Characterizing Tseitin-formulas with short regular resolution refutations

Alexis de Colnet ${ }^{1}$ Stefan Mengel ${ }^{2}$

${ }^{1}$ CNRS, CRIL, Univ-Artois, France
${ }^{2}$ CNRS, CRIL, France

Resolution Refutation

$\begin{aligned} \text { Resolution rule: } & \frac{C_{1} \vee x \quad C_{2} \vee \bar{x}}{C_{1} \vee C_{2}} \quad \text { resolution on } x \\ x_{1} \vee \bar{x}_{2} & \bar{x}_{1} \vee \bar{x}_{3} \quad \bar{x}_{2} \vee x_{3} \quad x_{2} \vee \bar{x}_{3} \quad \bar{x}_{1} \vee x_{2} \quad x_{1} \vee x_{3}\end{aligned}$

Resolution Refutation

Resolution rule: $\frac{x_{1} \vee \bar{x}_{2} \quad \bar{x}_{1} \vee \bar{x}_{3}}{\bar{x}_{2} \vee \bar{x}_{3}} \quad$ resolution on x_{1}

Resolution Refutation

Resolution rule: $\frac{\bar{x}_{1} \vee x_{2} \quad x_{1} \vee x_{3}}{x_{2} \vee x_{3}} \quad$ resolution on x_{1}

Resolution Refutation

Resolution rule: $\frac{\bar{x}_{2} \vee \bar{x}_{3} \quad \bar{x}_{2} \vee x_{3}}{\bar{x}_{2}} \quad$ resolution on x_{3}

Resolution Refutation

Resolution rule: $\frac{x_{2} \vee x_{3} \quad x_{2} \vee \bar{x}_{3}}{x_{2}} \quad$ resolution on x_{3}

Resolution Refutation

Resolution rule:

resolution on x_{2}

A CNF is unsat iff the clause \emptyset can be derived from its clauses by resolution.

Resolution Refutation

The length of the resolution refutation is the number of the clauses in the refutation.

Regular resolution refutation of length 11

The resolution refutation is called regular when each resolution variable occurs at most once on every path to \emptyset.

Resolution Refutation

Length of a refutation
Theory: each new exponential lower bound on refutations in powerful proof systems brings us closer to co-NP \neq NP.
Practice: SAT solvers return refutations as proof of unsatisfiability. Long refutations mean big running times on unsat instances.

Resolution Refutation

Length of a refutation
Theory: each new exponential lower bound on refutations in powerful proof systems brings us closer to co-NP \neq NP.
Practice: SAT solvers return refutations as proof of unsatisfiability. Long refutations mean big running times on unsat instances.

Resolution refutation
Proof of unsatisfiability for CDCL solvers are resolution refutations.

Resolution Refutation

Length of a refutation
Theory: each new exponential lower bound on refutations in powerful proof systems brings us closer to co-NP \neq NP.
Practice: SAT solvers return refutations as proof of unsatisfiability. Long refutations mean big running times on unsat instances.

Resolution refutation
Proof of unsatisfiability for CDCL solvers are resolution refutations.

Regular resolution refutation (RRR)
Applicable to some SAT solvers + bounds on general resolution refutation are harder show, so we assume regularity to start.

What we do

Are there unsatisfiable poly-size CNF-formulas with exponential RRR-length? Yes, e.g.: Tseitin-formulas on expander graphs [Tseitin68, Urquhart87]
$T(G)$: an unsat Tseitin-formula for the graph G with degree bounded by a constant. Let $k=t w(G), n=|\operatorname{var} T(G)|=|E(G)|$.

Known already

$$
\begin{gathered}
2^{\Omega\left(\frac{k}{\log (n)}\right)} \Omega\left(\operatorname{poly}\left(\frac{1}{n}\right)\right) \leq \text { RRR-length of } T(G) \leq 2^{O(k)} O(\operatorname{poly}(n)) \\
{[\text { ItsyksonRSS19] }} \\
{[\text { AlekhnovichR11] }}
\end{gathered}
$$

RRR-length of Tseitin-formulas (with bounded degree) are almost fully characterized by the treewidth.

What we do

Are there unsatisfiable poly-size CNF-formulas with exponential RRR-length? Yes, e.g.: Tseitin-formulas on expander graphs [Tseitin68, Urquhart87]
$T(G)$: an unsat Tseitin-formula for the graph G with degree bounded by a constant. Let $k=t w(G), n=|\operatorname{var} T(G)|=|E(G)|$.

