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Resolution Refutation

CiVzx CoVzT
Resolution rule: resolution on x
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Resolution Refutation
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Resolution Refutation
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Resolution Refutation

T2 V T3 To V T3
Resolution rule: resolution on
2

1V T2 1V T3 T2 V x3 To V I3 1V T2 xr1 VX3

To V I3 z3
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Resolution Refutation

Resolution rule: —_ resolution on

1V T2 1V T3 T2 V x3 T2 V T3 1V T2 xr1 VX3

A A/

To V I3

0

A CNF is unsat iff the clause () can be derived from its clauses by resolution.
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Resolution Refutation

The of the resolution refutation is the number of the clauses in the
refutation.

x1 V Ta 1V T3 T2 V x3 xro V T3 T1V T2 x1 VX3

\ / \ /

T2V T3 T2 VT3
Regular resolu-
tion refutation /
of length
& T2 2
] /
The resolution refutation is called when each occurs

at most once on every path to 0.
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Resolution Refutation

of a refutation

Theory: each new exponential lower bound on refutations in powerful
proof systems brings us closer to co-NP # NP.

Practice: SAT solvers return refutations as proof of unsatisfiability. Long
refutations mean big running times on unsat instances.
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Resolution Refutation

of a refutation

Theory: each new exponential lower bound on refutations in powerful
proof systems brings us closer to co-NP # NP.

Practice: SAT solvers return refutations as proof of unsatisfiability. Long
refutations mean big running times on unsat instances.

refutation

Proof of unsatisfiability for CDCL solvers are resolution refutations.

resolution refutation (RRR)

Applicable to some SAT solvers + bounds on general resolution refutation
are harder show, so we assume regularity to start.
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Are there unsatisfiable poly-size CNF-formulas with exponential RRR-length?
Yes, e.g.: on expander graphs [Tseitin68, Urquhart87]

T(G): an unsat Tseitin-formula for the graph G with degree bounded by a
constant. Let k = tw(G), n = |var T(G)| = |E(G)|.

Known already

2™ wmm ) Q(poly(L)) < RRR-length of T(G) < 2°®O(poly(n))

[ItsyksonRSS19] [AlekhnovichR11]

RRR-length of Tseitin-formulas (with bounded degree) are
characterized by the treewidth.
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Yes, e.g.: on expander graphs [Tseitin68, Urquhart87]

T(G): an unsat Tseitin-formula for the graph G with degree bounded by a
constant. Let k = tw(G), n = |var T(G)| = |E(G)|.

This paper proves

2°MQ(poly(L)) < RRR-length of T(G) < 2°®O(poly(n))

this paper [AlekhnovichR11]

RRR-length of Tseitin-formulas (with bounded degree) are atmest full
characterized by the treewidth.

From the computational complexity blog:

“- You really want to spend your life shaving log(n) factors off algerithms lower bounds? - Yes | do.”
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Tseitin-formulas

Tseitin-formulas are CNF-formulas that are hard for many refutation systems.

G = (V, E) a simple graph (undirected, no parallel edge, no self-loop) with
maximum degree A.

[ ] O
[ ] [ J {
O
Given a (black,white)-coloring of V, find a subset £’ C E such that, when we

keep only E’,
e white vertices all have odd degree
and

e black vertices all have even degree
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Tseitin-formulas

For each e € E define z. € {0,1}. iff e is in the edges kept.
[ ] O
([ ] [ ] ]
O
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Tseitin-formulas

For each e € E define z. € {0,1}. iff e is in the edges kept.
] O
(] [ ] ]
O

T(G, c): Tseitin-formula for the graph G and the (white,black)-coloring ¢

T(G,C) = /\ F, = ( /\ around v is m) A ( /\ around v is w)

veV v white v black

around v is odd/even = parity constraint on z.,e € E(v)
= CNF F, with < 2271 clauses.
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Tseitin-formulas

