A Fast Algorithm for SAT in Terms of Formula Length

Junqiang Peng ${ }^{1}$, Mingyu Xiao ${ }^{1}$

${ }^{1}$ University of Electronic Science and Technology of China
jqpeng0@foxmail.com, myxiao@gamil.com

Our contribution

- An improved parameterized algorithm for SAT running in $O^{*}\left(1.0646^{L}\right)$, where L is length of the input CNF-formula.

Our contribution

- An improved parameterized algorithm for SAT running in $O^{*}\left(1.0646^{L}\right)$, where L is length of the input CNF-formula.
- Branch and Search: New branching rules.

Our contribution

- An improved parameterized algorithm for SAT running in $O^{*}\left(1.0646^{L}\right)$, where L is length of the input CNF-formula.
- Branch and Search: New branching rules.
- Measure and Conquer: Some assumptions on weights.

Outline

(1) Problem Definition and Background
(2) Our Algorithm
(3) Analysis of Running Time Bound
(4) The Final Result

Problem Definition

The Satisifiability Problem

Given a CNF formula $\mathcal{F}=C_{1} \wedge \cdots \wedge C_{m}$ on n boolean variables x_{1}, \cdots, x_{n}, decide if there is an assignment to x_{1}, \cdots, x_{n} that makes $\mathcal{F}=1$.

Problem Definition

The Satisifiability Problem

Given a CNF formula $\mathcal{F}=C_{1} \wedge \cdots \wedge C_{m}$ on n boolean variables x_{1}, \cdots, x_{n}, decide if there is an assignment to x_{1}, \cdots, x_{n} that makes $\mathcal{F}=1$.

Example

- $\mathcal{F}_{1}=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{3} \vee x_{4}\right)$.

Solution: $x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=1 \Rightarrow \mathcal{F}_{1}$ is satisifiable.

Problem Definition

The Satisifiability Problem

Given a CNF formula $\mathcal{F}=C_{1} \wedge \cdots \wedge C_{m}$ on n boolean variables x_{1}, \cdots, x_{n}, decide if there is an assignment to x_{1}, \cdots, x_{n} that makes $\mathcal{F}=1$.

Example

- $\mathcal{F}_{1}=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{3} \vee x_{4}\right)$.

Solution: $x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=1 \Rightarrow \mathcal{F}_{1}$ is satisifiable.

- $\mathcal{F}_{2}=\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right)$.

Solution: Not exist $\Rightarrow \mathcal{F}_{2}$ is not satisifiable.

Background

The SAT problem has been extensively and intensively studied in many fields:

- heuristic algorithms
- randomized algorithms
- approximation algorithms
- exact and parameterized algorithms
- ...

Background

The SAT problem has been extensively and intensively studied in many fields:

- heuristic algorithms
- randomized algorithms
- approximation algorithms
- exact and parameterized algorithms
- ...

Background

There are three popular parameters to measure the running time of algorithms for SAT:

Parameter/Measure

n : the number of variables
m : the number of clauses
L : the number of literals (length)

Best Running Time Bound

 $O^{*}\left(2^{n}\right)^{1}$$O^{*}\left(1.2226^{m}\right)^{2}$ $O^{*}\left(1.0646^{L}\right)^{3}$

Strong Exponential Time Hypothesis: The SAT Problem can not be solved in time $O^{*}\left(2^{n}\right)$.

Our contribution is improving the running time bound in terms of the number of literals (formula length).

[^0]
Background

Table: Previous and our upper bound for SAT

Running time bounds	References
$O^{*}\left(1.0927^{L}\right)$	Van Gelder 1988
$O^{*}\left(1.0801^{L}\right)$	Kullmann and Luckhardt 1997
$O^{*}\left(1.0758^{L}\right)$	Hirsch 1998
$O^{*}\left(1.074^{L}\right)$	Hirsch 2000
$O^{*}\left(1.0663^{L}\right)$	Wahlström 2005
$O^{*}\left(1.0652^{L}\right)$	Chen and Liu 2009
$O^{*}\left(1.0646^{L}\right)$	This paper 2021

Our Algorithm - Overview

Our algorithm is a standard branch-and-search algorithm (Davis-Putnam-Logemann-Loveland (DPLL) algorithm):

- We first apply some reduction rules to reduce the instance.
- Reduce the size (measure) of the formula and bring us some properties
- Take polynomial time
- When no reduction rules can be applied, we will search for a solution by branching.
- Assign value(s) to variable(s) or literal(s)
- Exponentially increase the running time

Preliminaries

- (i, j)-literal: a literal z is called an (i, j)-literal in a formula \mathcal{F} if z appears i times and \bar{z} appears j times in the formula \mathcal{F}. $\left(i^{+}, j\right)$-literal, $\left(i, j^{+}\right)$-literal, $\left(i^{+}, j^{+}\right)$-literal, \ldots
- Degree: For a variable x in a formula \mathcal{F}, the degree of it, denoted by $\operatorname{deg}(x)$, is the number of times it appears in the formula. We say a variable is an i-variable if the degree of it is i.
i^{+}-variable, i^{-}-variable, ...
- Length: The length of a clause C, denoted by $|C|$, is the number of literals in it. We call a clause k-clause if the length of it is k. k^{+}-clause, ...

$$
\begin{gathered}
\mathcal{F}=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}\right) \\
x_{3} \text { is a }(2,1) \text {-literal, } \operatorname{deg}\left(x_{3}\right)=3 .
\end{gathered}
$$

Preliminaries

If we assign value 1 to literal $x(x=1, \bar{x}=0)$, then

- All clauses containing literal x will be removed from the formula.
- All literals \bar{x} will be removed from the clauses.

