
SAT-Based Rigorous Explanations for Decision Lists

Alexey Ignatiev1 and Joao Marques-Silva2

July 7, 2021 | SAT

1Monash University, Melbourne, Australia
2IRIT, CNRS, Toulouse, France

eXplainable AI

eXplainable AI

©DARPA 1/17

Why? Status quo...

A parrot Machine learning
algorithm

Learns random
phrases

Doesn’t understand
s**t about what it
learns

Occasionally
speaks nonsense

©Internet 2/17

Approaches to XAI

interpretable ML models
e.g. decision trees, lists, sets

posthoc explanation of ML models “on the fly”

3/17

Approaches to XAI

interpretable ML models
e.g. decision trees, lists, sets

posthoc explanation of ML models “on the fly”

3/17

Interpretable rule-based models

rule-based models

“transparent” and easy to interpret

come in handy in XAI
but...

4/17

Interpretable rule-based models

rule-based models

“transparent” and easy to interpret

come in handy in XAI
but...

4/17

Interpretable rule-based models

rule-based models

“transparent” and easy to interpret

come in handy in XAI
but...

4/17

Decision trees aren’t interpretable

f(x1, . . . , xn) =
∨∨∨n/2

i=1 x2i−1 ∧ x2i, with n = 4

5/17

Decision trees aren’t interpretable

f(x1, . . . , xn) =
∨∨∨n/2

i=1 x2i−1 ∧ x2i, with n = 4

x1

x3

0 x4

0 1

x2

x3

0 x4

0 1

1

instance v = (1, 0, 1, 1) — 4 literals in the path

actual explanation x3 = 1∧ x4 = 1 — 2 literals

5/17

Decision trees aren’t interpretable

f(x1, . . . , xn) =
∨∨∨n/2

i=1 x2i−1 ∧ x2i, with n = 4

x1

x3

0 x4

0 1

x2

x3

0 x4

0 1

1

instance v = (1, 0, 1, 1) — 4 literals in the path

actual explanation x3 = 1∧ x4 = 1 — 2 literals

5/17

Decision trees aren’t interpretable

f(x1, . . . , xn) =
∨∨∨n/2

i=1 x2i−1 ∧ x2i, with n = 4

x1

x3

0 x4

0 1

x2

x3

0 x4

0 1

1

instance v = (1, 0, 1, 1) — 4 literals in the path

actual explanation x3 = 1∧ x4 = 1 — 2 literals

5/17

Decision trees aren’t interpretable

f(x1, . . . , xn) =
∨∨∨n/2

i=1 x2i−1 ∧ x2i, with n = 4

x1

x3

0 x4

0 1

x2

x3

0 x4

0 1

1

instance v = (1, 0, 1, 1) — 4 literals in the path

actual explanation x3 = 1∧ x4 = 1 — 2 literals

5/17

DL explainability

AXps and CXps

classifier τ : F → K, instance v s.t. τ(v) = c

abductive explanationX

∀(x ∈ F).
∧∧∧

j∈X(xj = vj)→(τ(x) = c)

contrastive explanation Y

∃(x ∈ F).
∧∧∧

j ̸∈Y(xj = vj)∧ (τ(x) ̸= c)

6/17

AXps and CXps

classifier τ : F → K, instance v s.t. τ(v) = c

abductive explanationX

∀(x ∈ F).
∧∧∧

j∈X(xj = vj)→(τ(x) = c)

contrastive explanation Y

∃(x ∈ F).
∧∧∧

j ̸∈Y(xj = vj)∧ (τ(x) ̸= c)

6/17

AXps and CXps

classifier τ : F → K, instance v s.t. τ(v) = c

abductive explanationX

∀(x ∈ F).
∧∧∧

j∈X(xj = vj)→(τ(x) = c)

contrastive explanation Y

∃(x ∈ F).
∧∧∧

j ̸∈Y(xj = vj)∧ (τ(x) ̸= c)

6/17

DL example and duality

F = {0, 1, 2}5 K = {⊖,⊕}

R0: IF x1 = 1∧ x2 = 1 THEN⊖
R1: ELSE IF x3 ̸= 1 THEN⊕
Rdef: ELSE THEN⊖

observe τ(1, 1, 1, 1, 1) = ⊖

AXps X = {{1, 2}, {3}}
CXps Y = {{1, 3}, {2, 3}}

minimal hitting set duality!

