Investigating the Existence of Costas Latin Square via Satisfiability Testing

Jiwei Jin ${ }^{1,4}$ ，Yiqi $\mathrm{Lv}^{1,3}$ ，Cunjing Ge ${ }^{5}$ ， Feifei Ma ${ }^{1,2,3}$ Jian Zhang ${ }^{1,3}$

1．State Key Laboratory of Computer Science， ISCAS，Beijing，China
2．Laboratory of Parallel Software and Computational Science， ISCAS，Beijing，China
3．University of Chinese Academy of Sciences，Beijing，China
4．Shandong Jiaotong University，Jinan，China
5．Johannes Kepler University，Linz，Austria
2021－07

Outline

1 Problem Description

- Costas Latin Squares
- Some Properties of Costas Latin Squares

2 Modeling
■ Latin Squares Property and Costas Property
■ Some Properties of Costas Latin Squares
3 Improvements in Modeling

- Symmetry Breaking
- Transversal Matrix

4 New Results and Experimental Evaluation
■ New Results

- Experimental Evaluation

Latin Square

Latin Squares

A Latin square is a $n \times n$ array filled with n different symbols, each occurring exactly once in each row and exactly once in each column.

Costas Arrays

Costas Arrays

A Costas array of order n is a $n \times n$ array of dots and empty cells such that: (a). There are n dots and $n \times(n-1)$ empty cells, with exactly one dot in each row and column. (b). All the segments between pairs of dots differ in length or in slope.

