
Scalable SAT Solving in the Cloud

24th International Conference on Theory & Practice of Satisfiability Testing

Dominik Schreiber, Peter Sanders | July 9, 2021

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

0 250 500 750

Run time t (s)

0

200

400

#
in

st
a
n

ce
s

so
lv

ed
in
≤
t

2048c.

512c.

128c.

32c.

Lingeling

Extracted from Balyo et al. (2015)

Massively parallel SAT solving . . .

Decent speedups for many industrial instances

More cores→ less resource-efficient

⇒ Failure to scale beyond ∼ 500 cores

. . . As A Service?

High Performance Computing environment (> 1000 cores)

Many users at once: Job processing on demand

Need for low latencies, quick response times

2/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Motivation

0 250 500 750

Run time t (s)

0

200

400

#
in

st
a
n

ce
s

so
lv

ed
in
≤
t

2048c.

512c.

128c.

32c.

Lingeling

https://wiki.scc.kit.edu/hpc/index.php?title=Category:ForHLR

Massively parallel SAT solving . . .

Decent speedups for many industrial instances

More cores→ less resource-efficient

⇒ Failure to scale beyond ∼ 500 cores

. . . As A Service?

High Performance Computing environment (> 1000 cores)

Many users at once: Job processing on demand

Need for low latencies, quick response times

2/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Motivation

1 Framework Mallob

⇒ Job scheduling & load balancing platform

2 Mallob SAT engine (a.k.a. Mallob-mono)

⇒ Scalable distributed SAT solver based on HordeSat

3 Combination: Scalable resolution of SAT jobs on demand

3/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Our Contributions

PE 0 Core

PE 1

PE c− 1

...

PE k

...

. . .

PE k + 1

PE p− 1
. . .

MPI

Compute node 0 Compute node m− 1

Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Communication between PEs (Processing Elements) via Message Passing Interface (MPI)

4/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob: System Architecture

Animated Illustration @ https://dominikschreiber.de/animallob

5/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob: Job Scheduling

https://dominikschreiber.de/animallob

HordeSat (Balyo et al. 2015) Mallob SAT Engine

Environment Set of PEs fixed at program start Set of PEs can grow/shrink (Malleability)

Communication Synchr. collective operations of MPI Asynchronous routing through job tree

Core solvers (P)Lingeling (Biere 2014) (P)Lingeling + YalSAT (Biere 2018)

Mode of execution Solver threads in main (MPI) process Solver threads in separate child process

+ numerous performance improvements (lock-free clause import, memory awareness, . . .)

6/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob SAT Engine

Periodic collective operation AllGather

Duplicate clauses

“Holes” carrying no information

Buffer grows proportionally with num. PEs
⇒ Bottleneck w.r.t communication and local work

a

b

c

d

e

f

g

b

c

f

a
e
h

d

c

d

i c

MPI
AllGather

PEs

clause

e

f

g

b

c

f

a
e
h

d

c

d

i

c

buffers

a

b

c

d

Exported

Import clauses to solvers

7/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Clause Exchange in HordeSat

Custom collective operation

Malleable: Realized through job tree

Detect duplicates during merge

Result is of compact shape

Sublinear buffer size growth:
Discard longest clauses as necessary

a b c d

e f g

b c f a e h d c di c

a i e h c b d f g

i c d f ga e h b c d f

Three-way merge

a i e h c b d f g

Broadcast

1.

2.

(space-limited)

8/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Clause Exchange in Mallob

Setup

80 selected instances from ISC 2020

300 s per instance

5 PEs à 4 threads per machine

Configurations

HordeSat: old, new portfolio

const, sublin, prop : constant / sublinear /
proportional clause buffer size in # PEs

AnyLBD : Drop HordeSat’s successively
increasing LBD limit on shared clauses

space

0 50 100 150 200 250 300

Run time t (s)

0

10

20

30

40

50

60

70

#
in

st
an

ce
s

so
lv

ed
in
≤
t

HordeSatold

9/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

SAT Solving on 2560 Cores (128 Machines)

Setup

80 selected instances from ISC 2020

300 s per instance

5 PEs à 4 threads per machine

Configurations

HordeSat: old, new portfolio

const, sublin, prop : constant / sublinear /
proportional clause buffer size in # PEs