7/17

DL example and duality

F = {0, 1, 2}5 K = {⊖,⊕}

R0: IF x1 = 1∧ x2 = 1 THEN⊖
R1: ELSE IF x3 ̸= 1 THEN⊕
Rdef: ELSE THEN⊖

observe τ(1, 1, 1, 1, 1) = ⊖

AXps X = {{1, 2}, {3}}
CXps Y = {{1, 3}, {2, 3}}

minimal hitting set duality!

7/17

DL example and duality

F = {0, 1, 2}5 K = {⊖,⊕}

R0: IF x1 = 1∧ x2 = 1 THEN⊖
R1: ELSE IF x3 ̸= 1 THEN⊕
Rdef: ELSE THEN⊖

observe τ(1, 1, 1, 1, 1) = ⊖

AXps X = {{1, 2}, {3}}
CXps Y = {{1, 3}, {2, 3}}

minimal hitting set duality!

7/17

DL example and duality

F = {0, 1, 2}5 K = {⊖,⊕}

R0: IF x1 = 1∧ x2 = 1 THEN⊖
R1: ELSE IF x3 ̸= 1 THEN⊕
Rdef: ELSE THEN⊖

observe τ(1, 1, 1, 1, 1) = ⊖

AXps X = {{1, 2}, {3}}

CXps Y = {{1, 3}, {2, 3}}

minimal hitting set duality!

7/17

DL example and duality

F = {0, 1, 2}5 K = {⊖,⊕}

R0: IF x1 = 1∧ x2 = 1 THEN⊖
R1: ELSE IF x3 ̸= 1 THEN⊕
Rdef: ELSE THEN⊖

observe τ(1, 1, 1, 1, 1) = ⊖

AXps X = {{1, 2}, {3}}
CXps Y = {{1, 3}, {2, 3}}

minimal hitting set duality!

7/17

DL example and duality

F = {0, 1, 2}5 K = {⊖,⊕}

R0: IF x1 = 1∧ x2 = 1 THEN⊖
R1: ELSE IF x3 ̸= 1 THEN⊕
Rdef: ELSE THEN⊖

observe τ(1, 1, 1, 1, 1) = ⊖

AXps X = {{1, 2}, {3}}
CXps Y = {{1, 3}, {2, 3}}

minimal hitting set duality!
7/17

Interpretability issue – just like with DTs

f(x1, . . . , xn) =
∨∨∨n/2

i=1 x2i−1 ∧ x2i, with n = 4

R0: IF x1 = 0∧ x3 = 0 THEN f = 0
R1: ELSE IF x1 = 0∧ x3 = 1∧ x4 = 0 THEN f = 0
R2: ELSE IF x1 = 0∧ x3 = 1∧ x4 = 1 THEN f = 1
R3: ELSE IF x1 = 1∧ x2 = 0∧ x3 = 0 THEN f = 0
R4: ELSE IF x1 = 1∧ x2 = 0∧ x3 = 1∧ x4 = 0 THEN f = 0
R5: ELSE IF x1 = 1∧ x2 = 0∧ x3 = 1∧ x4 = 1 THEN f = 1
R6: ELSE IF x1 = 1∧ x2 = 1 THEN f = 1
Rdef: ELSE THEN f = 1

instance v = (1, 0, 1, 1) — rule R5 fires the prediction

actual AXp — x3 = 1∧ x4 = 1 — 2 literals

8/17

Interpretability issue – just like with DTs

f(x1, . . . , xn) =
∨∨∨n/2

i=1 x2i−1 ∧ x2i, with n = 4

R0: IF x1 = 0∧ x3 = 0 THEN f = 0
R1: ELSE IF x1 = 0∧ x3 = 1∧ x4 = 0 THEN f = 0
R2: ELSE IF x1 = 0∧ x3 = 1∧ x4 = 1 THEN f = 1
R3: ELSE IF x1 = 1∧ x2 = 0∧ x3 = 0 THEN f = 0
R4: ELSE IF x1 = 1∧ x2 = 0∧ x3 = 1∧ x4 = 0 THEN f = 0
R5: ELSE IF x1 = 1∧ x2 = 0∧ x3 = 1∧ x4 = 1 THEN f = 1
R6: ELSE IF x1 = 1∧ x2 = 1 THEN f = 1
Rdef: ELSE THEN f = 1

