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• Peter Jipsen, Chapman University

• Peter Johnstone, University of Cambridge

• Serafina Lapenta, University of Salerno

• George Metcalfe, University of Bern

• Jorge Picado, University of Coimbra

• Luigi Santocanale, LIS, Aix-Marseille Université
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Preface

This volume contains the papers presented at the conference TACL 2024: Topol-
ogy, Algebra, and Categories in Logic held in Barcelona on July 1–5, 2024. The
volume includes the abstracts of 129 accepted contributed talks and of 12 invited talks.

TACL 2024 is the 11th conference in the series Topology, Algebra, and Categories
in Logic (TACL, formerly TANCL). Earlier instalments were held in Tbilisi (2003),
Barcelona (2005), Oxford (2007), Amsterdam (2009), Marseille (2011), Nashville (2013),
Ischia (2015), Prague (2017), Nice (2019), and Coimbra (2022). The conference series
focuses on three interconnecting mathematical themes central to the semantic study of
logic and its applications: topological, algebraic, and categorical methods.

We thank all Programme Committee members for their precious work in reading the
submitted abstracts and giving useful suggestions to the authors.

Barcelona, June 2024

The organizers
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José Luis Castiglioni and Rodolfo C. Ertola-Biraben

Characterizing formulas using Post’s lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Balder Ten Cate and Arunavo Ganguly

Finitely generated varieties of commutative BCK-algebras: Covers . . . . . . . . . . . . . . 84
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Gödel–Dummett CTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Alakh Dhruv Chopra and Brett McLean

The Kuratowski’s problem in pointfree topology . . . . . . . . . . . . . . . . . . . . . . . . 96
Francesco Ciraulo

From higher-order rewriting systems to higher-order categorial algebras and higher-order
Curry-Howard isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Juan Climent Vidal and Enric Cosme Llópez
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An introduction to Π1
2 Proof Theory

Juan Aguilera

Vienna University of Technology, Austria

We will give a gentle introduction and survey to the world of Π1
2 Proof Theory, in particular

focusing on the notion of a dilator and on some of its uses.
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Arrow algebras

Benno van den Berg

Universiteit van Amsterdam
Institute for Logic, Language and Computation

Amsterdam, The Netherlands

Arrow algebras are algebraic structures which can be used to construct toposes. These
“arrow toposes” include both localic toposes (toposes obtained from a locale, i.e. a complete
Heyting algebra) and realizability toposes obtained from partial combinatory algebras. In that
way arrow algebras are similar to Alexandre Miquel’s implicative algebras, which were the main
source of inspiration for the concept. However, the notion of an arrow algebra is weaker and this
weakening is motivated by the desire to include more examples and to have a better interaction
with nuclei. In this talk I will explain this (which is joint work with Marcus Briet) and also
report on work by Umberto Tarantino who has looked into the question of what would be a
good notion of morphism of arrow algebras.
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[1] Benno van den Berg and Marcus Briet. Arrow algebras. arXiv:2308.14096, 2023.
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On quantale enriched monoids

Célia Borlido

University of Coimbra

Highlighting the analogy between the triangle inequality for metric spaces and the categorical
composition law, in 1973, Lawvere argued that “fundamental structures [in mathematics] are
themselves categories” and thus, the latter should not be treated as a kind of “third level of
abstraction”. Accordingly, he developed a framework in which a (generalized) metric space
may be seen as a category enriched in the real half-line extended with the infinity value. More
generally, for a quantale V, a V-category may be defined as a set equipped with a binary
V-valued relation satisfying reflexivity and transitivity axioms. For different choices of the
quantale V, we then obtain different mathematical structures, including preordered sets, the
already mentioned Lawvere’s metric spaces, and probabilistic metric spaces.

In this talk we will consider monoids equipped with a compatible structure of V-category,
to which we call V-monoids, and discuss some of their properties. In particular, we will inves-
tigate the possible quantale enrichments on semidirect products of V-monoids as well as their
connections to split extensions.
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Extending the Blok-Esakia Theorem to the monadic setting

Luca Carai

Dipartimento di Matematica “Federigo Enriques”
Università degli Studi di Milano, Italy

It is a classic result of McKinsey and Tarski [6] that the Gödel translation embeds the
intuitionistic propositional calculus IPC into the propositional modal logic S4. The normal
extensions of S4 into which the Gödel translation embeds a given superintuitionistic logic L
are called the modal companions of L. Esakia’s Theorem [3] states that the largest modal
companion of IPC is the Grzegorczyk logic Grz := S4 + grz, where

grz = 2(2(p→ 2p)→ p)→ p.

Every superintuitionistic logic L has a least and a greatest modal companion, denoted τL and
σL, and hence the modal companions of L form an interval [τL, σL] in the lattice of normal
extensions of S4. The celebrated Blok-Esakia Theorem, established independently by Blok [2]
and Esakia [3], states that mapping L to σL yields an isomorphism between the lattice of
superintuitionistic logics and the lattice of normal extensions of Grz.

The predicate extension of the Gödel translation embeds the intuitionistic predicate cal-
culus IQC into the predicate S4 logic QS4. However, the behavior of modal companions of
predicate superintuitionistic logics is much less understood. It is convenient to first investigate
the restriction of the predicate Gödel translation to the monadic fragments (also known as the
one-variable fragments) MIPC of IQC and MS4 of QS4, which can be thought of as bimodal logics
and can be studied using the standard semantic tools of modal logic. Fischer Servi [5] proved
that the Gödel translation embeds MIPC into MS4 and Esakia [4] showed that the monadic
Grzegorczyk logic MGrz := MS4 + grz is a modal companion of MIPC. It is then natural to
wonder whether an analogue of the Blok-Esakia Theorem holds in the monadic setting.

This talk will address the challenges involved in the study of modal companions of extensions
of MIPC. We will see that the Blok-Esakia Theorem fails in the monadic setting: the map from
the lattice of extensions of MIPC to the lattice of extensions of MGrz that naturally generalizes σ
is not a lattice isomorphism. We will then discuss the obstacles to the generalization of Esakia’s
Theorem to MIPC. Some possible ways to recover positive results in the monadic setting will
also be mentioned. This talk is based on joint work with G. Bezhanishvili and most of the
discussed results can be found in [1].
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Relational semantics and ordered algebras for monotone

propositional logics

Ramón Jansana

I will present part of the general theory of relational semantics for propositional logics
developed together with Tommaso Moraschini in the recent past. More specifically, I will
expound a relational semantics for monotone logics.

A logic (as a consequence relation) is monotone if every connective is in each coordinate
either increasing or decreasing with respect to the pre-order induced in the algebra of formulas
by the consequence relation (i.e., the pre-order that declares a formula below another if the
second follows from the first.)

The semantics we develop is based on a duality between a class of ordered algebras associated
with a monotone logic and a class of general frames for it. The idea we use to turn an ordered
algebra into a frame and conversely is inspired by the notion of the relational dual of a function,
coming from B. Jónsson and A. Tarski’s work on Boolean algebras with operators, as well as
from M. Dunn’s gaggle theory; it also is inspired by M. Gehrke’s work on RS-frames.

The frames we use consist of a polarity–a set of positive states (worlds), a set of negative
states (co-worlds), and a relation between them–and for each connective of the language of the
logic a suitable relation between worlds and co-worlds in accordance to the logical behavior of
the connective.

We will discuss some examples and see that in many well-known cases our relational seman-
tics specializes to the traditional one.
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Duality theory for Boolean right restriction semigroups

Ganna Kudryavtseva

Faculty of Mathematics and Physics of Ljubljana University
and

Institute of Mathematics, Physics and Mechanics in Ljubljana

We generalize the duality between Boolean right restriction monoids and ample source-etale
topological categories by Cockett and Garner to the non-unital and locally compact setting.
Our approach stems from the widely known construction of the tight groupoid of an inverse
semigroup as the groupoid of germs. Elements of a supported Boolean right restriction semi-
group are represented by right compact slices of their attached right ample categories. In these
categories, the domain map is a local homeomorphism, but the range map is not open in gen-
eral, and thus does not give rise to a unary range operation in the associated right restriction
semigroup. In the special case where the range map of the right ample category is open, the
associated right restriction semigroup has the additional structure of a left Ehresmann semi-
group. Specializing further to the case where the range map is a local homeomorphism, the
category has the additional property that every compact right slice is a finite join of compact
two-sided slices. On the algebraic side, this brings Boolean right restriction Ehresmann semi-
groups with the extra property that every element is a finite join of deterministic elements.
These semigroups are a natural generalization of Garner’s groupoidal right restriction monoids.
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Being, Becoming, and

the dimension of combinatorial spaces

Mat́ıas Menni

CONICET & Universidad Nacional de La Plata

Lawvere’s 1990 Thoughts of the Future of Category Theory [2] outlines a positive mathematical programe;
an “attempt, by an admirer of rational mechanics, to include objective logic among the tools for arriving at
a more accurate conception of space”. We concentrate here on two of the philosophical guides there, and a
conjecture relating them.

Partially motivated by the opposition between ‘gros’ and ‘petit’ in Algebraic Geometry, the first philo-
sophical guide is that there is a distinction between a general category of Being and particular categories
of Becoming. The terminology reflects the “hope that sober application, of category theory to the an-
cient philosophical categories, will not only clarify both but also renew respect for serious thought, through
solid examples approaching adequacy to their concept.” Alternatively, we may phrase the distinction as one
between toposes ‘of spaces’ [3] on the one hand and ‘generalized locales’ on the other. Additionally, the
philosophical guide includes a way to relate the two classes of toposes: each space X (i.e. an object in a
category of spaces) should determine a generalized locale P(X) of ‘pseudo-classical sheaves’ on X.

The second philosophical guide is that each topos of spaces determines a poset of dimensions which may
be identified with the poset of levels (i.e. essential subtoposes) of the given topos.

The conjecture relating the two guides is that the dimension of a space X depends only on the generalized
locale P(X). “In other words, if we have an equivalence of categories P(X) ∼= P(Y ), then X,Y should belong
to the same class of UIO levels within the category of Being in which they are objects. Suitable hypotheses to
make this conjecture true should begin to clarify the relationships between the two suggested philosophical
guides.”

We show that the conjecture holds for a solid class of examples of presheaf toposes including that of
simplicial sets. Moreover, we prove that the way in which P(X) determines the dimension of X is almost
identical to that in which the algebra of open subpolyhedra of a polyhedron determines its dimension [1].
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Refining Intentional Modals via Topology

Aybüke Özgün

University of Amsterdam

This talks provides an overview of two applications of topological semantics in philosophical
logic: (1) topological semantics for epistemic logic based on possible worlds and (2) topological
semantics for modeling topic-sensitive (binary) intentional modals based on an algebra of topics.

The first part of this talk will be concerned with modal logics for evidence, knowledge,
and belief. The traditional treatment of epistemic logics based on relational semantics is not
rich enough to talk about the evidential nature of acquired knowledge and belief. I will argue
that topological spaces emerge naturally as information structures if one not only seeks an
easy way of modeling knowledge and belief, but also aims at representing evidence and its
relationship to these notions. Based on the semantics proposed in [1], I will show that the
topological approach enables fine-grained and refined representations of the aforementioned
epistemic notions, highlighting several variations and extensions in the literature. (This part of
the talk is based on joint work with Alexandru Baltag, Nick Bezhanishvili, and Sonja Smets).

In the second part of the talk, I will focus on logics of imagination, which formalize the
notion of imagination via a binary, topic-sensitive modal operator. In the topic-sensitive theory
of the logic of imagination, the topic of the imaginative output must be contained within the
topic of the imaginative input. That is, imaginative episodes can never expand what they are
about. This constraint is implausible from a psychological point of view, and it wrongly predicts
the falsehood of true reports of imagination. I will present a number of direct approaches to
relaxing this controversial topic-inclusion constraint. The core idea involves adding an expansion
operator to the algebra of topics. The logic that results depends on the formal constraints placed
on topic expansion, the choice of which are subject to philosophical dispute. The first semantics
I will present is a topological one using a closure operator. I will also explore a few weaker topic
expansion operators and their associated logics. Time permitting, I will elaborate on further
generalizations of the topic-sensitive semantics of imagination and the applications of proposed
topic expansion operators to knowledge, belief, and conditionals. (This part of the talk is based
on joint work with Aaron J. Cotnoir)
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Priestley-type dualities

beyond the case of finite dualizing objects

Adam Přenosil

University of Barcelona

Categorical dualities between classes of algebras and classes of topological spaces equipped
with relational structure underlie a great number of remarkable results in the field of algebraic
logic and beyond. A systematic account covering many such dualities exists in the form of the
theory of natural dualities, developed over the last decades among others by Davey, Priestley,
and Werner. This theory has been worked out in much detail for the case of quasivarieties
generated by a finite algebra (which acts as a dualizing object inducing a so-called concrete
duality). However, only a fragment of this theory has been developed beyond the case of finite
dualizing objects. Taking inspiration from dualities for (weakly) locally finite MV-algebras due
to Cignoli, Dubuc, Marra, and Mundici, we establish a Priestley-type duality induced by a
possibly infinite dualizing algebra with a near unanimity term (such as the standard MV-chain
or the standard positive MV-chain) and showcase some of its applications.

The talk is based on joint work with Marco Abbadini.
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Game comonads and resource-sensitive model theory

Luca Reggio

University College London, UK

Since the pioneering work of Lawvere in the 1960s, category theory has been used to provide
a syntax-independent view of the fundamental structures of logic, including e.g. first-order logic
and extensions to infinitary and higher-order languages.

In this talk, motivated by the needs of finite model theory and descriptive complexity, I will
focus on logic fragments that involve a finite amount of logical resources, such as finite-variable
logics or logics with bounded quantifier rank, and the corresponding combinatorial parameters
of (relational) structures. A key insight due to Abramsky, Dawar and their collaborators is
that, in many cases of interest, these resource-sensitive logics can be described by comonads on
the category of structures, and the associated combinatorial parameters by the coalgebras for
the comonads. This is at the origin of the framework of game comonads [1, 5].

I will survey the main ideas underlying game comonads and the axiomatic approach of
arboreal categories [2, 3], and some of their applications. The latter are due to several teams of
authors and include:

(i) A categorical view of homomorphism counting results in finite model theory [6, 7].

(ii) The axiomatic study of homomorphism preservation theorems in logic [4].

(iii) The interplay between Gabriel–Ulmer duality and the expressive power of arboreal cate-
gories [9].

(iv) A homotopical view of modal logic and the  Loś–Tarski preservation theorem [8].
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Girard quantales, their linear orders,

and completely distributive lattices∗

Luigi Santocanale

LIS, CNRS UMR 7020, Aix-Marseille Université, Marseille, France

In the first part of this talk I’ll define linear orders valued in a Girard quantale, a variant
of the usual notion of metric space whose distance is valued in a quantale. I’ll give examples of
these structures mostly arising from combinatorics and geometry. In particular, if the quantale
Q∨([0, 1]) of sup-preserving endofunctions of the unit interval is considered, linear orders on a
set of finite cardinality n valued in it can be identified with images of continuous monotone
paths in the n-dimensional cube [0, 1]n, linking the origin to the unit vector [3].

Considering that the quantale of sup-preserving endofunctions of a complete lattice is Girard
if and only if the lattice is completely distributive (and that complete chains are completely
distributive), the linear orders described above have motivated further research on completely
distributive lattices, see e.g. [2]. In a second part of this talk I’ll focus on constructing com-
pletely distributive lattices from given ones, using complete congruences. Indeed, it is an
elementary observation that the quotient of a completely distributive lattice by a complete
congruence is again completely distributive. In a recent work [1] we have given a geometrical
characterisation (as sublocales) of these complete congruences. The characterisation relies on
Hoffmann-Lawson duality between completely distributive lattices and their spectra. I’ll illus-
trate the characterisation with the posets (0, 1] and [0, 1)op× (0, 1], that are the spectra of [0, 1]
and Q∨([0, 1]), respectively. In particular, I’ll argue that complete congruences give rise to a
frame, and that such frame is not, in general, Boolean, nor completely distributive.
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Projectivity in quasivarieties of logic

Sara Ugolini

IIIA, CSIC, Bellaterra, Barcelona, Spain

This talk is about some bridge theorems, i.e. connections between syntactic features of a
logic and the properties of its algebraic semantics, and the role that projective algebras have in
them. In particular, we will be concerned with algebraizable logics in the sense of Blok-Pigozzi
[3], whose equivalent algebraic semantics are quasivarieties of algebras.

Given a quasivariety Q, an algebra P is projective in Q if and only if it is a retract of a free
algebra in Q. Thus, projective algebras extend the class of free algebras, and they can “play
the role” of free algebras in some instances as we will discuss. It is important to note that
projectivity is a categorical notion, and as such is preserved by categorical equivalence, while
free algebras in general are not. This allows the study of projective algebras via categorical
equivalences or dualities with respect to objects that are easier to understand.

In the first part of this talk we will present some examples of characterizations of projective
algebras in relevant (quasi)varieties related to logic, involving techniques that vary from purely
algebraic to duality theoretic. We will present some examples from the literature, and some
recent results from [1]. The examples mostly lie in the framework of residuated lattices, which
provide the equivalent algebraic semantics of substructural logics; the latter comprise classical
logic and many of the most interesting nonclassical logics, e.g. intuitionistic logic, relevance
logics, linear logic, many-valued logics.

In the second part of the talk, we discuss the role of projective algebras in the algebraic study
of unification problems, in the setting developed by Ghilardi [4], together with applications to
the study of the structural completeness of a quasivariety and its weakenings [2].

Finally we present a new approach, based on recent joint work with Tommaso Flaminio,
to equational anti-unification problems, whose synctactic version was first introduced in the
1970s to study inductive proofs. The key is once again the use of projective algebras. We
show that both equational anti-unification problems and their type (i.e., the cardinality of
the set of “best” - or least general - solutions) can be studied algebraically; we discuss some
relevant examples, e.g., in Boolean algebras, Kleene algebras, Gödel algebras, MV-algebras (the
equivalent algebraic semantics of, respectively, classical logic, 3-valued Kleene logic, Gödel-
Dummett logic, infinite-valued  Lukasiewicz logic).
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Varieties of MV-monoids and positive MV-algebras

Marco Abbadini1, Paolo Aglianò2, and Stefano Fioravanti3∗

1 School of Computer Science, University of Birmingham, UK.
m.abbadini@bham.ac.uk

2 DIISM, Università di Siena, Italy.
agliano@live.com

3 Institute for Algebra, Charles University Prague, Czech Republic.
stefano.fioravanti66@gmail.com

We investigate MV-monoids and their subvarieties. An MV-monoid is an algebra
⟨A,∨,∧,⊕,⊙, 0, 1⟩ where:

• ⟨A,∨,∧, 0, 1⟩ is a bounded distributive lattice;

• ⟨A,⊕, 0⟩ and ⟨A,⊙, 1⟩ are commutative monoids;

• ⊕ and ⊙ distribute over ∨ and ∧;

• for every x, y, z ∈ A,

(x⊙ y)⊕ ((x⊕ y)⊙ z) = (x⊕ (y ⊙ z))⊙ (y ⊕ z);

(x⊙ y)⊕ z = ((x⊕ y)⊙ ((x⊙ y)⊕ z)) ∨ z;

(x⊕ y)⊙ z = ((x⊙ y)⊕ ((x⊕ y)⊙ z)) ∧ z.

Every MV-algebra in the signature {⊕,¬, 0} is term equivalent to an algebra that has an MV-
monoid as a reduct, by defining, as standard, 1 := ¬0, x⊙y := ¬(¬x⊕¬y), x∨y := (x⊙¬y)⊕y
and x ∧ y := ¬(¬x ∨ ¬y). We show that every subdirectly irreducible MV-monoid A is totally
ordered and satisfies the property: for all x, y ∈ A, x⊕ y = 1 or x⊙ y = 0.

Using this result, we investigate the bottom part of the lattice of subvarieties of MV-monoids,
characterizing all the almost minimal varieties of MV-monoids as the varieties generated by:

• a reduct of a finite MV-chain of prime order ( L+
p );

• the unique MV-monoid C∆
2 on the 3-element chain 0 < ε < 1 satisfying ε ⊕ ε = ε and

ε⊙ ε = 0;

• the dual of C∆
2 .

One of the main tools that we used to develop the theory of MV-monoids is the categorical
equivalence Γ between unital commutative ℓ-monoids and MV-monoids [1].

A unital commutative ℓ-monoid is an algebra ⟨M,∨,∧,+, 1, 0,−1⟩ with the following prop-
erties:

• ⟨M,∨,∧,+, 0⟩ is a commutative ℓ-monoid;

• −1 + 1 = 0;

• −1 ≤ 0 ≤ 1;

∗Speaker, partially supported by the Austrian Science Fund FWF P33878 and by the PRIMUS/24/SCI/008.
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• for all x ∈M there is n ∈ N such that

(−1) + · · ·+ (−1)︸ ︷︷ ︸
n times

≤ x ≤ 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

Thus the relationship between unital commutative ℓ-monoids and MV-monoids is similar to
the one between unital abelian ℓ-groups and MV-algebras and we exploit this fact in several
statements of our work. We also present a version of Hölder’s theorem for unital commutative
ℓ-monoids.

Particular examples of MV-monoids are positive MV-algebras, i.e. the {∨,∧,⊕,⊙, 0, 1}-
subreducts of MV-algebras or, equivalently, the proper subquasivariety of the variety of MV-
monoids (MVM), axiomatized relatively to MVM by

(x⊕ z ≈ y ⊕ z and x⊙ z ≈ y ⊙ z) =⇒ x ≈ y.
Positive MV-algebras form a peculiar quasivariety in the sense that, albeit having a logical
motivation (being the quasivariety of subreducts of MV-algebras), it is not the equivalent qua-
sivariety semantics of any logic in the sense of [2].

In this cancellative setting, we characterized the varieties of positive MV-algebras as pre-
cisely the varieties generated by finitely many reducts of finite nontrivial MV-chains. We also
proved that such reducts coincide with the subdirectly irreducible finite positive MV-algebras.
Using these results we prove that: a variety of positive MV-algebras is of the form V(KI), where
I is a finite subset of N \ {0} containing all the divisors of its elements (divisor-closed subset)
and KI is the set of all reducts of MV-chains  L+

m such that | L+
m| − 1 ∈ I.

In conclusion, we present axiomatizations of all the varieties of positive MV-algebras, using
a strategy similar to the one of Di Nola and Lettieri [3]. To do so we define the following set of
equations.

Let I ⊆ N be a divisor-closed set, and let m be the maximum of I (with the convention that
m = 0 if I = ∅). We define ΣI as the set of equations given by:

(m+ 1)x ≈ mx and m((k − 1)x)k ≈ (kx)m (1)

for all 1 ≤ k ≤ m such that k /∈ I. For n ∈ N and k ∈ Z we define the unary term τn,k(x)
inductively on n as follows:

τ0,k(x) :=

{
1 if k ≤ −1,

0 if k ≥ 0,
τn+1,k(x) = τn,k−1(x)⊙ (x⊕ τn,k(x)).

For every n ∈ N, let Φn be the following set of equations, for k ranging in {0, . . . , n− 1}:
τn,k(x)⊕ τn,k(x) ≈ τn,k(x) and τn,k(x)⊙ τn,k(x) ≈ τn,k(x). (2)

Theorem. Let I be a divisor-closed finite set; then V(KI) is axiomatized by Φlcm(I) ∪ ΣI
relatively to the variety of MV-monoids.

References
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Abstract

We generalize the Vietoris endofunctor to the category of compact Hausdorff spaces
and closed relations and describe the dual endofunctor on the category of de Vries algebras
and subordinations.

Taking the Vietoris hyperspace V(X) of a compact Hausdorff space X defines an endofunctor
V on the category KHaus of compact Hausdorff spaces and continuous functions. On morphisms,
a continuous function f : X → Y is mapped to the function V(f) : V(X) → V(Y ) which maps
a closed subset F of X to the image f [F ] of F under f .

The larger category KHausR of compact Hausdorff spaces and closed relations has been
investigated in various works [11, 8, 10, 5, 1]. One appealing feature of KHausR is that it is
self-dual. We generalize the Vietoris endofunctor to an endofunctor VR : KHausR → KHausR.
For a closed relation R ⊆ X × Y , we define VR(R) by generalizing the well-known Egli-Milner
order: for all closed subsets F ⊆ X and G ⊆ Y , we set

F VR(R) G ⇐⇒ G ⊆ R[F ] and F ⊆ R−1[G],

where R[F ] is the R-image of F in Y and R−1[G] is the R-preimage of G in X. We show that
this defines an endofunctor VR : KHausR → KHausR that restricts to the Vietoris endofunctor
V : KHaus→ KHaus and commutes with the self-duality of KHausR.

De Vries duality [7] is a duality for KHaus which associates with each compact Hausdorff
space X the boolean algebra RO(X) of regular opens of X equipped with the proximity re-
lation given by U ≺ V iff cl(U) ⊆ V . This yields a duality between KHaus and the category
DeV of de Vries algebras, i.e. pairs (B,≺) where B is a complete boolean algebra and ≺ is a
proximity relation on B. A direct pointfree construction of the endofunctor DeV→ DeV dual to
V : KHaus→ KHaus remained an open problem [4, p. 375]. We resolve this problem as follows.

In [1] we extended de Vries duality to KHausR. Let StoneR be the full subcategory of
KHausR consisting of Stone spaces. Stone duality extends to an equivalence between StoneR

and the category BAS with boolean algebras as objects and subordination relations as mor-
phisms [6, 9, 1]. This yields an equivalence between KHausR and a category whose objects
are pairs (B,S) where B is a boolean algebra and S is a subordination relation on B satisfy-
ing axioms generalizing the axioms of an S5-modality. Because of this connection, we termed
the pairs (B,S) S5-subordination algebras and denoted the resulting category by SubS5S [1].
The inclusion DeVS ↪−→ SubS5S of the full subcategory DeVS consisting of de Vries algebras

∗This presentation is based on [3].
†Presenter
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is an equivalence, with quasi-inverse obtained by generalizing the MacNeille completion to S5-
subordination algebras [2].

In [12], the endofunctor K on boolean algebras dual to the Vietoris endofunctor V on Stone
spaces was defined. We lift K to an endofunctor KS on BAS equivalent to VR on StoneR. Finally,
we lift KS to an endofunctor on SubS5S equivalent to VR on KHausR. Composing it with the
MacNeille completion yields an endofunctor on DeVS equivalent to VR. This solves the problem
mentioned above in the category SubS5S, in its full subcategory DeVS, and finally in DeV via a
duality between DeV and a wide subcategory of DeVS.
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Abstract

Contextuality is a key form of non-classicality in quantum mechanics. It has a strong logical
content, and contextuality arguments are often referred to as paradoxes. They contradict
the basic assumption of classical physics, that observable quantities have well-defined values
independently of which measurements are performed.

The strongest form is state-independent contextuality, where the structure of the observables
dictates that contextuality arises for any state. The most famous example of this phenomenon
is the Peres-Mermin magic square [2], which is constructed from the 2-qubit Pauli group:

XI — IX — XX
| | |
IZ — ZI — ZZ
| | |

XZ — ZX — Y Y

Here XI denotes the 2-qubit operator σx ⊗ I, and similarly for the other entries. One can now
calculate that the operators in each row and column pairwise commute, and hence form a valid
measurement context. Moreover, the product of each of the rows, and of the first two columns,
is II; while the product of the third column is −II. We can use this behaviour to show the
impossibility of assigning values to the observables which respects the algebraic structure of
commuting observables (i.e. those which can be performed together).

We now wish to abstract from the specifics of the Pauli group, and understand the general
structure which makes such arguments possible. This leads us to introduce the notion of
commutation group, to which we now turn.

The idea behind commutation groups is that they are built freely from prescribed com-
mutation relations on a set of generators. Commutation relations play a fundamental role in
quantum mechanics, the canonical example being the commutation relation between position
and momentum (see e.g. [1]): [p, q] = iℏ1. We can think of a commutation relation as saying
that two elements commute up to a prescribed scalar. For this to make sense in a group theoretic
context, we need an action of a suitable (classical, hence abelian) group of scalars or “phases”
on the group we are constructing. We are interested here in finite group constructions, so we
shall work over the finite cyclic groups Zd, d ≥ 2.

Given a finite set X of generators, we define a commutator matrix to be a map µ : X2 → Zd
which is skew-symmetric, meaning that µ(x, y) = −µ(y, x) for all x, y ∈ X.

We describe the construction of commutation groups from commutator matrices in two
ways: by generators and relations, and by a linear algebraic construction. Both are useful, and
convey different intuitions. The key relations are the commutation relations xy

.
= Jµ(x,y)yx.
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Main Results

We summarize the main results:

1. We present commutation groups by generators and relations, parameterised by a com-
mutator matrix. We show that these groups admit a presentation by a confluent and
terminating rewriting system, using a given linear order on the generators. The normal
forms for this presentation lead to an isomorphism with a form of Heisenberg group [3].

2. We are interested in analyzing contextuality arguments over commutation groups. We use
a notion of compatible partial monoid, which allows the idea of closing a set of generators
under commuting products to be captured. The scalars embed into the centre of this
generated compatible sub-monoid G(µ). Non-contextual value assignments correspond to
left splittings of this embedding.

3. Contextual words provide witnesses for contextuality, i.e. obstructions to the existence
of non-contextual value assignments. They generalize the usual argument for the contex-
tuality of Peres-Mermin and other examples in the literature.

A contextual word is a word over the generators of the commutation group such that:

• The word can be formed by commuting products from the generators.

• Each generator occurs a multiple of d times in the word

• The global phase factor of the word is non-zero.

The existence of a contextual word implies the contextuality of the commutation group.

4. By a detailed analysis of inversions in words in G(µ), we show that contextual words cannot
arise in commutation groups over Zd for d odd. We explicitly construct non-contextual
value assignments for these cases.

5. For even d, we firstly show that if the commutativity graph of G(µ) is a cluster graph, then
non-contextual value assignments exist. This is shown by verifying the sheaf property for
empirical models over the commutation group.

6. In the remaining cases, we give a fine-grained analysis of when contextual words exist.
This relies on a reduction of commutator matrices to Darboux normal form, which can
be performed even for composite d. Whenever some simple arithmetical criteria are met,
contextual words can be constructed over each 4× 4 block of this normal form.

7. We show that commutation groups over Zd with n generators have faithful representations
in the unitary group acting on n qudits. Moreover, the image of these embeddings lies
inside the generalized Pauli group over n qudits. Generalized Paulis, which are isomorphic
to Heisenberg groups over Zd, are themselves examples of commutation groups, as are
groups associated with Majorana fermions.
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The concept of an almost distributive lattice (or shortly an ADL) was first introduced by
U.M. Swamy and G. C. Rao [2] in 1980 as a common abstraction to most of the existing ring
theoretic and lattice theoretic generalization of Boolean algebras. An ADL is an algebra with
two binary operations ∨ and ∧ which satisfies almost all the properties of a distributive lattice
with smallest element 0 except possibly the commutativity of ∨, the commutativity of ∧ and
the right distributivity of ∨ over ∧. It was also observed that any one of these three properties
converts an ADL into a distributive lattice.

In this paper, we delve deeper into the study of ADLs and explore some structural prop-
erties. We first provide a plenty of examples (finite as well as infinite) supported by Hasse
diagrams, exhibiting a variety of ADL properties. In general, it is not known so far whether
the ∨ operation in ADLs is associative or not. We present a counter example showing that not
every ADL is ∨-associative. Moreover, we obtain a set of necessary and sufficient conditions
for an ADL to be ∨-associative. Motivated by this particular example, we obtain a number of
subdirectly irreducible finite ADLs other than those given in [2]. But it is still an open problem
to prove whether or not there are no more subdirectly irreducible ADLs.

Moreover, we present a number of congruence properties that the class of distributive lat-
tices satisfy but the class of ADLs fails to satisfy. We further state some open problems on
finding the sub varieties of the class of ADLs having these congruence properties.

Continuing our investigation on finite ADLs, we obtain an algorithm (or a formula) to
determine the cardinality of finite ADLs. Our algorithm is inductive that helps to describe the
cardinality of an ADL in terms of the cardinality of a finite distributive lattice (the lattice of
its principal ideal); where the cardinality of distributive lattices is given in [1].
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This is the first part of a two-part talk. We study the splittings in the lattices of quasiva-
rieties, which, as it is very well known, are often the algebraic semantics for finitary structural
consequence relations. The splittings in lattices of varieties were extensively studied, and this
quest was instigated by seminal paper [2]. In addition, we do not restrict ourselves to complete
lattices of all subquasivarieties of a given quasivariety; instead, we often consider an arbitrary
complete lattice of quasivarieties of a given type. This, for instance, allows us to study intervals
{Q′ : Q(FV(ω)) ⊆ Q′ ⊆ V}, where V is a variety, which sheds light on the properties of the
sets of rules admissible in the logic having V as its algebraic semantics. Before dealing with
applications it is convenient to lay down some general theory about splittings of a lattice. Let
L be any lattice; an ordered pair (a, b) of elements of L such that a ≰ b is a splitting pair
(splitting for short) if for every c ∈ L, either a ≤ c, or c ≤ b. We call a a splitting element
and b a co-splitting element; if (a, b) is a splitting of L we also will say that the pair (a, b)
splits L. The concept of splitting pair originated in [3]; there Whitman defined a splitting
of a lattice to be a pair (F, I) where F and I are a filter and an ideal of L respectively, and
L is the disjoint union of F and I. Therefore the concept we have introduced is akin to a
principal splitting in [3]. Given a lattice L we say that a ∈ L is completely join prime if for
all X ⊆ L, if

∨
X exists and a ≤ ∨X, then there is an x ∈ X with a ≤ x. A completely

meet prime element of L is defined dually. The following facts are either straifghforward or
have been shown in [3]:

1. If (a1, b1), (a2, b2) split L, then a1 ≤ a2 if and only if b1 ≥ b2 and a1 < a2, if and only if
and only if b1 > b2.

2. If (a, b), (a, c) split L, then b = c and if (a, c), (b, c) split L, then a = b. Therefore if a is
a splitting element in L there is a unique co-splitting element a∗ (called the conjugate
of a) such that (a, a∗) splits L; similarly for any co-splitting element b there is a unique
splitting element a ∈ L with b = a∗.

3. If a is splitting in L, then a is completely join prime and if L is complete, then the converse
holds.

4. If a is co-splitting in L, then a is completely meet prime and if L is complete, then the
converse holds.

5. Let M be a complete sublattice of L; if a ∈ M is splitting in L, then a is splitting in M
with conjugate element a∗ =

∨{b ∈M : a ̸≤ b}.

Antichains of splitting elements are important in a lattice.

Theorem 1. [1] Let L be a lattice and S be an infinite antichain of splitting elements. Then,

1. L contains continuum many sublattices;

2. L has infinite ascending and descending chains of elements;

3. if L is complete, then L is not countable.
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Let L be a lattice. Element a ∈ L is decomposable if there is a subset S ⊆ L of completely
meet prime elements such that a =

∧
S; an element a ∈ L is join decomposable if there is a

subset S ⊆ L of completely join prime elements such that a =
∨
S. A decomposition a =

∧
S

is irredundant if for every b ∈ S, a ̸= ∧
(S \ {b}); a join decomposition is irredundant

if the dual property holds. Every completely meet prime (join prime) element has a trivial
irredundant decomposition (join decomposition) consisting of itself. If the lattice L is
complete, then a (join) decomposition is a decomposition into splitting (co-splitting) elements
of L.

Proposition 2. Let L be a lattice and S ⊆ L be a set of meet-prime elements. Then the
decomposition a =

∧
S is irredundant if and only if S is an antichain.

An element b of lattice L is separable if for every c ∈ L, if c ≰ b, then there is a splitting
element a such that b ≤ a∗ and a ≤ c. It follows that the top element of L, if any, is always
separable. Dually we say that c ∈ L is co-separable if for every b ∈ L, if c ≰ b, then there is a
splitting element a such that b ≤ a∗ and a ≤ c. It follows that the bottom element of L, if any,
is always co-separable. A lattice is separable if all its elements are separable.

Theorem 3. [1] For a complete lattice L the following are equivalent:

1. L is separable;

2. every element different from the top is decomposable into a meet of co-splitting elements;

3. every element different from the bottom is join decomposable into a join of splitting ele-
ments.

Theorem 4. [1] Let L be a complete separable lattice and SL be the set of all its splitting
elements. If SL is countable and enjoys the descending chain condition, then the following are
equivalent:

1. L is at most countable;

2. SL has no infinite antichains;

3. each element of L has a finite irredundant decomposition.

It is well-known that the class of all quasivarieties and the class of all varieties of algebras of
a given type form complete lattices; we are interested in complete sublattices of those lattices.
If Q is any quasivariety, then all the subquasivarieties of Q form a complete lattice Λq(Q).
If V is variety then all the subvarieties of V form a complete lattice Λv(V); since V is also a
quasivariety the notation Λq(V) makes sense. Observe however that Λv(Q) and Λq(V) may be
quite different; there are examples of varieties whose lattice of subvarieties and whose lattice
of subquasivarieties are infinite; there are also examples in which the lattice of subvarieties
is countable (even finite!) but the lattice of subquasivarieties is uncountable. Moreover the
notation Λv(Q) for a quasivariety Q also makes sense; however in this case the lattice may not
be complete, in that there are examples of quasivarieties Q in which there is no largest variety
contained in Q. Now we have set up the playground for applications, that will be dealt with in
Part 2.
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This is the second part of a two-part talk, and we use some definitions and notations from
the Part I.

For variety V or quasivariety Q, Λv(V) and Λq(Q) denote the complete lattices of all subva-
rieties and all subquasivarieties, of V or Q; as every variety is a quasivariety the notation Λq(V)
also makes sense. The following observation shows the relations between splittings in Λv(V)
and Λq(V).

Theorem 1. Let W be a variety, V ∈ Λv(W) and Q = Q(FV(ω)). Then V splits Λv(W) if and
only if Q splits Λq(W).

If Q is a quasivariety, algebra A ∈ Q is Q-irreducible if there are two elements a, b ∈ A
such that for any distinct from identity congruence θ of A, if A/θ ∈ Q, then (a, b) ∈ θ. And A
is finitely Q-presentable if there is is a compact congruence θ of FQ(n) such that A ∼= FQ(n)/θ.

Similarly to splitting varieties (cf., e.g., [1]) the following holds for splitting quasivarieties.

Theorem 2. Suppose that K is a quasivariety and the pair (Q,Q∗) splits Λq(K). Then
1) Q∗ is axiomatized relative to K by any quasiequation φ such that Q∗ |= φ and Q ̸|= φ;
2) Q is generated by a single finitely generated Q-irreducible algebra A;
3) Q is generated by a single finitely Q-presented algebra A.

Among quasiequations mentioned in (1) there always is a Q-irreducible quasiequation
φ: if Φ |=Q φ, then there is φ′ ∈ Φ such that φ′ |=Q φ; the Q-irreducible quasiequation defining
relative to Q the co-splitting subquasivariety is called a splitting quasiequation.

The biggest difference between splittings in the lattices of varieties and quasivarieties is that
if a pair (V,V∗) splits Λv(W), the V-irreducible algebra generating V is subdirectly irreducible
and thus it is W-irreducible. For quasivarieties it is not the case: if pair (Q,Q∗) splits Λq(K),
Q may not be generated by any K-irreducible algebras. This observation justifies the following
definitions: algebra A is self-irreducible if it is Q(A)-irreducible; algebra A is a splitting
algebra in Λ if it is finitely generated self-irreducible and quasivariety Q(A) splits Λ; and A
is a strong splitting algebra if it is a splitting algebra and in addition it is K-irreducible,
where K is the top element of Λ. For a quasivariety K by Kspl we denote the class of all
algebras splitting Λq(K). On Kspl we also define a quasi-order by letting for any A,B ∈ Kspl,
A ≤ B ⇋ Q(A) ⊆ Q(B); and this quasi-order can be easily converted into a partial order on
the cosets.

The notion of separability was defined in the Part I. For instance, if quasivariety Q and
all its subquasivarieties have the finite embeddability property (FEP for short), that is if each
quasivariety from Λq(Q) is generated by its finite members, then Λq(Q) is separable.

Theorem 3. Let Λ be a complete lattice of quasivarieties and K be its top element. If Q ∈ Λ is
separable, then it has a basis consisting of splitting quasiequations relative to K. Thus, if Λ is
separable, then every member of Λ has a basis relative to K consisting of splitting quasiequations.
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A quasivariety Q is primitive if every its subquasivariety can be defined relative to Q by a
set of identities, i.e. for every Q′ ∈ Λq(Q), Q′ = Q∩V(Q′), where V(Q′) is the variety generated
by Q′. The primitive quasivarieties are the algebraic counterparts of hereditarily structurally
complete finitary structural consequence relations. And Q is weakly primitive if in every
Q′ ∈ Λq(Q), every algebra A ∈ Q′ is a subdirect product of Q-irreducible algebras from Q′.

Theorem 4. Every primitive quasivariety is weakly primitive. Moreover, quasivariety Q is
weakly primitive if and only if every self-irreducible algebra in Q is Q-irreducible.

A quasivariety Q is weakly tame if every finitely generated Q-irreducible algebra in Q is
Q-splitting (and thus it is strong Q-splitting). For instance, every quasivariety of finite type
with the FEP (hence any locally finite quasivariety of finite type) is weakly tame.

Corollary 5. If Q is weakly tame and weakly primitive, then Q = Q(Qspl).

If Q′ ⊆ Q, we define I[Q′,Q] = {Q′′ : Q′ ⊆ Q′′ ⊆ Q}.
Theorem 6. Let Q be weakly primitive, weakly tame quasivariety of finite type and Q′ ⊆ Q
such that every quasivariety in I[Q′,Q] has the FEP. Then the following are equivalent:

1) every Q′′ ∈ I[Q′,Q] has a finite basis relative to Q;
2) I[Q′,Q] is countable;
3) Qspl \ Q′spl has no infinite antichain;

4) I[Q′,Q] enjoys the descending chain condition.

Corollary 7. If Q is weakly primitive, of finite type and finitely generated then Λq(Q) is finite
and all its subquasivarieties have a finite basis relative to Q.

Proof. The proof follows from the observation that Q has just a finite (up to isomorphism) set
of strong Q-splitting algebras.

Corollary 8. If Q is primitive, finitely axiomatizable and of finite type, then every finitely
generated subquasivariety of Q is finitely axiomatizable.

Remark 9. Corollary 7 can be seen as a version of Baker’s Finite Basis Theorem for quasiva-
rieties; our version differs from the one in [2], in that we drop relative congruence distributivity
and add weak primitivity.

Note that primitivity is essential in Corollary 7. In [3] (also see [4, Section 4.5]) Rybakov
gave an example of finite Heyting algebra A with Q(A) not having a finite basis relative to
variety of all Heyting algebras and therefore, relative to V(A). We note that Λq(V(A)) is
infinite, while Λv(V(A)) is finite. Rybakov’s example also shows that congruence distributive
varieties may have subquasivarieties which are not relatively congruence distributive.
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A large class of substructural logics is given by the finitary extensions of the Full Lambek
Calculus FL (see [4]). It is well known that all these finitary extensions are algebraizable with an
equivalent algebraic semantics (in the sense of Blok-Pigozzi [3]) that is at least a quasivariety of
algebras. An important subfamily of substructural logics over FL consists of logics that satisfy
both exchange and weakening but lack contraction. In this context, one of the most studied
examples is Łukasiewicz’s infinite-valued logic, which we denote by MV [6], and its algebraic
counterpart given by the variety of MV-algebras. Since all extensions of FL have a primitive
connective 0 that denotes the falsum, if L is an extension of FL, it makes sense to study its
positive fragment L+ (i.e. the logic obtained from L by removing 0 from the signature), which
is still algebraizable.

In this framework, relevant algebraic structures are given by hoops, a particular variety of
residuated monoids which were defined in an unpublished manuscript by Büchi and Owens.
As a most relevant subvariety, the variety WH of Wajsberg hoops, is the equivalent algebraic
semantics of MV+, i.e. the positive fragment of Łukasiewicz logic. Its relevance extends also
to the purely algebraic framework, since Wajsberg hoops can be used to describe subdirectly
irreducible hoops and the whole variety of hoops can be obtained as the join of iterated powers
of the variety of WH, in the sense defined in [2]. In this contribution, we study structural
completeness in sub(quasi)varieties of Wajsberg hoops.

A rule is admissible in a logic if, when added to its calculus, it does not produce new
theorems. A logic L is structurally complete if every admissible rule of L is derivable in L; it
is hereditarily structurally complete if every finitary extension of L is structurally complete. In
an algebraizable logic, these notions correspond to the associated quasivariety being structural
and primitive respectively. A quasivariety Q is structural if for every subquasivariety Q′ ⊆ Q,
H(Q′) = H(Q) implies Q′ = Q (where H(Q) is the class of all homomorphic images of algebras in
Q); moreover we define the structural core of Q as the smallest Q′ ⊆ Q such that H(Q) = H(Q′).
A quasivariety Q is primitive if every subquasivariety of Q is structural.

Notice that a quasivariety Q is structural if and only if it coincides with its structural core.
As a consequence the structural subquasivarieties of a quasivariety Q are exactly those that
coincide with the structural cores of Q′ for some Q′ ⊆ Q; even more, since H(Q) is a variety,
the structural subquasivarieties of a variety V are exactly the structural cores of V′ for some
subvariety V′ of V.

In this work, we characterize all the structurally complete finitary extensions of MV+.
Moreover, we provide some examples of finitary extensions ofMV+ that are hereditarily struc-
turally complete and others that are not. Algebraically, this corresponds to classifying all the
structural quasivarieties and studying some of the primitive quasivarieties of Wajsberg hoops.

Starting from the work of Gispert about MV-algebras ([5]), we begin our analysis from
varieties, where the results are almost straightforward. It is known ([1]) that every proper
variety of Wajsberg hoops is generated by a finite number of chains of the type Łn,Ł∞n or
Cω, where Łn = Γ(Z, n), Ł∞n = Γ(Z ×l Z, (n, 0)) and Cω is the negative cone of Z with
the operations defined in the obvious way (the notation for these constructions is the one of
Mundici [7]). To be more precise, every proper subvariety of Wajsberg hoops can be associated
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with a particular kind of triple (I, J,K), called reduced triple, where I, J are finite subsets of
N \ {0}, K ⊆ {ω} and if J ̸= ∅ then K = ∅. The connection is the following: if P = (I, J, ∅)
then V(P ) = V({Łi : i ∈ I} ∪ {Ł∞j : j ∈ J}) (the variety generated by all Łi and Ł∞j ), if
P = (I, ∅, {ω}) then V(P ) = V({Łi : i ∈ I} ∪ {Cω}).

Theorem. Let V = V(I, J,K) be a proper subvariety of Wajsberg hoops. Then V is structural
if and only if either J = ∅, or J = {1}.

Notice that, if V = V(I, J,K) with either J = ∅ or J = {1}, every subquasivariety of V is
still a variety of that form, so as an immediate consequence we get that a variety of Wajsberg
hoops is structural if and only if it is primitive.

Moving on to quasivarieties, the characterization becomes more difficult to prove, but the
results are still quite simple to present. Given a reduced triple, we define Q[I, J, ∅] = Q({Łi :
i ∈ I} ∪ {Łj,1 : j ∈ J}) (the quasivariety generated by all Łi and Łj,1 = Γ(Z ×l Z, (j, 1)) [7])
and Q[I, ∅, {ω}] = Q({Łi : i ∈ I} ∪ {Cω}). Using this notation, we can characterize all the
structural quasivarieties of Wajsberg hoops.

Theorem. Let Q be a quasivariety of Wajsberg hoops. Then Q is structural if and only if either
Q is the structural core of WH or Q = Q[I, J,K] for some reduced triple (I, J,K).

Unlike varieties, we fall short of characterizing all primitive quasivarieties, due to the lack
of understanding of the lattice of all the subquasivarieties of Wajsberg hoops. Despite that, we
managed to find some examples of primitive and non-primitive quasivarieties.

Proposition. Let Q = Q[I, J, ∅] with (I, J, ∅) reduced triple; if there exists m ̸= 1 and there
exist i ∈ I, j ∈ J such that m divides i and j, then Q is not primitive. On the other hand, if
Q = Q[∅, {p}, ∅] where p is a prime number, then Q is primitive.

In particular, these examples show that in Wajsberg hoops there exist nontrivial primitive
proper quasivarieties, but not all structural quasivarieties are primitive.
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Abstract

Provability logic GL is known to be sound and complete w.r.t. scattered topological spaces,
namely spaces (X, τ) where every A ⊂ X has an isolated point. The topological interpretation
is the following: topological model is a pair ⟨(X, τ), v⟩, where (X, τ) is a topological space and
v : Vars→ PX, which yields an interpretation:

• J⊤K = X; J⊥K = ∅; JpK = v(p);

• Jφ ∧ ψK = JφK ∩ JψK;
• J¬φK = X \ JφK;
• J3φK = dτ JφK;

where dτA = {x : ∀U ∈ τi∃y ̸= x(y ∈ U ∩ A)} for each A ⊂ X, we call dτ the derivative
operator.

One can show that GL is the logic of the class of scattered spaces. Moreover, GL is known
to be Kripke complete w.r.t. to finite irreflexive trees [6], hence by regarding Kripke models
as topologies generated by the upsets, we are already getting topological completeness for the
class of scattered spaces. Moreover, GL is topologically complete with respect to any single
ordinal ≥ ωω:

Theorem 1 (Abashidze[1], Blass[2]). Consider an ordinal Ω ≥ ωω with its order topology, then
Log(Ω) = GL.

There is a number of other peculiar yet natural examples of scattered spaces. Most of them
arise in the context of set theory, so expectedly the question of completeness is independent for
some of them. They are worth studying, for we can see how modal logic can reflect properties
of somewhat complicated objects. Another important motivation behind this is that GLP
– the polymodal generalization of GL – is Kripke incomplete and the candidates for the right
topological models dwell in the realm of topologies on ordinals, hence related questions naturally
emerge in the study of GLP.

A. Blass in [2] provided a characterization of topologies on Ord for which GL is sound.
Although his results were formulated in terms of sequences of filters, filters and topologies can
be mutually interpreted, by regarding filter on α as the set of punctured neighborhoods of α.
Some natural topologies that satisfy these conditions were mentioned by A. Blass in the same
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article, namely topologies corresponding to: the end-segment filter, the club-filter, the subtle
filter, the ineffable filter and the filter

Mκ =
⋂
{U : U is a normal measure on κ}

For this filter we call the corresponding topology τU , the topology given by letting A ⊂ κ be
a punctured neighborhood of κ if A ∈ Mκ (as well as τ ′U which is essentially the same, but
relativized to pseudonormal filters). These topologies are the main subject of our study.

Golshani and Zoghifard in [3] have shown that there is a model of ZFC, where
Log(⟨Ord, τU ⟩) = GL, provided there exists infinitely many strong cardinals. Whereas Blass
has mentioned that GL can fail to be the logic of this topology, since there is a model L[U ] –
class of sets constructible from a sequence of normal ultrafilters (cf.[5], [4]). In this model a
non-theorem of GL holds for τU , however it was open what exactly the logic of it is. Let

GL.3 = GL + 2(2A→ B) ∨2(2B ∧B → A)

The main result of our investigation is:

Theorem 2. Log(⟨Ord, τ⟩) = GL.3 if V = L[U ] + “there exists a measurable cardinal of
Mitchell order n for each n < ω”. Where τ ∈ {τU , τ ′U}.

Moreover, we have shown

Theorem 3. Log(⟨Ord, τ ′U ⟩) = GL.3 if AD holds.

Generalization of this result is the matter of our future research.
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In contrast to Boolean algebras and Distributive lattices, the variety of Heyting algebras is not lo-
cally finite, and in fact, none of its free finitely generated algebras are finite. The associated difficulty of
understanding the free algebras has motivated a wealth of research into describing such algebras. Such in-
vestigations were carried out by Bellissima [3], Grigolia [6], [7] and Urquhart [8], as well as later by Ghilardi
[5]. These have allowed semantic proofs of several key facts regarding this category of algebras: the fact that
finitely presented Heyting algebras are bi-Heyting algebras being a prime example. Despite this wealth of
work, a description of the free Heyting algebra on any number of generators seems to not have been presented
in the literature. In this talk (based on an available preprint [1]) we generalize Ghilardi’s [5] construction
of the free Heyting algebra generated by a finite distributive lattice to any distributive lattice. The key
technical tool employed is Priestley duality, as well as the following adaptations of Ghilardi’s construction:

Definition 1. Let X,Y, Z be Priestley spaces, and g : X → Y and f : Y → Z be Priestley morphisms. We
say that f is open relative to g (g-open for short) if it satisfies the following:

∀a ∈ X,∀b ∈ Y, (f(a) ≤ b =⇒ ∃a′ ∈ X, (a ≤ a′ & g(f(a′)) = g(b)). (*)

Given S ⊆ X a closed subset, we say that S is g-open (understood as a poset with the restricted partial
order relation) if the inclusion is itself g-open.

Definition 2. Let g : X → Y be a map between Priestley spaces. Then consider

Vg(X) := {C ⊆ X : C is closed, rooted and g-open },

with the topology given by a subbasis consisting of sets of the form

[U ] = {C ∈ Vg(X) : C ⊆ U} and ⟨V ⟩ = {C ∈ Vg(X) : C ∩ V ̸= ∅},

where U, V are clopen subsets of X.

The following can then be shown:

Proposition 3. Given g : X → Y a Priestley morphism, the space (Vg(X),⪯) is a Priestley space, equipped
with a continuous surjection rg : Vg(X)→ X sending each rooted subset to its root.

The construction Vg enjoys a specific universal property:

Lemma 4. Given a Priestley map g : X → Y , the construction Vg enjoys the following property: given
a Priestley space Z with a g-open continuous and order-preserving map h : Z → X, there exists a unique
rg-open, continuous and order-preserving map h′ such that the triangle in Figure 1 commutes.

Z Vg(X)

X

h

h′

r

Figure 1: Commuting Triangle of Priestley spaces

Definition 5. Let g : X → Y be a Priestley morphism. The g-Vietoris complex over X (V g• (X),≤•), is a
sequence

(V0(X), V1(X), ..., Vn(X))

connected by morphisms ri : Vi+1(X)→ Vi(X) such that:
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1. V0(X) = X;

2. r0 = g

3. For i ≥ 0, Vi+1(X) := Vri(Vi(X));

4. ri+1 = rri : Vi+1(X)→ Vi(X) is the root map.

We denote the projective limit of this family by V gG(X), and omit it when g is the terminal map to 1.

Theorem 6. The assignment VG is a functor mapping the category Pries of Priestley spaces and Priestley
morphisms to the category Esa of Esakia spaces; indeed it is the right adjoint of the inclusion.

As applications, we obtain new proofs of old results, as well as some new facts: (1) a description of free
Heyting algebras on any number of generators is given; (2) a description of coproducts of Heyting algebras is
given, and it is shown that the category of Heyting algebras is co-distributive; (3) A description of pushouts
of Heyting algebras is given, and it is shown directly that the coprojections of Heyting algebras to the
pushout are injective (yielding, as a corollary, the amalgamation property).

We also consider two generalizations of these results:

1. We consider the construction obtained when restricting to specific subvarieties of HA, such as KC-
algebras and LC-algebras (often called “Gödel algebras”), and show that adaptations of the above ideas
yield descriptions of the free algebras in these varieties.

2. We study the category of image-finite posets and p-morphisms and its relationship to the category of
posets. We show that a similar adjunction holds here. This connects with recent work by de Berardinis
and Ghilardi [4], and provides a generalization of the n-universal model for arbitrary finite posets.

We also highlight some connections to coalgebraic representations of intuitionistic modal logic, which we
investigate in depth in a paper with Nick Bezhanishvili [2]. We conclude by pointing some further avenues
of exploration, as well as some questions left open by the above research:

Problem 7. Is Vg(X) an Esakia (bi-Esakia) space whenever X is an Esakia (bi-Esakia) space?

Problem 8. Does the inclusion of Posp, the category of posets with p-morphisms, into Pos admit a right
adjoint?
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The Leibniz hierarchy is a classification system for propositional logics in terms of their
behavior with respect to the Leibniz congruence/operator Ω. In [AP], we propose the intro-
duction of two new classes of logics into the Leibniz hierarchy: the class of Ω-natural logics
and its intersection with the class of truth-equational logics, which we called truth-natural. In
short, we say that a logic has the property of Ω-naturality when its Leibniz operator commutes
with inverse substitutions (endomorphisms on the algebra of formulas), or equivalently, inverse
arbitrary homomorphisms. It is then clear that the well-known classes of equivalential logics
and algebraizable logics, for instance, represent the intersection between the class of Ω-natural
logics and the classes of protoalgebraic and weakly algebraizable logics, respectively.

In order to substantiate the relevance of these new classes, we looked to the attempted
formalization of the Leibniz hierarchy conducted in [JM1, JM2, JM3], which also discusses the
collection of all logics viewed as a poset whose partial order is given by existence of interpre-
tations (in a specific sense) between logics, drawing inspiration from the Maltsev hierarchy of
Universal Algebra. Furthermore, the question of whether there is a precise relation between
the so-called Leibniz classes and the behavior of the Leibniz operator is raised in [JM2, Prob.
2].

We show in [AP, Prop. 3.3, Thm. 4.14] not only a sufficient condition for Ω-naturality
determined solely by the underlying language of a given logic, but also that the class of Ω-
natural logics do not, in fact, comprise a Leibniz class [JM2, Thm. 2.2 (ii)]. In this case, we
have a negative answer to the aforementioned open problem associating Leibniz classes and the
Leibniz operator.

With this issue in mind, we will opt to distinguish the definition of Leibniz-reduced in-
terpretation (LR-interpretation, for short) from that of Suszko-reduced interpretation (SR-
interpretation, for short):

Definition. (translation, SR-interpretation, LR-interpretation)

• Given two languages Σ and Σ′, a translation [JM1, Def. 3.1] from Σ to Σ′ is any arity-
preserving map τ : Σ → FmΣ′ . We can see that any translation τ induces a contravariant
functor τ∗ : Σ′−Str → Σ−Str.

• Given a Σ-logic S and a Σ′-logic S′, an SR-interpretation [JM1, Def. 3.2] of S into
S′ is a translation τ from Σ to Σ′ such that τ∗[ModΞ(S′)] ⊆ ModΞ(S).

• Given a Σ-logic S and a Σ′-logic S′, an LR-interpretation of S into S′ is a translation
τ from Σ to Σ′ such that τ∗[Mod∗(S′)] ⊆ Mod∗(S),

where ModΞ (resp. Mod∗) denotes the class of all matrix models for a given logic whose filters
have Suszko (resp. Leibniz) congruences coinciding with the identity relation, which are called
Suszko-reduced (resp. Leibniz-reduced, or simply reduced) matrices.
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It is therefore easy to see that any LR-interpretation is also an SR-interpretation, since
the Suszko congruence is always contained in the Leibniz congruence. This observation, to-
gether with the fact [JM1, Prop. 3.3] that SR-interpretations are also flexible morphisms of
logics in the sense of [AFLM], shows that the following inclusion of (wide) subcategories holds:
LogLR ↩→ LogSR ↩→ Logf , which denote the categories of all logics with LR-interpretations,
SR-interpretations and flexible morphisms, respectively. In fact, LogSR is simply the categori-
cal reframing of the poset of all logics Log as defined in [JM1, Def. 3.5] before passing through
the quotient of equi-interpretability. In this sense, we can then investigate the relationships
between those three categories, e.g. finding possible equivalences, adjoints, their associated
monads and algebras.

Moreover, we would also like to point out that the distinction between the Suszko and
Leibniz congruences (and therefore between SR-interpretations and LR-interpretations) is non-
existent among protoalgebraic logics [Cze, Thm. 1.5.4]. In Czelakowsi’s words, “the list of
plausible properties of the Suszko operator, parallel to those of the Leibniz one, may thus serve
as a basis for distinguishing a hierarchy of all logics which, when restricted to protoalgebraic
logics, agrees with the [Leibniz] hierarchy” [Cze, p. 9].

Now, in the context of Leibniz conditions and classes (see [JM2, Def. 2.1], if we replace
(i.e. strengthen) SR-interpretability with LR-interpretability in the corresponding definitions,
we can then define what we shall call strict Leibniz conditions, strict Leibniz classes
and the strict Leibniz hierarchy. Therefore, once we make the appropriate tweaks to the
surrounding concepts, this adaptation also preserves most, if not all properties analogous to
those of Leibniz classes (such as the appealing [JM2, Thm. 2.2]). Even so, it remains to be
verified whether Ω-natural (resp. truth-natural) logics do indeed form a strict Leibniz class via
this characterization.

In conclusion, we also leave as a possibility for further investigation that of determining
which categorical properties LogSR and LogLR possess. It is already known that LogSR admits
weak products, but not necessarily even finite weak coproducts, given that the poset Log admits
arbitrary infima but not necessarily even finite suprema (see [JM1, Thm. 4.6, 5.1]). In addi-
tion, both LogSR and LogLR seem to be very good candidates for being factorization systems,
considering the decomposition [JM1, Prop. 3.8] of any SR-interpretation into a compatible
expansion and a term-equivalence.
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Let f : X → Y be a function between topological spaces (or, more generally, closure spaces)
and define the pair of assignments

A
* ,,

cl (f [A])
Closed(X)

f→

&&
Closed(Y )

f←

ff cl (f−1[B]) B)nn

It is very easy to check that

f is continuous iff (f→, f←) is an adjoint pair.