Example

(x1 VZ2) A(T1 Va2) A (22 VT3) A (T2 Vxs) A(z1 V a3) A (T1 V T3)

x1+xo is even xo+x3 is even z1+x3 is odd
is the Tseitin-formula for
o
TIVE: TVEs T2Vas a2VE3 TIVa: @1Vas
T2 VT3 T2 VI3

It's unsat, remember that \ / ?
\0/

T(G,c) is unsat iff the number of white vertices in G colored by c is odd
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Proof overview

Old lower bound:  RRR-length of T(G,¢) > 2ot Q(poly(L))

1
n

Proof sketch: RRR-length _ 1-BP-size of
T (G, c) is unsat -
(TEG’ 2*> N ) of T(G,c) SearchClause(7T'(G, ¢))
S 1-BP-size of
= SearchVertex(T(G, ¢))
1
> 1-BP-size '\ °e(™)
- of T(G,c")
>

(29<k)) o2
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1
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well-known, see

[LovaszNNW95]
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Vertex Search Problem

SearchVertex(T'(G, c)): given an assignment a, find a vertex of G whose
constraint is falsified by a

@ u: x1+x2iseven = C1 A Cs

v: xo+x3iseven = C3 A Cy

w: x1+x3isodd = Cay A Cs

10/ 16



Vertex Search Problem

SearchVertex(T'(G, c)): given an assignment a, find a vertex of G whose
constraint is falsified by a

@ u: r1+x2iseven = C1 A Cs
v: x2+ax3iseven = O3 A Cy

:x1+a3isodd =

10/ 16



Vertex Search Problem

SearchVertex(T'(G, c)): given an assignment a, find a vertex of G whose
constraint is falsified by a

@)

w: x1+x2iseven = C1 A Cs

v: To+x3 is even =

1 x1 +x3 is odd

C3 N\ Cy
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Proof overview

New lower bound: RRR-length of T(G,c) > 2Q(k)Q(poly(%))
well-known, see
[LovaszNNW95]
Proof sketch: RRR-length _ 1-BP-size of
T (G, c) is unsat -
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trivial
1-BP-size of
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1-BP and DNNF

: read-once branching programs, or FBDD = OBDD with no variable order
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1-BP and DNNF

: read-once branching programs, or FBDD = OBDD with no variable order

: decomposable negation normal forms /@\ var(D1) N
{A, V}-circuits where the inputs of every var(D>) = 0
A-gate work on disjoint sets of variables. Do

: DNNF whose V-gates are of this form = , 1
z z Do Do
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The problem in the old proof

Itsykson et al. build 1-BP representing T'(G, c*) satisfiable.

Problem: they sometimes need doing conjunctions of 1-BP on disjoint variables

(=)
—
—
(=}

var(B1) N var(B2) =0

X
N
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The problem in the old proof

Itsykson et al. build 1-BP representing T'(G, c*) satisfiable.

Problem: they sometimes need doing conjunctions of 1-BP on disjoint variables

but then B> is modified!

Make a copy of 53> before,
for later uses

0 1 1 0
var(B1) N var(B2) =0 gy
The copies account for a log(n) exponent in the 1-BP-size of T'(G, ¢*).

RRR-length . 1-BP-size T
of T'(G,c) of T(G,c")
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Where our proof diverges

Our solution: just allow for decomposable A-gates in the circuit
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Where our proof diverges

Our solution: just allow for decomposable A-gates in the circuit
e we obtain a dec-DNNF and not a 1-BP in the end

e but we never need copies

var(Di) N var(D>) =0 Ty 2 abe

e so we get rid of the log(n) exponent

RRR-length . dec-DNNF-size
of T(G, c) = of T(G,c")
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That's only half the paper!

Itsykson et al. prove

1-BP-size of T(G, c*) > 290

we show
DNNF-size of T(G, c*) > 2%*)

Getting this bound requires a good understanding of Tseitin-formulas + our
techniques improve on standard method for DNNF lower bounds
(too technical for this presentation, see the paper).
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Thank you for watching
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