Chinese Remainder Encoding for Hamiltonian Cycles

Marijn J.H. Heule

Carnegie
 Mellon
 University

SAT 2021
July 7, 2021

Encodings Matter

Architectural 3D Layout [VSMM '07]
Henriette Bier

Edge-matching Puzzles [LaSh '08]

Graceful Graphs
[AAAI '10]
Toby Walsh

Clique-Width
[SAT '13, TOCL '15]
Stefan Szeider
Firewall Verification [SSS '16]
Mohamed Gouda

Open Knight Tours
Moshe Vardi

Van der Waerden numbers [EJoC '07]

Software Model Synthesis
[ICGI '10, ESE '13]
Sicco Verwer

Conway's Game of Life [EJoC '13]
Willem van der Poel
Connect the Pairs
Donald Knuth

Pythagorean Triples [SAT '16, CACM '17]
Victor Marek \& Oliver Kullmann

Collatz conjecture [Open]
Emre Yolcu \& Scott Aaronson [CADE '21]

Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):
Does there exists a cycle that visits all vertices exactly once?

Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):
Does there exists a cycle that visits all vertices exactly once?

Two constraints:

- Exactly two edges per vertex: easy cardinality constraints
- Exactly one cycle: hard to be compact and arc-consistent
- One option is to ignore the constraint: incremental SAT.
- Various encodings use $\mathrm{O}\left(|\mathrm{V}|^{3}\right)$. Too large for many graphs.
- For large graphs we need encodings that are quasi-linear in $|\mathrm{E}|$.

Hamiltonian Cycles: Encodings Quasi-Linear in $|\mathrm{E}|$

Key elements:

- Each vertex have an index in the range $\{1, \ldots,|\mathrm{~V}|\}$.
- Selected edges are directed.
- Each vertex has one incoming and one outgoing edge.
- For each directed edge (u, v) : the index of v is the successor of the index of u - except for the starting vertex.

Hamiltonian Cycles: Encodings Quasi-Linear in $|\mathrm{E}|$

Key elements:

- Each vertex have an index in the range $\{1, \ldots,|\mathrm{~V}|\}$.
- Selected edges are directed.
- Each vertex has one incoming and one outgoing edge.
- For each directed edge (u, v) : the index of v is the successor of the index of u - except for the starting vertex.

How to implement the successor property?

Hamiltonian Cycles: Binary Adder Encoding [Zhou 2020]

Each index is a binary number. If edge variable $e_{u, v}$ is assigned to true then the index of v is the successor of the index of u.

Example
Let $|\mathrm{V}|=7$, thus $\mathrm{k}=\left\lceil\log _{2} 7\right\rceil=3$. For vertex v, variables v_{2}, ν_{4}, and ν_{8} denote the least, middle, and most significant bit, respectively. For an edge variable $e_{u, v}$, we use the constraints:

$$
\begin{aligned}
& e_{u, v} \rightarrow\left(u_{2} \leftrightarrow v_{2}\right) \\
& \left(e_{u, v} \wedge \bar{u}_{2}\right) \rightarrow\left(u_{4} \leftrightarrow v_{4}\right) \\
& \left(e_{u, v} \wedge u_{2}\right) \rightarrow\left(u_{4} \leftrightarrow \nu_{4}\right) \\
& \left(e_{u, v} \wedge \bar{u}_{2}\right) \rightarrow\left(u_{8} \leftrightarrow v_{8}\right) \\
& \left(e_{u, v} \wedge \bar{u}_{4}\right) \rightarrow\left(u_{8} \leftrightarrow v_{8}\right) \\
& \left(e_{u, v} \wedge u_{2} \wedge u_{4}\right) \rightarrow\left(u_{8} \leftrightarrow v_{8}\right)
\end{aligned}
$$

Hamiltonian Cycles: Binary Adder Encoding [Zhou 2020]

Each index is a binary number. If edge variable $e_{u, v}$ is assigned to true then the index of v is the successor of the index of u.
Example
Let $|\mathrm{V}|=7$, thus $k=\left\lceil\log _{2} 7\right\rceil=3$. For vertex v, variables v_{2}, v_{4}, and v_{8} denote the least, middle, and most significant bit, respectively. For an edge variable $e_{u, v}$, we use the constraints:

$$
\begin{aligned}
e_{u, v} & \rightarrow\left(u_{2} \leftrightarrow v_{2}\right) \\
\left(e_{u, v} \wedge \bar{u}_{2}\right) & \rightarrow\left(u_{4} \leftrightarrow v_{4}\right) \\
\left(e_{u, v} \wedge u_{2}\right) & \rightarrow\left(u_{4} \leftrightarrow v_{4}\right) \\
\left(e_{u, v} \wedge \bar{u}_{2}\right) & \rightarrow\left(u_{8} \leftrightarrow v_{8}\right) \\
\left(e_{u, v} \wedge \bar{u}_{4}\right) & \rightarrow\left(u_{8} \leftrightarrow v_{8}\right) \\
\left(e_{u, v} \wedge u_{2} \wedge u_{4}\right) & \rightarrow\left(u_{8} \leftrightarrow v_{8}\right)
\end{aligned}
$$

$\mathrm{u}_{2} \rightarrow \neg \mathrm{v}_{2} \rightarrow \mathfrak{w}_{2} \rightarrow \neg \mathrm{u}_{2}$
This encoding can quickly refute odd cycles

Hamiltonian Cycles: Linear-Feedback Shift Register

A k-bit Linear-Feedback Shift Register (LFSR) loops through $\left\{1, \ldots, 2^{k}-1\right\}$ by shifting all bits one position to the left and placing the parity of some bits in the vacated position.