This idea that the continuous maps between topological spaces (and, more generally, closure
spaces) correspond to certain adjoint pairs of maps between the involved closure systems, by
assigning with any continuous map the lifted map taking the closures of images as left adjoint
and the preimage map as right adjoint, is well-known [2, 3, 7]. This idea was also explored
in the pointfree setting in the forerunner article [4]. Our goal in this talk is to revisit those
adjunctions and to present new characterizations of continuous (that is, localic) maps and open
maps (that is, plain maps with open images of open sublocales [5, 6]) between locales, in terms
of certain Galois adjunctions between the locales of open sublocales or between the colocales
of closed sublocales. With these results we can better understand the differences between the
morphisms in the classical and pointfree settings.

Let Loc denote the category of locales and localic maps ([8]). Recall that a map f : L→M
between locales L and M is a localic map (the counterpart of a continuous map in the pointfree
setting) if

(L1) it preserves arbitrary meets (and hence it has a left adjoint h : M → L),

(L2) f(a) = 1 ⇒ a = 1, and

(L3) f(h(a)→ b) = a→ f(b) for every a ∈M , b ∈ L.

In a locale L and any a ∈ L, we consider the open and closed sublocales

o(a) = {x | a→ x = x} = {a→ x |x ∈ L} and c(a) = ↑a = {x ∈ L | x ≥ a}
and denote by oL and cL respectively the sets of open and closed sublocales of L. We start by
generalizing the closure and interior operators from sublocales to general subsets and with a
discussion of the problems that may emerge from doing so. Then, given a plain map f : L→M ,
we consider f∗ : M → L and f! : L → M , given by f∗(b) =

∨{a ∈ L | f [o(a)] ⊆ o(b)} and
f!(a) =

∨{b ∈ M | o(b) ⊆ f [o(a)]}, and the remaining maps in the following diagram, defined
by

f→o (o(a)) = ¬(cl (f [c(a)])), f←o (o(b)) = int (f−1[o(b)]), f⇒o (o(a)) = int (f [o(a)]),

f→c (c(a)) = cl (f [c(a)]), f←c (c(b)) = cl (f−1[c(b)]), f⇒c (c(a)) = ¬(int (f [o(a)])).
∗Joint work with Jorge Picado [1].
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One has:

1. The pair (f→c , f←c ) is an adjoint pair if and only if f is meet-preserving.

2. If f is order-preserving then the pair (f←o , f→o ) is an adjoint pair if and only if f is a
localic map.

3. If f is meet-preserving then:

(a) The pair (f⇒o , f←o ) is an adjunction if and only if f is open.

(b) The pair (f←c , f⇒c ) is an adjunction if and only if f is an open localic map.

An attractive feature of these adjunctions is that they are all concerned with elementary
ideas and basic concepts of localic topology: the use of the concrete language of sublocales and
its technique simplifies the reasoning. Taking advantage of the generalization of the interior
operator and of the characterization of localic maps in [4], we further obtain the following
results:

Proposition 1. A plain map f : L→M is a localic map if and only if

¬(int (f−1[o(b)])) = f−1[c(b)] for every b ∈M.

Proposition 2. A plain map f : L→M is an open localic map if and only if

¬(int (f−1[T ])) = f−1[¬(intT )] for every sublocale T of M.

If time permits we will also refer to some open questions.
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[3] M. Erné, Adjunctions and Galois connections: origins, history and development, in: Galois Con-
nections and Applications, Mathematics and its Applications vol. 565, Springer, 2004, pp. 1–138.
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In the study of programming languages, effects may be modeled using monads. For instance,
the powerset monad P on the category Set models non-determinism: a non-deterministic func-
tion from a set X to a set Y can be seen as a (deterministic) function X → PY . Similarly,
the distribution monad D and the corresponding functions X → DY model probabilistic non-
determinism: the monad D sends a set X to the set of finitely supported probability distribu-
tions on X. Ordinary and probabilistic non-determinism may be combined in Set using weak
distributive laws, and in this work we study how to combine these effects in a topological setting:
we construct weak distributive laws between powerspace monads over the category of stably
compact spaces, with the hope that weak distributive laws involving probabilistic powerspace
monads may also be constructed in future work.

Given two monads S and T on a category C corresponding to two effects, the combination of
these effects may be modeled by composing the monads S and T . This can be done by finding
a distributive law between the two monads, i.e. a natural transformation T S ⇒ ST satisfying
certain axioms. Such a distributive law yields a new monad S◦T on C whose underlying functor
is the composite of the functors underlying S and T .

But such distributive laws may not necessarily be unique and may not exist. In particular,
there is no distributive law PP ⇒ PP nor DP ⇒ PD for combining two layers of non-
determinism or non-determinism with probabilistic non-determinisim [9, 1]. Still, there are
natural transformations λP/P : PP ⇒ PP and λD/P : DP ⇒ PD that satisfy all but one of the
axioms required for them to be distributive laws [2, 6]: these natural transformations are called
weak distributive laws. Again, weak distributive laws T S ⇒ ST yield a composite monad, but
its underlying functor need not be the composite of the functors underlying S and T anymore.

The powerset monad has a topological analogue, the Vietoris monad V on the category of
compact Hausdorff spaces (it sends a compact Hausdorff space to the space of its closed subsets
equipped with the Vietoris topology). It was shown recently that the weak distributive law
λP/P also has a topological analogue λV/V : VV ⇒ VV [7].

What about a topological analogue of λD/P ? Goy conjectures in [5] that the strategy for
constructing λV/V can be adapted to construct a weak distributive law RV ⇒ VR, where R
is the Radon monad – a topological analogue of the distribution monad. But we show that
this conjecture does not hold, the main problem being that the category of free algebras of the
Vietoris monad is a strict subcategory of that of closed relations between compact Hausdorff
spaces. To get a topological analogue of λD/P , we thus choose to study weak distributive laws
between powerspace monads in the category of stably compact spaces instead [10], as in this
category the closed relations match exactly the free algebras of a powerspace monad [8].

An important property of a stably compact space (X, τ) is that it comes with its de Groot
dual: X can also be equipped with the topology τd whose open sets are the compact saturated
subsets of (X, τ). A continuous map f : X → Y that is also continuous for the dual topologies
is then said to be proper. There are then two notions of powerspaces, dual to one another: the
Smyth powerspace of a stably compact space X is the spaceQX of its compact saturated subsets
equipped with the upper Vietoris topology, while its Hoare powerspace is the space HX of its
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closed subsets equipped with the lower Vietoris topology. It is well-known that QXd = (HX)d:
we also show that the two monads themselves are de Groot duals of one another, so that their
unit and multiplicative laws are proper maps.

The main contribution of this work is to construct a weak distributive law QQ ⇒ QQ,
using a known general construction starting from the identity monad morphism Q ⇒ Q, and a
(strong) distributive lawQH ⇒ HQ, derived by hand, and which happens to be an isomorphism
of monads QH ∼= HQ with inverse the dual distributive law HQ ⇒ QH, so that (QHX)d =
HQXd ∼= QHXd and QH is self-dual.

A third kind of powerspace, the Plotkin powerspace, arises naturally as a combination of the
Hoare and Smyth powerspaces: there is hope that making this combination categorical would
also allow for combining the two weak laws above into a weak law for the Plotkin powerspace
monad. Another next step would also be to extend the combination of probabilistic powerspaces
over stably compact spaces with the Hoare and Smyth powerspaces [3, 4] to the monadic setting,
again by constructing weak distributive laws.
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In this work we consider semantics of a logic in a class of first order structures axiomatized
by universal Horn sentences, a Horn class. We give conditions on such a semantics which ensure
that an amalgamation property for the Horn class implies Craig interpolation for the logic.

This generalizes the well-known result that for an algebraizable logic the amalgamation property
for the associated class of algebras implies Craig interpolation.

κ-Horn classes and lattices of atomic Horn formulas
Let κ be a regular cardinal. Let Σ be a signature consisting of function symbols and Σ+ an
expansion of Σ by relation symbols.

• A universal strict basic κ-Horn sentence is a sentence of the form ∀x⃗ :
∧
i∈I Pi(x⃗)→ P (x⃗),

with Pi, P atomic formulas over Σ+ not equivalent to ⊥ and |I| < κ.

• A κ-Horn theory is a theory axiomatized by universal strict basic κ-Horn sentences.

• A κ-Horn class is a class of Σ+-structures axiomatized by a κ-Horn theory.

We shall say that a class K of Σ+-structures has the atomic amalgamation property if given
A,B,C ∈ K and maps iB : A→ B, iC : A→ C that preserve and reflect the validity of atomic
formulas (atomic embeddings), there exist a Σ+-structure D ∈ K and atomic embeddings
eB : B → D, eC : C → D such that eB ◦ iB = eC ◦ iC .

For a κ-Horn theory T, we define a lattice of atomic Horn formulas that will replace the
congruence lattice from algebraic semantics: For a Σ-structure A let

• GT(A) := {(θ, S) | θ is a Σ-congruence on A and S an interpretation
. of R on A/θ s.t. the resulting Σ+-structure on A/θ is a T-model}

• We define an order on GT(A) by declaring (θ, S) ≤ (θ′, S′) iff
θ ⊆ θ′ and the induced quotient map qθθ′ : A/θ ↠ A/θ′ is a homomorphism of
Σ+-structures for the interpretations S, S′.

GT(A) is a κ-algebraic lattice.

κ-Horn Semantics
Let L be a logic over a signature Σ. Recall that an algebraic semantics for a logic L is a
translation from formulas of L to sets of equations over the signature of L (i.e. atomic formulas of
the first order language associated to Σ), commuting with substitution, and such that inference
in the logic under this translation corresponds exactly to inference in the equational logic in a
quasivariety K.

This situation has been abstracted into the notion of filter pair in [AMP1], [AMP2],
[AMP3]: A filter pair is a functor G : Σ-Str→ κ-AlgLat together with a natural transformation
to the power set functor i : G→ ℘, which objectwise preserves infima and κ-directed suprema.
In the case of algebraic semantics for the functor one takes G := CoK(Fm) := {θ | Fm/θ ∈ K}.
Horn Semantics arises by replacing the congruence lattice with the above lattice of atomic
formulas of an expansion Σ+ of Σ.
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Theorem Let τ be a set of atomic Σ+-formulas with at most one free variable, such that
|τ | < κ. The collection of maps iτ = (iτA)A∈Σ−Str, defined by

iτA : GT(A) → (P(A),⊆)
(θ, S) 7→ {a ∈ A | ∀φ(x) ∈ τ : A/(θ, S) ⊨ φ(a)}

is a natural transformation and for any A ∈ Σ−Str, iτA preserves arbitrary infima and κ-directed
suprema. In other words, (GT, iτ ) is a κ-filter pair.

Such a filter pair is called Horn filter pair.

Definition A κ-Horn Semantics for a logic L is a Horn filter pair whose image over the
formula algebra is the lattice of theories of L. It is an equivalent Horn Semantics if the natural
transformations are injective.

Examples

• For Σ+ = Σ a Horn semantics is precisely an algebraic semantics, and an equivalent Horn
semantics corresponds precisely to an algebraizable logic.

• For Σ+ = Σ ∪ {F} an expansion of the signature with a unary relation symbol one can
define an equivalent Horn semantics corresponding to matrix semantics.

• For Σ+ = Σ ∪ {≤} an expansion of the signature with an inequality symbol, and a Horn
theory demanding that this be an order relation, a Horn semantics is precisely an order
algebraic semantics, and an equivalent Horn semantics corresponds precisely to an order
algebraizable logic in the sense of [Raf]

Using the formalism of filter pairs, we can prove a general Craig Interpolation result:
Theorem Let (GT, iτ ) be a Horn semantics for a logic L. Suppose that the filter pair (GT, iτ )
has the “theory lifting property”. If K := Mod(T) has the atomic amalgamation property, then
the logic L associated to (GT, iτ ) has the Craig entailment property.

The “theory lifting property” is a technical condition, satisfied by every filter pair presenting
an equivalent Horn Semantics, but also in other cases.

Examples The above theorem specializes to the following statements:

• the well-known statement that for algebraizable logics, the amalgamation property entails
Craig interpolation

• the well-known statement that the theory amalgamation property entails Craig interpo-
lation

• a corresponding statement for order algebraizable logics

• the statement that for logics with an algebraic semantics in a regular variety, the amal-
gamation property entails Craig interpolation

In the talk we will review the notion of filter pair and explain the above results and examples.
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Regular subobjects (equivalently, extremal subobjects) in the category of locales are known
as sublocales, and therefore they are the point-free counterparts of classical subspaces of a
space. In a topological space X, every subspace induces a sublocale of its frame of opens Ω(X),
but this correspondence is, in general, not one-to-one nor onto (see [7] for more information on
the relation between sublocales and subspaces).

It is well known that every locale has a largest (in fact, unique) Boolean dense sublocale,
which coincides with the least dense sublocale [4] — the Booleanization of the locale [1]. This
is typically a pointless locale, in the sense that for any Hausdorff space without isolated points
it does not contain any points at all.

Moreover, Caramello [2] (cf. also [3]) showed that every topos has a largest dense De Morgan
subtopos. By applying it to toposes of sheves over locales, this immediately implies that every
locale has a largest dense De Morgan sublocale, where we recall that a locale is said to be De
Morgan or extremally disconnected if the identity

(a ∧ b)∗ = a∗ ∨ b∗

holds for all a, b ∈ L (see [5] for more information and other equivalent conditions).
The study of the DeMorganization directly for locales recently started in [6], where a direct

proof of its existence was given using nuclei.
In this talk, we will give a direct, simpler, proof of the existence of the DeMorganization

in terms of sublocales as concrete subsets, represented as in [7]. This helps understand the
topological nature of the DeMorganization. Among others, we will show that, similarly to the
Booleanization, the DeMorganization is also a fitted sublocale — i.e. one which occurs as an
intersection of open sublocales.

Using these techniques, we will show that for every metric space without isolated points its
DeMorganization coincides with its Booleanization (a proof was announced in the abstract of
[6], but it was not materialized during the talk).

Time permitting, we will also look at analogues for infinite variants of De Morgan law in
locale theory.
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(1996), 41–60.

[2] O. Caramello, De Morgan classifying toposes. Adv. Math. 222 (2009), 2117–2144.

[3] O. Caramello and P. T. Johnstone, De Morgan’s law and the theory of fields. Adv. Math. 222
(2009), 2145–2152.

[4] J.R. Isbell, Atomless Parts of Spaces, Math. Scand. 31 (1972), 5–32.

[5] P. T. Johnstone, Conditions related to De Morgan’s law, in: Applications of Sheaves, Lecture Notes
in Math. 753, Springer, Berlin (1980), pp. 479–491.

[6] P. T. Johnstone, Why didn’t locale-theorists discover DeMorganization?, invited talk at TACL 2022
(Coimbra).

40



Remarks on the DeMorganization of a locale Igor Arrieta

[7] J. Picado and A. Pultr, Frames and locales: Topology without points, Frontiers in Mathematics,
vol. 28, Springer, Basel, 2012.

2

41



On Non-Archimedean frames
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Frames (locales, complete Heyting algebras) are complete lattices L such that the following distribu-
tivity holds:

a ∧
(∨

X
)

=
∨
{a ∧ x | x ∈ X}

for each a ∈ L and X ⊆ L.
Frames can be understood as an algebraic manifestation of a topological space. Indeed, for every

topological space S, the lattice of open sets OS constitute a frame but not every frame is a topology. A
decent analysis of the category of topological spaces can be done in the language of frames (see [PP12]).
An example of the above statement is the core of this talk:

Definition. A non-archimedean topological space S is a Hausdorff space with a base B satisfying the
trichotomy laws: If B1, B2 ∈ B, we have that either B1 ∩B2 = ∅ or B1 ⊆ B2 or B2 ⊆ B1 holds (see,
e.g., [Nyi75], [NR75], [Nyi99]).

Motivated by this, we introduce:

Definition. A frame is non-archimedean if it has a (non-archimedan) base B that satisfies these tri-
chotomy laws: If b1, b2 ∈ B, then either b1 ∧ b2 = 0 or b1 ≤ b2 or b2 ≤ b1 holds.

One of the main examples of non-archimedian frames comes from non-archimedian fields, by ex-
ample consider the frame of p-adic numbers L(Qp), defined by [Ávi20], where Qp is the field of p-adic
numbers. This field was determined by Kurt Hensel in 1904 in analogy with the Laurent series C((t)).
Furthermore, this field is a non-archimedean field with the p-adic norm | · |p defined over it. Since the
set of open balls centered at rationals generates the open subsets of Qp, we consider these balls’ (lattice)
properties and think of them as generators. Thus, we can define the Qp frame as follows.

Let L(Qp) be the frame generated by the elements Br(a), where a ∈ Q and r ∈ |Q| := {p−n, n ∈
Z}, subject to the following relations:

(1) Br(a) ∧Bs(b) = 0 whenever |a− b|p ≥ r ∨ s.

(2) 1 =
∨{Br(a) : a ∈ Q, r ∈ |Q|}.

(3) Br(a) =
∨{Bs(b) : |a− b|p < r, s < r, r ∈ |Q|}.

Note that relation (3) implies that the set

B := {Br(a) : r ∈| Q|, a ∈ Q}
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is a base for L(Qp). Moreover, let Br(a), Bs(b) be any two elements in L(Qp) and, without loss of
generality, assume that s ≤ r. Then, If |a− b|p ≥ r, we have Br(a) ∧Bs(b) = 0 by relation (1), and if
|a− b|p < r, we have Bs(b) ≤ Br(a) by relation (3). Thus, for any Br(a), Bs(b) ∈ B, either

Br(a) ∧Bs(b) = 0 or Bs(b) ≤ Br(a) or Bs(b) ≥ Br(a).

It follows that B := {Br(a) : r ∈ |Q|, a ∈ Q} is a non-archimedean base for the frame L(Qp), and
that L(Qp) is a non-archimedean frame.

Another example of a similar nature of a non-archimedean frame is the frame of the Cantor set,
denoted by L(Zp) [ÁUZ22].

As the examples show, the bases of these non-archimedean frames constitute a tree. This phe-
nomenon is not a coincidence; in [Nyi99, Theorem 2.10] the author shows that every non-archimedean
space is a subspace of a branch space of a tree. In the point-free context we have:

Theorem. Let A be a non-archimedean frame with base B. Then A has a tree-base.

Since for every tree we have its branch space we have furthermore:

Theorem. A frame A is non-archimedean if and only if A is a quotient of a topology of a branch space
of a tree.

In this talk we will give some details on these theorems and their connection with the spatiality of
certain quotients of the Alexandroff topology given by the tree-base.
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[ÁUZ22] Francisco Ávila, Julio Urenda, and Angel Zaldı́var, On the Cantor and Hilbert cube frames and the

Alexandroff-Hausdorff theorem, Journal of Pure and Applied Algebra 226 (2022), no. 5, 106919.
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One of the first recognised characteristics of classical logic is the existence of a prenex form
for each formula. The quantifier-shifting rules are used non-uniquely to construct these prenex
forms. The expressive power of prenex fragments is easy to see in classical logic because it
coincides with the whole logic, and in Intuitionistic logic since the prenex formulas are very
weak (the validity of the prenex formula is decidable). However, because Gödel logics are
intermediary logics, the expressibility of its prenex is relatively important.

It is clear that prenex normal forms cannot be constructed in the usual sense in Gödel
logics because some of the quantifier-shift rules may fail, but this does not imply that no
prenex normal form exists. However, demonstrating that such prenex forms do not exist is
more difficult. Prenexation does not work for G[0,1] when 0 is not isolated, since the formula
(¬∀xA(x)∧∀x¬¬A(x)) does not allow a prenex normal form. To prove this fact, we use a glueing
argument. This result can be extended to all Gödel logics where there is one accumulation point
from above, even if it is not 0.

In this talk we provide the complete classification for the first-order Gödel logics with respect
to the property that the formulas admit logically equivalent prenex normal forms. We show
that the only first-order Gödel logics that admit such prenex forms are those with finite truth
value sets since they allow all quantifier-shift rules and the logic G↑ with only one accumulation
point at 1. In all the other cases, there are, in general, no logically equivalent prenex normal
forms. We will also see that G↑ is the intersection of all finite first-order Gödel logics.

The second stage of our research investigates the existence of the validity equivalent prenex
normal form. Gödel logics with a finite truth value set admit such prenex forms. Gödel
logics with an uncountable truth value set have the prenex normal form if and only if every
surrounding of 0 is uncountable or 0 is an isolated point. Otherwise, uncountable Gödel logics
are incomplete, and the prenex fragment is always complete with respect to the uncountable
truth value set. Therefore, there is no effective translation to the valid formula and the valid
prenex form. The countable case, however, is still up for debate.
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Fifty years ago, Lawvere’s observation that ordered sets and metric spaces can be seen as
enriched categories over a quantale opened a wide path for the quantitative theory of domains,
using and generalising ideas from category theory, algebra, logic and and topology. Among the
most beneficial and pleasing properties of such quantale-enriched categories are undoubtedly
(co)completeness with respect to certain classes of (co)limits and commutation of such limits
and colimits (with prominent examples featuring the ordered case, like continuous or completely
distributive lattices).
The present talk considers the category V-Sup of cocomplete enriched categories over a commu-
tative quantale V – the V-valued analogue of complete sup-lattices. The arrows are cocontinuous
V-functors. Cocomplete V-categories are the Eilenberg-Moore algebras for the free cocomple-
tion monad D on V-categories. V-Sup is symmetric monoidal closed. The corresponding tensor
product ⊗V -Sup arises naturally, using that D is a KZ-monad (hence commutative) [6, 8], and
it classifies bimorphisms [1, 7]. The internal hom is V-Sup(A,B). Besides being monoidal
closed, V-Sup is also ∗-autonomous, with dualizing object Vop [3]. Consequently, the tensor
product A⊗V-SupB of two cocomplete V-categories A and B can alternatively be characterised
as V-Sup(A,Bop)op. In case of complete sup-lattices, this is precisely the set of Galois maps be-
tween them [10]. An alternative description of the tensor product of two complete sup-lattices
is obtained as the set of all down-sets in their cartesian product that are join-closed in either
coordinate [13]. Taking advantage of the 2-categorical setting, we can extend this description
to (co)complete quantale-enriched categories.

Proposition 1. Let A and B be two cocomplete V-categories. Then the coreflexive inverter in
V-Sup of the 2-cell (inequality) D(yA ⊗ yB)⇒ D∀(yA ⊗ yB) is A⊗V-Sup B:

A⊗V-Sup B // D(A⊗B)
D(yA⊗yB)

//
⇓

D∀(yA⊗yB)
// D(D(A)⊗D(B))

In the above, yA : A → D(A) and yB : B → D(B) denote the Yoneda embeddings, and
D∀(yA ⊗ yB) is the right adjoint to the right adjoint to D(yA ⊗ yB).

Nuclearity (in modern parlance dualisability) originally arose in Operator Theory, in order
to mimic finite dimensionality behaviour (for objects) and matrix calculus (for arrows) [4].
It was subsequently observed that nuclearity was in fact a categorical concept, and that it
could be defined in the more general context of (symmetric) monoidal closed categories: An
arrow f : A → B is nuclear iff the associated 1 → [A,B] factorises through A∗ ⊗ B, where
A∗ = [A,1], and an object A is nuclear if idA is so [5]. Equivalently, B ⊗A∗ ∼= [A,B] holds for
all objects B. The nuclear objects in the category of sup-lattices and join-preserving maps are
precisely the completely distributive lattices [5, 11, 12]. The analogue concept in the realm of
V-enriched categories, the cocomplete and completely distributive V-categories (V-ccd) [14], are
(co)complete V-categories for which taking suprema distributes over limits, equivalently, they
are the projective objects in V-Sup. Their behaviour with respect to the monoidal structure of
V-Sup is described in the next Proposition:

∗The author acknowledges support by the research project 88/11.10.2023 GNaC2023 ARUT.
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Proposition 2. 1. The tensor product in V-Sup of two V-ccds is V-ccd.
2. The nuclear objects in V-Sup are precisely the V-ccds.

To each arbitrary category A canonically corresponds a cocomplete one, namely DA. Being
free in V-Sup, the latter is also V-ccd. To obtain more examples of (completely distributive)
cocomplete V-categories associated to A, consider the Isbell adjunction [Aop,V ]

//
⊥ [A,V ]opoo .

Taking the fixed points of this adjunction produces a V-category I(A) into which A embeds,
known as the Isbell completion, the categorical analogue of the MacNeille completion by cuts of
a poset. As such, I(A) is a (complete and) cocomplete V-category, hence an object of V-Sup.
When V is the two-element quantale, A is just an ordered set, and I(A) is a complete sup-lattice,
which moreover is completely distributive if and only if the negation of the underlying order of
A is a regular relation [2]. Regularity is a concept definable not only for relations; it can apply to
arrows in an arbitrary category [9]. We seek to generalise this result to V-categories. However,
a quantale has only tensor product and internal hom. Properly handling negation in a quantale
requires extra assumptions. We shall assume that V is a Girard quantale, the posetal analogue
of a ∗-autonomous category. Then taking internal homs into the cyclic dualising element of V
determines a negation operation ¬ on V , in particular, on all V-valued relations. Under these
assumptions, we obtain the sought generalisation:

Theorem 3. Let V be a Girard integral quantale and I(A) the Isbell completion of a V-enriched
category A. Then the following are equivalent:

1. I(A) is completely distributive (as a cocomplete V-category), that, is, I(A) is a nuclear
object in the ∗-autonomous category V-Sup.

2. Negation ¬A(−,−) of the V-hom of A is regular as a V-relation.
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Abstract

We make a clean sweep of the tradition in intuitionistic modal logics by considering a
new truth condition of ♦-formulas saying that in model (W,≤, R, V ), ♦A holds at s∈W if
there exists t∈W where A holds and such that s≥◦Rt. While keeping the truth condition
of �-formulas that is commonly used, we axiomatize validity in the class of all models. The
resulting logic is the intuitionistic modal logic that we want to put forward as a candidate
for the title of “minimal intuitionistic modal logic”.

1 Syntax and semantics

Let At be a set of atoms (p, q, etc). The set Fo of all formulas (A, B, etc) is defined by
A ::= p|(A→A)|>|⊥|(A∧A)|(A∨A)|�A|♦A. For all A∈Fo, ¬A is the abbreviation for (A→⊥).

A Kripke frame or a KF is a structure of the form (W,≤, R) where W is a nonempty set,
≤ is a partial order on W and R is a binary relation on W . Let Ckfall be the class of all KFs.
A KF (W,≤, R) is forward (respectively: backward; downward) confluent if for all s, t∈W , if
s≥◦Rt then sR◦≥t (respectively: for all s, t∈W , if sR◦≤t then s≤◦Rt; for all s, t∈W , if s≤◦Rt
then sR◦≤t). Let Ckffc (respectively: Ckfbc; Ckfdc; Ckffbc; Ckffdc; Ckfbdc; Ckffbdc) be the class of all
forward (respectively: backward; downward; forward and backward; forward and downward;
backward and downward; forward, backward and downward) confluent KFs. A valuation on a
KF (W,≤, R) is a function V : At −→ ℘(W ) associating a ≤-closed subset of W to each atom.
Such a function can be extended as a function V : Fo −→ ℘(W ) associating to each A∈Fo a
≤-closed subset V (A) of W defined as usual when either A is an atom, or the main connective
of A is intuitionistic and as follows otherwise: (i) V (�A)={s∈W : for all t∈W , if s≤◦Rt then
t∈V (A)}; (ii) V (♦A)={s∈W : there exists t∈W such that s≥◦Rt and t∈V (A)}. A relational
model is a couple consisting of a KF and a valuation on that KF. Truth in a relational model,
validity in a KF and validity on a class of KFs are defined as usual. For all classes C of KFs,
let Log(C) be the logic of C.

A H-modal algebra or a HMA is a structure of the form (H,≤H ,→H ,�H ,♦H) where
(H,≤H ,→H) is a Heyting algebra and �H : H−→H and ♦H : H−→H are operators
such that for all a, b, c∈H: (i) �H>H=>H ; (ii) �H(a∧Hb)=�Ha∧H�Hb; (iii) ♦H⊥H=⊥H ;
(iv) ♦H(a∨Hb)=♦Ha∨H♦Hb; (v) if ♦Ha≤Hb∨H�H(a→Hc) then ♦Ha≤Hb∨H♦Hc. Let Chma

all

be the class of all HMAs. A HMA (H,≤H ,→H ,�H ,♦H) is forward (respectively: back-
ward; downward) confluent if for all a, b∈H, ♦H(a→Hb)≤H(�Ha→H♦Hb) (respectively:
(♦Ha→H�Hb)≤H�H(a→Hb); �H(a∨Hb)≤H♦Ha∨H�Hb). Let Chma

fc (respectively: Chma
bc ;

∗Email address: philippe.balbiani@irit.fr
†Email addresses: cigdem.gencer@irit.fr and cigdemgencer@aydin.edu.tr.
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Chma
dc ; Chma

fbc ; Chma
fdc ; Chma

bdc ; Chma
fbdc) be the class of all forward (respectively: backward; downward;

forward and backward; forward and downward; backward and downward; forward, backward
and downward) confluent HMA. A valuation on a HMA (H,≤H ,→H ,�H ,♦H) is a function
V : At −→ H associating an element of H to each atom. Such a function can be extended
as a function V : Fo −→ H associating to each A∈Fo an element V (A) of H defined as usual
when either A is an atom, or the main connective of A is intuitionistic and as follows other-
wise: (i) V (�A)=�HV (A); (ii) V (♦A)=♦HV (A). An algebraic model is a couple consisting
of a HMA and a valuation on that HMA. Truth in an algebraic model, validity in a HMA and
validity on a class of HMAs are defined as usual. For all classes C of HMAs, let Log(C) be the
logic of C.

2 Axiomatization and completeness

An intuitionistic modal logic is a set of formulas closed for uniform substitution, containing the
standard axioms of IPL, closed with respect to the standard inference rules of IPL, containing
the axioms �(p→q)→(�p→�q), �(p∨q)→((♦p→�q)→�q), ♦(p∨q)↔♦p∨♦q and ¬♦⊥ and

closed with respect to the inference rules p
�p , p↔q

♦p↔♦q and ♦p→q∨�(p→r)
♦p→q∨♦r . We also consider

the axioms (Af) ♦(p→q)→(�p→♦q), (Ab) (♦p→�q)→�(p→q) and (Ad) �(p∨q)→♦p∨�q.
Let Lmin be the least intuitionistic modal logic. For all intuitionistic modal logics L and for all
A∈Fo, let L⊕A be the least intuitionistic modal logic containing L and A. Let Lfc (respectively:
Lbc; Ldc; Lfbc; Lfdc; Lbdc; Lfbdc) be Lmin⊕(Af) (respectively: Lmin⊕(Ab); Lmin⊕(Ad);
Lmin⊕(Af)⊕(Ab); Lmin⊕(Af)⊕(Ad); Lmin⊕(Ab)⊕(Ad); Lmin⊕(Af)⊕(Ab)⊕(Ad)).

Proposition 1. • Lmin=Log(Ckfall)=Log(Chma
all );

• Lfc=Log(Ckffc )=Log(Chma
fc ); Lbc=Log(Ckfbc)=Log(Chma

bc ); Ldc=Log(Ckfdc)=Log(Chma
dc );

• Lfbc=Log(Ckffbc)=Log(Chma
fbc ); Lfdc=Log(Ckffdc)=Log(Chma

fdc ); Lbdc=Log(Ckfbdc)=Log(Chma
bdc );

• Lfbdc=Log(Ckffbdc)=Log(Chma
fbdc).

Proposition 2. • WK [3] and Lmin are not comparable;

• WK [3] is strictly contained in Lfc;

• Lfc and FIK [1] are equal;

• Lfbc and IK [2] are equal;

• Lfbdc is strictly contained in K — the least normal modal logic.

All in all, Lmin is the intuitionistic modal logic that we want to put forward as a candidate
for the title of “minimal intuitionistic modal logic”.
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In our daily life, we are used to compare things. We sort physical objects from smaller to
bigger, or propositions from less likely to more likely. These relations contribute to our intuitive
understanding of reality, and are naturally represented by a pre-order on a Boolean algebra.
Such framework is typically qualitative, as two elements can only be related in three possible
manners: smaller, bigger, or equivalent – without any consideration of degree or magnitude. By
contrast, human beings also managed to quantify some of their intuitions through measurement,
with examples including length, volume, temperature, and probabilities. Quantitative reasoning
is a core component of scientific inquiry, and its mathematical foundations have been studied ex-
tensively in [KLTS71]. Formally, a measure on a finite1 Boolean algebra B = (2X ,∩,∪, ·c, 0, 1)
is a map µ : B → [0,∞] satisfying µ(0) = 0 and µ(a∪ b) = µ(a) + µ(b) whenever a∩ b = 0. We
call µ bounded if in addition we have µ(a) < ∞ for all a ∈ B. Obviously, a measure µ always
induces a binary relation ⪯µ on B, defined by a ⪯µ b ⇐⇒ µ(a) ≤ µ(b). Relations of the
form ⪯µ will be called measurable, and bounded measurable in case µ is a bounded measure. So
there is a direct bridge from quantitative to qualitative comparison, but the other way around
is more limited, and this raises the question of which conditions on a binary relation ⪯ are
necessary and sufficient for ⪯ to be (bounded) measurable. In the case of bounded measures,
this problem was solved by Kraft, Pratt and Seidenberg in their 1959 paper [KPS59], and later
rewritten by Scott [Sco64] in a clearer manner. We present their conditions below. Given x ∈ X
and a1, . . . , am ∈ B, we write countx(a1, . . . , am) := {i ∈ [1,m] : x ∈ ai}.

Theorem 1. A binary relation ⪯ on B is bounded measurable if and only if the following
conditions are satisfied, for all m ≥ 1 and for all a, b, a1, . . . , am, b1, . . . , bm ∈ B:

• Positivity: 0 ⪯ a;
• Comparability: a ⪯ b or b ⪯ a;
• Cancellation: if countx(a1, . . . , am) = countx(b1, . . . , bm) for all x ∈ X and ai ⪯ bi for

all i ∈ [1,m− 1], then bm ⪯ am.

However, this result is not fully satisfying for a number a reasons, related to the cancellation
conditions. First, they involve the high-level operator countx, and even though they can be
rewritten in a purely Boolean manner [Seg71], they remain quite awkward to read and compute.
Second, they come in infinite number, and thus fail to provide a finite axiomatization for various
logics of measure, see for instance [Seg71, Gär75, vdH96]. It is surprising, perhaps, that this
result has never been improved in sixty years, nor proved to be optimal. In this work, we break
this uncomfortable status quo by proposing the following new characterization.

Theorem 2. A binary relation ⪯ on B is bounded measurable if and only if the following
conditions are satisfied, for all a, b, c, d ∈ B:

∗The preprint on which this talk is based can be found here: https://hal.science/hal-04544145.
†Speaker.
1The case of infinite Boolean algebras is much more complicated, so we only consider the finite case.
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• Comparability: a ⪯ b or b ⪯ a;
• Linearity: if a ∩ c = 0 and a ∪ c ⪯ b ∪ d and d ⪯ c, then a ⪯ b.

Let us briefly sketch the proof of Theorem 2. The strategy for the right-to-left implication
is to derive the conditions of Theorem 1 from comparability and linearity. Positivity follows
from linearity with a = 0 and b = c = d. For cancellation, assume that countx(a1, . . . , am) =
countx(b1, . . . , bm) for all x ∈ X, and that ai ⪯ bi for all i ∈ [1,m− 1]. Consider for a moment
the case where a1, . . . , am, b1, . . . , bm are all pairwise disjoint. Then, the counting assumption
yields b1∪ · · ·∪ bm ⪯ a1∪ · · ·∪am, and by applying linearity m−1 times we arrive at bm ⪯ am.
This does not work in the general case, because when countx(a1, . . . , am) ≥ 2, the large union
a1 ∪ · · · ∪ am fails to keep track of the different repetitions of x. We can nonetheless bypass
this issue, and fall back to the previous case, by ‘duplicating’ the elements of X. In a critical
lemma, we show that we can introduce equivalent copies x1, . . . , x2m of every x ∈ X, in a way
that preserves positivity, comparability, and a weaker version of linearity. We then tweak the
sets a1, . . . , am, b1, . . . , bm by replacing their members with corresponding copies, so that one
copy never occurs twice (see the example below).

a1 = {x, z} b1 = {x, y} a∗1 = {x1, z1} b∗1 = {x5, y5}
a2 = {x, y} b2 = {z} a∗2 = {x2, y1} b∗2 = {z5}
a3 = {z} b3 = {x, y, z} a∗3 = {z2} b∗3 = {x6, y6, z6}
a4 = {x} b4 = {x} a∗4 = {x3} b∗4 = {x7}

It then suffices to apply the previous reasoning to the sets a∗1, . . . , a
∗
m, b

∗
1, . . . , b

∗
m.

We also address the case of arbitrary measurable relations.

Theorem 3. A binary relation ⪯ on B is measurable if and only if the following conditions
are satisfied, for all a, b, c, d ∈ B:

• Comparability: a ⪯ b or b ⪯ a;
• Transitivity: a ⪯ b and b ⪯ c implies a ⪯ c;
• Monotonicity: a ⊆ b implies a ⪯ b;
• Bounded Linearity: if 1 ̸⪯ c and a ∩ c = 0 and a ∪ c ⪯ b ∪ d and d ⪯ c, then a ⪯ b.

Finally, we observe that the conditions of Theorem 2 and Theorem 3 can be checked in
space logarithmic in the size of B. In the case of bounded measurable relations, this is a direct
improvement on the polynomial space algorithm of Kraft, Pratt and Seidenberg [KPS59].
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Abstract

In the talk I will give an overview of countable abstract Fräıssé theory formulated in the
language of category theory. We start with a core setup (free completion, characterization
of the Fräıssé limit, existence of a Fräıssé sequence), demonstrate it on several examples,
and then we sketch further directions in which the core setup can be extended.

Recall that a first-order structure U is ultrahomogeneous if every isomorphism f : A →
B between finitely generated substructures A,B ⊆ U can be extended to an automorphism
f̃ : U → U . Most classical countable ultrahomogeneous structures include the linear order
of rationals, the random graph, and the rational Urysohn metric space. Study of countable
ultrahomogeneous structures goes back to Fräıssé [5] and so is sometimes called Fräıssé theory.
Model-theoretic treatment is now classical, see e.g. [6].

In 2006, Irwin and Solecki [7] introduced projective Fräıssé theory, where instead of embed-
dings of first-order structures, quotients of topological structures are considered. The (projec-
tively) homogeneous structure is obtained as a limit of an inverse sequence of quotient maps,
instead of taking the union of an increasing chain. The particular limit obtained by Irwin and
Solecki was the Cantor space endowed with a special closed equivalence relation with the quo-
tient space being the pseudo-arc, a well-known continuum. Since then, many continua were
realized as quotients of projective Fräıssé limits, see e.g. [11], [2].

It is natural to formulate Fräıssé theory using the language of category theory. This allows
for clear and general proofs capturing the essence of the constructions involved. Extra structure
like the induced topology of the automorphism group of the Fräıssé limit also arises naturally.
Such treatment of Fräıssé theory provides a unified framework: there is essentially no differ-
ence between classical Fräıssé theory of first-order structures and projective Fräıssé theory of
topological structures. It also provides flexibility: we can easily consider other morphisms than
embeddings like left-invertible embeddings, embedding-projection pairs, relational morphisms,
or abstract elements of a monoid.

Category-theoretical Fräıssé theory was pioneered by Droste and Göbel [4] who started
with a semi-algebroidal category of “large” objects L, proved the uniqueness of an L-object
homogeneous over the full subcategory Lfin of finite objects, and characterized its existence in
the case when Lfin is essentially countable. On the other hand, Kubís [9] started with a category
of “small” objects K and introduced the notion of Fräıssé sequence in K (also of uncountable
length), which serves as the Fräıssé limit in the category of sequences σK. In applications, σK
is identified with a particular category of large structures we are interested in. Existence of a
Fräıssé sequence is closely connected to the notion of dominating subcategory, also introduced
in [9]. The two views can be combined by working with a pair of categories K ⊆ L, as done by
Caramello [3].

In the talk I shall give an overview of a polished framework. An L-object U is homogeneous
in ⟨K,L⟩ if for every pair of L-maps from a K-object f, g : x → U there is an automorphism

∗The research was supported by GA ČR (Czech Science Foundation) grant EXPRO 20-31529X of Wies law
Kubís by the Czech Academy of Sciences (RVO 67985840).
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h : U → U such that h ◦ g = f . We say that ⟨K,L⟩ is a free completion (or more precisely, free
sequential cocompletion) if L essentially arises from K by freely adding colimits of K-sequences.
The core of countable abstract Fräıssé theory can be summarized by the following two theorems.

Theorem (Characterization of the Fräıssé limit). Let ⟨K,L⟩ be a free completion and let U
be an L-object. Then the following are equivalent.

(1) U is cofinal and homogeneous in ⟨K,L⟩,
(2) U is cofinal and injective in ⟨K,L⟩,
(3) U is the L-colimit of a Fräıssé sequence in K.

Moreover, such U is unique and cofinal in L, and every K-sequence with L-colimit U is Fräıssé
in K. Such U is called the Fräıssé limit of K in L.

Theorem (Existence of a Fräıssé sequence). Let K be a category. Then K has a Fräıssé sequence
if and only if K is a Fräıssé category, i.e. K ̸= ∅ and

(1) K is directed,

(2) K has the amalgamation property,

(3) K has a countable dominating subcategory.

After explaining the core setup, we demonstrate it on several examples and see how it
encompasses classical and projective situations, namely, how ⟨K,L⟩ being a free completion
is verified in applications. Then we sketch several directions in which the core setup can be
extended: weak Fräıssé theory [10], metric-enriched categories [8] and MU-categories [1], and
self-generic Fräıssé limits in situations beyond free completion (joint work in progress with
Matheus Duzi Ferreira Costa).
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[9] Wies law Kubís. Fräıssé sequences: category-theoretic approach to universal homogeneous struc-
tures. Ann. Pure Appl. Logic, 165(11):1755–1811, 2014.
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We prove that the category of complete bialgebraic (0, 1)-lattices belonging to the quasiva-
riety SP(L6) generated by a finite lattice L6 with complete (0, 1)-lattice homomorphisms, is
dually equivalent to the category of so-called L6-spaces with L6-morphisms. It was established
in [1] that the quasivariety SP(L6) forms a variety and a finite equational basis for this variety
was found. Our proof is based on the approach proposed by V. Dziobiak in [2,3].
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Coalgebra has emerged from the desire to find an abstraction of the behaviour of compu-
tational models [Rut00]. It starts with the insight that behaviour of many systems arises by
repeated observation of a morphism c : X → FX, where the kind of observations that can be
made are determined by a functor F : C → C on a category C. The idea is that FX is the
space of possible observations on X that the coalgebra c yields. Instances of this view are
transition systems, concurrent systems, probabilistic and timed systems, coinductive proofs,
and various systems with topological structure, such as topological models of modal logic, dy-
namical systems and hybrid systems. A coalgebra c gives rise to behaviour in form of a sequence
X

c−→ FX
Fc−−→ F (FX)

F (Fc)−−−−→ · · · that recursively expands the observations. If this sequence
approaches a limit, then this limit can be interpreted as total view on the behaviour of c [Bar93].

In this talk, I wish to present developments of enriched coalgebra in two main directions.
The first direction is a theory of enriched categories and fibrations of coalgebras. Enriched
category theory allows us to apply coalgebra to a wide variety of areas, which are not captured
by categories with sets of morphisms. For instance, we can instead consider coalgebras in metric
spaces, in order-enriched categories [BKPV11, BK11], topological or simplicial categories etc.
In this direction, I aim to first present a few basic results and examples on enrichment, weighted
(co)limits and (co)tensors for coalgebras. Then we turn to coalgebraic modal logic [CKP+11,
Mos99], which allows us to make partial observations on the recursive sequence mentioned
above. Over plain categories, various correspondence results between bisimilarity and logical
equivalence have been obtained [Kli07, Pat03, Sch08], and they have been extend to coalgebras
in enriched categories [BD13, Wil12, Wil13]. Recently, it was shown how results in coalgebraic
modal logic can be extended to other predicates by
modelling the target predicate as a fibration map
(F, F ) on a fibration p : E → B, the modal logic as
initial algebra for a functor L on a suitable category
D of algebras, and the relation between the two by
a pair of dual adjunction as in the diagram on the
right [KR21]. Whenever the two adjunctions are

E

Dop

B

F

Lop

F

p

P

P

Q

Q

⊣
⊣

related by distributive laws and B comes with a factorisation system, we can general obtain
soundness and completeness results. My goal is to present an enriched version of this approach
to enriched coalgebraic modal logic, where the fibration etc. are suitably enriched.

The second direction of development concerns enriched Kleisli categories. The Kleisli cat-
egory of a monad is a well-known model for programs with computational effects. If the Kleisli
category is enriched, then this enrichment provides an account of other computational features,

V V

M

T

G

UL
⊣

such as recursion via CPO-enrichment. I will show how to obtain an M-
enrichment for the Kleisli category of a monad T on a category V, even
though V may not beM-enriched, if the monad factor through the right-
adjoint U of a suitable adjunction as in the diagram on the left. This result
covers examples like order- and CPO-enrichment in case of the powerset

and distribution monad that are typical in program semantics. We will also look at topological
enrichment, which is the base of a homotopy theory for coalgebra, and can be used in topological
models of modal logic [GT22, KKV04, Bal03, VdB22] and hybrid systems [NB18, Nev17].

54



Enriched and Homotopical Coalgebra H. Basold

References
[Bal03] Alexandru Baltag. A Coalgebraic Semantics for Epistemic Programs. Electronic Notes in

Theoretical Computer Science, 82(1):17–38, July 2003.
[Bar93] Michael Barr. Terminal coalgebras in well-founded set theory. TCS, 114(2):299–315, 1993.
[BD13] Marta Bílková and Matěj Dostál. Many-Valued Relation Lifting and Moss’ Coalgebraic Lo-

gic. In Reiko Heckel and Stefan Milius, editors, Algebra and Coalgebra in Computer Science,
Lecture Notes in Computer Science, pages 66–79, Berlin, Heidelberg, 2013. Springer.

[BK11] Adriana Balan and Alexander Kurz. Finitary Functors: From Set to Preord and Poset.
In Andrea Corradini, Bartek Klin, and Corina Cîrstea, editors, Algebra and Coalgebra in
Computer Science, Lecture Notes in Computer Science, pages 85–99, Berlin, Heidelberg,
2011. Springer.

[BKPV11] Marta Bílková, Alexander Kurz, Daniela Petrisan, and Jiří Velebil. Relation Liftings on
Preorders and Posets. In Andrea Corradini, Bartek Klin, and Corina Cîrstea, editors, Proc.
of CALCO’11, volume 6859 of LNCS, pages 115–129. Springer, 2011.

[CKP+11] Corina Cîrstea, Alexander Kurz, Dirk Pattinson, Lutz Schröder, and Yde Venema. Modal
Logics are Coalgebraic. Comput. J., 54(1):31–41, 2011.

[GT22] H. Peter Gumm and Mona Taheri. Saturated Kripke Structures as Vietoris Coalgebras.
In Coalgebraic Methods in Computer Science - 16th IFIP WG 1.3 International Workshop,
CMCS 2022, Colocated with ETAPS 2022, Munich, Germany, April 2-3, 2022, Proceedings,
pages 88–109, 2022.

[KKV04] Clemens Kupke, Alexander Kurz, and Yde Venema. Stone coalgebras. Theoretical Computer
Science, 327(1):109–134, October 2004.

[Kli07] Bartek Klin. Coalgebraic Modal Logic Beyond Sets. Electr. Notes Theor. Comput. Sci.,
173:177–201, 2007.

[KR21] Clemens Kupke and Jurriaan Rot. Expressive Logics for Coinductive Predicates. Logical
Methods in Computer Science, Volume 17, Issue 4, December 2021.

[Mos99] Lawrence S. Moss. Coalgebraic Logic. Ann. Pure Appl. Log., 96(1-3):277–317, 1999.
[NB18] Renato Neves and Luís Soares Barbosa. Languages and models for hybrid automata: A

coalgebraic perspective. Theor. Comput. Sci., 744:113–142, 2018.
[Nev17] Renato Neves. Hybrid Programs. PhD thesis, Minho Aveiro Porto, 2017.
[Pat03] Dirk Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability of local

consequence. Theor. Comput. Sci., 309(1-3):177–193, 2003.
[Rut00] Jan Rutten. Universal Coalgebra: A Theory of Systems. TCS, 249(1):3–80, 2000.
[Sch08] Lutz Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. Theor.

Comput. Sci., 390(2-3):230–247, 2008.
[VdB22] Yde Venema, Jim de Groot, and Nick Bezhanishvili. Coalgebraic Geometric Logic: Basic

Theory. Logical Methods in Computer Science, Volume 18, Issue 4, December 2022.
[Wil12] Toby Wilkinson. Internal Models for Coalgebraic Modal Logics. In Coalgebraic Methods

in Computer Science - 11th International Workshop, CMCS 2012, Colocated with ETAPS
2012, Tallinn, Estonia, March 31 - April 1, 2012, Revised Selected Papers, pages 238–258,
2012.

[Wil13] Toby Wilkinson. Enriched Coalgebraic Modal Logic. PhD thesis, 2013.

2

55



Non-distributive description logics ∗

Ineke van der Berg1,2, Andrea De Domenico1, Krishna Manoorkar1, Alessandra
Palmigiano1, and Mattia Panettiere1

1 Vrije Universiteit, Amsterdam
2 Stellenbosch university, South Africa

Basic non-distributive modal logic (a.k.a. LE-logic) is the non-distributive counterpart of
positive modal logic without the distributivity axiom. Algebraically, it can be viewed as the
logic of arbitrary lattices expanded with normal modal operators. Polarity-based semantics
for LE-logic is given by a tuple M = (F, V ), where F = (A,X, I,R2, R3) is an enriched
formal context [3], i.e. , a formal context P = (A,X, I) enriched with I-compatible [3] relations
R2 ⊆ A ×X and R3 ⊆ X × A, and V is a valuation map which maps LE-formulas to formal
concepts defined by P. Due to its natural connection with Formal Concept Analysis [4], LE-logic
with its polarity-based semantics has been studied as the “logic of categorization” expanded with
modal operators [3]. Motivated by this insight, in [5] we defined a two-sorted non-distributive
description logic counterpart of LE-logic called LE-ALC.

LE-ALC provides a natural description logic [1] to represent and reason about (partial)
knowledge about formal contexts and concepts defined by them. LE-ALC has same concept
names as LE-logic formulas, and has an analogous intended interpretation on the complex
algebras of enriched formal contexts. This is similar to the classical case, where concept names
of description logic are same as ALC and are interpreted over Kripke semantics in a similar
manner.
Concept names in LE-ALC over a set of atomic concepts D are defined as follows:

C := D ∈ D | C ∧ C | C ∨ C | ⊤ | ⊥ |⟨R3⟩C | [R2]C,
As usual, ∨ and ∧ are to be interpreted as the smallest common superconcept and the

greatest common subconcept. The constants ⊤ and ⊥ are to be interpreted as the largest and
the smallest concept, respectively. Like in the classical case, modal operators can be assigned
various interpretations such as knowledge or approximation [3, 2]. LE-ALC has individual
names of two types OBJ and FEAT intended to be interpreted as object and features names,
respectively. LE-ALC ABox assertions are of the form:

aR2x, xR3a, aIx, a : C, x :: C, ¬α,
where α is any of the first five ABox terms, and TBox assertions are of the form C1 ≡ C2 for
two concept names C1 and C2. The intended interpretation of term a : C (resp. x :: C) is
object (resp. feature) a (resp. x) is an element of (resp. feature describing) C. Relational terms
are interpreted in natural manner, and term ¬α is as negation of term α. Term C1 ≡ C2 is
interpreted as concepts C1 and C2 are equivalent.

An interpretation for LE-ALC is a tuple I = (F, ·I), where F = (P,R2,R3) is an enriched
formal context, and ·I maps:
1. individual names a ∈ OBJ (resp. x ∈ FEAT), to some aI ∈ A (resp. xI ∈ X);
2. relation names I, R2 and R3 to relations II, RI

2 and RI
3 in F;

3. any primitive concept D to DI ∈ F+, and other concepts as follows:

⊥I = (X↓, X) ⊤I = (A,A↑) (C1 ∧ C2)I = CI
1 ∧ CI

2

(C1 ∨ C2)I = CI
1 ∨ CI

2 ([R2]C)I = [RI
2]CI (⟨R3⟩C)I = ⟨RI

3⟩CI
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An interpretation I is a model for an LE-ALC knowledge base (A, T ) if I |= A and I |= T .
In [5], we proved the following theorem regarding the complexity of checking consistency of
LE-ALC knowledge bases.

Theorem 1. A tableaux algorithm exists for LE-ALC, offering a sound and complete poly-
nomial time decision procedure for verifying the consistency of LE-ALC knowledge bases by
constructing a polynomial size model Tab(K) for any consistent knowledge base.

Several extensions of ALC with different concept constructors and axioms have been exten-
sively researched. On our ongoing work, we generalized these results to extension of LE-ALC
with axioms reflexivity, symmetery, and transitivity called LE-ALCR which can be seen as de-
scription logic for rough concepts [2]. We also proved similar results for extension of LE-ALCR
with two new constructors: feature inconsistency pairs (i.e., pairs of features that no object can
share) and concepts generated by sets of features.

Description logic ontologies play a crucial role in providing answers to queries based on
incomplete databases. The following property of the model constructed by the Tableaux algo-
rithm for LE-ALC is crucial with regards to querry answering over LE-ALC.

Lemma 1. Let K = (A, T ) be a consistent LE-ALC knowledge base with acyclic TBox. Let
b, y, C, and C ′ be any concept names appearing in T . Then for any term t consisting of
individual, role, and concept names appearing in K,
Tab(T ) |= t iff for every model I of T , I |= t .

Lemma 1 implies that many querries over LE-ALC knowledge bases like ascription quer-
ries (‘does object b has feature y’, ‘name all the objects having feature y’, etc. ), membership
querries (‘does object b belong to concept C’, ‘name all the features defining concept C’, etc. ),
subsumption querries (‘Is concept C1 included in C2’?, ‘Name all the concepts included in
C1’) can be answered by only looking at the model Tab(K). As Tab(K) can be constructed in
polynomial time and is of polynomial size (in size of |K|), we can answer querries over LE-ALC
knowledge bases with acyclic TBoxes in polynomial time.

We believe that similar approach can be used to answer more complex querries like on-
tology equivalence querries (‘Are two given ontologies equivalent?’) and to perform tasks like
querry-based ontology learning in polynomial-time. We believe these results show that LE-ALC
and its extensions allows us to solve many important reasoning tasks relating to knowledge
representation and reasoning in relation to formal contexts and concepts efficiently.
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Just as frames generalise topological spaces ([3]), σ-frames generalise σ-topological
spaces and, consequently, measurable spaces. Let us recall that a σ-frame [1] is a join-
σ-complete lattice (that is, a lattice with countable joins) satisfying the distributive
law ( ∨

a∈A
a
)
∧ b =

∨
a∈A

(a ∧ b)

for every countable A ⊆ L and b ∈ L. A map between σ-frames is called a σ-frame
homomorphism if it preserves finite meets (including the top element 1 given by empty
meet) and countable joins (including the bottom element 0 given by empty join).

Following Simpson [4], where a new approach to the problem of measuring subsets
was proposed, we have been interested in approaching measure theory in the category
of σ-frames and σ-frame homomorphisms. In a follow-up to our study of measurable
functions in [2], we intend to investigate whether the notion of σ-sublocale generalises
the notion of σ-subspace in a way similar to the case of sublocales versus subspaces.
There is a difficulty that we will face: contrarily to what happens in the pointfree setting
of frames and locales, where sublocales of a given locale L have a concrete description
as subsets of L ([3]), the subobjects in the category of σ-locales and σ-localic maps
(that is, the dual category of the category of σ-frames and σ-frame homomorphisms),
can only be described as σ-frame congruences θ on L, that is, equivalence relations on
L satisfying the congruence properties

(x, y), (x′, y′) ∈ θ ⇒ (x ∧ x′, y ∧ y′) ∈ θ,

(xa, ya) ∈ θ (a ∈ A,A = countable set) ⇒
( ∨
a∈A

xa,
∨
a∈A

ya
)
∈ θ.

This is a remarkable difference between the categories of σ-locales and locales.

In this talk, given a σ-space X (that is, a set X equipped with a collection of open
sets O(X) ⊆ P(X) closed under finite meets and countable joins) and its σ-complete
lattice of open sets O(X), we will focus on the congruences on the σ-frame O(X) that
represent the σ-subspaces of X, referred to as induced congruences. We will show that
when X is a TD σ-space, there is a bijection between the σ-subspaces of X and the
congruences induced by them.

Let X be a σ-space. From the well-known dual adjunction between the category of
σ-spaces and σ-continuous maps and the category of σ-frames and σ-frame homomor-
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one sees that given a σ-subspace Y ⊆ X (with the induced subspace σ-topology) and
the inclusion j : Y ↪−→ X, the congruence

θSY
:= {(U, V ) ∈ O(X)×O(X) | U ∩ Y = V ∩ Y }

represents an isomorphic imprint of O(Y ) in O(X). We call it the congruence induced
by the σ-subspace Y .

We say that a σ-space satisfies the axiom TD if for any x ∈ X, there is Ux ∈ O(X)
such that x ∈ Ux and Ux\{x} is still in O(X). We show that the representation

π : Y 7→ θY

is one-to-one whenever X is a TD σ-space:

Proposition. For a σ-space X, the map π : P(X)→ C(O(X)) from the powerset of X
to the congruence lattice of O(X) is one-to-one if and only if X is TD. Moreover, it
takes arbitrary joins to arbitrary meets but not finite meets to finite joins.

We will conclude, moreover, still under axiom TD, that

π(P(X)) ⊆ Cb(O(X)),

where Cb(O(X)) denotes the subset of C(O(X)) consisting of all meets of complemented
congruences.

We will finish with the remark that imposing a σ-space to be TD is not too strong,
as it encompasses most of the measurable spaces of importance in measure theory, such
as euclidean spaces Rn, separable metric spaces or any T1-space with a countable basis.
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An S4-algebra (or closure algebra) is a pair (B,♢) where B is a Boolean algebra and ♢ is a
unary S4-operator on B (a closure operator). S4-algebras provide semantics for the well-known
modal logic S4 ([9, 3]). A classical result of Segerberg and Maksimova [10, 7] gives a criterion
characterizing when a variety of S4-algebras is locally finite. Via Jónsson–Tarski duality, the
variety S4 of S4-algebras is dually equivalent to a category of descriptive frames (X,R), where
X is a Stone space and R is a continuous quasi-order on X. It is then meaningful to speak of
the depth of an S4-algebra, meaning the longest length of a proper R-chain in its dual frame.
We say a variety V ⊆ S4 has depth ≤ n if the depth of each algebra from V is at most n.
Considering the well-known family of formulas (see, e.g., [3, p. 81])

P1 = ♢□q1 → □q1 Pn = ♢(□qn ∧ ¬Pn−1)→ □qn

we have, for a variety V ⊆ S4,

1. V |= Pn iff the depth of V is ≤ n (see, e.g., [3, Prop. 3.44])

2. V is locally finite iff V |= Pn for some n (Segerberg–Maksimova).

Thus the locally finite varieties of S4-algebras are precisely those of finite depth. In addition,
there is a least subvariety of S4 of infinite depth: the variety Grz.3 generated by the algebra
whose dual space is an infinite descending chain. As a consequence, we may effectively decide
if a given variety V ⊆ S4 is locally finite by determining whether V ⊇ Grz.3.

An MS4-algebra is a tuple (B,♢,∃) where ♢ is an S4-operator and ∃ is an S5-operator.
Their dual frames are tuples (X,R,E) where X is a Stone space, R is a continuous quasiorder
on X, and E is a continuous equivalence relation on X. In the same manner as S4-algebras, we
may speak of the depth of an S4-algebra to refer to the longest length of an R-chain in its dual
frame. MS4-algebras provide semantics for the modal logic MS4, which may be understood
as axiomatizing the one-variable fragment of predicate S4 (QS4); see [4]. In light of this, it
is natural to investigate to what extent the Segerberg–Maksimova theorem generalizes to this
setting. We give an overview of several results in this direction that are explored in [2].

In the way of positive results, we identify the largest semisimple subvariety of MS4, denoted
MS4S, which contains two well-known subvarieties corresponding to S4u (S4 extended with
the universal modality) and S52 (the product of S5 with itself, also known as the variety of
diagonal-free cylindric algebras of dimension two, see e.g. [5]). We demonstrate that a direct
generalization of the Segerberg–Maksimova theorem holds for a family of varieties containing
S4u.

On the other hand, it was known (see, e.g., [6]) that the variety S52, which is precisely
the variety of MS4-algebras of depth-1, is not locally finite; hence the Segerberg–Maksimova
theorem does not generalize directly to MS4. We demonstrate that, in fact, characterizing
local finiteness in MS4 is at least as hard as the corresponding problem for S52, which remains

∗Speaker
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wide-open. Here S52 corresponds to the fusion S5 ∗ S5 – the bimodal logic of two (unrelated)
S5 modalities (see, e.g., [5]). We establish this by giving a translation T from subvarieties of
S52 to subvarieties of MS4S + P2 that preserves and reflects local finiteness (i.e., V is locally
finite iff T (V) is locally finite). So already in semisimple subvarieties of depth-2, characterizing
local finiteness is difficult.