instance v = (1, 0, 1, 1) — rule R5 fires the prediction

actual AXp — x3 = 1∧ x4 = 1 — 2 literals

8/17

Interpretability issue – just like with DTs

f(x1, . . . , xn) =
∨∨∨n/2

i=1 x2i−1 ∧ x2i, with n = 4

R0: IF x1 = 0∧ x3 = 0 THEN f = 0
R1: ELSE IF x1 = 0∧ x3 = 1∧ x4 = 0 THEN f = 0
R2: ELSE IF x1 = 0∧ x3 = 1∧ x4 = 1 THEN f = 1
R3: ELSE IF x1 = 1∧ x2 = 0∧ x3 = 0 THEN f = 0
R4: ELSE IF x1 = 1∧ x2 = 0∧ x3 = 1∧ x4 = 0 THEN f = 0
R5: ELSE IF x1 = 1∧ x2 = 0∧ x3 = 1∧ x4 = 1 THEN f = 1
R6: ELSE IF x1 = 1∧ x2 = 1 THEN f = 1
Rdef: ELSE THEN f = 1

instance v = (1, 0, 1, 1) — rule R5 fires the prediction

actual AXp — x3 = 1∧ x4 = 1 — 2 literals

8/17

Are DLs hard to explain?

Are DLs hard to explain? Problems.

SAT query:

∃(x ∈ F). τ(x) = c

IM query:
∀(x ∈ F). ρ(x) → τ(x) = c

9/17

Are DLs hard to explain? Problems.

SAT query:
∃(x ∈ F). τ(x) = c

IM query:
∀(x ∈ F). ρ(x) → τ(x) = c

9/17

Are DLs hard to explain? Problems.

SAT query:
∃(x ∈ F). τ(x) = c

IM query:

∀(x ∈ F). ρ(x) → τ(x) = c

9/17

Are DLs hard to explain? Problems.

SAT query:
∃(x ∈ F). τ(x) = c

IM query:
∀(x ∈ F). ρ(x) → τ(x) = c

9/17

Are DLs hard to explain? Results.

1. DLSAT isNP-complete

2. No polytime algorithm for DLIM unless P = NP

see paper for details!

10/17

Are DLs hard to explain? Results.

1. DLSAT isNP-complete

2. No polytime algorithm for DLIM unless P = NP

see paper for details!

10/17

Are DLs hard to explain? Results.

1. DLSAT isNP-complete

2. No polytime algorithm for DLIM unless P = NP

see paper for details!

10/17

Computing an AXp is hard for decision lists and sets

decision lists:
finding an AXp is not polytime unless P = NP

decision sets:
finding an AXp isDP-complete

in contrast to decision trees!

11/17

Computing an AXp is hard for decision lists and sets

decision lists:
finding an AXp is not polytime unless P = NP

decision sets:
finding an AXp isDP-complete

in contrast to decision trees!

11/17

Computing an AXp is hard for decision lists and sets

decision lists:
finding an AXp is not polytime unless P = NP

decision sets:
finding an AXp isDP-complete

in contrast to decision trees!

11/17

Propositional encoding

Propositional encoding

(see paper for notation and details)

rule j ∈ R fires:

φ(j) ≜≜≜
(∧

k∈R, o(k)<o(j)
¬l(k)

)
∧ l(j)

unsatisfiable S∧H s.t.
S ≜≜≜ Iv H ≜≜≜

∨∨∨
j∈R, c(j)=c(i)

φ(j)

instance v, prediction c(i):

AXps are MUSes CXps are MCSes

12/17

Propositional encoding

(see paper for notation and details)

rule j ∈ R fires:

φ(j) ≜≜≜
(∧

k∈R, o(k)<o(j)
¬l(k)

)
∧ l(j)

unsatisfiable S∧H s.t.
S ≜≜≜ Iv H ≜≜≜

∨∨∨
j∈R, c(j)=c(i)