This paper proves

$$
\begin{gathered}
2^{\Omega(k)} \Omega\left(\operatorname{poly}\left(\frac{1}{n}\right)\right) \leq \text { RRR-length of } T(G) \leq 2^{O(k)} O(\operatorname{poly}(n)) \\
\text { this paper } \\
{[\text { AlekhnovichR11] }}
\end{gathered}
$$

RRR-length of Tseitin-formulas (with bounded degree) are almost fully characterized by the treewidth.

From the computational complexity blog:

"- You really want to spend your life shaving $\log (\mathrm{n})$ factors off lower bounds? - Yes I do."

Tseitin-formulas

Tseitin-formulas are CNF-formulas that are hard for many refutation systems.
$G=(V, E)$ a simple graph (undirected, no parallel edge, no self-loop) with maximum degree Δ.

Given a (black, white)-coloring of V, find a subset $E^{\prime} \subseteq E$ such that, when we keep only E^{\prime},

- white vertices all have odd degree and
- black vertices all have even degree

Tseitin-formulas

Tseitin-formulas are CNF-formulas that are hard for many refutation systems.
$G=(V, E)$ a simple graph (undirected, no parallel edge, no self-loop) with maximum degree Δ.

Given a (black, white)-coloring of V, find a subset $E^{\prime} \subseteq E$ such that, when we keep only E^{\prime},

- white vertices all have odd degree and
- black vertices all have even degree

Tseitin-formulas

Tseitin-formulas are CNF-formulas that are hard for many refutation systems.
$G=(V, E)$ a simple graph (undirected, no parallel edge, no self-loop) with maximum degree Δ.

Given a (black, white)-coloring of V, find a subset $E^{\prime} \subseteq E$ such that, when we keep only E^{\prime},

- white vertices all have odd degree and
- black vertices all have even degree

Tseitin-formulas

Tseitin-formulas are CNF-formulas that are hard for many refutation systems.
$G=(V, E)$ a simple graph (undirected, no parallel edge, no self-loop) with maximum degree Δ.

Given a (black, white)-coloring of V, find a subset $E^{\prime} \subseteq E$ such that, when we keep only E^{\prime},

- white vertices all have odd degree and
- black vertices all have even degree

Tseitin-formulas

For each $e \in E$ define $x_{e} \in\{0,1\}$. $x_{e}=1$ iff e is in the edges kept.

Tseitin-formulas

For each $e \in E$ define $x_{e} \in\{0,1\}$. $x_{e}=1$ iff e is in the edges kept.

Tseitin-formulas

For each $e \in E$ define $x_{e} \in\{0,1\} . x_{e}=1$ iff e is in the edges kept.

$T(G, c)$: Tseitin-formula for the graph G and the (white,black)-coloring c

$$
T(G, c) \quad \equiv\left(\bigwedge_{v \text { white }} \begin{array}{c}
\text { \#orange edges } \\
\text { around } v \text { is odd }
\end{array}\right) \wedge\left(\bigwedge_{v \text { black }}^{\left.\begin{array}{c}
\text { \#orange edges } \\
\text { around } v \text { is even }
\end{array}\right)}\right.
$$

\#orange edges around v is odd/even $=$ parity constraint on $x_{e}, e \in E(v)$

Tseitin-formulas

For each $e \in E$ define $x_{e} \in\{0,1\} . x_{e}=1$ iff e is in the edges kept.

$T(G, c)$: Tseitin-formula for the graph G and the (white,black)-coloring c

$$
T(G, c)=\bigwedge_{v \in V} F_{v} \equiv\left(\bigwedge_{v \text { white }}^{\begin{array}{c}
\text { \#orange edges } \\
\text { around } v \text { is odd }
\end{array}}\right) \wedge\left(\bigwedge_{v \text { black }}^{\left.\begin{array}{c}
\text { \#orange edges } \\
\text { around } v \text { is even }
\end{array}\right)}\right.
$$

\#orange edges around v is odd/even $=$ parity constraint on $x_{e}, e \in E(v)$ \equiv CNF F_{v} with $\leq 2^{\Delta-1}$ clauses.