We use $\mathcal{F}_{x=1}$ to indicate the formula after assigning $x=1$.

$$
\begin{gathered}
\mathcal{F}=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}\right) \\
\mathcal{F}_{x_{3}=1}=\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{4}}\right)
\end{gathered}
$$

Reduction Rules

R-Rule 1 (Elimination of duplicated literals). If a clause C contains duplicated literals z, remove all but one z in $C . \mathcal{F}^{\prime} \wedge(z z D) \rightarrow \mathcal{F}^{\prime} \wedge(z D)$.

R-Rule 2 (Elimination of subsumptions). If there are two clauses C and D such that $C \subseteq D$, remove clause $D . \mathcal{F}^{\prime} \wedge C \wedge D \rightarrow \mathcal{F}^{\prime} \wedge C$.

R-Rule 3 (Elimination of tautology). If a clause C contains two opposite literals z and \bar{z}, remove clause $C . \mathcal{F}^{\prime} \wedge(z \bar{z} C) \wedge D \rightarrow \mathcal{F}^{\prime} \wedge D$.

R-Rule 4 (Elimination of 1-clauses and pure literals). If there is a 1-clause $\{x\}$ or a $\left(1^{+}, 0\right)$-literal x, assign $x=1$. $\mathcal{F}^{\prime} \wedge(x) \rightarrow \mathcal{F}_{x=1}^{\prime}$.

And some other reduction rules... (R-Rule $6 \sim$ R-Rule 10)
A CNF-formula is called reduced, if none of reduction rules can be applied on it.

Reduction Rules

Lemma

In a reduced CNF-formula \mathcal{F}, all variables are 3^{+}-variables.

Lemma

In a reduced CNF-formula \mathcal{F}, if there is a 2-clause $x y$, then no other clause in \mathcal{F} contains $x y, \bar{x} y$, or $x \bar{y}$.

And some other properties...

Our Algorithm

For a literal x, we have two kinds of branching:

- simple branching: $x=1$ and $x=0$
- strong branching: $x=1 \& C=0$ and $x=0$, where x is a $(1, i)$-literal and $x C$ is the only clause containing literal x.

Our Algorithm

Algorithm 1: $\operatorname{SAT}(\mathcal{F})$

Input: a CNF-formula \mathcal{F}
Output: 1 or 0 to indicate the satisfiability of \mathcal{F}
Step 1. If $\mathcal{F}=\emptyset$, return 1. If \mathcal{F} contains an empty clause, return 0.
Step 2. If \mathcal{F} is not a reduced CNF-formula, iteratively apply the reduction rules to reduce it.
Step 3. If there is a d-variable x with $d \geq 6$, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 4. If there is a $(1,4)$-literal x (assume $x C$ is the only clause containing $x)$, return $\operatorname{SAT}\left(\mathcal{F}_{x=1} \& C=0\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 5. If there is a 5 -variable x contained in a 2 -clause, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 6. If there is a 5 -variable x contained in a 4^{+}-clause, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 7. If there is a clause containing both a 5 -variable x and a 4^{-}-variable, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \operatorname{VAT}\left(\mathcal{F}_{x=0}\right)$.
Step 8. If there are still some 5 -variables, then $\mathcal{F}=\mathcal{F}^{*} \wedge \mathcal{F}^{\prime}$, where \mathcal{F}^{*} is a 3-CNF with $\operatorname{var}\left(\mathcal{F}^{*}\right)$ be the set of 5 -variables in \mathcal{F} and $\operatorname{var}\left(\mathcal{F}^{*}\right) \cap \operatorname{var}\left(\mathcal{F}^{\prime}\right)=\emptyset$. We return $\operatorname{SAT}\left(\mathcal{F}^{*}\right) \wedge \operatorname{SAT}\left(\mathcal{F}^{\prime}\right)$ and solve \mathcal{F}^{*} by using the 3-SAT algorithm by Liu [14].
Step 9. If there is a $(1,3)$-literal x (assume $x C$ is the only clause containing $x)$, return $\operatorname{SAT}\left(\mathcal{F}_{x=1} \& C=0\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 10. If there is a $(2,2)$-literal x, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 11. Apply the algorithm by Wahlström [18] to solve the instance.

Our Algorithm

Algorithm SAT (\mathcal{F})
Input: a CNF-formula \mathcal{F}
Output: 1 or 0 to indicate the satisfiability of \mathcal{F}

Our Algorithm

Algorithm SAT (\mathcal{F})

Input: a CNF-formula \mathcal{F}
Output: 1 or 0 to indicate the satisfiability of \mathcal{F}
Step 1. If $\mathcal{F}=\emptyset$, return 1 . If \mathcal{F} contains an empty clause, return 0 .
Step 2. If \mathcal{F} is not a reduced CNF-formula, iteratively apply the reduction rules to reduce it.
Step 3. If there is a d-variable x with $d \geq 6$, return
$\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.