AnyLBD : Drop HordeSat’s successively
increasing LBD limit on shared clauses

space

0 50 100 150 200 250 300

Run time t (s)

0

10

20

30

40

50

60

70

#
in

st
an

ce
s

so
lv

ed
in
≤
t

HordeSatnew

HordeSatold

9/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

SAT Solving on 2560 Cores (128 Machines)

Setup

80 selected instances from ISC 2020

300 s per instance

5 PEs à 4 threads per machine

Configurations

HordeSat: old, new portfolio

const, sublin, prop : constant / sublinear /
proportional clause buffer size in # PEs

AnyLBD : Drop HordeSat’s successively
increasing LBD limit on shared clauses

space

0 50 100 150 200 250 300

Run time t (s)

0

10

20

30

40

50

60

70

#
in

st
an

ce
s

so
lv

ed
in
≤
t

Mallob-monosublin

Mallob-monoprop

Mallob-monoconst

HordeSatnew

HordeSatold

9/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

SAT Solving on 2560 Cores (128 Machines)

Setup

80 selected instances from ISC 2020

300 s per instance

5 PEs à 4 threads per machine

Configurations

HordeSat: old, new portfolio

const, sublin, prop : constant / sublinear /
proportional clause buffer size in # PEs

AnyLBD : Drop HordeSat’s successively
increasing LBD limit on shared clauses

space

0 50 100 150 200 250 300

Run time t (s)

0

10

20

30

40

50

60

70

#
in

st
an

ce
s

so
lv

ed
in
≤
t

Mallob-mono
AnyLBD
sublin

Mallob-monosublin

Mallob-monoprop

Mallob-monoconst

HordeSatnew

HordeSatold

9/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

SAT Solving on 2560 Cores (128 Machines)

Mallob-monoAnyLBD
sublin vs. HordeSatnew

Speedups
Instance F solved by parallel approach
⇒ Par. run time Tpar (F) ≤ 300 s
⇒ Seq. run time Tseq(F) ≤ 50 000 s

(Tseq(F) := 50 000 s if unsolved)

Total speedup Stot :∑
F Tseq(F) /

∑
F Tpar (F)

Median speedup Smed :
medianF{Tseq(F)/Tpar (F)}

12 40 160 640 2560

cores (log. scale)

0

50

100

150

200

250

300

S
p

ee
d

u
p

ov
er

se
q
.

L
in

ge
li

n
g

Stot(M)

Stot(H)

Smed(M)

Smed(H)

10/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Scaling Experiments

Mallob-monoAnyLBD
sublin vs. HordeSatnew

Speedups
Instance F solved by parallel approach
⇒ Par. run time Tpar (F) ≤ 300 s
⇒ Seq. run time Tseq(F) ≤ 50 000 s

(Tseq(F) := 50 000 s if unsolved)

Total speedup Stot :∑
F Tseq(F) /

∑
F Tpar (F)

Median speedup Smed :
medianF{Tseq(F)/Tpar (F)} 12 40 160 640 2560

cores (log. scale)

0

50

100

150

200

250

300

S
p

ee
d

u
p

ov
er

se
q
.

L
in

g
el

in
g

Stot(M)

Stot(H)

Smed(M)

Smed(H)

10/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Scaling Experiments

Time

...

Cores

F1

F2

F3

F400

. . .

400×{Lingeling, Kissat}

Run 400 sequential SAT solvers

Optimal Scheduling of Mallob-mono

Run Mallob-mono on 2560 cores for each job

Sort jobs by run time in ascending order

Mallob

Introduce all 400 jobs at system start

Automatic scheduling & load balancing

11/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Solving 400 Formulae on 2560 Cores

F7 F22F231Cores

Time

F98 . . .

400×{Lingeling, Kissat}

Run 400 sequential SAT solvers

Optimal Scheduling of Mallob-mono

Run Mallob-mono on 2560 cores for each job

Sort jobs by run time in ascending order

Mallob

Introduce all 400 jobs at system start

Automatic scheduling & load balancing

11/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Solving 400 Formulae on 2560 Cores

Time

...

Cores

F1

F2

F3

. . .