Tseitin-formulas

Example

$$
\underbrace{\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right)}_{x_{1}+x_{2} \text { is even }} \wedge \underbrace{\left(x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{2} \vee x_{3}\right)}_{x_{2}+x_{3} \text { is even }} \wedge \underbrace{\left(x_{1} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right)}_{x_{1}+x_{3} \text { is odd }}
$$

is the Tseitin-formula for

It's unsat, remember that

$T(G, c)$ is unsat iff the number of white vertices in G colored by c is odd

Proof overview

Old lower bound: RRR-length of $T(G, c) \geq 2^{\Omega\left(\frac{k}{\log (n)}\right)} \Omega\left(\right.$ poly $\left.\left(\frac{1}{n}\right)\right)$

> Proof sketch:
> $\binom{T(G, c)$ is unsat }{$T\left(G, c^{*}\right)$ is sat }

$$
\begin{array}{lc}
\geq & \text { 1-BP-size of } \\
& \text { SearchVertex }(T(G, c))
\end{array}
$$

$$
\geq \quad\binom{1-\mathrm{BP}-\text { size }}{\text { of } T\left(G, c^{*}\right)}^{\frac{1}{\log (n)}}
$$

$$
\geq \quad\left(2^{\Omega(k)}\right)^{\frac{1}{\log (n)}}
$$

$$
\begin{aligned}
& \text { RRR-length } \\
& =\begin{array}{c}
1-\mathrm{BP}-\text { size of } \\
\text { SearchClause }(T(G, c))
\end{array}
\end{aligned}
$$

Proof overview

Old lower bound: RRR-length of $T(G, c) \geq 2^{\Omega\left(\frac{k}{\log (n)}\right)} \Omega\left(\operatorname{poly}\left(\frac{1}{n}\right)\right)$

Proof sketch:
$\binom{T(G, c)$ is unsat }{$T\left(G, c^{*}\right)$ is sat }

$\geq \quad \begin{gathered}1-\mathrm{BP} \text {-size of } \\ \text { SearchVertex }(T(G, c))\end{gathered}$
$\geq \quad\binom{1-\mathrm{BP}-\text { size }}{\text { of } T\left(G, c^{*}\right)}^{\frac{1}{\log (n)}}$
$\geq \quad\left(2^{\Omega(k)}\right)^{\frac{1}{\log (n)}}$

Vertex Search Problem

SearchVertex $(\boldsymbol{T}(\boldsymbol{G}, \boldsymbol{c}))$: given an assignment a, find a vertex of G whose constraint is falsified by a

$u: x_{1}+x_{2}$ is even $\equiv C_{1} \wedge C_{5}$
$v: x_{2}+x_{3}$ is even $\equiv C_{3} \wedge C_{4}$
$w: x_{1}+x_{3}$ is odd $\equiv C_{2} \wedge C_{6}$

Vertex Search Problem

SearchVertex $(\boldsymbol{T}(\boldsymbol{G}, \boldsymbol{c}))$: given an assignment a, find a vertex of G whose constraint is falsified by a

$u: x_{1}+x_{2}$ is even $\equiv C_{1} \wedge C_{5}$
$v: x_{2}+x_{3}$ is even $\equiv C_{3} \wedge C_{4}$
$w: x_{1}+x_{3}$ is odd $\equiv C_{2} \wedge C_{6}$

Vertex Search Problem

SearchVertex $(\boldsymbol{T}(\boldsymbol{G}, \boldsymbol{c}))$: given an assignment a, find a vertex of G whose constraint is falsified by a

$u: x_{1}+x_{2}$ is even $\equiv C_{1} \wedge C_{5}$
$v: x_{2}+x_{3}$ is even $\equiv C_{3} \wedge C_{4}$
$w: x_{1}+x_{3}$ is odd $\equiv C_{2} \wedge C_{6}$

Proof overview

Old lower bound: RRR-length of $T(G, c) \geq 2^{\Omega\left(\frac{k}{\log (n)}\right)} \Omega\left(\operatorname{poly}\left(\frac{1}{n}\right)\right)$

Proof sketch:
$\binom{T(G, c)$ is unsat }{$T\left(G, c^{*}\right)$ is sat }

$\geq \quad \begin{gathered}1-\mathrm{BP} \text {-size of } \\ \text { SearchVertex }(T(G, c))\end{gathered}$
$\geq \quad\binom{1-\mathrm{BP}-\text { size }}{\text { of } T\left(G, c^{*}\right)}^{\frac{1}{\log (n)}}$
$\geq \quad\left(2^{\Omega(k)}\right)^{\frac{1}{\log (n)}}$

Proof overview

Old lower bound: RRR-length of $T(G, c) \geq 2^{\Omega\left(\frac{k}{\log (n)}\right)} \Omega\left(\operatorname{poly}\left(\frac{1}{n}\right)\right)$

Proof sketch: $\binom{T(G, c)$ is unsat }{$T\left(G, c^{*}\right)$ is sat }

$$
\geq \quad\binom{1-\mathrm{BP}-\text { size }}{\text { of } T\left(G, c^{*}\right)}^{\frac{1}{\log (n)}}
$$

$$
\geq \quad\left(2^{\Omega(k)}\right)^{\frac{1}{\log (n)}}
$$

Proof overview

Old lower bound: RRR-length of $T(G, c) \geq 2^{\Omega\left(\frac{k}{\log (n)}\right)} \Omega\left(\right.$ poly $\left.\left(\frac{1}{n}\right)\right)$