Our Algorithm

Algorithm SAT (\mathcal{F})

Input: a CNF-formula \mathcal{F}
Output: 1 or 0 to indicate the satisfiability of \mathcal{F}
Step 1. If $\mathcal{F}=\emptyset$, return 1. If \mathcal{F} contains an empty clause, return 0 .
Step 2. If \mathcal{F} is not a reduced CNF-formula, iteratively apply the reduction rules to reduce it.
Step 3. If there is a d-variable x with $d \geq 6$, return
$\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Property: Now all variables have a degree ≤ 5.

Our Algorithm

Algorithm SAT (\mathcal{F})

Property: Now all variables have a degree ≤ 5.
Step 4. If there is a (1,4)-literal x (assume $x C$ is the only clause containing $x)$, return $\operatorname{SAT}\left(\mathcal{F}_{x=1} \& C=0\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 5. If there is a 5 -variable x contained in a 2-clause, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 6. If there is a 5 -variable x contained in a 4^{+}-clause, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.

Our Algorithm

Algorithm SAT (\mathcal{F})

Property: Now all variables have a degree ≤ 5.
Step 4. If there is a $(1,4)$-literal x (assume $x C$ is the only clause containing x), return $\operatorname{SAT}\left(\mathcal{F}_{x=1 \&} \mathcal{C}=0\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 5. If there is a 5 -variable x contained in a 2-clause, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 6. If there is a 5 -variable x contained in a 4^{+}-clause, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Property: Now all clauses containing 5 -variables have a length of exactly 3 .

Our Algorithm

Algorithm SAT (\mathcal{F})

Property: Now all variables have a degree ≤ 5.
Step 4. If there is a $(1,4)$-literal x (assume $x C$ is the only clause containing x), return $\operatorname{SAT}\left(\mathcal{F}_{x=1 \&} \mathcal{C}=0\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 5. If there is a 5 -variable x contained in a 2-clause, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 6. If there is a 5 -variable x contained in a 4^{+}-clause, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Property: Now all clauses containing 5 -variables have a length of exactly 3 .
Step 7. If there is a clause containing both a 5 -variable x and a 4^{-}-variable, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.

Our Algorithm

Algorithm SAT (\mathcal{F})

Step 8. If there are still some 5-variables, then $\mathcal{F}=\mathcal{F}^{*} \wedge \mathcal{F}^{\prime}$, where \mathcal{F}^{*} is a 3-CNF with $\operatorname{var}\left(\mathcal{F}^{*}\right)$ be the set of 5 -variables in \mathcal{F} and $\operatorname{var}\left(\mathcal{F}^{*}\right) \cap \operatorname{var}\left(\mathcal{F}^{\prime}\right)=\emptyset$. We return $\operatorname{SAT}\left(\mathcal{F}^{*}\right) \wedge \operatorname{SAT}\left(\mathcal{F}^{\prime}\right)$ and solve \mathcal{F}^{*} by using the 3-SAT algorithm with time $O^{*}\left(1.3279^{n}\right)$ by Liu ${ }^{4}$.

$$
\mathcal{F}=\mathcal{F}^{*} \wedge \mathcal{F}^{\prime}
$$

[^1]
Our Algorithm

Algorithm SAT (\mathcal{F})

Property: Now all variables have a degree ≤ 4.
Step 9. If there is a $(1,3)$-literal x (assume $x C$ is the only clause containing $x)$, return $\operatorname{SAT}\left(\mathcal{F}_{x=1} \& C=0\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 10. If there is a $(2,2)$-literal x, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.

Our Algorithm

Algorithm SAT (\mathcal{F})

Property: Now all variables have a degree ≤ 4.
Step 9. If there is a $(1,3)$-literal x (assume $x C$ is the only clause containing $x)$, return $\operatorname{SAT}\left(\mathcal{F}_{x=1} \& C=0\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 10. If there is a $(2,2)$-literal x, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Property: Now all variables have a degree exactly 3 .
Step 11. Apply the algorithm with time $O^{*}\left(1.1279^{(d-2) n}\right)=O^{*}\left(1.1279^{n}\right)$ by Wahlström ${ }^{5}$ to solve the instance.

[^2]
Our Algorithm

```
```

Algorithm SATSolver (\mathcal{F})

```
```

Algorithm SATSolver (\mathcal{F})
inPUT: a CNF formula }\mathcal{F
inPUT: a CNF formula }\mathcal{F
output: a report whether \mathcal{F}}\mathrm{ is satisfiable
output: a report whether \mathcal{F}}\mathrm{ is satisfiable