400×{Lingeling, Kissat}

Run 400 sequential SAT solvers

Optimal Scheduling of Mallob-mono

Run Mallob-mono on 2560 cores for each job

Sort jobs by run time in ascending order

Mallob

Introduce all 400 jobs at system start

Automatic scheduling & load balancing

11/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Solving 400 Formulae on 2560 Cores

0 2000 4000 6000

Total run time / s

0

50

100

150

200

250

300

#
so

lv
ed

in
st

an
ce

s

Mallob, 400 jobs @ start

400×Kissat

Sorted runs of Mallob-mono

400×Lingeling

400×{Lingeling, Kissat}

Run 400 sequential SAT solvers

Optimal Scheduling of Mallob-mono

Run Mallob-mono on 2560 cores for each job

Sort jobs by run time in ascending order

Mallob

Introduce all 400 jobs at system start

Automatic scheduling & load balancing

11/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Solving 400 Formulae on 2560 Cores

Distributed SAT solving system scaling up to 2.5k cores

In HPC environments, combine resource-efficiency of parallel job processing
with speedups of flexible parallel SAT solving

Exploit malleability for low scheduling latencies, quick response times

Work in Progress & Outlook

Clause re-sharing strategies for malleable SAT solving

Integration of further SAT solver backends (Glucose, CaDiCaL, MergeSAT, . . .)

Enable incremental SAT solving for applications like planning, verification

12/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Conclusion

Distributed SAT solving system scaling up to 2.5k cores

In HPC environments, combine resource-efficiency of parallel job processing
with speedups of flexible parallel SAT solving

Exploit malleability for low scheduling latencies, quick response times

Work in Progress & Outlook

Clause re-sharing strategies for malleable SAT solving

Integration of further SAT solver backends (Glucose, CaDiCaL, MergeSAT, . . .)

Enable incremental SAT solving for applications like planning, verification

12/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Conclusion

System Libraries
Message Passing Interface · Multithreading and Concurrency · Inter-Process Communication

Mallob Core

Hardware · Firmware · Operating System

Message handler · Basic communication protocols · Data serialization · System diagnostics

Worker Module Client Module
Scheduling protocol · Load balancing · Job database Job queue · Worker communication

Application Interface
Job tree protocol · Internal communication · Deployment

Mallob SAT Engine
Clause sharing · Incremental wrapper

Li
ng

el
in

g

G
lu

co
se

C
aD

iC
aL

Solver Interfaces

applications

M
er

ge
S

AT

M
al

lo
b

JSON Interface
File watching · Job parsing

IPASIR bridge

Incremental SAT
applications

Fu
rt

he
r

so
lv

er
s

Further
interfaces

Further

13/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob: Technology Stack

Reworked Communication

Supports malleability: Fluctuating resources during computation

Succinct, communication-efficient clause exchange

Improved core solvers

New portfolio, also including stochastic local search

Lock-free clause import via ring buffers

Technical features

JSON API to introduce jobs, receive results

SAT solver threads in a separate child process
⇒ Seamless preemption, termination of solvers via OS signals

14/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob SAT Engine

Reworked Communication

Supports malleability: Fluctuating resources during computation

Succinct, communication-efficient clause exchange

Improved core solvers

New portfolio, also including stochastic local search

Lock-free clause import via ring buffers

Technical features

JSON API to introduce jobs, receive results

SAT solver threads in a separate child process
⇒ Seamless preemption, termination of solvers via OS signals

14/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob SAT Engine

Reworked Communication

Supports malleability: Fluctuating resources during computation

Succinct, communication-efficient clause exchange

Improved core solvers

New portfolio, also including stochastic local search

Lock-free clause import via ring buffers

Technical features

JSON API to introduce jobs, receive results

SAT solver threads in a separate child process
⇒ Seamless preemption, termination of solvers via OS signals

14/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob SAT Engine

Total Speedups
Ix := Instances solved by parallel approach with x cores
Instance I ∈ Ix : Parallel run time Tpar(I) ≤ 300 s , sequential (Lingeling) run time Tseq(I) ≤ 50 000 s

Total speedup: Sx :=
∑

i∈Ix
Tseq(I)∑

i∈Ix
Tpar(I)

