_{1}=1 \wedge x_{2}=0 \wedge \boldsymbol{x}_{\mathbf{3}}=\mathbf{0}$	THEN $\mathrm{f}=0$
R_{4} :	ELSE IF	$x_{1}=1 \wedge x_{2}=0 \wedge x_{3}=1 \wedge \boldsymbol{x}_{4}=\mathbf{0}$	THEN $f=0$
R_{5} :	ELSE IF	$x_{1}=1 \wedge x_{2}=0 \wedge x_{3}=1 \wedge x_{4}=1$	THEN $\mathrm{f}=1$
R_{6} :	ELSE IF	$x_{1}=1 \wedge x_{2}=1$	THEN $\mathrm{f}=1$
$\mathrm{R}_{\text {deF }}$:	ELSE		THEN $\mathrm{f}=1$

instance $\mathbf{v}=(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{1})-$ rule R_{5} fires the prediction
actual $A X p-x_{3}=1 \wedge \chi_{4}=1-2$ literals

Are DLs hard to explain?

Are DLs hard to explain? Problems.

SAT query:

Are DLs hard to explain? Problems.

SAT query:
 $\exists(\mathbf{x} \in \mathbb{F}) . \tau(\mathbf{x})=\mathrm{c}$

Are DLs hard to explain? Problems.

SAT query:
 $\exists(\mathbf{x} \in \mathbb{F}) . \tau(\mathbf{x})=\mathrm{c}$

IM query:

Are DLs hard to explain? Problems.

SAT query:
 $\exists(\mathbf{x} \in \mathbb{F}) . \tau(x)=c$

IM query:
$\forall(\mathbf{x} \in \mathbb{F}) . \rho(\mathbf{x}) \rightarrow \boldsymbol{\tau}(\mathbf{x})=\mathbf{c}$

Are DLs hard to explain? Results.

1. DLSAT is NP-complete

Are DLs hard to explain? Results.

1. DLSAT is NP-complete

2. No polytime algorithm for DLIM unless $P=N P$

Are DLs hard to explain? Results.

1. DLSAT is NP-complete

2. No polytime algorithm for DLIM unless $P=N P$

see paper for details!

Computing an AXp is hard for decision lists and sets

decision lists:

finding an $A X p$ is not polytime unless $P=N P$

decision lists:

finding an AXp is not polytime unless $\mathrm{P}=\mathrm{NP}$
decision sets:
finding an $A X p$ is D^{p}-complete

decision lists:

finding an AXp is not polytime unless $\mathrm{P}=\mathrm{NP}$
decision sets:
finding an $A X p$ is D^{p}-complete
in contrast to decision trees!

Propositional encoding

(see paper for notation and details)

rule $\mathfrak{j} \in \mathfrak{R}$ fires:

(see paper for notation and details)

rule $\mathfrak{j} \in \mathfrak{R}$ fires:

$$
\boldsymbol{\varphi}(\mathfrak{j}) \triangleq\left(\wedge_{k \in \mathfrak{R}, \mathfrak{o}(\mathrm{k})<\mathbf{o}(\mathrm{j})} \neg \mathfrak{l}(\mathrm{k})\right) \wedge \mathfrak{l}(\mathfrak{j})
$$

(see paper for notation and details)
rule $\mathfrak{j} \in \mathfrak{R}$ fires:

$$
\varphi(\mathfrak{j}) \triangleq\left(\bigwedge_{k \in \mathfrak{R}, \mathfrak{o}(\mathrm{k})<\mathbf{o}(\mathrm{j})} \neg \mathfrak{l}(\mathrm{k})\right) \wedge \mathfrak{l}(\mathfrak{j})
$$

unsatisfiable $\mathcal{S} \wedge \mathcal{H}$ s.t.

(see paper for notation and details)

rule $\mathfrak{j} \in \mathfrak{R}$ fires:

$$
\boldsymbol{\varphi}(\mathfrak{j}) \triangleq\left(\wedge_{k \in \mathfrak{R}, \mathfrak{o}(\mathrm{k})<\mathbf{o}(\mathrm{j})} \neg \mathfrak{l}(\mathrm{k})\right) \wedge \mathfrak{l}(\mathfrak{j})
$$

unsatisfiable $\mathcal{S} \wedge \mathcal{H}$ s.t.