1. \mathcal{F}=\mathrm{ Reduction (F);}
2. \mathcal{F}=\mathrm{ Reduction (F);}
3. pick ad}(\mathcal{F})\mathrm{ -variable }x\mathrm{ ;
4. pick ad}(\mathcal{F})\mathrm{ -variable }x\mathrm{ ;
5. if d(\mathcal{F})>5 then
6. if d(\mathcal{F})>5 then
return SATSolver(\mathcal{F}[x]) \vee SATSolver (\mathcal{F}[\overline{x}]);
return SATSolver(\mathcal{F}[x]) \vee SATSolver (\mathcal{F}[\overline{x}]);
7. else if d(\mathcal{F})>3 then
8. else if d(\mathcal{F})>3 then
4.1 if }x\mathrm{ is a (2,2)-variable with clauses }x\mp@subsup{\overline{y}}{1}{}\mp@subsup{z}{1}{},x\mp@subsup{z}{2}{}\mp@subsup{z}{3}{},\overline{x}\mp@subsup{y}{1}{}\mathrm{ , and }\overline{x}\mp@subsup{y}{2}{
4.1 if }x\mathrm{ is a (2,2)-variable with clauses }x\mp@subsup{\overline{y}}{1}{}\mp@subsup{z}{1}{},x\mp@subsup{z}{2}{}\mp@subsup{z}{3}{},\overline{x}\mp@subsup{y}{1}{}\mathrm{ , and }\overline{x}\mp@subsup{y}{2}{
such that }\mp@subsup{y}{1}{}\mathrm{ is a 4-variable and }\mp@subsup{y}{2}{}\mathrm{ is a 3-variable then
such that }\mp@subsup{y}{1}{}\mathrm{ is a 4-variable and }\mp@subsup{y}{2}{}\mathrm{ is a 3-variable then
let }\mp@subsup{\overline{y}}{2}{}\mp@subsup{C}{0}{}\mathrm{ be a clause containing }\mp@subsup{\overline{y}}{2}{}\mathrm{ ;
let }\mp@subsup{\overline{y}}{2}{}\mp@subsup{C}{0}{}\mathrm{ be a clause containing }\mp@subsup{\overline{y}}{2}{}\mathrm{ ;
return SATSolver(\mathcal{F}[\mp@subsup{C}{0}{}=\mathrm{ true]) }\vee\operatorname{SATSolver}(\mathcal{F}[\mp@subsup{C}{0}{}=\mathrm{ false] });
return SATSolver(\mathcal{F}[\mp@subsup{C}{0}{}=\mathrm{ true]) }\vee\operatorname{SATSolver}(\mathcal{F}[\mp@subsup{C}{0}{}=\mathrm{ false] });
4.2 if both }x\mathrm{ and }\overline{x}\mathrm{ are 2+}\mp@subsup{2}{}{+}\mathrm{ -literals then
4.2 if both }x\mathrm{ and }\overline{x}\mathrm{ are 2+}\mp@subsup{2}{}{+}\mathrm{ -literals then
return SATSolver(\mathcal{F}[x]) \vee SATSolver (\mathcal{F}[\overline{x}]);
return SATSolver(\mathcal{F}[x]) \vee SATSolver (\mathcal{F}[\overline{x}]);
4.3 else (* assume the only clause containing \overline{x}}\mathrm{ is }\overline{x}\mp@subsup{z}{1}{}\cdots\mp@subsup{z}{h}{}\mp@subsup{}{}{*}
4.3 else (* assume the only clause containing \overline{x}}\mathrm{ is }\overline{x}\mp@subsup{z}{1}{}\cdots\mp@subsup{z}{h}{}\mp@subsup{}{}{*}
return SATSolver(\mathcal{F}[x])\vee SATSolver (\mathcal{F}[\overline{x},\mp@subsup{\overline{z}}{1}{},···,\mp@subsup{\overline{z}}{h}{}]);
return SATSolver(\mathcal{F}[x])\vee SATSolver (\mathcal{F}[\overline{x},\mp@subsup{\overline{z}}{1}{},···,\mp@subsup{\overline{z}}{h}{}]);
9. else if d(\mathcal{F})=3 then
10. else if d(\mathcal{F})=3 then
Apply the algorithm by Wahlström [12];
Apply the algorithm by Wahlström [12];
11. else return true;
```
```

6. else return true;
```
```


Algorithm 1: $\operatorname{SAT}(\mathcal{F})$

Input: a CNF-formula \mathcal{F}
Output: 1 or 0 to indicate the satisfiability of \mathcal{F}
Step 1. If $\mathcal{F}=\emptyset$, return 1. If \mathcal{F} contains an empty clause, return 0 .
Step 2. If \mathcal{F} is not a reduced CNF-formula, iteratively apply the reduction rules to reduce it.
Step 3. If there is a d-variable x with $d \geq 6$, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \operatorname{VAT}\left(\mathcal{F}_{x=0}\right)$.
Step 4. If there is a $(1,4)$-literal x (assume $x C$ is the only clause containing $x)$, return $\operatorname{SAT}\left(\mathcal{F}_{x=1} \& C=0\right) \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 5. If there is a 5 -variable x contained in a 2-clause, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 6. If there is a 5 -variable x contained in a 4^{+}-clause, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 7. If there is a clause containing both a 5 -variable x and a 4^{-}-variable, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \operatorname{VSAT}\left(\mathcal{F}_{x=0}\right)$.
Step 8. If there are still some 5 -variables, then $\mathcal{F}=\mathcal{F}^{*} \wedge \mathcal{F}^{\prime}$, where \mathcal{F}^{*} is a 3-CNF with $\operatorname{var}\left(\mathcal{F}^{*}\right)$ be the set of 5 -variables in \mathcal{F} and $\operatorname{var}\left(\mathcal{F}^{*}\right) \cap \operatorname{var}\left(\mathcal{F}^{\prime}\right)=\emptyset$. We return $\operatorname{SAT}\left(\mathcal{F}^{*}\right) \wedge \operatorname{SAT}\left(\mathcal{F}^{\prime}\right)$ and solve \mathcal{F}^{*} by using the 3-SAT algorithm by Liu [14].
Step 9. If there is a $(1,3)$-literal x (assume $x C$ is the only clause containing $x)$, return $\operatorname{SAT}\left(\mathcal{F}_{x=1} \& C=0\right) \operatorname{VAT}\left(\mathcal{F}_{x=0}\right)$.
Step 10. If there is a $(2,2)$-literal x, return $\operatorname{SAT}\left(\mathcal{F}_{x=1}\right) \vee \operatorname{SAT}\left(\mathcal{F}_{x=0}\right)$.
Step 11. Apply the algorithm by Wahlström [18] to solve the instance.