Finally, we discuss another notable subvariety of MS4, denoted M+S4. Casari’s predicate
formula

Cas := ∀x((P (x)→ ∀yP (y))→ ∀yP (y))→ ∀xP (x)

is well-known in the study of intermediate predicate logic (see, e.g., [8]). In [1] it is shown that
the monadic version of Casari’s formula is necessary to obtain a faithful provability interpreta-
tion of monadic intuitionistic logic. M+S4 is the subvariety of MS4 obtained by asserting the
Gödel translation of this formula, which is then natural to study. Preliminary results indicate
that the variety M+S4 has a much more manageable characterization of local finiteness.
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The d-ideals play an important role in the study of Riesz spaces (see, e.g., [3]). They are
exactly the fixpoints of a nucleus on the arithmetic frame of all ideals of a Riesz space. Martinez
and Zenk [4] initiated a general study of this nucleus on an arbitrary arithmetic frame. They
coined it as the d-nucleus. The d-nucleus and its corresponding sublocale were further studied
by Bhattacharjee [2], who initiated the study of the spectrum of maximal d-elements. This
spectrum is always a locally compact T1-space, but the question of whether it is Hausdorff was
left open.

The aim of this talk is to solve this question in the negative, as well as to give a characteri-
zation of when the spectrum is Hausdorff. Our main tool is Priestley duality for the category
of bounded distributive lattices [5, 6], and especially its restriction to the category of frames
[7, 8]. More specifically, we will utilize Priestley duality for arithmetic frames described in [1].

Let L be an arithmetic frame. For a ∈ L, we write a∗ for the pseudocomplement of a in L
and define the d-nucleus d : L → L by

da =


{k∗∗ | k is compact and k ≤ a}.

Let Ld be the sublocale of L of the d-fixpoints. We write X for the Priestley space of L and
Xd for the Priestley space of Ld. (Note that Xd ⊆ X.)

Let Y be the localic part of X (the space of points of L). The localic part of Xd is given
by Yd = Xd ∩ Y . Since cl(Yd) = Xd, it is especially important to understand the localic part
of Xd. It turns out that y ∈ Yd iff y is a relatively maximal localic point of X in the following
sense:

Lemma 1. y ∈ Yd iff y is the greatest localic point below a maximal point of X.

Let max(Ld) be the spectrum of maximal d-elements [2]. The above lemma gives us means
to identify max(Ld) inside X. of Y . In fact, it is the set Let min(Yd) be the set of minimal
localic points of Xd.

Theorem 2. max(Ld) is homeomorphic to min(Yd).

We produce an example of the Priestley space X of an arithmetic frame L such that min(Yd)
is not Hausdorff. The strategy is to construct a space where min(Yd) is homeomorphic to the
natural numbers with the cofinite topology. We achieve this as follows. Take the disjoint union
of the Stone-Cêch compactification

βN = 0 1 2

. . .

N∗

∗Speaker.
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and the one-point compactification

y0 y1 y2 ω
. . .

of the natural numbers. Then partition βN = (

Xi)∪X∗ into infinitely many copies Xi of βN

and a subset X∗ ⊆ N∗. Equipped with the order in the diagram below, we obtain the Priestley
space of an arithmetic frame such that min(Yd) = {y0, y1, . . . } is the desired non-Hausdorff
space.

y0

. . .

X0

y1

. . .

X1

y2

. . .

X2

. . .
ω

X∗

Corollary 3. There are arithmetic frames L such that max(Ld) is not Hausdorff.

It is worth pointing out that max(Ld) in the above example is not even sober (recall that
a topological space is sober if each irreducible closed set is the closure of a unique point). In
general, sobriety is strictly weaker than Hausdorffness (i.e., every Hausdorff space is sober, but
not vice versa). However, in the case of min(Yd), sobriety and Hausdorffness become equivalent
properties, thus yielding our characterization:

Theorem 4. min(Yd) is Hausdorff iff min(Yd) is sober.
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In this talk we report on our findings in [3, 4], where an alternate pointfree approach to
topology was developed, based on the work of McKinsey and Tarski [10]. We introduce the
category MT of McKinsey-Tarski algebras and show that it provides a faithful generalization
of both Top (the category of topological spaces) and Frm (the category of frames).

Definition 1.

(1) A McKinsey-Tarski algebra (or MT-algebra for short) is a pair M = (B,□), where B is
a complete Boolean algebra and □ is an interior operator on B (that is, □ satisfies the
Kuratowski axioms □1 = 1, □(a ∧ b) = □a ∧□b, □a ≤ a, and □a ≤ □□a).

(2) An MT-morphism between MT-algebras M and N is a complete Boolean homomorphism
h : M → N such that h(□Ma) ≤ □Nh(a) for each a ∈ M .

(3) Let MT be the category of MT-algebras and MT-morphisms.

Remark 2.

(1) The study of interior algebras was initiated by McKinsey and Tarski [10]. Interior algebras
play an important role in modal logic as they are algebraic models of the well-known
modal system S4 (see, e.g., [11, 5]). MT-algebras are nothing more but complete interior
algebras.

(2) MT-morphisms are not homomorphisms of interior algebras, but it is the inequality con-
dition in the above definition that provides a faithful generalization of continuous maps
(see [2, 6]). Such morphisms are known as stable homomorphisms (see [1]).

Connection between MT and Frm: Let M ∈ MT. Call an element a ∈ M open if
a = □a. Let O(M) be the collection of open elements of M . Then O(M) ∈ Frm and this
correspondence extends to a functor O : MT → Frm. It is a consequence of Funayama’s
theorem that O : MT → Frm is essentially surjective. However, this does not give rise to a
functor from Frm to MT.

Connection to Top: Canonical examples of MT-algebras come from topological spaces. For
each X ∈ Top, we have that (P(X), int) ∈ MT, and this correspondence gives rise to a
contravariant functor P : Top → MT. Its contravariant adjoint is given by the functor
at : MT → Top which maps each MT-algebra M to the space at(M) of atoms equipped
with the topology η[O(M)], where η(a) = {x ∈ at(M) | x ≤ a}. This gives rise to the
contravariant adjunction (P, at), which restricts to a dual equivalence between Top and the
reflective subcategory of MT consisting of atomic MT-algebras.

Separation axioms in MT-algebras: We generalize the well-known separation axioms for
topological spaces and frames to MT-algebras by describing them in terms of the embedding
O(M) ↩−−−→ M .

∗Speaker.
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Sobriety and local compactness: We derive an analogue of the Hofmann-Mislove theorem
[8] for sober MT-algebras. Utilizing this result, we establish the MT counterparts of Hofmann-
Lawson duality [7] between locally compact frames and locally compact sober spaces and Isbell
duality [9] between compact regular frames and compact Hausdorff spaces.

Stone duality: The celebrated Stone duality establishes that the category BA of boolean
algebras is dually equivalent to the category Stone of Stone spaces. We define the category
StoneMT of Stone MT-algebras and show that it is equivalent to both BA and the category
StoneFrm of Stone frames. The equivalence between StoneFrm and StoneMT is obtained
by restricting O. The equivalence between StoneMT and BA is established as follows.

The functor Clp : StoneMT → BA associates with each MT-algebra M the boolean
algebra of clopen elements of M . A quasi-inverse of Clp : StoneMT → BA is the functor
(−)σ : BA → StoneMT which associates with each boolean algebra B the Stone MT-algebra
M = (Bσ,□), where Bσ is the canonical extension of B and □ : Bσ → Bσ is defined by
□x =


{b ∈ B | b ≤ x}.

StoneFrm StoneMT BAO

Clp

(−)σ
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A metric Boolean algebra (see e.g. [1, 2, 3]) consists of a Boolean algebra A, equipped with
a strictly positive (finitely-additive) probability measure1 m : A→ [0, 1], which makes (A, dm)
a metric space, where the distance between any two points a, b ∈ A is defined as:

dm(a, b) := m(a △ b) = m((a ∧ b′) ∨ (a′ ∧ b)).

From a geometrical point of view, it is natural to wonder under which conditions a metric
Boolean algebra (A, dm), or some of its relevant subspaces, can be isometrically embedded
in RN (equipped with the Euclidean distance), for a given positive integer N . Actually, for
|A| > 2, there is no such embedding. However, under the assumption that A is finite (or, more
generally, atomic), it makes sense to restrict the question to the subspace At(A) of its atoms.

A classical result by Morgan [5] states that a metric space (X, d) embeds in RN if and
only if it is flat and has dimension less or equal to N , where (X, d) is flat if the determinant
of the matrix M(x⃗n), whose generic entry is Mij = 1

2 (d(x0, xi)
2 + d(x0, xj)

2 − d(xi, xj)
2), is

non-negative for every n-simplex (namely every choice of n+ 1 points x⃗n = {x0, . . . , xn} in X)
and the dimension of (X, d) is the greatest N (if exists) such that there exists a N -simplex with
positive determinant.

Given a finite metric Boolean algebra A with At(A) = {a0, a1, . . . , ak}, it is easily checked
that the matrix M(x⃗n) = {Mij}, 2 ≤ n ≤ k (introduced in Morgan’s theorem) has generic
entry

Mij = (x0 + xi)
2δij + (x20 + x0x1 + x0xj − xixj)(1− δij),

where xα = m(aα) (thus xα > 0, for every α ∈ {0, 1, . . . , k}). Therefore the form of the
determinant can be simplified according to the following.

Lemma 1. Let M(x⃗n), 2 ≤ n ≤ k be the matrix associated to a finite metric atomic Boolean
algebra A with k + 1 atoms. Then

det(M(x⃗n)) = 2n−1



(

n∑

α=0

x0 · · · · · x̂α · · · · · xn
)2

− (n− 1)

(
n∑

α=0

x20 · · · · · x̂2α · · · · x2n

)
 ,

where x̂i means that xi has to be omitted.

It follows, for instance, that the space (At(A), dm) of the k + 1 atoms of a finite metric
Boolean algebra such that m(ai) = 1

k+1 (for every ai ∈ At(A)) embeds in Rk with the Euclidean
metric and that det(M(x⃗2)) > 0.

1Recall that a strictly positive (finitely additive) probability measure over a Boolean algebra A is a map
m : A → [0, 1] such that:

1. m(⊥) = 1,

2. m(a ∨ b) = m(a) + m(b), for every a, b ∈ A such that a ∧ b =⊥,

3. m(a) > 0, for every a ∈ A, a ̸=⊥.
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Upon indicating by Mind(At(A)) the space of the (finitely additive) probability measures
m such that (At(A), dm) admits an isometric embedding into some Euclidean space RN , in
virtue of Morgan’s theorem one has

Mind(At(A)) =
k⋂

n=3

Cn ∩Πk,

where Cn = {x⃗ ∈ Rk+1
+ | detM(x⃗n) ≥ 0}, with 3 ≤ n ≤ k and Πk is the interior of the standard

k-simplex (or probability simplex) of Rk+1, namely

Πk = {x⃗ ∈ (0, 1)k+1 |
k∑

α=0

xα = 1}.

We are interesting in solving the following.
Problem. Study the topology ofMind(At(A)) with the topology induced by (0, 1)k+1 ⊂ Rk+1

+ .

In order to get a solution, we first analyze the topology of Cn.

Lemma 2. For each 3 ≤ n ≤ k, the space Cn ∼= Hn×Rk−n+ where Hn is a solid half-hypercone

in Rn+1
+ .

The solution to the above presented problem is given by the following.

Theorem 3. Let k ≥ 3. Then:

1. Mind(At(A)) is contractible.

2. M(At(A)) \Mind(At(A)) is simply-connected (not contractible).

In the final part of the talk, we will draw some considerations on the significance of our
results for probability theory and on their possibile extensions to the case of infinite (non-
atomic) Boolean algebras.
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The basic weak Kleene logics B3 and PWK (standing for Bochvar logic and Paraconsistent
weak Kleene, respectively) can be introduced as three-valued logics characterized by an infec-
tious non-classical value. While these logics have interesting syntactic properties as examples
of variable inclusion logics (see [2]), from the perspective of (abstract) algebraic logic they are
very weakly connected to their algebraic counterparts.

Once the language of these logics - that is in the type of classical logic - is enriched with an
unary operator J2 , whose intuitive reading is ”it is (classically) true that”, the resulting expan-
sions - also known as external Kleene logics - gain strong algebraic properties. The operator J2

allows to define two other operators, and their semantics is explained by the following tables:

φ J
2
φ

1 1

1/2 0

0 0

φ J
0
φ

1 0

1/2 0

0 1

φ J
1
φ

1 0

1/2 1

0 0

The three mentioned connectives form the so-called external operators, in the sense that each
formula in which every propositional variable falls under the scope of those operators behaves
entirely classically. Therefore the expansions of B3 and PWK with J

2
are called, respectively,

Bochvar external logic Be and external paraconsistent weak Kleene logic PWKe.
The addition of J

2
is enough to restore the algebraic connection that basic, non-external

Kleene logics lacked: both Be and PWKe are algebraizable, as proved, respectively, in [1] and
[4]. These logics share the quasi-variety of Bochvar algebras BCA as their equivalent algebraic
semantics. BCA was introduced in [5] and has been recently studied in [3], which provided a
representation theorem of the J

2
-free reduct of Bochvar algebras in terms of P lonka sums of

Boolean algebras (plus additional operations). P lonka sums [6, 7] are an algebraic construction
which allows to construct a new algebra starting from a semilattice direct system +of similar
algebras. This tool has revealed its efficacy in the algebraic study of algebras connected with
weak Kleene logics and, more in general, for the logics of variable inclusion [2].

In this work we present a study started in [4] on modal weak Kleene external logics. The
language of weak Kleene external logics can be expanded with a modal operator 2, whose
intended meaning is that of standard alethic modal logic, a task first undertaken by Segerberg
in [8] with a less general scope. Our work is divided into two parts: the first focuses on Kripke-
style semantics, the other on algebraic semantics for modal weak Kleene external systems.
We introduce the logics B2

e and PWK2
e , respectively modal Bochvar external logic and modal

external PWK. The reading of the 2 modality differs between the two systems, according to
the underlying propositional logic. Using a possible world interpretation, the intuitive reading
of 2φ is ”φ is true at every accessible world” in B2

e , and ”φ is non-false at every accessible
world” in PWK2

e . The logics has been axiomatized and a complete Kripke-style semantics is
provided for both. The systems are also decidable and easy to extend axiomatically, obtaining
completeness results w.r.t. classes of frames characterized by well-known properties.
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In the algebraic part we introduce the global versions of the local modal logics B2
e and

PWK2
e , respectively gB2

e and gPWK2
e . We present a study of the algebraic counterparts

of these logics, first introducing the quasi-variety of modal Bochvar algebras MBCA, and then
identifying the two subclasses MBCAB and MBCAH, which are the equivalent algebraic semantics
of gB2

e and gPWK2
e , respectively. The choice to move from local to global logics is motivated

by the failure of algebraizability for local modal systems, algebraizability that is recovered
once we consider their global versions. Building upon the results obtained in [3], we prove a
representation theorem for MBCAB and MBCAH, which states that the J

2
-free reduct of a modal

Bochvar algebra belonging to these classes is a particular P lonka sum of Boolean algebras with
operators. We show how certain relative sub-varieties of these classes correspond to standard
extensions of the basic modal logics gB2

e and gPWK2
e which are characterized by well-known

frame properties from the side of their Kripke semantics.
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We deal with variants of a special construction of certain algebras called kites, naturally
associated with a noncommutative generalisation of BL-algebras known as pseudo BL-algebras.
We focus on perfect pseudo MV-algebras generalising previous results by DiNola, Dvurečenskij
and Tsinakis. The following varieties of algebras will also play an important role: LG – lattice-
ordered groups, CanIGMV – cancellative integral generalised MV-algebras, ΨMV – pseudo MV-
algebras.

Definition 1. An FLw-algebra A is said to be perfect if there is a homomorphism hA : A→ 2
such that for any x ∈ h−1A (0) and any y ∈ h−1A (1) the inequality x ≤ y holds.

We say that a variety V of FLw-algebras is perfectly generated if it is generated by its perfect
members. If a perfectly generated variety V is a subvariety of some larger variety, and that
larger variety has a well established name, say NN, we write PNN for the perfectly generated
subvariety of NN.

Let A be an FL-algebra, and a, b ∈ A. The left conjugate of a ∈ A by b ∈ A is the element
λb(a) := (b \ ab) ∧ 1 and the right conjugate is ρb(a) := (ba / b) ∧ 1. A conjugation polynomial
α over A is any unary polynomial (γa1 ◦ γa2 ◦ · · · ◦ γan)(x) where γ ∈ {λ, ρ} and ai ∈ A for
1 ≤ i ≤ n. We write cPol(A) for the set of all conjugation polynomials over A. For an element
u ∈ A, an iterated conjugate of u is α(u) for some α ∈ cPol(A).

Theorem 1. A subvariety V of FLw is perfectly generated if and only if V is nontrivial and
satisfies the following identities:

α(x /x−) ∨ β(x− / x) = 1, (1)

α((x ∨ x−) · (y ∨ y−))− ≤ α((x ∨ x−) · (y ∨ y−)), (2)

x ∧ x− ≤ y ∨ y− (3)

for every A ∈ V and all α,β ∈ cPol(A).

A natural generalisation of MV-algebras is the variety ΨMV of pseudo MV-algebras. By a
result of Dvurečenskij, pseudo MV-algebras are categorically equivalent to the class of lattice-
ordered groups with strong unit, so in a good sense they are the largest possible generalisation of
MV-algebras for which a Mundici-type categorical equivalence holds. For pseudo MV-algebras,
we define a natural generalisation of the kite construction.

Definition 2. Let L be an ℓ-group and λ : L→ L be an automorphism. We define the algebra

K(L, λ) := (L− ⊎ L+;∧,∨,⊙, \, /, 0, 1)

where L− ⊎ L+ is a disjoint union, 0 := e ∈ L+, 1 := e ∈ L−, and the other operations are
given by
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x ∧ y :=





x ∧ y if x, y ∈ L−,
x if x ∈ L+, y ∈ L−
y if x ∈ L−, y ∈ L+,

x ∧ y if x, y ∈ L+,

x ∨ y :=





x ∨ y if x, y ∈ L−,
y if x ∈ L+, y ∈ L−
x if x ∈ L−, y ∈ L+,

x ∨ y if x, y ∈ L+,

x⊙ y :=





x · y if x, y ∈ L−,
λ(x) · y ∨ 0 if x ∈ L−, y ∈ L+

x · y ∨ 0 if x ∈ L+, y ∈ L−,
0 if x, y ∈ L+,

x \ y :=





x−1 · y ∧ 1 if x, y ∈ L−,
1 if x ∈ L+, y ∈ L−
λ(x)−1 · y ∨ 0 if x ∈ L−, y ∈ L+,

x−1 · y ∧ 1 if x, y ∈ L+,

y / x :=





y · x−1 ∧ 1 if x, y ∈ L−,
1 if x ∈ L+, y ∈ L−
y · x−1 ∨ 0 if x ∈ L−, y ∈ L+,

λ−1(y · x−1) ∧ 1 if x, y ∈ L+,

Theorem 2. Let A be a perfect pseudo MV-algebra. Then A ∼= K(ℓ(FA), ℓ≈), where ℓ≈ is the
automorphism induced by the term operation x≈ := 0\(0\x).

The next theorem generalises some results by Di Nola, Dvurečenskij and Tsinakis.

Theorem 3. The category pfΨMV of perfect pseudo MV-algebras is equivalent to the category
of lattice-ordered groups with a distinguished automorphism.

We also obtain a characterisation of varieties generated by kites, and a description of the
lattice of such varieties. For a variety V of algebras, we let Λ(V) stand for the lattice of
subvarieties of V. If the poset of nontrivial subvarieties of V is also a lattice, we let Λ+(V)
stand for that lattice. We denote by D the divisibility lattice, that is, N ordered by divisibility.
The parameter n and dim(V) below refer to a notion of dimension of a variety, which we leave
undefined here for lack of space.

Definition 3. We define two pairs of maps

ψ : Λ(PΨMV)→ Λ(CanIGMV), where ψ(V) = V {FA : A ∈ Vpf},
Ψ: Λ(PΨMV)→ Λ(CanIGMV)× D, where Ψ(V) = (ψ(V), dim(V)),

for any V ∈ Λ(PΨMV) and

δ : Λ(CanIGMV)→ Λ(PΨMV), where δ(V) = V {A ∈ pfΨMV : FA ∈ V},
∆: Λ(CanIGMV)× D→ Λ(PΨMV), where ∆(V, n) = δ(V) ∩ PΨMVn,

for any V ∈ Λ(CanIGMV) and n ∈ D.

Theorem 4. Let V ∈ Λ(PΨMV). The following are equivalent.

1. V is generated by kites.

2. V = ∆Ψ(V).

3. V = ∆(W, n) for some W ∈ Λ(CanIGMV) and some n ∈ D.

Theorem 5. Let K be the lattice of subvarieties of PΨMV generated by kites.

K ∼= 1⊕
(
Λ+(CanIGMV)× D

) ∼= 1⊕
(
Λ+(LG)× D

)

where 1 is the trivial lattice and ⊕ is the operation of ordinal sum.

2

72



An algebraic semantics for possibilistic finite-valued

 Lukasiewicz logic

Manuela Busaniche1, Penélope Cordero2, Miguel Andrés Marcos3, and Ricardo
Oscar Rodŕıguez4
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In the present work, based on the ideas of [1], we analyse an algebraic semantics for a
many-valued modal logical system based on the n-valued  Lukasiewicz logic Λ( Ln). We extend
Λ( Ln) (for each fixed natural n) to a modal system, by adding a unary operator 2 to the
original many-valued propositional language. Our approach strongly relies on the fact that
the system Λ( Ln) has as an algebraic semantics the subvariety of MV-algebras generated by
the n-elements MV-chain  Ln, that is the algebra with universe {0, 1

n−1 , . . . ,
n−2
n−1 , 1}, and main

operations x→ y = min{1, 1− x+ y}, ¬x = 1− x.

To achieve our aim, we work with a propositional modal language formed by a numerable
set of variables V ar and the connectives 〈→,¬,2, 0〉, thus the set Form2 of formulas in this
language is built as usual. An  Ln-valued possibilistic frame 〈W,π〉 is given by a non-empty
set of worlds W and a function π : W →  Ln (called a normalized possibility distribution over
W ) such that

∨
w∈W π(w) = 1. An  Ln-valued possibilistic model is a 3-tuple M = 〈W,π, e〉

where 〈W,π〉 is an  Ln-valued possibilistic frame and e is a map, called valuation, assigning
to each propositional variable in V ar and each possible world in W an element of  Ln (i.e.,
e : V ar ×W −→  Ln).

If M = 〈W,π, e〉 is a  Ln-valued possibilistic model, the map e can be uniquely extended
to a map, assigning to each formula in Form2 and each world in W an element of  Ln (i.e.,
e : Form2 ×W −→  Ln) satisfying that:

• e is an algebraic homomorphism in its first component, i.e., for the connectives →,¬, 0,

• e(ϕ,w) =
∧
{π(w′)→ e(ϕ,w′) : w′ ∈W}

The logical system that we are trying to characterize generalizes the classical possibilistic
logic, and it is the many-valued modal system semantically defined by possibilistic models over
 Ln

Our algebraic approach deals with complex algebras that arise from  Ln-valued frames. That
is: given an  Ln-valued possibilistic frame 〈W,π〉 we consider the MV-algebra of functions  LWn
and the unary operator 2 :  LWn →  LWn given by 2x(i) =

∧
{π(j) → x(j) : j ∈ W}. We study

the quasivariety of algebras generated by these complex algebras, and this quasivariety, together
with the abstract theory of algebraizable logics immediately provide an axiomatization for the
possibilistic many-valued system over  Ln. From the way that the system is defined, it turns
out to be complete with respect to the logic semantically defined by the  Ln-valued possibilistic
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frames. So the logical system determined by frames over  Ln has an algebraic semantics based
on MV-algebras.

The present investigation provides a negative answer to a conjecture of P. Hájek posed
in his book [2] which intends to generalize the classical setting, where the possibilistic logic
coincides with the modal logic KD45. We prove that the logic semantically defined by  Ln-
valued possibilistic frames can not be axiomatized by simply requiring the fuzzy analogues of
the classical axioms K,D,4 and 5.
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Let K be a class of similar algebras and A,B ∈ K.

Definition 1. A homomorphism f : A→ B is an epimorphism in K when for every C ∈ K and
every pair of homomorphisms g, h : B→ C it holds that:

g ◦ f = h ◦ f implies g = h.

A subalgebra A ≤ B is called epic in K if the inclusion i : A ↪→ B is an epimorphism in K.

While every surjective homomorphism is an epimorphism, the converse is not true in general.
An example of a nonsurjective epimorphism in the class of rings is the inclusion map from the
integers into the rationals (see, e.g., [6]).

Definition 2. When every epimorphism in K is surjective, we say that K has the epimorphism
surjectivity property (ES property, for short).

Our talk will focus on a slightly weaker demand, namely, the weak epimorphism surjectivity
property (weak ES property, for short), which requires only epimorphisms between finitely
generated algebras to be surjective [5]. From a logical standpoint, the interest of the weak ES
property is motivated as follows: when a quasivariety K algebraizes a logic ⊢, the former has the
weak ES property iff the latter has the Beth definability property [1], which intuitively states
that whenever an element can be uniquely characterized, then it must be definable by a term.

Our main results facilitate the detection of failures of the weak ES property in a quasivariety
K. To this end, we introduced the notion of a full subalgebra.

Definition 3. A subalgebra A ≤ B ∈ K is full when it is proper, B = SgB(A ∪ {b}) for some
b ∈ B, and for every nonidentity K-congruence θ of B there exists a ∈ A such that ⟨a, b⟩ ∈ θ.

Using this concept, we obtained the following characterization of the weak ES property,
where Krfsi stands for the class of relatively subdirectly irreducible (RFSI, for short) members
of K.

Theorem 4. A quasivariety K has the weak ES property iff for every finitely generated B ∈ K
and A ≤ B that is full in K one of the following conditions holds:

1. There are two distinct θ, ϕ ∈ ConK(B) such that θ↾A = ϕ↾A;

2. There are two distinct embeddings g, h : B→ C with C ∈ Krfsi such that g↾A = h↾A.

∗Speaker.
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As a consequence, we obtain a purely algebraic proof of a classical result of Kreisel, stating
that every variety of Heyting algebras or implicative semilattices has the weak ES property
[7, Thm. 1]. On the other hand, Theorem 4 also paves the way for the following results.

Our first theorem simplifies the task of finding a counterexample to the weak ES property
in quasivarieties with a near unanimity term. This includes, for instance, all quasivarieties with
a lattice reduct.

Definition 5. A quasivariety K is said to have an n-ary near unanimity term for n ≥ 3 when
there exists a term φ(x1, . . . , xn) such that

K ⊨ φ(y, x, . . . , x) ≈ φ(x, y, x, . . . , x) ≈ · · · ≈ φ(x, . . . , x, y) ≈ x.

Theorem 6. A quasivariety K with an n-ary near unanimity term has the weak ES property
iff every finitely generated subdirect product A ≤ A1 × · · · × An−1, where A1, . . . ,An−1 ∈ Krfsi,
lacks subalgebras that are full and epic in K.

The next result gives a useful characterization of the weak ES property in the context of
congruence permutable varieties. Notably, these include all varieties with a group reduct.

Theorem 7. A congruence permutable variety has the weak ES property iff its finitely generated
RFSI members lack subalgebras that are full and epic in K.

Similar results for the ES property have been obtained by Campercholi [2, Thms. 18 and
22]. For instance, [2, Thm. 22] states that an arithmetical variety K, whose class of RFSI
members is universal has the ES property iff the RFSI members of K lack proper subalgebras
that are epic in K. Our methods allow us to prove a similar result for the weak ES property
(namely, Theorem 7) under the sole assumption that K is congruence permutable.

Lastly, we provide a result which demonstrates that the weak ES property has a significant
impact on the structure theory of quasivarieties.

Theorem 8. Let K be a relatively congruence distributive quasivariety, whose class of RFSI
members is closed under nontrivial subalgebras. Then the weak ES property implies that V(K)
is arithmetical.

As a consequence, every filtral variety with the weak ES property is a discriminator variety
(see also [3]). The results of this talk have been collected in the manuscript [4].
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A canonical result in model theory is the Homomorphism Preservation Theorem (h.p.t.)
which states that a first-order formula is preserved under homomorphisms on all structures if
and only if it is equivalent to an existential-positive formula. It is an example of a preservation
theorem, linking a syntactic class of formulas with preservation under a particular kind of
map between structures and standardly proved via a compactness argument. Rossman [1]
established that the h.p.t. remains valid when restricted to finite structures, yielding the
following formulation of the theorem.
Finite Homomorphism Preservation Theorem A first-order sentence of quantifier-rank
n is preserved under homomorphisms on finite structures iff it is equivalent in the finite to an
existential-positive sentence of quantifier rank ρ(n) (for some explicit function ρ : ω → ω).
That is, for any first-order sentence ϕ of quantifier rank n, Modfin(ϕ) is closed under homo-
morphisms iff there is an existential-positive sentence ψ of quantifier rank ρ(n) such that for
all finite models M |= ϕ iff M |= ψ.

This is a significant result in the field of finite model theory. It stands in contrast to other
results proved via compactness, including the other preservation theorems where the failure of
the compactness also results in the failure of the derived theorem [2]. It is also an important
result for the field of constraint satisfaction due to the equivalence of existential-positive for-
mulas and unions of conjunctive queries. Adjacently, Dellunde and Vidal [3] established that
a version of the h.p.t. holds for a collection of many-valued models, those defined over a fixed
finite MTL-chain.
MTL Finite Homomorphism Preservation Theorem Let P be a predicate language, A
a finite MTL-chain and ϕ a consistent sentence over A. Then ϕ is equivalent over A to an
existential-positive sentence iff ModAfin(ϕ) is closed under homomorphisms.

MTL-algebras provide the algebraic semantics for the monoidal t-norm logic MTL, a basic
propositional fuzzy logic that encompasses the most well-studied fuzzy logics including Hájek’s
basic logic BL, Gödel–Dummett logic G and  Lukasiewicz logic  L [5, Chapter 1, Section 2]. Much
like Rossman’s work, Dellunde and Vidal’s investigation is further motivated by the application
of models defined over MTL-algebras to valued constraint satisfaction problems (VCSP), a
generalisation of classical CSP, where constraints are assigned some form of weighting which
is optimised for in the solution. This has been effectively modelled by taking the weights as
elements of an algebra and utilising the algebraic operations to interpret their combination in
a potential solution [4], MTL-algebras providing one example. Our investigation picks up at
the meeting point of these two strands. One can extend Rossman’s proof of a finite h.p.t. to
a very wide collection of many-valued models, which in particular establishes a finite variant
to Dellunde and Vidal’s result. In fact, we work with more general algebras than MTL-chains,
the somewhat artificial class of algebras we refer to as interpreting algebras and we consider
the case where we allow our models to be defined over varying interpreting algebras.

Definition An interpreting algebra is an algebra A in signature L = ⟨∧,∨,&, 1⟩ such that:

⟨A,∧,∨⟩ is a distributive lattice; ⟨A,&, 1⟩ is a commutative (abelian) monoid;

∀a, b, c ∈ A, a ≤ b implies a & c ≤ b & c. ∀a, b ∈ A, a ∨ b ≥ 1 implies a ≥ 1 or b ≥ 1.

In the many-valued setting both the notion of homomorphism and existential-positive formulas
split into a number of interrelated concepts and this naturally provides a number of possible gen-
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eralisations of the classical h.p.t. As it turns out, the appropriate variant links protomorphisms
with existential-∧-positive sentences (∃.∧.p).

Definition Let (A,M), (B,N) be P-models. A map g : M → N is a protomorphism from
(A,M) to (B,N) iff:

• for every F ∈ P and m̄ ∈M g(FM (m̄)) = FN (g(m̄)).
• for every R ∈ P and m̄ ∈M RM (m̄) ≥ 1 implies RN (g(m̄)) ≥ 1.

Let f : A→ B and g : M → N be maps. We call the pair (f, g) : (A,M)→ (B,M) a homomor-
phism from (A,M) to (B,N) iff f is an algebraic L-homomorphism and g is a protomorphism
from (A,M) to (B,N). We write→p (→) to indicate there exists a protomorphism (homomor-
phism) between two P-models.
Given a predicate language P and a P-formula ϕ it is said that ϕ is existential-∧-positive iff ϕ
is built using the connectives ∧ and ∨ and the existential quantifier ∃.

One can easily check by induction that ∃.∧.p sentences are preserved under protomorphisms.
Our strategy for the other direction is to translate between P-models defined over interpreting
algebras and a ’classical counterpart’ in such a way that the behaviour regarding protomor-
phisms and ∃.∧.p-sentences is preserved. The classical translations are presented as a P-model
taken over the 2 element Boolean algebra {⊤,⊥}.
Definition Let (A,M) be a P-model over an interpreting algebra A. We define the P-model
({⊤,⊥},M⊤), also denoted simply as M⊤ as follows:

RM
⊤

(m̄) =

{
⊤ if RM (m̄) ≥ 1A

⊥ if RM (m̄) < 1A.

One can then apply Rossman’s results to these objects (viewed as a classical models) before
pulling back into the many-valued setting, yielding our many-valued equivalent.

Finite Protomorphism Preservation Theorem Let P be a predicate language and ϕ a
consistent P-sentence. Then ϕ is equivalent in the finite to an ∃.∧.p-sentence ψ iff Modfin(ϕ)
is preserved under protomorphisms.

Moreover, when one restricts to models defined over a fixed algebra, the usual notion of
homomorphism collapses with protomorphisms. This lets us freely add it to the equivalence.

Fixed Finite Homomorphism Preservation Theorem Let P be a predicate language, A
an interpreting algebra and ϕ a consistent P sentence over A in the finite. The following are
equivalent:

1. ϕ is equivalent over A in the finite to an ∃.∧.p sentence ψ, i.e. there is an ∃.∧.p-sentence
ψ : ModAfin(ϕ) = ModAfin(ψ).

2. ϕ is preserved under protomorphisms on A, i.e. ModAfin(ϕ) is closed under →p.

3. ϕ is preserved under homomorphisms on A, i.e. ModAfin(ϕ) is closed under →.
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Contract-based design has emerged as a way to design a wide variety of systems in engineer-
ing. Contracts have a legal part and a technical part. Only the technical part will be relevant
in what follows. Informally, a contract is a pair (A,G), where A is the set of assumptions under
which the system is assumed to operate and G is the set of guarantees that the system must
provide. For examples and details see [1].

In [3], an algebraic perspective on assume-guarantee contracts is proposed. This proposal
relies heavily on a construction involving Boolean algebras. Given any Boolean algebra B =
(B,∩,∪, ′, 0, 1), the set of pairs (a, b) ∈ B×B such that a∪ b = 1 is taken to be the universe of
the assume-guarantee contract algebra associated to B. Let us call S(B) to this set. However,
the structures thus proposed lack a clearly prescribed set of basic operations, necessary if we
want to see them as a class of algebras in the sense of Universal Algebra.

Many different operations can be defined on the given set, among which we consider the
following:

• (a, b) ∧ (c, d) := (a ∩ c, b ∪ d),

• (a, b) ∨ (c, d) := (a ∪ c, b ∩ d),

• (a, b) · (c, d) := (a ∩ c, (b ∩ d) ∪ (a ∩ c)′),

• ∼ (a, b) := (b, a),

• ⊥ := (0, 1),

• ⊤ := (1, 0),

• e := (1, 1).

If we take them as basic operations, it is possible to define a class of algebras of type (2,2,2,1,0,0,0).
In our talk, using well-known results from the literature (see, for example, [5] and [7]),

we manage to describe these algebras as members of the subvariety of bounded odd Sugihara
monoids generated by the three-element chain, that is, the variety of bounded three-valued
Sugihara monoids. Furthermore, any bounded three-valued Sugihara monoid is isomorphic (as
a bounded Sugihara monoid) to an assume-guarantee contract algebra. That is to say, the class
of assume-guarantee contract algebras generates the variety of bounded three-valued Sugihara
monoids.

As a consequence of the aforementioned facts, we get the following result, where BA and
B3SM are the categories of Boolean algebras and bounded three-valued Sugihara monoids,
respectively.

Proposition: Functors ( )− : B3SM ⇄ BA : S witness a categorical equivalence, where S is
the functor induced by the construction defined above and ( )− is the functor induced by taking
the subalgebra formed by the elements below the identity e.

79



On assume-guarantee contract algebras Castiglioni and Ertola-Biraben

Furthermore, we consider other well-studied varieties that are term equivalent to the men-
tioned variety of bounded three-valued Sugihara monoids and hence, that provide alternative
abstract characterizations of assume-guarantee contract algebras in alternative signatures. More
concretely, we show that assume-guarantee contract algebras may be regarded either as elements
of the variety of centred three-valued double p-algebras (see [2]) or as elements of the variety
of centred three-valued Lukasiewicz algebras (see [6]).

In [4], the author finds an adjunction between the category of Boolean algebras and the
category ASA of Stone algebras (Heyting algebras satisfying the equation ¬x ∨ ¬¬x = 1)
expanded with a constant e satisfying the identity e → x = ¬¬x. He takes the set C(B)
of contracts on a Boolean algebra B as an algebra in ASA with e = (1, 1), not in B3SM.
The assignment B → C(B) defines a functor C : BA → ASA. It is shown that C is part
of an adjoint pair C ⊣ Clos, where Clos(A) is the Stonean subalgebra of an algebra A in
ASA formed by its complemented elements. In any pseudo-complemented bounded distributive
lattice (A;∧,∨,¬, 0, 1) having e as minimum dense element, the sublattice [e) = {a ∈ A : a ≤ e},
together with the unary operation N defined by Na := ¬a ∧ e, is a Boolean lattice isomorphic
to Clos(A). Instead of Clos, the author could have taken the functor ( )+ : ASA → BA defined
by the assignment A → [e). Clearly, we also have that C ⊣ ( )+.

Due to the functional completeness of bounded three-valued Sugihara monoids, it follows
that, given a Boolean algebra B, the algebra S(B) has the underlying structure of a Heyting
algebra, which is Stonean and has e as minimum dense element. As a consequence, we have a
forgetful functor U : B3SM → ASA making the following diagram commute.

BA
C
⊥



S

✾
✾✾

✾✾
✾✾

✾✾
✾✾

✾✾
✾ ASA

( )+


B3SM

( )−

✾✾✾✾✾✾✾✾✾✾✾✾✾✾

U

☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎

Since S and ( )− witness an equivalence, it follows that ( )− ⊣ S and, in consequence, U =
C ◦ ( )− ⊣ S ◦ ( )+ ∼= S ◦Clos. This establishes a relation between our results and those in [4].
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Given two sets of variable assignments, E+ and E− say, over a finite set of propositional
variables, along with a propositional formula ϕ, we assert that ϕ fits E+, E− if,

• for every t ∈ E+, t |= ϕ, and

• for every t ∈ E−, t ∕|= ϕ.

Moreover, E+, E− uniquely characterizes ϕ if, ϕ fits E+, E−, and for every ψ fitting E+, E−,
ψ is equivalent to ϕ. It can established, somewhat easily, that for every propositional formula
ϕ, there is a pair E+

ϕ , E−
ϕ that uniquely characterizes it.

Every truth table over a finite number of propositional variables can be divided into two sets
of variable assignments, E+ and E− say, representing the true and false truth assignments of
the table, respectively. It follows from a well-known result [3] that there is exactly one formula
fitting E+, E−, modulo equivalence.

Building upon this result, by fixing a set of propositional variables, PROP say, one can
derive an unique characterization of every ϕ from its truth table (provided that the variables
occurring in ϕ are in PROP). The unique characterization thus obtained should have all the
variable assignments over the previously fixed set of propositional variables, i.e. PROP[1]. The
purpose of this paper, in an informal manner, is to address the question: What happens to
the size of the unique characterization if we consider formulas, not from the full propositional
fragment, but within some reduced fragment of propositional logic?

A Boolean connective is function f : {0, 1}n → {0, 1}, where n ≥ 0. Upon fixing a set O
of connectives and a finite set of variables PROP, PLO[PROP] is defined as the smallest class
that

• contains all the projections, πn
k (x1, . . . , xn) = xk for n ≥ k > 0 and x1 . . . xn ∈PROP.

• is closed under composition, f(x1, . . . , xn), g1, . . . , gn ∈PLO[PROP] then f(g1, . . . gn) ∈
PLO[PROP], where x1 . . . xn ∈PROP.

The study of fragments then corresponds to study of such aforementioned sets. One good
example is that of PL∧[PROP][1].

PL∧[PROP] doesn’t have the property that corresponding to every truth table has a fitting
formula. But every formula ψ in PL∧[PROP] can be uniquely characterized by pair E+, E− s.t.
|E+| + |E−| ≤ |PROP|. So indeed there are fragments with better bounds for size of unique
characterization.

The preceding example motivates us to play with the bounds for unique characterizations
with respect to different fragments. We consider and classify three cases in this paper:

1. The bound on the unique characterization is a bi-variate polynomial in |PROP| and the
size of the formula.

2. The bound on the unique characterization is exponential, but only in the size of the
formula.

3. The bound on the unique characterization is a polynomial only in the size of the formula.
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The statement of our results requires a little bit of familiarity with Post’s Lattice and definition
of clones generated by a set of Boolean connectives, denoted by CL(O). The statement of our
classifications are as follows:

Theorem 0.1. For any set of Boolean connectives O, the following the equivalent:

• There exists a polynomial p(x, y) s.t. for every PROP, and every ϕ ∈PLO[PROP], there
is a pair E+, E− that uniquely characterizes ϕ with |E+|+ |E−| < p(|ϕ|, |PROP |)

• CL(O) is a subset of either of the three (i) CL(∧,⊥,⊤), (ii) CL(∨,⊥,⊤) or (iii) CL(⊕,⊤).

Theorem 0.2. For any set of Boolean connectives O, the following the equivalent:

• For every PROP, and every ϕ ∈PLO[PROP], there is a pair E+, E− that uniquely char-
acterizes ϕ with |E+|+ |E−| < 2(|ϕ|)

• CL(O) is a subset of either of the three (i) CL(∧,⊥,⊤), (ii) CL(∨,⊥,⊤) or (iii) CL(⊕,⊤).

Theorem 0.3. For any set of Boolean connectives O, the following the equivalent:

• There exists a polynomial p(x, y) s.t. for every PROP, and every ϕ ∈PLO[PROP], there
is a pair E+, E− that uniquely characterizes ϕ with |E+|+ |E−| < p(|ϕ|)

• CL(O) is a subset of either of the three (i) CL(∧,⊥,⊤), (ii) CL(∨,⊥,⊤) or (iii) CL(⊕,⊤).

Although (⇐) direction of the above mentioned results can be established through combi-
natorial methods, the (⇒) direction requires some sophisticated machinery. We use a special
kind of reduction, inspired from [2]. In fact theorem 1.1 has strong correspondence to the main
result in [2]. We can refine theorem 1.1 even further based on the techniques used.

Corollary 0.3.1. For any set of Boolean connectives O, the following the equivalent:

• For every PROP, and every ϕ ∈PLO[PROP], there is a pair E+, E− that uniquely char-
acterizes ϕ with |E+|+ |E−| < |PROP |+ 1

• CL(O) is a subset of either of the three (i) CL(∧,⊥,⊤), (ii) CL(∨,⊥,⊤) or (iii) CL(⊕,⊤).

The results we have provided so far are concerned with upper bounds, to finish off we would
establish a result on the lower bounds as well. As it turns out, the problem with coming up
reasonable lower bounds is harder, but we have the following result:

Theorem 0.4. Any unique characterization E+, E− of ϕ, where ϕ ∈ PL⊕[PROP], we get that
|E+|+ |E−| = |PROP |.

Currently we are aiming to extend the results to modal fragments as well, but instead, we
are looking at finite characterizations.
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BCK-algebras were first introduced in [3] as an algebraic semantics for non-classical logic
that uses only implication. Every BCK-algebra admits an ordering, and if it satisfies commu-
tativity law (which in BCK-algebras is not the same as the standard commutativity of binary
operation), then the underlying poset is a meet semi-lattice. For the sake of brevity, we will re-
fer to commutative BCK-algebras as “cBCK-algebras”. Unlike BCK-algebras, cBCK-algebras
form a variety.

The variety of all cBCK-algebras has several noteworthy properties, including congruence
distributivity and 3-permutability. In contrast, no nontrivial subvariety is 2-permutable. That
is important since having arithmetical variety would facilitate the investigation. Finitely gen-
erated varieties of cBCK-algebras are semisimple, i.e. any subdirectly irreducible member is
simple. Also, every finite simple cBCK-algebra is hereditary simple. A crucial fact is that
subdirectly irreducible cBCK-algebras are (regarding their order) rooted trees [5], [2].

We are interested in covers of finitely generated varieties of cBCK-algebras. Let V be a
finitely generated variety of cBCK-algebras. Then, there exist A1, . . . , An finite subdirectly
irreducible cBCK-algebras such that V = V(A1, . . . ,An). From congruence distributivity, it
follows that V = V(A1)∨· · ·∨V(An). Therefore, investigating covers of finitely generated vari-
eties can be reduced to investigating covers of varieties generated by a single finite subdirectly
irreducible cBCK-algebra. From now on, let V = V(A), where A is finite simple subdirectly
irreducible cBCK-algebra. An important observation is that Si(V) (subdirectly irreducible
members of V) consists (up to isomorphisms) only of S(A) (subalgebras of A).

The fact that Si(V) = S(A) motivates us to first explore S(A). There are two kinds of
subalgebras: downsets and the others. The others can be characterised as a set of elements of
A that have height divisible by some integer k > 1. Under some conditions, such a set indeed
forms a subalgebra. The detailed characterisation is the subject of the first part of the talk.

The second part of the presentation focuses on the covers. The goal is to find all covers of V,
i.e. to find subdirectly irreducible cBCK-algebras that generate the covers. The construction
involves considering all subalgebras of A and then considering their extensions by adding a leaf
to some vertex (not the root). We prove that by the construction, we obtain a cover and that
every cover is achievable by the construction.
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It is well-known that intuitionistic logics can be formalized by means of Brouwerian semilat-
tices, i.e. relatively pseudocomplemented semilattices. Then the logical connective implication
is considered to be the relative pseudocomplement and conjunction is the semilattice operation
meet. If the Brouwerian semilattice has a bottom element 0 then the relative pseudocomple-
ment with respect to 0 is called the pseudocomplement and it is considered as the connective
negation in this logic. Our idea is to consider an arbitrary meet-semilattice with 0 satisfying
only the Ascending Chain Condition, which is trivially satisfied in finite semilattices, and in-
troduce the connective negation x0 as the set of all maximal elements z satisfying x ∧ z = 0
and the connective implication x→ y as the set of all maximal elements z satisfying x∧ z ≤ y.
The Ascending Chain Condition means that every chain has a maxima element and it ensures
that every non-void subset has maximal elements. Such a negation and implication are “un-
sharp” since they assign respectively, to one entry x or to two entries x and y belonging to
the semilattice, a subset instead of an element of the semilattice. Surprisingly, these kind of
negation and implication, respectively, still share a number of properties of the corresponding
connectives in intuitionistic logic, in particular the derivation rule Modus Ponens. Moreover,
unsharp negation and unsharp implication can be characterized by means of five, respectively
seven simple axioms. Several examples are presented. The concepts of a deductive system and
of a filter are introduced as well as the congruence determined by such a filter. We finally
describe certain relationships between these concepts.

AMS Subject Classification: 03G10, 03G25, 03B60, 06A12, 06D20

Keywords: Semilattice, Brouwerian semilattice, Heyting algebra, intuitionistic logic, un-
sharp negation, unsharp implication, deductive system, filter, congruence
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A logic L is called tabular if L = Log(A) for some finite algebra A. L is called pretabular
if L itself is not tabular while all of its proper consistent extensions are tabular. Let Pre(L)
denote the set of pretabular logics extending L. It is proved in [7] that |Pre(Int)| = 3. It was
shown in [8, 4] that |Pre(S4)| = 5. Moreover, [1] proved that |Pre(K4)| = 2ℵ0 . However, the
tense case is more involved and we know much less about it. [6] introduced a pretabular tense
logic Ga ∈ NExt(S4t), whose frames have a maximum depth and width of 2 and do not contain
any proper clusters.1 It is claimed in [10] that |Pre(S4t)| ≥ ℵ0 without a proof.

In this work, we study pretabular tense logics in the lattice NExt(S4t). We start with the
sublattice NExt(S4.3t), where S4.3t = S4⊕{⊠(⊠p→ q) ∨⊠(⊠q → p) : ⊠ ∈ {2,■}} is the tense
logic of chains. It turns out that the lattice NExt(S4.3t) is already much more complex than
the lattice NExt(S4.3). It was shown in [5, 2] that every modal logic in NExt(S4.3) is finitely
axiomatizable and enjoys the finite model property. However, NExt(S4.3t) contains infinitely
many incomplete tense logics (see [11]). We obtain a full characterization of pretabular tense
logics over S4.3t as follows:

Theorem 1. There are exactly five pretabular tense logics in NExt(S4.3t). More precisely,

Pre(S4.3t) = {Li : i < 5}, where Li =
⋂
n∈ω Logt(C

n
i ).2

Cn0

◦
◦
◦
◦

...

0

1

n− 1

n

Cn1

n

Cn2

n

◦

Cn3

n

◦
Cn4

n

◦

◦

Figure 1: Frames Cni

It is clear that Pre(S4.3) = {⋂n∈ω Log3(Cni ) : i < 3}, where Log3(Cni ) is the modal logic of
Cni . The interaction between tense operators lead to new pretabular logics L3 and L4.

We generalize the results above and consider the lattices NExt(S4.3+t ) and NExt(S4.3−t ),
where S4.3+t = S4⊕2(2p→ q) ∨2(2q → p) and S4.3−t = S4⊕■(■p→ q) ∨■(■q → p). The
bi-intuitionistic logic of ‘co-trees’ was studied in [9]. S4.3+t and S4.3−t are the tense logics of
‘co-trees’ and ‘trees’, respectively. The main result we have for them is as follows:

Theorem 2. |Pre(S4.3+t )| = |Pre(S4.3−t )| = 12.

Pretabular tense logics in Pre(S4.3−t ) \ Pre(S4.3t) are characterized by the classes of finite
frames given in Figure 2. In the modal case, only the forks generate a pretabular logic.

1S4t is the tense logic of reflexive and transitive frames.
2Cn

i are frames depicted in Figure 1. n in the figures denotes a cluster with n points.
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Figure 2: Frames for logics in Pre(S4.3−t ) \ Pre(S4.3t)

Once we allow ‘zigzag-like’ frames, we are in completely different situation, even if we
put strong constraints on the depth and width of the frames. We consider the tense logic
BS22,2 = S4t ⊕ {bd2, bw+

2 , bw
−
2 }, where bd2, bw

+
2 and bw−2 are defined as in [3]. BS22,2 is exactly

the tense logic of ‘zigzags’ with clusters. We obtain also a full characterization of pretabular
tense logics in NExt(BS22,2) as follows:

Theorem 3. Let L ∈ NExt(BS22,2). Then L is pretabular if and only if L = Ga or L = Log(F)

for some F ∈ Z ∪ Z̆, where Z is the class of frames depicted in the figure below.3

Zn,m

(n ̸= m) ω

◦

◦

◦
· · ·

◦

◦◦
· · ·

◦

1

2′

1′

n− 1

n

m′

m′ − 1

Corollary 4. |Pre(BS22,2)| = ℵ0.

We construct infinitely many pretabular tense logics in NExt(S4t), which provides a proof
for the claim in [10]. The next step is to investigate the set Pre(S4t) of pretabular logics and
our conjecture is that |Pre(S4t)| = 2ℵ0 .
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Abstract

Infinite trees with countably many branches, called thin trees, have been studied via
methods from automata theory and algebra. We take a categorical approach to thin trees
using the framework of coalgebra. We show that the collection of thin trees can be seen as
an initial algebra satisfying a certain axiom. We prove this by defining an algebra of thin
tree representatives and showing that each thin tree has a canonical representative.

1 Background

Infinite words serve as a basis for the analysis of reactive systems and have been studied by
means of automata and algebraic recognition [6]. Subsequently, infinite trees have also become
an object of study, as they can express more complex systems where branching occurs. Tools
from automata theory have been adapted to infinite trees [4].

In [7, 5] the authors look into automata and algebras for a class of infinite trees called
thin trees. These are the trees that have countably many infinite branches. Every node in a
thin tree can be assigned an ordinal called rank, which allows for inductive reasoning on the
rank of thin trees. Moreover, languages of thin trees admit an algebraic characterisation via
thin algebras, which are an extension of the notion of an ω-semigroup for infinite words. Thin
algebras and induction on the rank are used to prove that languages of thin trees are recognised
by unambiguous automata, i.e., automata that have unique accepting runs.

2 Contribution

In our current work we employ category theory to provide a uniform account of thin trees for
a finite signature F . We base our approach on the formalisation of trees via F -coalgebras for
a polynomial functor F over Set (see, e.g., [3]). Indeed, every tree with branching type F
corresponds to an element of the final F -coalgebra (Z, ζ), and every element of (Z, ζ) can be
unravelled into a tree. We take a look into the subcoalgebra (ZTh , ζTh) of (Z, ζ) consisting of
those elements whose unravelling is a thin tree. By endowing ZTh with a suitable algebraic
structure βTh , we characterise (ZTh , βTh) as the initial object in a certain category of algebras
ThAlg. In this way, we capture the principle of induction on the rank of thin trees via the
universal property of initiality. Moreover, objects in ThAlg allow for algebraic recognition of
languages of thin trees, analogously to thin algebras in [7]. This paves the way for future work
on categorifying properties of thin trees, such as the existence of unambiguous automata.

3 Universal Property of Thin Trees

Here we give some details behind the construction of (ZTh , βTh). A key ingredient is the functor
derivative F ′ [1], which represents the type of contexts, i.e., tree nodes where one successor is
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replaced by a hole. A context c can be composed with a tree or another context c′ by plugging
c′ into the hole of c.

We define the type of streams of F -contexts G := (F ′)ω and denote the initial (F + G)-
algebra by (A,α). Every term in A can be seen as a representative of a tree. If a term has
type F , we interpret it as a tree node with given immediate successors. If it has type G, we
interpret it as the tree obtained by composing infinitely many F -contexts. This gives rise to
an interpretation map int : A → Z. Moreover, we observe that interpretations are thin, i.e.,
int [A] ⊆ ZTh . However, one element of ZTh can have many representatives in A. For example,
consider an element of ZTh whose unravelling consists of a single infinite branch. It can be
represented as a stream x1 of contexts whose only successor is the hole, or as a node x2 whose
only successor is the stream x1.

In order to get unique representatives, we quotient (A,α) by the congruence ≈ generated
by the following axiom (†). We identify a term x of type G with the term y of type F obtained
by plugging tail(x) into the context head(x). For instance, (†) will directly identify x1 and x2
from the example above. We show that ≈ is sound for int , i.e., terms identified by ≈ have
the same interpretation. In order to show that each element of ZTh is represented by a unique
equivalence class of ≈, we introduce the notion of a normal term. It is defined via the rank of
a term, which is the earliest step in the initial colimit construction of (A,α) at which the term
appears. Now a term is called normal if it has the least rank among the terms with the same
interpretation, and all its subterms are normal.

We prove two main results: (1) each element of ZTh has a unique normal representative,
and (2) the quotient relation ≈ identifies each term with its corresponding normal term. As a
result, we conclude that the quotient of (A,α) by ≈ contains a unique representative for each
element of ZTh . Thus, for a suitable (F +G)-algebra structure βTh , we have that (ZTh , βTh)
is isomorphic to the quotient of (A,α) by ≈, so (ZTh , βTh) is initial among all (F +G)-algebras
satisfying the axiom (†).

Beyond the purposes of our proofs, we hope that thin tree representatives can find use
in applications, such as automata learning, where algorithms are sensitive to the particular
presentation of objects [2].
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Our main objective is to investigate (discrete-time) Markov stochastic processes augmented
by a dynamic mapping from the modal logic point of view. These mathematical structures,
which we call dynamic Markov processes, are of the form 〈Ω,A, T, f〉 where 〈Ω,A〉 is a measure
space, T : Ω × A → [0, 1] is a Markov kernel and f : Ω → Ω is a measurable function. In this
case, the triple 〈Ω,A, T 〉 is called a Markov process on the state space 〈Ω,A〉.

In a somewhat broader context, the notion of probabilistic (random) dynamical systems
[1] covers one of the most important classes of dynamical systems with probabilistic features.
Typically, these systems contain stochastic processes, e.g. Markov processes possibly augmented
by some additional dynamic structures that describe the dynamic behavior of the system. In
a sense, our investigations lay in logical descriptions of certain special cases of probabilistic
dynamical systems. These structures have diverse applications, from stochastic differential
equations to finance and economics [4].

There are various logical approaches to modeling probability structures, among which we
consider propositional modal logic. In this approach, bounds on probability are treated as modal
operators. So there are countably many probability modal operators Lr, for each r ∈ Q∩ [0, 1].
For a formula ϕ, the formula Lrϕ is interpreted as ‘the probability of ϕ is at least r’. The
resulting modal probability logic is denoted by PL. It is shown that this logic is decidable [7, 13].
There are numerous papers in this area dealing with axiomatization which demonstrate several
completeness for PL [2, 7, 8, 10, 13] and prove some nice semantical properties [6, 12]. There
is also infinitary version of PL denoted by PLω1

[3, 9, 11]. The language PLω1
extends the

language PL by adding (infinite) countable conjunctions and disjunctions.
This presentation, which is based on our recent work in [5], is divided into two parts. The

first part of our research is devoted to introducing the finitary dynamic probability logic (DPL).
The language of DPL is obtained by adding a temporal-like modal operator © (denoted as
dynamic operator) which describes the dynamic part of the system. We subsequently propose a
Hilbert-style axiomatization for this logic and demonstrate its strong completeness for the class
of all dynamic Markov processes based on standard Borel spaces1. To this end, we use a canon-
ical model construction based on special maximal finitely consistent subsets of formula called
saturated sets. This approach is inspired by the proof of strong completeness for Markovian
logics in [10]. We further examine the logics of some important subclasses of dynamic Markov
processes, including the class of all dynamic Markov processes of the form 〈Ω,A, T, f〉 that are
measure-preserving, i.e., T (w, f−1(A)) = T (f(w), A) for each w ∈ Ω and a ∈ A. We also present
a logic for the class of all abstract dynamical systems, i.e. structures of the form 〈Ω,A, µ, f〉
where 〈Ω,A, µ〉 is a probability space and f : Ω → Ω is a measure-preserving function.

Our ideas naturally extend to introducing the infinitary dynamic probability logic. This logic,
which is denoted by DPLω1 , allows countable conjunctions and disjunctions. The expressive
power of DPLω1 is compatible with σ-additivity of probability measures. So within this logic,

∗Speaker
1A measure space 〈Ω,A〉 is called a standard Borel space if A is the Borel σ-algebra generated by a Polish

topology on Ω.
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many properties of probability can be naturally axiomatized, and hence, it is not hard to extend
ideas from [3, 9] to show that there exists a weakly complete Hilbert-style axiomatization for this
logic. Meanwhile, we show that whenever the logic is restricted to its countable fragments, the
proposed axiomatization is strongly complete for the class of all dynamic Markov processes. We
should point out that while the canonical model introduced for the proof of strong completeness
for each countable fragment A of PLω1 in [9, Subsection 5.2] depends on A, we show that the
canonical model of DPL can be served uniformly as a canonical model for each countable
fragment of DPLω1

.
The second contribution of the present research is allocated to investigating (frame) defin-

ability of natural properties of dynamic Markov processes. We show that some dynamic prop-
erties such as measure-preserving, ergodicity, and mixing are definable within DPL and DPLω1

.
Moreover, we consider the infinitary probability logic with initial distribution (InPLω1

) by dis-
regarding the dynamic operator. This logic studies Markov processes with initial distribution,
i.e. structures of the form 〈Ω,A, T,π〉 where 〈Ω,A, T 〉 is a Markov process and π : A → [0, 1] is
a σ-additive probability measure. We show that the strong expressive power of InPLω1

would
allow us to define n-step transition probabilities Tn of Markov kernel T . From this, we conclude
that many natural stochastic properties of Markov processes such as stationary, invariance,
irreducibility, and recurrence can be stated within InPLω1 . These results particularly show that
DPL as well as DPLω1 are natural and important extensions of PL.
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Gödel–Dummett logic is a well-known and extensively studied multivalued logic [5]. It is
both a superintuitionistic logic and a t-norm fuzzy logic. Computation tree logic (CTL) [4]
is a branching-time temporal logic that is a relative of linear temporal logic (LTL) (both are
fragments of CTL∗). Both LTL and CTL were designed and have been used very successfully
for formal verification.

Although nonclassical variants of modal and temporal logics often compare unfavourably to
their classical counterparts in terms of logical and computational properties [6, 3], recent invest-
igations have shown that Gödel–Dummett logic pairs well with linear temporal logic. Indeed
the variant of LTL whose modality-free fragment is Gödel–Dummett logic is not only decidable,
but has an optimal PSPACE complexity [2], and a finite Hilbert-style calculus has been given
for Gödel–Dummett LTL enriched with the “coimplication” connective of bi-intuitionistic logic
[1].