$$
\mathcal{S} \triangleq \mathrm{I}_{\mathrm{v}}
$$

rule $\mathfrak{j} \in \mathfrak{R}$ fires:

$$
\boldsymbol{\varphi}(\mathfrak{j}) \triangleq\left(\bigwedge_{k \in \mathfrak{R}, \boldsymbol{o}(\mathrm{k})<\mathbf{o}(\mathrm{j})} \neg \mathfrak{l}(\mathrm{k})\right) \wedge \mathfrak{l}(\mathfrak{j})
$$

$$
\begin{array}{lll}
& \text { unsatisfiable } & \mathcal{S} \wedge \mathcal{H} \\
\mathcal{S} \triangleq \mathrm{I}_{\mathrm{v}} & \mathcal{H} \triangleq \bigvee_{\mathrm{j} \in \mathfrak{R}, \mathrm{c}(\mathrm{j})=\boldsymbol{c}(\mathrm{i})}
\end{array} \varphi(\mathfrak{j})
$$

rule $\mathfrak{j} \in \mathfrak{R}$ fires:

$$
\boldsymbol{\varphi}(\mathfrak{j}) \triangleq\left(\bigwedge_{k \in \mathfrak{R}, \boldsymbol{o}(\mathrm{k})<\mathbf{o}(\mathrm{j})} \neg \mathfrak{l}(\mathrm{k})\right) \wedge \mathfrak{l}(\mathfrak{j})
$$

$$
\begin{array}{lll}
& \text { unsatisfiable } & \mathcal{S} \wedge \mathcal{H} \text { s.t. } \\
\mathcal{S} \triangleq I_{v} & \mathcal{H} \triangleq \bigvee_{j \in \mathfrak{R}, c(j)=c(i)} \varphi(j)
\end{array}
$$

instance v , prediction $\mathfrak{c}(\mathfrak{i})$:

rule $\mathfrak{j} \in \mathfrak{R}$ fires:

$$
\boldsymbol{\varphi}(\mathfrak{j}) \triangleq(\underset{k \in \mathfrak{R}, \boldsymbol{o}(\mathrm{k})<\mathbf{o}(\mathrm{j})}{ } \neg \mathfrak{l}(\mathrm{k})) \wedge \mathfrak{l}(\mathfrak{j})
$$

$$
\begin{array}{lll}
& \text { unsatisfiable } & \mathcal{S} \wedge \mathcal{H} \\
\mathcal{S} \triangleq \mathrm{I}_{\mathrm{v}} & \mathcal{H} \triangleq \bigvee_{\mathrm{j} \in \mathfrak{R}, \mathfrak{c}(\mathrm{j})=\mathfrak{c}(\mathrm{i})} \varphi(\mathfrak{j})
\end{array}
$$

instance v , prediction $\mathfrak{c}(\mathfrak{i})$:

AXps are MUSes

rule $\mathfrak{j} \in \mathfrak{R}$ fires:

$$
\boldsymbol{\varphi}(\mathfrak{j}) \triangleq\left(\bigwedge_{k \in \mathfrak{R}, \mathfrak{o}(\mathrm{k})<\mathbf{o}(\mathrm{j})} \neg \mathfrak{l}(\mathrm{k})\right) \wedge \mathfrak{l}(\mathfrak{j})
$$

$$
\begin{array}{lll}
& \text { unsatisfiable } \mathcal{S} \wedge \mathcal{H} & \text { s.t. } \\
\mathcal{S} \triangleq \mathrm{I}_{\mathrm{v}} & \mathcal{H} \triangleq & \bigvee
\end{array} \varphi(\mathfrak{j})
$$

instance v , prediction $\mathfrak{c}(\mathfrak{i})$:

Experimental results

Experimental setup

- machine configuration:
- Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM

Experimental setup

- machine configuration:
- Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM
- running macOS Big Sur 11.2.3

Experimental setup

- machine configuration:
- Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM
- running macOS Big Sur 11.2.3
- 1800 s timeout +4 GB memout

Experimental setup

- machine configuration:
- Quad-Core Intel Core i5-8259U 2.30 GHz , with 16GByte RAM
- running macOS Big Sur 11.2.3
- 1800 s timeout +4 GB memout
- UCI MLR + PMLB + ML explainability and fairness

Experimental setup

- machine configuration:
- Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM
- running macOS Big Sur 11.2.3
- 1800 s timeout +4 GB memout
- UCI MLR + PMLB + ML explainability and fairness
- 360 benchmarks in total (72 datasets $\times 5$-cross validation)

Experimental setup

- machine configuration:
- Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM
- running macOS Big Sur 11.2.3
- 1800 s timeout +4 GB memout
- UCI MLR + PMLB + ML explainability and fairness
- 360 benchmarks in total (72 datasets $\times 5$-cross validation)
- CN2 decision lists:
- https://orangedatamining.com/
- 6-2055 rules
- 6-6754 literals (total)

