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Resolution Refutation

Resolution rule:
C1 ∨ x C2 ∨ x

C1 ∨ C2

resolution on x

x1 ∨ x2 x1 ∨ x3 x2 ∨ x3 x2 ∨ x3 x1 ∨ x2 x1 ∨ x3

x1 ∨ x2 x1 ∨ x3 x2 ∨ x3 x2 ∨ x3 x1 ∨ x2 x1 ∨ x3x1 ∨ x2 x1 ∨ x3x1 ∨ x2 x1 ∨ x3 x2 ∨ x3 x2 ∨ x3x2 ∨ x3x1 ∨ x2 x1 ∨ x3 x2 ∨ x3 x1 ∨ x2 x1 ∨ x3x2 ∨ x3x1 ∨ x2 x1 ∨ x3 x2 ∨ x3 x1 ∨ x2 x1 ∨ x3x1 ∨ x2 x1 ∨ x3 x2 ∨ x3 x2 ∨ x3 x1 ∨ x2 x1 ∨ x3

x2 ∨ x3x2 ∨ x3x2 ∨ x3 x2 ∨ x3x2 ∨ x3x2 ∨ x3

x2x2x2 x2x2

∅

x1 x1x1 x1 x1 x1x1 x1

x3

x3

x3

x3 x3

x3

x3

x3

x2 x2

A CNF is unsat i� the clause ∅ can be derived from its clauses by resolution.
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Resolution rule:
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Resolution Refutation

The length of the resolution refutation is the number of the clauses in the
refutation.

Regular resolu-
tion refutation
of length 11

x1 ∨ x2 x1 ∨ x3 x2 ∨ x3 x2 ∨ x3 x1 ∨ x2 x1 ∨ x3

x2 ∨ x3 x2 ∨ x3

x2 x2

∅

x1 x1 x1 x1

x3

x3 x3

x3

x2 x2

The resolution refutation is called regular when each resolution variable occurs
at most once on every path to ∅.
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Resolution Refutation

Length of a refutation

Theory: each new exponential lower bound on refutations in powerful
proof systems brings us closer to co-NP 6= NP.

Practice: SAT solvers return refutations as proof of unsatis�ability. Long
refutations mean big running times on unsat instances.

Resolution refutation

Proof of unsatis�ability for CDCL solvers are resolution refutations.

Regular resolution refutation (RRR)

Applicable to some SAT solvers + bounds on general resolution refutation
are harder show, so we assume regularity to start.
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What we do

Are there unsatis�able poly-size CNF-formulas with exponential RRR-length?

Yes, e.g.: Tseitin-formulas on expander graphs [Tseitin68, Urquhart87]

T (G): an unsat Tseitin-formula for the graph G with degree bounded by a
constant. Let k = tw(G), n = |var T (G)| = |E(G)|.

Known already

2
Ω( k

log(n)
)
Ω(poly( 1

n
)) ≤ RRR-length of T (G) ≤ 2O(k)O(poly(n))

[AlekhnovichR11][ItsyksonRSS19]

2Ω(k)Ω(poly( 1
n

))

this paper

RRR-length of Tseitin-formulas (with bounded degree) are almost fully
characterized by the treewidth.

From the computational complexity blog:

�- You really want to spend your life shaving log(n) factors o� algorithms lower bounds? - Yes I do.�
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Tseitin-formulas

Tseitin-formulas are CNF-formulas that are hard for many refutation systems.

G = (V,E) a simple graph (undirected, no parallel edge, no self-loop) with
maximum degree ∆.

Given a (black,white)-coloring of V , �nd a subset E′ ⊆ E such that, when we
keep only E′,

� white vertices all have odd degree

and

� black vertices all have even degree
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Tseitin-formulas

For each e ∈ E de�ne xe ∈ {0, 1}. xe = 1 i� e is in the edges kept.

xe1

xe2

xe3

xe4

xe5

xe6

xe7

xe8

1

1

0

1

0

1

0

1

T (G, c): Tseitin-formula for the graph G and the (white,black)-coloring c

T (G, c) =
∧
v∈V

Fv ≡
( ∧

v white

#orange edges
around v is odd

)
∧
( ∧

v black

#orange edges
around v is even

)

