Logical Cryptanalysis with WDSat

Monika Trimoska
Gilles Dequen
Sorina Ionica

MIS, University of Picardie Jules Verne
SAT 2021

Cryptanalysis

Goal
Determine minimum cryptographic key length requirements.

Algebraic cryptanalysis

Logical cryptanalysis

The multivariate polynomial problem

Example. A multivariate polynomial system of three equations in three variables

$$
\begin{aligned}
& \mathbf{x}_{1}+\mathbf{x}_{2} \cdot \mathbf{x}_{3}=0 \\
& \mathbf{x}_{1} \cdot \mathbf{x}_{2}+\mathbf{x}_{2}+\mathbf{x}_{3}=0 \\
& \mathbf{x}_{1}+\mathbf{x}_{1} \cdot \mathbf{x}_{2} \cdot \mathbf{x}_{3}+\mathbf{x}_{2} \cdot \mathbf{x}_{3}=0
\end{aligned}
$$

At the core of algebraic cryptanalysis: finding a solution to the multivariate polynomial system results in recovering the secret key or the plaintext.

The degree-two case is the underlying problem in one of the five families of post-quantum cryptographic schemes.

From the algebraic model to the CNF-XOR model

Variables in \mathbb{F}_{2} :
$\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}, \mathbf{x}_{5}, \mathbf{x}_{6}$.

Propositional variables: $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ with truth values in \{TRUE, FALSE $\}$

$$
\begin{aligned}
& x_{1}+x_{2} \cdot x_{4}+x_{5} \cdot x_{6}+1=0 \\
& x_{1}+x_{2}+x_{4}+x_{5}+1=0 \\
& x_{3}+x_{4}+x_{2} \cdot x_{4}=0 \\
& x_{2}+x_{5}+x_{2} \cdot x_{4}+x_{5} \cdot x_{6}+1=0 \\
& x_{3}+x_{4}+x_{6}+1=0
\end{aligned}
$$

$\left(x_{1} \oplus\left(x_{2} \wedge x_{4}\right) \oplus\left(x_{5} \wedge x_{6}\right)\right) \wedge$
$\left(x_{1} \oplus x_{2} \oplus x_{4} \oplus x_{5}\right) \wedge$
$\left(x_{3} \oplus x_{4} \oplus\left(x_{2} \wedge x_{4}\right) \oplus T\right) \wedge$
$\left(x_{2} \oplus x_{5} \oplus\left(x_{2} \wedge x_{4}\right) \oplus\left(x_{5} \wedge x_{6}\right)\right) \wedge$
$\left(x_{3} \oplus x_{4} \oplus x_{6}\right)$

Multiplication in $\mathbb{F}_{2}(\cdot)$ becomes the logical AND operation (\wedge) and addition in $\mathbb{F}_{2}(+)$ becomes the logical $\operatorname{XOR}(\oplus)$.

From the algebraic model to the CNF-XOR model

Add new variable $x_{2,4}$ to substitute the conjunction $x_{2} \wedge x_{4}$.

Transform the constraint

$$
x_{2,4} \Leftrightarrow\left(x_{2} \wedge x_{4}\right)
$$

into CNF.

From the algebraic model to the CNF-XOR model
Propositional variables:
$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{2,4}, x_{5,6}$ with truth values in \{TRUE, FALSE $\}$

$$
\begin{aligned}
& \left(x_{1} \oplus\left(x_{2} \wedge x_{4}\right) \oplus\left(x_{5} \wedge x_{6}\right)\right) \wedge \\
& \left(x_{1} \oplus x_{2} \oplus x_{4} \oplus x_{5}\right) \wedge \\
& \left(x_{3} \oplus x_{4} \oplus\left(x_{2} \wedge x_{4}\right) \oplus \top\right) \wedge \\
& \left(x_{2} \oplus x_{5} \oplus\left(x_{2} \wedge x_{4}\right) \oplus\left(x_{5} \wedge x_{6}\right)\right) \wedge \\
& \left(x_{3} \oplus x_{4} \oplus x_{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\neg x_{2,4} \vee x_{2}\right) \wedge \\
& \left(\neg x_{2,4} \vee x_{4}\right) \wedge \\
& \left(\neg x_{2} \vee \neg x_{4} \vee x_{2,4}\right) \wedge \\
& \left(\neg x_{5,6} \vee x_{5}\right) \wedge \\
& \left(\neg x_{5,6} \vee x_{6}\right) \wedge \\
& \left(\neg x_{5} \vee \neg x_{6} \vee x_{5,6}\right) \wedge \\
& \left(x_{1} \oplus x_{2,4} \oplus x_{5,6}\right) \wedge \\
& \left(x_{1} \oplus x_{2} \oplus x_{4} \oplus x_{5}\right) \wedge \\
& \left(x_{3} \oplus x_{4} \oplus x_{2,4} \oplus \top\right) \wedge \\
& \left(x_{2} \oplus x_{5} \oplus x_{2,4} \oplus x_{5,6}\right) \wedge \\
& \left(x_{3} \oplus x_{4} \oplus x_{6}\right)
\end{aligned}
$$

