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Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):
Does there exists a cycle that visits all vertices exactly once?

Two constraints:

I Exactly two edges per vertex: easy cardinality constraints
I Exactly one cycle: hard to be compact and arc-consistent

I One option is to ignore the constraint: incremental SAT.
I Various encodings use O(|V |3). Too large for many graphs.
I For large graphs we need encodings that are quasi-linear in |E|.
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Hamiltonian Cycles: Encodings Quasi-Linear in |E|
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Key elements:

I Each vertex have an index in the range {1, . . . , |V |}.

I Selected edges are directed.

I Each vertex has one incoming and one outgoing edge.

I For each directed edge (u, v): the index of v is the
successor of the index of u — except for the starting vertex.

How to implement the successor property?
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Hamiltonian Cycles: Binary Adder Encoding [Zhou 2020]

Each index is a binary number. If edge variable eu,v is assigned
to true then the index of v is the successor of the index of u.

Example

Let |V | = 7, thus k = dlog2 7e = 3. For vertex v, variables v2,
v4, and v8 denote the least, middle, and most significant bit,
respectively. For an edge variable eu,v, we use the constraints:

eu,v → (u2 = v2)

(eu,v ∧ u2) → (u4 ↔ v4)

(eu,v ∧ u2) → (u4 = v4)

(eu,v ∧ u2) → (u8 ↔ v8)

(eu,v ∧ u4) → (u8 ↔ v8)

(eu,v ∧ u2 ∧ u4) → (u8 = v8)

u v

w

u2 → ¬v2 → w2 → ¬u2

This encoding can quickly refute odd cycles
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Hamiltonian Cycles: Linear-Feedback Shift Register

A k-bit Linear-Feedback Shift Register (LFSR) loops through
{1, . . . , 2k − 1} by shifting all bits one position to the left and
placing the parity of some bits in the vacated position.

Example

An example LFSR of 16 bits is x11 ⊕ x13 ⊕ x14 ⊕ x16, which
has 216 − 1 = 65, 535 states. The figure below shows an
illustration of this LFSR with state 10010111001011001.
The next state is 00101110010110011.
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Hamiltonian Cycles: LFSR Encoding [Johnson 2018]

Enforcing the successor property using LFSR is compact and
has been used to efficiently find Hamiltonian cycles in Erin and
Stedman triples.

Example

Let |V | = 7, thus k = dlog2(7+ 1)e = 3. We use 3-bit LFSR
x2 ⊕ x3. The bit-vector variables of vertex v are v7,1, v7,2, and
v7,3. For an edge variable eu,v, we add the constraints:

eu,v → (v7,1 ↔ (u7,2 = u7,3)

eu,v → (v7,2 ↔ u7,1)

eu,v → (v7,3 ↔ u7,2)
0
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This encoding is compact and has lots of propagation
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Hamiltonian Cycles: Chinese Remainder Encoding

Can we get the best all three worlds?

I Incremental SAT: Only partially encode the hard constraint

I Binary adder: refute some cycles quickly

I LSFR: few and short clauses, no auxiliary variables

Chinese remainder encoding:

I Block all subcycles except one of length 0 (mod m)

I Pick m (can be smaller than |V |) with small prime factors

I Enforce 0 (mod pi) for each prime factor pi of m

I Use LFSR for primes > 2 and binary adder for pi = 2
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Hamiltonian Cycles: Flinders HCP Challenge Graphs

Evaluation on reasonably large instances from the Flinders
HCP Challenge Graphs suite

I Runtime (s) of CaDiCaL on binary adder and LFSR

I Smallest k such that 2k (or 2k − 1) is larger than |V |

graph # |V | |E| adder (2k) LSFR (2k − 1)

424 2466 4240 > 3600 > 3600
446 2557 4368 > 3600 > 3600
470 2740 4509 2500.61 > 3600
491 2844 4267 173.46 245.92
506 2964 4447 78.29 244.48
522 3060 4591 84.51 611.46
526 3108 4663 160.73 544.97
529 3132 4699 69.69 275.13
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Hamiltonian Cycles: Chinese Remainder Results

Evaluation with CaDiCaL on various cycle lengths (m)

7 : First solution consists of multiple cycles

3 : First solution consists of a single cycle

graph # 2 6 12 60 105 420

424 9.81 7 665.18 7 340.11 7 307.71 7 494.11 3 488.70 3
446 13.24 7 334.62 7 169.52 7 380.47 7 573.38 3 722.23 3
470 17.08 7 166.16 7 152.31 7 933.36 7 501.91 7 840.89 3
491 0.06 7 22.04 7 7.47 3 34.45 3 123.36 3 135.22 3
506 0.11 7 31.75 7 19.24 3 33.48 3 28.73 3 63.20 3
522 0.63 7 5.66 7 32.95 3 133.40 3 30.40 3 67.03 3
526 0.05 7 24.16 7 71.67 3 34.37 3 34.69 7 158.69 3
529 0.40 7 17.90 7 60.19 3 48.09 3 42.33 3 365.58 3
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Conclusions and Future Work

Encodings matter

Chinese remainder encoding:

I Best of three worlds (partial, compact, refute short cycles)

I Block subcycles of length 0 modulo small primes

I Chinese remainder theorem: all cycles are of length 0
modulo the product of the primes

Future work:

I Use a similar encoding for other graph problems

I Explore the effectiveness for other solving techniques
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