φ(j)

instance v, prediction c(i):

AXps are MUSes CXps are MCSes

12/17

Propositional encoding

(see paper for notation and details)

rule j ∈ R fires:

φ(j) ≜≜≜
(∧

k∈R, o(k)<o(j)
¬l(k)

)
∧ l(j)

unsatisfiable S∧H s.t.
S ≜≜≜ Iv H ≜≜≜

∨∨∨
j∈R, c(j)=c(i)

φ(j)

instance v, prediction c(i):

AXps are MUSes CXps are MCSes

12/17

Propositional encoding

(see paper for notation and details)

rule j ∈ R fires:

φ(j) ≜≜≜
(∧

k∈R, o(k)<o(j)
¬l(k)

)
∧ l(j)

unsatisfiable S∧H s.t.

S ≜≜≜ Iv H ≜≜≜
∨∨∨

j∈R, c(j)=c(i)
φ(j)

instance v, prediction c(i):

AXps are MUSes CXps are MCSes

12/17

Propositional encoding

(see paper for notation and details)

rule j ∈ R fires:

φ(j) ≜≜≜
(∧

k∈R, o(k)<o(j)
¬l(k)

)
∧ l(j)

unsatisfiable S∧H s.t.
S ≜≜≜ Iv

H ≜≜≜
∨∨∨

j∈R, c(j)=c(i)
φ(j)

instance v, prediction c(i):

AXps are MUSes CXps are MCSes

12/17

Propositional encoding

(see paper for notation and details)

rule j ∈ R fires:

φ(j) ≜≜≜
(∧

k∈R, o(k)<o(j)
¬l(k)

)
∧ l(j)

unsatisfiable S∧H s.t.
S ≜≜≜ Iv H ≜≜≜

∨∨∨
j∈R, c(j)=c(i)

φ(j)

instance v, prediction c(i):

AXps are MUSes CXps are MCSes

12/17

Propositional encoding

(see paper for notation and details)

rule j ∈ R fires:

φ(j) ≜≜≜
(∧

k∈R, o(k)<o(j)
¬l(k)

)
∧ l(j)

unsatisfiable S∧H s.t.
S ≜≜≜ Iv H ≜≜≜

∨∨∨
j∈R, c(j)=c(i)

φ(j)

instance v, prediction c(i):

AXps are MUSes CXps are MCSes

12/17

Propositional encoding

(see paper for notation and details)

rule j ∈ R fires:

φ(j) ≜≜≜
(∧

k∈R, o(k)<o(j)
¬l(k)

)
∧ l(j)

unsatisfiable S∧H s.t.
S ≜≜≜ Iv H ≜≜≜

∨∨∨
j∈R, c(j)=c(i)

φ(j)

instance v, prediction c(i):

AXps are MUSes

CXps are MCSes

12/17

Propositional encoding

(see paper for notation and details)

rule j ∈ R fires:

φ(j) ≜≜≜
(∧

k∈R, o(k)<o(j)
¬l(k)

)
∧ l(j)

unsatisfiable S∧H s.t.
S ≜≜≜ Iv H ≜≜≜

∨∨∨
j∈R, c(j)=c(i)

φ(j)

instance v, prediction c(i):

AXps are MUSes CXps are MCSes
12/17

Experimental results

Experimental setup

• machine configuration:
• Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM

• running macOS Big Sur 11.2.3
• 1800s timeout + 4GB memout

• UCI MLR+ PMLB+ML explainability and fairness
• 360 benchmarks in total (72 datasets × 5-cross validation)

• CN2 decision lists:
• https://orangedatamining.com/
• 6–2055 rules
• 6–6754 literals (total)

• SAT encoding:
• 7–15340 variables
• 9–3932987 clauses

13/17

https://orangedatamining.com/

Experimental setup

• machine configuration:
• Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM
• running macOS Big Sur 11.2.3

• 1800s timeout + 4GB memout

• UCI MLR+ PMLB+ML explainability and fairness
• 360 benchmarks in total (72 datasets × 5-cross validation)

• CN2 decision lists:
• https://orangedatamining.com/
• 6–2055 rules
• 6–6754 literals (total)