In this talk we report on similar investigations into a Gödel–Dummett CTL and show that
it too is decidable.

Fix a countably infinite set P of propositional variables. Then the bi-intuitionistic CTL
language L is the language defined by the grammar (in Backus–Naur form):

φ := p | φ ∧ φ | φ ∨ φ | φ→ φ | φ φ | ∃Xφ | ∀Xφ | ∃Gφ | ∀Fφ | ∃(φ U φ) | ∀(φ R φ),

where p ∈ P. Here, an ∃ is read as ‘there exists a path (from this state)’, a ∀ as ‘for all paths’,
X is as ‘next’, G as ‘going (to always be)’, F as ‘future’, U as ‘until’ and R as ‘released by’.
The connective is co-implication and represents the operator that is dual to implication [7].
We can also define the following abbreviations:

• ⊤ abbreviates p→ p, and ⊥ abbreviates p p, for some fixed, but unspecified, p ∈ P;

• ¬φ abbreviates φ→⊥;

• φ↔ ψ abbreviates (φ→ ψ) ∧ (ψ→ φ) (not the formula (φ→ ψ) ∧ (φ ψ));

• ∀Gφ abbreviates ∀(φ R⊥) and ∃Fφ abbreviates ∃(⊤ U φ);

• ∀(φ U ψ) abbreviates ∀(φ R ψ) ∧ ∀Fψ and ∃(φ R ψ) abbreviates ∃(φ U ψ) ∨ ∃Gψ;

We define the Gödel–Dummett CTL logic using two natural semantics (the details of which
we do not give here): first a real-valued semantics, where statements have a degree of truth in
the real unit interval and second a bi-relational semantics.

We define:

• the logic GCTLR to be the set of L-formulas that are valid with respect to the real-valued
semantics;

• the logic GCTLrel to be the set of L-formulas that are valid with respect to the bi-relational
semantics.

However, any formula falsifiable on a real-valued model is falsifiable on a bi-relational model.
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Proposition 1. GCTLrel ⊆ GCTLR.

For GCTLrel, we use a variant of the technical notion of a pseudo-model, as introduced in [4],
and adapted here for CTL. We show that every bi-relationally falsifiable statement is falsifiable
on a finite pseudo-model, and vice versa. This directly yields an algorithm for deciding if a
statement is valid or not.

Theorem 2. The logic GCTLrel is decidable.
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A classic result of Kuratowski states that there are at most 7 distinct combinations of the
operators of interior (i) and closure (c) on a topological space, which become 14 if also the
set-theoretic complement (−) is considered.1 These operators form an ordered monoid w.r.t.
composition and pointwise ordering, the so-called Kuratowski’s monoid, whose Hasse diagram
is shown below:

c

cic

ic ci 1

ici

i

−i

−ici

− −ci −ic

−cic

−c

(where 1 is the identity operator). Special classes of spaces can be characterized by the fact
that two or more of these operators coincide [4]; for instance, a space whose open sets form a
complete Boolean algebra satisfies the equation ici = i.

What happens to this picture if it is looked at from a constructive point of view?
And what about the pointfree (i.e. localic) version of the Kuratowski’s problem?

We answer both of these questions and we explain why they are related to each other.

First, we recall a constructive account of the closure-interior problem (that is, the one not
involving the set-theoretic complement) that we know from Giovanni Sambin [3]. For the sake
of generality, we consider a closure operator and an interior operator on an arbitrary poset. It
turns out that the ordered monoid generated by i and c in such a framework depends neither
on the Law of Excluded Middle nor on topological notions as strictly understood.

In a constructive setting, the collection of subsets of a given set is only a frame (a.k.a. a
complete Heyting algebra), instead of a complete Boolean algebra, and the set-theoretic “com-
plement” is only a pseudocomplement. This naturally poses a general version of the Kura-
towski’s problem on an arbitrary frame, which has potential applications in constructive modal

1In logical terms, this means that there are exactly 13 different modalities (not counting identity) in S4.
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logic. However, the presence of the pseudocomplement greatly increases the number of possible
combinations [1]. To simplify the matter we restrict to the case in which c = −i− (this equation
is constructively true in all topological spaces, although its dual i = −c− is not): this we call
the interior-pseudocomplement problem on a frame. Contrary to the Boolean case, we get 31
possible combinations (instead of 14) that apparently are all different [2], in general.

This constructive result can be applied to solve the Kuratowski’s problem in a pointfree
framework, that is, within the theory of locales. Indeed, it is well known that the sublocales of
a given locale form a co-frame (the opposite of the frame of nuclei); in particular, every sublocale
has a co-pseudocomplement. Moreover, the usual notion of an open (closed) sublocale gives rise
to an interior (a closure) operator on the co-frame of sublocales.2 So the Kuratowki’s problem
for sublocales is related, although in a dual way, to the constructive interior-pseudocomplement
problem discussed above. We can therefore apply the previous result and, thanks to some
specific properties of open/closed sublocales, we can lower the number of possible combinations
of interior, closure and co-pseudocomplement to 21 (see the picture below).

c

cic c−− 1

ic cic−− −−

ic−− ci

ici

i

−i

−ici

− −ci ci−

ici− −ic

i− −cic

−c

Showing that this picture cannot be further simplified is still an open problem [2].
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In proof theory and programming language theory, the Curry-Howard correspondence ex-
plains the direct relationship between computer programs and mathematical proofs. Curry,
in [3], was the first to recognize the analogy between combinatory logic and the axioms of a
Hilbert-style deductive system for positive propositional logic. Later, Howard [4] observed a
similar formal analogy between the lambda calculus and the proof rules of a Gentzen-style natu-
ral deduction system for propositional logic. The Curry-Howard correspondence associates each
proof in intuitionistic logic with a term in Curry’s combinatory logic or Church’s lambda cal-
culus. This correspondence, also called proofs-as-programs, connects intuitionistic logic proofs
with terms in combinatory logic or lambda calculus. Essentially, it reveals that deduction sys-
tems and computation models are fundamentally the same mathematical entities. The Curry-
Howard correspondence sparked research leading to dual-purpose formal systems—serving as
both proof systems and typed functional programming languages. Examples include Martin-
Löf’s intuitionistic type theory [5] and Coquand’s Calculus of Constructions [2]. These systems
treat proofs as regular objects, allowing properties to be declared about proofs, akin to any other
program—an area known as modern type theory. In particular, the Homotopy Type Theory
(HoTT) [6] is a new field of mathematical study that combines various aspects of type theory
and homotopy theory, incorporating ideas from algebraic topology and homological algebra for
the examination of formal derivation systems.

The work to be presented here is based on an ongoing study [1], which will serve as the
foundation. In this work, we consider a signature Σ, a set of variables X, and a fixed set A of
rewriting rules. This set A consists of pairs p = (M,N), where M and N are terms in the free
Σ-algebra TΣ(X). These pairs are used to form a set of admissible rewriting rules in a formal
derivation system A = (Σ, X,A), which leads to the concept of a path between terms. A path
is a finite sequence of terms in which, at each step, a rewriting rule is applied. In other words,
the (i+ 1)-th term is obtained by substituting subterm M in the i-th term with term N . This
object is understood as a simplified version of a proof where, at each step, a derivation rule
admitted in the system is used. This leads to a category of paths, where the objects are terms
in TΣ(X), and the morphisms are paths between terms. Furthermore, it is shown that the set
of paths for a rewriting system A has the structure of a Σ-algebra and is equipped with an
artinian order that specifies the complexity of the path and aids in the inductive study of these
objects.

Next, we consider ΣA, an extension of the original signature Σ, which includes both cat-
egorical operations and rewriting rules from A. For this extension, it is proven that the set
of paths has the structure of a partial ΣA-algebra. With the assistance of the artinian order
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on paths, each path is associated with a term in the free ΣA-algebra TΣA(X), akin to the
Curry-Howard construction. This term captures the syntactic derivation that occurs in each
path, except for the ordering in the derivation that occurs in parallel. The study of the kernel
of the Curry-Howard application reveals that it is a closed ΣA-congruence, which allows for
the algebraic study of the respective quotient of paths. It has been shown that the quotient of
paths by the kernel of the Curry-Howard application has the structure of a category, a partial
ΣA-algebra, and a partially ordered set with an artinian partial order. This allows for the
preservation of the inductive study of path classes. Moreover, there is a strong relationship
between the categorical and algebraic structures, as the operations from the original signature
Σ act as functors on the categorical structure. The fundamental result establishes that this
quotient structure is the free partial ΣA-algebra for a variety V of partial ΣA-algebras, subject
to equations related to both the categorical and algebraic structures, that is, a Curry-Howard
isomorphism type result.

In the second part of this work, we generalize the previous results by considering second-
order rewriting systems A(2) = (A(1),A(2)), where A(1) is a rewriting system and A(2) is a set
of second-order rewriting rules. This helps us introducing the notion of second-order paths, in
analogy to homotopies in topological spaces. Analogous results to those in the first part are
established, thanks to the definition of a second-order Curry-Howard mapping. Particularly,

for a second-order categorical signature ΣA(2)

, a quotient set with the structure of a 2-category,

a partial ΣA(2)

-algebra, and a partially ordered set with an artinian partial preorder has been
constructed. The fundamental result establishes that this quotient structure is the free partial

ΣA(2)

-algebra for a variety V(2) of second-order partial ΣA(2)

-algebras, subject to equations
related to the 2-categorical and algebraic structure. In other words, we obtain a second-order
Curry-Howard isomorphism for second-order rewriting systems.

This will ultimately lead, in future versions of this work, to the development of a theory
aimed at investigating the relationship between ω-rewriting systems and ω-categorial algebras
through higher-order Curry-Howard isomorphisms.
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Categories are cognitive tools humans use to make sense of the world, and interact with it
and with each other. They are key to the development and use of language, the construction
of knowledge and identity, the formation of evaluation, and decision-making. The literature on
categorization is expanding rapidly in fields ranging from cognitive linguistics to social science,
management science and AI.

A key issue to the development of the foundations of categorization theory concerns the
formalization of the vague nature of categories. While mathematical concepts such as ‘prime
number’ or ‘circle’ have a precise extension, this is not so for concepts such as ‘red’, ‘tall’, ‘heap’
or ‘house’. Vague categories and concepts admit borderline cases, namely cases for which it is
not clear whether the concept should apply or not. For instance, where is the limit between
dark blue and light blue? Is a certain object blue, or is it grey or green? The absence of
clear-cut boundaries between categories is the main reason why, in most real-life categorization
processes, objects are assigned to more than one category, giving rise to the phenomenon of
category-spanning, which has important consequences on decision-making.

Rough set theory [16] provides the starting point of the formal approach to vagueness pro-
posed in the present contribution, since it accounts for the absence of clear-cut categorical
boundaries via the interval induced by the upper and lower approximations of sets and predi-
cates, arising from an indiscernibility relation on a domain of discourse. In [10], these insights
have been extended to the formal environment of conceptual approximation spaces, a common
generalization of Pawlak’s approximation spaces and Wille’s formal contexts (aka polarities)
[14], on which the present contribution directly builds.

Specifically, the present contribution continues a line of research aimed at introducing and
studying logical frameworks specifically designed to reason about categories and categorization,
and at using these logics to formalize notions and analyze problems involving categorization
arising across disciplines. In [7], building on the general mathematical framework for non-
distributive logics developed in [12, 11], the basic normal non-distributive modal logic and some
of its axiomatic extensions are interpreted as epistemic logics of categories and concepts, and in
[8], the corresponding ‘common knowledge’-type construction is used to give an epistemic-logical
formalization of the notion of prototype of a category; in [10, 15], conceptual approximation
spaces are proposed as a relational semantics for non-distributive modal logic, which, being
interpreted in this context as the logic of rough concepts, serves as an encompassing framework
for the integration of Rough Set Theory [16] and Formal Concept Analysis (FCA) [14]. Other
different but closely related semantics for non-distributive modal logic have been introduced
and explored in [4, 6], and generalized to the many-valued semantic setting [5, 13].

In this contribution, building on Běloklávek’s framework of fuzzy formal concepts [1, 2],
we present the mathematical and conceptual investigation of the many-valued polarity-based
relational semantics for non-distributive modal logic. This framework has been initially inves-
tigated in [10, Section 7.2]. Further developments in the direction of correspondence theory
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have been developed in [9], and in [3] it has been applied in the development of unsupervised
learning algorithms for outlier detection that also provide explanations of their results.

In our presentation we will discuss the many-valued non-distributive modal logics described
above. We will introduce many-valued enriched formal contexts; introduce the semantics and
proof theory for the logics; expand on the completeness of this logic; and present results in
correspondence and duality in this context. Finally, we will present a generalization of this
framework to a framework where the algebra of values is a non-commutative quantale. We will
discuss how this shift affects the aforementioned notions and present some further results on
correspondence and completeness.
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The problem of modelling the structural rules of type dependency using categories has
motivated the study of several structures, varying in generality, occurrence in nature, and
adherence to the syntax of dependent type theory. One aspect, that involving free variables
and substitution, is neatly dealt with using (possibly refinements of) Grothendieck fibrations.
The other main aspect of type dependency is the possibility of making assumptions as encoded
in the two rules below

Γ ` A Type

` Γ.A ctx

Γ ` A Type

Γ.A ` vA : A

where the first one (context extension) extends the context Γ with the type A, and the second
one (assumption) provides a “generic term” of A in context Γ.A. In the first order setting, they
allow us to add assumptions to a context, and to prove what has been assumed, respectively.

We present a purely 2-categorical comparison of the two main categorical accounts of
these two rules: Jacobs’ comprehension categories [Jac99] and Dybjer’s categories with fam-
ilies [Dyb96]. They differ in that the former gives prominence to context extension, and the
latter to assumption. The comparison itself consists of a biequivalence of 2-categories, which
generalises the classical 1-equivalence between the discrete versions of these structures due to
Hofmann [Hof97].

The biequivalence goes via a third 2-category of a less known structure called weakening
and contraction comonad. These appear already in [Jac99, Definition 9.3.1], where Jacobs uses
them to justify the definition of comprehension category [Jac99, Theorem 9.3.4]. We call them
w-comonads for short. On the other hand, categories with families can be formulated as a pair
of discrete fibrations over the same base connected by a (suitable) adjunction. This is known
thanks to the observations (and proofs) of, among others, Fiore [Fio08], Awodey [Awo18],
and Uemura [Uem23, Section 3]. In order to have a uniform comparison with comprehension
categories, we drop the assumption of discreteness on the two fibrations and call the resulting
structure a generalised category with families.

Morphisms of these structures can vary according to the degree of preservation of the rel-
evant structure. We use the well-established taxonomy of morphisms of adjunctions and of
(co)monads [KS74, Str72] to classify morphisms of comprehension categories and of generalised
categories with families according to the degree of preservation of context comprehension. In
particular, this classification entails that there is a single notion of morphism of which all those
that have appeared in the literature are particular cases.

Categories with families are in bijection with discrete comprehension categories because,
for every object A of U , the objects of U̇ mapped to A (the terms) are in bijection with
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Figure 1: The underlying diagrams in Cat of, from left to right, a comprehension category, a
w-comonad, and a generalised category with families.
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sections of the display map χA. In general, sections can be described as coalgebras, and
these specific sections are the coalgebras of the w-comonad K induced by χ. This simple
observation suggests that the classical correspondence between categories with families and
comprehension categories could be phrased within the framework of the correspondence between
adjunctions and comonads. The structure-semantics adjunction [Dub70, Str72] can be used to
show that comonads are 2-reflective in a suitable 2-category of adjunctions, where the 1-cells
are pairs of functors commuting with the left adjoints. Of course, this reflection is in general
far from being an equivalence. Nevertheless, we show that it lifts to a 2-reflection between
generalised categories with families and w-comonads which becomes a biequivalence if one takes
as morphisms of generalised categories with families functors that commute with left adjoints up
to a natural vertical isomorphism. We call these loose morphisms. In type theoretic terms, this
means preserving typing only up to (vertical) isomorphism. The equivalence in the discrete case
is recovered thanks to the fact that vertical isomorphisms in discrete fibrations are identities.
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Kripke frames (sets equipped with a binary relation) are one of the most popular semantics
of modal logics (see [4] for a complete overview). They form the category KFr, where the arrows
are the so called p-morphisms. Images via p-morphisms are called p-morphic images and such
images are generated subframes of their codomains. A Kripke frame F is called locally finite if,
for each p ∈ F , the smallest generated subframe containing p is finite (in literature, image finite
Kripke frames are better known; locally finite Kripke frames are those Kripke frames whose
transitive closure is image finite). We are interested in KFrlf, the full subcategory of locally
finite Kripke frames: this subcategory is closed under coproducts (disjoint unions), generated
subframes and p-morphic images. More generally, we are interested in any full subcategory
C ⊆ KFrlf closed under the same operations (all colimits in C can be built from such operations).
In [2], it has been shown that C is always comonadic over Set.

The algebraic semantics of modal logic is given by modal algebras. In the so called Thoma-
son duality [3], KFrlf corresponds to ProMAf, the category of profinite modal algebras, with
suitable morphisms, which is monadic over Set [2] (while image finite Kripke frames are dual
to the topological modal algebras whose underlying topology is a Stone topology). Topological
algebras and profiniteness are strictly related to classical problems such as canonical extensions
of lattice-based algebras (among them are modal algebras). More generally, for any variety V
of modal algebras generated by its finite members Vf, the pro-completion [6] ProVf is monadic
over Set. In the above duality, ProVf corresponds to the class of locally finite Kripke frames
validating the equations defining V; the latter class has the aforementioned closure properties.

Our aim is to study categorical properties of classes of locally finite Kripke frames dual to
ProVf, for some V. In particular, we want to characterize regularity and Barr exactness, at
least under the assumption that the Kripke frames are transitive. Indeed, it is possible to prove
that: (i) such classes have all limits (being the ind-completion of the class of finite Kripke frames
belonging to it [2]) and (ii) under the assumption of transitivity, the usual image factorization
gives an (extremal epi, mono)-factorization. Therefore, to establish regularity, it only remains
to check that extremal epimorphisms are stable under pullbacks. We present a partial solution
for the reflexive and transitive case.

From now on, we fix a full subcategory C of reflexive and transitive locally finite Kripke
frames closed under disjoint unions, generated subframes and p-morphic images. In this case,
the stability of extremal epimorphisms under pullbacks can be rephrased in terms of the dual of
the amalgamation property. A co-amalgamation for a finite family f1, . . . , fn of epimorphisms
with common codomain is a family g1, . . . , gn of epimorphisms with common domain, such
that all the compositions figi exist and coincide. The category C is said to satisfy the co-
amalgamation property if each finite family of epimorphisms with common codomain has a
co-amalgamation.

Co-amalgamation can be used to find out necessary conditions for regularity (following the
classification in [5, Section 6.3], see also [8, 7]): if C is regular, then it is forced to contain Kripke
frames that can be built using co-amalgamation and p-morphic images.
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The construction of a binary product in C can be performed by induction following the
universal model construction, well known in the modal logic literature — see [1]. This implies
that the product of a pair of objects in C′ is a generated subframe of the product computed
in any C containing C′. The two products might coincide, for example, when C′ = C ∩ Poslf,
where Poslf is the class of locally finite posets. If this is the case, C′ is closed under pullbacks
in C, being always closed under equalizers. This observation allows us to conclude that, if C is
regular, then all its subclasses closed under finite products in C must be regular; in particular,
C∩Poslf has to be regular, too. A case analysis, based on the co-amalgamation property, shows
that exctly 8 subclasses of Poslf are regular. Therefore, the regular C must intersect Poslf in
one of the 8 classes above; applying again the co-amalgamation property, we obtain 49 possible
cases.

Barr exactness can also be studied. Similarly to what happens for regularity, given two
regular C′ ⊆ C, with C′ closed under finite products in C, if C is exact then C′ is exact, too. In
particular, C ∩ Poslf is exact if C is so. After having excluded a certain number of cases, we
show that C is exact if it only contains the empty frame, or it is one of the following:

1. {F | ht(F) ≤ 1 & δe(F) ≤ 1} ∼= Set;

2. {F | ht(F) ≤ 1 & δe(F) ≤ 2} ∼= Z+
2 -Set;

3. {F | ht(F) ≤ 2 & wt(F) ≤ 1 & δi(F) ≤ 1 & δe(F) ≤ 1} ∼= Z×2 -Set;

Where ht and wt give bound for cardinality of chains, resp. antichains, and δe and δi give
bound for cardinality of external, resp. internal clusters.

We are currently working on a full characterization of exactness in the reflexive and transitive
case and on a generalization of this characterization without the reflexivity condition. In the
latter context, exactness could be encountered in some non trivial cases. An example is given
by the class GL-Linlf of locally finite, transitive and irreflexive Kripke frames for which the
restriction of the binary relation to each rooted generated subframe is a (irreflexive) linear

order: GL-Linlf is indeed equivalent to the category of presheaves Set(N,≤)
op

.
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In previous years, a formal connection between correspondence phenomena [7] and the theory of
display calculi [1] was established, applying results and insights from unified correspondence theory
[3]. One of the consequences of the aforementioned connection was the development of proper display
calculi for the class of LE-logics [4], together with a method to convert a broad class of axioms (the
class of all the analytic inductive inequalities) into rules that can be modularly added to the base calculus
without disrupting the admissibility of the cut rule [5].

In this work we extend the framework of proper display calculi for LE-logics to include axiomatic
extensions with axioms that are inductive [4] but not necessarily analytic inductive, greatly extending
the class of axioms that can be converted into analytic rules. This class covers and properly extends
all Sahlqvist axioms. A semantical analysis of the first-order correspondent of inductive inequalities
suggests an approach that is similar in nature to that of Schroeder-Heister’s Calculus of Higher-level
Rules [8], and captures the whole acyclic portion of the substructural hierarchy [2], meaning that we can
cope with arbitrary alternations of box-like and diamond-like connectives, as long as certain acyclicity
conditions are satisfied.

Our approach is somewhat reminiscent of Negri’s systems of rules [6], with the difference that no la-
belled G3c-like calculus is available for LE-logics, with the consequence that previously existing results
cannot be applied to the case at hand. We make use of unified correspondence theory and the algo-
rithm ALBA [4] to uniformly generate analytic rules for the previously mentioned inductive axiomatic
extensions, and we call our new framework Inception Display Calculus.

Definition of the Inception Display Calculus framework
Inception Display calculi introduce special side conditions to the rules of proper display calculi.

Definition 0.1. Let R and X be a set of analytic structural rules (see [5]) and a set of structure variables,
respectively. If Π ⊢ Σ is derivable using the rules of the base calculus together with R, where Π,Σ,R
may contain structure variables from X, we write [Π ⊢ Σ]RX and we call it a shallow contract. A shal-
low inception rule is an analytic structural rule augmented with one or more shallow contracts as side
conditions, namely a rule of the following form:

X1 ⊢ Y1 · · · Xn ⊢ Yn [Π1 ⊢ Σ1]R1
X1
· · · [Πm ⊢ Σm]Rm

Xm

X ⊢ Y

Sometimes we write [π]RX in place of [Π ⊢ Σ]RX, where π is a derivation of Π ⊢ Σ, omitting subscripts
and superscripts when they are clear from the context.

Definition 0.2. Let us define inductively depth-n inception rules (n ≥ 0) and depth-n contracts (n ≥ 1).

• Depth-0 inception rules are the analytic structural rules; depth-1 contracts are the shallow con-
tracts and depth-1 inception rules are the shallow inception rules.

• Suppose we defined depth-k inception rules and contracts for every k < n, for a certain n > 1.
A depth-n contract is a side condition of the form [Π ⊢ Σ]RX, where R is a set of inception rules
of depth smaller than n. A depth-n inception rule is an analytic structural rule augmented with
contracts of depth not greater than n.
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An inception rule (resp. a contract) is a depth-n inception rule (resp. depth-n contract) for some n ≥ 1.
We also say that its depth is n. A derivation has finite dreams if it contains a finite number of instances
of contracts.

In this work, we consider only derivations with finite dreams. As an example, consider the inductive
but not analytic inductive axiom □(^p ◦ p) ◦ ^p ⊢ p.

ALBA run computing the inception rule for □(^p ◦ p) ◦ ^p ⊢ p:
□(^p ◦ p) ◦ ^p ≤ p

iff ∀p∀i∀j∀m[i ≤ □(^p ◦ p) & j ≤ p & p ≤ m⇒ i ◦ ^j ≤ m]
iff ∀i∀j∀m[i ≤ □(^m ◦m) & j ≤ m⇒ i ◦ ^j ≤ m]
iff ∀i∀j∀m[∀n(^m ◦m ≤ n⇒ i ≤ □n) & j ≤ m⇒ i ◦ ^j ≤ m]
iff ∀i∀j∀m[∀n(∀k∀h(k ≤ m & h ≤ m⇒ ^k ◦ h ≤ n)⇒ i ≤ □n) & j ≤ m⇒ i ◦ ^j ≤ m]

The last line of the derivation above gives us the first-order correspondent of □(^p ◦ p) ◦ ^p ⊢ p,
from which we can obtain the depth-1 inception rule

Y ⊢ Z
[
X ⊢ □̌N

]R
{N}R0

X ◦̂ ˆ̂ Y ⊢ Z
where R is the singleton containing

K ⊢ Z H ⊢ ZR1 .
ˆ̂ K ◦̂ H ⊢ N

We show how to derive the axiom □(^p ◦ p) ◦ ^p ⊢ p from the rule just obtained, where adjunction
rules are omitted for brevity:

p ⊢ p [π]R{N}R0
□(^p ◦ p) ◦̂ ˆ̂ p ⊢ p

, where π is:
□(^p ◦ p) ◦̂ ^p ⊢ p
□(^p ◦ p) ◦ ^p ⊢ p

p ⊢ p p ⊢ p
R1 ˆ̂ p ◦̂ p ⊢ W

^p ◦̂ p ⊢ W
^p ◦ p ⊢ W
□(^p ◦ p) ⊢ □̌W
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Topoi with enough points
Ivan Di Liberti and Morgan Rogers

General landscape
This paper is concerned with the general problem of assessing whether a topos has enough points,
with motivations coming both from geometry and logic. This problem has been influential
in both fields up to the present day (see for example the work of Lurie [Lur04, VII, 4.1] and
Barwick et al. [BGH18, II.3], for the case of geometry, and Espíndola and Kanalas [EK23] for
the case of logic). We begin with an account of the development of this problem to properly
frame our contribution and the significance of our work.

In 1964 Pierre Deligne proved a very celebrated theorem in topos theory.

Theorem (Deligne, [BDSD06, Exposé VI, 9.0]). Every locally coherent topos has enough points.

The theorem’s original motivation came from algebraic geometry, but after Joyal and Reyes
developed the theory of classifying topoi, it was observed by Lawvere that Deligne’s theorem
was essentially the statement of Gödel’s completeness theorem for first order logic in disguise.
This realisation crowned Deligne’s theorem as a major result in categorical logic, and a source
of inspiration for finding other completeness-like results using techniques from topos theory. To
the present day Deligne’s theorem remains the main argument to show that a wide class of topoi
have enough points, and to some extent this paper investigates the limits (and the possibly
unexploited potential) of this result.

Following Deligne’s theorem, new results eventually emerged showing that further classes of
topoi have enough points. Makkai and Reyes proved that separable topoi have enough points.

Theorem (Makkai and Reyes, [MR06, Theorem 6.2.4, page 180]). Let C be a countable category
with pullbacks and J a Grothendieck topology generated by a countable family of sieves. Then
Sh(C, J) has enough points.

This result was inspired by the Fourman-Grayson completeness theorem for the logic Lω1,ω0

(see [FG82]), and indeed it is almost the translation of it into topos-theoretic language through
the bridge of classifying topoi. The proof in [MR06] is a bit sketchy, and of model theoretic
inspiration, thus it is hard to compare this result to Deligne’s.

Recent developments
Lurie has imported Deligne’s original argument to the world of ∞-topoi [Lur04, VII, 4.1]. The
proof carries with minor adjustments, and under the mild additional assumption that the∞-topos is hypercomplete. On the logical side, the main advances are due to Espíndola [Esp19,
Esp20, EK23]; the most recent categorical analysis with Kanalas delivers a vast generalization
of the original results achieved in Espíndola’s PhD thesis.

Simultaneously to these developments, the topos theory community has been trying to
understand the limits of Deligne’s original argument and its possible generalization. Quite
independently the authors of this paper and Tim Campion conjectured that every locally finitely
presentable topos could have enough points. This conjecture finds its motivations in a number of
examples, including the fact that coherent topoi are locally finitely presentable ([Joh02, D3.3.12]);
presheaf topoi are often not coherent and yet they are always locally finitely presentable, and
they are the easiest example of topos with enough points, and finally Hoffmann-Lawson duality
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[HL78] from the theory of locales seems to support the conjecture that exponentiable topoi
(which include locally finitely presentable topoi) have enough points. Before discussing our
contribution, we should say that we did not manage to prove (or disprove) the conjecture. Yet
our analysis seems to suggest that these methods cannot be sufficient to deliver a proof of the
conjecture, if any such exists.

Our contribution
We employ the notion of collage in our presentation and generalization of Deligne’s proof.
Diagrams in the collage offer a convenient framework where points (on the left) can interact
with objects (on the right) of a topos as if they were in the same category.

⋅
p Y X

⋅
z

g

f

After introducing the notion of improvement, designed to isolate the central idea of Deligne’s
proof, we prove our main theorem (which we express in a simplified, easy-to-read form).

Theorem. Let j ∶ F ↣ E be an inclusion of toposes. Suppose that for every point p admits an
improvement. If E has enough points, then F has enough points.

We show that our refinement of Deligne’s argument can be used to recover every existing
result of this kind (for 1-topoi), including the most recent ones about κ-coherent κ-topos. Our
strategy allows us to relax the assumptions on the site so that one is no longer required to
control the cardinality of the set of morphisms.
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Multi-type universal algebra: categorical equivalence ∗
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Multi-type algebras are special kinds of heterogeneous algebras [1] which can be represented
as the corresponding single-type algebras and vice versa. The motivation for studying this
kind of mathematical structure comes from algebraic proof theory. In [4], it is showed that
the algorithm ALBA can be used to transform analytic inductive formulas into rules of display
calculus which satisfy the premises of Belnap’s cut-elimination theorem. However, there are
many important logics whose axioms are not analytic inductive, and cut-free display calculus can
not be provided for them by using ALBA directly. In order to settle this problem, the multi-
type methodology is introduced which represents single-type axiomatizations as multi-type
axiomatizations where axioms in the multi-type languages are all analytic inductive formulas.
This methodology has been applied successfully to semi De Morgan logic [2], linear logic [5],
logic of bilattices [3] and so on, whose axioms are not analytic inductive. In this paper, we
introduce general definitions for both single-type and multi-type algebras and homomorphisms
on them. We define a functor from the category of multi-type algebras to the category of
single-type algebras and vice versa and show categorical equivalence of those two categories.

We first introduce the general definition of multi-type algebras and homomorphisms on
them.

A multi-type algebraic language is a tuple L = (L1,L2, h, e) where L1 and L2 are sets of
function symbols and h and e are two unary function symbols. A multi-type L-algebra is a tuple
A = (A,B, h, e) such that: (1) A is an L1-algebra and B is an L2-algebra. (2) h : A→ B is a
unary surjective map and e : B→ A is a unary injective map. (3) For any α1, · · · , αn ∈ B and
n-ary f ∈ L1 ∩ L2, fB(α1, · · · , αn) = hfA(e(α1), · · · , e(αn)). Let A1 = (A1,B1, h1, e1) and
A2 = (A2,B2, h2, e2) be any multi-type L-algebras. A multi-type homomorphism between A1

and A2 is a pair F = (FA, FB) of maps such that: (1) FA : A1 → A2 and FB : B1 → B2 are
homomorphisms. (2) FB ◦ h1 = h2 ◦ FA and FA ◦ e1 = e2 ◦ FB.

Now we are ready to define the single-type representation of multi-type algebras and the
multi-type representation of single-type algebras.

Definition 1. Let L = (L1,L2, h, e) be a multi-type algebraic language and L3 = (L2 − L1),
the single-type representation of L is L+ = L1 ∪ L3 ∪ {e ◦ h}. Given a multi-type L-algebra
A = (A,B, h, e), the single-type representation of A is A+ = (A, {fA+ | f ∈ L3}, e◦h) such that

for any n-ary fi ∈ L3 and a, a1, · · · , an ∈ A, f
A+

i (a1, · · · , an) := efBi (h(a1), · · · , h(a1)). Let
A1 = (A1,B1, h, e) and A2 = (A2,B2, h, e) be any multi-type L-algebras and F = (FA, FB) :
A1 → A2 be any multi-type homomorphism, the single-type representation of F is F+ : A1+ →
A2+ defined by F+(a) := FA(a) for any a ∈ A1.

Given a single-type algebra, there are different ways of representing it as a multi-type algebra
which depends on which operators we want to keep, to destroy or to rebuild on kernels. In order
to divide our algebraic language properly, we introduce the notion of parameter.

Definition 2. Let L be an algebraic language. A parameter on L is a tuple P = (L1,L2, σ)
such that L = L1∪L2∪{σ} and L1, L2 and {σ} are pairwise disjoint. An L-algebra C is called

∗Yiwen Ding is supported by the China Scholarship Council. Krishna Manoorkar is supported by the NWO
grant KIVI.2019.001. Ni Wayan Switrayni is supported by the Indonesian Education Scholarship with Ref.
Number: 1027/J5.2.3/BPI.LG/VIII/2022.
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P-algebra if for any a, a1, · · · , an ∈ C and n-ary f ∈ L, σσ(a) = a and σf(σ(a1), · · · , σ(an)) =
f(a1, · · · , an).

Now we are ready to give the multi-type representation of a single-type algebra relative to
a parameter.

Definition 3. Let L be an algebraic language, P = (L1,L2, σ) be a parameter on L and C be
any P-algebra. The multi-type representation of L relative to P is L+ = (L1,L2, h, e). The
multi-type representation of C is C+ = (A,B, h, e) such that: (1) A is the L1-reduct of C.
(2) h : A → B and e : B → A such that for any a ∈ A and α ∈ σ(A), h(a) := σ(a) and
e(α) := α. (3) B = (σ[A], {fB | f ∈ L}) such that for any n-ary f ∈ L and α1, ...αn ∈ σ[A],
fB(α1, ..., αn) := hfC(e(α1), ..., e(αn)). Let C1,C2 be any L-algberas and F : C1 → C2 be any
homomorphism. Let Ci

+ = (Ai,Bi, hi, ei) for i ∈ {1, 2}. The multi-type representation of F
is F+ = (FA, FB) from C1

+ to C2
+, where FA : A1 → A2 and FB : B1 → B2 such that for

any a ∈ A1 and α ∈ B1, FA(a) := F (a) and FB(α) := h2 ◦ F ◦ e1(α).

Now we are ready to establish the categorical equivalence between single-type and multi-type
algebras.

Given a multi-type algebraic language L = (L1,L2, h, e), CatL denotes the category of
multi-type L-algebras and multi-type homomorphisms between them, and CatL+

denotes the
category of P-algebras and homomorphisms between them, where P = (L1,L2, e ◦ h) is the
parameter on algebraic language L+. SL : CatL → CatL+ is a functor such that for any
A, F ∈ CatL, SL(A) := A+ and SL(F ) := F+. ML : CatL+

→ CatL is a functor such that for
any C, F ∈ CatL+

, ML(C) := C+ and ML(F ) := F+.
Given an algebraic language L and a parameter P = (L1,L2, σ) on L. CatL denotes the

category of P-algebras and homomorphisms between them, and CatL+ denotes the category of
multi-type L+-algebras and multi-type homomorphisms between them. ML : CatL → CatL+ is
a functor such that for any C, F ∈ CatL, ML(C) := C+ and ML(F ) := F+. SL : CatL+ → CatL
is a functor such that for any A, F ∈ CatL+ , SL(A) := A+ and SL(F ) := F+.

According to definitions above, we can prove categorical equivalence between category of
single-type algebras and category of multi-type algebras as stated the following theorem.

Theorem 1. Let L be a multi-type algebraic language, then SL : CatL → CatL+ and ML :
CatL+ → CatL forms a categorical equivalence between them. Let L be an algebraic language
and P be a parameter on L, then ML : CatL → CatL+ and SL : CatL+ → CatL forms a
categorical equivalence between them.
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Multi-type algebras are special type of heterogeneous algebras used in previous research to
provide multi-type algebraic semantics for logics such as Semi De Morgan logic [2], and linear
logic [3]. This class of algebras dually corresponds to the multi-type logic equivalent to the
single-type logic under consideration. These studies were conducted to overcome some prob-
lematic issues related to the proof-theoretic perspective on those given logic systems which are
not properly displayable in the sense of Wansing [5]. The present paper aims to capture the
general construction of multi-type algebras and to study their universal algebraic properties.

Definition 1. A multi-type algebra H is a tuple (A,K, h, e) such that
1. A and K are some (single-type) algebras.
2. h : A→ K is a surjective map and e : K→ A is an injective map.
3. The set of operations {fK | f ∈ OA} is a subset of the basic operations OK on the kernel K,
where for any n-ary operation f ∈ OA, and α1, α2, · · · , αn ∈ K,

fK(α1, α2, · · · , αn) = hf(e(α1), e(α2), · · · , e(αn)).

Given any multi-type algebras H1 = (A1,K1, h1, e1) and H2 = (A2,K2, h2, e2), a multi-type
homomorphism between H1 and H2 is a pair F = (FA, FK), such that FA : A1 → A2 and FK :
K1 → K2 are homomorphisms of these algebras as single-type algebras, and FK ◦ h1 = h2 ◦ FA

and FA ◦ e1 = e2 ◦ FK. We define multi-type representation of a single-type algebra as follows.

Definition 2. Let K be a class of algebra with set of the basic operations O on the algebras
in K. Let σ ∈ O be a unary operation on the algebras in K. Suppose there exist disjoint set
of the basic operations O1, O2, and {σ} such that O1 ∪ O2 ∪ {σ} = O. Then the multi-type
representation of any A ∈ K, Mult(σ,O1,O2)(A) = (A′,K, h, e), where
1. A′ is an O1-reduct of A,
2. K = (σ(A), {fK | f ∈ O}),
3. h : A′ → K and e : K → A′ are surjective and injective maps respectively, such that for any
α ∈ σ(A), e(α) = α and e ◦ h = σ.

In Definition 2, the algebra K is called the kernel of the multi-type representation of A. We
also define the multi-type representation of a homomorphism between two single-type algebras
F : A1 → A2 as Mult(σ,O1,O2)(F ) = (FA, FK) where FK : K1 → K2 and FA : A1 → A2 such

that for any α ∈ K1, and a ∈ A1, FK(α) = h2Fe1(α) and FA(a) = F (a). For a given class of
single-type algebras acting as algebraic semantics, this construction allows us to define a class
of multi-type algebras that serve as multi-type algebraic semantics for the same logic. It can
be shown that any category of single-type algebras is categorically equivalent to the category
of multi-type algebras defined from it by the above construction.

The multi-type construction transfers many universal algebraic properties of the single-type
algebra A to the kernel of its multi-type representation under certain conditions. In this work, we
investigate this phenomenon and show several properties which are transferred in this manner.
Table 1 depicts some properties of the kernels and corresponding conditions on the single-type

∗Yiwen Ding is supported by the China Scholarship Council. Krishna Manoorkar is supported by the NWO
grant KIVI.2019.001. Ni Wayan Switrayni is supported by the Indonesian Education Scholarship with Ref.
Number: 1027/J5.2.3/BPI.LG/VIII/2022.
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Property in K Conditions on A Side conditions
1 Distributivity σ(σa ∧ σ(σb ∨ σc)) = σ(σ(σa ∧ σb) ∨ σ(σa ∧ σc)) -

2 fK(α ⊔ϵ β) = fK(α) ⊔ fK(β) f(σa ∨ϵ σ(b)) = σ(f(a) ∨ f(b)) σf(σa) = f(a)

3 fK(α ⊓ϵ β) = fK(α) ⊓ fK(β) f(σa ∧ϵ σ(b)) = σ(f(a) ∧ f(b)) σf(σa) = f(a)
4 Injective (surjective) homomorphism Injective (surjective) homomorphism -
5 Congruence permutable congruence permutable -
6 Congruence distributive congruence distributive -
7 Arithmetical arithmetical -
8 Amalgamation property amalgamation property H(V′) ⊆ Ker(H(V))
9 Superamalgamation property superamalgamation property H(V′) ⊆ Ker(H(V))

Table 1: Properties of kernels and corresponding condition on single type algebras. The ϵ ∈ {∂, 1}
where ∨ϵ = ∨ and ⊔ϵ = ⊔ when ϵ = 1, and ∨ϵ = ∧ and ⊔ϵ = ⊓ when ϵ = ∂. Similarly, ∧ϵ = ∧ and
⊓ϵ = ⊓ when ϵ = 1, and ∧ϵ = ∨ and ⊓ϵ = ⊔ when ϵ = ∂.

algebras along with some side conditions on operator σ which imply the given property for the
kernel. We have a particular interest in algebras with (semi) lattice structure with monotone and
idempotent unary operator σ, as these algebras often provide algebraic semantics for commonly
studied logics. Under this assumption, we define an order ≤K on the kernel as follows: for any
α, β ∈ K, α ≤K β iff e(α) ≤ e(β) where ≤ is the standard order on A. Under the order
≤K, the algebra K forms a lattice with join and meet defined as α ⊔ β := h(e(α) ∨ e(β)) and
α ⊓ β := h(e(α) ∧ e(β)), respectively. The first three items in Table 1 relate order theoretic-
properties of single-type algebras with lattice structure to those of their kernels. The fourth item
relates properties of single-type and kernel homomorphisms. The remaining items pertain to
the case when the class of single-type algebras V and the class of their kernels V ′ form varieties.
For items 5 to 7 by Malcev Conditions [1], these properties are equivalent to the existence of
corresponding Malcev terms. These items are proven by showing that the existence of Malcev
terms on V implies the existence of those terms on V ′. For items 8 and 9, H(V) and H(V ′)
denote the sets of all homomorphisms on V and V ′, respectively, and the map Ker assigns
a V-homomorphism to the kernel component of its multi-type representation. Amalgamation
and superamalgamation properties are important because they dually correspond to certain
interpolation properties [4] of the logic of the given variety.

Moreover, any congruence relation θ on A defines a congruence relation θK on K, defined
by αθKβ iff e(α)θe(β). This defines a lattice homomorphism κ between Con(A) and Con(K)
given by κ : Con(A)→ Con(K) which assigns any θ ∈ Con(A) to κ(θ) = θK. This relationship
between congruence lattices is important in studying conditions under which the class of kernels
defined by a variety of single-type algebras, forms a variety of multi-type algebras.

For future direction, we would like to investigate whether the results mentioned above can
be derived from the properties of functor Ker(σ,O1,O2), which assigns a single-type algebra to
kernel of its multi-type representation and a single-type homomorphism to the kernel component
of its multi-type representation.
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Classical conditional logic strives to resolve issues that mathematicians and philosophers alike
have had with traditional implication. We often have an intuition that A → B should speak
to a connection between A and B — they should not be irrelevant or coincidentally connected.
Weiss developed ICK from Chellas classical conditional in [1] by adding conditional implication,
�, to basic intuitionistic logic. The conditional intuitively represents a stricter interpretation
of implication — φ� ψ is only the case if φ is relevant to ψ. This intuition is reflected in the
frame semantics of ICK.

Definition 1. An ICK-frame is a tuple (X,≤, f) where (X,≤) is a preorder and

f : X × Up(X,≤)→ Up(X,≤)

is a selection function such that x ≤ y implies f(y, a) ⊆ f(x, a) for all a ∈ Up(X,≤). Proposi-
tion letters are interpreted via a valuation which assigns an upset of (X,≤) to each proposition
letter, and ∧,∨,¬ and → are interpreted as usual. For x ∈ X we let

x ⊩ φ� ψ iff f(w, JφK) ⊆ JψK,

where JφK = {w ∈ X | w ⊩ φ}.
We can think of f as picking out the worlds relevant to φ at w. While a selection function

best approximates our conditional motivations, it is sometimes easier to view it as an upset-
indexed a family of relations {Rα}, where (≤ ◦Rα ◦ ≤) ⊆ Rα for each relation. This allows us
to view each relation as a modal relation in the sense of intuitionistic normal modal logic [4].

The new connective � can be axiomatised by adding to intuitionistic logic the axioms

(φ� (ψ ∧ θ))↔ ((φ� ψ) ∧ (φ� θ)) and (φ� ⊤)↔ ⊤

and congruence rules, resulting in the logic ICK. We find the following algebraic semantics:

Definition 2. A conditional Heyting algebra is a tuple (A,�) consisting of a Heyting algebra
A and a binary operator � satisfying a� (b ∧ c) = (a� b) ∧ (a� c) and a� 1 = 1.

Inspired by the duality for intuitionistic normal modal logic [4, 2] and Weiss’ work on
ICK [3], we define topologised frame semantics as follows.

Definition 3. A conditional Esakia space is an Esakia space X = (X,≤, τ) equipped with a
family of point-closed relations {RA | A ∈ ClpUp(X)} such that for each A,B ∈ ClpUp(X):

2RA
(B) := {x ∈ X | RA[x] ⊆ B} ∈ ClpUp(X) and (≤ ◦RA ◦ ≤) = RA.

It is well known that collection of clopen upsets of an Esakia space X forms a Heyting
algebra, denoted by X+. We can obtain a conditional Heyting algebra (X+,�) by defining

A� B = 2RA
(B).
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Conversely, every Heyting algebra A corresponds to an Esakia space A+ based on the prime
filters of A. In particular, we know that every clopen upset of A+ is of the form ã := {x ∈ A+ |
a ∈ x} for some a ∈ A. Ergo, the following definition

xRãy iff {b ∈ A | a� b ∈ x} ⊆ y,
results in a conditional Esakia space (A+, {Rã}). In fact, the assignments above give rise to a
dual equivalence between categories:

Theorem 4. The category of conditional Esakia spaces (with suitable morphisms) is dually
equivalent to the category of conditional Heyting algebras and homomorphisms.

This duality allows us to prove several frame completeness results. Beginning with ICK
we note that if ICK ̸⊢ φ then there exists a conditional Heyting algebra such that A ̸|= φ.
Hence there exists a conditional Esakia space X = (X,≤, τ, {Rα}) and a valuation V such that
(X, V ) ̸⊩ φ. Forgetting the topology almost gives an ICK-frame, except it lacks relations Rα
when α is a non-clopen upset. We can fill in these missing relations by setting:

Sα =

{
Rα if α is a clopen upset
∅ otherwise

Since the clopen-indexed relations are unchanged we find that ((X,≤, {Sα}), V ) ̸⊩ φ, so that:

Theorem 5. The logic ICK is sound and complete with respect to ICK-frames.

This example highlights the two prongs of a duality completeness proof. When we extend
ICK with a collection of axioms we induce both a frame correspondence condition and a counter-
example space. We then need to extend the space to a frame which satisfies this correspondence
condition for all upsets while also leaving the clopen relations (which guarantee the counter-
example) unchanged. We call these “nice extensions” fill-ins, since we are in a sense filling in
the missing upset relations on the underlying frame of a conditional Esakia space. Below we
list several extensions of ICK together with their frame correspondent and (one possible) fill-in
that can be used to prove completeness.

Axiom Frame Condition Fill-in

φ� φ RA[x] ⊆ A Rp[x] ⊆ p
p ∧ (p� q)→ q p ∩□Rp(q) ⊆ q Rp[x] ⊇ p

(p� q)→ (p ∧ r� q) □Rp(q) ⊆ □Rp∩q (q) Rp[x] :=
⋃
p⊇U RU [x]

(p� q) ∧ (q� r)→ p� r □Rp
(q) ∩□Rq

(r) ⊆ □Rp
(r) Rp[x] :=

⋃{RU [x] | RU [x] ⊆ p}
(p� q) ∨ (p� ¬q) □Rp

(q) ∪□Rp
(X\ ↓ q) = X The empty relation
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1 Introduction
Betweenness relations—well-known from geometry—are probably the most deeply studied ter-
nary relations in logic and mathematics. As the class of betweenness relations is not modally
definable, to investigate algebraic properties of betweenness, in (Düntsch et al., 2023) we worked
with the so-called PS-algebras, i.e., expansions of the standard (binary) modal possibility al-
gebras ⟨A,f⟩ with a binary sufficiency operator g∶A × A → A satisfying the following two
conditions:

(i) if x = 0 or y = 0, then g(x, y) = 1 (co-normality),

(ii) g(x, y) ⋅ g(x, z) = g(x, y + z) and g(y, x) ⋅ g(z, x) = g(y + z, x) (co-additivity).

From the outset, there is no connection between the operators f and g. Thus, any meaningful
interplay between them must be forced explicitly. One of the possible solutions is expanding
the axioms with the following first-order condition

a ≠ 0 and b ≠ 0→ g(a, b) ≤ f(a, b). (wMIA)

PS-algebras satisfying (wMIA) are called weak mixed algebras or just weak MIAs. In (Düntsch
et al., 2023), we showed that binary weak MIAs—counterparts of the unary wMIAs introduced
by Düntsch et al. (2017)—can algebraically express certain axioms of betweenness relations.

2 The binary logic K#

The algebras from (Düntsch et al., 2017) have the following interesting property: the elements
of the equational class generated by the weak MIAs are the algebraic models of the logic K ,̃
presented by Gargov et al. (1987). Our first objective is to develop the logicK# (the counterpart
of K )̃ for the binary case using the copying construction of Vakarelov (1989) adapted for our
needs. This is a Boolean logic with a set Var of propositional variables, a constant ⊺, and
two extra binary modalities ◻ and � with duals ◇ and y. A ternary frame is a structure
F ∶= ⟨W,R,S⟩ where W is a nonempty set, and R,S are ternary relations on W . F is called a
weak MIA frame, if S ⊆ R. In (Düntsch et al., 2023), it was proved that the complex algebra of
a weak MIA frame is a weak MIA and that the canonical frame of a weak MIA is a weak MIA
frame. The class of weak MIA frames is decisive in the determination of the relational models
of the logic K#. Indeed, we will prove the following theorems:

Theorem 2.1. K# is sound and complete with respect to wMIA frames.

∗This research is funded by the National Science Center (Poland), grant number 2020/39/B/HS1/00216.
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Models are structures M ∶= ⟨W,R,S, v⟩ where ⟨W,R,S⟩ is a weak MIA frame and v∶Var → 2W

is a valuation. A model M is called special, if R = S.

Theorem 2.2. If M ∶= ⟨W,R,S, v⟩ is a model of K#, then there is a special model M ∶=⟨W,R, v⟩ such that M and M are modally equivalent.

3 The class Eq(wMIA)
Let wMIA be the class of (binary) weak MIAs. Our second objective is to exhibit an axiom
system for the equational class V of algebraic models of K# and to prove that V = Eq(wMIA),
i.e., V is the variety generated by wMIA.

In the case of unary modalities investigated in (Düntsch et al., 2017) a unary PS-algebra⟨A,f, g⟩ is a weak MIA if and only if the mapping defined by u′(a) ∶= f∂(a) ⋅ g(−a) is the dual
of the unary discriminator. We have shown in (Düntsch et al., 2023) that for binary modalities
such equivalence does not hold any more, and the weaker condition (di)

(∀a, b ∈ A)[a ⋅ b ≠ 0→ g(a, b) ≤ f(a, b)]. (di)

is necessary and sufficient for the discriminator to exist. This observation leads us to a definition
of the class of dMIAs (denoted by dMIA) as composed of PS-algebras that satisfies (di). We
will exhibit an axiom system for the variety generated by dMIA and we will show that it is a
proper subvariety of Eq(wMIA).
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We recall that a logic L is said to be paraconsistent with respect to a negation connective ¬ when
it contains a ¬-contradictory but not trivial theory. Assuming that L is (at least) Tarskian,

this is equivalent to say that the ¬-explosion rule
φ ¬φ
ψ

is not valid in L.

The 3-valued logic J3 introduced by D’Ottaviano and da Costa in [2] is one of the well known
paraconsistent logics and it can be defined (up to language) as the logic given by the matrix
⟨MV3, { 12 , 1}⟩ where MV3 is the 3 element MV-chain. Notice that J3 is strongly related with
the 3-valued  Lukasiewicz logic  L3 as ⟨MV3, {1}⟩ is a matrix semantics for  L3. Moreover, these
two logics are equivalent deductive systems in the Blok-Pigozzy sense [1]. Notice that, while
 L3 is explosive and truth-preserving (1 being full truth), J3 is paraconsistent and non-falsity-
preserving, because it preserves every element different from 0 (0 being false). We call J3 the
non-falsity companion of  L3.
The nilpotent minimum logic, NML for short, was firstly introduced by Esteva and Godo in [3]
in order to formalize the logic of the nilpotent minimum t-norm, that was defined by Fodor in [4]
as an example of an involutive left continuous t-norm which is not continuous. NML is obtained
from the monoidal t-norm logic MTL defined in [3], by adding the involutive condition axiom
(INV) ¬¬φ → φ and the (weak) nilpotent minimum condition axiom (WNM) (ψ ∗ φ →
⊥) ∨ (ψ ∧ φ → ψ ∗ φ). It is well known that NML is algebraizable and the class NM of all
nilpotent minimum algebras is its equivalent algebraic quasivariety semantics [3]. Moreover,
NML is sound and strong complete with respect the standard NM-algebra [0,1]NM [7]. That
is, NML is the logic defined by the matrix ⟨[0,1]NM, {1}⟩. The aim of this talk is to axiomatize
and characterize the non-falsity companions of NML and its axiomatic extensions.
Let A be a subalgebra of [0,1]NM, then the finitary logic L defined by ⟨A, {1}⟩ is an axiomatic
extension (not necessarily proper) of NML. We call nf-L the non-falsity companion of L. That
is, nf-L is the finitary logic defined by the matrix ⟨A, (0, 1] ∩ A⟩. Consider now the following
restricted inference rule, which is intended for axiomatising nf-L::

• Restricted Square Modus Ponens for L (r-MP2 for L):

From φ and φ→ ¬(¬ψ)2 derive ψ, whenever ⊢L φ→ ¬(¬ψ)2.

It is not hard to see that from (r-MP2 for L) we can derive the following restricted version of
Modus Ponens:

• Restricted Modus Ponens for L (r-MP for L):

From φ and φ→ ψ derive ψ, whenever ⊢L φ→ ψ

Note that both inference rules involve conditions on the derivability of formulas in the logic L.
Since any axiomatic extension of NML is complete w.r.t at most two subalgebras of [0,1]NM

[5] we obtain the following result.
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Theorem 1. Let L be an axiomatic extension of NML. The following axiomatization

• Axioms: those of L

• Rules: Adjunction
φ ψ

φ ∧ ψ and (r-MP2) for L

is a sound and complete axiomatisation of nf-L.

For the case of finite-valued axiomatic extensions NMn, unlike the Lukasievicz case [1, Th.5.2],
we prove that nf-NMn is not equivalent to NMn. With an abuse of language, Nk denotes the
matrix ⟨NMk, {1}⟩ and Jk will denote the matrix ⟨NMk, { 1

k−1 ,
2

k−1 , . . . , 1}⟩ where NMk is
the k-element NM-chain. It is shown in [6] that any finitary extension of NMn is complete
w.r.t. following set of matrices {N2k,N2m+1,N2×N2r+1} for some 0 ⩽ m ⩽ r ⩽ k ⩽ n, For the
case of nf-NMn we cannot accomplish this reduction, but the following one that is restricted to
finitary extensions defined by finite products of Jk’s.

Theorem 2. Let L be a finitary extension of nf-NML defined by Jk1 × · · · × Jks . Then L is
complete w.r.t a finite set of the following matrices:

(i) Jn for some positive integer n > 1.

(ii) Jn × Jk for some positive integers n ̸= k.

(iii) J2n × J2k × J2l+1 for some positive integers l < n < k.

(iv) J2n × J2m+1 × J2l+1 for some positive integers m < n and m < l.

Moreover every different matrix of these four types defines a different logic

Finally, next result charcaterizes all finite maximal paraconsistent extensions nf-NML

Theorem 3. The only finite matrices defining maximal paraconsitent extesnions of nf-NML
are J3, J4 and J3 × J4.
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Monadic Boolean algebras were first systematically studied by Halmos [3] and generalized
to Polyadic Boolean algebra [2] which serves as a framework for algebrization of predicate logic.
One of the important theorems is that that every monadic Boolean algebra is a subdirect union
of functional monadic Boolean algebras. On the other hands, the structure of De Morgan
monoids (DMM) have been extensively studied in [4, 5] and its connection with relevance logic
[1]. In [6], Andrew Tedder proposed an algebraic framework for Mares-Goldblatt semantics for
quantified relevance logics by using as an example De Morgan monoid with a Mares-Goldblatt
style interpretation of the quantifiers to study quantified relevance logic. This sheds a light
on generalization of monadic De Morgan monoids and polyadic De Morgan monoids as an
algebraization of quantified relevance logic. In this talk, we will report our work in progress in
this direction of study.

We start with the definition of functional monadic DMM.

Definition 1 (Functional Monadic De Morgan Monoid). If B is a DMM, X is a non-empty set,
then the structure ⟨A;∧,∨,∼, ◦,→, 1⟩ is a B-valued functional monadic DMM, if the following
conditions hold :

1. A ⊆ BX ;

2. A is closed under the ‘lifted’ operations ∧,∨,∼, ◦,→, and contains 1, where

(a) 1(x) =B 1, for all x ∈ X;

(b) (∼ p)(x) =B∼ (p(x)), for p ∈ A;

(c) (p⊗ q)(x) =B p(x)⊗ q(x), for p, q ∈ A and ⊗ ∈ {∧,∨,∼, ◦,→}

3. The constant function ∀p exists in A, for each p ∈ A, and hence the appropriate generalized
meets and joins exists in B, where we define:

R(p) =df {p(x) : x ∈ X}

∀p(x) =df

B∧
R(p)

Then we demonstrate the following property of functional monadic DMM.

Lemma 1. A functional universal quantifier ∀ on a functional monadic DMM satisfies the
following:

(Q1) ∀1 = 1

(Q2) ∀p ≤ p
(Q3) ∀(p ∧ q) = ∀p ∧ ∀q
(Q4) ∀∀p = ∀p = ¬∀¬∀p

(Q5) ∀(p→ q) ≤ (∀p→ ∀q)

(Q6) ∀(∀p→ ∀q) = ∀p→ ∀q

(Q7) ∀(p ∨ q) ≤ ¬∀¬p ∨ ∀q
∗This work is supported by grant no—22-01137S (MetaSuMo) of the Czech Science Foundation.
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On the other hand, we can define a universal quantifier to be a mapping satisfying certain
conditions as follows :

Definition 2 (Universal Quantifier). A be an DMM. A (Universal) Quantifier is a map ∀ :
A→ A that satisfies (Q1)–(Q7) (defined in Lemma 1).

Some important facts about universal quantifiers can be derived :

Lemma 2. Let A be an DMM and ∀ is a quantifier on A. The following properties hold:

1. ∀0 = 0

2. p ∈ ∀(A) iff ∀p = p.

3. If ∀p ≤ q then ∀p ≤ ∀q.

4. If p ≤ q then ∀p ≤ ∀q.

5. ∀(p→ q) ≤ (¬∀¬p→ ¬∀¬q)

6. p ≤ ∀¬∀¬p

7. ∀(∀p→ q) ≤ (∀p→ ∀q)

Definition 3. A Monadic DMM is a tuple ⟨A,∀⟩ where A is an DMM, and ∀ is a quantifier
on A.

In the end of this talk, we will briefly address the problem of two Representation theorems
in monadic De Morgan monoid either in terms of functional monadic DMM or in terms of
subdirectly irreducible monadic DMM.
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The degree of incompleteness of a logic L is the cardinality of the set of logics with the
same Kripke frames as L [3]. Blok’s celebrated dichotomy theorem states that every normal
modal logic has degree of incompleteness either 1 or 2ℵ0 [1]. The aim of this talk is to prove a
trichotomy theorem for the degrees of incompleteness of the implicative logics, i.e., the axiomatic
extensions of the implicative fragment IPC→ of the intuitionistic logic IPC. In particular, we
will prove that the degree of incompleteness of any implicative logic is 1, ℵ0, or 2ℵ0 . Notably,
the degree of incompleteness of an implicative logic coincides with its degree of the finite model
property, as defined in [4].

In what follows, we make the above statement precise. A formula of the intuitionistic
propositional calculus IPC is said to be implicative when it contains no connective other than
→.

Definition 1. The implicative fragment of IPC is the set

IPC→ := {φ ∈ IPC : φ is an implicative formula}.

Notably, IPC→ coincides with the set of implicative formulas φ such that Hil ⊨ φ, where Hil
is the variety of Hilbert algebras, i.e., the class of subalgebras of the implicative reducts ⟨A;→⟩
of Heyting algebras [2]. Since x → x is a constant term in every Hilbert algebra, we will use
the shorthand 1 := x→ x.

Definition 2. An implicative logic is a set of implicative formulas containing IPC→ that,
moreover, is closed under modus ponens and uniform substitutions.

When ordered under the inclusion relation, the set of implicative logics forms a complete
lattice Ext(IPC→) which is dually isomorphic to the lattice Λ(Hil) of varieties of Hilbert algebras.
This dual isomorphism is witnessed by the maps Var(−) and Log(−) defined for every L ∈
Ext(IPC→) and V ∈ Λ(Hil) as

Var(L) := {A ∈ Hil : A ⊨ L};
Log(V) := {φ : φ is an implicative formula such that V ⊨ φ}.