Example

1	0	0	0
0	1	0	0
0	0	0	1
0	0	1	0

```
                                    OO

\section*{Costas Latin Squares}

\section*{Costas Latin Squares}

A Costas Latin square of order \(n\) is a Latin square of order \(n\) such that for each symbol \(i \in\{1,2, \cdots, n\}\), a Costas array results if a dot is placed in the cells containing symbol \(i\).

\section*{Example}
\begin{tabular}{|l|l|l|l|}
\hline 1 & 2 & 4 & 3 \\
\hline 2 & 3 & 1 & 4 \\
\hline 3 & 4 & 2 & 1 \\
\hline 4 & 1 & 3 & 2 \\
\hline
\end{tabular}

\section*{Idempotency}

\section*{Idempotency}

For a \(C L S(n) A\), we use \(A(i, j)\) to denote the symbol in the \(i\)-th row and the \(j\)-th column. If \(A\) has the property that \(A(i, i)=i\) for all \(i \in\{1,2, \cdots, n\}\), then it is called an idempotent Costas Latin square.

\section*{Orthogonality}

\section*{Orthogonality}

The orthogonality is an important property of Latin squares. For two \(\operatorname{CLS}(n) A\) and \(B\), if for all \(n \times n\) positions, the pair \((A(i, j), B(i, j)), i, j \in\{1,2, \cdots, n\}\) are different, then \(A\) and \(B\) are called orthogonal.

\section*{Example}
\begin{tabular}{|l|l|l|l|}
\hline 2 & 3 & 4 & 1 \\
\hline 4 & 1 & 2 & 3 \\
\hline 3 & 2 & 1 & 4 \\
\hline 1 & 4 & 3 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 4 & 3 & 2 & 1 \\
\hline 3 & 4 & 1 & 2 \\
\hline 1 & 2 & 3 & 4 \\
\hline 2 & 1 & 4 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 24 & 33 & 42 & 11 \\
\hline 43 & 14 & 21 & 32 \\
\hline 31 & 22 & 13 & 44 \\
\hline 12 & 41 & 34 & 23 \\
\hline
\end{tabular}

\section*{Quasigroup}

\section*{Quasigroup}

A quasigroup is an algebraic structure such that the multiplication table of a finite quasigroup is a Latin square. Conversely, every Latin square can be taken as the multiplication table of a quasigroup.

\section*{Quasigroup Identities}

\section*{Quasigroup Identities}

The existence of quasigroups satisfying the seven short identities has been studied systematically. These identities are:
- 1. \(x y \otimes y x=x\) : Schröder quasigroup

■ 2. \(y x \otimes x y=x\) : Stein' sthird law
■ 3. \((x y \otimes y) y=x: C_{3}\)-quasigroup
■ 4. \(x \otimes x y=y x\) : Stein' s first law; Stein quasigroup
- 5. \((y x \otimes y) y=x\)

■ 6. \(y x \otimes y=x \otimes y x\) : Stein' s second law
■ 7. \(x y \otimes y=x \otimes x y\) : Schröder' s first law

\section*{Latin Squares Property}

\section*{Latin Squares Property}

Since in a Latin square \(A\), each number occurs exactly once in each row and exactly once in each column, it is easy to know that: \(\forall x, y, x_{1}, x_{2}, y_{1}, y_{2} \in N:\)
\(x_{1} \neq x_{2} \mapsto A\left(x_{1}, y\right) \neq A\left(x_{2}, y\right)\)
\(y_{1} \neq y_{2} \mapsto A\left(x, y_{1}\right) \neq A\left(x, y_{2}\right)\)

\section*{Costas Property}

\section*{Costas Property}

For a \(C L S(n) A\), the Costas property requires that for each \(i \in N\), all the segments between pairs of \(i\) differ in length or in slope. This can be encoded as:
\[
\begin{aligned}
& \forall x, y, x^{\prime}, y^{\prime}, u, v, u^{\prime}, v^{\prime} \in N: \\
& \left(A(x, y)=A\left(x^{\prime}, y^{\prime}\right)=A(u, v)=A\left(u^{\prime}, v^{\prime}\right)\right. \\
& \left.\wedge\left(x-x^{\prime}=u-u^{\prime}\right) \wedge\left(y-y^{\prime}=v-v^{\prime}\right)\right) \\
& \mapsto x=u \vee x=x^{\prime}
\end{aligned}
\]

\section*{Orthogonality Property}

\section*{Orthogonality Property}

The orthogonality property involves two \(C L S(n) A, B\). This property requires that in all \(n \times n\) positions, the pair \((A(i, j), B(i, j)), i, j \in N\) are different. It can be encoded as: \(\forall x_{1}, x_{2}, y_{1}, y_{2} \in N:\)
\(x_{1} \neq x_{2} \mapsto A\left(x_{1}, y_{1}\right) \neq A\left(x_{2}, y_{2}\right) \vee B\left(x_{1}, y_{1}\right) \neq B\left(x_{2}, y_{2}\right)\)
\(y_{1} \neq y_{2} \mapsto A\left(x_{1}, y_{1}\right) \neq A\left(x_{2}, y_{2}\right) \vee B\left(x_{1}, y_{1}\right) \neq B\left(x_{2}, y_{2}\right)\)

\section*{Idempotency Property}

\section*{Idempotency Property}

The idempotency property of a \(C L S(n) A\) can be encoded simply as:
\(\forall x \in N: A(x, x)=x\)

\section*{Quasigroup Property}

\section*{Quasigroup Property}

The quasigroup properties are easy to be encoded, for example, the formula for the first one is: \(\forall x, y \in N\) :
\(\mathbf{A}(A(x, y), A(y, x))=x\)
\(\mathbf{A}(A(y, x), A(x, y))=x\)
\(\mathbf{A}(A(A(x, y), y), y)=x\)
\(\mathbf{A}(x, A(x, y))=A(y, x)\)
\(\mathbf{A}(A(A(y, x), y), y)=x\)
\(\mathbf{A}(A(y, x), y)=\mathbf{A}(x, A(y, x))\)
\(\mathbf{A}(A(x, y), y)=\mathbf{A}(x, A(x, y))\)

\section*{Symmetry Breaking}

\section*{Symmetry Breaking}