• SAT encoding:
• 7–15340 variables
• 9–3932987 clauses

13/17

https://orangedatamining.com/

Experimental setup

• machine configuration:
• Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM
• running macOS Big Sur 11.2.3
• 1800s timeout + 4GB memout

• UCI MLR+ PMLB+ML explainability and fairness
• 360 benchmarks in total (72 datasets × 5-cross validation)

• CN2 decision lists:
• https://orangedatamining.com/
• 6–2055 rules
• 6–6754 literals (total)

• SAT encoding:
• 7–15340 variables
• 9–3932987 clauses

13/17

https://orangedatamining.com/

Experimental setup

• machine configuration:
• Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM
• running macOS Big Sur 11.2.3
• 1800s timeout + 4GB memout

• UCI MLR+ PMLB+ ML explainability and fairness

• 360 benchmarks in total (72 datasets × 5-cross validation)

• CN2 decision lists:
• https://orangedatamining.com/
• 6–2055 rules
• 6–6754 literals (total)

• SAT encoding:
• 7–15340 variables
• 9–3932987 clauses

13/17

https://orangedatamining.com/

Experimental setup

• machine configuration:
• Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM
• running macOS Big Sur 11.2.3
• 1800s timeout + 4GB memout

• UCI MLR+ PMLB+ ML explainability and fairness
• 360 benchmarks in total (72 datasets × 5-cross validation)

• CN2 decision lists:
• https://orangedatamining.com/
• 6–2055 rules
• 6–6754 literals (total)

• SAT encoding:
• 7–15340 variables
• 9–3932987 clauses

13/17

https://orangedatamining.com/

Experimental setup

• machine configuration:
• Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM
• running macOS Big Sur 11.2.3
• 1800s timeout + 4GB memout

• UCI MLR+ PMLB+ ML explainability and fairness
• 360 benchmarks in total (72 datasets × 5-cross validation)

• CN2 decision lists:
• https://orangedatamining.com/
• 6–2055 rules
• 6–6754 literals (total)

• SAT encoding:
• 7–15340 variables
• 9–3932987 clauses

13/17

https://orangedatamining.com/

Experimental setup

• machine configuration:
• Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM
• running macOS Big Sur 11.2.3
• 1800s timeout + 4GB memout

• UCI MLR+ PMLB+ ML explainability and fairness
• 360 benchmarks in total (72 datasets × 5-cross validation)

• CN2 decision lists:
• https://orangedatamining.com/
• 6–2055 rules
• 6–6754 literals (total)

• SAT encoding:
• 7–15340 variables
• 9–3932987 clauses

13/17

https://orangedatamining.com/

Experimental setup

• Python + PySAT:
• Glucose3 SAT solver
• incremental oracle calls

• https://github.com/alexeyignatiev/xdl-tool

• direct CXp enumeration:
• LBX-like MCS enumeration
• “Clause D” heuristic

• MARCO-like XP enumeration:
• targets either AXps or CXps
• computes both AXps and CXps

• minimum hitting sets — RC2 MaxSAT
• XP reduction — deletion-based linear search

14/17

https://github.com/alexeyignatiev/xdl-tool

Experimental setup

• Python + PySAT:
• Glucose3 SAT solver
• incremental oracle calls

• https://github.com/alexeyignatiev/xdl-tool

• direct CXp enumeration:
• LBX-like MCS enumeration
• “Clause D” heuristic

• MARCO-like XP enumeration:
• targets either AXps or CXps
• computes both AXps and CXps

• minimum hitting sets — RC2 MaxSAT
• XP reduction — deletion-based linear search

14/17

https://github.com/alexeyignatiev/xdl-tool

Experimental setup

• Python + PySAT:
• Glucose3 SAT solver
• incremental oracle calls

• https://github.com/alexeyignatiev/xdl-tool

• direct CXp enumeration:
• LBX-like MCS enumeration
• “Clause D” heuristic

• MARCO-like XP enumeration:
• targets either AXps or CXps
• computes both AXps and CXps

• minimum hitting sets — RC2 MaxSAT
• XP reduction — deletion-based linear search