Given a poset X and a set Γ of implicative formulas we write X ⊩ Γ when Γ is valid in X,
viewed as an intuitionistic Kripke frame.

Definition 3. The span of an implicative logic L is the set

span(L) := {L′ ∈ Ext(IPC→) : X ⊩ L iff X ⊩ L′, for every poset X}.

Furthermore, the degree of incompleteness of L is deg(L) := |span(L)|.
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Before stating our main result characterising the degree of incompleteness of the implicative
logics, we need to introduce two classes of varieties. To this end, recall that a subset F of a
Hilbert algebra A is an implicative filter if it contains 1 and for every {a, b} ⊆ A, if {a, a →
b} ⊆ F , then b ∈ F .

Definition 4. Given n ∈ N, we say that a Hilbert algebra A has depth ⩽ n when the poset
of its meet irreducible implicative filters does not contain (n + 1)-elements chains. Then, the
following is a variety:

Dn := {A ∈ Hil : A has depth ⩽ n}.
In order to define the second class of varieties, with every poset X = ⟨X;⩽⟩ with maximum

⊤ we associate a binary operation → on X defined by the rule

x→ y :=

{
⊤ if x ⩽ y;

y otherwise.

Then, H(X) := ⟨X;→⟩ is a Hilbert algebra with underlying partial order ⩽. Lastly, we denote
the smallest variety containing a class of algebras K by V(K).

Definition 5. For each n ∈ Z+ let Bn := H(Bn), where Bn is the poset depicted below:

x1 x2 xn
. . .

Furthermore, let
Bn := V(Bn) and Bω := V({Bn : n ∈ Z+}).

Our main result takes the following form:

Trichotomy Theorem. The following conditions hold for an implicative logic L:

(i) deg(L) = 1 if and only if L = IPC→ or L = Log(Dn) for some n ∈ N;

(ii) deg(L) = ℵ0 if and only if L = Log(Bω) or L = Log(Bn) for some n ∈ Z+;

(iii) deg(L) = 2ℵ0 otherwise.

We remark that the problem of determining which are the degrees of incompleteness of
intermediate logics is an outstanding open problem and hope that this talk will stimulate
research in this direction.
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BL-algebras are the equivalent algebraic semantics of Hájek’s basic fuzzy logic BL. The
latter was shown in [7] to be the logic of continuous t-norms, and BL and BL-algebras have
subsequently attracted a great deal of attention from both fuzzy and substructural logicians.
In the last twenty-five years, an extensive body of work on BL and BL-algebras has developed
and the literature now offers a rather mature theory (see, e.g., [1, 2, 5, 6, 9] for a sample).
One outstanding problem in this theory, however, is to completely classify the varieties of
BL-algebras that have the amalgamation property—or, in an equivalent logical formulation,
to completely classify the axiomatic extensions of BL that have the deductive interpolation
property.

This problem has proven quite challenging. In [12], Montagna showed that many of the most
natural varieties of BL-algebras (including the variety of all BL-algebras) have the amalgamation
property, but that there are uncountably many varieties of BL-algebras that do not. Later, by
working with some technical hypotheses on the form of generating algebras for the varieties in
question, Aguzzoli and Bianchi provided a partial classification of varieties of BL-algebras with
the amalgamation property [3]. They later sharpened this classification in [4], but their results
still stopped short of an exhaustive classification.

In this work, we provide just such an exhaustive classification of varieties of BL-algebras that
have the amalgamation property, consequently giving a complete classification of the axiomatic
extensions of Hájek’s basic logic that have the deductive interpolation property. In particular,
we show that there are just countably many of these, answering the question posed by Montagna
in [12, Section 7].

Our classification proceeds in three steps. First, we obtain a new equivalent formulation of
the amalgamation property that is better suited to studying amalgamation in many varieties
generated by linearly ordered algebras, including varieties of BL-algebras. We say that an
extension A ≤ B is essential provided that θ ̸= ∆B implies θ ∩ A2 ̸= ∆A, and we say that an
embedding ϕ : A → B is essential whenever ϕ[A] ≤ B is. A span ⟨i1 : A → B, i2 : A → C⟩ of
algebras is essential provided that i2 is an essential embedding, and a class of algebras K has
the essential amalgamation property if for any essential span ⟨i1 : A → B, i2 : A → C⟩ in K,
there exists D ∈ K and embeddings j1 : B→ D and j2 : C→ D such that j1 ◦ i1 = j2 ◦ i2.

Theorem 1. Let V be a variety and VFSI be the class of finitely subdirectly irreducible members
of V. Suppose that V has the congruence extension property and that VFSI is closed under
subalgebras and homomorphic images. Then V has the amalgamation property if and only if
VFSI has the essential amalgamation property.

In the second step toward our classification, we apply the previous theorem to study amal-
gamation for 0-free subreducts of BL-algebras, often called basic hoops. The finitely subdirectly
irreducible basic hoops are precisely the totally ordered ones, so Theorem 1 provides a pow-
erful criterion for the amalgamation property in this context. Together with the well-known
decomposition of totally ordered BL-algebras as ordinal sums of Wajsberg hoops and the clas-
sification of varieties of Wajsberg hoops with the amalgamation property [11, Theorem 63],
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we use Theorem 1 to give a tangible description of the poset of varieties of basic hoops with
the amalgamation property. In particular, we show that this poset can be partitioned into a
countably infinite family of finite intervals and give concrete descriptions of the latter. Thus:

Theorem 2. There are only countably many varieties of basic hoops that have the amalgamation
property.

In the third step toward our classification, we use Theorem 2 along with the well-known
classification of varieties of MV-algebras with the amalgamation property (see [8]) to describe
all varieties of BL-algebras with the amalgamation property. Like for basic hoops, these turn
out to all fall into one of countably infinitely many finite intervals, which we may concretely
describe. Thus:

Theorem 3. There are only countably many varieties of BL-algebras that have the amalgama-
tion property.

By applying the well-known connection between the amalgamation property and the deduc-
tive interpolation property for algebraizable logics, we may deduce the following result from
Theorems 2 and 3.

Theorem 4. There are only countably many axiomatic extensions of Hájek’s basic fuzzy logic
that have the deductive interpolation property. The same holds for axiomatic extensions of the
negation-free fragment of Hájek’s basic fuzzy logic.

More information can be found in our preprint [10].
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The deductive interpolation property stipulates that, for the consequence relation ⊢ of some
propositional logic and any set of formulas Γ ∪ {ϕ},

if Γ ⊢ ϕ, then there exists a set of formulas Γ′ whose variables are among those
contained in both Γ and ϕ such that Γ ⊢ Γ′ and Γ′ ⊢ ϕ.

Deductive interpolation has been studied in a range of different contexts. Famously, Maksimova
showed in [7] that, of the continuum-many consistent superintuitionistic logics, only 7 have
the deductive interpolation property (equivalent in that context to the better known Craig
interpolation property). Later, in [8], she showed that there are at most 49 consistent normal
extensions of the modal logic S4 with the deductive interpolation property.

In this work, we study deductive interpolation in a substructural environment that combines
these. In particular, we examine expansions of substructural logics with the exchange rule—
but possibly lacking the contraction or weakening rules—by S4-like modalities. Our work
proceeds by first exhibiting continuum-many axiomatic extensions of the full Lambek calculus
with exchange FLe that have the deductive interpolation property, and then showing that—
because of the special form of the extensions constructed—each of these may be expanded by
an S4-like modality. In this fashion, we also obtain continuum-many S4-like modal expansions
of FLe that have deductive interpolation. Previously, only countably many substructural logics
were known to have the deductive interpolation property, so our work contributes to the general
theory of interpolation in substructural logics as well as stands in contrast to Maksimova’s
results.

For suitable algebraizable logics, there is a well-known connection between the deductive
interpolation property for a logic and the amalgamation property for its associated class of
algebraic models (see, e.g., [2]). Consequently, much like Maksimova, our work focuses on the
study of amalgamation in appropriately chosen algebraic models. The fundamental algebraic
structures we consider are FLe-algebras, i.e., algebras of the form ⟨A,∧,∨, ·,→, 0, 1⟩ such that
⟨A,∧,∨⟩ is a lattice, ⟨A, ·, 1⟩ is a commutative monoid, and x · y ≤ z if and only if x ≤ y → z.
To treat modalities, we define an S4FLe-algebra to be an expansion of an FLe-algebra by an
additional unary operation 2 that satisfies the identities

1. 2(x ∧ y) = 2x ·2y.

2. 22x = 2x ≤ x.

3. 21 = 1.

To find continuum-many logics with deductive interpolation, we construct continuum-many va-
rieties of FLe-algebras with the amalgamation property (see [3] for relevant definitions). These
varieties are constructed by first considering suitably chosen quasivarieties of abelian groups,
each with the amalgamation property. The abelian groups contained in these quasivarieties
are then transformed into FLe-algebras using a construction that preserves the amalgamation
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property, and the latter are used as generating algebras for the varieties we are interested in.
The examples we construct are sufficiently transparent to lift the amalgamation property from
the generating algebras using existing tools (see, e.g., [3, 9]), but also sufficiently flexible that
they may be expanded into S4FLe-algebras so as to keep the amalgamation property. Thus:

Theorem 1.

1. There are continuum-many varieties of FLe-algebras that have the amalgamation property

2. There are continuum-many varieties of S4FLe-algebras that have the amalgamation prop-
erty.

FLe-algebras are well-known to algebraize the consequence relation of the full Lambek equipped
with the exchange rule [5]. Likewise, S4FLe-algebras algebraize an S4-like modal variant of
the full Lambek calculus with exchange, which we call S4FLe. The logics algebraized by the
varieties considered in Theorem 1 all enjoy local deduction theorems, so by well-known bridge
theorems linking amalgamation and deductive interpolation we obtain the following:

Theorem 2.

1. There are continuum-many axiomatic extensions of FLe that have the deductive interpo-
lation property.

2. There are continuum-many axiomatic extensions of S4FLe that have the deductive inter-
polation property.

The techniques we use to obtain Theorems 1 and 2 are extremely flexible, and also allow us to
obtain a host of similar results for related logics. Of these, we mention only Girard’s celebrated
linear logic [6], which is algebraized by certain expansions of S4FLe-algebras (see [1]):

Theorem 3. Classical linear logic has continuum-many axiomatic extensions with the deductive
interpolation property.

Further information on this work may be found in our preprint [4].
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We provide a sound and complete axiomatization of a temporal logic of a sequence of finitely
many finite linear structures linked by surjective bounded morphisms.

Finite linear structures, i.e., finite sets with a strict linear ordering, naturally arise as repre-
sentations of a discrete, bounded time flow. Many domains of our everyday practice including
time series [1], scene analysis [6], chain-of-responsibility design pattern in programming [3], [5],
etc. involve a finite linear structure to represent a sequence of consecutive steps. A familiar
example of such a structure is a movie represented as a sequence of individual frames.

In such scenarios, it is often natural to group consecutive elements into conceptually mean-
ingful units in such a way that these units inherit the temporal order of the original structure.
Moreover, this process can be repeated finitely many times. For a typical example of what is
meant here consider a set of movie frames, grouped into episodes, these further grouped into
scenes, which finally form acts. The structure of episodes inherits the temporal order from the
ordering of individual frames. The same is true for the structure of scenes, and that of acts.

Definition 1. A TES (Temporal Event Structure) is (F1, . . . , Fn, <1, . . . , <n, f1, . . . , fn−1)
where (Fi, <i) are finite strict linear orders, while fi : Fi ↠ Fi+1 are onto monotone maps,
where monotone means fi(a) ≤i+1 fi(b) for all a ≤i b. Let F :=

⋃n
i=1 Fi, <:=

⋃n
i=1 <i, f :=⋃n−1

i=1 fi.

The language L is given by: ϕ = p | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ | ϕ | ϕ, where p
ranges over proposition symbols. Other logical symbols are defined as usual.

Our intention is to interpret the language L over an arbitrary TES (F,<, f) in such a way
that and range over (F,<,>) while and range over (F, f, f−1). Denote the class of
all TES with n fixed by Tn. The logic Log(Tn) is the set of all formulas of L valid on all
structures in Tn. Log(T2) was investigated in a recent paper [2].

In this contribution we present an axiomatization of Log(Tn) for arbitrary fixed n > 1. Let
Ln be the least subset of L containing the following set of axioms and closed under the standard
rules of uniform substitution, modus ponens and necessitation.

• All classical tautologies, standard axioms of modal logic K for each modal operator;

Inv: GL: NoBranching:
p→ p ∧ p ( p→ p)→ p p→ p ∨ p ∨ p
p→ p ∧ p ( p→ p)→ p p→ p ∨ p ∨ p

Level: Length: Coherence:
n−1∧
k=1

( k ⊥ → n−k ⊤
) n⊥

n−1∧
k=1

( k ⊤ → k ⊤ ∧ k ⊤
)

Surj: Bounded: DomConn:
n−1∨
k=1

( k ⊤ → k ⊤ ∧ k ⊤
)

p→ p p→ p ∨ p ∨ p

Func: Monot:
p→ p p→ (p ∨ p)
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Abstract Kripke semantics for L is provided by Kripke frames F = (W,R,Rf , R
′, R′f ) where

W is a nonempty set and each of R,Rf , R′, R′f ⊆W ×W is a binary relation.

Definition 2. We will say that a frame F = (W,R,Rf , R
′, R′f ) is an Ln-frame if the following

conditions are satisfied: W =
⋃n
i=1Wi where for all distinct i, j ≤ n we have Wi ̸= ∅ and

Wi∩Wj = ∅; R′ = R−1; R,R′ are non-branching, transitive and well-founded and R =
⋃n
i=1Ri

where Ri = R ∩ (Wi ×Wi) for i ≤ n; Rf ∩ (Wi ×Wi+1) is a surjective bounded morphism with
respect to Ri and Ri+1; R′f = R−1f and Rf is domain connected [2, Def. 3.6].

Theorem 3. For an arbitrary frame F it holds that F |= Ln iff F is an Ln-frame.

Clearly a disjoint union of Ln-frames is again an Ln-frame. This implies that Ln-frames can
be infinite, and fail the trichotomy property for Ri, i ≤ n, while our intended models, TESs
are finite with <i trichotomous. To retain finiteness and trichotomy, we focus our attention on
connected Ln-frames, i.e. on Ln-frames which cannot be presented as a disjoint union of two
Ln-frames. It turns out that a connected Ln-frame is in a way isomorphic to a TES.

Theorem 4. In every connected Ln-frame F = (W,R,Rf , R
′, R′f ) the set W is finite and each

relation Ri is trichotomous.

The class of connected Ln-frames is modally undefinable since it is not closed under disjoint
unions. The next theorem links connected Ln-frames and TESs.

Theorem 5. There is a one-to-one correspondence between the class Tn and the class of all
connected Ln-frames.

The next theorem shows that each TES can be fully described by an L-formula.

Theorem 6. Given a TES F = (F,<, f) there is a formula ϕF ∈ L such that for an arbitrary
TES T we have: T |= ϕF iff T is isomorphic to F .

Finally, we establish our main finding:

Theorem 7. The logic Ln is sound and complete w.r.t. the class Tn.

It follows that the logic Ln has the finite model property and is decidable.

Acknowledgements: The work has been supported by Shota Rustaveli National Science
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Abstract

We show that the variety of distributive `-pregroups is generated by a single functional
algebra, F(Z), and that it has a decidable equational theory. We also prove generation and
decidability results for each of its n-periodic subvarieties.

1 Introduction

A lattice-ordered pregroup (`-pregroup) is an algebra (A,∧,∨, ·,` ,r , 1), where (A,∧,∨) is a lat-
tice, (A, ·, 1) is a monoid, multiplication preserves the lattice order ≤, and for all x,

x`x ≤ 1 ≤ xx` and xxr ≤ 1 ≤ xrx.

We often refer to x` and xr as the left and right inverse of x, respectively. The well-studied
lattice-ordered groups (`-groups) are exactly the `-pregroups where the two inverses coincide:
x` = xr. Also, `-pregroups constitute lattice-ordered versions of pregroups, which are ordered
structures introduced by Lambek [11] in the study of applied linguistics, where they are used to
describe sentence patterns in many natural languages; they have also been studied extensively
by Buzkowski [1] and others in the context of mathematical linguistics in connection to context-
free grammars. Pregroups where the order is discrete are exactly groups.

The main reason for our interest in `-pregroups is that they are precisely the involutive
residuated lattices that satisfy x + y = xy; in that respect their study is connected to the
algebraic semantics of substructural logics [6].

It is easy to show that the underlying lattices of `-groups are distributive. In [5] we show
that `-pregroups are semidistributive, but it remains an open problem whether every `-pregroup
is distributive. In this submission we focus on the variety DLP of distributive `-pregroups.

In analogy to Cayley’s theorem for groups, Holland’s embedding theorem [9] shows that every
`-group can be embedded into a symmetric `-group Aut(Ω)—the group of order-preserving
permutations on a totally ordered set Ω. Also, Holland’s generation theorem [10] states that
Aut(Q) generates the variety of `-groups and this is further used to show that the equational
theory of `-groups is decidable. In [2] we showed that every distributive `-pregroup embeds into
a functional `-pregroup F(Ω) (a generalization of a symmetric `-group), where Ω is a chain.

In this submission, which is based on [7], we improve this embedding theorem by showing
that every distributive `-pregroup embeds into F(Ω), where Ω is an ordinal sum of copies of
the integers (we call such chains integral). This allows us to obtain an analogue of Holland’s
generation theorem: the `-pregroup F(Z) generates the variety DLP. Furthermore, we use
this result to prove the decidability of the equational theory of distributive `-pregroups. The
methods we use are based on the notion of diagram, which is a finitistic object that captures
the failure of an equation. The diagrams situation in `-pregroups is much more complex than in
`-groups, as one-sided inverses can pile up and computating them in a diagram is quite involved.

Time permitting, we will also discuss our work included in [8]. For every positive integer
n, the functions f in F(Z) that are periodic and have period n end up being exactly the
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ones that satisfy f `
n

= fr
n

; in particular, the ones satifying f ` = fr are the order-preserving
permutations on Z. Taking this as inspiration, an element x in an `-pregroup is called n-periodic
if x`

n

= xr
n

; an `-pregroup is called n-periodic if all of its elements are, and the corresponding
variety is denoted by LPn. In [3] we showed that LPn ⊆ DLP, for all n. Using n-periodic
diagrams we prove that the join of all of the LPn’s is exactly DLP; this is the analogue of the
corresponding theorem for the variety of involutive residuated lattices that we proved in [4]
using proof-theoretic methods.

Moreover, we get a representation theorem: every algebra in LPn can be embedded in
the subalgebra Fn(Ω) of n-periodic elements of F(Ω), for an integral chain Ω. We prove
that DLP is also equal to the join of the varieties V(Fn(Z)), thus

∨
LPn =

∨
V(Fn(Z)), but

unfortunately LPn 6= V(Fn(Z)) for every single n. By [10], LP1 = V(F1(Q)), but we show
that LPn 6= V(Fn(Q)), for all n > 1. In the end we find suitable chains Ωn, such that LPn =
V(Fn(Ωn)), for every n; actually, we do better than that by identifying a single uniform chain:

LPn = V(Fn(Q−→×Z)), for all n. This result is obtained by a deep analysis of the structure of
n-periodic `-pregroups. We prove that every such algebra can be embedded in a wreath product
of an `-group and Fn(Z), we analyze the global and local components and see how this is
reflected on n-periodic partition diagrams.

We also prove that for every n, the equational theories of LPn and of Fn(Z) are decidable,
where the latter plays a crucial role for the former. The height (difference between input and
output values) of a function in Fn(Z) involved in a failure of an equation needs to be controlled
in order to obtain decidability. We show that functions in Fn(Z) decompose into translations
and functions of short height. We use results from linear algebra to control the height of the
automorphism part and compose this short piece back to obtain a new short function of Fn(Z).
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A residuated lattice A = ⟨A,∧,∨, ·, \, /, e⟩ is commutative and idempotent if its monoidal
part ⟨A, ·, e⟩ is commutative and idempotent, that is, if it satisfies the equations x ·y = y ·x and
x · x ≈ x, respectively. And we call A a residuated chain if the order ⩽ associated to its lattice
part ⟨A,∧,∨⟩ is total. In [1] we studied several classes of idempotent residuated chains and
their generated varieties. In particular, we established a more symmetric version of Raftery’s
characterization theorem [2] for commutative idempotent residuated chains, obtaining also as
a corollary (as in [2]) that they generate a locally finite variety.

In that work, it was instrumental the fact that the monoidal structure of any idempotent
residuated lattice A is a unital band and the relation on A defined by a ⊑ b ⇐⇒ a · b = a is
a preorder that we call the monoidal preorder of A; if the product of A is also commutative,
then ⟨A,⊑, e⟩ is a unital meet-semilattice with order ⊑ and greatest element e. An idempotent
residuated lattice is conservative if its monoidal preorder is total, that is, for all a, b in A,
a · b ∈ {a, b}. For instance, every idempotent residuated chain is conservative.

In the present work, we complete the study of the class of conservative commutative resid-
uated lattices initiated in [1] — in which we gave an account of its finite members only —, and
present a general structure theory for all the members of this class. We show that the lat-
tice of every conservative commutative residuated lattice can be described as a tree in which,
moreover, all its leaves are also linearly ordered.

More in detail, a conservative tree is a first-order structure M = (M,⊓,P, e), where
(1) (M,⊓) is a meet-semilattice that is also a tree (we will denote its order by ⊑ and the set

of its maximal elements by M+);
(2) every element of M is below a ⊑-maximal element;
(3) (M+,P) is a chain with bottom element e;
(4) for every m ∈M , the set ∇m := {p ∈M+ : m ⊑ p} is a closed interval of (M+,P).

We prove that every conservative commutative residuated lattice A gives rise to a conservative
tree MA; and that from every conservative tree M we can construct a conservative commutative
residuated lattice AM. Moreover, these correspondences are inverse to each other.

We use this representation to settle various open problems. In particular, we show that
local finiteness fails for the class of conservative commutative residuated lattices, as it contains
a 1-generated infinite member. We prove also that the class of conservative commutative
residuated lattices has the strong amalgamation property constructing a strong amalgam for
every V -formation.

References
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Residuated structures play an important role in the field of algebraic logic since they consti-
tute the equivalent algebraic semantics, in the sense of Blok and Pigozzi, of substructural logics
(see [2, 3]). These encompass many of the interesting nonclassical logics: intuitionistic logic,
fuzzy logics, relevance logics, linear logics and also classical logic as a limit case. Thus, the
algebraic investigation of residuated lattices is a powerful tool in the systematic and compara-
tive study of such logics. While many deep results have been obtained in the last decades, the
multitude of different kinds of residuated lattices and their rich theory makes their study fairly
complicated, and at the present moment large classes of residuated lattices lack a structural
description. Because of this, the development of constructions that allow one to obtain new
structures from known ones is of utter importance for the understanding of both residuated
lattices and substructural logics as a whole.

In this contribution we introduce two constructions that, starting from two algebras, obtain
respectively a conical commutative residuated lattice and a perfect (bounded) commutative
residuated lattice; the underlying idea is on one side to generalize the constructions in [4] (used
by the authors to provide a description of conical idempotent residuated lattices), and on the
other side to generalize the generalized disconnected rotation construction (see e.g. [1]).

To be more clear let us first recall some important definitions. A commutative residuated
lattice is an algebra A = (A, ·,→,∧,∨, 1) of type (2, 2, 2, 2, 0) where: (A,∧,∨) is a lattice,
(A, ·, 1) is a commutative monoid, and the residuation law holds, i.e. x · y ≤ z if and only if
y ≤ x → z for any x, y, z ∈ A. A residuated lattice A is: integral if it has a maximum element
which coincides with the monoidal unit 1; conical if the unit 1 is a conical element, i.e. for each
a ∈ A, either a ≤ 1 or 1 ≤ a. Moreover, we call bounded an integral commutative residuated
lattice with an extra constant 0 that is the smallest element; we call a bounded commutative
residuated lattice perfect if it can be seen as the disjoint union of a congruence filter F and the
set {a ∈ F : x → 0 ∈ F}.

Let us now discuss the wanted constructions. We start from a commutative integral residu-
ated lattice A and an algebra B with some properties. To be more precise, let us endow both
A and B with a closure operator γ such that γ(x) is a conical and idempotent element for any
x. Let then γ[A] and γ[B] be the set of its fix points; one can observe that the set of elements
having the same γ-image can be seen as a bubble with the γ-fixed point as top (see the image
below for a pictorial intuition). Hence let one start form a commutative integral residuated
lattice A which is the ordinal sum of its bubbles and from an algebra B such that any x ∈ B is
above 1 and B∪ {⊥,⊤} is a residuated lattice where the product between elements of different
bubbles is the join. Let then γA : A → A and γB : B → B be such maps.

Observe that γA[A] and γB[B] are isomorphic; let us denote with ′ such isomorphism and
its inverse.

We will now define new operations on the domain A ∪ B; in order to do so, we extend the
map ′ to be a map from A ∪B to A ∪B is a way such that: for any x ∈ A, x′ = (γA(x))′ and
for any x ∈ B, x′ = (γB(x))

′. We call such a map ′ a complementation of A and B.
Now, for the first construction the idea is to copy B above A, and consider a new product

that extends the one of A and B in the following way: if x ∈ A and y ∈ B x · y = x if x ≤ y′,
and x ·y = y otherwise. We show that such product is residuated and yields a conical residuated
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lattice, CA,B. For the second construction, we instead copy B below A; the product remains
the old one on A, x · y = x if x ∈ B, y ∈ A and x′ > y, and it is 0 in all other cases. We
demonstrate that such product is residuated, and obtain the corresponding perfect residuated
lattice, PA,B. The following figure sketches the two constructions.

x
γB(x)

1δ

x
γA(x)

1

x
γA(x)

x′

1

x
γB(x)

x′

1δ = 0

1

Figure 1: From the left: A, B, CA,B, PA,B.

Starting from these constructions, we develop and study a connection between subclasses of
conical and perfect commutative residuated lattices.
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This is a talk about the book [1] on topological duality theory for bounded distributive
lattices recently published by Cambridge University Press, and it will be presented jointly by
the authors. The purpose of the talk will be to give an overview of the content and potential
uses of the book in teaching and research, and to sound out the audience on potentially useful
additional resources we could put on the web. In the rest of this abstract, we draw from
the book’s preface to give a quick overview of its contents as we plan to present them in the
conference presentation.

The book is a course on Stone-Priestley duality theory, with applications to logic and the
foundations of computer science. Our target audience includes both graduate students and
researchers in mathematics and computer science. The main aim of the book is to equip
the reader with the theoretical background necessary for reading and understanding current
research in duality and its applications. We have aimed to be didactic rather than exhaustive,
while we did give technical details whenever they are necessary for understanding what the field
is about.

A unique feature of the book is that, in addition to developing general duality theory for
distributive lattices, we also show how it applies in a number of areas within the foundations of
computer science, namely, modal and intuitionistic logics, domain theory and automata theory.
The use of duality theory in these areas brings to the forefront how much their underlying
mathematical theories have in common. It also prompts us to upgrade our treatment of duality
theory with various enhancements that are now commonly used in state-of-the-art research in
the field. Most of these enhancements make use of operators on a distributive lattice: maps
between lattices that only preserve part of the lattice structure. We give a textbook exposition
of the theory of lattices with operators, and dualities for them, as it was developed in the
second half of the 20th century. Our exposition of the theory also treats several of its by
now classical applications, such as those to free distributive lattices, quotients and subspaces,
implication-type operators, Heyting algebras and Boolean envelopes.

In the first chapters of the book, we keep the use of category theory to a minimum. We
then set the results in the more abstract and general framework of category theory. This
development also allows us to show how Priestley’s duality fits well in a more general framework
for the interaction of topology and order, which had been developed by Nachbin shortly before.
We show how the various classes of topological spaces with and without order, introduced by
Stone, Priestley and others, all relate to each other, and how they are in duality with distributive
lattices and their infinitary variant, frames.

The book ends with an extended exposition of two more modern applications of duality
theory to theoretical computer science, namely to domain theory and to automata theory. The
domain theory that we develop is organized around three separate results: Hoffmann-Lawson
duality; the characterization of those dcpos and domains, respectively, that fall under Stone
duality; and Abramsky’s celebrated 1991 Domain Theory in Logical Form paper. The duality-
theoretic approach to automata theory that we develop in the book originates in work due to the
first author with Grigorieff and Pin. It is organized around a number of related results, namely:
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finite syntactic monoids can be seen as dual spaces, and the ensuing effectivity of this powerful
invariant for regular languages; the free profinite monoid is the dual of the Boolean algebra of
regular languages expanded with residuation operations and, more generally, topological alge-
bras on Boolean spaces are duals of certain Boolean algebras extended by residual operations.
As an extended application example, we use duality to give a profinite equational characteriza-
tion for the class of piecewise testable languages; and we end by discussing a characterization
of those profinite monoids for which the multiplication is open.

These two applications, and in particular the fact that we treat them in one place, as appli-
cations of a common theory, are perhaps the most innovative and special aspects of this book.
Domain theory is the most celebrated application of duality in theoretical computer science and
our treatment is entirely new. Automata theory is a relatively new application area for duality
theory and has never been presented in textbook format before. More importantly, both topics
are currently at the forefront of active research seeking to unify semantic methods with more
algorithmic topics in finite model theory. While previous treatments remained focused on the
point of view of domains/profinite algebra, with duality theory staying peripheral, a shared
innovative aspect of the presentations of these topics in this book is that both are presented
squarely as applications of duality.

Finally, a completely original contribution of this book, which emerged during its writing,
precisely thanks to our treatment of the two topics as an application of a common theory, is
the fact that a notion we call “preserving joins at primes” turns out to be central in both the
chapter on domain theory and in that on automata theory. This notion was introduced in the
context of automata theory and topological algebra by the first author in 2016; its application
to domain theory is new to this book and reflects a key insight of Abramsky’s Domain Theory
in Logical Form. We believe this point to be an exciting new direction for future research in
the field that we hope some readers of the book will be inspired to take up.
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1 Introduction

The system MUltlog was developed and implemented in Prolog in Vienna and its theoretical
foundations can be found in the thesis dissertation of R. Zach ([10] and also [3, 2]). The main
motivation behind MUltlog is that from any finite-valued logic first order logic it is always
possible to generate a set of rules for m-sequents (similar to Rousseau’s approach, [9]) that is
sound and complete for this logic and enjoys the cut elimination property.

These systems, restricted to the propositional case, were studied from the algebraic logic
point of view in Barcelona (see [6, 8]) and a new set of algorithms called MUltseq was produced
and implemented, in such a way that the rules produced by MUltlog were used to generate
proofs in the different logical or algebraic systems naturally associated with the original finite-
valued logic (see [5, 7]). Later on, due to the high compatibility of the systems, MUltlog and
MUltseq were officially “married” ([1]).

In its current state MUltseq is able to produce proofs of formulas (or give counterexamples)
and to determine if a consequence relation is valid in an arbitrary finite-valued logic, and also to
check if an equation or quasi-equation is valid in an arbitrary finite algebra, but these formulas
or equations must be previously introduced to the system by the user.

2 MUltseq 2.0

Recent changes made to MUltlog, now available on GitHub [11], suggested some new and
major improvements to MUltseq. We are happy to announce MUltseq 2.0, a new Prolog system
that expands the capability of the previous one. We will show how to automatically produce
a scientific paper with a comprehensive study of the properties of a given finite-valued logic.
The logic is understood as a finite algebra with a set of propositional connectives and a set of
designated truth values (and a set of anti-designated values), plus the rules obtained by MUltlog.
More precisely, the “paper” will contain:

1. the description of the logic and its connectives, as well as the rules produced by MUltlog;

2. for each connective or subset of connectives, a checklist of the usual properties they may
have (commutativity, associativity, idempotency, . . . );

3. a list of valid formulas (tautologies) in the logic;

4. a list of equations (quasi-equations) valid in the algebra and in the variety (quasi-variety)
it generates;
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5. a checklist of valid entailments in various consequence relations.

The consequence relations that can be considered are preservation of designated truth values
and, if the set of truth values is ordered, preservation of degrees of truth. If anti-designated truth
values are provided, it can also analyse the corresponding strict/tolerant and tolerant/strict
relations [4]. Examples of entailments to check are Modus Ponens and De Morgan laws, and
other properties relevant for the algebraic study of the logic.

In the conference we will present the main results that make MUltseq work and a live tool
demo will be organised to generate papers for different logics.

It goes without saying that in every case there is a limitation on the length/depth of the
formulas and on the number of premises that can be easily adapted. Users will still be able
to choose special objects (formulas, inferences, equations . . . ) that will appear as designated
in the paper, possibly with the corresponding proofs or counterexamples like in the previous
version of MUltseq. Finally, the results obtained may be stored in a Prolog database for further
investigations and comparison of different logics.

We hope this system will help to simplify calculations and serve as a kind of useful general
purpose calculator for finite-valued logics in the propositional case. (See [12] for a recent
example of such an application.)
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The intersection of mathematical logic and topology has been a vibrant area of research
for several decades. McKinsey and Tarski’s seminal work on the topological interpretation
of modal logic [11, 12], played a crucial role in establishing the relationship between logic and
topology. Additionally, McKinsey and Tarski developed an algebraic and topological framework
for Intuitionistic Logic (IL) and Modal Logics (ML) [12, 13], demonstrating that topological
spaces can serve as interpretation models for IL and ML. Tarski further proved that S4 is
complete with respect to topological spaces [16], while McKinsey and Tarski showed that S4
is the modal logic of real numbers in 1944 [12]. Various articles offer additional insights into
these topics [3, 2, 14], and alternative approaches can be found in the works of Lawvere [8]
and Goldblatt [5]. In Universal Logic, Lewitzka presents a different approach to logical systems
[9, 10], constructing a theory of logical representations (a logic map) to leverage the fact that
every logical system can define a topology within its theory set. In this abstract we propose
the study of logic and topology independently from the underlying logic.

Our approach is based on the theory of institutions. Institutions constitute the main branch
of the categorical abstract model theory, which formalizes the notion of a logical system,
including syntax, semantics and the satisfaction relation between them [1]. An institution
I =


SigI ,SenI ,ModI , |=I consists of (a) a category SigI , the objects of which are called

signatures; (b) a functor SenI : SigI → Set such that it assigns a set the elements of which are
called sentences over each signature; (c) a functor ModI :


SigI

op → CAT giving a category
the objects of which are called Σ-models and the arrows of which are called Σ-morphisms for
each signature Σ, and (d) a relation |=I

Σ⊆
ModI (Σ)

 × SenI (Σ) for each Σ ∈
SigI

, called
Σ-satisfaction such that for each morphism φ : Σ → Σ′ in SigI , the satisfaction condition.

For every signature Σ we define a class of topologies over the category of models Mod(Σ)
based on the class of subsets of Sen(Σ), this class being closed under union. We consider
the morphisms of model categories Mod(φ) : Mod(Σ′) → Mod(Σ) induced by signature
morphisms φ : Σ′ → Σ standing for change of notation. We investigate the broader possible
class of topologies in Mod(Σ) whose members are mapped to topologies in Mod(Σ′) via the
arrowMod−1(φ), as well as the broader possible class of topologies inMod(Σ′) whose members
are mapped to topologies in Mod(Σ) via Mod(φ) [7]. Furthermore, we investigate under
which circumstances (ie additional properties of such morphisms) an additional structure of
topologies is preserved. The questions that arise from this inquiry are on the model theoretic
properties of these topologies. We prove several theorems in this direction, such as that the class
of topologies includes topologies defined over categories of elementary equivalent models (ie.
models that satisfy the same sentences), and the essential link between elementary equivalent
models and the intersection preserving properties. Finally, we attempt to generalize our inquiry
to Grothendieck topologies, given institutions with the appropriate categorical properties.

∗Supported by PEVE Universal Logic
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These findings contribute and generalize the results from [6, 15] and new results from [4].
In [6], the author has introduced the notion of topological semantics in the framework of ab-
stract model theory through institution-independent theory. Within this framework, semantic
completeness can be explored through topological concepts.
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The unifiability problem for an equational theory E is the decision problem that asks, given
as input two E-terms

A(x1, . . . , xn) and B(x1, . . . , xn) , (1)

to decide whether or not there exists a syntactic substitution of the variables by terms, xi 7→ Ci,
such that the resulting terms A(C1, . . . , Cn) and B(C1, . . . , Cn) are equal modulo the theory E .

We establish decidability of the unifiability problem for a logic we call X, the next-fragment
of linear temporal logic, enriched with an arbitrary fixed number of propositional constants
c1, . . . , cn. In algebraic terms, the equational theory EX associated with the logic X is the theory
of Boolean algebras with an arbitrary fixed number of nullary function symbols, c1, . . . , cn, and
a unary function symbol, X, which denotes a Boolean endomorphism. Our main result is that
the equational theory of the free algebras of this variety is decidable. In the remainder of this
abstract, we will give an overview of our approach for proving this result.

Let Σ be a finite alphabet. The de Bruijn graph Bd = (Σd, Sd) of dimension d ≥ 1 is the
graph with set of vertices Σd and Σ-colored edge relation defined as

Sd := {(bv, a, va) : a, b ∈ Σ, v ∈ Σd−1} ⊆ Σd × Σ× Σd .

One may think of the de Bruijn graph as a deterministic automaton that ‘remembers’ the d
letters that were most recently read. We define the de Bruijn graph mapping problem to be the
decision problem that asks, for an input graph with Σ-coloring on the edges, G = (VG, EG),
whether or not there exist d ≥ 1 and a homomorphism (i.e., colored-edge-preserving function)
from Bd to G.

Theorem 1. The unifiability problem for EX is computationally equivalent to the de Bruijn
graph mapping problem.

The proof of Theorem 1 uses Stone duality and a step-wise construction for the free EX-
algebra, as we will explain further below. Given this result, our new goal is to show that the
de Bruijn graph mapping problem is decidable. For this, we introduce two notions on graphs,
that we call cycle-connected and power-connected, and we prove:

Theorem 2. A graph G has a cycle- and power-connected subgraph if, and only if, there exist
d ≥ 1 and a homomorphism Bd → G.

Since we also show that it can be checked (in exponential time) whether or not a graph has a
cycle- and power-connected subgraph, Theorem 2 in particular implies that the de Bruijn graph
mapping problem is decidable, from which the decidability of unifiability in EX then follows.
Since the reduction from an instance of unifiability to an instance of de Bruijn graph mapping
in Theorem 1 takes at most exponential time, our algorithm as a whole gives a 2-EXPTIME
upper bound.

∗This abstract draws from recently submitted and ongoing joint work with Johannes Marti (University
of Zürich) and Michelle Sweering (CWI, University of Amsterdam). We thank Stéphane Desarzens, George
Metcalfe, Antoine Mottet, and Leif Sabellek for many inspiring discussions.
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To explain a bit more about the proof of Theorem 1, let us first stratify the set of EX-terms
by depth, i.e., the maximum nesting of function symbols occurring in a term. For any d ≥ 0,
there are, up to equivalence, only finitely many candidate unifiers of depth ≤ d. Writing Ad
for the set of equivalence classes of ground X-formulas of depth ≤ d, we thus obtain a chain of
inclusions of finite sets

A0 ↪→ A1 ↪→ A2 ↪→ · · · . (2)

Each of the finite sets Ad carries the syntactic structure of a Boolean algebra, and, for each
d ≥ 0, a Boolean algebra homomorphism,

XA
d : Ad → Ad+1 ,

which sends the equivalence class of a formula ϕ of depth ≤ d to the equivalence class of Xϕ.
The chain (2) decomposes the initial algebra for EX as a colimit of a chain of finite algebras.
Now, following a methodology pioneered in [3], we apply finite Stone duality to the diagram
(2), in order to obtain a dual diagram in the category of finite sets, namely, an inverse chain

V0 ↞ V1 ↞ V2 ↞ V3 ↞ · · · (3)

where Vd := AtAd, the set of atoms of the Boolean algebra Ad. Using duality, we show that
the operation X also gives rise to a graph structure on the set Vd, which makes it isomorphic
to Bd, the de Bruijn graph of dimension d. A further application of Stone duality to the
possible solutions of a unification problem then shows that a unifying substitution one-to-one
corresponds to a graph homomorphism from one of the graphs Vd to a graph G, which can be
computed within exponential time from the formulas to be unified.

In order to prove Theorem 2, we significantly extend a number of existing results from the
literature [2, 1]. There, the restriction of the de Bruijn graph mapping problem to deterministic
target graphs was shown decidable, by characterizing the deterministic homomorphic images of
de Bruijn graphs as precisely those graphs which are strongly connected and d-synchronizing.
The latter condition says that, for every w ∈ Σd, there is a node yw such that for every x ∈ VG,
there exists a path x

w→ yw in G.
However, the homomorphic image of a deterministic graph, such as Bd, may fail to be

deterministic, and Theorem 1 implies that essentially any graph, not necessarily deterministic,
can occur as the graph associated with a unification problem for the logic X. Our definitions of
‘power-connected’ and ‘cycle-connected’ capture properties that generalize the d-synchronizing
condition to the non-deterministic setting, in two distinct directions. We designed the conditions
in such a way that any graph admitting a homomorphism from a de Bruijn graph must satisfy
both conditions. The most difficult combinatorial part of our work lies in the converse direction
of Theorem 2. A crucial idea there is that of minimizers, which originates in the literature on
string compression algorithms [6, 5]. This notion allows one, in any non-highly-periodic word
w ∈ Σd for large d, to single out a particular position in the word w which remains stable when
walking from w in any direction in the de Bruijn graph Bd during at most r steps.

The work we describe here instantiates a general (co-)algebraic approach towards unification,
which we plan to develop in further work. We hope that this will allow us to delineate the precise
scope of the method that we followed here, addressing in particular the question of whether or
not it can be helpful for the open problem of decidability of unifiability in basic modal logic K.
The analogous result to Theorem 1 for K was stated in [4], but the corresponding combinatorial
problem on hypergraphs is currently out of our reach. Further questions for future work include
whether the 2-EXPTIME upper bound on unifiability in X is tight, and how difficult it is to
actually compute unifiers, if they exist: Our current method only gives a quadruple-exponential
bound, but we expect that a more syntactic analysis of the problem could improve on this.
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Recent work in categorical database theory [Spi12, SW15, SSVW17, SW17] develops a new
data model which we refer to as the algebraic data model because it is based on algebraic (i.e.
Lawvere) theories, in contrast to both the traditional relational data model [AHV95] and to
other approaches to categorical database theory, such as finite limit sketches [RW91] [JR02] or
attributed C-sets [PLF22]. The algebraic data model builds on the insight that categories can
be interpreted as database schemas, by using objects to represent tables and outgoing arrows to
represent columns which refer to other tables (i.e. foreign keys). That is, a database instance on
a schema C is defined as a copresheaf C → Set, which populates each table with a set of rows,
and given any other schema D, functors C → D serve as the basis for defining data migration
operations.

The approach just sketched is enticing, because “every theorem about small categories
becomes a theorem about databases” [Spi12]. However it turns out to be too naive to formalize
uses of databases beyond simplistic querying. In particular, in the context of data integration
some values may be treated up to isomorphism, such as the labelled nulls generated during
integration to fill in missing values, while values that appear in the input data, such as the
names of people and their salaries, must be treated up to equality. In this sense, categories
and copresheaves have too many automorphisms to be used in data integration. This attribute
problem is solved by defining values to be expressions in an algebraic theory [SSVW17, SW17].
To this end, schemas are defined by equipping categories with an algebraic profunctor into
a fixed algebraic theory, called the typeside, whose objects represent data types (e.g. Nat,
String) and whose morphisms represent data operations (e.g. addition, append). The typeside
adds the necessary rigidity for data integration by requiring that constants (such as “Alice”)
but not variables (such as Alice’s unknown salary n) be preserved by morphisms of instances.
Algorithms follow by specialising definitions to finite presentations of schemas, instances, etc.
and are implemented in the open-source CQL tool available at categoricaldata.net.

Current research about the algebraic data model has progressed from studying the data
transformations associated with functors to studying the more structured data transformations
associated with profunctors, which we call proqueries. Proqueries, which subsume traditional
conjunctive queries, have been referred to as bimodules in [SSVW17], where the theory is devel-
oped in the form of a proarrow equipment. Proquery presentations, in turn, were developed in
[SW17] under the name of uberflowers. Evaluating a proquery on a database instance accord-
ing to its conjunctive query semantics produces another instance on a different schema, and
this process is sufficient for querying. However, it is also possible to coevaluate a query, which
constitutes the left adjoint to the evaluation functor just described. In fact, the evaluation-
coevaluation adjunction is a particular case of the general geometric realisation/nerve adjunc-
tion, see [SSVW17, Remark 8.8]. Unlike evaluation, which cannot create labelled nulls in its

∗Speaker.
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output, coevaluation can, and thus allows us to perform data integration. We are currently
studying the exact expressive power of query coevaluation compared to existing data integra-
tion techniques. Finally, the connection between proqueries and relational queries gives us a
way to implement query migration: given an A-shaped proquery Q : A −7−→ B on schema B, we
can migrate Q along a proquery F : B −7−→ C by composition, i.e. F ◦Q is the desired migrated
query. At the level of proquery presentations, composition is implemented by an operation
which is called view unfolding in the relational literature [KP18]. Kan lifts and extensions of
proqueries also have uses in data exchange operations and are under current research.

In this talk we will explain the algebraic data model and present our work on a new gen-
eralisation of proqueries which is analogous to unions of conjunctive queries. We call this
generalisation praqueries since it is known that, when the typeside is trivial, they are equiv-
alent to parametric right adjoint functors, also known as prafunctors. We give a composition
law for praqueries, hence generalising the proarrow equipment structure in [SSVW17]. Impor-
tantly, we also develop the theory of praquery presentations, including an effective algorithm
for composition of finite praquery presentations which generalises the view unfolding algorithm.
We are able to obtain a correctness proof for this algorithm, which constitutes our main result
and the capstone of our talk.

Along the way, we correct some technical errors in the literature, and we provide a proof
of correctness for composition of proquery presentations, which to the best of our knowledge
was not present in the literature. We expect to settle some further conjectures about pra-
queries, namely that praqueries are equivalently prafunctors between categories of instances
which preserve type-algebras, and the issue of existence of right Kan lifts in the bicategory of
praqueries.
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Abstract

We develop the theory of generalized 3-valued Post algebras (Pω
3 -algebras), which are

obtained from Komori type Sω
2 -algebras by enriching its signature with the constant 1

2
.

Finitely generated free and projective algebras are described in the variety Pω
3 generated

by Pω
3 -algebras. The variety Pω

3 contains only one proper subvariety – the subvariety of
3-valued Post algebras [5].

1 P ω
3 -algebras

We introduce new class Pω
3 of generalized 3-valued Post algebras that form a variety. Pω3 -

algebra is a system (A,∨,∧,⊕,⊗,¬, 0, 12 , 1), where A is a nonempty set of elements, 0, 1
2 , and

1 are distinct constant elements of A, and ∨,∧,⊕,⊗ are binary operations on elements of A,
and ¬ is a unary operation on elements of A, obeying a finite set of axioms (identities).

The algebra (A,∨,∧,⊕,⊗,¬, 0, 12 , 1) is Pω3 -algebra if (A,⊕,⊗,¬, 0, 1) is an Sω2 -algebra (de-
fined by Komori in [3]), i. e. MV -algebra satisfying the identity (3(x2))2 = 2(x3), and
(A,∨,∧, 0, 1) is a distributive bounded lattice satisfying the following identities: 1

2 ⊕ 1
2 = 1,

1
2⊗ 1

2 = 0, 1
2⊗(x∧¬x) = 0, 1

2⊕(x∨¬x) = 1, ¬ 1
2 = 1

2 . The algebra ({0, 12 , 1},∨,∧,⊕,⊗,¬, 0, 12 , 1)
with the following operations: x ∨ y = max(x, y), x ∧ y = min(x, y), x ⊕ y = min(1, x + y),
x⊗ y = max(0, x+ y− 1), ¬x = 1−x, is an example of 3-valued Post algebra. Notice, that this
algebra is obtained by enriching the signature of an MV3-algebra S2 [2] with the constant 1

2 .
Moreover, the algebra ({0, 12 , 1},∨,∧,⊕,⊗,¬, 0, 12 , 1) is functionally equivalent to the 3-element
Post algebra P3. Indeed, it is enough to express the cyclic negation ∼ x = ( 1

2 ⊗ x)∨ (¬x⊗¬x).
MV -algebras are the algebraic counterpart of the infinite valued Lukasiewicz sentential

calculus, as Boolean algebras are concerning the classical propositional logic. In contrast with
what happens for Boolean algebras, some MV -algebras are not semi-simple, i.e. the intersection
of their maximal ideals (the radical of A) is different from {0}. The simple example of non semi-
simple MV -algebra is given by C. Chang in [1] (the algebra C). The MV -algebras generated
by their radical are called perfect.

Mundici [4] defined correspondence functor Γ between MV -algebras and lattice-ordered
abelian groups (abelian l-groups) with strong unit, and proved that Γ is a categorical equiva-
lence. We define analogical functor Γc of Pω3 - algebras and l-groups with strong unit u. More
precisely, for every abelian l-group G, the functor Γc equips the unit interval [0, 2u] with the
operations: x∨y = max(x, y), x∧y = min(x, y), x⊕y = 2u∧(x+y), x⊗y = 0∨(x+y−2u),¬x =
2u− x, 1 = 2u.

Notations.
(i) D0 = Γ(Z, 2) ∼= P3, with 1 as a strong unit.
(ii) D1 = D = Γc(Z ×lex Z, (2, 0)) with the strong unit (1, 0), the generator d1(= (0, 1)),

and ×lex is the lexicographic product.
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(iii) Dm = Γc(Z ×lex ... ×lex Z, (2, 0, ..., 0)) with the strong unit (1, 0, ..., 0), the generators
d1(= (0, 0, ..., 1)), ..., dm(= (0, 1, ..., 0)), where the number of factors of Z is equal to m+ 1.

(iv) Let D∗m be the subalgebra of Dm generated by the radical (intersection of all maximal
ideals) of Dm, where m ∈ Z+.

Proposition: Let G be an abelian l-group with the strong unit u. Then Γc(G, 2u) is a
generalized Pω3 -algebra ([0, 2u],∨,∧,⊕,⊗,¬, 0, u, 2u).

A subset F of a Pω3 -algebra A is said to be an ideal if 1) 0 ∈ I, 2) if x, y ∈ I, then x⊕ y ∈ I,
and 3) if x ∈ I and y ≤ x, then y ∈ I.

Theorem:
1) D generates the variety Pω

3 .
2) There exists lattice isomorphism between the lattice of ideals of a Pω3 -algebra A and the

lattice of congruences of a Pω3 -algebra A.

3) m-generated free Pω3 -algebra is isomorphic to D∗
3m

m .
5) The Pω3 -algebras P3 and Dm are projective for every m ∈ Z+.
6) The variety P3 of 3-valued Post algebras is the only proper subvariety of the variety Pω

3 .
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Introduction Despite the great technological progress, we are lacking a foundational theory
of modern artificial intelligence (AI). Specifically, we want to interpret, explain, and verify the
‘sub-symbolic’ computation performed by neural networks that drive this success. For classical
‘symbolic’ computation, this problem was solved by semantics: the mathematical description of
the meaning of program code. In this talk, we develop one approach to an analogous semantics
for non-symbolic computation performed by neural networks and other analog computers. To do
so, we first summarize the three semantics for symbolic computation, and then we describe our
analogous components—systems, domains, and logic—for non-symbolic computation, visualized
in figure 1. The key idea is to represent the dynamics of the non-symbolic computation as a
limit of symbolic approximations, which are given by observations.

Semantics for symbolic computation Symbolic computation is specified by some program
code P written in some programming language, and semantics should assign meaning to P .
There are three approaches. First, ‘systems’: Operational semantics describes P by the steps
a machine would take to implement this program, so the meaning of our program is given by a
transition system. Second, ‘domains’: Denotational semantics describes P by the function (or
denotation) JP K that it computes and the finite approximations to this function. The set of all
denotations and approximations of programs of a given type σ forms a so-called domain Dσ.
Third, ‘logic’: Logical semantics describes P by the properties it has: e.g., if the input is 1,
then executing P yields an even output, which is written as the Hoare triple {is 1}P{is even}.

Ideally, these three semantics are in harmony: Partial correctness requires that if a Hoare
triple {φ}P{ψ} is provable, then running program P in a state satisfying φ results in a state
satisfying ψ (if P terminates). Full abstraction requires that two programs have the same
denotation iff the machines running the two programs show the same behavior. Stone duality
requires that the properties of P jointly determine the denotation JP K, and vice versa [1].

For an analogous semantics for non-symbolic computation, we now explicate the italic terms.

Dynamical system
T : X → X

Dynamical system
specification

Semantic domain
JT K : DX → DX

Program logic
T ⊨X φ→ ψ

full

abstraction

partial

correctness

operational

semantics

denotational

semantics

logical

semantics

Stone

duality

Figure 1: The threefold semantics for non-symbolic computation.
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Systems If symbolic computation is specified by program code, how is non-symbolic com-
putation specified? The answer is: by dynamical systems [2]. Let’s consider neural networks
as an example. (Other famous examples are cellular automata or differential analyzers.) Un-
derstanding their training dynamics is essential for a theory of deep learning. Neural networks
are trained by backpropagation: given a batch of training data, it updates the current weights
w of the network to weights w′ with smaller training loss. Hence backpropagation specifies a
dynamical system T : W ×Dω → W ×Dω, where W is the weight space and D is the set of
batches of data, and T maps a pair (w, d) of a weight w and a sequence of batches d to the
pair (w′, σ(d)), where w′ is the result of updating w with the batch d0 and σ(d) = d1d2 . . . (i.e.,
σ is the shift operator on sequences). Thus, the analogue of a program code is a dynamical
system specification like backpropagation (or the rule of a cellular automaton or the differential
equation specifying the differential analyzer, etc.). The analogue of a transition system is a
dynamical system T : X → X. Formally, we take X to be a zero-dimensional compact Polish
space and T a continuous function (as studied in the field of topological dynamics in dimension
zero [3]; though in [4] we also cover probabilistic systems).

Domains As in symbolic semantics, we obtain the ‘meaning’ of the dynamical system in the
limit of finite, ‘interpretable’ approximations to the system. These approximations are given
via observations about the system: e.g., that with the current set of weights w the neural
network classifies this given image correctly. As will be explained in the talk, we package these
observations as finite domains and, by refining the observations, we obtain in the limit (in the
category-theoretic sense) a domain DX with a Scott-continuous function JT K : DX → DX ,
which we call the dynamical domain. Formally, we develop this idea as a functor from the
category of dynamical systems to the category of dynamical domains. This functor has a left
adjoint, which naturally restricts to an equivalence—this can be regarded as a form of full
abstraction [4].

Logic Finally, the finite observations of the system can be identified with clopen subsets of
the state space X. The Hoare triple {φ}T{ψ} then says: whenever we observe the system
having property φ now, we observe property ψ next, i.e., φ ⊆ T−1(ψ). We can reformulate this
as a Boolean algebra with operators (BAO): let A be the Boolean algebra of clopen subsets of
X and let 2 := T−1 : A → A. Then the Hoare triple is the conditional a → b := ¬a ∨ 2b,
which is valid when equal to X. So Stone duality not only links these BAOs to our dynamical
domains but can also be regarded as a form of partial correctness.

References

[1] Samson Abramsky. Domain theory in logical form. Annals of pure and applied logic, 51(1-2):1–77,
1991.

[2] O. Bournez and A. Pouly. A survey on analog models of computation. In V. Brattka and P. Hertling,
editors, Handbook of Computability and Complexity in Analysis, pages 173–226. Springer, Cham,
2021.

[3] T. Downarowicz and O. Karpel. Dynamics in dimension zero: A survey, 2016. https://doi.org/

10.48550/arXiv.1610.02727.

[4] L. Hornischer. Dynamical Systems via Domains: Toward a Unified Foundation of Symbolic and
Non-symbolic Computation. PhD thesis, University of Amsterdam, Institute for Logic, Language
and Computation, 2021. https://www.illc.uva.nl/Research/Publications/Dissertations/

DS-2021-10.text.pdf.

2

149



Local inconsistency lemmas and

the inconsistency by cases property

Isabel Hortelano Mart́ın

University of Barcelona, Barcelona, Spain
ihortema7@alumnes.ub.edu

The study of deduction-detachment theorems and their algebraic counterparts is a classical
part of abstract algebraic logic. It is a well-known fact that a finitary protoalgebraic logic has
a deduction-detachment theorem – briefly a DDT – if and only if the semilattice of compact
deductive filters of every algebra of the corresponding type is dually Brouwerian (see, e.g.,[4]).
The bridge theorem has algebraic consequences, which in turn have logical applications crossing
back over the bridge. For instance, any finitary protoalgebraic logic satisfying a DDT is filter-
distributive, and the logical counterpart of filter-distributivity is the so-called proof by cases
property, which has been extensively studied in [2, 3, 5].

In contrast, the theory of inconsistency lemmas, or ILs, for short, has not been systematically
investigated so far, with a few exceptions (see, e.g., [1, 6, 7, 8]). Raftery proved in [8] that for
a finitary protoalgebraic logic to have a (global) IL amounts to the demand that the join
semilattice of compact deductive filters in each algebra of the corresponding type should be
dually pseudo-complemented. Subsequently, Lávička [6] introduced and studied the local and
parametrized local versions in a similar fashion to the hierarchy of DDTs.

Following the terminology introduced in [6], a logic ⊢ is said to have a local inconsistency
lemma–briefly a LIL–if for every n ∈ N, there exists a family Ψn of finite sets of formulas
I(x1, . . . , xn) such that for every Γ ∪ {φ1, . . . , φn} ⊆ Fm,

Γ ∪ {φ1, . . . , φn} is inconsistent in ⊢ ⇐⇒ Γ ⊢ I(φ1, . . . , φn) for some I ∈ Ψn.

The corresponding algebraic counterpart is the maximal consistent filter extension property,
or MCFEP, for short, which a logic ⊢ is said to have if for every model ⟨A, F ⟩ of ⊢ and every
submatrix ⟨B, G⟩ of ⟨A, F ⟩, for every maximal ⊢-filter H containing G there is a ⊢-filter H ′

containing F such that H = H ′ ∩B. This result established in [6] for protonegational logics 1

translates in the framework of finitary protoalgebraic logics as the following theorem:

Theorem 1. Let ⊢ be a finitary protoalgebraic logic. The following are equivalent:

1. ⊢ has the LIL;

2. ⊢ has the MCFEP and for every algebra A the deductive filter A is finitely generated;

3. The MCFEP holds in the algebra of formulas and ⊢ posseses a finite inconsistent set of
formulas.

If the family Ψn witnessing the LIL consists of just one set of formulas I(x1, . . . , xn) for
each n ∈ N, then ⊢ is said to have an IL. As a first step to determine what is necessary for a
LIL to reduce to an IL, we introduce the notion of definable maximal consistent filters – briefly
DMCF. A logic ⊢ has DMCF if there is a formula δ(x1, . . . , xn) in the language of the first-order

1The class of protonegational logics is introduced in [6] as a weakening of protoalgebraicity, restricting some
of its defining conditions to maximal consistent theories. Particular examples are the negation fragments of
protoalgebraic logics.
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predicate logic (with equality), whose only non-logical symbols are the operation symbols of ⊢
and a unary predicate F (x), such that for every model ⟨A, F ⟩ of ⊢ and elements a1, . . . , an ∈ A,

A = FgA⊢ (F ∪ {a1, . . . , an}) ⇐⇒ ⟨A, F ⟩ |= δ(a1, . . . , an).

In this case, for a finitary protoalgebraic logic ⊢ with an LIL and DMCF, we prove that any
family Ψn witnessing the LIL must include a finite subset of sets of formulas for each n ∈ N
such that the resulting family also witnesses the LIL for ⊢. However, the question of whether
Ψn can be taken to be a singleton for every n, and obtain a global IL, is more involved.

Before answering this question, we introduce another notion: a logic ⊢ has the inconsistency
by cases property (ICP) when for every nonnegative integers n,m, there exists a parameterized
set ∇(x1, . . . , xn, y1, . . . , ym, z⃗) of formulas such that for any set Γ ∪ {φ1, . . . , φn, ψ1, . . . , ψm}
of formulas, φ⃗ ⊢ φ⃗∇ψ⃗ and ψ⃗ ⊢ φ⃗∇ψ⃗, and whenever Γ∪{φ⃗} and Γ∪{ψ⃗} are inconsistent in ⊢,

then Γ ∪ {φ⃗∇ψ⃗} is inconsistent in ⊢, where, φ⃗∇ψ⃗ is defined as
⋃{∇(φ⃗, ψ⃗, γ⃗) : γ⃗ ∈ Fm}.