#orange edges around v is odd/even = parity constraint on xe, e ∈ E(v)
#orange edges around v is odd/even ≡ CNF Fv with ≤ 2∆−1 clauses.
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Tseitin-formulas

Example

(x1 ∨ x2) ∧ (x1 ∨ x2)︸ ︷︷ ︸
x1+x2 is even

∧ (x2 ∨ x3) ∧ (x2 ∨ x3)︸ ︷︷ ︸
x2+x3 is even

∧ (x1 ∨ x3) ∧ (x1 ∨ x3)︸ ︷︷ ︸
x1+x3 is odd

is the Tseitin-formula for
x1 x3

x2

It's unsat, remember that

x1 ∨ x2 x1 ∨ x3 x2 ∨ x3 x2 ∨ x3 x1 ∨ x2 x1 ∨ x3

x2 ∨ x3 x2 ∨ x3

x2 x2

∅

x1 x1 x1 x1

x3

x3 x3

x3

x2 x2

?

T (G, c) is unsat i� the number of white vertices in G colored by c is odd

8/ 16



Proof overview

Old lower bound: RRR-length of T (G, c) ≥ 2
Ω( k

log(n)
)
Ω(poly( 1

n
))

Proof sketch:(
T (G, c) is unsat
T (G, c∗) is sat

) RRR-length
of T (G, c)

1-BP-size of
SearchClause(T (G, c))

well-known, see
[LovászNNW95]

1-BP-size of
SearchVertex(T (G, c))

(
1-BP-size
of T (G, c∗)

) 1
log(n)

(
2Ω(k)

) 1
log(n)

=

≥

≥

≥
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Vertex Search Problem

SearchVertex(T (G, c)): given an assignment a, �nd a vertex of G whose
constraint is falsi�ed by a

u

w

v

x1 x3

x2

u: x1+x2 is even ≡ C1 ∧ C5

v: x2 +x3 is even ≡ C3 ∧ C4

w: x1 +x3 is odd ≡ C2 ∧ C6

x2

x3x3

x1 x1C4 C3

C6 C5 C1 C2

C4 C3

C6 C5 C1 C2

v v

w u u w
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1-BP and DNNF

1-BP: read-once branching programs, or FBDD = OBDD with no variable order

x1

x2 x2

x3 x3
x4

0 1

x1

x2 x3

x3 x2
x4

0 1

DNNF: decomposable negation normal forms
{∧,∨}-circuits where the inputs of every
∧-gate work on disjoint sets of variables.

∧

D1 D2

var(D1) ∩
var(D2) = ∅

dec-DNNF: DNNF whose ∨-gates are of this form

∨

∧ ∧

x D1 x D2

≡
x

D1 D2
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The problem in the old proof

Itsykson et al. build 1-BP representing T (G, c∗) satis�able.

Problem: they sometimes need doing conjunctions of 1-BP on disjoint variables

0 1

B1

1 0

B2∧

var(B1) ∩ var(B2) = ∅

≡
0

B1

1 0

B2

≡
0

B2

0 1

B1

The copies account for a log(n) exponent in the 1-BP-size of T (G, c∗).

RRR-length
of T (G, c)

(
1-BP-size
of T (G, c∗)

) 1
log(n)

≥
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Where our proof diverges

Our solution: just allow for decomposable ∧-gates in the circuit

� we obtain a dec-DNNF and not a 1-BP in the end

� but we never need copies

0 1

B1

1 0

B2∧

var(B1) ∩ var(B2) = ∅

x y z

D1

a b c

D2∧

var(D1) ∩ var(D2) = ∅

≡

x y z

D1

a b c

D2

∧

� so we get rid of the log(n) exponent

RRR-length
of T (G, c)

dec-DNNF-size
of T (G, c∗)

≥
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That's only half the paper!

Itsykson et al. prove

1-BP-size of T (G, c∗) ≥ 2Ω(k)

we show

DNNF-size of T (G, c∗) ≥ 2Ω(k)

Getting this bound requires a good understanding of Tseitin-formulas + our
techniques improve on standard method for DNNF lower bounds
(too technical for this presentation, see the paper).
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Thank you for watching
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