Proof sketch:
$\binom{T(G, c)$ is unsat }{$T\left(G, c^{*}\right)$ is sat }

Proof overview

New lower bound:
RRR-length of $T(G, c) \geq 2^{\Omega(k)} \Omega\left(\operatorname{poly}\left(\frac{1}{n}\right)\right)$

Proof sketch:
$\binom{T(G, c)$ is unsat }{$T\left(G, c^{*}\right)$ is sat }

1-BP and DNNF

1-BP: read-once branching programs, or FBDD $=$ OBDD with no variable order

1-BP and DNNF

1-BP: read-once branching programs, or FBDD $=$ OBDD with no variable order

DNNF: decomposable negation normal forms $\{\wedge, \vee\}$-circuits where the inputs of every \wedge-gate work on disjoint sets of variables.

1-BP and DNNF

1-BP: read-once branching programs, or FBDD $=$ OBDD with no variable order

DNNF: decomposable negation normal forms $\{\wedge, \vee\}$-circuits where the inputs of every \wedge-gate work on disjoint sets of variables.

dec-DNNF: DNNF whose V-gates are of this form

The problem in the old proof

Itsykson et al. build 1-BP representing $T\left(G, c^{*}\right)$ satisfiable.

Problem: they sometimes need doing conjunctions of 1-BP on disjoint variables

The problem in the old proof

Itsykson et al. build 1-BP representing $T\left(G, c^{*}\right)$ satisfiable.
Problem: they sometimes need doing conjunctions of 1-BP on disjoint variables

The problem in the old proof

Itsykson et al. build 1-BP representing $T\left(G, c^{*}\right)$ satisfiable.
Problem: they sometimes need doing conjunctions of 1-BP on disjoint variables

The problem in the old proof

Itsykson et al. build 1-BP representing $T\left(G, c^{*}\right)$ satisfiable.
Problem: they sometimes need doing conjunctions of 1-BP on disjoint variables

The copies account for a $\log (n)$ exponent in the 1-BP-size of $T\left(G, c^{*}\right)$.

$$
\begin{aligned}
& \text { RRR-length } \\
& \text { of } T(G, c)
\end{aligned} \quad \geq \quad\binom{1 \text {-BP-size }}{\text { of } T\left(G, c^{*}\right)}^{\frac{1}{\log (n)}}
$$

Where our proof diverges

Our solution: just allow for decomposable \wedge-gates in the circuit

Where our proof diverges

Our solution: just allow for decomposable \wedge-gates in the circuit

- we obtain a dec-DNNF and not a $1-B P$ in the end

Where our proof diverges

Our solution: just allow for decomposable \wedge-gates in the circuit

- we obtain a dec-DNNF and not a 1-BP in the end
- but we never need copies

Where our proof diverges

Our solution: just allow for decomposable \wedge-gates in the circuit

- we obtain a dec-DNNF and not a 1-BP in the end
- but we never need copies

- so we get rid of the $\log (n)$ exponent

$$
\begin{array}{ll}
\text { RRR-length } & \geq \\
\text { of } T(G, c) & \text { dec-DNNF-size } \\
\text { of } T\left(G, c^{*}\right)
\end{array}
$$

That's only half the paper!

Itsykson et al. prove

$$
\text { 1-BP-size of } T\left(G, c^{*}\right) \geq 2^{\Omega(k)}
$$

we show

$$
\text { DNNF-size of } T\left(G, c^{*}\right) \geq 2^{\Omega(k)}
$$

Getting this bound requires a good understanding of Tseitin-formulas + our techniques improve on standard method for DNNF lower bounds (too technical for this presentation, see the paper).

Thank you for watching
[Tseitin68] Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in Constructive Mathematics and Mathematical Logic Part 2, 115-125 (1968)
[Urquhart87] Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209-219 (1987).
[LovászNNW95] Lovász, L., Naor, M., Newman, I., Wigderson, A.: Search problems in the decision tree model. SIAM J. Discret. Math. 8(1), 119-132 (1995)
[AlekhnovichR11] Alekhnovich, M., Razborov, A.A.: Satisfiability, branch-width and tseitin tautologies. Comput. Complex. 20(4), 649-678 (2011).
[ItsyksonRSS19] Itsykson, D., Riazanov, A., Sagunov, D., Smirnov, P.: Almost tight lower bounds on regular resolution refutations of tseitin formulas for all constant-degree graphs. Electron. Colloquium Comput. Complex. 26, 178 (2019)