It turns out that, in parallel to the connection between the proof by cases property and
filter-distributivity, the corresponding bridge theorem arises between the ICP and the notion of
1-distributivity. Recall that a lattice A with 1 is said to be 1-distributive if whenever a∨ b = 1
and a ∨ c = 1, then a ∨ (b ∧ c) = 1 for all elements a, b, c ∈ A. We obtain the following result:

Theorem 2. Let ⊢ be a finitary protoalgebraic logic. The following are equivalent:

1. ⊢ has the ICP and possesses a finite inconsistent set of formulas;

2. For every algebra A, the lattice of ⊢-filters of A is 1-distributive;

3. The lattice of theories of ⊢ is 1-distributive.

Since every dually pseudo-complemented join semilattice with 1 is 1-distributive and any
algebraic lattice is isomorphic to the lattice of ideals of the join semilattice of its compact
elements, crossing back over the bridge to the syntactical setting, this implies that any finitary
protoalgebraic logic with an IL has the ICP. Moreover, we prove that for a finitary protoalgebraic
logic having a LIL witnessed by Ψn, the demand for the family to be directed for each n ∈ N
amounts to the 1-distributivity of the logic. Consequently, a finitary protoalgebraic logic has
an IL if and only if it has the MCFEP, for every algebra A the deductive filter A is finitely
generated, it has DMCF and it is filter-1-distributive.
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In lattice theory, a polarity [1] is triple K := (G,M, I) where G and M are sets and I ⊆
G ×M . For any X ⊆ G, X∗ is the set of all m ∈ M such that gIm for all g ∈ X. For any
Y ⊆M , Y + is the set of all g ∈ G such that gIm for all m ∈ Y . In formal concept analysis, a
polarity is called a context. A concept is a pair of sets (X,Y ) such that X∗ = Y and X = Y +.
The set of all concepts is denoted as B(K) and forms a complete lattice B(K). The notion
of a concept is generalized to protoconcepts and semiconcepts [4]. A protoconcept is a pair of
sets (X,Y ) such that X∗+ = Y +. A semiconcept is a pair of sets (X,Y ) such that X∗ = Y
or X = Y +. We denote the sets of all protoconcepts and semiconcepts by P(K) and H(K),
respectively. It is a straightforward observation that B(K) ⊆ H(K) ⊆ P(K). The meet (⊓) and
join (⊔) operations of the complete lattice B(K) are extended to the set of protoconcepts. Two
negation operators ¬ and ⌟ are defined on the set P(K). With respect to the meet, join, and two
negations, the set P(K) forms an algebraic structure which is called the algebra of protoconcept.
The set of all semiconcept H(K) forms a subalgebra of the algebra of protoconcept and the
subalgebra is called the algebra of semiconcept.

On the abstraction of the algebra of protoconcept and algebra of semiconcept, the definition
of double Boolean algebra and pure double Boolean algebra are introduced. The definition of
double Boolean algebra is given below.

Definition 1. [4] An algebra D := (D,⊔,⊓,¬, ⌟,⊤,⊥) satisfying the following properties is
called a double Boolean algebra (dBa). For any x, y, z ∈ D,

(1a)(x ⊓ x) ⊓ y = x ⊓ y (1b)(x ⊔ x) ⊔ y = x ⊔ y
(2a)x ⊓ y = y ⊓ x (2b)x ⊔ y = y ⊔ x
(3a)¬(x ⊓ x) = ¬x (3b)⌟(x ⊔ x) =⌟x
(4a)x ⊓ (x ⊔ y) = x ⊓ x (4b)x ⊔ (x ⊓ y) = x ⊔ x
(5a)x ⊓ (y ∨ z) = (x ⊓ y) ∨ (x ⊓ z) (5b)x ⊔ (y ∧ z) = (x ⊔ y) ∧ (x ⊔ z)
(6a)x ⊓ (x ∨ y) = x ⊓ x (6b)x ⊔ (x ∧ y) = x ⊔ x
(7a)¬¬(x ⊓ y) = x ⊓ y (7b)⌟⌟(x ⊔ y) = x ⊔ y
(8a)x ⊓ ¬x = ⊥ (8b)x⊔⌟x = ⊤
(9a)¬⊤ = ⊥ (9b)⌟⊥ = ⊤
(10a)x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z (10b)x ⊔ (y ⊔ z) = (x ⊔ y) ⊔ z
(11a)¬⊥ = ⊤ ⊓⊤ (11b)⌟⊤ = ⊥ ⊔⊥
(12)(x ⊓ x) ⊔ (x ⊓ x) = (x ⊔ x) ⊓ (x ⊔ x)

where x ∨ y := ¬(¬x ⊓ ¬y) and x ∧ y :=⌟(⌟x⊔⌟y). A quasi-order (that is reflexive and
transitive) relation ⊑ on D is obtained as: x ⊑ y ⇐⇒ x⊓ y = x⊓ x and x⊔ y = y ⊔ y, for any
x, y ∈ D.

Now we consider the two sets D⊓ := {x ∈ D : x⊓x = x} and D⊔ := {x ∈ D : x⊔x = x}.
A pure double Boolean algebra is a dBa D such that for x ∈ D, either x ∈ D⊓ or x ∈ D⊔.
A dBa D is called contextual if the quasi-order becomes partial-order. Moreover, if for each
y ∈ D⊓ and x ∈ D⊔ with y ⊔ y = x ⊓ x, there is a unique z ∈ D with z ⊓ z = y and z ⊔ z = x,
D is called fully contextual.
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This new algebraic structure opens up several possible research directions. In [3], we study
the topological representation theorem for fully contextual dBa and pure dBa. The definition of
double Boolean algebra contains a large number of axioms. However, we show that the axioms
(10a), (10b), (11a), and (11b) are derivable from the remaining ones.

Theorem 1. Let D := (D,⊔,⊓,¬, ⌟,⊤,⊥) be an algebraic structure satisfying (1a) − (9a),
(1b)− (9b), and 12 of Definition 1, then for all x, y, z ∈ D the following hold.

(a) x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z and x ⊔ (y ⊔ z) = (x ⊔ y) ⊔ z.

(b) ¬⊥ = ⊤ ⊓⊤ and ⌟⊤ = ⊥ ⊔⊥.

As the name suggests, for each dBa D, there are two underlying Boolean algebras, D⊓ :=
(D⊓,⊓,¬,⊥) and D⊔ := (D⊔,⊔, ⌟,⊤). Moreover, the map r : D → D⊓, r(x) := x⊓x preserves
⊓,¬ and ⊥. The map r′ : D → D⊔, r′(x) := x ⊔ x preserves ⊔, ⌟ and ⊤. We also have two
injections e : D⊓ → D, e(x) = x and e′ : D⊔ → D, e′(x) = x such that r ◦ e = idD⊓ and
r′ ◦ e′ = idD⊔ . Therefore, for a given dBa D, we have the following:

(a) the semigroup (D,⊓,¬,⊥) satisfying (1a) − (3a), (5a) − (8a), (10a), and 12 is a retract
[2] of the Boolean algebra D⊓.

(b) the semigroup (D,⊔, ⌟,⊤) satisfying (1b)− (3b), (5b)− (8b), (10b), and 12 is a retract [2]
of the Boolean algebra D⊔.

The above observation gives the following representation theorem for dBa. We will sketch
its proof in the talk.

Theorem 2. Let (B,∧,¬,⊥) and (B′,∨′,¬′,⊤′) be two Boolean algebras. Let r : A ⇌ B : e
and r′ : A ⇌ B′ : e′ be two embedding-retraction pair. A := (A,⊓,⊔,¬, ⌟, e′(⊤′), e(⊥)) is a
universal algebra where, x⊓ y := e(r(x)∧ r(y)), x⊔ y := e′(r′(x)∨ r′(y)), ¬x := e(¬r(x)), and
⌟x := e′(¬′r′(x)). Then A is a dBa if and only if following holds.

(a) e ◦ r ◦ e′ ◦ r′ = e′ ◦ r′ ◦ e ◦ r.
(b) e(r(x) ∧ r(e′(r′(x) ∨ r′(y)))) = e(r(x)) and e′(r′(x) ∨ r′(e(r(x) ∧ r(y)))) = e′(r′(x))
for all x, y ∈ A.

(c) r(e′(⊤′)) = ⊤ and r′(e(⊤)) = ⊤′.
Moreover, every dBa can be obtained from such an embedding-retraction construction.

In [4], it is shown that Dp := D⊔ ∪D⊓ forms the largest pure subalgebra Dp of a dBa D.
Moreover, the largest pure subalgebra plays an important role in characterizing two different
dBa. In particular, we will discuss the following result.

Theorem 3. Let D and M be fully contextual dBas. Then D is isomorphic to M if and only
if Dp is isomorphic to Mp. Moreover, every dBa isomorphism from Dp to Mp can be uniquely
extended to a dBa isomorphism from D to M.
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Pawlak’s Rough Set Theory (briefly RST) is an elegant and powerful methodology, with
applications in numerous research fields, aimed at the extraction and the optimization of the
information coming from large amounts of data [9]. RST arose in the context of Pawlak’s data
tables with the purpose of understanding whether a given subset of objects could be partially or
completely determined only on the basis of the information induced by collections of attributes.

The originary approach to RST is said constructive: to a suitable kind of relationR on the set
U of the objects of a data table, one assigns a pair (LwR,UpR) of dual set operators, respectively
called R-lower and R-upper approximants, playing a similar role as the necessity and possibility
operators in modal logic [7] and inducing a constructive set algebra (P(U),∪,∩, c,LwR,UpR)
on P(U), that often satisfies different algebraic properties [3, 6]. A further approach is said
algebraic: one begins with a pair (L,H) of dual unary set operators defined axiomatically on a
ground set U and, next, studies the resulting set algebra (P(U),∪,∩, c,L,H).

The common way of relating the previous two approaches comes from the characterization
of the properties needed for defining an assignment (L,H) 7→ RL,H, where RL,H is a binary
relation on U with L and H as lower and upper approximants [10]. Evidently, by adding
suitable axioms in the definition of L and H we get additional properties on RL,H. The
attempts of combining the two approaches fit within the representation problem, aimed at the
determination of those axiomatizations of L and H whose corresponding set algebra turns out
to be the constructive set algebra induced by some specific kind of binary relation. For instance,
by abstracting the axiomatic properties of LwR and UpR when R is a Pawlak’s indiscernibility
relation [9], we get the so-called lower and upper operators and, in such a case, it follows that
RL,H is an equivalence relation, yielding a cryptomorphism between all these structures [4].

The previous setting admits a natural categorical-theoretic interpretation - whose develop-
ment might be useul to provide a unifying framework to RST - as soon as one asks questions
about the functoriality of the assignments R 7→ (LwR,UpR) and (L,H) 7→ RL,H and of all
the other constructions arising when developing the theory. To this end, the first necessity
that has arisen concerns the definition of suitable categories to work with. Taking some ideas
from the theory of combinatorial species, we use presheaves on the groupoid of sets to get a
unifying framework in which to define collections of categories of mathematical structures with
objects ΩX , where Ω is an arbitrary set and X is either a specific n-ary relation, set operator,
set system or data table with Ω as its attribute set.

However, in this context, the choice of the morphisms is not uniquely determined: for in-
stance, when dealing with equivalence relations we can assume that the morphisms should
preserve lower or upper approximants as required in [1, 8], or that the morphisms just preserve
the equivalences as for the category EqR. The possibility of choosing the morphisms in com-
pletely different ways turns out to be fundamental in the attempt of making functorial various
constructions on objects: as an example, some natural transformations among the presheaves
that define the ambient categories within which to select the needed structures may be used
to construct a non-trivial chain of categorical isomorphisms and embeddings involving suitable
categories of equivalence relations, set partitions, upper and lower operators, in such a way to
get a categorical counterpart for the cryptomorphism between these structures [4]. The previous
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result allows us to transport categorical properties from one category to another. To this end,
to study the category of lower operators we made use of a particular category of set partitions,
that has pullbacks and is regular, though it does not admits basic constructions as products,
coproducts and coequalizers. In the same spirit, we made use of EqR to get informations on
a category of upper operators and continuos functions: EqR becomes a specific case of proper
Moore-subcategory of the category Rel of binary relations and relation-preserving maps. The
investigation of proper Moore-subcategories of a given concrete category led to general results
[5], holding for EqR: it is a reflective modification of Rel and inherits its limits and co-limits;
it is Set-topological and Set-solid, has extremal subobject classifier but it is not regular [4].

Finally, to enrich our categorical framework for RST, after comparing possible definitions [2,
4] we introduce a category PR of Pawlak’s data tables, obtained by dropping out the finiteness
condition on its ground objects in view of possible theoretical applications from algebra and
topology and assuming a compatibility condition on morphisms with interesting interpretations
in applied contexts. There are at least three convincing reasons for working with PR. First, we
proved that it is complete, balanced, exact, regular, Heyting, it admits (RegEpi,Mono-Source)-
factorizations but, in general, not coproducts [4]. Secondly, being inspired by the existence of
an embedding of EqR into PR that formalizes the fact that different subsets of attributes may
induce the same Pawlak’s indiscernibility, we can easily define convenient subcategories and
functors through which to reinterpret in our categorical-theoretic setting various constructions
of RST such as functional dependence or attribute reduction [4]. Third, PR becomes a specific
instance of a further mathematical generalization, susceptible of an advanced study, by replacing
sets with objects of an arbitrary category equipped with a symmetric monoidal structure.
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Mostowski [5] showed that, for two pairs of logically equivalent relational structures
A ≡FO B and A′ ≡FO B′ in first-order logic, their cartesian products are also logically equiva-
lent A×A′ ≡FO B×B′. Then, Feferman and Vaught [2] showed that a similar statement holds
for arbitrary (potentially infinite) products and coproducts, instead of just binary products. In
our work we give a categorical account of these and other Feferman–Vaught–Mostowski type
theorems.

Aiming for applications in finite model theory, we reformulate these theorems in the recently
introduced setting of game comonads. Typically, for a well-behaved fragment L of first-order
logic, there is a comonad C on the category R(σ) of relational structures in signature σ. It is
a standard fact about comonads that we have a pair of adjunctions and a comparison functor

Kl(C) EM(C)

R(σ)
UC

KC

UC

FC

FC
⊤ ⊥

where Kl(C) is the Kleisli category and EM(C) is the Eilenberg–Moore category of coalgebras
for C. For our typical comonads, the objects of EM(C) can be viewed as tree-ordered relational
structures and, moreover,

A ≡L B ⇐⇒ FC(A) ∼ FC(B)

where ∼ denotes that the two structures in EM(C) are bisimilar. In fact, this bisimulation
relation encodes that Duplicator/Player II has a winning strategy in the corresponding model
comparison game for ≡L. The structure of FC(A) encodes all possible positions in this game.
See [1] for a recent survey on game comonads.

Coming back to the theorem of Mostowski, we have a functor × : R(σ)×R(σ)→ R(σ) and
we want to show that if

FC(A) ∼ FC(B) and FC(A′) ∼ FC(B′) then also FC(A×A′) ∼ FC(B ×B′).

This indicates that we need to find a functor ×̃ : EM(C) × EM(C) → EM(C) which commutes
with the free functors FC and preserves the bisimulation relation ∼.

A suitable candidate ×̃ can be found by making use of the universal property of products.
However, the task becomes more interesting when we abstract away from products and allow
operations of arbitrary arity. It turns out that it is more natural to consider only unary oper-
ations between possibly different categories. This subsumes the n-ary case since the pointwise

∗Joint work with Dan Marsden and Nihil Shah, mostly based on [4].
†Supported by the GAČR project EXPRO 20-31529X and RVO: 67985840.
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product of n comonads on the product category is a comonad as well. To this end, assume that
we have a functor H : A → B and comonads C and D on A and B, respectively. As before, in
order to have that

FC(A) ∼ FC(B) implies FD(H(A)) ∼ FD(H(B))

we need to find a lifting of H, that is, a functor H̃ : EM(C) → EM(D) which preserves bisim-

ulation and commutes with free functors: FD(H(A)) ∼= H̃(FC(A)). Observe that comonad
morphisms HC⇒ DH are not suitable because the lift of H that these induce only commutes
with the forgetful functors.

We take inspiration from the theory of monoidal monads (cf. [3, 6]), where the monoidal
structure on the base category is lifted to the category of algebras for the monad. Perhaps
surprisingly, the monoidal structure plays no role for the lift to exist. By dualising and gener-
alising these results to our situation, we only require a Kleisli law DH ⇒ HC (also known as
an oplax comonad morphism) and EM(D) with equalisers of coreflexive pairs (ECP). Then the

usual Kleisli lift Ĥ of H further lifts to the categories of coalgebras:

A Kl(C) EM(C)

B Kl(D) EM(D)

FC

H Ĥ

KC

H̃

FD KD

Another surprising feature is that the theorems of [6] about bimorphisms generalise to this

setting as well. These become crucial when proving that the lifted functor H̃ preserves the
bisimulation relation. In fact, our conditions ensure that H̃ is a parametric relative right
adjoint. To summarise, we prove the following.

Theorem 1. Let C and D be comonads on R(σ) and R(τ), capturing logic fragments L and K,
respectively. Assume EM(D) has ECP and H : R(σ) → R(τ) admits a Kleisli law DH ⇒ HC
which lifts H to a parametric relative right adjoint between the categories of coalgebras then

A ≡L B implies H(A) ≡K H(B).

Not only many Feferman–Vaught–Mostowski type theorems from the literature are a special
case of this theorem but, also, this theorem becomes essential in the theory of game comonads.
It allows us to compare logics, show preservation of type-equivalence by transformations, prove
locality theorems, etc.
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The variety of lattice-ordered Abelian groups (Abelian ℓ-groups, for short) is well known
and studied [5]. It was established in [7] that, as a quasivariety, it is generated by the ℓ-group
of integer numbers. Abelian ℓ-groups are not only interesting from the algebraic point of view
but also from the logical point of view, since they form the algebraic semantics for Abelian
logic (see [1, 8]). Since the quasivariety of Abelian ℓ-groups have no proper subquasivarieties,
Abelian logic has no proper extensions by finitary rules.

Another logical motivation for the study of Abelian ℓ-groups is the key role they play in
understanding Lukasiewicz logic; see for example the proof of Chang’s theorem [2]. In general,
the study of Abelian ℓ-groups is very closely related to the study of MV-algebras, since these
two classes of structures are connected via Mundici functor [2]. It is also worth mentioning that
Abelian logic can be seen in as a weakening-free variant of Lukasiewicz logic.

In this talk, we will discuss the class of pointed Abelian ℓ-groups and its corresponding logic,
which we call pointed Abelian logic. By a pointed Abelian ℓ-group we mean an Abelian ℓ-group
with one additional fixed element in the signature without any additional property. While it
may seem that it is not more than a cosmetic change, it turns out that the additional constant
symbol allows us to express many new no-trivial logical axiom/rules and so the corresponding
lattice of sub(quasi)varieties of pointed Abelian ℓ-groups is quite complex and worth exploring.

In previous research we have discussed several extensions of pointed Abelian logic, the most
important of which was a finitary version of the unbounded Lukasiewicz logic. This logic was
introduced (but not named) in [3], along with its philosophical and linguistic motivation, and
has a clear mathematical motivation: it combines Abelian logic and Lukasiewicz logic in a very
natural way.

In this talk, we focus on an infinitary version of the unbounded Lukasiewicz logic, i.e., a
logic strongly complete with respect to the pointed ℓ-group of reals with point at −1.

To this end, we must first prove some general results about extensions of (pointed) Abelian
logic using infinitary rules (recall here that we cannot get any non-trivial extension of Abelian
logic by using additional finitary rules). We will give axiomatizations of some of these extensions
and show that there are uncountably many of them. In particular, we focus on those whose
corresponding algebraic semantics is the generalized subquasivariety generated by Archimedean
ℓ-groups, integers and reals (in pointed case with positive or negative interpretation of the
point).

We conclude the talk by exploring the addition of modalities to (the extensions of) pointed
Abelian logic. We follow the footsteps of [4] (for Abelian logic) and [4, 6] (for Lukasiewicz logic)
and focus on the differences caused by the presence of the additional constant and the lack of
weakening.
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Dacey orthosets
In his PhD. thesis [1], Dacey explored the notion of “abstract orthogonality” through sets

equipped with a symmetric, irreflexive relation ⊥. He named these structures orthogonality
spaces. More recently, these structures have been referred to as orthosets [6, 5] and we will
adopt this terminology in this text. Note that an orthoset is just a simple graph.

Definition 1. An orthoset (O, ⊥) is a set O equipped with an irreflexive symmetric binary
relation ⊥⊆ O × O, called orthogonality.

For every subset X of an orthoset O, we write

X⊥ = {y ∈ O | for all x ∈ X, x ⊥ y}

Graph-theoretically, this is just the set of all common neighbours of a set of vertices. It is
easy to see that X 7→ X⊥⊥ is a closure operator; a subset of an orthoset (O, ⊥) with X = X⊥⊥

is called orthoclosed. The orthoclosed subsets of an orthoset O form a complete ortholattice
L(O, ⊥), which we call the logic of (O, ⊥).

Arguably the most significant theorem established in Dacey’s thesis [1] is the following.

Theorem 1. Let (O, ⊥) be an orthoset. Then L(O, ⊥) is an orthomodular lattice if and only if
for every orthoclosed subset X and every maximal pairwise orthogonal set (or a clique) B ⊆ X,
B⊥⊥ = X⊥⊥.

The orthosets that meet one of the equivalent conditions of Theorem 1 are called Dacey
orthosets.
The basic idea

Recently, we have achieved moderate success using the following straightforward approach.

1. We consider some class of (finite) objects X .
2. For every object X ∈ X , we construct in some way an orthoset O(X).
3. We characterize those objects X ∈ X for which O(X) is a Dacey orthoset.
4. We characterize those objects X ∈ X for which O(X) is a Dacey orthoset with a Boolean

logic.

In the talk, we will present several results we found using this approach. The class X will
be always some class of posets. We will consider two types of a construction of an orthoset
from a poset: the orthoset of quotients and the incomparability orthoset.
Orthosets of quotients

For a poset P , we write Q+(P ) for the set of all pairs (a, b) ∈ P × P with a < b. In
lattice theory, the elements of Q+(A) are called proper quotients. An element (a, b) ∈ Q+(P )
is denoted by [a < b].

∗This research is supported by grants VEGA 2/0128/24 and 1/0036/23, Slovakia and by the Slovak Research
and Development Agency under the contracts APVV-20-0069 and APVV-23-0093.
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Posets and orthomodularity Jenča

For [a < b], [c < d] ∈ Q+(P ) we write [a < b] ⊥ [c < d] if b ≤ c or d ≤ a. Clearly, ⊥ is
symmetric and irreflexive, so (Q+(P ), ⊥) is an orthoset.

Theorem 2. [3] Let P be a finite bounded poset. Then P is a lattice if and only if its orthoset
of quotients (Q+(P ), ⊥) is Dacey.

Theorem 3. [3] Let P be a bounded poset. Then P is a chain if and only if L(Q+(P ), ⊥) is
a Boolean algebra.

Incomparability orthosets
Let P be a poset. For x, y ∈ P let us now write x ⊥ y if and only if x, y are incomparable.

We say that (P, ⊥) is the incomparability orthoset of P .
Let P be a poset. For a quadruple of elements (a, b, c, d) ∈ P 4, we say that they form an N

if and only if a < c � b < d (note the covering relation here), b < d, and all the other distinct
pairs of elements of the set {a, b, c, d} are incomparable. We denote this by N(a, b, c, d). A
poset such that no quadruple of elements forms an N is called N-free.

N-free posets were introduced by Grillet in [2]. In that paper, the following characterization
of N-free posets was proved.

Theorem 4. A finite poset P is N-free if and only if every maximal chain in P intersects every
maximal antichain in P .

Theorem 5. [4] Let P be a finite poset. Then P is N-free if and only if its incomparability
orthoset (P, ⊥) is Dacey.

We further characterize the finite posets P with a Boolean L(P, ⊥) by the absence a more
general type of small substructure, which we term a weak N; a weak N is like the N defined
earlier, with the distinction that we allow a and d to be comparable.

Theorem 6. [4] Let P be a finite poset. Then L(P, ⊥) is Boolean iff there is no weak N in P .
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Quantization is the process of generalizing mathematical structures to the noncommutative
setting. Many quantum phenomena have classical counterparts, and can often be modelled
by quantized versions of the mathematical structures modelling these classical counterparts.
Recently, several mathematical structures have been quantized via a quantization method based
on Weaver’s notion of a quantum relation between von Neumann algebras [13], which he distilled
from his work with Kuperberg on the quantization of metric spaces [12]. Quantum relations
can be regarded as noncommutative versions of ordinary relations, and admit a rich relational
calculus that allows us to generalize concepts such as symmetric, antisymmetric, reflexive,
and transitive relations to the noncommutative setting. Building on these concepts, Weaver
quantized posets [13] and showed that quantum graphs [2], which are used for quantum error
correction, can be understood in terms of quantum relations [14].

Von Neumann algebras are noncommutative generalizations of measure spaces rather than
of sets. Kornell identified hereditarily atomic von Neumann algebras, which are essentially
(possibly infinite) sums of matrix algebras, as the proper noncommutative generalizations of
sets [8]. For this reason, hereditarily atomic von Neumann algebras are also called quantum sets,
and the category qRel of quantum sets and quantum relations can be regarded as the proper
noncommutative generalization of the category Rel of sets and binary relations. Just like Rel,
but in contrast to the category of all von Neumann algebras and quantum relations, qRel is
dagger compact closed. Together with Kornell and Mislove, the second author investigated
the categorical properties of quantum posets in this restricted setting of hereditarily atomic
von Neumann algebras [11]. Building on this work, they introduced quantum cpos, which are
noncommutative versions of ω-complete partial orders (cpos). Ordinary cpos can be used to
construct denotational models of ordinary programming languages, and in a similar way, they
showed that quantum cpos can be used for the denotational semantics of quantum programming
languages [10]. Also building on the definition of quantum posets in the hereditarily atomic
setting, both authors introduced quantum suplattices [7], which are noncommutative versions
of complete lattices and supremum-preserving maps. For quantum suplattices, the compact
structure of qRel seems to be essential.

Categorically, quantization via quantum relations can be understood as the internalization of
mathematical structures in the category qRel, and many theorems about quantized structures
via quantum relations rely on the categorical properties of qRel. There are several categorical
generalizations of the category Rel such as allegories [3] or bicategories of relations [1], but
unfortunately, qRel is not an example of either of them. This is mainly due to the fact that
the internal functions of qRel form a semicartesian monoidal category rather than a cartesian
monoidal category, which reflects the quantum character of qRel. Tweaking the definitions of
either allegories or bicategories of relations is difficult; their cartesian character seems to be
essential, and it cannot be adjusted without tearing down the whole building.

∗Supported by VEGA-2/0128/24, VEGA-1/0036/23 and APVV-20-0069
†Supported by VEGA 2/0128/24 and APVV-22-0570
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Therefore, we aim to find a different categorical generalization of Rel that would capture
qRel, but also other generalizations of Rel, such as the category V -Rel of sets and relations
with values in a unital commutative quantale V , which is used in fuzzy mathematics [6]. Only
if V is a frame, V -Rel seems to be a bicategory of relations. We take daggers as a primitive
notion, and identify six properties of qRel as axioms for our categorical generalization of Rel.
Similar properties also occur in recent categorical axiomatizations of several dagger categories
such as the category Hilb and Rel [4, 9, 5], and likely will form a subset of the axioms of
a future categorical characterization of qRel. Hence, we define a semicartesian category of
relations to be a category R such that

(1) R is a locally small dagger compact category;

(2) R has all small dagger biproducts;

(3) R has precisely two scalars;

(4) R is a dagger kernel category;

(5) For each object X in R there is precisely one morphism X → I with zero kernel;

(6) For each object X and each projection p on X, p ≥ idX if and only if ker p = 0.

Here, a projection on an object X is a morphism p : X → X such that p ◦ p = p = p†. For
the last axiom, we use that the first three axioms imply that R is a quantaloid, i.e., a category
enriched over the category Sup of complete lattices and supremum-preserving maps. As another
consequence of the axioms, we prove that the homsets of R are actually orthomodular lattices.
We conclude with a discussion of conditions that assure the existence of a power set construction
in semicartesian categories of relations.
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The main objective of this talk is to lift the established one-to-one correspondence, as intro-
duced in [6], between the class of even or odd involutive FLe-chains and the class of bunches of
layer groups, to a categorical equivalence [4]. In [6] a novel decomposition method, called layer
algebra decomposition, which seems to be original not only in the field of residuated lattices
but also in algebra at large (see footnote 4 in [6]), along with the corresponding construction
method, have been introduced for the class of odd or even involutive FLe-chains. The main
idea was to decompose the algebra with the help of its local unit function x 7→ x→ x into a
direct system, indexed by the positive idempotent elements of the algebra, of (hopefully simpler,
“nicer”) algebras, with transitions of the direct system defined by multiplication by a positive
idempotent element. The decomposed algebra could be reconstructed through a combination of
P lonka sums, as introduced by P lonka [9], and the concept of directed lexicographic order, in-
troduced in [6] (see Remark 4.3). The impact of the layer algebra decomposition soon extended
beyond its initial application and has been employed to structurally describe various classes of
residuated lattices. These include finite commutative, idempotent, and involutive residuated
lattices [8], finite involutive po-semilattices [7], and locally integral involutive po-monoids and
semirings [1, 2]. In these classes layer algebras are “nice”. However, in [6] the obtained layer
algebras are only somewhat nicer than the original algebra, therefore a second phase, involving
the construction of layer groups from layer algebras, was introduced. The combination of the
layer algebra decomposition and this additional phase establishes a one-to-one correspondence
between the class of even or odd involutive FLe-chains and the class of bunches of layer groups.
With the obvious choice for morphisms between FLe-chains, our primary focus in this talk is
to determine the appropriate notion of morphisms for the class of bunches of layer groups,
and to present a functor. Due to space constraints here, we direct the interested reader to [4,
Definition 2.3 and Remark 2.6] for the description of bunches of layer groups (the objects of the
category of bunches of layer groups), to [4, Definition 3.3] for the description of bunch homo-
morphisms (the morphisms of the category of bunches of layer groups), and to [4, Theorem 3.6]
for an explanation of a functor mapping to the category of even or odd involutive FLe-chains.
As a forward-looking note, it’s worth noting that the categorical equivalence presented in this
talk (and in [4]), has proven to be a potent tool for establishing amalgamation and densifi-
cation results in classes of involutive FLe-algebras that are neither integral, nor divisible, nor
idempotent [3, 5].
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On the structure of balanced residuated posets
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A residuated poset is a structure of the form (A,≤, ·, 1, \, /) such that (A,≤) is a poset,
(A, ·, 1) is a monoid and x · y ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z. It is called balanced if
it satisfies the identity x/x = x\x, or equivalently all positive idempotents are central (i.e.,
1 ≤ x = x2 =⇒ x · y = y · x). In this case we denote the term x/x by 1x and call it a local
identity since it satisfies 1x · x = x = x · 1x.

We show that any balanced residuated poset can be decomposed into components Cx = {y :
1y = 1x} and two families of maps from which the original residuated poset can be reconstructed.
If the balanced residuated poset satisfies the identities 1x·y = 1x · 1y = 1x/y = 1x\y then
it decomposes as a P lonka-style sum over a semilattice direct system of integral residuated
posets. This structure theory generalizes the results in [1] where the residuated posets were
assumed to be involutive and locally integral, hence square-decreasing.

The construction of P lonka sums from finite families of finite integral involutive residuated
posets has been implemented in Python. To allow for a convenient specification of semilattice
direct systems of maps, we define dual partial function systems over sets of indecomposable
residuated posets. If the partial functions are assumed to be continuous with respect to Stone
spaces on their domain and codomain then the components of the semilattice direct systems
are Boolean products over these Stone spaces.

The glueing construction in [2] for finite commutative idempotent involutive residuated
lattices produces lattice-ordered algebras rather than po-algebras. In the setting of involutive
residuated lattices without finiteness, commutativity or idempotence, we show that the glueing
of two integral components, over an isomorphic filter and ideal in the respective component,
again produces an involutive residuated lattice. Ongoing research aims to extend this result to
P lonka-style sums of balanced residuated lattices.

The results reported here are joint research with Stefano Bonzio, José Gil-Férez, Adam
Přenosil and Melissa Sugimoto.
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The class of semi-divisible residuated lattices is a wide class of algebraic structures. In fact,
Turunen [6] shows that all divisible residuated lattices (Rl-monoids) are semi-divisible residu-
ated lattices but not all semi-divisible residuated lattice are Rl-monoids. So, divisible residuated
lattices are subclass of semi-divisible residuated lattices. Turunen in [6], while studying states
on semi-divisible residuated lattices proved that for some states, study them on semi-divisible
residuated lattices or on divisible residuated lattices is the same. This proves that there are
notions which, once studied in the divisible residuated lattices setting, there is no longer any
point in moving on to the semi-divisible residuated lattices context.
Modal operators were first defined and studied on Heyting algebras in 1981 by Macnab [3].
Since then, many authors have investigated properties of modal operators on other classes
of residuated lattices: Harlenderovand Rachunek [1] studied modal operators on MV-algebra,
Rachunek and Salounov[4] studied modal operators on Rl-monoids, monotone modal operators
on bounded integral residuated lattices were studied by Rachunek et al [5] and Kondo [2] stud-
ied modal operators on commutative residuated lattices. One of the goals behind the study
of modal operators is to build special cases of closure operators which are important for the
theoretical study of partial ordered sets. These special cases of closure operators are mono-
tone modal operators. Rachunek and Salounov[4] proved when studying modal operators on
Rl-monoids, that, all modal operators on divisible residuated lattices are closure operators. It
becomes really interesting to know if this is the case in a context of semi-divisible residuated
lattices.

We start this paper by showing that not all modal operators on semi-divisible residuated
lattices are closure operators. We also investigate some properties of modal operators on a
residuated lattice which are not found in literature and state some conditions for a modal
operator to be a closure operator on a semi-divisible residuated lattice. Then, we define some
operators on a semi-divisible residuated lattice and show that they are strong modal operators.
We end the paper by constructing a semi-divisible residuated lattice which is not an Rl-monoid
from an idempotent element of a semi-divisible residuated lattice and we define a monotone
modal operator on it.
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The origin of residuated lattices is in Mathematical Logic without contraction. They have
been investigated by Krull [11], Dilworth [4], Balbes and Dwinger [1] and Pavelka [12]. In
[9], Idziak proved that the class of residuated lattices is equational. Several authors have
introduced different sub-classes of residuated lattices such as De Morgan residuated lattices
[8], quasicomplemented residuated lattices [13], divisible residuated lattices [2], semi-divisible
residuated lattices [2], MTL-algebra [5], BL-algebra and G-algebra [6] to name only these.

During the last decades, the fuzzy logic has become very popular, mainly because of its
applicational aspects. In the framework of “soft computing”, continuous triangular t-norms
are used as “conjunction” and the corresponding residuum as “implication” to combine fuzzy
sets with membership values in [0, 1]. This has a great importance in applicational aspects,
particularly in fuzzy control, uncertain modeling, graph theory, data visualization and analysis.
BL-algebras have been invented by Hajek [6] in order to provide an algebraic proof of the com-
pleteness of basic fuzzy logic (BL for short), the logic of continuous t-norms and their residua.
However, a sufficient and necessary condition for a t-norm to have a residuated implication is
left-continuity; hence it makes sense to consider fuzzy logics based not on continuous t-norms
but on left-continuous t-norms. To this end, Esteva and Godo proposed in [5] a new logic,
called MTL, as the basic fuzzy logic in this more general sense. The proposal was successful
when Jenei and Montagna proved in [10] that MTL is indeed the logic of all left-continuous
t-norms and their residua. The algebraic models of MTLs are MTL-algebras, the divisibility
condition x⊙ (x→ y) = x ∧ y does not hold, so they are residuated lattices verifying only the
prelinearity condition (x → y) ∨ (y → x) = 1. MTL-algebras have been widely studied in the
literature [5, 3]. It has been proven that anintegral idempotent residuated lattice is a Heyting
algebra, hence idempotency is a very strong notion in the residuated lattice setting. Various
special residuated lattices are now used as the main structure of truth values in fuzzy set theory
and are subject to algebraic investigation.

In the present paper, we introduce the concept of semi-idempotent residuated lattices, pro-
vide new characterizations and establish many of their important properties. In addition,
introduce a new subclass of residuated lattices called semi-prelinear residuated lattices. This
is done by replacing the prelinearity axiom (x → y) ∨ (y → x) = 1 by a weaker axiom:
(x′ → y′)∨ (y′ → x′) = 1 where x′ = x→ 0 , called semi-prelinearity equation. This study was
motivated in part by the fact that a similar approach was used to treat the concept of semi-
divisibility by weakening the divisibility axiom x⊙(x→ y) = x∧y to: [x′⊙(x′ → y′)]′ = (x′∧y′)′.
We study semi-prelinear residuated lattices and establish the links with several subclasses of
residuated lattices. Many results similar to those obtained for MTL-algebras are obtained. The
different situations depicted with prime ideals and filters show the gap between semi-prelinearity
and prelinearity. In order to stress the divide between the two classes of residuated lattices, we
point at some important results that hold in prelinear settings but not in semi-prelinear ones
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(see., e.g., [16, Theorem 4]). Finally, we extend the work of Belohlavek and Vychodil [14] by
computing the numbers of residuated lattices such as semi-prelinear, semi-divisible, De Morgan,
Stonean and semi-idempotent up to order 12.
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Tables. The first infinite ordinal is denoted by ω. We formalize a table as a set T ⊆ GX ,
where X ⊆ ω is a finite set of column names (not column numbers), an element t ∈ T is a row,
t(x) is the entry in row t and column x, and G is an arbitrary set. Hence,

Tab(G) =
⋃
{P(GX) | X ⊆ ω finite} (1)

contains all tables with entries in G. Note that while X must be finite, a table can have an
infinite number of rows if G is infinite.

Primitive Positive Formulas. Let M denote a relational signature. A first-order formula
over M is primitive positive if it is built from atoms using {∧,∃}. An atom is either a relational
atom Rx1 . . . xn, an equality atom x=y, or one of the special atoms true (the tautology) and
false (the contradiction). The set of primitive positive formulas over M is denoted by PP(M).

Variables. We assume that ω is the countably infinite set of variables. The function free :
PP(M)→ P(ω) maps each formula φ to the set of free variables occurring in φ; for the special
atoms, we define free(true) = ∅ and free(false) = ω.

Conjunctive Table Algebras. Every relational structure G, with universe G and signature
M , induces a solution operation (·)G : PP(M) → Tab(G) that maps each formula φ to its
solution set

φG := {t ∈ Gfree(φ) | G |= φ[t]} ⊆ Tab(G) , (2)

where G |= φ[t] means that φ holds in G under the variable assignment t : free(φ)→ G.
The algebra PP(M) := (PP(M),∧, false, true,∃x, x=y, free)x,y∈ω extends PP(M) with a

binary operation ∧ (interpreted as syntactic conjunction), a unary operation ∃x for each x ∈ ω
(interpreted as syntactic existential quantification over x), the function free : PP(M)→ P(ω),
and it contains all non-relational atoms as distinguished elements. The solution operation
homomorphically maps the logical operations to corresponding table operations; we have

(φ ∧ ψ)G = φG 1 ψG, falseG = ∅, trueG = {∅}, (∃xφ)G = delx(φG), (x= y)G = Exy,

where 1 is the natural join, ∅ is the empty table, {∅} is the table with a single empty row, delx
is a deletion operation (deletes column x if it exists), and Exy := {t ∈ G{x,y} | t(x) = t(y)} is a
diagonal. Moreover, the schema of a table T ∈ Tab(G) is uniquely defined by

schema(T ) :=

{
X if T ∈ GX and T ̸= ∅
ω if T = ∅ , (3)

and if φG ̸= ∅, then also free(φ) = schema(φG). This motivates the definition of the table
algebra Tab(G) := (Tab(G),1, ∅, {∅},delx, Exy, schema)x,y∈ω. A conjunctive table algebra with
base G is a subalgebra of Tab(G).

171



Conjunctive Table Algebras Kötters and Schmidt

Comparison with cylindric set algebras. Conjunctive table algebras are a database-
theoretic variant of cylindric set algebras (of dimension ω). In his survey paper [2, Sect. 7(4)],
Németi briefly discusses the charm of such a variant. Németi’s universe Gfs(G) is our Tab(G).
He credits Howard [1] with the approach (although Howard refers to the universe P(

⋃
X⊆ω G

X)).
Howard uses complements, so in that sense, conjunctive table algebras are more generic.

Main Result. We present an axiomatization of conjunctive table algebras. The conjunctive
table algebras with nonempty base are, up to isomorphism, precisely the projectional semilat-
tices; a projectional semilattice is an algebraic structure (V,∧, 0, 1, cx, dxy,dom)x,y∈ω consisting
of an infimum operation ∧, a bottom element 0, a top element 1, a cylindrification cx : V → V for
each x ∈ ω, a diagonal dxy ∈ V for each (x, y) ∈ ω×ω, and a domain function dom : V → P(ω),
such that the axioms

(PS0) (V,∧, 0, 1) is a bounded semilattice

(PS1) cx(0) = 0

(PS2) u ≤ cx(u)

(PS3) cx(u ∧ cx(v)) = cx(u) ∧ cx(v)

(PS4) cx(cy(u)) = cy(cx(u))

(PS5) u ̸= 0 ⇒ (u ̸= cx(u) ⇔ u ≤ dxx)

(PS6) x ̸= y, z ⇒ dyz = cx(dyx ∧ dxz)

(PS7) x ̸= y ⇒ dxy ∧ cx(dxy ∧ u) ≤ u

(PS8) u ̸= 0 ⇒ dom(u) finite

(PS9) dom(u) = {x ∈ ω | u ≤ dxx}
(PS10) dom(u) = ∅ ⇒ u = 1

(PS11) dxx ̸= 0

(PS12) dxy = dyx

hold for all u, v ∈ V and x, y, z ∈ ω.

Comparison with cylindric algebras. The axioms (PS0), . . . , (PS7) correspond to cylin-
dric algebra axioms (CA0), . . . , (CA7). Axiom (CA0) asserts a Boolean algebra; since we do
not consider disjunction and negation, axiom (PS0) only asserts a bounded semilattice. The
Axioms (CA1), (CA2), (CA3), (CA4) and (CA6) are identical to (PS1), (PS2), (PS3),
(PS4) and (PS6), respectively. Cylindric algebra axiom (CA5) states dxx = 1, reflecting that
x=x is a tautology; however, the table semantics in eq. (2) corresponds to a logic with unde-
fined variables, where x=x is not a tautology! We consider (PS5) to be a suitable replacement:
Under the definition axiom (PS9), axiom (CA5) asserts dom(u) = ω for all u ̸= 0; whereas
axiom (PS5) asserts dom(u) = {x ∈ ω | cx(u) ̸= u} for all u ̸= 0; the latter set is known as
the dimension set ∆(u) in the terminology of cylindric algebras. Axiom (PS7) is the historical
axiom (CA7); the contemporary axiom (CA7) is equivalent but involves negation! Historically,
there was also an axiom (CA8), stating that ∆(u) is finite for all u ∈ V . Since dom(u) = ∆(u)
for u ̸= 0, we can identify (CA8) with (PS8), disregarding the case u = 0.

Variant: Empty Universe. If axiom (PS11) is weakened to 1 ̸= 0, we obtain a characteri-
zation of conjunctive table algebras (including base G = ∅) up to isomorphism.
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1 Jagiellonian University, Kraków, Poland
tomasz.s.kowalski@uj.edu.pl

2 University of the National Education Commission, Kraków, Poland
irena.korwin-slomczynska@up.krakow.pl

3 La Trobe University, Melbourne, Australia
4 The University of Queensland, Brisbane, Australia

Abstract

We give a new description of free (distributive) p-algebras, which in particular yields a
normal form theorem for terms. We also prove some new results about the subquasivariety
lattice, which for lack of space we can only signal below.

1 Introduction

A distributive p-algebra (from now on, simply, a p-algebra) is an algebra (A;∧,∨, ∗, 0, 1) where
(A;∧,∨, 0, 1) is a bounded distributive lattice, and the unary operation ∗ satisfies the equiva-
lence

x ∧ y = 0 ⇐⇒ x ≤ y∗.
P-algebras are a variety, Pa, consisting of term-subreducts of Heyting algebras, without impli-
cation but with the term x∗ := x→ 0. Their subvariety lattice is a chain of type ω + 1:

Pa−1 ⊂ Pa0 ⊂ Pa1 ⊂ · · · ⊂ Pa

where Pa−1 is the trivial variety, and Pak is generated by a single subdirectly irreducible algebra.
In contrast to Heyting algebras, they are not 1-regular and not even 1-subtractive, although
they are 0-subtractive (yet still not 0-regular).

They were studied extensively in 1970s and 1080s, and then the research petered out. We
try to rekindle the interest in these algebras providing a new description of free p-algebras,
based entirely on a thorough understanding of completely meet-irreducible congruences. This
enables us to formulate a normal form theorem for p-algebra terms, and prove some results
about the lattice of subqusivarieties of p-algebras, sharpening the existing ones.

2 Free algebras

We build free algebras using completely meet-irreducible congruences. The most important
observation on them is that they come in two layers, given in the following definition, where
Cm A stands for the set of completely meet-irreducible congruences of A; for µ ∈ Cm A, we
write µ+ for the unique cover of µ in the lattice Con A of all congruences of A, and M(α) is
{µ ∈ Cm A : α ⊆ µ}.
Definition 2.1. Let A ∈ Pa. Put

IA := {µ ∈ Cm A : A/µ ∼= B0} = {µ ∈ Cm A : µ+ = 1A},
IIA := {µ ∈ Cm A : A/µ ∼= Bn for n > 0} = {µ ∈ Cm A : M(µ+) ⊆ IA}.
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Let Fn(k) be the free k-generated p-algebra in the variety Pan. Let T ∈ P(k), define
fT : {x1, . . . , xk} → {0, 1} putting fT (xi) := 1 if i ∈ T , and 0 otherwise. Let f̄T be the
homomorphism onto 2 extending fT . For any T ∈ P(k) and any µ ∈ Cm Fn(k) we have
µ ∈ IFn(k) ⇐⇒ µ = ker f̄T . Next, define

xT :=
∧

i∈T
xi ∧

∧

i/∈T
x∗i . (at)

Then, for any T ∈ P(k), the element xT is an atom and every atom of Fn(k) is of this form.
Therefore, if µ ∈ IFn(k) then 1/µ = [xT ) for some T ∈ P(k). Write µT for that µ.

It can be shown that each join-irreducible element p ∈ Fn(k) is the smallest element of 1/µ
for some µ ∈ Cm Fn(k). For an arbitrary but fixed µ ∈ Cm Fn(k), we define

L := {i < k : xi ∈ 1/µ}, T := {T ∈ P(k) : µ ⊆ µT }, pLT :=
( ∨

T∈T
xT
)∗∗ ∧

∧

i∈L
xi.

Intuitively, L encodes the set of generators that µ maps to 1, and T encodes the set of maximal
congruences extending µ. For any L ⊆ k and nonempty T ⊆ P(k), such that L ⊆ ⋂ T , we will
write µLT for the unique congruence in Cm Fn(k) such that 1/µLT = [pLT ).

Definition 2.2. Let T and S be nonempty subsets of P(k). Let L ⊆ ⋂ T and K ⊆ ⋂S. Define
an ordering relation ≤Cm on Cm Fn(k) putting

µLT ≤Cm µKS ⇐⇒ S ⊆ T and L ⊆ K.

Theorem 2.3 (Structure of free p-algebra). We have:

Fn(k) ∼= Up(Cm Fn(k),≤Cm )

where Up is the usual up-set operator.

Theorem 2.4 (Normal form theorem). Every element t of the algebra Fn(k) is of the form

t =
∨

max
{
pLT ∈ J (Fn(k)) : pLT ≤ t

}

where J (−) stands for the set of join-irreducible elements.

For n ≥ P(k), this yields |J (Fn(k))| = ∑k
i=0

(
k
i

)
(22

i − 1), a formula known before, but our
calculation is much easier.

3 Subquasivarieties

Using our description of free algebras and a few tricks we can show that

• Each free p-algebra belongs to the splitting companion (in the quasivariety lattice) of Pa3.
For n ≥ 2, the interval [Pan,Pan+1] is of cardinality continuum.

• For n ≥ 3, the variety Pan is not structurally complete in the algebraic sense, in spite
of the fact that the corresponding logic is structurally complete by a result of G. Mints.
The discrepancy is due to non-algebraizability of the logic.

2
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Abstract

The presentation is devoted to structurally complete extensions of the system R-mingle.
The main theorem states that the set of all hereditarily structurally complete extensions of
RM is countably infinite and ‘almost’ forms a chain having only one ‘branching’ element.
As a corollary, we establish that the set of structurally complete RM’s extensions which
are not hereditary is also countably infinite and forms a chain. We use algebraic methods to
provide a full description of both sets. Additionally, we provide a certain characterization
of the passive structural completeness among extensions of RM. Namely, we prove that
a given quasivariety of Sugihara algebras is passively structurally complete iff it does
not contain any of the two special algebras. As a corollary, an extra characterization
of quasivarieties of Sugihara algebras which are oveflow complete but not structurally
complete is given.

Extended Abstract

The presentation will be devoted to structural completeness [11] among consequence relations
extending the system R-mingle [1]. Results on structural completeness of RM has been re-
stricted either to some fragments of RMt [9, 10], or just to its axiomatic extensions [8]. We
will consider RM in its original signature and with respect to its arbitrary (finitary and struc-
tural) extensions. Our main theorem states that the set of all hereditarily structurally complete
extensions of RM is countably infinite and ‘almost’ forms a chain having only one ‘branching’
element. Precisely, we will prove that the structure of the poset of all hereditarily structurally
complete subquasivarieties of Sugihara algebras is an ω+ well-ordering with an additional ele-
ment adjoined above number one:

RM is known to be algebraizable [3] with the quasivariety of Sugihara algebras [5]. Sugihara
algebras are locally finite [2] and locally finite quasivarieties are known to be generated by theirs
critical members [6]. Thus, our main tool will be critical Sugihara algebras which have been
described in in [4]. To prove the main theorem, we will also use the caracterization of the bottom
of the lattice of Sughihara subquasivarieties obtained in [7]. On the basis of the main result, we
shall establish several corollaries. First, we will show that the set of structurally complete RM’s
extensions which are not hereditarily structurally complete is also countably infinite and forms a
chain. Additionally, we provide a certain characterization of the passive structural completeness
[12] among extensions of RM. Namely, we prove that a given quasivariety of Sugihara algebras
is passively structurally complete iff it does not contain any of the two special algebras. Also,
an extra characterization of quasivarieties of Sugihara algebras which are passively structurally
complete but not structurally complete is given.
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We introduce the concept of an abstract evolution system which provides a convenient
framework for studying generic mathematical structures. The talk is based on a joint work
with W. Kubís [1].

Definition. An evolution system is a structure of the form E = ⟨V, T ,Θ⟩, where V is a
category, Θ is a fixed V-object (called the origin), and T is a class of V-arrows (its elements
are called transitions) satisfying

∀X∈Obj(V) idX ∈ T and ∀t∈T ∀h∈Iso(V) h ◦ t ∈ T .

Main focus of this concept resolves around evolutions, namely sequences of the form

Θ→ A0 → A1 → · · · → An → · · ·

where each of the arrows above is a transition. With every evolution a⃗ we will associate its
colimit lim a⃗ = A∞. A finite composition of transitions will be called a path An object X is
finite if there exists a path from the origin to X. A σ-path from A to B is the colimiting
arrow in a sequence of transitions of the form A = A0 → A1 → · · · with colimit B.

Example. Let V be the category whose objects are first-order structures of a fixed language,
e.g., graphs, ordered sets, (semi-)groups, etc. We turn it into a natural evolution system E .
Namely, a transition from X to Y will be an embedding t : X → Y such that either Y = t[X]
or Y is generated by t[X] ∪ {v} for some v ∈ Y \ t[X]. Finally, we need to set the origin Θ,
which typically is the trivial structure or any of the simplest finite structures of our choice.

Later on, we consider the following properties of both the whole system and of particular
evolution of interest. Given a V-object X, we denote by T (X) = {f ∈ T : dom(f) = X}, the
class of all transitions with domain X. Arrows f, g are said to be left-isomorphic if g = h ◦ f
for some isomorphism h. We say that E is locally countable if T (X) has countably many
left-isomorphism classes for every finite object X.

We say that an evolution system E has transition amalgamation property (TAP) if for
every pair of transitions t1 : A → B and t′1 : A → C, where A is a finite object, there exist
transitions t2 : B → D and t′2 : C → D such that t2 ◦ t1 = t′2 ◦ t′1.

Similarly E has the amalgamation property (AP) if for every two paths f, g with dom(f) =
dom(g) finite, there exist paths f ′, g′ such that f ′ ◦ f = g′ ◦ g. Clearly TAP =⇒ AP, while the
converse is false.

∗Research of both authors supported by GACR grant EXPRO 20-31529X
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Let u⃗ be an evolution. We say that u⃗ has the absorption property (for transitions) if
for every n ∈ ω, for every path (transition) t : An → Y there are m ≥ n and a path g : Y → Am
such that g ◦ t = fmn .

u⃗ : U0 · · · Un · · · Um · · ·

Y
◦

TAP Absorption

A B

C D

◦

t1

t′1 t2

t′2

t

g

fmn

Theorem. Assume E is a locally countable evolution system with the TAP. Then there exists
an evolution u⃗ with the absorption property. Moreover, let U be the colimit of u⃗. Then

(1) Every finite object admits a σ-path into U .

(2) For every finite object A, for every two σ-paths f0, f1 from A to U there exists an auto-
morphism h : U → U such that f1 = h ◦ f0.

Example. Consider a category of graphs; as the origin let us take a single vertex, and a
transition is adding one vertex connected with some of the already existing ones. We obtain
different evolution systems depending on how this new edge is connected: to all vertices, to
none of them, at random, to 10% of existing vertices, to (at most) k of them and so on. In the
talk we will discuss how it influences the colimit of an evolution with the absorption property.

We end with a brief discussion on terminating evolution systems, namely systems in which
every evolution is eventually trivial, that is, from some point on all transitions are isomorphisms.
A finite object N is normalized if every transition from N is an isomorphism. An evolution
system E is regular if t ◦ h ∈ T is a transition whenever t ∈ T and h is an isomorphism. An
evolution system E is locally confluent if for every two transitions f, g with dom(f) = dom(g)
finite, there exist paths f ′, g′ satisfying f ′ ◦ f = g′ ◦ g.

Theorem. Every regular locally confluent terminating evolution system has the amalgamation
property.

Theorem. Let E be a regular locally confluent terminating evolution system. Then there exists
a unique, up to isomorphism, normalized object U . Furthermore

(1) Every finite object admits a path into U .

(2) For every finite object A, for every two paths f0, f1 from A to U there exists an automor-
phism h : U → U such that f1 = h ◦ f0.
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Biresiduation algebras or pseudo-BCK-algebras are the {/, \, 1}-subreducts of integral resid-
uated po-monoids (or lattices). We will discuss semidirect products of biresiduation algebras,
with emphasis on divisible biresiduation algebras.

To begin with, we recall that a biresiduation algebra [8] or a pseudo-BCK-algebra [3] is an
algebra (A, /, \, 1) satisfying the equations (y/x)\((z/y)\(z/x)) = 1, ((x\z)/(y\z))/(x\y) = 1,
1\x = x, x/1 = x, x\1 = 1, 1/x = 1, and the quasi-equation (x\y = 1 & y\x = 1) ⇒
x = y. Following [9], we call a biresiduation algebra divisible if it satisfies the equations
(x\y)\(x\z) = (y\x)\(y\z) and (z/x)/(y/x) = (z/y)/(x/y) (which in case of integral residuated
po-monoids are equivalent to the divisibility law). By a closure endomorphism we mean an
endomorphism that is also a closure operator.

Given two nontrivial biresiduation algebras C, D and an action ρ of C on D we define
the semidirect product C ⋉ρ D to be {(a, x) ∈ C × D : ρ(a, x) = x} with (a, x)\(b, y) =
(a\b, x\ρ(a, y)) and (b, y)/(a, x) = (b/a, ρ(a, y)/x). If the action ρ satisfies certain conditions
resembling divisibility and the maps ρ(a,−) are closure endomorphisms of D, then C ⋉ρ D is
a biresiduation algebra (with a closure endomorphism), and C ⋉ρ D is divisible if and only if
both C and D are divisible.

This construction is a quite straightforward generalization of symmetric semidirect pro-
ducts of the so-called CKL-algebras [6] (which are equivalent divisible BCK-algebras or HBCK-
algebras [1]) as well as of quasidirect products of Hilbert algebras [2]. In fact, similarly to [4],
it goes back to the construction of implicative semilattices from triples consisting of a boolean
algebra, an implicative semilattice and an admissible function [5].

If A is a divisible biresiduation algebra with a fixed closure endomorphism δ, then C = δ(A)
is a subalgebra of A, D = δ−1(1) is a filter of A (hence a biresiduation algebra) and, for every
a ∈ C, the map ρ(a, –) = a\– is a closure endomorphism of D. Thus we can construct the
semidirect product C ⋉ρ D. Though A is in general smaller than C ⋉ρ D, the two algebras
determine essentially the same triples. In some particular cases, C ⋉ρ D is isomorphic to A.
For example, this happens when A is a BL-algebra and the fixed closure endomorphism δ is
just the double negation (this generalizes the results of [4]).

For divisible biresiduation algebras, we have an adjunction between the category of algebras
with closure endomorphisms and the category of “modules”/triples. Specifically, (i) let A be
the category of divisible biresiduation algebras with fixed closure endomorphisms, i.e., algebras
(A, δ), with morphisms = homomorphisms, and (ii) let M be the category of “modules” D
over C, i.e., triples (C,D, ρ) where C, D are divisible biresiduation algebras and ρ an action
of C on D, with morphisms from (C,D, ρ) to (C1, D1, ρ1) defined as pairs of homomorphisms
f : C → C1, g : D → D1 such that g(ρ(a, x)) = ρ1(f(a), g(x)) for all a ∈ C and x ∈ D. Then,
using the assignments “algebra (A, δ) 7→ triple (C,D, ρ)” and “triple (C,D, ρ) 7→ semidirect
product C⋉ρD” described above, we define adjoint functors F : A →M and G : M→A, with
F ⊣ G.

We will also discuss the role of n-potent elements and characterize the so-called quasi-
decompositions (in the sense of [7] or [2]) corresponding to closure endomorphisms of divisible
biresiduation algebras.
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Introduction. We extend canonical extensions from the ordered to the quantale enriched
setting. We pay particular attention to non-commutative quantales and develop our work in
a language that stays as faithful as possible to both order theory [4] and category theory [10].
The reason is not only to make our work accessible to both communities: In our own ongoing
work, we need to have easy access to general category theoretic results and to an algebraic
language in the style of lattice theory and logic.

Related Work. [2] defines the MacNeille completion of a relation I ∶X ×A→ 2. Our interest
stems from generalising Formal Context Analysis [6] with its applications to data bases and
data analysis to the fuzzy and many-valued setting [9, 3]. The MacNeille completion of quantale
enriched categories has been studied in [11, 7, 5].

Quantales. A quantale (Ω,⊑,⊔, e, ⋅, ) is a complete join semilattice (Ω,⊑,⊔) and a monoid(Ω, e, ⋅) in which multiplication distributes over joins. We write top as ⊺ and bottom as �. Since
Ω is complete it also has meets ⊓. Multiplication has a left-residual ⊲ and the right-residual ⊳
defined as b ⊑ a ⊳ c⇔ a ⋅ b ⊑ c⇔ a ⊑ c ⊲ b.
Examples. (a) The two-chain 2 = {0 ⊑ 1} is a commutative quantale.
(b) The Lawvere quantale [0,∞] is a subset of the extended real numbers. It is ordered by ≥
with top ⊺ = 0 and has + as multiplication. The residual is truncated minus a ⊲ b = a � b.
(c) The quantale of languages P(Σ∗) is given wrt a set Σ and has as elements subsets of the
set of finite words Σ∗. Multiplication is L ⋅ L′ = {vw ∣ v ∈ L,w ∈ L′} where vw denotes the
concatenation of the words. The residuals are given by L ⊳M = {w ∈ Σ∗ ∣ ∀v ∈ L . vw ∈M} and
M ⊲ L = {w ∈ Σ∗ ∣ ∀v ∈ L .wv ∈M}.
Quantale Spaces. We call a category enriched over a quantale a quantale space. Enrichment
over 2 gives preorders, enrichment over [0,∞] gives generalized metric spaces [8], enrichement
over P(Σ∗) gives generalized non-deterministic automata (without designated initial and final
states) [1].

Weighted Downsets and Upsets. A relation (also known as bimodule, profunctor, dis-
tributor) R ∶ X ↬ Y between quantale spaces X and Y is a function X × Y → Ω satisfying
X(x′, x) ⋅R(x, y) ⊑ R(x′, y) and R(x, y) ⋅ Y (y, y′) ⊑ R(x, y′). A presheaf (or weighted downset)
ϕ ∈ DX is a relation X ↬ 1. A co-presheaf (or weighted upset) ψ ∈ UY is a relation 1 ↬ Y .
The homs are defined by DX(ϕ,ϕ′) = ⊓x∈X(ϕx ⊳ ϕ′x) and UA(ψ,ψ′) = ⊓a∈A(ψa ⊲ ψ′a).
Canonical Extension. The canonical extension Cδ of a quantale space C is the MacNeille
completion of the relation I ∶ U ′C ↬ D′C given by I(f, i) = ⊔c f(c) ⋅ i(c), that is, the set of fixed
points of the adjunction given by ϕ ▶ I = ⊓f ϕ(f) ⊳ I(f,−) and I ◀ ψ = ⊓i I(−, i) ⊲ ψ(i).
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Here U ′C and D′C are subsets of UC and DC containing the representable (co)presheaves. The
paradigmatic example is the set of all “weighted” filters f and “weighted” ideals i.