Chen and Liu's algorithm ${ }^{6}$ in 2009

${ }^{6}$ Chen, J., Liu, Y.: An improved SAT algorithm in terms of formula length. (WADS2009)

Running Time Bound Analysis

To determine the worst-case running time of a branching algorithm, we can analyze the size of the search tree generated in the algorithm.

- First a measure μ is defined.
- We use $T(\mu)$ to indicate the maximum size or the number of leaves of the search tree for the input with the measure being at most μ.
- If the algorithm branches into / sub-branches with the measure decreasing at least a_{i} in the i-th sub-branch, we get a recurrence relation: $T(\mu) \leq T\left(\mu-a_{1}\right)+T\left(\mu-a_{2}\right)+\cdots+T\left(\mu-a_{l}\right)$.

Running Time Bound Analysis

- If the algorithm branches into / sub-branches
 with the measure decreasing at least a_{i} in the i-th sub-branch, we get a recurrence relation: $T(\mu) \leq T\left(\mu-a_{1}\right)+T\left(\mu-a_{2}\right)+\cdots+T\left(\mu-a_{l}\right)$.
- $\left[a_{1}, a_{2}, \ldots, a_{l}\right]$ is called a branching vector.
- The largest root of the function $f(x)=1-\sum_{i=1}^{l} x^{-a_{i}}$ is called the branching factor of the recurrence.
- $T(\mu)=O\left(\gamma^{\mu}\right)$, where γ is the maximum branching factor of all branching factors.

Running Time Bound Analysis

- If the algorithm branches into / sub-branches
 with the measure decreasing at least a_{i} in the i-th sub-branch, we get a recurrence relation: $T(\mu) \leq T\left(\mu-a_{1}\right)+T\left(\mu-a_{2}\right)+\cdots+T\left(\mu-a_{l}\right)$.
- $\left[a_{1}, a_{2}, \ldots, a_{l}\right]$ is called a branching vector.
- The largest root of the function $f(x)=1-\sum_{i=1}^{l} x^{-a_{i}}$ is called the branching factor of the recurrence.
- $T(\mu)=O\left(\gamma^{\mu}\right)$, where γ is the maximum branching factor of all branching factors.
- Running time bound: $O^{*}\left(\gamma^{\mu}\right)$.

Measure and Conquer

The main idea is to adopt a new measure instead of measure L.

Measure and Conquer

The main idea is to adopt a new measure instead of measure L.
We introduce a weight to each variable in the formula according to the degree of the variable:

$$
w: \mathbb{Z}^{+} \rightarrow \mathbb{R}^{+}
$$

w_{i} denote the weight of a variable with degree i.

Measure and Conquer

The main idea is to adopt a new measure instead of measure L.
We introduce a weight to each variable in the formula according to the degree of the variable:

$$
w: \mathbb{Z}^{+} \rightarrow \mathbb{R}^{+}
$$

w_{i} denote the weight of a variable with degree i.
In our algorithm, the measure μ of a formula \mathcal{F} is defined as:

$$
\mu(\mathcal{F})=\sum_{x \in \mathcal{F}} w_{\operatorname{deg}(x)}
$$

Measure and Conquer

The main idea is to adopt a new measure instead of measure L.
We introduce a weight to each variable in the formula according to the degree of the variable:

$$
w: \mathbb{Z}^{+} \rightarrow \mathbb{R}^{+}
$$

w_{i} denote the weight of a variable with degree i.
In our algorithm, the measure μ of a formula \mathcal{F} is defined as:

$$
\mu(\mathcal{F})=\sum_{x \in \mathcal{F}} w_{\operatorname{deg}(x)}
$$

Let n_{i} denote the number of i-variables in \mathcal{F}. We also have

$$
\mu(\mathcal{F})=\sum_{i} n_{i} \cdot w_{i}
$$

Measure and Conquer

If we ensure that $w_{i} \leq i$, then we have

$$
\mu(\mathcal{F})=\sum_{i} n_{i} \cdot w_{i} \leq \sum_{i} n_{i} \cdot i \leq L(\mathcal{F})
$$

This tells us if we get a running time bound of $O^{*}\left(c^{\mu(\mathcal{F})}\right)$ for a real number c, we also get a running time bound of $O^{*}\left(c^{L(\mathcal{F})}\right)$.

Measure and Conquer

We also define $\delta_{i}=w_{i}-w_{i-1}$, this is roughly the weight of a literal with its corresponding variable have a degree of i.