The WDSat solver

WDSat algorithm

Based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm.

Three reasoning modules

- CNF module : Performs unit propagation on CNF-clauses.
- XORSET module : Performs unit propagation on the parity constraints. When all except one literal in a XOR clause is assigned, we infer the truth value of the last literal according to parity reasoning.
- XORGAUSS module : Performs Gaussian elimination on the XOR system.

Compressed CNF Reasoning

OR-clauses are stored as bit-vectors comprised of three parts.

$$
x_{1} \vee x_{3}
$$

Value

The arithmetic sum of the literals in the clause in their dimacs representation.

Sat slot

Weight

The number of unassigned literals left in the clause.

Set to 1 when the clause is already satisfied by one of its assigned literals, and to 0 otherwise.

Compressed CNF Reasoning

Example.

$\begin{array}{r} \neg x_{1} \vee \neg x_{2} \vee x_{4} \\ ((-1-2+4<3)+3) \ll 1 \end{array}$	0	0	0	0	1	0	1	1	0	0
$\begin{array}{r} x_{1} \vee x_{3} \\ ((1+3<3)+2) \ll 1 \end{array}$	0	0	1	0	0	0	1	0	0	0

Compressed CNF Reasoning

Example.

$\begin{array}{r} \neg x_{1} \vee \neg x_{2} \vee x_{4} \\ ((-1-2+4<3)+3) \ll 1 \end{array}$	0	0	0	0	1	0	1	1	0
$\begin{array}{r} x_{1} \vee x_{3} \\ ((1+3<3)+2) \ll 1 \end{array}$	0	0	1	0	0	0	1	0	0

Set x_{1} to FALSE.

$\neg x_{1} \vee \neg x_{2} \vee x_{4}$	0	0	0	0	1	0	1	1	1
$\begin{array}{r} x_{3} \\ 3)+1) \ll 1) \end{array}$	0	0	0	1	1	0	0	1	0

Compressed CNF Reasoning

Example.
$\neg x_{1} \vee \neg x_{2} \vee x_{4}$
$((-1-2+4 \ll 3)+3) \ll 1$
$x_{1} \vee x_{3}$

$((1+3 \ll 3)+2) \ll 1$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Set x_{1} to FALSE.

$\neg x_{1} \vee \neg x_{2} \vee x_{4}$	0	0	0	0	1	0	1	1	1
x_{3}	0	0	0	1	1	0	0	1	0

Propagation x_{3} is set to TRUE.

WDSat - XORGAUSS module

- All variables in an Xor-clause belong to the same equivalence class.
- We choose one literal from the equivalence class to be the representative.
- Property: a representative of an equivalence class will never be present in another equivalence class.

XOR-clauses	Equivalence classes
$x_{1} \oplus x_{4} \oplus x_{5} \oplus x_{6}$	$x_{1} \Leftrightarrow x_{4} \oplus x_{5} \oplus x_{6} \oplus T$
$x_{1} \oplus x_{2} \oplus x_{4} \oplus T$	$x_{2} \Leftrightarrow x_{5} \oplus x_{6} \oplus T$
$x_{2} \oplus x_{3} \oplus x_{6} \oplus T$	$x_{3} \Leftrightarrow x_{5} \oplus T$

- Implementation: A compact $E C$ structure.