Theorem Let f ∈ U ′C and i ∈ D′C. Then Cδ is compact in the sense that1 Cδ(limf [−], colimi[−]) =
I(f, i). Moreover, every (ϕ,ψ) ∈ Cδ is the colimit of a limit of C and the limit of a colimit of C.

In our talk, we will introduce an algebraic calculus for reasoning in quantale enriched cat-
egories, present the canonical extension construction, provide some examples, and discuss the
extensions of functors to the canonical extensions.
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In 1992, A. Pitts proved a somewhat surprising result about Heyting’s intuitionistic propo-
sitional calculus, IPC [3]. He showed that for each variable p and formula ϕ in IPC there exists
a formula Apϕ (effectively computable from ϕ), containing only variables distinct from p which
occur in ϕ, and such that for all formulas ψ not involving p, ⊢ ψ ⇒ Apϕ if and only if ⊢ ψ ⇒ ϕ.
Here, ⊢ denotes validity in IPC.

This in particular means that one can model quantification over propositional variables in
IPC, which provides an interpretation of the second-order intuitionistic propositional calculus
IPC2 in IPC.

As a corollary, A. Pitts showed that a model of IPC2 can be constructed with an algebra of
truth values isomorphic to any given Heyting algebra. In [3] he also asked whether his result
can be generalized further to higher order calculi.

This question can also be reformulated in topos-theoretic terms, asking whether every Heyt-
ing algebra occurs as the algebra of all subobjects of an object in a topos.

For the case when the Heyting algebra in question is in fact Boolean, the affirmative answer
is the contents of Exercise 9.11 in [1]. The explicit construction of the corresponding topos FB
is sketched there; Johnstone attributes it to Peter Freyd.

Specifically, [1, Exercise 9.11] suggests expressing a Boolean algebra B as the (directed)
union of its finite subalgebras, utilizing the fact that Boolean algebras are locally finite (finitely
generated Boolean subalgebras are finite). Then one can describe the topos corresponding to B
as a colimit of a directed diagram of toposes and logical functors between them, corresponding
to finite subalgebras B0 ⊆ B. Each B0 is isomorphic to the powerset of the set at(B0) of its

atoms, and the corresponding topos is Finat(B0), the product of at(B0) many copies of the
topos Fin of finite sets.

We learned from the late D. Pataraia an alternative construction of what turns out to be
an equivalent topos LB . Namely, using the Stone duality for Boolean algebras, he consid-
ered certain explicitly described subcategory of local homeomorphisms over the Stone space
X = XB dual to the Boolean algebra B. Domains of his local homeomorphisms have form
(m1 × U1) ⊔ . . . ⊔ (mn × Un), where U1, . . . , Un are disjoint clopen subsets of X forming a
partition of X, and m1, . . . ,mn are finite discrete spaces (can be assumed to be of pairwise
distinct cardinalities). We have not heard about this kind of construction from anybody else.

P E

XB F

f

g

To demonstrate that for a given Boolean algebra B the topos FB
by Freyd and the topos LB by Pataraia are isomorphic, we consider
a third, intermediate category MB . The objects of this category
are pullbacks of the form shown on the right, where E → F is any
map between finite discrete topological spaces, and g is any surjective
continuous map from the Stone space XB of B to F .

∗report on a joint work with M. Jibladze and T. Streicher

183



On Boolean Topos Constructions by Freyd and Pataraia and their generalizations E. Kuznetsov

Note that later, D. Pataraia invented an entirely different construction of a topos, prov-
ing that for every Heyting algebra H, there exists a topos with the algebra of subterminals
isomorphic to H [2]. However, this work was never published.

In the present work, we generalize the constructions by Freyd and Pataraia and apply
the resulting generalization to some classes of Heyting algebras beyond the classes of Boolean
algebras and complete Heyting algebras. Important rôle in our investigations plays the notion
of coherent object, which we recall here.

Let A be an object of a category C with finite limits.

• A is compact if every jointly epimorphic family of subobjects of A admits a finite jointly
epimorphic subfamily.

• A is stable if, for every pair of morphisms U → A ← V with U and V compact, the
pullback U ×

A
V is compact as well.

• A is coherent if it is both compact and stable.

Here, a family of morphisms (ei : Ui → A) is called jointly epimorphic if, given any two
morphisms g, h : A→ B such that g ◦ ei = h ◦ ei for all i, it follows that g = h.

We will use coherent objects to characterize the above three categories by proving the
following theorem.

Theorem. For a given Boolean algebra B, the toposes FB, LB and MB described above are
equivalent to the subcategory C of coherent objects in the category of sheaves Sh(XB) over the
Stone space XB associated with the Boolean algebra B.

Note in particular that coherent objects of Sh(XB) form a Boolean topos.
In the talk we will discuss possible generalizations to some other classes of Heyting algebras.
One can describe the category of sheaves Sh(Spec(H)) over the spectral space Spec(H)

corresponding to H in order-topological terms, as certain Esakia spaces over XH . We will
use this description to study analogs of the above three categories, and relate them to the
subcategory of coherent objects in Sh(Spec(H)).

Finally, we consider the case of locally finite algebras and employ the latter construction of
taking coherent objects in the corresponding categories of sheaves. Instead of pullbacks of maps
between finite sets we will need pullbacks of local homeomorphisms between finite topological
spaces. In this case the corresponding inclusion functors are no longer logical.

In the talk we will address several related questions, namely, when do coherent objects of
a topos form a topos, and which spectral spaces can be obtained as inverse limits of directed
diagrams of local homeomorphisms between finite spaces.
Acknowledgements: This work was supported by Shota Rustaveli National Science Founda-
tion of Georgia (SRNSFG) grant #FR-22-6700.
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Tensor product of effect algebras was studied in various articles, e.g. [JM],[JP],[Gu]. How-
ever, there are few results about which constructions and functors involving effect algebras
preserve tensor products.

An important property of the category of effect algebras EA is that the monoidal unit and
the initial object coincide. Consequently, we can consider tensoring with a fixed effect algebra
E as a functor:

E ⊗− : EA→ E ↓ EA (1)

which sends an effect algebra F to a homomorphism E → E ⊗ F , a 7→ 1⊗ a.

Theorem 1. For an effect algebra E, the functor E ⊗− from EA to E ↓ EA which sends F
to a morphism ιE,F : E → E ⊗ F (a 7→ a⊗ 1) admits a right adjoint [E,−]−.

Corollary 2. Let D be a small connected category and E ∈ EA. The functor E⊗− : EA→ EA
preserves all colimits over D.

It turns out that several categories around EA share the same property. In particular,
the category of ordered Abelian groups with strong unit POGu and the category of partial
bounded commutative monoids PCMb satisfy theorems analogous to Theorem 1. Category
EA sits between these two categories via a pair of adjunctions:

PCMb EA POGu

L

i

Gr

Γ

⊣⊣ (2)

Theorem 3. For any X,Y ∈ PCMb and E,F ∈ EA we have

L(X ⊗ Y ) ∼= L(X)⊗ L(Y ) and Gr(E ⊗ F ) ∼= Gr(E)⊗Gr(F ). (3)

Where functors L and Gr are from (2) and the tensor products are computed in the appropriated
categories.

In the case of Gr, we have even stronger result:

Theorem 4. The left adjoint Gr in (2) extend to a strong monoidal functor.

In the case of Gr: EA → POGu, the isomorphism (3) follows from (up to isomorphism)
commutativity of the diagram (4), where E is any effect algebra and A = Gr(E).

E ↓ EA EA

A ↓ POGu POGu

Gr Gr

E⊗−

A⊗−

(4)
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The functors involved in (4) correspond to some free constructions and so are rather compli-
cated. In the proof of commutativity, we use a trick. We move to the corresponding right
adjoints (which all exist). The right adjoints all have a description in concrete terms, hence are
easier to work with.

By a result in [We], the tensor product in POGu does not preserve Riesz Decomposition
Property (RDP) in general. Whereas in PCMb, the tensor product does preserves (RDP). The
case of effect algebras was an open problem for a while. Thanks to Theorem 3, we can lift the
contra-example, which works in POGu, to EA.

Theorem 5. In EA, tensor product does not preserves Riesz Decomposition Property in gen-
eral.

Theorem 5 has the following implications:

• Computing tensor products in EA is rather hard, in the sense we cannot control it using
(RDP). That is in contrast to the construction of a universal group (functor Gr), which
preserves (RDP).

• The functor L : PCMb → EA, which essentially forces cancellation property, does not
preserve (RDP).

It is not well understood which tensor products are preserved by the right adjoints in (2).
However, it is proved in [Pu] that functor Γ preserves the tensor product of (R, 1) with itself,
that is

Γ(R⊗ R, 1⊗ 1) ∼= [0, 1]⊗ [0, 1]. (5)

The question of whether the embedding i : EA ↪→ PCMb preserves the tensor product of the
real unit interval [0, 1] (seen as an effect algebra) with itself leads to an interesting combinatorial
problem. In the case of PCMb, it holds that two tensors a1 ⊗ b1 + · · ·+ an ⊗ bn and c1 ⊗ d1 +
· · · + cm ⊗ dm in [0, 1] ⊗ [0, 1] are equal if and only if we can represent the two tensors as two
orthogonal polygons P1 and P2 inside the unit square [0, 1]× [0, 1], and there is an orthogonal
dissection between P1 and P2. By a result in [Ep], there is a full Dehn invariant for this kind of
dissection. We have used this result to show that computing the tensor product of the real unit
interval with itself as a partial monoid in POGb and as an effect algebra in EA is essentially
equivalent.
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An Abelian lattice-ordered group (ℓ-group, for short) is an Abelian group G endowed with
a lattice order that is translation invariant. An ℓ-group is called unital if it contains an element
u, such that for any positive g ∈ G there exists a natural number n for which the n-fold sum of
u exceeds g. A state of a unital ℓ-group is a normalized and positive group homomorphism in
R. It is well known that states correspond to expected-value operators on bounded real random
variables. Unital ℓ-groups are not first-order definable, yet they are categorically equivalent to
the equational variety of MV-algebras [1]. Thus, states can be studied in an equational setting
by looking at their counterpart in MV-algebras, as first proposed in [9]. However, since states
on MV-algebras are defined as particular maps into the real unit interval [0, 1], a completely
algebraic characterization was still missing.

Efforts to find an algebraic theory of states continued in [5] (see also [2]). There the authors
introduced the notion of internal state as an additional unary operation with specific axioms
relating it to the other MV-operations. This framework was used to provide an algebraic
treatment of the Lebesgue integral. A drawback of this approach is that an internal state can
be applied to itself. More recently, a different approach has been proposed. In [6] the authors
first extend Mundici’s equivalence between unital ℓ-groups and MV-algebras to an equivalence
between states between ℓ-groups and states between MV-algebras. Secondly, they introduce the
class of equational states as a two-sorted variety of algebras. An equational state (A1,A2, s) is
a two-sorted algebra in which each sort A1 and A2 is an MV-algebra with customary operations
and the state-operation s has A1 as domain and A2 as codomain. This approach opens the
way to studying probabilistic notions with algebraic tools; for instance, [6, Theorem 4.1] gives
a characterization of free equational states.

Another reason for considering the class of equational states is that they provide an alge-
braic semantics to the probabilistic logic FP( L,  L). The system FP( L,  L) is a two-layer logic
introduced in [4] to provide a formal framework to deal with the probability of vague events.
If a vague event is codified by a formula φ in  Lukasiewicz logic, its probability is given by the
formula □(φ), which is a  Lukasiewicz atomic formula interpreted as ”φ is probable”.

An adaptation of the classical Lindenbaum-Tarski construction produces an equational state
ESVar with the following properties.

Theorem 1 ([7, Theorem 8]). Let Var be a (one-sorted) set of propositional variables. For any
FP( L,  L) formula Φ, the following are equivalent.

1. Φ is a theorem.

2. Φ is valid in the equational state ESVar.

3. Φ is valid in all equational states.

Corollary 1 ([7, Theorem 15]). The equational state ESVar is the free equational state generated
by (Var, ∅).

∗Speaker.
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We present here a continuation of the algebraic study of equational states started in [8],
where it is proven that the lattice of ideals and the lattice of congruences of any equational
state are isomorphic (see [8, Corollary 2]). This isomorphism enables us to characterize the
subdirectly irreducible equational states as follows.

Theorem 2. An equational state (A1,A2, s) is subdirectly irreducible if and only if one of the
following is true:

1. A2 = ∅ and A1 is a subdirectly irreducible MV-algebra.

2. A2 is a subdirectly irreducible MV-algebra, and the state-operation is faithful, i.e. s(x) = 0
implies x = 0.

Combining the characterization of subdirectly irreducible equational states with some ideas
of [3] we prove that two notable classes generate the variety of equational classes.

Theorem 3. The following classes generate the variety of equational states:

1. The class of all equational states of the type ([0, 1]W , [0, 1]), with W an arbitrary set.

2. The class of finite equational states, i.e. equational states whose universe is finite in each
sort.
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Distributive modal logics based on classical, positive and intuitionistic logics have been thor-
oughly investigated (see e.g. [3, 4, 10]). Non-distributive modal logics have received less atten-
tion, even though they contain important logics such as quantum logic [5, 8] and substructural
logics [7]. Recently the duality and Sahlqvist theory of non-distributive modal logics were stud-
ied in [2, 9, 6]. In this abstract we investigate the finite model property of non-distributive
modal logics, including a non-distributive version of S4, from an algebraic perspective.

Let ℓS4✷ be the logic whose algebraic semantics is given by lattices with a ✷ satisfying:

✷1 ≈ 1, ✷(a ∧ b) ≈ ✷a ∧ ✷b, ✷a ≤ a, ✷a ≤ ✷✷a.

Theorem 1. The logic ℓS4✷ has the finite model property.

Proof. Let A be an algebra with valuation σ : Fm → A such that σ(φ) 6= σ(ψ) (i.e. A 6|= φ ≈ ψ).
We construct a finite algebra B such that B 6|= φ ≈ ψ. Let Σ be the set of subformulas of φ
and ψ. Define B to be the smallest 0, 1,✷,∧-subreduct of A containing σ[Σ]. Then B is finite
because ✷ is normal and S4. Hence it is complete, so we can define a join in B as

a ∨B b =
∧

{c ∈ B | c ≥ a, b}.
One easily checks that if a, b, a∨b ∈ B, then a∨B b = a∨b. Therefore, we can define a valuation
τ : Fm → B by setting τ(χ) = σ(χ) if χ ∈ Σ, and extending it to Fm in the natural way. This
is well-defined. Indeed, if α ∨ β ∈ Σ, then

τ(α ∨ σ) = σ(α ∨ σ) = σ(α) ∨ σ(β) = τ(α) ∨ τ(β) = τ(α) ∨B τ(β),

since τ(α), τ(β), τ(α) ∨ τ(β) ∈ B. The valuation τ is such that τ(φ) 6= τ(ψ). Therefore φ ≈ ψ
can be refuted in a finite algebra.

We highlight the difference with the classical cases. When proving the finite model property
for classical modal logic, one would take B to be the Boolean algebra generated by Σ, and define
a suitable box on it. In our case, we cannot consider the lattice generated by Σ, as it could be
infinite. Instead, we generate B as a meet-semilattice. Dropping joins from the generating set
allows us to add box instead (provided that it is S4), which simplifies the construction.

Next we add a monotone diamond, in line with [2, Section 4], which satisfies the following:

✸0 ≈ 0, ✸(a ∨ b) ≥ ✸a ∨ ✸b.

The resulting logic is denoted by L✸mS4✷. From this we obtain the logic LS4✷✸m by adding:

a ≤ ✸a ✸✸a ≤ ✸a.

Theorem 2. The logics L✸mS4✷ and LS4✷✸m have the finite model property.

Proof. We proceed as in the previous proof. The only difference is that we need to define a
diamond on B. We define

✸Ba =
∧

{b ∈ B | b ≥ ✸a} and ✸Ba =
∧

{✸b | b ∈ B,✸b ≥ ✸a,✸b ∈ B}
in the first and second cases, respectively. One easily checks that if a,✸a ∈ B, then ✸Ba = ✸a.
One can also check that ✸B is monotone, and that it is S4 provided that ✸ is.
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Figure 1: The lat-
tice N∞

One might wonder if the diamond can be made normal. The main
difficulty lies in non distributivity. In [1, Lemmas 4.5 & 6.2], the proofs
rely on distributivity. Another difficulty arises from the fact that one does
not need to prove ✸B(a∨ b) ≤ ✸Ba∨✸Bb, but ✸B(a∨B b) ≤ ✸Ba∨B ✸Bb.

So far, we have treated ✷ and ✸ as two unrelated operators. Guided
by [2, Section 4], we may wish to add interaction axioms, such as

✷a ∧ ✸b ≤ ✸(a ∧ b).

However, the method for obtaining finite models used above does not readily
work in presence of this interaction axiom. We will illustrate where it fails;
resolving this is ongoing work. Let A be the lattice N∞ equipped with an
identity box and a diamond sending n to n + 1 (and sending ⊤, x,⊥ to
themselves). The axiom ✷a ∧ ✸b ≤ ✸(a ∧ b) is satisfied in A. However,
it cannot be satisfied in any B ⊆ A. Indeed, let n be the maximum of
B ∩ N. Then ✸n = n + 1. In line with [1, Theorem 4.2], we wish to have
✸Bm ≥ ✸m, which forces ✸Bm = ⊤. Then ✷x∧✸Bm = x, although ✸B(x∧m) = ✸B⊥ = ⊥.
Therefore, ✷a ∧ ✸Bb ≤ ✸B(a ∧ b) is refuted in B.

This leaves the finite model property of this logic as an open question. We intend to resolve
it by exploring the Kripke-like semantics of non-distributive modal logic developed in [2].
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Coalgebraic logic proposed by Moss uses a single modality ∇T with a set endo-functor T as
its arity and T -coalgebras as structural frames [11]. Finitary version of Moss’ coalgebraic logic
has found applications in logic and automata theory [9], its soundness and completeness has been
established in a form of Hilbert-style axiomatization [8], and the Gentzen-syle sequent calculi
[4]. An adaptation of Moss’ coalgebraic logic to a many-valued context, where formulas are
evaluated in a given algebra of truth values, has been explored e.g. in [2] and [3]. Nevertheless,
proof theory for many-valued coalgebraic cover modality has not been discussed yet. Our aim is
to bridge this gap by proposing a Gentzen-style sequent calculus for a three-valued coalgebraic
cover modality, expanding Kleene logic. Besides, we will also touch upon utilizing the abstract
approach as in [10] and propose possible axioms for Hilbert-style systems over semi-primal
algebras such as 3-valued  Lukasiewicz chain.

We start with choosing, as the propositional base, Strong Kleene logic (K3), Weak Kleene
logic (WK3), which arise from different algebras (matrices) on the three values {1, n, 0}, with
varying interpretation of the third value n (undefined, nonsensical, paradoxical) [7, 6]. Conse-
quence relations of these logics can be closely related to classical consequence. In case of WK3

where the three-element algebra is not a lattice and the third value n is infectious it is done
using certain variable containment conditions. This allows for a natural adaptation of classical
sequent calculus where some rules use variable containment side conditions [5]. We show how
these conditions can be modalized and use it to built on sequent calculi for coalgebraic cover
modality.

As a starting example, consider P to be the (covariant) power set functor and Pω be the
finitary power set functor. Let LK3 be the following language:

φ := p |
∨

Φ |
∧

Φ | ¬φ | ∇α | ∆α

where p ∈ Prop, a set of propositional variables, and Φ, α ∈ PωLK3
. The set V ari(Φ) denotes

propositional variables within formulas of modal depth i in Φ, and BasePω

LK3
(α) is defined as⋂{X ⊆ω LK3 | α ∈ PωX}. The semantics for the logical connectives of LWK3 can be defined

using the truth tables in Weak Kleene logic. The semantics for ∇α is defined as follows:

Definition 1. Let S be a set. For a coalgebra σ : S → P(S) together with the atomic evaluation
ev : S × Prop→ {0, 1, n}

s ⊩wσ ∇α := σ(s)P̂(⊩wσ )(α) =
∧

t∈σ(s)

∨

a∈α
t ⊩wσ a ∧

∧

a∈α

∨

t∈σ(s)
t ⊩wσ a

where P̂(⊩wσ ) is the power set relation lifting of ⊩wσ .

The infectious property of Weak Kleene logic implies that if there exist some t ∈ σ(s)
and a ∈ α such that t ⊩wσ a = n then s ⊩wσ ∇α = n. Otherwise the ⊩wσ relation acts the
same as in the classical case. The Genzen sequent calculi GWK3 employs the following modal
depth-specific side conditions as in [5]. For example, the (¬-r) rule would now become:

∗This work is supported by the grant no. 22-01137S (MetaSuMo) of the Czech Science Foundation.
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Γ, a⇒ Σ
(¬-r), ∀i ≤ m, V ari(a) ⊆ V ari(Γ)

Γ⇒ Σ,¬a
{AΦ

L ⇒ AΦ
R | Φ ∈ SRD(Γ ⊎ Σ)}

∀Φ.AΦ ∈ Base(Φ),∀i ≤ n, V ari(AΦ
L) ⊆ V ari(AΦ

R){∇α | α ∈ Γ} ⇒ {∆β | β ∈ Σ}
where m is the maximum modal depth of formulas in Γ, and n is a maximum modal depth
of formulas in Γ ∪ Σ. In this talk, we will discuss how to obtain a Gentzen system for the
coalgebraic cover modality over Weak Kleene logic.

For the Strong Kleene logic, the semantics for logical connectives in LK3 is defined via the
truth tables in Strong Kleene logic, and the modal formula ∇α is defined similarly to Definition
1. The Genzen sequent calculus GK3 is based on GWK3, obtained by removing all the side
conditions and adding six negation related rules [1]. We will show how to extend the calculus
with the ∇-modality rules. We will then discuss soundness and completeness of the resulting
calculi. As [10] indicates, completeness can be lifted from the classical logic to the many-valued
logic in case the algebras are semi-primal. Nevertheless, since the semantic for Weak Kleene
logic is not semi-primal, the approach in [10] is not feasible here.

In the end of this talk, we will briefly address the problem of axiomatizing semi-primal
algebra-valued coalgebraic logic by demonstrating when modifying the modal axioms (∇1)-
(∇4) in [8] and adding the following axioms results in a sound Hilbert-style axiomatic system:

τv(∇Φ) ≡ ∇T (τv)(Φ),

where v are elements of semi-primal algebras A and for τv are unary operations defined by

τv(x) =

{
1, if x ≥ v
0, if x ≱ v.

References

[1] Arnon Avron. Natural 3-valued logics—characterization and proof theory. The Journal of Symbolic
Logic, 56(1):276–294, 1991.
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Abstract

Consider two operations on a Heyting algebra: x∧̂y = ¬¬x∧¬¬y, x ·y = x → y∧y → x
and a class H of all (·, ∧̂) subreducts of Heyting algebras. It is easy to see that H is a
quasivariety and all algebras in this class are Fregean (1-regular and congruence orderable)
and congruence permutable. We show that H is actually a variety by characterizing it as
an equational class. In the language of Tame Congruence Theory this class is an example
of a mixed type; algebras can behave locally both like a finite vector space over a finite
field and like a two element boolean algebra.

1 Introduction

According to [4], there are only finitely many polynomialy nonequivalent algebras of given
fixed size which generate a congruence permutable (CP) Fregean variety. Because (in CP
Fregean) the clone of polynomials is determined by the congruence lattice suplemented by the
commutator operator, it is easy to check that on a three element universe there are exactly four
such nonequivalent algebras. Each of them can be obtained by taking an appropriate reduct
of a three-element Heyting algebra. Two of those are from well known classes: equivalential
algebras and Brouwerian semilattices, however the other two are not. We denote those R
and D. An interesting property of R,D is that unlike equivalential algebras or Brouwerian
Semilattices they both have a mixed type in the language of Tame Congruence Theory [1].
This lead to research of varieties generated by R and D done by S lawomir Przyby lo in his PhD
thesis (published in [5, 6]).

Because R can be obtained as a (·, ∧̂) reduct of a Heyting algebra we went on to investigate
the class H of all (·, ∧̂)-subreducts (of which V(R) is a proper subclass). Similar research was
already done for classes of (·,¬) and (·,¬¬) subreducts leading to a characterization of the
first one as a quasivariety and the other as a variety [3, 2]. We follow a similar path by first
”guessing” an equational class and then incrementaly showing its properties until we arrive at
a conclusion that it is in fact the class of all subreducts.

2 EARS

Definition 1. An algebra A = (A, ·, ∧̂) with two binary operations is called an equivalential
algebra with regular semilattice or EARS if a series of identities are satisfied for any x, y, z ∈ A.
Before we write them down, for the sake of brevity, we extend our language by adding an unary
operation r(x) = x∧̂x and adopt a convention that · is associating to the left (xyz = (xy)z).
The identities are as follows:

E1. xxy ≈ y;

E2. xyzz ≈ (xz)(yz);

E3. xy(xzz)(xzz) ≈ xy;
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S1. r(x)∧̂y ≈ x∧̂y;

S2. x∧̂y ≈ y∧̂x;

S3. (x∧̂y)∧̂z ≈ x∧̂(y∧̂z);

M1. r(x)yy ≈ r(x);

M2. r(xx) ≈ xx;

M3. x(y∧̂z)(y∧̂z) ≈ xr(z)r(z)r(y)r(y);

M4. (x∧̂z)(y∧̂z)r(z) ≈ (xy)∧̂z;

M5. xr(x)r(x) ≈ x.

Identities E1-E3 make (A, ·) an equivalential algebra and identities S1-S3 impose a semilat-
tice structure on (r(A), ∧̂). The remaining five identities describe how those two objects are
mixed together.

Of course H is a subclass of the variety of all EARS VEARS . We will start with some basic
properties of the operations and congruences of EARS and then show the following facts:

Lemma 1. VEARS is congruence orderable.

As 1-regularity and congruence permutability is preserved by reducts it follows that

Lemma 2. VEARS is congruence permutable Fregean.

Lemma 3. VEARS is locally finite.

And the main result

Theorem 1. Every finite EARS is in H, which leads to VEARS = H.

We will also present some results about the commutator in EARS and the structure of
subvarieties of VEARS .
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Uniform spaces provide a general setting in which to discuss uniform continuity and com-
pleteness. A uniform space is given by a set X equipped with a filter E of binary relations on
X, called entourages, satisfying certain axioms. (For instance, see [4, Chapter 9].) Entourages
intuitively act like approximate equality relations. Every metric space (X, d) gives rise to a
uniform space with basic entourages Eε = {(x, y) ∈ X ×X | d(x, y) < ε}.

Recall that the completion of a metric space can be constructed as a quotient of the set of
Cauchy sequences. However, this does not work for general uniform spaces. The problem is
that sequences are not always ‘long enough’ and so we need to use Cauchy filters or Cauchy
nets instead.

The pointfree approach to uniformity replaces uniform spaces with uniform locales. Anal-
ogously to before, a uniform locale is a locale X equipped with a filter of open sublocales of
X2 satisfying certain conditions and there is a well-developed theory of completions of uniform
locales via Cauchy filters. See [2] or [1] for details.

In this talk, we will show that, in contrast to the situation with uniform spaces, the correct
completion of uniform locales can also be obtained using Cauchy sequences. Our construction
is based on the construction of the so-called ‘localic completion’ of metric spaces in terms of
Cauchy sequences described by Vickers in [3], but generalises it to start with locales rather than
sets and to use uniform rather than metric structures.

We must first construct a locale of Cauchy sequences. Usually, we would obtain this as the
classifying locale of a geometric theory of Cauchy sequences. Recall that a Cauchy sequence in a
uniform space (X, E) is a map s : N → X such that ∀E ∈ E . ∃N ∈ N. ∀n, n′ ≥ N. (s(n), s(n′)) ∈
E. The problem is that this definition involves universal quantification over N and so is too
logically complex to be described by a geometric theory. Vickers circumvents this by asking the
Cauchy sequences to converge rapidly, but rapid convergence cannot be defined outside of the
metric setting.

Instead we ‘Skolemise’ the definition to reverse the quantifiers and give ∃m : E +→ N. ∀E ∈
E . ∀n, n′ ≥ m(E). (s(n), s(n′)) ∈ E and then include the modulus of Cauchyness m in the data
of a Cauchy sequence. (This additional data will be discarded by the quotient step in any case.)
This allows us to define a locale of modulated Cauchy sequences.

Finally, we construct a map from this locale to the usual completion and prove it is a well-
behaved quotient map. Thus, the completion can indeed be obtained as a quotient of the locale
of (modulated) Cauchy sequences.

A natural question is now: what goes wrong in the spatial setting? The problem is that,
unless the uniformity has a countable base, the locale of modulated Cauchy sequences is unlikely
to be spatial. The spatial construction can be understood as taking the points of this locale
before taking the quotient. To obtain the correct completion of a uniform space we must instead
take points after taking the quotient. Thus, the root of the pathologies that occur in the spatial
setting is that taking the spectrum of a locale does not preserve quotients!
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Continuous logic is obtained by replacing the binary truth values {0, 1} by the unit interval
[0, 1]. It was introduced for the model theory of complete metric structures, see [5] for a recent
introduction. I will explain how continuous logic arises naturally when combining categorical
logic and duality theory.

A coherent hyperdoctrine is a functor Cop → DL satisfying some axioms (see, e.g., [3,
Ch. 5]), where C is a left exact category of contexts and where DL is the category of distributive
lattices. These hyperdoctrines algebraize theories in coherent logic, more precisely the ones
extending the theory of flat functors on C. Composing with Priestley duality, one obtains a
functor C → Priestley, giving, in model theoretic terms, the spaces of types of the theory.
The functors obtained in this way can be axiomatized as the open polyadic Priestley spaces
[9]. We can replace the Priestley spaces by the more general compact ordered spaces to obtain
open polyadic compact ordered spaces and it is possible to develop an elementary model theory
from this order-topological perspective (Beth definability, omitting types, Makkai conceptual
completeness).

In order to come back to the algebraic side, two dualities for compact ordered spaces behave
well:

1. The duality between compact ordered spaces and stably continuous frames.

2. The duality obtained in [1, 2] by taking the unit interval [0, 1] as a dualizing object.

Applying either of these dualities yields a different kind of hyperdoctrine. We will call them
respectively stably continuous hyperdoctrines and fuzzy hyperdoctrines. Each possibility has
its own advantage.

The duality with stably continuous frames allows to draw a connection to topos theory.
The classifying toposes of stably continuous hyperdoctrines are the stably continuous toposes,
specializing the continuous toposes of [6].

On the other hand, the duality of [1, 2] allows for a very straightforward generalization
of intuitionistic logic. For instance, Pitts’ uniform interpolation theorem [7] still holds by
generalizing the proof of [4, 8].
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Bi-intuitionistic logic bi-IPC is the conservative extension of (propositional) intuitionistic
logic IPC obtained by adding a new binary connective ← to the language, called the co-
implication, which behaves dually to →. In this way, bi-IPC reaches a symmetry, which IPC
lacks, between the connectives ∧,⊤,→ and ∨,⊥,←, respectively. Furthermore, thanks to the
co-implication, bi-IPC achieves significantly greater expressivity than IPC. For instance, if the
points of a Kripke frame M are interpreted as states in time, the language of bi-IPC is expressive
enough to talk about the past, something that is not possible in IPC. This feature is captured
by the transparent interpretation of co-implication provided by the Kripke semantics of bi-IPC
[11], since M, x |= ϕ← ψ iff ∃y ≤ x (M, y |= ϕ and M, y ̸|= ψ).

The greater symmetry of bi-IPC when compared to IPC is reflected in the fact that bi-IPC
is algebraized in the sense of [3] by the variety bi-HA of bi-Heyting algebras [10], i.e., Heyting
algebras whose order duals are also Heyting algebras. As a consequence, the lattice of bi-
intermediate logics (i.e., consistent axiomatic1 extensions of bi-IPC) is dually isomorphic to
that of nontrivial varieties of bi-Heyting algebras. The latter, in turn, is not only amenable to
the methods of universal algebra, but also from those of duality theory, since the category of
bi-Heyting algebras is dually equivalent to that of bi-Esakia spaces [5], see also [1].

In [2], we began studying extensions of the bi-intuitionistic Gödel-Dummett logic bi-GD :=
bi-IPC+(p→ q)∨ (q → p), the bi-intermediate logic axiomatized by the Gödel-Dummett axiom
(also known as the prelinearity axiom). Over IPC, this formula axiomatizes the well-known
intuitionistic linear calculus LC := IPC + (p→ q) ∨ (q → p) (see, e.g., [4, 6, 8, 7]). While both
logics are Kripke complete with respect to the class of co-trees (i.e., posets with a greatest
element and whose principal upsets are chains), notably, the properties of these logics diverge
significantly. For example, while LC has only countably many extensions, all of which are locally
finite, we proved that bi-GD is not locally finite and has continuum many extensions. Moreover,
LC is also Kripke complete with respect to the class of chains, whereas we showed that the
bi-intermediate logic of chains is a proper extension of bi-GD (namely, the one obtained by
adding the dual Gödel-Dummett axiom ¬[(q ← p) ∧ (p ← q)] to bi-GD). This strongly suggest
that the language of bi-IPC is more appropriate to study tree-like structures than that of IPC
(since we work with a symmetric language, all of our results can be dualized to the setting of
trees in a straightforward manner).

One notable extension of bi-GD is Log(FC) := {φ : ∀n ∈ Z+ (Cn |= φ)}, the logic of the
finite combs (i.e., finite co-trees whose shape resembles that of a comb, see Figure 1). We
showed in [2] that if L is an extension of bi-GD, then L is locally finite iff L ⊈ Log(FC).
Consequently, Log(FC) is the only pre-locally finite extension of bi-GD (i.e., it is not locally
finite, but all of its proper extensions are so). More recently, we found a finite axiomatization
for Log(FC), using Jankov and subframe formulas (the theories of these types of formulas for
bi-GD were developed in [2, 9]). Since, by definition, this logic has the finite model property, we

1From now on we will use extension as a synonym of axiomatic extension.
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can conclude that the problem of determining if a recursively axiomatizable extension of bi-GD
is locally finite is decidable.

In this talk, we will cover the main steps of our recent proof. Namely, we will provide a
characterization of the bi-Esakia duals of the finitely generated subdirectly irreducible algebras
which validate bi-GD plus three particular Jankov formulas and one subframe formula. We will
then present a combinatorial method we developed which can be used to show that the variety
generated by the aforementioned algebras has the finite model property. This allows us to
infer that Log(FC) coincides with the extension of bi-GD axiomatized by the above mentioned
Jankov and subframe formulas.

Cn
x′1

x1
x′2

x2

xn

x′n

Figure 1: The n-comb Cn.
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Holliday [1] recently introduced a non-classical logic called Fundamental Logic, which in-
tends to capture exactly those properties of the connectives ∧,∨ and ¬ that hold in virtue of
their introduction and elimination rules in Fitch’s natural deduction system for propositional
logic. Holliday provides an intuitive semantics for fundamental logic in terms of fundamental
frames (sets endowed with a relation of openness between its points satisfying some conditions)
which generalizes both Goldblatt’s semantics for orthologic and Kripke semantics for intuition-
istic logic.

The main goal of this talk (based on [3, Chap. 4] and [4]) is to provide some robust cate-
gorical foundations for Holliday’s semantics for Fundamental Logic. First, we will show how
his semantics naturally arises as the discretization of a duality between fundamental lattices
(the natural algebraic companions of Fundamental Logic) and a subcategory of the category
of Priestley spaces. The main construction, which is of independent technical interest, con-
sists in using Priestley’s duality between distributive lattices and Priestley spaces to a obtain a
duality between the category of all lattices and a category of binary products of Priestley spaces.

Time permitting, we will also discuss how one can construct natural functors between the
category of fundamental lattices and a category of fundamental frames, so as to obtain a version
of the Goldblatt-Thomason theorem both for Fundamental Logic and for its modal extension
[2].
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The origin of convex geometries lies in combinatorics, and the goal of the study of finite
convex geometries was to develop the combinatorial abstraction of convexity. A convex geome-
try G = (X,α) is a finite closure system which satisfies the anti-exchange property, namely for
all x ̸= y and all closed sets A ∈ F ⊆ 2X :

x ∈ α(A ∪ {y}) and x ̸∈ A imply that y ̸∈ α(A ∪ {x}).

The dual of a convex-geometry is an antimatroid : the family of complements of closed sets in
G.

The closure lattices of a convex geometry have also been studied from the lattice theoretic
point of view [3, 5]. A lattice L is (isomorphic to) the closure lattice of some convex geometry
(shortly, we say: L is a convex geometry) iff, L is both:

• join-semidistributive: for every x, y, z ∈ L, x ∨ y = x ∨ z implies that x ∨ (y ∧ z) =
(x ∨ y) ∧ (x ∨ z), and

• lower-semimodular : for every x, y ∈ L, the covering relation x ≺ x ∨ y implies x ∧ y ≺ y.

In the nineties, a series of papers studied maximal sublattices and Frattini sublattices (in-
tersection of all maximal sublattices), and considerable progress was done for lattices in classes
D of distributive lattices and B of McKenzie’s bounded lattices as shown in [1, 2]. But not
much was known about classes that extends D and B, as e.g. CG of (finite) convex geometries
and SD∨ of join semi-distributive lattices.

In this talk we show some results about maximal sublattices and Frattini sublattices in these
two classes. In particular, there is a full description of maximal sublattices in convex geometries
of convex dimension 2. The complements of maximal sublattices are precisely order-convex sets
of one of the three forms (and satisfying in each case additional technical conditions):

• A singleton, namely a doubly-irreducible element.

• A chain.

• A union of two chains with the common least element.

Further, we present the conditions which have to be kept in order to obtain particular
features of the Frattini sublattices. It is worth mentioning that convex geometries of convex
dimension 2 are structures dual to SPS lattices, see e. g. [4].

This is a joint work with K. Adaricheva and S. Silberger from Hofstra University, as
well as with A. Zamojska-Dzienio from Warsaw University of Technology.

∗Speaker.
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We call an algebraic structure ⟨S,∨, ·, e⟩ an idempotent semiring if

(i) ⟨S, ·, e⟩ is a monoid;

(ii) ⟨S,∨⟩ is a semilattice (i.e., an idempotent commutative semigroup); and

(iii) a(b ∨ c)d = abd ∨ acd for all a, b, c, d ∈ S,

and an idempotent semifield if, additionally, ⟨S, ·, e⟩ is the monoid reduct of a group. These
structures play an important role in many areas of mathematics, including idempotent analysis,
tropical geometry, formal language theory, and mathematical logic (see [6] for details). Other
definitions of an idempotent semiring (also known as a dioid or an ai-semiring) may be found
in the literature — in particular, an idempotent semifield may be defined without e in the
signature, or with an extra constant symbol 0 interpreted as the neutral element of ∨, where
⟨S\{0}, ·, e⟩ is a group — but our results extend also to these settings.

Expanding an idempotent semifield ⟨S,∨, ·, e⟩ with the group inverse operation −1 and lattice

meet operation ∧ defined by a∧b := (a−1 ∨ b−1)
−1

produces a lattice-ordered group (or ℓ-group).
Moreover, idempotent semifields are precisely the semiring reducts of ℓ-groups. In this work,
which is developed in full in [8], we answer three open problems about equational theories of
classes of idempotent semifields. These problems have been solved for classes of ℓ-groups, but
restricting to fewer operations requires new proof methods and yields notably different results.

Let K be any class of L-algebras for some signature L, and call it non-trivial if at least one
of its members is non-trivial, i.e., has more than one element. The equational theory Eq(K) of
K is the set of all L-equations s ≈ t such that K |= s ≈ t. A basis for this equational theory is
a set of equations Σ ⊆ Eq(K) such that every equation in Eq(K) is a logical consequence of Σ.
If Eq(K) has a finite basis, then K is said to be finitely based. Our first theorem is a complete
answer to the finite basis problem for idempotent semifields. Although countably infinitely
many equational theories of ℓ-groups have a finite basis (see, e.g., [2]), we prove, extending
previous results obtained in [1], that:

Theorem A. There is no non-trivial class of idempotent semifields that is finitely based.

Our second theorem concerns the number of equational theories of classes of idempotent
semifields. Using a technique of ‘inverse elimination’ introduced in [3, Section 4] to translate
between equations in the different signatures, we obtain a one-to-one correspondence between a
family of equational theories of ℓ-groups that is known to be uncountable (see [7]) and equational
theories of certain classes of idempotent semifields, thereby proving:

Theorem B. There are continuum-many equational theories of classes of idempotent semi-
fields.

The final theorem concerns the complexity of deciding equations in the class of idempotent
semifields. The equational theory of the class of ℓ-groups is known to be co-NP-complete [5,
Theorem 8.3] and we prove that this is also the case for the restricted signature, that is:

Theorem C. The equational theory of the class of idempotent semifields is co-NP-complete.
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Using this result together with [4, Theorem 2], which relates the validity of equations in ℓ-groups
to the existence of right orders on free groups, we also obtain the following:

Corollary. Let F(X) be the free group over a set X with |X| ≥ 2. Then the problem of checking
for s1, . . . , sn ∈ F(X) if there exists a right order ≤ on F(X) satisfying e < s1, . . . , e < sn is
NP-complete.
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Abstract
We prove that a T0 topological space is ω-well-filtered if and only if it does not admit

either the natural numbers with the cofinite topology or with the Scott topology as its
Skula closed subsets. Based on this, we offer a refined topological characterization for the
ω-well-filterification of T0-spaces and solve a problem of Xu.

In Mathematics, various types of “completions” of different structures have been drawing
extensive attention and acting as important roles both in theory and practice. Examples include
the Dedekind-MacNeille completion of ordered sets, completion of metrics and compactifications
of topological spaces, et cetera. In domain theory and non-Hausdorff topology, completions such
as the D-completion [6], well-filterification [9] and sobrification [3] of T0 spaces are particularly
well-studied in the form of reflectivity of the corresponding categories, to name a few.

The notion of ω-well-filtered spaces, which is strictly weaker than that of well-filtered spaces
(hence that of sober spaces) introduced by Heckmann [5], is initially put forward by Xu et al. [10].

Definition 0.1. A T0 space X is called ω-well-filtered if for every reversely ordered countably
family {Ki}i∈N of compact saturated subsets (Ki ⊆ Kj when i ≥ j), that the intersection∩

i∈N Ki is in some open subset U implies that Ki ⊆ U for some i ∈ N.

Examples of ω-well-filtered spaces include all well-filtered spaces hence all sober spaces.
Like well-filtered spaces and sober spaces, ω-well-filtered spaces have many nice properties. For
example, the classical result that a sober space is locally compact if and only if it is core-compact
can be extended to ω-well-filtered spaces. Xu et al. [10] showed that the category of all ω-well-
filtered spaces is a reflective full subcategory of the category of T0 spaces with continuous maps.
This reveals the existence of “ω-well-filterification” for T0 spaces. In the same paper, they gave
a direct characterization of this completion by identifying the corresponding completion space
as the family of all WDω-subsets endowed with the lower Vietoris topology.

In this paper, we look more closely at ω-well-filtered spaces through the lens of descriptive
set theory. Recently, de Brecht obtained that a countably based T0 space is sober if and only
if it does not contain a Π0

2-subspace homeomorphic to one of two specific topological spaces
S1 or SD [2], where S1 and SD are the natural numbers with the co-finite topology and the
Scott topology (in the usual order), respectively. This result was generalized to first-countable
T0 spaces in [7], and the authors showed that a first-countable T0 space is sober if and only
if it does not contain a Π0

2-subspace homeomorphic to S1, SD or a directed subset without a
maximum element. In a similar but different vein, and as a central result of this paper we
prove:

Theorem 0.2. A T0 space is ω-well-filtered if and only if it does not contain S1 or SD as its
Skula closed subsets.

This provides characterizations for ω-well-filtered spaces by forbidden subspaces. In [10], Xu
et al. also proved that on each first-countable T0 space, well-filteredness and sobriety coincide.
A natural question related to this matter is whether the well-filterification and sobrification
constructions also coincide on first-countable T0 spaces, which boils down to proving whether
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every first-countable T0 space is a well-filtered determined space in the sense of Xu et al. [11].
The authors of [11] further posed the following problem:

Problem 0.3. Is every first-countable T0 space a Rudin space?

Based on our aforementioned characterization for ω-well-filtered spaces, we solve Problem 0.3
in the negative by displaying a counterexample.

Moreover, our characterization for ω-well-filtered spaces via forbidden subspaces enables us
to give more refined characterizations for the D-completion of Keimel and Lawson and also for
the sobrification, when the underlying space is second-countable. This is achieved via the aid
of a weaker version of the strong/Skula topology, which we introduce in this paper.

Definition 0.4 (Strong∗ topology). Let X be a T0 space. A nonempty subset A of X is said
to have the KFω property, if there exists a countable filtered family K of compact saturated
sets of X such that cl(A) is a minimal closed set that intersects all members of K.
Let B = {A ⊆ X | sup B ∈ A for all B ∈ KFω(A) with sup B existing}. Then the family B, as
closed sets, forms the strong∗ topology of X.

Theorem 0.5. 1. In each ω-well-filtered space, all of its ω-well-filtered subspaces are pre-
cisely its closed subsets in the Strong∗ topology.

2. The ω-well-filterification of a T0-space X is homeomorphic to the Strong∗ closure of the
embedding copy of X in the sobrification of X.
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This work is within the context of the classical Galois connection between sets of functions
and sets of relations determined by the notion of preservation. For a set A, a function f : An →
A, and a relation R ⊆ Ak, we say that f preserves R (and write f . R) whenever f applied
coordinatewise to n-many tuples belonging to R produces another tuple belonging to R. For a
finite set A, the Galois closed sets of functions are the function clones, while the Galois closed
sets of relations are relational clones, which are sets of relations that are closed under positive
primitive definitions. A classical and easy result in Universal Algebra states, for an equivalence
relation θ ⊆ A2 and a function f : An → A, that

f . θ ⇐⇒ trl1(f) . θ,

where trl1(f) is the set of all basic translations of f , i.e. those unary polynomials that can be
produced by evaluating all arguments except possibly one at a constant. If a relation R satisfies
the above property, we will write Ξ1(R).

Before this collaboration, each author had found a different kind of generalization of this
result. In [1], the second author and his collaborators were interested in describing all relations
R such that Ξ1(R) holds. Since Ξ1(θ) holds for any quasiorder θ (reflexive and transitive
binary relation), their work is focused on establishing properties of what they call generalized
quasiorders, which are relations R ⊆ Ak that are reflexive (contain the constant tuple (c, . . . , c)

for all c ∈ A) and transitive, which we now define. For a ∈ Ak2 , we will write R |= a to indicate
that every row and column of a when considered as a k × k matrix is a tuple belonging to
R. With this notation, we say that R is transitive if whenever R |= a, then the diagonal of a
is also an element of R. It is easy to see that this definition of transitivity coincides with the
usual definition for binary relations. The authors establish that Ξ1(R) holds for any generalized
quasiorder R.

On the other hand, in [2] the first author shows that properties of a higher arity com-
mutator operation are closely connected to the properties of certain invariant relations called
higher dimensional equivalence relations. Such relations are naturally coordinatized by higher
dimensional cubes and satisfy natural generalizations of the transitive, reflexive, and symmetric
properties ordinarily associated with binary relations. Higher dimensional congruences enjoy
some nice properties, one of which is a generalization of the above equivalence to the following:

f . θ ⇐⇒ trld(f) . θ,

for a higher dimensional congruence θ ⊆ A2d and a function f : Ak → A, where now we take
trld(f) to be the set of polynomial functions obtainable from f by evaluating all but up to
d-many variables at a constant. If a relation R satisfies this generalization of Ξ1(R), we will
write Ξd(R).

These two lines of inquiry prompt the search for a characterization of the those relations R

for which Ξd(R) holds. This question is closely related to a question about clones: for M ⊆ AAd
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a set of d-ary operations on a finite set A, when is it true that

M∗ = {f ∈ Op(A) : trld(f) ⊆M}

is a clone? Among the results of this inquiry are definitions of reflexivity and transitivity
which, on the one hand are suitable for a very broad class of relations, and on the other hand
are each a natural generalization of the older concept. We are able to show that a relation R
which is reflexive and transitive in the more general sense satisfies Ξd(R) (for d a dimension
parameter which we will not define here). Furthermore, we characterize those clones that are the
polymorphisms of a set of such relations, for a particular dimension d. One of our conclusions is
that each relation R with the property Ξd(R) has a positive primitive definition in a particular
relation ΓM that is both reflexive and transitive in our general sense.
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In [2, 4, 3] the so-called poset of all logics is introduced and compared with the lattice Var of
interpretability types of varieties (see, e.g., [1]). Roughly speaking, a variety V is interpretable
into a variety W when W is term-equivalent to some variety, whose reducts (in a smaller
language) belong to V . The interpretability relation for logics can be defined analogously,
although it requires some tools from abstract algebraic logic (see, e.g., [2]).

More precisely, a (logical) matrix (A, F ) is said to be a model of a logic ⊢ when F is a
deductive filter of ⊢ on A. In addition, if the unique congruence of A that does not glue an
element of F to one of A−F is the identity, we say that (A, F ) is reduced. A matrix is a Suszko
model of a logic ⊢ if it is isomorphic to a subdirect product of reduced models of ⊢. We denote
by Mod≡(⊢) the class of all the Suszko models of ⊢ [2].

Let ⊢ be a logic. The set of connectives of ⊢ will be denoted by L(⊢) and the set of terms
of ⊢ with countably many variables by T (⊢). Given two logics ⊢ and ⊢′, we say that a map
τ : L(⊢)→ T (⊢′) is a translation when it sends n-ary connectives to n-ary terms. In this case,
with every algebra A in the language of ⊢′ we can associate an algebra Aτ in the language of
⊢ defined as follows:

Aτ := (A, {τ(f)A : f ∈ L(⊢)}).
We say that ⊢ is interpretable into ⊢′, in symbols ⊢⩽⊢′, when there exists a translation τ : L(⊢
)→ T (⊢′) such that

(A, F ) ∈ Mod≡(⊢′) implies that (Aτ , F ) ∈ Mod≡(⊢).

Two logics ⊢ and ⊢′ are said to be equi-interpretable when ⊢⩽⊢′⩽⊢. We denote the equiva-
lence class of all the logics that are equi-interpretable with ⊢ by J⊢K. Note that ⩽ is a preorder
on the class of all logics. The poset of all logics Log is the corresponding poset, whose elements
are precisely the classes J⊢K1. Given two logics ⊢ and ⊢′, we write J⊢K ⩽ J⊢′K iff ⊢⩽⊢′.

In [2] it is shown that even if Log has infima of families indexed by arbitrarily large sets, it
may lack binary suprema (this is possible because its universe is not a set). Infima in Log can
be described as follows. The non-indexed product of a family of algebraic languages {Li | i ∈ I}
is the algebraic language

⊗
i∈I Li whose n-ary symbols are of the form (φi(x))i∈I , where each

φi(x) is an n-ary term of Li. Moreover, the non-indexed product of a family {Ai | i ∈ I}, where
each Ai is a Li-algebra, is the

⊗
i∈I Li-algebra

⊗
i∈I Ai, whose universe is

∏
i∈I Ai and whose

n-ary symbols (φi(x1, . . . , xn))i∈I are interpreted as follows:

(φi(x1, . . . , xn))
⊗

i∈I Ai

i∈I (a1, . . . , an) := (φAi
i (a1(i), . . . , an(i)))i∈I .

Similarly, the non-indexed product of a family of matrices {(Ai, Fi) | i ∈ I} is the matrix
(
⊗

i∈I Ai,
∏
i∈I Fi). Lastly, the non-indexed product of a family {⊢i | i ∈ I} of logics is the

logic
⊗

i∈I ⊢i in the language
⊗

i∈I Li induced by the class of matrices
⊗

i∈I Mod≡(⊢i). It

1Although strictly speaking the universe of Log is not a set (and, therefore, Log is not a poset in the
traditional sense), our results on this structure can be effortlessly rephrased in ZFC (see, e.g., [2]).
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turns out that J⊗i∈I ⊢iK is the infimum of {J⊢iK : i ∈ I} in Log [2, Thm. 4.6].

The aforementioned description of infima allows us to introduce a notion of meet-
irreducibility for arbitrary logics. More precisely, we say that a logic ⊢ is meet-irreducible
when J⊢K is a meet-irreducible element of Log, i.e., for every pair of logics ⊢1 and ⊢2,

J⊢1 ⊗ ⊢2K = J⊢K implies that either ⊢1⩽⊢ or ⊢2⩽⊢ .

Our main result provides a sufficient condition for the meet-irreducibility of a given logic. We
say that a model of a logic ⊢ is trivial when it is either of the form (1, {1}) or (1,∅), where 1
is the trivial L(⊢)-algebra. On the other hand, recall that a class of similar matrices K has the
joint embedding property (JEP) if for every set X of nontrivial members of K there exists some
(A, F ) ∈ K in which every member of X embeds.

Theorem 1. Every logic with theorems ⊢ satisfying the following conditions is meet-irreducible:

(1) Mod≡(⊢) has the JEP;

(2) The nontrivial members of Mod≡(⊢) have substructures of prime cardinality;

(3) The nontrivial members of Mod≡(⊢) lack trivial substructures.

As a consequence, every intermediate logic is meet-irreducible and so are some prominent modal
logics such as the global consequence of the normal modal logic S4.

It is natural to compare the above result with a well-known sufficient condition for meet-
primeness in the lattice of interpretability types of varieties which states that, if V is the variety
generated by a nested countable union of varieties Vn, where each Vn is generated by a finite
algebra of prime cardinality, then V is meet-prime in Var [1, Prop. 18]. During the talk we will
also discuss a variant of this observation in the context of logics (as opposed to varieties).
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Abstract

Salvati introduced a semantic notion of recognizable language of λ-terms in cartesian
closed categories. The seminal work of Hillebrand and Kanellakis induces a syntactic notion
of regular language of λ-terms. We show that these two notions coincide for a large class
of cartesian closed categories. This shows the robustness of the notion of regular language
of λ-terms as well as the dual one of profinite λ-term.

This is joint work with Sam van Gool, Paul-André Melliès and Tito Nguyễn.
There is a growing connection between automata theory and the theory of λ-calculus. In-

deed, the Church encoding shows that finite words and ranked trees are simply typed λ-terms.
For instance, words over the alphabet Σ = {a, b} correspond to λ-terms of type

ChurchΣ := (o⇒ o)︸ ︷︷ ︸
a transition

⇒ (o⇒ o)︸ ︷︷ ︸
b transition

⇒ o︸︷︷︸
initial state

⇒ o︸︷︷︸
output state

Moreover, their semantic interpretations in the cartesian closed category FinSet coincides with
their behavior in finite deterministic automata. This semantic observation led Salvati to define
the notion of recognizable language in [7] as any set of λ-terms of a given type A of the form

{M ∈ Λ(A) | JMKQ ∈ F} for some finite set Q and subset F ⊆ JAKQ.

The recognizable languages of type ChurchΣ are then exactly the regular languages of words, seen
through the Church encoding. Moreover, Salvati has shown that, for any type A, languages of
λ-terms of that type assemble into a Boolean algebra. This definition, using finite sets, extends
to any cartesian closed category.

There is another, more syntactic link between automata theory and λ-calculus. A seminal
result by Hillberand and Kanellakis [3] states that a set of finite words is a regular language if
and only if its characteristic function is λ-definable, modulo a type-casting operation sending
any M ∈ Λ(A) to M [B] ∈ Λ(A[B]). This observation is at the heart of the implicit automata
program started in [5], which shows an analogous correspondence between star-free languages
and planar λ-terms.

This line of work yields another, more syntactic notion of regular language of λ-terms of
type A, implicit in the work of Hillebrand and Kanellakis. A syntactically regular language
of λ-terms of a given type A is any set of the form

{M ∈ Λ(A) | R M [B] =βη true} for some type B and λ-term R ∈ Λ(A[B]⇒ Bool)

where Bool is the type o⇒ o⇒ o and true is the first projection.
In [4], we show that, for a large class of sufficiently well-behaved cartesian closed categories,

the associated recognizable languages are exactly the syntactically regular ones. More precisely:

Theorem 1 (§7 of [4]). A language of λ-terms of type A is recognizable by a non-thin well-
pointed locally finite cartesian closed category if and only if it is syntactically regular.
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Theorem 1 provides evidence that the notion of recognizable language of λ-terms is robust,
and does not depend on the category of finite sets. Its proof relies on a new construction on
cartesian closed categories called squeezing, which is inspired by normalization by evaluation.

In [2], we have introduced profinite λ-terms, using semantic interpretation in finite sets,
which assemble into a cartesian closed category ProLam. Profinite λ-terms of type ChurchΣ
are exactly the profinite words, and they extend the correspondance coming from Stone duality
with regular languages [6, 1] in the following way:

Theorem 2 (Proposition 3.4 of [2]). The space of profinite λ-terms of type A is the Stone dual
of the Boolean algebra of regular languages of λ-terms of type A.

Dually, the combination of Theorem 1 with Theorem 2 shows that the space of profinite
λ-terms, initially defined in the setting of semantic interpretation in finite sets, does not depent
on that construction.
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[4] Vincent Moreau and Lê Thành Dũng (Tito) Nguyễn. Syntactically and semantically regular lan-
guages of lambda-terms coincide through logical relations. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2024. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.
CSL.2024.40, doi:10.4230/LIPICS.CSL.2024.40.
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The fact that every first-order formula has a prenex normal form in classical logic is known
as prenex normal form theorem, recognized as one of the most widely used theorems in mathe-
matical logic. However, this theorem does not generally hold for intuitionistic theories. There
has been work on this matter for more than half a century.

As studied in [1] and [2], it has been revealed that certain variants of prenex normal form
theorem in Heyting arithmetic HA are strongly related to semi-classical axioms such as Γ-DNE
(double negation elimination restricted to a class Γ of formulas). Akama et al. [1] initially
introduced two syntactically defined classes of formulas, written as En and Un. They are
equivalent to Σn and Πn, respectively, in the standard sense over classical logic. Akama et al.
then show that HA + Πn ∨Πn-DNE proves the prenex normal form theorem PNFT(Un,Πn)
from Un to Πn. Similarly, HA + Σn-DNE + Πn ∨Πn-DNE ensures both PNFT(En,Σn) and
PNFT(Un,Πn).

In contrast, the situation concerning PNFT(En,Σn) alone is more subtle. Fujiwara and
Kurahashi [2] gave negative evidence: they show that there is an E1-formula φ0 that is not
equivalent to any Σ1-formula over HA + Σ1-DNE. This indicates that PNFT(E1,Σ1) does
not hold over HA + Σ1-DNE. The proof in [2] relies on a syntactic argument using a non-
classical axiom, Church’s thesis.

The purpose of this talk is to provide a topos-theoretic account on the last negative result
concerning prenex normal form theorems in Heyting arithmetic. If an elementary topos E has
a natural number object (NNO), E can be regarded as a model of Heyting arithmetic according
to the standard interpretation of first-order logic. For instance, the effective topos Eff , which is
a significant example in categorical realizability, satisfies HA + Σ1-DNE but does not satisfy
Σ2-DNE. As seen from this example, a topos is not a model of classical arithmetic in general.
However, by using the concept of local operator, it can be always “classicalized”.

Local operator (a.k.a. Lawvere-Tierney topology) is the most important tool for creating a
new topos from a given one. As a matter of fact, each local operator j in a topos E corresponds
precisely to a subtopos Ej of E . The logic of Ej may be different from the logic of E . A typical
example is the double negation operator ¬¬, which exists in every topos. It is important that
the corresponding subtopos always models classical logic even in the case the original topos
does not. For example, the associated subtopos Eff¬¬ of the effective topos Eff is categorically
equivalent to the category Set of sets.

As an illustration of the relationship between prenex normal form theorem and a topos-
theoretic structure, we show the following theorem.

Theorem 1. Let φ be an arithmetical formula and E an elementary topos with NNO satisfying
Σn-DNE. In addition, suppose that φ is true in E, while not in the subtopos E¬¬ associated
with the double negation operator. Then there is no Σn+2-formula equivalent to φ over HA +
Σn-DNE.

The proof is based on a topos-theoretic notion, transparency, introduced in [3]. Furthermore,
we can find concrete examples within subtoposes of the effective topos Eff for this theorem.

214



TACL 2024 Nakata

As is well known in categorical realizability, for every Turing degree d, there is a corresponding
local operator jd in Eff . In particular, we can consider the local operator j∅(n) for the n-th
Turing jump ∅(n) of the empty set. The associated subtopos Effj∅(n)

satisfies HA+Σn+1-DNE.

Theorem 2. Let n be an arbitrary natural number. Then there exists an En+1-formula φn
such that it is true in Effj∅(n)

but not true in (Effj∅(n)
)¬¬ ≃ Set.

The above theorems provide an alternative proof for the theorem in [2] and generalize it.

Corollary 3. Let n be an arbitrary natural number. For the En+1-formula φn in Theorem 2,
there is no Σn+3-formula equivalent to φn over HA + Σn+1-DNE.

This implies that PNFT(En+1,Σn+1) does not hold over HA + Σn+1-DNE.
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Recent work has uncovered a fascinating connection between model theory and category
theory.

• Hyland-Pitts [1]: the Turing Degrees embed effectively into the poset of Lawvere-Tierney
topologies in the Effective Topos.