For each branching rule, we will analyze how much the new measure $\mu(\mathcal{F})$ decreases in each sub-branch to get the running time bound.

An example:

$$
\begin{gathered}
\mathcal{F}=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}\right) \\
\mathcal{F}_{x_{3}}=1=\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{4}}\right) \\
\mathcal{F}_{x_{3}}=0=\left(\overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{4}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{4}}\right)
\end{gathered}
$$

The branching vector is:

$$
\left[\left(w_{3}\right)+\left(\delta_{2}\right)+\left(\delta_{3}+\delta_{2}\right),\left(w_{3}\right)+\left(\delta_{2}\right)+\left(\delta_{2}\right)\right]
$$

Measure and Conquer

How does the new measure work? Consider two cases when the maximum degree is 4 .

Measure and Conquer

How does the new measure work? Consider two cases when the maximum degree is 4 .

Adopt L as the measure
$w_{4}=4, w_{3}=3 \Rightarrow \delta_{4}=1:$

$$
\begin{array}{c|c}
\text { Branching vector } & \text { Branching factor } \\
{\left[w_{4}+2 w_{3}, w_{4}+6 \delta_{4}\right]} & 1.0718 \\
{\left[w_{4}+2 \delta_{4}, w_{4}+6 \delta_{4}\right]} & 1.0926
\end{array}
$$

Measure and Conquer

Adopt μ as the measure

If we set $w_{5}=5, w_{4}=3.84682, w_{3}=1.92341 \Rightarrow \delta_{4}=1.92341$:

$$
\begin{array}{c|c}
\text { Branching vector } & \text { Branching factor } \\
{\left[w_{4}+2 w_{3}, w_{4}+6 \delta_{4}\right]} & 1.0646 \\
{\left[w_{4}+2 \delta_{4}, w_{4}+6 \delta_{4}\right]} & 1.0646
\end{array}
$$

Running Time Bound Analysis

Assumptions:

- $w_{1}=w_{2}=0$
- $w_{i} \leq i(3 \leq i \leq 4), w_{4}=2 w_{3}$
- $w_{i}=i(i \geq 5)$
- $\delta_{i}>0(i \geq 3)$
- ...

In Step 8, the literals of all 5-variables form a 3-SAT instance \mathcal{F}^{*}. We apply the $O^{*}\left(1.3279^{n}\right)$-time algorithm for 3-SAT to solve our problem, where n is the number of variables in the instance. Since $w_{5}=5$, we have that $n=\mu\left(\mathcal{F}^{*}\right) / w_{5}=\mu\left(\mathcal{F}^{*}\right) / 5$. So the running time for this part will be

$$
O^{*}\left(1.3279^{\mu\left(\mathcal{F}^{*}\right) / w_{5}}\right)=O^{*}\left(1.0584^{\mu\left(\mathcal{F}^{*}\right)}\right)
$$

Running Time Bound Analysis

In Step 11, all variables are 3-variables. We apply the $O^{*}\left(1.1279^{n}\right)$-time algorithm by Wahlström to solve this special case, where n is the number of variables. For this case, we have that $n=\mu(\mathcal{F}) / w_{3}$. So the running time of this part is

$$
O^{*}\left(\left(1.1279^{1 / w_{3}}\right)^{\mu(\mathcal{F})}\right)
$$

The Final Result

Table 2. The weight setting

$w_{1}=w_{2}=0$	
$w_{3}=1.9234132344759123$	$\delta_{3}=1.9234132344759123$
$w_{4}=3.8468264689518246$	$\delta_{4}=1.9234132344759123$
$w_{5}=5$	$\delta_{5}=1.1531735310481754$
$w_{i}=i(i \geq 6)$	$\delta_{i}=1(i \geq 6)$

Table 3. The branching vector and factor for each step

Steps	Branching vectors	Branching factors
Step 3	$\left[w_{6}+\delta_{6}, w_{6}+11 \delta_{6}\right]$	1.0636
Step 4	$\left[w_{5}+2 w_{3}, w_{5}+8 \delta_{5}\right]$	1.0632
Step 5	$\left[w_{5}+3 \delta_{5}, w_{5}+2 w_{3}+5 \delta_{5}\right]$	1.0618
Step 6	$\left[w_{5}+2 \delta_{5}, w_{5}+4 w_{3}+4 \delta_{5}\right]$	1.0636
Step 7	$\left[w_{5}+4 \delta_{5}, w_{5}+5 \delta_{5}\right]$	1.0636
Step 8	$O^{*}\left(\left(1.3279^{1 / w_{5}}\right)^{\mu}\right)$	1.0646
Step 9	$\left[w_{4}+2 w_{3}, w_{4}+6 \delta_{4}\right]$	1.0584
Step 10	$\left[w_{4}+2 \delta_{4}, w_{4}+6 \delta_{4}\right]$	1.0646
Step 11	$O^{*}\left(\left(1.1279^{1 / w_{3}}\right)^{\mu}\right)$	1.0646

The best choice of w_{i} can be found by solving a quasi-convex program problem.