14/17

https://github.com/alexeyignatiev/xdl-tool

Experimental setup

• Python + PySAT:
• Glucose3 SAT solver
• incremental oracle calls

• https://github.com/alexeyignatiev/xdl-tool

• direct CXp enumeration:
• LBX-like MCS enumeration
• “Clause D” heuristic

• MARCO-like XP enumeration:
• targets either AXps or CXps
• computes both AXps and CXps

• minimum hitting sets — RC2 MaxSAT
• XP reduction — deletion-based linear search

14/17

https://github.com/alexeyignatiev/xdl-tool

Experimental setup

• Python + PySAT:
• Glucose3 SAT solver
• incremental oracle calls

• https://github.com/alexeyignatiev/xdl-tool

• direct CXp enumeration:
• LBX-like MCS enumeration
• “Clause D” heuristic

• MARCO-like XP enumeration:
• targets either AXps or CXps
• computes both AXps and CXps

• minimum hitting sets — RC2 MaxSAT
• XP reduction — deletion-based linear search

14/17

https://github.com/alexeyignatiev/xdl-tool

Results – raw performance

0 50 100 150 200 250 300 350 400
datasets

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

MARCO-like AXp Enumeration
MARCO-like CXp Enumeration
LBX-like CXp Enumeration

all approaches finish complete XP enumeration within <1000 sec.

MARCO-like setup — targeting AXps may pay off

direct CXp enumeration is slower (too many XPs?)

15/17

Results – raw performance

0 50 100 150 200 250 300 350 400
datasets

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

MARCO-like AXp Enumeration
MARCO-like CXp Enumeration
LBX-like CXp Enumeration

all approaches finish complete XP enumeration within <1000 sec.

MARCO-like setup — targeting AXps may pay off

direct CXp enumeration is slower (too many XPs?)

15/17

Results – raw performance

0 50 100 150 200 250 300 350 400
datasets

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

MARCO-like AXp Enumeration
MARCO-like CXp Enumeration
LBX-like CXp Enumeration

all approaches finish complete XP enumeration within <1000 sec.

MARCO-like setup — targeting AXps may pay off

direct CXp enumeration is slower (too many XPs?)

15/17

Results – raw performance

0 50 100 150 200 250 300 350 400
datasets

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

MARCO-like AXp Enumeration
MARCO-like CXp Enumeration
LBX-like CXp Enumeration

all approaches finish complete XP enumeration within <1000 sec.

MARCO-like setup — targeting AXps may pay off

direct CXp enumeration is slower (too many XPs?)
15/17

Results – AXps vs. CXps

101 102 103 104 105 106

Total number of AXps per dataset

101

102

103

104

105

106

To
ta

ln
um

be
ro

fC
X

ps
pe

rd
at

as
et

(a) total number of AXps and CXps

100 101 102

Average number of AXps per instance

100

101

102

A
ve

ra
ge

nu
m

be
ro

fC
X

ps
pe

ri
ns

ta
nc

e

(b) avg. number of AXps and CXps

100 101 102

Average AXp length per instance

100

101

102

A
ve

ra
ge

C
X

p
le

ng
th

pe
ri

ns
ta

nc
e

(c) avg. explanation size

16–72838 AXps vs. 23–248825 CXps per dataset
1–22.7 AXps vs. 1–20.8 CXps per instance

1–15.8 lits per AXp vs. ≤2.8 lits per CXp

16/17

Results – AXps vs. CXps

101 102 103 104 105 106

Total number of AXps per dataset

101

102

103

104

105

106

To
ta

ln
um

be
ro

fC
X

ps
pe

rd
at

as
et

(a) total number of AXps and CXps

100 101 102

Average number of AXps per instance

100

101

102

A
ve

ra
ge

nu
m

be
ro

fC
X

ps
pe

ri
ns

ta
nc

e

(b) avg. number of AXps and CXps

100 101 102

Average AXp length per instance

100

101

102

A
ve

ra
ge

C
X

p
le

ng
th

pe
ri

ns
ta

nc
e

(c) avg. explanation size

16–72838 AXps vs. 23–248825 CXps per dataset

1–22.7 AXps vs. 1–20.8 CXps per instance
1–15.8 lits per AXp vs. ≤2.8 lits per CXp