For a \(C L S(n) A\), all numbers in it are just symbols, after replacing \(1,2, \cdots, n\) by any its permutation, it is still a Costas Latin square. So the method to break symmetries for Costas Latin squares is just to fix its first column:
\(\forall x \in N: A(x, 1)=x\)

\section*{Transversal Matrix}

\section*{Transversal}

A transversal in a Latin square is a collection of positions, one from each row and one from each column, so that the elements in these positions are all different. It can be written as a vector, where the \(i\)-th element records the row index of the cell that appears in the \(i\)-th column.

\section*{Transversal Matrix}

A matrix is called a transversal matrix of Latin square, if it is consisted of \(n\) mutually disjoint transversal vectors.

\section*{Construction of Transversal Matrix}

\section*{Construction of Transversal}

For a Latin square \(A\) of order n, we construct a matrix \(T A\) for it by this way:
If \(A(i, j)=k\), then \(T A(k, j)=i\), where \(i, j, k \in N\).

\section*{Example}
\begin{tabular}{|l|l|l|l|}
\hline 1 & 2 & 4 & 3 \\
\hline 2 & 3 & 1 & 4 \\
\hline 3 & 4 & 2 & 1 \\
\hline 4 & 1 & 3 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 1 & 4 & 2 & 3 \\
\hline 2 & 1 & 3 & 4 \\
\hline 3 & 2 & 4 & 1 \\
\hline 4 & 3 & 1 & 2 \\
\hline
\end{tabular}

\section*{Improving for Costas Property}

\section*{Improving for Costas Property}

Using transversal matrix to simplify the formula for Costas property:
\(\forall x, y, z, u, v \in N\) :
\(T A(x, u)-T A(x, y)=T A(x, v)-T A(x, z) \vee u-y=v-z\)
\(\mapsto y=z \vee u=y\)

\section*{Improving for Orthogonality Property}

\section*{Improving for Orthogonality Property}

Using transversal matrix to reformulate the formula for orthogonality property:
\(\forall x, y, u, v \in N\) :
\(x \neq y \mapsto T A(u, x) \neq T B(v, x) \vee T A(u, y) \neq T B(v, y)\)

\section*{The Existence of Specified Properties Costas Latin Squares}
\begin{tabular}{lccccccccc}
\multirow{3}{*}{ Order n } & Ide & \multicolumn{7}{c}{ Quasigroup } & Ort \\
\cline { 3 - 8 } & & .1 & .2 & .3 & .4 & .5 & .6 & .7 & \\
\hline\(C L S(4)\) & s & s & s & s & s & u & u & s & s \\
\(C L S(6)\) & u & u & u & u & u & u & u & u & u \\
\(C L S(8)\) & s & u & u & u & u & u & u & u & u \\
\(C L S(10)\) & u & u & u & u & u & u & u & u & \(*\) \\
\hline
\end{tabular}

\section*{An Idempotent Costas Latin Squares}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 5 & 7 & 4 & 2 & 8 & 6 \\
\hline 4 & 2 & 6 & 8 & 3 & 1 & 5 & 7 \\
\hline 5 & 7 & 3 & 1 & 6 & 8 & 4 & 2 \\
\hline 8 & 6 & 2 & 4 & 7 & 5 & 1 & 3 \\
\hline 6 & 8 & 4 & 2 & 5 & 7 & 3 & 1 \\
\hline 7 & 5 & 1 & 3 & 8 & 6 & 2 & 4 \\
\hline 2 & 4 & 8 & 6 & 1 & 3 & 7 & 5 \\
\hline 3 & 1 & 7 & 5 & 2 & 4 & 6 & 8 \\
\hline
\end{tabular}

Experimental Evaluation

\section*{The Run Times in Solving CLS-Ord and CLS-Ort}
\begin{tabular}{|ccccc|}
\hline & SB+Tr & SB & Tr & non \\
\hline CLS(6)-Ord & \(\mathbf{0 . 0 7}\) & 0.08 & \(\mathbf{0 . 0 7}\) & 0.10 \\
\hline CLS(6)-Ort & \(\mathbf{0 . 2 8}\) & 2.23 & TO & TO \\
\hline CLS(8)-Ord & \(\mathbf{1 . 3 9}\) & 100.04 & 26.46 & 2207.91 \\
\hline CLS(8)-Ort & \(\mathbf{6 7 . 0 4}\) & 1230.96 & TO & TO \\
\hline
\end{tabular}
1.State Key Laboratory of Computer Ścience, ISCAS, Beifing, China 2.Laboratory of Parallel Software and Computational Science, IS Investigating the Existence of Costas Latin Square via Satisfiability Testing

\section*{The Run Times in Solving CLS-Ide and CLS-Qi}
\begin{tabular}{|ccc|ccc|crrr|}
\hline & Tr & non & & & & & & & \\
\hline
\end{tabular}
1.State Key Laboratory of Computer Ścience, ISCAS, Beifing, China 2.Laboratory of Parallel Software and Computational Science, IS Investigating the Existence of Costas Latin Square via Satisfiability Testing

0000

\section*{Improvements in Modeling}

0000

New Results and Experimental Evaluation

Experimental Evaluation

\section*{The Number of Clauses}
\begin{tabular}{|lcc|llllllll|}
\hline & Vars & Clauses & & & & & & Vars & Clauses \\
\hline CLS(6)-Odr & 432 & 73830 & CLS(8)-Odr & 1024 & 628360 & CLS(10)-Odr & 2000 & 3245210 \\
\hline CLS(6)-Ide & 432 & 73830 & CLS(8)-Ide & 1024 & 628360 & CLS(10)-Ide & 2000 & 3245210 \\
\hline CLS(6)-Q1-7 & 432 & 75120 & CLS(8)-Q1-7 & 1024 & 622448 & CLS(10)-Q1-7 & 2000 & 3255200 \\
\hline CLS(6)-Ort & 864 & 186540 & CLS(8)-Ort & 2048 & 1486096 & CLS(10)-Ort & 4000 & 7390420 \\
\hline
\end{tabular}
1.State Key Laboratory of Computer Ścience, ISCAS, Beifing, China 2.Laboratory of Parallel Software and Computational Science, IS Investigating the Existence of Costas Latin Square via Satisfiability Testing

\section*{Thanks}
1.State Key Laboratory of Computer Ścience, ISCAS, Beijing, China 2.Laboratory of Parallel Software and Computational Science, Is Investigating the Existence of Costas Latin Square via Satisfiability Testing```