The Final Result

Table 2. The weight setting

$w_{1}=w_{2}=0$	
$w_{3}=1.9234132344759123$	$\delta_{3}=1.9234132344759123$
$w_{4}=3.8468264689518246$	$\delta_{4}=1.9234132344759123$
$w_{5}=5$	$\delta_{5}=1.1531735310481754$
$w_{i}=i(i \geq 6)$	$\delta_{i}=1(i \geq 6)$

Table 3. The branching vector and factor for each step

Steps	Branching vectors	Branching factors
Step 3	$\left[w_{6}+\delta_{6}, w_{6}+11 \delta_{6}\right]$	1.0636
Step 4	$\left[w_{5}+2 w_{3}, w_{5}+8 \delta_{5}\right]$	1.0632
Step 5	$\left[w_{5}+3 \delta_{5}, w_{5}+2 w_{3}+5 \delta_{5}\right]$	1.0618
Step 6	$\left[w_{5}+2 \delta_{5}, w_{5}+4 w_{3}+4 \delta_{5}\right]$	1.0636
Step 7	$\left[w_{5}+4 \delta_{5}, w_{5}+7 \delta_{5}\right]$	1.0636
Step 8	$\left.O_{5}+5 \delta_{5}+w_{3}\right]$	1.0646
Step 9	$\left[\left(w_{4}+2 w_{3}, w_{4}+69^{1 / w_{5}}\right)^{\mu}\right)$	1.0584
Step 10	$\left[w_{4}+2 \delta_{4}, w_{4}+6 \delta_{4}\right]$	1.0646
Step 11	$O^{*}\left(\left(1.1279^{1 / w_{3}}\right)^{\mu}\right)$	1.0646

The best choice of w_{i} can be found by solving a quasi-convex program problem.

$$
\begin{gathered}
\Downarrow \\
c^{\mu} \leq c^{\mu-\left(w_{6}+\delta_{6}\right)}+c^{\mu-\left(w_{6}+11 \delta_{6}\right)} \\
c^{\mu} \leq c^{\mu-\left(w_{5}+2 w_{3}\right)}+c^{\mu-\left(w_{5}+8 \delta_{5}\right)} \\
\cdots \\
c^{\mu} \leq c^{\mu-\left(w_{4}+2 \delta_{4}\right)}+c^{\mu-\left(w_{4}+6 \delta_{4}\right)}
\end{gathered}
$$

The Final Result

Table 2. The weight setting

$w_{1}=w_{2}=0$	
$w_{3}=1.9234132344759123$	$\delta_{3}=1.9234132344759123$
$w_{4}=3.8468264689518246$	$\delta_{4}=1.9234132344759123$
$w_{5}=5$	$\delta_{5}=1.1531735310481754$
$w_{i}=i(i \geq 6)$	$\delta_{i}=1(i \geq 6)$

Table 3. The branching vector and factor for each step

Steps	Branching vectors	Branching factors
Step 3	$\left[w_{6}+\delta_{6}, w_{6}+11 \delta_{6}\right]$	1.0636
Step 4	$\left[w_{5}+2 w_{3}, w_{5}+8 \delta_{5}\right]$	1.0632
Step 5	$\left[w_{5}+3 \delta_{5}, w_{5}+2 w_{3}+5 \delta_{5}\right]$	1.0618
Step 6	$\left[w_{5}+2 \delta_{5}, w_{5}+4 w_{3}+4 \delta_{5}\right]$	1.0636
Step 7	$\left[w_{5}+4 \delta_{5}, w_{5}+7 \delta_{5}\right]$	1.0636
Step 8	$\left.O_{5}^{*}+5 \delta_{5}+w_{3}\right]$	1.0646
Step 9	$\left[w_{4}+2 w_{3}, w_{4}+6 \delta_{4}\right]$	1.0584
Step 10	$\left[w_{4}+2 \delta_{4}, w_{4}+6 \delta_{4}\right]$	1.0646
Step 11	$O^{*}\left(\left(1.1279^{1 / w_{3}}\right)^{\mu}\right)$	1.0646

The best choice of w_{i} can be found by solving a quasi-convex program problem.

$$
\begin{gathered}
\Downarrow \\
c^{\mu} \leq c^{\mu-\left(w_{6}+\delta_{6}\right)}+c^{\mu-\left(w_{6}+11 \delta_{6}\right)} \\
c^{\mu} \leq c^{\mu-\left(w_{5}+2 w_{3}\right)}+c^{\mu-\left(w_{5}+8 \delta_{5}\right)} \\
\cdots \\
c^{\mu} \leq c^{\mu-\left(w_{4}+2 \delta_{4}\right)}+c^{\mu-\left(w_{4}+6 \delta_{4}\right)} \\
w_{1}=w_{2}=0, w_{4}=2 w_{3}, \ldots
\end{gathered}
$$

Some other assumptions as constraints

The Final Result

Table 2. The weight setting

$w_{1}=w_{2}=0$	
$w_{3}=1.9234132344759123$	$\delta_{3}=1.9234132344759123$
$w_{4}=3.8468264689518246$	$\delta_{4}=1.9234132344759123$
$w_{5}=5$	$\delta_{5}=1.1531735310481754$
$w_{i}=i(i \geq 6)$	$\delta_{i}=1(i \geq 6)$

