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Massively parallel SAT solving . . .

Decent speedups for many industrial instances

More cores→ less resource-efficient

⇒ Failure to scale beyond ∼ 500 cores

. . . As A Service?

High Performance Computing environment (> 1000 cores)

Many users at once: Job processing on demand

Need for low latencies, quick response times
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1 Framework Mallob

⇒ Job scheduling & load balancing platform

2 Mallob SAT engine (a.k.a. Mallob-mono)

⇒ Scalable distributed SAT solver based on HordeSat

3 Combination: Scalable resolution of SAT jobs on demand
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Animated Illustration @ https://dominikschreiber.de/animallob
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Mallob: Job Scheduling

https://dominikschreiber.de/animallob


HordeSat (Balyo et al. 2015) Mallob SAT Engine

Environment Set of PEs fixed at program start Set of PEs can grow/shrink (Malleability)

Communication Synchr. collective operations of MPI Asynchronous routing through job tree

Core solvers (P)Lingeling (Biere 2014) (P)Lingeling + YalSAT (Biere 2018)

Mode of execution Solver threads in main (MPI) process Solver threads in separate child process

+ numerous performance improvements (lock-free clause import, memory awareness, . . . )
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Periodic collective operation AllGather

Duplicate clauses

“Holes” carrying no information

Buffer grows proportionally with num. PEs
⇒ Bottleneck w.r.t communication and local work
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Custom collective operation

Malleable: Realized through job tree

Detect duplicates during merge

Result is of compact shape

Sublinear buffer size growth:
Discard longest clauses as necessary
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Setup

80 selected instances from ISC 2020

300 s per instance

5 PEs à 4 threads per machine

Configurations

HordeSat: old, new portfolio

const, sublin, prop : constant / sublinear /
proportional clause buffer size in # PEs

AnyLBD : Drop HordeSat’s successively
increasing LBD limit on shared clauses
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SAT Solving on 2560 Cores (128 Machines)
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Mallob-monoAnyLBD
sublin vs. HordeSatnew

Speedups
Instance F solved by parallel approach
⇒ Par. run time Tpar (F) ≤ 300 s
⇒ Seq. run time Tseq(F) ≤ 50 000 s

(Tseq(F) := 50 000 s if unsolved)

Total speedup Stot :∑
F Tseq(F) /

∑
F Tpar (F)

Median speedup Smed :
medianF{Tseq(F)/Tpar (F)}
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Solving 400 Formulae on 2560 Cores
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Distributed SAT solving system scaling up to 2.5k cores

In HPC environments, combine resource-efficiency of parallel job processing
with speedups of flexible parallel SAT solving

Exploit malleability for low scheduling latencies, quick response times

Work in Progress & Outlook

Clause re-sharing strategies for malleable SAT solving

Integration of further SAT solver backends (Glucose, CaDiCaL, MergeSAT, . . . )

Enable incremental SAT solving for applications like planning, verification
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System Libraries
Message Passing Interface · Multithreading and Concurrency · Inter-Process Communication

Mallob Core

Hardware · Firmware · Operating System

Message handler · Basic communication protocols · Data serialization · System diagnostics

Worker Module Client Module
Scheduling protocol · Load balancing · Job database Job queue · Worker communication

Application Interface
Job tree protocol · Internal communication · Deployment

Mallob SAT Engine
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Reworked Communication

Supports malleability: Fluctuating resources during computation

Succinct, communication-efficient clause exchange

Improved core solvers

New portfolio, also including stochastic local search

Lock-free clause import via ring buffers

Technical features

JSON API to introduce jobs, receive results

SAT solver threads in a separate child process
⇒ Seamless preemption, termination of solvers via OS signals
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Total Speedups
Ix := Instances solved by parallel approach with x cores
Instance I ∈ Ix : Parallel run time Tpar(I) ≤ 300 s , sequential (Lingeling) run time Tseq(I) ≤ 50 000 s

Total speedup: Sx :=
∑

i∈Ix
Tseq(I)∑

i∈Ix
Tpar(I)

Config. 1×3×4 2×5×4 8×5×4 32×5×4 128×5×4
# Cores 12 40 160 640 2560

HordeSat (new) 51.9 95.8 135.6 203.7 +0.2%−−−−→ 204.1

Mallob-mono (best) 58.2 94.4 154.6 220.9 +39.7%−−−−→ 308.5

15/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Scaling Experiments



16/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders
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Compare Mallob-mono on 32 (8, 2) machines
with Mallob with 4 (16, 64) jobs on 128 machines

Mallob: Keeps 5% of PEs idle for scheduling,
employs one “client” PE for introducing jobs

Same priority, time limit (300 s) for each instance

Approach Solved (SAT, UNSAT) PAR-2

Mallob J = 4 58 26 32 192.7
Mb-mono m = 32 60 28 32 181.4
Mallob J = 16 54 24 30 232.7
Mb-mono m = 8 52 23 29 240.1
Mallob J = 64 49 21 28 279.0
Mb-mono m = 2 44 19 25 299.8

Results:

J = 4: Worse performance than Mallob-mono (fewer available PEs)

J = 16, 64: Noticeable improvements! Jobs toward the end receive additional PEs from finished jobs

Scheduling times: min 0.003 s, average 0.061 s, median 0.006 s, max 0.781 s
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Solving Several Formulae At Once
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System # solved core hours (ch. for solved, unsolved)
Mallob 299 4378
Sorted runs of Mallob-mono 270 4378

299 7358
Mallob-mono (ISC’20)1 299 29449 7005 22444
P-MCOMSPS-STR-32 (ISC’20)1 284 6548 1392 5156

1Hardware comparable in per-core performance to “ours”
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