WDSat - XORGAUSS module

- All variables in an Xor-clause belong to the same equivalence class.
- We choose one literal from the equivalence class to be the representative.
- Property: a representative of an equivalence class will never be present in another equivalence class.

$$
\begin{array}{ll|l}
& \text { XOR-clauses } & \text { Equivalence classes } \\
\cline { 2 - 4 } & x_{1} \oplus x_{4} \oplus x_{5} \oplus x_{6} & x_{1} \Leftrightarrow x_{4} \oplus x_{5} \oplus x_{6} \oplus \top \\
x_{2} \oplus x_{5} \oplus x_{6} & \frac{x_{1} \oplus x_{2} \oplus x_{4} \oplus T}{} & x_{2} \Leftrightarrow x_{5} \oplus x_{6} \oplus T \\
& x_{2} \oplus x_{3} \oplus x_{6} \oplus T & x_{3} \Leftrightarrow x_{5} \oplus T
\end{array}
$$

- Implementation: A compact EC structure.

WDSat - XORGAUSS module

- All variables in an Xor-clause belong to the same equivalence class.
- We choose one literal from the equivalence class to be the representative.
- Property: a representative of an equivalence class will never be present in another equivalence class.

XOR-clauses	Equivalence classes
$x_{1} \oplus x_{4} \oplus x_{5} \oplus x_{6}$	$x_{1} \Leftrightarrow x_{4} \oplus x_{5} \oplus x_{6} \oplus T$
$\frac{x_{1} \oplus x_{2} \oplus x_{4} \oplus T}{1}$	$x_{2} \Leftrightarrow x_{5} \oplus x_{6} \oplus T$
$\underline{x_{2} \oplus x_{3} \oplus x_{6} \oplus T}$	$x_{3} \Leftrightarrow x_{5} \oplus T$

- Implementation: A compact EC structure.

XORGAUSS infer algorithm

Setting x_{6} to TRUE

```
Algorithm 1 Function InFER_NON_REPRESENTATIVE(ul, \(t v, F)\)
Input: Propositional variable \(u l\), truth value \(t v\), the propositional
formula \(F\)
Output: The EC structure is modified.
add \(u l\) to \(R\).
if \(t v=\) TRUE then
    FLIP_CONSTANT \((E C[u l])\).
end if
set \(u l\) to 1 in \(E C[u l]\).
for each \(r\) in \(R\) do
    if \(u l\) is set to 1 in \(E C[r]\) then
        \(E C[r] \leftarrow E C[r] \oplus E C[u l]\).
        if all variable bits in \(E C[r]\) are set to 0 then
                if the constant bit in \(E C[r]\) is set to 1 then
                add \(r\) to \(X\) __propagation_stack.
            else
                        add \(\neg r\) to \(X G\) _propagation_stack.
                end if
            end if
        end if
    end for
    set \(u l\) to 0 in \(E C[u l]\).
```

Before execution:

XORGAUSS infer algorithm

Setting x_{6} to TRUE

```
Algorithm 2 Function InFER_NON_REPRESENTATIVE( \(u l, t v, F)\)
Input: Propositional variable \(u l\), truth value \(t v\), the propositional
formula \(F\)
Output: The EC structure is modified.
add \(u l\) to \(R\).
if \(t v=\) TRUE then
    FLIP_CONSTANT \((E C[u l])\).
end if
    set \(u l\) to 1 in \(E C[u l]\).
for each \(r\) in \(R\) do
    if \(u l\) is set to 1 in \(E C[r]\) then
        \(E C[r] \leftarrow E C[r] \oplus E C[u l]\).
        if all variable bits in \(E C[r]\) are set to 0 then
                if the constant bit in \(E C[r]\) is set to 1 then
                    add \(r\) to \(X\) G_propagation_stack.
                    else
                    add \(\neg r\) to \(X G\) _propagation_stack.
                end if
            end if
            end if
    end for
    set \(u l\) to 0 in \(E C[u l]\).
```

Before execution:

After line 3:
$T / \perp x_{1} x_{2} \quad x_{3} x_{4} x_{5} \quad x_{6}$

XORGAUSS infer algorithm

Setting x_{6} to TRUE

```
Algorithm 3 Function InFER_NON_REPRESENTATIVE( \(u l, t v, F)\)
set \(u l\) to 1 in \(E C[u l]\).
for each \(r\) in \(R\) do
    if \(u l\) is set to 1 in \(E C[r]\) then
        \(E C[r] \leftarrow E C[r] \oplus E C[u l]\).
        if all variable bits in \(E C[r]\) are set to 0 then
                if the constant bit in \(E C[r]\) is set to 1 then
                add \(r\) to \(X G\) _propagation_stack.
            else
                        add \(\neg r\) to \(X G\) _propagation_stack.
                end if
                end if
    end if
    end for
    set \(u l\) to 0 in \(E C[u l]\).
```

After line 3:

XORGAUSS infer algorithm

Setting x_{6} to TRUE

```
Algorithm 4 Function INFER_NON_REPRESENTATIVE(ul, \(t v, F)\)
Input: Propositional variable \(u l\), truth value \(t v\), the propositional
formula \(F\)
Output: The EC structure is modified.
add \(u l\) to \(R\).
if \(t v=\) TRUE then
FLIP_CONSTANT \((E C[u l])\).
end if
set \(u l\) to 1 in \(E C[u l]\).
for each \(r\) in \(R\) do
if \(u l\) is set to 1 in \(E C[r]\) then
\(E C[r] \leftarrow E C[r] \oplus E C[u /]\).
            if all variable bits in \(E C[r]\) are set to 0 then
                if the constant bit in \(E C[r]\) is set to 1 then
                    add \(r\) to \(X\) __propagation_stack.
                else
                    add \(\neg r\) to \(X G\) _propagation_stack.
                end if
                end if
            end if
    end for
    set \(u l\) to 0 in \(E C[u l]\).
```

After line 3:
$\top / \perp x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{6}$

After line 5:
$\top / \perp x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{6}$

XORGAUSS infer algorithm

Setting x_{6} to TRUE

```
Algorithm 5 Function InFER_NON_REPRESENTATIVE( \(u l, t v, F)\)
    set \(u l\) to 1 in \(E C[u l]\).
    for each \(r\) in \(R\) do
    if \(u l\) is set to 1 in \(E C[r]\) then
        \(E C[r] \leftarrow E C[r] \oplus E C[u l]\).
        if all variable bits in \(E C[r]\) are set to 0 then
                if the constant bit in \(E C[r]\) is set to 1 then
                add \(r\) to \(X\) G_propagation_stack.
            else
                        add \(\neg r\) to \(X G\) _propagation_stack.
            end if
        end if
    end if
    end for
    set \(u l\) to 0 in \(E C[u l]\).
```

After line 5:
$\top / \perp x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{6}$

XORGAUSS infer algorithm

Setting x_{6} to TRUE

```
Algorithm 6 Function INFER_NON_REPRESENTATIVE(ul, \(t v, F)\)
Input: Propositional variable \(u l\), truth value \(t v\), the propositional
formula \(F\)
Output: The EC structure is modified.
add \(u l\) to \(R\).
if \(t v=\) TRUE then
FLIP_CONSTANT \((E C[u l])\).
end if
set \(u l\) to 1 in \(E C[u l]\).
for each \(r\) in \(R\) do
if \(u l\) is set to 1 in \(E C[r]\) then
\(E C[r] \leftarrow E C[r] \oplus E C[u /]\).
            if all variable bits in \(E C[r]\) are set to 0 then
                if the constant bit in \(E C[r]\) is set to 1 then
                    add \(r\) to \(X\) __propagation_stack.
                else
                    add \(\neg r\) to \(X G\) _propagation_stack.
                end if
                end if
            end if
    end for
    set \(u l\) to 0 in \(E C[u l]\).
```

After line 5:

After line 8:
$T / \perp x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{6}$

XORGAUSS infer algorithm

Setting x_{6} to TRUE

```
Algorithm 7 Function InFER_NON_REPRESENTATIVE( \(u l, t v, F)\)
set \(u l\) to 1 in \(E C[u l]\).
for each \(r\) in \(R\) do
    if \(u l\) is set to 1 in \(E C[r]\) then
        \(E C[r] \leftarrow E C[r] \oplus E C[u l]\).
        if all variable bits in \(E C[r]\) are set to 0 then
                if the constant bit in \(E C[r]\) is set to 1 then
                add \(r\) to \(X\) G_propagation_stack.
            else
                        add \(\neg r\) to \(X G\) _propagation_stack.
                end if
                end if
    end if
    end for
    set \(u l\) to 0 in \(E C[u l]\).
```