Config. 1×3×4 2×5×4 8×5×4 32×5×4 128×5×4
Cores 12 40 160 640 2560

HordeSat (new) 51.9 95.8 135.6 203.7 +0.2%−−−−→ 204.1

Mallob-mono (best) 58.2 94.4 154.6 220.9 +39.7%−−−−→ 308.5

15/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Scaling Experiments

16/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Full Scaling Results

Compare Mallob-mono on 32 (8, 2) machines
with Mallob with 4 (16, 64) jobs on 128 machines

Mallob: Keeps 5% of PEs idle for scheduling,
employs one “client” PE for introducing jobs

Same priority, time limit (300 s) for each instance

Approach Solved (SAT, UNSAT) PAR-2

Mallob J = 4 58 26 32 192.7
Mb-mono m = 32 60 28 32 181.4
Mallob J = 16 54 24 30 232.7
Mb-mono m = 8 52 23 29 240.1
Mallob J = 64 49 21 28 279.0
Mb-mono m = 2 44 19 25 299.8

Results:

J = 4: Worse performance than Mallob-mono (fewer available PEs)

J = 16, 64: Noticeable improvements! Jobs toward the end receive additional PEs from finished jobs

Scheduling times: min 0.003 s, average 0.061 s, median 0.006 s, max 0.781 s

17/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Solving Several Formulae At Once

Compare Mallob-mono on 32 (8, 2) machines
with Mallob with 4 (16, 64) jobs on 128 machines

Mallob: Keeps 5% of PEs idle for scheduling,
employs one “client” PE for introducing jobs

Same priority, time limit (300 s) for each instance

Approach Solved (SAT, UNSAT) PAR-2

Mallob J = 4 58 26 32 192.7
Mb-mono m = 32 60 28 32 181.4
Mallob J = 16 54 24 30 232.7
Mb-mono m = 8 52 23 29 240.1
Mallob J = 64 49 21 28 279.0
Mb-mono m = 2 44 19 25 299.8

Results:

J = 4: Worse performance than Mallob-mono (fewer available PEs)

J = 16, 64: Noticeable improvements! Jobs toward the end receive additional PEs from finished jobs

Scheduling times: min 0.003 s, average 0.061 s, median 0.006 s, max 0.781 s

17/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Solving Several Formulae At Once

System # solved core hours (ch. for solved, unsolved)
Mallob 299 4378
Sorted runs of Mallob-mono 270 4378

299 7358
Mallob-mono (ISC’20)1 299 29449 7005 22444
P-MCOMSPS-STR-32 (ISC’20)1 284 6548 1392 5156

1Hardware comparable in per-core performance to “ours”

18/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Resource Efficiency

r0(j)

6× 6 grid of PEs

19/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob Framework: Randomized Scheduling

r0(j)

6× 6 grid of PEs

19/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob Framework: Randomized Scheduling

p0(j)

6× 6 grid of PEs

19/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob Framework: Randomized Scheduling

p0(j)

p0(j
′)

6× 6 grid of PEs

19/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob Framework: Randomized Scheduling

p0(j)

p0(j
′)

6× 6 grid of PEs

19/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob Framework: Randomized Scheduling

p0(j)

p0(j
′)

vj = 17

vj′ = 17

6× 6 grid of PEs

19/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob Framework: Randomized Scheduling

p0(j)

p0(j
′)

vj = 17

vj′ = 17

6× 6 grid of PEs Job tree view

19/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob Framework: Randomized Scheduling

p0(j)

p0(j
′)

vj = 17

vj′ = 17

6× 6 grid of PEs

“vj′ = 17”

r1(j) r2(j)

Job tree view

19/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob Framework: Randomized Scheduling

6× 6 grid of PEs

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31 32 33

Job tree view

19/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob Framework: Randomized Scheduling

6× 6 grid of PEs Job tree view

19/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob Framework: Randomized Scheduling

6× 6 grid of PEs Job tree view

19/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob Framework: Randomized Scheduling

6× 6 grid of PEs Job tree view

19/12 2021-07-09 Schreiber, Sanders: Scalable SAT Solving in the Cloud ITI Sanders

Mallob Framework: Randomized Scheduling