16/17

Results – AXps vs. CXps

101 102 103 104 105 106

Total number of AXps per dataset

101

102

103

104

105

106

To
ta

ln
um

be
ro

fC
X

ps
pe

rd
at

as
et

(a) total number of AXps and CXps

100 101 102

Average number of AXps per instance

100

101

102

A
ve

ra
ge

nu
m

be
ro

fC
X

ps
pe

ri
ns

ta
nc

e

(b) avg. number of AXps and CXps

100 101 102

Average AXp length per instance

100

101

102

A
ve

ra
ge

C
X

p
le

ng
th

pe
ri

ns
ta

nc
e

(c) avg. explanation size

16–72838 AXps vs. 23–248825 CXps per dataset
1–22.7 AXps vs. 1–20.8 CXps per instance

1–15.8 lits per AXp vs. ≤2.8 lits per CXp

16/17

Results – AXps vs. CXps

101 102 103 104 105 106

Total number of AXps per dataset

101

102

103

104

105

106

To
ta

ln
um

be
ro

fC
X

ps
pe

rd
at

as
et

(a) total number of AXps and CXps

100 101 102

Average number of AXps per instance

100

101

102

A
ve

ra
ge

nu
m

be
ro

fC
X

ps
pe

ri
ns

ta
nc

e

(b) avg. number of AXps and CXps

100 101 102

Average AXp length per instance

100

101

102

A
ve

ra
ge

C
X

p
le

ng
th

pe
ri

ns
ta

nc
e

(c) avg. explanation size

16–72838 AXps vs. 23–248825 CXps per dataset
1–22.7 AXps vs. 1–20.8 CXps per instance

1–15.8 lits per AXp vs. ≤2.8 lits per CXp

16/17

Summary

Summary and future work

• rigorous explanations for decision lists:

• DLs may be uninterpretable
• just like decision trees!

• finding one explanation is not polytime, unless P = NP

• same for decision sets!
• and in contrast to decision trees!

• encoding to propositional logic
• use of SAT oracles
• finding one AXp or CXp
• efficient MARCO-like enumeration!

• future work
• explain other ML models with SAT?
• efficiently?

17/17

Summary and future work

• rigorous explanations for decision lists:

• DLs may be uninterpretable
• just like decision trees!

• finding one explanation is not polytime, unless P = NP

• same for decision sets!
• and in contrast to decision trees!

• encoding to propositional logic
• use of SAT oracles
• finding one AXp or CXp
• efficient MARCO-like enumeration!

• future work
• explain other ML models with SAT?
• efficiently?

17/17

Summary and future work

• rigorous explanations for decision lists:

• DLs may be uninterpretable
• just like decision trees!

• finding one explanation is not polytime, unless P = NP

• same for decision sets!
• and in contrast to decision trees!

• encoding to propositional logic
• use of SAT oracles
• finding one AXp or CXp
• efficient MARCO-like enumeration!

• future work
• explain other ML models with SAT?
• efficiently?

17/17

Summary and future work

• rigorous explanations for decision lists:

• DLs may be uninterpretable
• just like decision trees!

• finding one explanation is not polytime, unless P = NP

• same for decision sets!
• and in contrast to decision trees!

• encoding to propositional logic
• use of SAT oracles
• finding one AXp or CXp
• efficient MARCO-like enumeration!

• future work
• explain other ML models with SAT?
• efficiently?

17/17

Summary and future work

• rigorous explanations for decision lists:

• DLs may be uninterpretable
• just like decision trees!

• finding one explanation is not polytime, unless P = NP

• same for decision sets!
• and in contrast to decision trees!

• encoding to propositional logic
• use of SAT oracles
• finding one AXp or CXp
• efficient MARCO-like enumeration!

• future work
• explain other ML models with SAT?

• efficiently?

17/17

Summary and future work

• rigorous explanations for decision lists:

• DLs may be uninterpretable
• just like decision trees!

• finding one explanation is not polytime, unless P = NP

• same for decision sets!
• and in contrast to decision trees!

• encoding to propositional logic
• use of SAT oracles
• finding one AXp or CXp
• efficient MARCO-like enumeration!

• future work
• explain other ML models with SAT?
• efficiently?

17/17

Questions?

17/17

	eXplainable AI
	DL explainability
	Are DLs hard to explain?
	Propositional encoding
	Experimental results
	Summary