Experimental setup

- machine configuration:
- Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM
- running macOS Big Sur 11.2.3
- 1800 s timeout +4 GB memout
- UCI MLR + PMLB + ML explainability and fairness
- 360 benchmarks in total (72 datasets $\times 5$-cross validation)
- CN2 decision lists:
- https://orangedatamining.com/
- 6-2055 rules
- 6-6754 literals (total)
- SAT encoding:
- 7-15340 variables
- 9-3932987 clauses

Experimental setup

- Python + PySAT:
- Glucose3 SAT solver
- incremental oracle calls

Experimental setup

- Python + PySAT:
- Glucose3 SAT solver
- incremental oracle calls
- https://github.com/alexeyignatiev/xdl-tool

Experimental setup

- Python + PySAT:
- Glucose3 SAT solver
- incremental oracle calls
- https://github.com/alexeyignatiev/xdl-tool
- direct CXp enumeration:
- LBX-like MCS enumeration
- "Clause D" heuristic

Experimental setup

- Python + PySAT:
- Glucose3 SAT solver
- incremental oracle calls
- https://github.com/alexeyignatiev/xdl-tool
- direct CXp enumeration:
- LBX-like MCS enumeration
- "Clause D" heuristic
- MARCO-like XP enumeration:
- targets either AXps or CXps
- computes both AXps and CXps

Experimental setup

- Python + PySAT:
- Glucose3 SAT solver
- incremental oracle calls
- https://github.com/alexeyignatiev/xdl-tool
- direct CXp enumeration:
- LBX-like MCS enumeration
- "Clause D" heuristic
- MARCO-like XP enumeration:
- targets either AXps or CXps
- computes both AXps and CXps
- minimum hitting sets - RC2 MaxSAT
- XP reduction - deletion-based linear search

Results - raw performance

Results - raw performance

all approaches finish complete XP enumeration within $<\mathbf{1 0 0 0} \mathbf{s e c}$.

Results - raw performance

all approaches finish complete XP enumeration within $<\mathbf{1 0 0 0} \mathbf{s e c}$.
MARCO-like setup — targeting AXps may pay off

Results - raw performance

all approaches finish complete XP enumeration within $<\mathbf{1 0 0 0} \mathrm{sec}$.
MARCO-like setup - targeting AXps may pay off
direct CXp enumeration is slower (too many XPs?)

Results - AXps vs. CXps

(a) total number of AXps and CXps

(b) avg. number of $A X p s$ and $C X p s$

(c) avg. explanation size

Results - AXps vs. CXps

per dataset

Results - AXps vs. CXps

(a) total number of AXps and CXps

(b) avg. number of $A X p s$ and CXps

(c) avg. explanation size

16-72838 AXps
1-22.7 AXps
vs. 23-248825 CXps
vs. $1-20.8 \mathrm{CXps}$
per dataset
per instance

Results - AXps vs. CXps

(a) total number of AXps and CXps

(b) avg. number of $A X p s$ and $C X p s$

(c) avg. explanation size

1-15.8 lits per $A X p$
vs. 23-248825 CXps
vs. $1-20.8 \mathrm{CXps}$
vs. ≤ 2.8 lits per CXp
per dataset
per instance

Summary

Summary and future work

- rigorous explanations for decision lists:

Summary and future work

- rigorous explanations for decision lists:
- DLs may be uninterpretable
- just like decision trees!

Summary and future work

- rigorous explanations for decision lists:
- DLs may be uninterpretable
- just like decision trees!
- finding one explanation is not polytime, unless $\mathbf{P}=\mathbf{N P}$
- same for decision sets!
- and in contrast to decision trees!

Summary and future work

- rigorous explanations for decision lists:
- DLs may be uninterpretable
- just like decision trees!
- finding one explanation is not polytime, unless $\mathbf{P}=\mathbf{N P}$
- same for decision sets!
- and in contrast to decision trees!
- encoding to propositional logic
- use of SAT oracles
- finding one AXp or CXp
- efficient MARCO-like enumeration!

Summary and future work

- rigorous explanations for decision lists:
- DLs may be uninterpretable
- just like decision trees!
- finding one explanation is not polytime, unless $\mathbf{P}=\mathbf{N P}$
- same for decision sets!
- and in contrast to decision trees!
- encoding to propositional logic
- use of SAT oracles
- finding one AXp or CXp
- efficient MARCO-like enumeration!
- future work
- explain other ML models with SAT?

Summary and future work

- rigorous explanations for decision lists:
- DLs may be uninterpretable
- just like decision trees!
- finding one explanation is not polytime, unless $\mathbf{P}=\mathbf{N P}$
- same for decision sets!
- and in contrast to decision trees!
- encoding to propositional logic
- use of SAT oracles
- finding one AXp or CXp
- efficient MARCO-like enumeration!
- future work
- explain other ML models with SAT?
- efficiently?

Questions?