After line 8:

XORGAUSS infer algorithm

Setting x_{6} to TRUE

Algorithm 8 Function INFER_NON_REPRESENTATIVE(ul, tv, F)

Input: Propositional variable $u l$, truth value $t v$, the propositional formula F
Output: The EC structure is modified.

```
add \(u l\) to \(R\).
if \(t v=\) TRUE then
    FLIP_CONSTANT \((E C[u l])\).
end if
set \(u l\) to 1 in \(E C[u l]\).
for each \(r\) in \(R\) do
    if \(u l\) is set to 1 in \(E C[r]\) then
        \(E C[r] \leftarrow E C[r] \oplus E C[u l]\).
        if all variable bits in \(E C[r]\) are set to 0 then
                if the constant bit in \(E C[r]\) is set to 1 then
                add \(r\) to \(X G\) _propagation_stack.
                else
                        add \(\neg r\) to \(X G\) _propagation_stack.
                end if
                end if
    end if
    end for
    set \(u l\) to 0 in \(E C[u l]\).
```

After line 8:
$\top / \perp x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{6}$

After line 8:
$\top / \perp x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{6}$

XORGAUSS infer algorithm

Setting x_{6} to TRUE

```
Algorithm 9 Function InFER_NON_REPRESENTATIVE( \(u l, t v, F)\)
    set \(u l\) to 1 in \(E C[u /]\).
    for each \(r\) in \(R\) do
    if \(u l\) is set to 1 in \(E C[r]\) then
        \(E C[r] \leftarrow E C[r] \oplus E C[u l]\).
        if all variable bits in \(E C[r]\) are set to 0 then
                if the constant bit in \(E C[r]\) is set to 1 then
                add \(r\) to \(X\) G_propagation_stack.
            else
                        add \(\neg r\) to \(X G\) _propagation_stack.
            end if
                end if
    end if
    end for
    set \(u l\) to 0 in \(E C[u l]\).
```

After line 8:
$\top / \perp x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{6}$

x
x_{1}
x_{2}

XORGAUSS infer algorithm

Setting x_{6} to TRUE

Algorithm 10 Function INFER_NON_REPRESENTATIVE($u l, t v, F)$
Input: Propositional variable $u l$, truth value $t v$, the propositional formula F
Output: The EC structure is modified.

```
add \(u l\) to \(R\).
if \(t v=\) TRUE then
    FLIP_CONSTANT( \(E C[u l])\).
end if
set \(u l\) to 1 in \(E C[u l]\).
for each \(r\) in \(R\) do
    if \(u l\) is set to 1 in \(E C[r]\) then
        \(E C[r] \leftarrow E C[r] \oplus E C[u l]\).
        if all variable bits in \(E C[r]\) are set to 0 then
                if the constant bit in \(E C[r]\) is set to 1 then
                add \(r\) to \(X G\) _propagation_stack.
                else
                    add \(\neg r\) to \(X G\) _propagation_stack.
                end if
                end if
    end if
    end for
    set \(u l\) to 0 in \(E C[u l]\).
```

After line 8:
$T / \perp x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{6}$

After line 18.
$T / \perp x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{6}$

Experimental results

Comparing different SAT approaches for solving Boolean polynomial systems with 50 quadratic equations over 25 variables.

- Results show an average of 100 runs.
- Running times are in seconds.

Input form	\#Vars	\#Clauses	Solver	Runtime	\#Conflicts
CNF	8301	33006	MiniSAT	11525.24	40718489
			Glucose	2384.99	10982657
			Kissat	2118.52	6622284
			Relaxed	3014.22	10353009
CNF-XOR	325	920	Cryptominisat	2870.81	9197978
			CryptoMiniSat + GE	594.48	2407635
			WDSat	57.85	14177200
			WDSAT + GE	23.77	1046328
ANF	25	50	WDSAT + XG-EXT	0.82	21140

Conclusion

- WDSAT outperforms state-of-the-art SAT solvers for instances derived from dense Boolean polynomial systems.
- The compressed CNF reasoning module allows WDSAT to handle polynomial systems of higher degree without compromising its performance.

WDSAT on github

https://github.com/mtrimoska/WDSat