Example

An example LFSR of 16 bits is $x_{11} \oplus x_{13} \oplus x_{14} \oplus x_{16}$, which has $2^{16}-1=65,535$ states. The figure below shows an illustration of this LFSR with state 10010111001011001. The next state is 00101110010110011 .

Hamiltonian Cycles: LFSR Encoding [Johnson 2018]

Enforcing the successor property using LFSR is compact and has been used to efficiently find Hamiltonian cycles in Erin and Stedman triples.

Example

Let $|\mathrm{V}|=7$, thus $k=\left\lceil\log _{2}(7+1)\right\rceil=3$. We use 3 -bit LFSR $x_{2} \oplus x_{3}$. The bit-vector variables of vertex v are $v_{7,1}, v_{7,2}$, and $v_{7,3}$. For an edge variable $e_{u, v}$, we add the constraints:

$$
\begin{array}{lrl|l|}
e_{u, v} \rightarrow\left(v_{7,1} \leftrightarrow\left(u_{7,2} \leftrightarrow u_{7,3}\right)\right. & \left.\begin{array}{ll|l|l|}
3 & 2 & 1 \\
e_{u, v} & \rightarrow\left(v_{7,2} \leftrightarrow u_{7,1}\right) & 0 & 0
\end{array}\right) \\
e_{u, v} \rightarrow\left(v_{7,3} \leftrightarrow u_{7,2}\right) & & & \\
\hline
\end{array}
$$

Hamiltonian Cycles: LFSR Encoding [Johnson 2018]

Enforcing the successor property using LFSR is compact and has been used to efficiently find Hamiltonian cycles in Erin and Stedman triples.

Example

Let $|\mathrm{V}|=7$, thus $k=\left\lceil\log _{2}(7+1)\right\rceil=3$. We use 3 -bit LFSR $x_{2} \oplus x_{3}$. The bit-vector variables of vertex v are $v_{7,1}, v_{7,2}$, and $\nu_{7,3}$. For an edge variable $e_{u, v}$, we add the constraints:

This encoding is compact and has lots of propagation

Hamiltonian Cycles: Chinese Remainder Encoding

Can we get the best all three worlds?

- Incremental SAT: Only partially encode the hard constraint
- Binary adder: refute some cycles quickly
- LSFR: few and short clauses, no auxiliary variables

Hamiltonian Cycles: Chinese Remainder Encoding

Can we get the best all three worlds?

- Incremental SAT: Only partially encode the hard constraint
- Binary adder: refute some cycles quickly
- LSFR: few and short clauses, no auxiliary variables

Chinese remainder encoding:

- Block all subcycles except one of length $0(\bmod m)$
- Pick m (can be smaller than $|\mathrm{V}|$) with small prime factors
- Enforce $0\left(\bmod p_{i}\right)$ for each prime factor p_{i} of m
- Use LFSR for primes >2 and binary adder for $p_{i}=2$

Hamiltonian Cycles: Flinders HCP Challenge Graphs

Evaluation on reasonably large instances from the Flinders HCP Challenge Graphs suite

- Runtime (s) of CaDiCaL on binary adder and LFSR
- Smallest k such that 2^{k} (or $2^{k}-1$) is larger than $|V|$

graph \#	$\|\mathrm{V}\|$	$\|\mathrm{E}\|$	adder $\left(2^{\mathrm{k}}\right)$	LSFR $\left(2^{\mathrm{k}}-1\right)$
424	2466	4240	>3600	>3600
446	2557	4368	>3600	>3600
470	2740	4509	2500.61	>3600
491	2844	4267	173.46	245.92
506	2964	4447	78.29	244.48
522	3060	4591	84.51	611.46
526	3108	4663	160.73	544.97
529	3132	4699	69.69	275.13

Hamiltonian Cycles: Chinese Remainder Results

Evaluation with CaDiCaL on various cycle lengths (m)
X : First solution consists of multiple cycles
\checkmark : First solution consists of a single cycle

graph \#	2	6	12	60	105	420
424	$9.81 \times$	$665.18 \times$	$340.11 \times$	$307.71 \times$	$494.11 \checkmark$	488.70 ل
446	$13.24 \times$	$334.62 \times$	$169.52 \times$	$380.47 \times$	573.38	722.23
470	$17.08 \times$	$166.16 \times$	$152.31 \times$	933.36 X	$501.91 \times$	840.89
491	0.06 X	22.04 X	7.47 ل	34.45	123.36	135.22
506	0.11 X	31.75 X	19.24	33.48 V	28.73 J	63.20 J
522	0.63 x	5.66 X	32.95	133.40	30.40 /	67.03 J
526	0.05 x	24.16 X	71.67 J	34.37	34.69 X	158.69 J
529	0.40 X	17.90 X	60.19 /	48.09 J	42.33 ,	365.58 ,

Conclusions and Future Work

Encodings matter

Chinese remainder encoding:

- Best of three worlds (partial, compact, refute short cycles)
- Block subcycles of length 0 modulo small primes
- Chinese remainder theorem: all cycles are of length 0 modulo the product of the primes

Future work:

- Use a similar encoding for other graph problems
- Explore the effectiveness for other solving techniques