Table 3. The branching vector and factor for each step

Steps	Branching vectors	Branching factors
Step 3	$\left[w_{6}+\delta_{6}, w_{6}+11 \delta_{6}\right]$	1.0636
Step 4	$\left[w_{5}+2 w_{3}, w_{5}+8 \delta_{5}\right]$	1.0632
Step 5	$\left[w_{5}+3 \delta_{5}, w_{5}+2 w_{3}+5 \delta_{5}\right]$	1.0618
Step 6	$\left[w_{5}+2 \delta_{5}, w_{5}+4 w_{3}+4 \delta_{5}\right]$	1.0636
Step 7	$\left[w_{5}+4 \delta_{5}, w_{5}+7 \delta_{5}\right]$	1.0636
Step 8	$\left.O_{5}^{*}+5 \delta_{5}+w_{3}\right]$	1.0646
Step 9	$\left[w_{4}+2 w_{3}, w_{4}+6 \delta_{4}\right]$	1.0584
Step 10	$\left[w_{4}+2 \delta_{4}, w_{4}+6 \delta_{4}\right]$	1.0646
Step 11	$O^{*}\left(\left(1.1279^{1 / w_{3}}\right)^{\mu}\right)$	1.0646

The best choice of w_{i} can be found by solving a quasi-convex program problem.

$$
\begin{gathered}
\Downarrow \\
c^{\mu} \leq c^{\mu-\left(w_{6}+\delta_{6}\right)}+c^{\mu-\left(w_{6}+11 \delta_{6}\right)} \\
c^{\mu} \leq c^{\mu-\left(w_{5}+2 w_{3}\right)}+c^{\mu-\left(w_{5}+8 \delta_{5}\right)} \\
\cdots \\
c^{\mu} \leq c^{\mu-\left(w_{4}+2 \delta_{4}\right)}+c^{\mu-\left(w_{4}+6 \delta_{4}\right)} \\
w_{1}=w_{2}=0, w_{4}=2 w_{3}, \ldots \\
\text { Some other assumptions as constraints } \\
\text { Minimize } c
\end{gathered}
$$

The Final Result

Table 2. The weight setting

$w_{1}=w_{2}=0$	
$w_{3}=1.9234132344759123$	$\delta_{3}=1.9234132344759123$
$w_{4}=3.8468264689518246$	$\delta_{4}=1.9234132344759123$
$w_{5}=5$	$\delta_{5}=1.1531735310481754$
$w_{i}=i(i \geq 6)$	$\delta_{i}=1(i \geq 6)$

Table 3. The branching vector and factor for each step

Steps	Branching vectors	Branching factors
Step 3	$\left[w_{6}+\delta_{6}, w_{6}+11 \delta_{6}\right]$	1.0636
Step 4	$\left[w_{5}+2 w_{3}, w_{5}+8 \delta_{5}\right]$	1.0632
Step 5	$\left[w_{5}+3 \delta_{5}, w_{5}+2 w_{3}+5 \delta_{5}\right]$	1.0618
Step 6	$\left[w_{5}+2 \delta_{5}, w_{5}+4 w_{3}+4 \delta_{5}\right]$	1.0636
Step 7	$\left[w_{5}+4 \delta_{5}, w_{5}+7 \delta_{5}\right]$	1.0636
Step 8	$\left.O_{5}^{*}+5 \delta_{5}+w_{3}\right]$	1.0646
Step 9	$\left[w_{4}+2 w_{3}, w_{4}+69_{4}\right]$	1.0584
Step 10	$\left[w_{4}+2 \delta_{4}, w_{4}+6 \delta_{4}\right]$	1.0646
Step 11	$O^{*}\left(\left(1.1279^{1 / w_{3}}\right)^{\mu}\right)$	1.0646

The best choice of w_{i} can be found by solving a quasi-convex program problem.

$$
\begin{gathered}
\Downarrow \\
c^{\mu} \leq c^{\mu-\left(w_{6}+\delta_{6}\right)}+c^{\mu-\left(w_{6}+11 \delta_{6}\right)} \\
c^{\mu} \leq c^{\mu-\left(w_{5}+2 w_{3}\right)}+c^{\mu-\left(w_{5}+8 \delta_{5}\right)} \\
\cdots \\
c^{\mu} \leq c^{\mu-\left(w_{4}+2 \delta_{4}\right)}+c^{\mu-\left(w_{4}+6 \delta_{4}\right)} \\
w_{1}=w_{2}=0, w_{4}=2 w_{3}, \ldots
\end{gathered}
$$

Some other assumptions as constraints Minimize c
Bottleneck: Step 7, 9, 10, 11.

The Final Result

Abstract

Theorem Our algorithm $\operatorname{SAT}(\mathcal{F})$ solves the SAT problem in $O^{*}\left(1.0646^{L}\right)$ time.

The End

Thanks for listening!

[^0]: ${ }^{1}$ Strong Exponential Time Hypothesis (SETH)
 ${ }^{2}$ AAAI'2021 Chu, Xiao and Zhang
 ${ }^{3}$ This paper
 J. Peng and M.Xiao (UESTC)

[^1]: ${ }^{4}$ Liu, S.: Chain, generalization of covering code, and deterministic algorithm for k-SAT.(ICALP 2018)

[^2]: ${ }^{5}$ Wahlström, M.: Faster exact solving of SAT formulae with a low number of occur-rences per variable. (SAT2005)