• Malliaris-Shelah [4]: the Turing Degrees embed effectively into Keisler’s Order on simple
unstable theories.

Leveraging these perspectives against each other gives two different ways of thinking about
algorithmic complexity, but also gives some interesting new clues about categorical logic and
model theory. By [2], we know that the Lawvere-Tierney topologies of Eff correspond to so-
called “bilayered Turing Degrees”. This sets up the following problem:

Problem 1. Can we modify Malliaris-Shelah’s construction to embed the bilayered Turing
Degrees into Keisler’s Order?

Discussion 2. Why should this interest the category theorist? A key structure theorem in
topos theory says: every Grothendieck topos E classifies a geometric theory TE , and subtoposes
of E correspond to quotients of TE . It’s natural to ask if this picture extends to elementary
toposes and their subtoposes, but the previous structure theorem makes use of the site repre-
sentation of Grothendieck toposes in a crucial way – this is not available for elementary toposes
in general (e.g. the Effective Topos). A positive solution to Problem 1 means: given any LT-
topology j in Eff, we can associate to it a theory j 7→ Tj such that j ≤ j′ iff Tj E Tj′ in
Keisler’s Order — without recourse to the usual site representation.

Discussion 3. Why should this interest the model theorist? It is currently not known what the
smallest upper bound of the Turing Degree theories are in Keisler’s Order (if it even exists).1

A positive solution to Problem 1 brings into focus a potential new dividing line within simple
unstable theories: [5, Prop 3] says that if j is a non-trivial LT topology in Eff such that jA ≤ j
for any Turing Degree topology jA, then j¬¬ = j. This would also clarify the picture of
how we might understand simple theories as being built out of certain basic building blocks,
raising interesting implications for viewing Keisler’s Order as a systematic search for important
partition patterns of set systems.

This talk will introduce and clarify the connection between these two embeddings of the
Turing Degrees, with a view towards Problem 1. As a baseline step towards its solution, we
focus on how both the Effective Topos & Keisler’s Order use topological ideas to calibrate jumps
in complexity. Time permitting, we may discuss Lee-van Oosten’s result that each LT-topology
in Eff is built from a family of basic LT-topologies [3], and explore its ramifications.

1An upper bound exists since there exists a maximal class in Keisler’s Order (which includes theories
satisfying SOP1); the question is how much further down can we move this upper bound. In particular, recall
that there does not exist a maximal Turing Degree.
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The so-called algebraic approach to constraint satisfaction problems is well-established and
successful example of application of universal algebra in computational complexity. This line of
research started with a conjecture of Feder and Vardi [3], that each finite-template CSP is either
in P or NP-complete. The algebraic theory of polymorphisms was established by Jeavons et al.
[5, 1], and the approach culminated with two independent positive resolutions of the conjecture
by Bulatov [2] and by Zhuk [8].

Fixed-template constraint satisfaction problems (CSPs) may be defined in several ways:
The goal is to decide whether a given primitive positive formula is satisfiable in a fixed finite
structure (called template). Alternatively, it is a homomorphism problem for finite relational
structures where the target structure is fixed, i.e., we are asking given a structure X whether
there is a homomorphism to a fixed structure A. The problem is usually denoted by CSP(A).

A substantial recent effort has been dedicated to a slight generalisation of CSPs to promise
problems. A promise problem consists of two disjoint (but not necessarily complementary)
sets of instances: positive and negative. A promise CSP is a promise problem whose positive
instances are positive instance of CSP(A) and whose negative instances are negative instances
of another CSP(B); note that in order for these to be disjoint, we have to have a homomorphism
from A to B. A prototypical example of a promise CSP is approximate graph colouring: Given
a graph G, decide between the case that G is 3-colourable and the case that G is not even
6-colourable. The algebraic methods generalise to the promise setting, but universal algebra is
less relevant in resolving the complexity of these problems, and new tools need to be developed
to address these problems.

The goal of this talk is to share one of these new tools. I will outline a new application
of topology (more precisely, homotopy theory) in assessing the complexity of promise CSPs.
Namely, I will talk about hardness of two versions of graph and hypergraph colouring:

• It is NP-complete to decide between graphs that (A) map homomorphically to an odd
cycle and those that (B) are not 3-colourable (Krokhin, Opršal, Wrochna, and Živný [6]).

• It is NP-complete to decide between 3-uniform hypergraphs (A) that can be coloured by
3 colours in such a way that each edge has a unique maximum, and (B) those that cannot
be coloured by 4 colours in the same way. (Filakovský, Nakajima, Opršal, Tasinato, and
Wagner, [4]).

Both proofs are based on topological ideas first used to show lower bounds of the chromatic
number of Kneser graphs by Lovász [7] in conjunction with algebraic and categorical tools.
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In classical normal modal logic, the class of Sahlqvist formulae has several desirable prop-
erties such as defining canonical logics [15, 16]. The proof of canonicity of the logics defined by
Sahlqvist axioms is obtained by proving that Sahlqvist formulae are elementary, i.e., the classes
of frames they define are also defined by first order sentences. Besides the original Sahlqvist-van
Benthem algorithm to compute such first order correspondent for any given Sahlqvist formula,
other algorithms for second order quantifier elimination have been adapted to Sahlqvist for-
mulas, such as SCAN [9] and DLS [8, 14]. Sahlqvist formulas and their correspondents are
interesting also from a proof-theoretic perspective: for instance, Negri has shown that analytic
calculi can be effectively generated for all the modal logics in the Sahlqvist fragment [13], since
the first order correspondents of Sahlqvist formulas are generalized geometric formulas.

In [11], Goranko and Vakarelov extended Sahlqvist canonicity and correspondence results to
the class of inductive formulas (also known as generalized Sahlqvist formulas), which is strictly
large than the class of Sahlqvist formulas. Based on SCAN and DLS, the algorithm SQEMA
for correspondence on inductive formulas has been introduced in [1, 3].

By reframing Sahlqvist theory in algebraic terms, the syntactic notion Sahlqvist and in-
ductive formulas have been imported as Sahlqvist and inductive inequalities in much more
general settings, and correspondence and canonicity properties analogous to the classical ones
have been proved [7, 2, 4, 6]. Such developments extend Sahlqvist theory to all the logics
the algebraic semantics of which are given by (distributive) normal lattice expansions (LE),
e.g., intuitionistic modal logic, positive modal logic, orthologic, the full Lambek calculus, the
multiplicative-additive fragment of linear logic, semi De-Morgan logic, and so on. The Ack-
ermann Lemma Based Algorithm (ALBA) has been introduced as a successor of SQEMA to
compute first order correspondents in such a general setting. Similarly, also proof theoretic
results concerning inductive inequalities in such logics which partially extend the classical ones
have been proved in [12], and results proving canonicity in a constructive meta-theory reflecting
[10] have been proved in [5].

Contrary to the classical case, checking whether a given inequality is inductive is not an
obviously easy task. Indeed, the strong properties characterising the Boolean setting make it
possible to define the class of Sahlqvist inequalities in a way that straightforwardly induces a
polynomial-time algorithm (on the length of the formula) to check whether a formula belongs
in this class. The definition of inductive (and Sahlqvist) inequality in the more general LE
setting is more involved, and a naive approach would check a certain property (in polynomial
time) for each strict order on the variables, and for each polarity (either positive or negative)
assignment on the variables; hence it would have time complexity O(2vv!p(n)), where v is the
number of variables in the inequality, n is the length of the formula, and p is a polynomial.

In this talk, we show an algorithm that computes whether an inequality is refined inductive
in polynomial time, i.e., O(n+vl+v2h+h2), where n is the length of the formula, l the number
of leaves in its syntax tree, v the number of variables in the inequality, h the number of topmost
nodes having a certain property in the syntax tree.
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Checking whether an inequality is inductive is equivalent to checking for the existence of a
system of refined inductive inequalities which is semantically equivalent (relative to the appro-
priate class of LEs) to the given inequality. Since the algorithm ALBA for correspondence (on
which most of the applications of inductive inequalities rely) pre-processes any input inductive
inequality so as to obtain such a system of refined inductive inequalities, this algorithm finds
its natural place in a practical implementation of ALBA in the preprocessing step applied to
any input inequality.
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Classical planning [3] has become a major paradigm in areas of applied computer science,
such as robotics, logistics and manufacturing. Although the class of programs under its scope
(classical plans) are strickingly simple, current research still depends on traditional formalisms
that are largely disconnected from abstract mathematics. (An exception being recent attempts
to subsume planning, combined with computer vision or reasoning, into category theory [1].)

To this end, we suggest an algebraic appropach to classical planning that: (1) brings this area
closer to mathematical practice; and (2) permits an abstract approach to plans that benefits
research in the area of classical planning itself.

In a nutshell, classical planning is the search for deterministic plans that lead to a goal from
the initial state. Classical plans π ∈ A∗ are built from a set A of primitive actions available to
an agent. Given a finite set of logical atoms At = {p, q, . . .} and literals Lit = {p,−p, q, . . .}, a
state s ∈ S is a maximally consistent set of literals. The goal is just a consistent set of literals,
and so are the preconditions and effects that define an action a as a pair a = (pre(a), eff (a)).

For action updates, one defines first a consistency-preserving update function over sets of
literals X,Y

X � Y = (X \ −Y ) ∪ Y

where −Y := {−y : y ∈ Y }. Action or plan executions are then defined by a function γ :
S×A∗ → S (technically, a semigroup action) where:

γ(s, a) =

{
s � eff (a) if s |= pre(a)

undefined otherwise

γ(s, 〈〉) = s
γ(s, a.π) = γ(γ(s, a), π)

(Here, 〈〉 is the empty plan, and the plan a.π is the concatenation of a and π.)
Let us now turn into algebra, by abstracting from the goal and initial state that define a

planning problem. Henceforth, a plan is just a finite action sequence.
A semigroup (G, ·) consists of an associative operation · : G×G → G on a set G. Two

immediate semigroups capture the syntax and semantics of plans:

(1) the free (word) semigroup (A∗, .) of plans π built under concatentation ‘.’

(2) the semigroup (‖A∗‖, ◦) of plan executions ‖π‖ under map composition ◦.

Each plan π does correspond to a partial transformation ‖π‖ : S → S given by ‖π‖(s) =
γ(s, π). Indeed, (2) is a subsemigroup of PT (S), the semigroup of partial transformations of S,
thoroughly studied in [2]. Semantically, there is thus no difference between actions and plans:
they are just partial maps. To replicate this uniformity at the level of syntax, we define a
product • : A×A → A that reduces plans to actions (for any set A closed under •) so as to
obtain:

(3) the semigroup (A, •) of actions a = (pre(a), eff (a)).
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Let A0 contain all planning actions plus a zero 0, that we introduce with the false constant
as the action 0 = ({⊥}, {⊥}). (Note that γ(s, 0) = undefined for any s ∈ S.) We define the
product in (3) by:

a • b =

{
(pre(a • b), eff (a • b)) if pre(b) ∩ −(pre(a) � eff (a)) = ∅
0 otherwise

where pre(a • b) = pre(a) ∪ (pre(b) \ eff (a)) and eff (a • b) = eff (a) � eff (b).
After proving that (3) is a semigroup, we verify that its product • is correct:

‖a • b‖ = ‖a.b‖ = ‖a‖◦‖b‖.
Next we fully characterize in each semigroup (1)–(3): the identity 1, the zero 0 and invertible
elements a = a−1; the zero divisors ax = 0 = xa (for some x), nilpotents aa = 0, idempotents
aa = a and their natural partial ordering (a ≤ b iff ab = a = ba); and also commutativity
ab = ba.

A function can(a) = (pre(a), eff (a) \ pre(a)) further identifies non-redundant actions as
canonical representatives of behaviourally equivalent actions, in the sense that ‖can(a)‖ = ‖a‖.
Such non-redundant actions arrange into:

(3’) the semigroup (A′0, •′) of canonical actions, where a •′ b = can(a • b)
Then we prove an isomorphism (↔) between (3’) and the partial transformations induced by
constructible plans (‖A∗‖, ◦) (see left figure):

A

(A0, •) (A∗, .)

(‖A∗‖, ◦)(A′0, •′)

• .

•
can(·) ‖ · ‖

‖ · ‖
id = H

L

R

D = J

Finally, (see right figure) we identify the Green relations and principal ideals in (3’):

aLb iff A′0 a = A′0 b iff −(pre(a) ∆ pre(b)) ⊆ eff (a) = eff (b)
aRb iff aA′0 = bA′0 iff pre(a) = pre(b) and eff (a) ∆ eff (b) = −(eff (a)∆eff (b))
aHb iff a(L ∩R)b iff a = b
D = min. equiv. ⊇ L,R iff −(pre(a) ∪ pre(b)) ⊆ eff (a) ∩ eff (b) and pre(a) ∩ eff (b) = ∅
aJ b iff A′0aA′0 = A′0bA′0 . . . and eff (a) ∆ eff (b) ⊆ −(eff (a) ∆ eff (b)).

Our results offer a solid and elegant foundation to classical planning, with potential applica-
tions in the study of heuristic search functions, plan-space planning and partial-order planning,
among other research lines in the area.
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Approximation Fixpoint Theory (AFT) [5] is an algebraic framework designed to study the
semantics of non-monotonic logics, like logic programming, autoepistemic logic, and default
logic, and to resolve longstanding problems on the relation between these formalisms [6]. The
core ideas of AFT are relatively simple: we are interested in fixpoints of an operator on a given
lattice ⟨L,≤⟩. For monotonic operators, Tarski’s theory guarantees the existence of a least
fixpoint. AFT generalizes Tarki’s theory to non-monotonic operators by making use of a so-
called approximating operator : an operator A : L2 → L2 monotonic with respect to the precision
order ≤p (defined by (x, y) ≤p (u, v) if x ≤ u and v ≤ y)). The intuition is that elements of
L2 are used to approximate elements of L: the tuple (x, y) ∈ L2 is said to approximate z if
x ≤ z ≤ y. Given such an approximator, AFT defines several types of fixpoints (supported
fixpoints, a Kripke-Kleene fixpoint, stable fixpoints, and a well-founded fixpoint) of interest.

Let us illustrate the application of AFT to standard, first-order, logic programming. In
this setting, the lattice L is the lattice of interpretations, ordered by the truth order I ≤ J if
P I ⊆ P J for each predicate P . The operator at hand is the immediate consequence operator TP
of a logic program P [9]. In this setting, pairs (I, J) can be seen as four-valued interpretations:
a fact q is true if it is true in both I and J , false if it is false in both I and J , unknown if it is
true in J but not true in I and inconsistent if it is true in I but not in J . The approximating
operator ΨP is, in this case, nothing more than Fitting’s four-valued immediate consequence
operator [7].

This research is motivated by a need to apply AFT to higher-order logic programming that
arose in several contexts [3, 2, 8]. An important issue in this context is that using pairs of
interpretations no longer allows for an obvious way to evaluate formulas in an approximation.
Let us illustrate this with an example. Consider a logic program in which a first-order predicate
p and a second-order predicate Q are defined. Now assume that in the body of a rule, the atom
Q(p) occurs. A tuple (I, J) of interpretations in this case tells us for any given set S if Q(S) is
true, false, unknown, or inconsistent. However, the interpretation of p in such an interpretation
(I, J) is not a set, but a partially defined set, making it hard to evaluate expressions of the form
Q(p). To deal with definitions of higher-order objects, approximate interpretations should take
into account the application of approximate objects to approximate objects. This suggests that
spaces of approximations of higher-order objects should be defined inductively from lower-order
ones, following the type hierarchy: we start by assigning a base approximation space to each
type at the bottom of the hierarchy, and then, for each composite type τ1 → τ2, we define its
approximation space as a certain class of functions from the approximation space for τ1 to the
approximation space for τ2. The main question is how to define the base approximation spaces
and the class of functions in a generic way that works in all applications of AFT.

Clearly, we want to be able to apply the same AFT techniques at any level of the hierarchy,
i.e. all approximation spaces should share the same algebraic structure. In Category Theory
(CT), there already exists a notion that captures this behavior: the concept of Cartesian closed

∗This research has been conducted under the supervision of Bart Bogaerts (Vrije Universiteit Brussel, Brus-
sels, Belgium), and Marc Denecker (KU Leuven, Leuven, Belgium).
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category (ccc). The objects of a ccc C satisfy a property that can be intuitively understood as
follows: if A and B are two objects of C, then the set of morphisms from A to B is also an object
of C. It follows that, if the base approximation spaces are objects of a ccc, then the category
also contains the full hierarchy of approximation spaces we are aiming for. We will call such
a ccc an approximation category and denote it by Approx. Clearly, the definition of Approx
depends on the application we want to use AFT for. Different applications imply different
higher-order languages, with different types, and possibly different versions of AFT (standard
AFT [5], consistent AFT [4], or other extensions [1]). To formalize this, we develop the notion
of an approximation system. Once a language and the semantics of its types are fixed, we can
choose an approximation system that consists, among other things, of a ccc Approx, equipped
with a function App associating the semantics of a type to an approximation space in Approx.
The approximation system also determines which elements of the approximation spaces are
exact, i.e. which elements approximate exactly one element of the semantics of a type, and, for
every type, it provides a projection from the exact elements to the objects they represent in the
corresponding semantics. This is non-trivial for higher-order approximation spaces, and it is
indeed fundamental to obtain a sensible account for AFT for higher-order definitions. Thanks
to the generality of this formalization, there are several viable choices for an approximation
system. For instance, we show that the bilattices form a ccc with the monotone functions as
morphisms. With a suitable choice of App and exact elements we obtain an approximation
system that recovers the framework of standard AFT and extends it to higher-order objects.
Furthermore, we have shown that the approximation spaces from [1] form a ccc. Our approach
provides a clear definition for exact higher-order elements, which was missing in the work [1].
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The Stone space of a boolean algebra is defined as the totally disconnected compact Haus-
dorff space whose points are the ultrafilters of the boolean algebra. Conversely, a totally dis-
connected compact Hausdorff space is homeomorphic to the Stone space of the boolean algebra
of its clopen sets. Looking from a categorical perspective, the Stone duality can be expressed
as the existence of a duality between the category of boolean algebras with arrows represented
by adjoint homomorphisms and the category of totally disconnected compact Hausdorff spaces
with continuous open maps. Furthermore, this duality restricts to one between the category
of complete boolean algebras with complete homomorphisms and the category of extremally
disconnected compact Hausdorff spaces with continuous open maps.
Generalizing this idea, we present an algebraic characterization of T0-topological spaces in terms
of preorders describing a base for the space. In particular, we show that any T0-topological
space can be represented as the space whose points are the neighborhood filters of one of its
basis for the open sets. Conversely, we show that any dense family of filters on a preorder de-
fines a topological space whose characteristics are strictly connected to the ones of the preorder.
Therefore, we show how the separation properties of the topological space can be described in
terms of the algebraic properties of the corresponding preorder and family of filters.
Furthermore, drawing on Orrin Frink’s article [1], we outline the algebraic conditions on a se-
lected base of the topological space ensuring that the space is compact and Hausdorff.
Indeed, in his article [1], Frink provided an internal characterization of Tychonoff spaces: specif-
ically, he proved that a space is Tychonoff if and only if it admits a normal base for the closed
sets of a space, i.e. a base that forms a disjoint ring of sets, where disjoint members can be
separated by disjoint complements of members of the base. Moreover, he showed that if Z is a
normal base for X, then the space of Z-ultrafilters forms a Hausdorff compactification for X.
Clearly, we can obtain different compactifications of the same non-compact Tychonoff space by
choosing different normal bases.
Following this approach, we characterize the algebraic properties that a preorder must possess
in order to induce a Tychonoff space. In particular, we show that every Tychonoff space can
be described as the space whose points are some minimal prime filters of a particular type of
distributive lattices. Furthermore, we show that the space obtained considering all the prime
minimal filters of it forms a Hausdorff compactification of the original Tychonoff space.
These results allow us to define a duality between the category of compact Hausdorff spaces
with continuous maps and a suitable category of lattices.
This is joint work with Matteo Viale.
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Abstract

We study the variety generated by the three-element equivalential algebra with conjunc-
tion on the dense elements. We prove the representation theorem which let us construct
the free algebras in this variety. Next, we compute the formula for the cardinality of these
algebras.

1 Introduction

According to [2], there are only finitely many polynomial clones on a finite algebra which
generate congruence permutable Fregean varieties. A variety V with a distinguished constant
term 1 is called Fregean if every algebra A ∈ V is: 1-regular, (i. e., 1/α = 1/β implies α = β
for all α, β ∈ Con A) and congruence orderable (i. e., ΘA(1, a) = ΘA(1, b) implies a = b for
all a, b ∈ A) [2, p. 597].

If a three-element algebra A generates a congruence permutable Fregean variety, then the
lattice of congruences on A is a three-element chain. By [2, Corollary 2.8], due to the behavior
of the commutator operation on a three-element algebra, we can distinguish four polynomially
nonequivalent algebras, that generate congruence permutable Fregean varieties.

Two of them are well known: the three-element equivalential algebra and the three-element
Brouwerian semilattice. The equivalential algebras are solvable, so they are of type 2 ([2, p.
606]) in the sense of Tame Congruence Theory of Hobby and McKenzie [1]. However, the
Brouwerian semilattices are congruence distributive and so they are of type 3.

In the other two cases we are dealing with a mixed type. In the first case, we have type 3 at
the top of congruence lattice and type 2 at its bottom. An example of algebra, which meets these
conditions is the three-element equivalential algebra with conjunction on the regular elements.
The variety generated by this algebra was investigated in [3].

2 Main results

The aim of this talk is present recent results on the variety generated by the three-element
algebra, in which the commutator operation behaves in the opposite way: type 2 is at the
top of congruence lattice and type 3 at its bottom (most of these results can be found in the
article [4], written with Katarzyna S lomczyńska). Such structure is the subreduct of the three-
element Heyting algebra, with the equivalence operation and the second binary operation which
is conjunction on the dense elements.

Definition 1. An equivalential algebra with conjunction on the dense elements is an
algebra D := ({0, ∗, 1}, ·, d, 1) of type (2, 2, 0), which is the reduct of the three-element Heyting
algebra H = ({0, ∗, 1},∧,∨,→, 0, 1) with an order: 0 < ∗ < 1, the constant 1, the equivalence
operation · such that x · y := (x→ y)∧ (y → x) (we adopt the convention of associating to the
left and ignoring the symbol of equivalence operation), and an additional binary operation d
such that: d(x, y) := x00x ∧ y00y.
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We denote by V(D) the variety generated by D. A crucial role in the construction of the
finitely generated free algebras is played by the subdirectly irreducible algebras in V(D).

Proposition 2. There are only three (up to isomorphism) nontrivial subdirectly irreducible
algebras in V(D) : D,2,2∧, where:

2 := {{0, 1}, ·, d, 1}, where d ≡ 1,

2∧ := {{∗, 1}, ·, d, 1}, where d(x, y) := x ∧ y.
Let A ∈ V(D). We denote by Cm(A) the set of all completely meet-irreducible congruences

on A and we use the following notation:

L := {µ ∈ Cm(A) : A/µ ∼= 2},
L := {µ ∈ Cm(A) : A/µ ∼= D},
P := {µ ∈ Cm(A) : A/µ ∼= 2∧},

L := L ∪ L.
To construct the free algebras in V(D) we need the notion of the hereditary sets.

Definition 3. Let A ∈ V(D) and Z ⊆ Cm(A). A set Z is hereditary if:

1. Z = Z ↑,
2. L ⊆ Z or ((L∩Z)∪{1A}, •) is a hyperplane in (L∪{1A}, •), where µ1 •µ2 := (µ1÷µ2)′

for µ1, µ2 ∈ L (÷ denotes the symmetric difference)

We will denote by H(A) the set of all hereditary subsets of Cm(A).
Now we give our main result, i.e. the representation theorem:

Theorem 4. Let A ∈ V(D) and let A be finite. Then the map M : A ∋ a → M(a) := {µ ∈
Cm(A) : a ∈ 1/µ} is the isomorphism between A and (H(A),↔, d,1), where

Z ↔ Y := ((Z ÷ Y ) ↓)′

d(Z, Y ) := [Z ∪ ((Z ↓)′ ∩ L)] ∩ [Y ∪ ((Y ↓)′ ∩ L)],

1 := Cm(A),

for Z, Y ∈ H(A).

Using this theorem, we can construct the finitely generated free algebras in V(D), which we
denote by FD(n), and find the formula for the cardinality of these algebras:

|FD(n)| = 23
n−2n +

n∑

k=1

(
n

k

)
2

3n+3n−k

2 −2n−1

.
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A counterfactual conditional (or simply a counterfactual) is a conditional statement of the
form “If antecedent were the case, then consequent would be the case”, formalized as “φ2→ψ”
where the antecedent is usually assumed to be false. Counterfactuals have been studied in
different fields, such as linguistics, artificial intelligence, and philosophy. The logical analysis of
counterfactuals is rooted in the work of Lewis [4, 3] and Stalnaker [8] who have introduced what
has become the standard semantics for counterfactual conditionals based on particular Kripke
models (called sphere models) equipped with a similarity relation among the possible worlds.
Lewis [4] develops a hierarchy of logics meant to deal with different kinds of counterfactual
conditionals; they are usually referred to as variably strict conditional logics.

Although the research on Lewis’s conditional logics has been and still is very prolific, the
algebraic perspective is essentially lacking; while a few works present a semantics in terms of
algebraic structures for Lewis’s conditional logics ([5, 7]), the results therein are either partial or
fall outside the framework of the abstract algebraic analysis. A foundational work that carries
Lewis’s hierarchy within the realm of the well-developed discipline of (abstract) algebraic logic
is notably missing in the literature; the present contribution aims at filling this void.

To this end, we start by considering Lewis’s logics as consequence relations, instead of
just sets of theorems, and we introduce novel (and simpler) axiomatizations. This brings us
to consider two different kinds of derivation, depending on whether the deductive rules are
applied only to theorems (giving a relatively weaker calculus) or to all derivations (i.e. yielding
a stronger calculus); this distinction, although relevant, is often blurred in the literature. As it
is the case for modal logic (see [1, 9]), these two choices turn out to correspond to considering
two different consequence relations on the intended sphere models: a local and a global one; the
latter, to the best of our knowledge, has not been considered in the literature.

Inspired by some results connecting modal operators and Lewis counterfactuals (see [4]),
our work unveils a deep relationship between Lewis’s logics and modal logic. Specifically,
we demonstrate how several model-theoretic techniques commonly used in standard Kripke
semantics for modal logic (such as the generated sub-model construction) can be successfully
applied to Lewis’s sphere semantics, thanks to a modal operator □ that can be term-defined
in the language. This allows us to, for example, prove a deduction theorem for the strong
calculus (whereas the weak calculus is known to have the classical deduction theorem) and to
characterize the global consequence relation in terms of the local one, paralleling analogous
well-known results in modal logic (see [9]).

Furthermore, we introduce a new variety of algebras, that we call V-algebras, consisting
of Boolean algebras equipped with a binary operator 2→ that stands for the counterfactual
conditional. We show that the stronger calculi, associated to the global consequence relation,
are strongly algebraizable in the sense of Blok-Pigozzi, with respect to (subvarieties of) V-
algebras. In turn, we demonstrate that the weaker calculi, associated to the local consequence
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relation, are not algebraizable in general, but they correspond to the logics preserving the degrees
of truth of the same algebraic models. Thus the same class of algebras can be meaningfully used
to study both versions of Lewis’s logics; precisely, we have strong completeness of both calculi
with respect to V-algebras. We also initiate the study of the structure theory of the algebraic
models; interestingly, we demonstrate that the congruences of the algebras, which are in one-
one correspondence with the deductive filters inherited by the logics, can be characterized by
means of the congruences of their modal reducts.

The second part of our work develops a duality result for V-algebras, circling back to the
original intended sphere models. In more details, we show two different dual categorical equiv-
alences of our algebraic structures with respect to topological spaces based respectively on
Lewis’s spheres and (Stalnaker’s inspired) selection functions. The dualities we show are en-
richments of Stone duality between Boolean algebras with homomorphisms and Stone spaces
with continuous maps, where the operator 2→ is interpreted first by means of a selection func-
tion, and then by a map associating a set of nested spheres to each element of the space. The
formal work developed for the dualities also allows us to demonstrate the strong completeness
of sphere models with respect to Lewis’s logics. Finally, thanks to the duality results, we also
clarify the role of the limit assumption, a condition on sphere models that has been extensively
discussed in the literature (see for example [6, 2] ). In particular, we will see that both the
strong and weak calculi are strongly complete with respect to models that do satisfy the limit
assumption; in this sense, models without the limit assumption are not really “seen” by Lewis’s
logics.

In conclusion, this contribution is meant to provide a logico-algebraic treatment of Lewis
variably strict conditional logics. Our results aim at clarifying several ambiguities in the liter-
ature surrounding these logics, explicitly defining and refining their properties and theorems,
and introducing a novel general algebraic and topological framework for their technical analysis.
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Abstract

It is known that sub-Hilbert algebras are the implicative subreducts of subresiduated
lattices. In this work we give a new proof of this property by using ideas employed to
represent weak Heyting algebras. We also study the lattice of relative congruences of
sub-Hilbert algebras and we give a quasi-equational description of the quasivariety of sub-
Hilbert algebras generated by the class of its totally ordered members.

Subresiduated lattices were introduced by Epstein and Horn [8] with the aim to study certain
propositional logics defined in a language without classical implication but with a connective of
implication which is called strict implication. The logics studied in [8] are examples of subintu-
itionistic logics, i.e., logics in the language of intuitionistic logic that are defined semantically
by using Kripke models, in the same way as intuitionistic logic is defined, but without requiring
of the models some of the properties required in the intuitionistic case [5, 6].

A subresiduated lattice (sr-lattice for short) [6, 8] is a pair (A,D), where A is a bounded
distributive lattice, D is a bounded sublattice of A and for every a, b ∈ A there exists the
maximum of the set {d ∈ D : a∧ d ≤ b}, which is denoted by a→ b. This pair can be regarded
as an algebra (A,∧,∨,→, 0, 1) of type (2, 2, 2, 0, 0) where D = {a ∈ A : 1→ a = a}. The class
of sr-lattices properly contains the variety of Heyting algebras. It follows from [8, Theorem 1]
that the class of sr-lattices forms a variety. A different equational base for this variety was given
in [6], where this variety is presented as a subvariety of the variety of weak Heyting algebras.

Recall that S4-algebras are Boolean algebras with a unary operator 2 in the language that
satisfies the identities 21 = 1, 2(x ∧ y) = 2x ∧2y, 2x ≤ x and 2x ≤ 2(2x). We say that an
algebra (A,∧,∨,→,¬, 0, 1) is a Boolean subresiduated lattice (Boolean sr-lattice for short) if
(A,∧,∨,¬, 0, 1) is a Boolean algebra and (A,∧,∨,→, 0, 1) is a sr-lattice. If (A,∧,∨,→,¬, 0, 1)
is a Boolean sr-lattice then (A,∧,∨,¬,2, 0, 1) is a S4-algebra, where 2x := 1→ x. Conversely,
if (A,∧,∨,¬,2, 0, 1) is a S4-algebra then (A,∧,∨,→,¬, 0, 1) is a Boolean sr-lattice, where
x → y := 2(¬x ∨ y). Moreover, the variety of boolean sr-lattices is term equivalent to the
variety of S4-algebras. It can be also showed that the variety of sr-lattices coincides with the
class of {∧,∨,→, 0, 1}-subreducts of Boolean sr-lattices.

A sub-Hilbert algebra [3] is an algebra (A,→, 1) of type (2,0) which satisfies the following
quasi-equations:

• (x→ y)→ ((y → z)→ (x→ z)) = 1,

• x→ x = 1,

• x→ 1 = 1,

• if x→ y = 1 and y → x = 1, then x = y,

∗Hernán Javier San Mart́ın.
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• (x→ (y → z))→ ((x→ y)→ (x→ z)) = 1.

We write sHA to indicate the class of sub-Hilbert algebras, which properly contains the variety
of Hilbert algebras. The class sHA is a quasivariety which is not a variety [4]. Moreover, in
sub-Hilbert algebras the binary relation ≤, defined by a ≤ b if and only a→ b = 1, is a partial
order and 1 is the last element with respect to this order [4]. In [4] it was also proved that
sub-Hilbert algebras are the implicative subreducts of sr-lattices, property which generalizes the
fact that Hilbert algebras are the implicative subreducts of Heyting algebras [1, 7]. This result
is proved by using properties of implicative filters of sub-Hilbert algebras, where an implicative
filter of a sub-Hilbert A is a subset F of A such that 1 ∈ F and b ∈ F whenever a, a→ b ∈ F .

In the present work we prove, following an alternative path to that given in [4] and motivated
by certain constructions developed in [3, 6] for some classes of algebras, that sub-Hilbert algebras
are the implicative subreducts of sr-lattices. More precisely, given A ∈ sHA we show the
following two facts: 1) it is possible to define a binary relation R on the set IF(A) of implicative
filters of A which induces a binary operation ⇒R on the set IF(A)+ of upsets of (IF(A),⊆)
such that (IF(A)+,∩,∪,⇒R, ∅, IF(A)) is a sr-lattice; 2) there exists a monomorphism from A to
(IF(A)+,⇒R, IF(A)). We also show that for every A ∈ sHA, the lattice of relative congruences
of A is order isomorphic to the lattice of open implicative filters of A, where an implicative
filter F of A is said to be open if 1 → a ∈ F whenever a ∈ F . Moreover, we study properties
of the irreducible open implicative filters 1. Finally, motivated by some results given in [2, 9],
we apply properties of irreducible open implicative filters in order to give a quasi-equational
description of the quasivariety of sHA generated by the class of its totally ordered members.

References

[1] Cabrer L.M., Celani S.A. and Montangie D., Representation and duality for Hilbert algebras.
Central European Journal of Mathematics 7(3), 463–478 (2009).

[2] Castiglioni J.L., Celani S.A. and San Mart́ın H.J., Prelinear Hilbert algebras. Fuzzy Sets and
Systems 397, 84–106 (2020).

[3] Castiglioni J.L., Fernández V., Mallea H. and San Mart́ın H.J., On a variety of hemi-implicative
semilattices. Soft Computing, vol. 26, 3187–3195 (2022).

[4] Castiglioni J.L., Fernández V., Mallea H. and San Mart́ın H.J., On subreducts
of subresiduated lattices and some related logic. Journal of Logic and Computation,
https://doi.org/10.1093/logcom/exad042 (2023).

[5] Celani S.A. and Jansana R., A closer look at some subintuitionistic logics. Notre Dame J. Formal
Logic 42, 225–255 (2003).

[6] Celani S.A. and Jansana R., Bounded distributive lattices with strict implication. Mathematical
Logic Quarterly 51, No. 3, 219–246 (2005).
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I, in Notas de Lógica Matemática, Vol. 40 (1996). Available in
https://inmabb.conicet.gob.ar/static/publicaciones/iti/iti52.pdf.

1Let A ∈ sHA. A proper open implicative filter P of A is called irreducible when for all F1 and F2 open
implicative filters, if P = F1 ∩ F2, then P = F1 or P = F2.

232



Finitely Weighted Kleene Algebra With Tests

Igor Sedlár

Czech Academy of Sciences, Institute of Computer Science

Kleene algebras, going back to [2], are algebraic structures central to automata theory,
semantics of programs, and theoretical computer science in general. Kozen [4] has shown that
the equational theory of Kleene algebras is complete with respect to the model based on regular
languages. Kozen [5] introduces Kleene algebras with tests, a combination of Kleene algebras
(programs) and Boolean algebras (tests), and shows that they have non-trivial applications
in verification of imperative programs. Ésik and Kuich [3] generalize Kozen’s completeness
result for Kleene algebras to the case of weighted regular languages, or formal power series.
In particular, their result applies to a weighted generalization of Kleene algebras where the
semiring of weights is finite, commutative, zero-bounded (or positive) and partially ordered.

We establish two completeness results for a weighted generalization of Kleene algebras with
tests. First, we establish completeness with respect to the algebra of weighted guarded lan-
guages using a reduction to weighted regular languages similar to the one used by Kozen and
Smith [6] in their completeness proof for (non-weighted) Kleene algebras with tests. Second,
we establish completeness with respect to weighted transition systems by using a Cayley-like
construction going back to Pratt’s work [7] on (non-weighted) dynamic algebras. In addition to
the assumptions of Ésik and Kuich, however, we need to assume that the semiring of weights
is also integral. These results are interesting also because of the connection between weighted
Kleene algebras with tests and weighted programs [1], noted in our earlier work [8]. We also
argue that finitely weighted Kleene algebras with tests are a natural framework for equational
reasoning about weighted programs in cases where an upper bound on admissible weights is
assumed.

A Kleene algebra [4] is an idempotent semiring X with a unary operation ∗ satisfying, for
all x, y, z ∈ X the following unrolling (left column) and fixpoint laws (right column):

1 + (x · x∗) = x∗ y + (x · z) ≤ z =⇒ x∗ · y ≤ z (1)

1 + (x∗ · x) = x∗ y + (z · x) ≤ z =⇒ y · x∗ ≤ z . (2)

a Kleene algebra with tests [5] is a Kleene algebra X with a distinguished B ⊆ X such that
〈B,+, ·, 0, 1〉 is a subalgebra of X and a bounded distributive lattice, and − is an unary oper-
ation on B such that x · x̄ = 0 and x+ x̄ = 1 for all x ∈ B. Hence, B forms a Boolean algebra.
Intuitively, elements of B represent Boolean tests. (“If b then x else y” can be expressed as
bx+ b̄y and “While b do x” as (bx)∗b̄; partial correctness is expressed by bxc̄ = 0.)

Definition 1. Let S be a finite semiring. A Kleene S-algebra with tests is a Kleene algebra
with tests X together with a binary operation � : X × S → X such that (the additive monoid
reduct of) X forms a right S-semimodule and

(xy)� s = x(y � s) = (x� s)y 1� s∗ ≤ (1� s)∗

Similar to Kleene algebras with tests, the algebraic language for Kleene S-algebras with
tests is two-sorted, consisting of tests and expressions:

b, c := p | b̄ | b+ c | b · c | 0 | 1 e, f := a | b | e� s | e+ f | e · f | e∗

233



Finitely Weighted KAT I. Sedlár

where p ∈ Φ (a finite set of proposition letters), a ∈ Σ (a finite set of program letters) and
s ∈ S. Expression e� s means “execute e and add s to the weight of the current computation”.

An atom over Φ is a finite sequence of literals over Φ containing exactly one of p and p̄ for
each p ∈ Φ. A guarded string is a string of the form G1a1G2 . . . an−1Gn where the G’s are
atoms and the a’s are program letters. Fusion product wG�Hu of guarded strings is undefined
if G 6= H and wGu otherwise. The set of guarded formal power series over a finite semiring S
is the set of mappings from the set of guarded strings to S. The rational operations on guarded
f.p.s. are defined point-wise as follows:

(r1 + r2)(w) = r1(w) + r2(w) (r1 · r2)(w) =
∑
{r1(v1) · r2(w2) | w = v1 � v2}

(r � s)(w) = r(w) · s r∗(w) =
∑

n∈ω
rn(w)

where r0 = 1 and rn+1 = rn · r. (Note that the sum is defined since S is assumed to be finite.)
A polynomial is any guarded f.p.s. r such that the set of guarded strings w where r(w) 6= 0
is finite. The set of rational guarded f.p.s. is the least set of guarded f.p.s. that contains all
polynomials and is closed under the rational operations. The set of rational guarded f.p.s. over
S forms a Kleene S-algebra with tests.

Theorem 1. The equational theory of Kleene S-algebras with tests coincides with the equational
theory of the algebra of rational guarded f.p.s. over S.

An S-transition system is a set with a collection of S-weighted binary relations M(a) on the
set for a ∈ Σ and {0, 1}-weighted diagonal relations M(p) for p ∈ Φ. Binary relations M(e) for
arbitrary expressions are defined as expected using familiar matrix operations.

Theorem 2. An equation e ≈ f is valid in all Kleene S-algebras with tests iff M(e) = M(f)
in all S-transition systems.

References

[1] K. Batz, A. Gallus, B. L. Kaminski, J.-P. Katoen, and T. Winkler. Weighted programming: A
programming paradigm for specifying mathematical models. Proc. ACM Program. Lang., 6(OOP-
SLA1), apr 2022. doi:10.1145/3527310.

[2] J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, Ltd., London, 1971.
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In his celebrated paper [13], M. Stone gave a topological representation for Boolean algebras,
linking the worlds of topology and lattices together for the first time. He showed that the
category of Boolean algebras and lattice homomorphisms is dually equivalent to that of Stone
spaces and continuous maps. Shortly afterwards, Stone [14] extended this topology-lattice
duality for the larger class of bounded distributive lattices by introducing the nowadays known
spectral spaces. With the aim of connecting lattices to the classical Hausdorff topological spaces,
Priestley [11] used ordered topological spaces and proposed another topological representation,
nowadays known as Priestley spaces, for bounded distributive lattices. She established a dual
equivalence between the category of bounded distributive lattices with lattice homomorphisms
and that of Priestley spaces with monotone continuous maps.

Duality theory between topology and lattices has been extensively applied in many fields
such as topology, functional analysis and logic, among others, and the study of topological repre-
sentations for general partially ordered structures has been attracting wide attention. Starting
from the 1970s, Stone duality has been generalized for spatial frames [9, 10], semilattices [5] and
other classes of posets [6, 8]. Indeed, Gräzter [6] removed binary infima from bounded distribu-
tive lattices and obtained a topological representation for bounded distributive join-semilattices.
Hofmann and Lawson [8] developed a Stone duality for continuous frames. Moreover, scholars
have extended Priestley duality to bounded lattices [15] and to other classes of posets [1, 2, 7].
In particular, Hansoul and Poussart [7] proposed a Priestley-type topological representation for
bounded distributive sup-semilattices. Besides, there are some works obtained by restricting
Priestley duality to subcategories of bounded distributive lattices and lattice homomorphism-
s. Both the Pultr-Sichler duality [12] for frames and the Bezhanishvili-Melzer duality [3] for
continuous frames fall into this category, for instance.

Recently, Bice [4] unified distributive join-semilattices and continuous frames as ≺-
distributive ∨-predomains and further developed a Stone duality for≺-distributive ∨-predomains,
which is a common extension of the Hofmann-Lawson duality and the Grätzer duality. Pre-
cisely, he proved that the category of locally compact sober spaces with a base closed for finite
unions is equivalent to that of ≺-distributive ∨-predomains. However, a Priestley duality for
≺-distributive ∨-predomains is unknown, and Bice left it open in [4].

In this talk, we give an affirmative answer to the above question of Bice. We introduce
DP-compact pospaces as follows.

Definition 1. We call a tuple (X, τ,6, X1, β) DP-compact pospace if

(1) (X, τ,6) is a compact pospace,

(2) X1 is dense and order generating,

(3) β is composed by admissible lower open sets and closed under finite unions,

(4) x ∈ X1 if and only if {U ∈ β | x ∈ U} is a neighborhood base of x with respect to (X, τ b).

Here, a lower open set U is admissible if U =↓(U ∩ X1). τ b is the topology consisting of all
lower open sets in (X, τ,6).
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Then we establish a one-to-one correspondence between ≺-distributive ∨-predomains and
DP-compact pospaces. To develop a dual equivalence, we further propose DP-morphisms and
≺-morphisms. Let DPCP be the category of DP-compact pospaces with DP-morphisms and
DP be the category of ≺-distributive ∨-predomains with ≺-morphisms. Then we obtain our
main theorem:

Theorem 2 (Main theorem). Categories DP and DPCP are dually equivalent.

In addition, we would like to stress that our results restrict to the Hansoul-Poussart duali-
ty [7] and a Priestley duality for continuous frames. The Priestley-type topological representa-
tions of continuous frames are CF-compact pospaces defined as follows.

Definition 3. We call a tuple (X, τ,6, X1) a CF-compact pospace if

(1) (X, τ,6) is a compact pospace,

(2) X1 is dense and order generating,

(3) x ∈ X1 if and only if {U ∈ τ b | x ∈ U =↓(U ∩X1)} is a neighborhood base of x with respect
to (X, τ b).
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In this paper, we present a model of epistemic modal logic in simplicial semantics with the
aim of motivating a new interpretation of belief revision by way of imaging. Our model modifies
and expands on recent papers by Eric Goubault, Doman Kniazev, Sergio Rajsbaum, Jérémy
Ledent, and Hans van Ditmarsch, which use simplicial complexes as a semantics for epistemic
modal logic, leveraging their special structure not present in the usual Kripke setting.[3][2][1][6]
Our motivation is similar: we believe simplicial semantics affords us tools for analyzing belief
revision not obviously present in Kripke models.

In simplicial semantics, possible worlds are not treated as primitive. Instead, they can be
identified with sets of agent perspectives. Perspectives are given, for technical reasons, as sets
of literals. In our model, we construct such “worlds” by taking consistent sets of perspectives,
with one perspective uniquely associated with each agent. We will call these “worlds” facets.
Given such a facet in a simplicial complex S, call it X, we say that Y is accessible for agent a
from X if X and Y share their unique a-perspective. As is standard, one says that a formula
Kaϕ is true if and only if ϕ is true at all facets Y which are accessible for agent a from X. One
can show, via a categorical equivalence, that this framework is equivalent to a particular class
of Kripke models where the accessibility relations form partitions (i.e., models for S5).

This is similar to what has been done in the previous literature. There, the simplicial com-
plexes are used to model knowledge. [2][3][1][4][5][6][7][9] If we are to use simplicial complexes
as a model for belief, the fact that the axiom T is sound is undesirable. It is easy to see why it
is sound in the usual setup, as X is always a-accessible from X.

To get around this, we will introduce distinct simplicial complexes for each agent. More
specifically, given a set of perspectives, each agent will have their own simplicial complex over
this set, call it Sa. All of the Sa will be subcomplexes of a background complex, call it S, which
is not specific to any agent. We then modify the definition of a-accessible facets as follows.
Given facets X and Y in S, we say that Y is accessible* for agent a from X if and only if Y is
a facet in Sa and X and Y share their unique a-perspective. If we say that Baϕ is true at X if
and only if ϕ is true at all Y that are a-accessible* from X, It’s easy to show that this makes
sound K45. Additionally, it’s easy to see why the axiom T is not sound, as if X is not a facet
in Sa, then X is not a-accessible* from X.

Motivated by the idea of charity towards other agents, we argue that a good notion of
“nearness” between two worlds, in the sense of Lewis’ work on imaging, in the simplicial setting
is given by the size of their intersection.[10] That is, worlds which share more perspectives are
closer. More specifically, suppose the formula ϕ is publicly announced. Then we can define an
imaging function R which replaces every facet X in Sa with a set of facets R(X), which consists
of those facets which 1: satisfy ϕ, 2: share their unique a-perspective, and 3: are such that for
any facet Y ∈ R(X), and any facet Z satisfying conditions 1 and 2, |X ∩ Y | ≥ |X ∩ Z|. We
explore variations of this imaging function and some of their consequences. For instance, we
could restrict R(X) to always be a set of facets from the background complex S, and furthermore
have S eliminate facets which contradict announced information with each announcement. In
this way, S acts as a kind of “memory” for the agents. Another option would be to say that if
there are facets in Sa which share the a perspective with X and satisfy ϕ, then R(X) should be
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this set, regardless of the size of the intersection. We show, specifically, that a variant of this
second update mechanism is a “nested sphere” model in the sense of Grove, 1988, and therefore
satisfies the AGM axioms. [8]

Furthermore, we give soundness proofs for the knowledge and belief modalities in our mod-
els. We interpret the belief modality using accessibility*, and the knowledge modality using
accessibility for the background complex S. Specifically, for the following language:

ϕ ::= P |⊥|ϕ → ϕ|Baϕ|Kaϕ

our simplicial semantics is sound with respect to the axioms of propositional logic, S5 for
the Ka modality, K45 for the Ba modality, the axiom Kaϕ → Baϕ, and the following axiom
for each modality, and any atomic formula P , which we call NU for “No Uncertainties”:

NU : P →


a∈A

KaP

Axioms similar to NU appear throughout the simplicial literature. [1].
One easy way to see that these soundness results hold is to proceed as much of the existing

literature does, by demonstrating a logic preserving categorical equivalence between a category
whose objects are our simplicial models, and a category whose objects are a class of Kripke
models, where these Kripke models make sound these same axioms. We conclude by discussing
how one can extend this equivalence to a proof of completeness.
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As explained in [3], some of Grothendieck’s algebro-geometric constructions may be ab-
stracted to the context of extensive categories. A category C with finite coproducts is extensive
if the canonical functor C/X ×C/Y → C/(X +Y ) is an equivalence for every pair of objects X,Y
in C. Extensivity attempts to make explicit a most basic property of (finite) coproducts in
categories ‘of spaces’. For instance, the category of topological spaces and continuous functions
between them is extensive; the category of groups is not. It easily follows that if C is extensive
then for any X ∈ C the category X/C is extensive [1].

Experience indeed confirms that conceiving an extensive category as a category ‘of spaces’
is a useful conceptual guide. Essential to the development of Algebraic Geometry is the fact
that the opposite of the category of (commutative unital) rings, is extensive.

A category C is coextensive when its opposite category Cop is coextensive. In this work
we examine the variety of algebras known as rigs, denoted Rig, which are commutative semi-
rings with (additive and multiplicative) unit. Of particular interest are those subvarieties 2Rig
of (additively) idempotent rigs, as well as the variety iRig of integral rigs; those satisfying
1 + x ≈ 1. Such classes play an important role, for instance, in non-classical logics in that these
algebras are exactly the (integral) join-semilattice reducts of (pointed) commutative residuated
lattices, or FLe-algebras (respectively, FLew), semantics for certain extensions of the Full Lambek
calculus. Viewed as categories, these classes are coextensive (see [2, 4]), and thus admit to the
prospect of geometric content.

Let C be a category with a terminal object 1. If X is an object of C, a point of X is an
arrow 1→X. An object is called Weil if it has a unique arrow to the terminal object. At least
in the case when the category is a variety of algebras, the terminal object is the free 0-generated
algebra. In the case of the variety of rigs, the terminal object is the rig of natural numbers N,
while for (non-trivial) subvarieties of 2-rigs the terminal object is always the two element chain
2. We note that there is no finite Weil algebra in the in Rig.

An arrow f ∶X → Y in C is called constant if it factors through 1. More generally, an arrow
f ∶X → Y is called a pseudo-constant if it coequalizes all the points of X. That is,

1 X D
b
a

f

for every pair of points a, b∶1→X, one has f(a) = f(b). Of course, every constant is a pseudo-
constant.

Let us write Aff for the opposite of 2Rig, and if A is an object in 2Rig, let us write A′ for the
corresponding object in Aff. Trivially, points of A′ in Aff are in bijective correspondence with
maps A → 2 in 2Rig. So, for example, A is a Weil 2-rig iff A′ has exactly one point. A map
f ∶A→ B is called pseudo-stant if for every g, h∶B → 2 one has g ○f = h○f . So, a map is pseudo-
stant in the category iR if and only if the corresponding B′ → A′ in Aff is a pseudo-constant.
Experience with Set suggests that pseudo-constants are constant, but this is too naive. What
is sometimes the case in categories of spaces is that the image of a pseudo-constant has exactly
one point. This is the content of the following question.

Question 1. Let V be a variety of rigs. Let f ∶A → B be such that for every g, h∶B → 2,
g ○ f = h ○ f ∶A→ 2. Is it the case that f factors through one Weil algebra in V?
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Part of this work is devoted to providing an answer to the above question. In the case for
classes of 2-rigs, in particular irigs, we answer this question in the affirmative. This is, in part,
a consequence of the following characterization.

Theorem 2. Let R be any 2-rig. Then the following are equivalent.

1. R is a Weil 2-rig.

2. R has a unique prime ideal closed under ≤.

3. R satisfies the following:

For all x ∈ R,∃n ∈ N, xn ≤ 0 or ∃r ∈ R,1 ≤ rx.
where ≤ is the partial order defined via x ≤ y iff x + y = y in R.

Moreover, the theorem above can be used to establish that the variety of 2-rigs is generated
by a its Weil members, in particular this class can be taken to consist of finite algebras of a
certain form.

Theorem 3. For V taken to be the variety of 2-rigs or the variety of integral rigs, V is generated
by a class of its finite Weil members. Specifically, each finitely generated free-algebra is a
subdirect product of finite Weil algebras in V [satisfying a stronger version of item (3)].
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Internal category theory is the study of the 2-category Cat(C) of internal categories, inter-
nal functors and internal natural transformations respective a base category C. The Yoneda
embedding y : C → Fun(Cop, Set) can be understood as an externalization functor of finite limit
structures in C (made precise in [5]); it can be shown to induce an embedding

y∗ : Cat(C) → Fun(Cop,Cat)

of 2-categories, at times also referred to as the externalization functor of the category C (see
e.g. [2]). On the flipside, internalization is the practice of reflecting properties and indexed
structures along y∗ whenever possible.

Given an ∞-categorical base C (usually an ∞-topos or at least left exact), the ∞-category
Cat∞(C) of C-internal ∞-categories is well-known, and internal constructions of internal ∞-
categories are pervasive in the higher categorical literature. A systematic study of internal
∞-category theory as such however is not; indeed a definition of an according ∞-categorical
enrichment Cat∞(C) by hand is much less tangible than in the ordinary case. Thus, following
[6], in this talk we instead discuss the ∞-categorical externalization functor

y∗ : Cat∞(C) → Fun(Cop,Cat∞)

first, and use it to define the (∞, 2)-category Cat∞(C) of C-internal ∞-categories as embed-
ded in the (∞, 2)-category Fun(Cop,Cat∞) of C-indexed ∞-categories. We show various for-
mal (∞, 2)-categorical closure properties of Cat∞(C) under the assumption of various suitable
(∞, 1)-categorical closure properties of C. The main theorem states that the (∞, 2)-category
Cat∞(C) is a full sub-∞-cosmos of Fun(Cop,Cat∞) which is closed under all limits (and ex-
ponentials) whenever C is complete (and cartesian closed). It thus defines a (cartesian closed)
∞-cosmos in the sense of [3]. This means that a plethora of indexed ∞-categorical constructions
defined over a collection of internal ∞-categories indexed over such a base C can be internalized
in C automatically. We furthermore characterize the objects of Cat∞(C) by means of a Yoneda
lemma that expresses indexed diagrams of internal shape over C in terms of an ∞- categorical
totalization, and discuss applications.

Lastly, we relate the general theory developed to this point to results in the model cate-
gorical literature. We show that every model category M gives rise to a “hands-on” ∞-cosmos
Cat∞(M) (of not-necessarily cofibrant objects) directly by restriction of the Reedy model struc-
ture on M∆op

. We then define an according right derived model categorical externalization
functor, and use it to show that the ∞-categorical and the model categorical constructions
correspond to one another whenever C is presentable and M is a suitable presentation thereof.
This shows that the theory presented in this talk recovers as special cases various well-known
constructions in the model categorical literature. This for instance includes Dugger’s simplicial
replacements of model categories [1], Toën’s framework for theories of (∞, 1)-categories [7], as
well as Riehl and Verity’s ∞-cosmoses of Rezk-objects [4] among others.
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Raney duality, as illustrated in [3], consists of a dual equivalence of categories between Raney
algebras and T0 spaces. The dual equivalence sends a space X to the embedding Ω(X) ⊆ U(X),
where Ω(X) is its lattice of opens and U(X) its lattice of saturated sets (the upper sets in the
specialization order). In this setting, all Raney algebras are, so to speak, spatial: there are
no Raney algebras which are not Ω(X) ⊆ U(X) for some space X. We propose to extend
Raney duality by extending the category of Raney algebras to a more pointfree category. We
consider Raney extensions, as introduced in [7], pairs (L,C) where C is a coframe, and L ⊆ C
is a frame that meet-generates C such that the inclusion preserves the frame operations as well
as the strongly exact meets. Raney extensions are the objects of the category Raney, whose
morphisms are coframe maps which restrict to frame maps on the first components. We have
the following.

Proposition 1. There is an adjunction ΩR : Top ⇆ Raneyop : ptR, where ΩR(X) =
(Ω(X),U(X)) for all spaces X. In Top, the fixpoints are the T0 spaces.

We will see that the opposite of the frame FiltSE(L) of strongly exact filters and the opposite
of the frame FiltE(L) of exact filters studied in [6] and [5] are, respectively, the largest and the
smallest Raney extension of some frame L. These two frames are known to be, respectively,
anti-isomorphic to the collection So(L) of fitted sublocales and isomorphic to the collection
Sc(L) of joins of closed sublocales. In [7] the following is shown.

Theorem 2. For a frame L, the largest Raney extension on it is (L,So(L)), and the smallest
one is (L,Sc(L)op).

A topological space X is TD if for all x ∈ X there are opens U, V ⊆ X such that {x} = U\V .
This axiom is introduced in [1]. In [2], it is shown that the axiom is in a certain sense dual to
sobriety, in fact the following is shown.

• A space X is sober if and only if whenever a subspace inclusion X ⊆ Y induces a frame
isomorphism Ω(X) ∼= Ω(Y ), then that inclusion is the identity.

• A space X is TD if and only if whenever a subspace inclusion Y ⊆ X induces a frame
isomorphism Ω(Y ) ∼= Ω(X), then that inclusion is the identity.

In [2], the definition of the TD spectrum ptD(L) of a frame L is given. With the following
result, we find another sense in which sobriety and the TD property are dual of one another.

Proposition 3. For a frame L, the spectrum of the smallest Raney extension (L,Sc(L)op) is
its TD spectrum ptD(L). The spectrum of the largest one (L,So(L)) is the classical spectrum
pt(L). Furthermore, for any Raney extension (L,C) we have subspace inclusions ptD(L) ⊆
ptR(L,C) ⊆ pt(L), up to isomorphism.

In the context of Raney extensions, unlike that of frames, we have a natural version of the T1
axiom. Because a space X is T1 if and only if all subsets are saturated, that is, U(X) = P(X),
we define a Raney extension (L,C) to be T1 if C is a Boolean algebra. This enables us to find
a characterization of subfitness for frames as the weakest possible version of the T1 axiom.
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Theorem 4. For a frame L, the following are equivalent.

• The frame L is subfit.

• The frame L admits a T1 Raney extension.

• The frame L admits a unique T1 Raney extension.

• The Raney extension (L,Sc(L)) is T1.

We will see that Raney extensions generalize canonical extensions for distributive lattices,
and for locally compact frames (see [4]). We say that an element c ∈ C for a Raney extension
(L,C) is compact if it is inaccessible by directed joins of families in L. We say that a Raney
extension is algebraic when it is generated by its compact elements. We have the following ([7]).

Proposition 5. For a pre-spatial frame L, the canonical extension (L,Lδ) is the free algebraic
Raney extension over it.
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An involutive partially-ordered semigroup (ipo-semigroup) is a structure of the form A =
(A,≤, ·,∼,−) such that (A,≤) is a partially ordered set and (A, ·) is a semigroup with two
order-reversing operations ∼ and − satisfying involution ∼−x = x = −∼x and rotation x · y ≤
z ⇐⇒ y · ∼z ≤ ∼x ⇐⇒ −z · x ≤ −y. In the case that the semigroup has an identity, we
call it an ipo-monoid. An ipo-semigroup in which the partial order is a lattice order is called
an iℓ-semigroup.

In the presence of order-reversal and involution, rotation is equivalent to residuation:

xy ≤ z ⇐⇒ x ≤ −(y · ∼z) ⇐⇒ y ≤ ∼(−z · x).

Thus, the multiplication of every ipo-semigroup is residuated in both arguments, with left and
right residuals given by z/y = −(y · ∼z) and x\z = ∼(−z · x), respectively.

We say that an ipo-monoid is integral if the global identity 1 is also the top element. In
this case, x\x = 1 = x/x. More generally, an ipo-semigroup A has local identities if x\x = x/x
for all x, in which case we denote this element by 1x, and 1x · x = x. If, moreover, elements
are bounded by their local identities (x ≤ 1x), the local identities are positive (y ≤ 1x · y), and
x\1x = 1x, then we say that A is locally integral.

We show that every locally integral ipo-semigroup A decomposes uniquely into a P lonka sum
over a semilattice directed system of integral ipo-monoids. We also solve the reverse problem,
that is, we provide necessary and sufficient conditions so that the glueing of a system of integral
ipo-monoids becomes an ipo-semigroup. This is a generalization of the results in [1], in which
the decomposition and glueing results are proven for locally integral ipo-monoids.

Commutative idempotent locally integral ipo-semigroups are called locally integral ipo-semi-
lattices and decompose into a system of Boolean algebras. A structural description of finite
commutative idempotent involutive residuated lattices (unital iℓ-semilattices) is given in [2]. We
also describe a dual representation for a class containing all finite locally integral ipo-semilattices
via semilattice directed systems of partial functions between sets.

This is joint work with José Gil-Férez and Peter Jipsen.
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A function is primitive recursive iff it is representable by a map on the parameterized initial
FN-algebra of any cartesian category (if it exists), where FN(X) = 1+X. In this talk, following
the philosophy of predicativism, we weaken the definition of a parameterized initial F -algebra
to introduce a new notion called a predicative F -scheme, for any endofunctor F . Then, we show
that the predicative FN-scheme (resp. predicative FW-scheme, where FW(X) = 1 + X + X)
naturally captures the class of all linear space (resp. polynomial time) computable functions as
its all and only representable functions. In the rest of this extended abstract, we will present
the definitions of predicative F -schemes and representability to make the above points more
formal.

First, we need to recall some basic definitions. Let C be a cartesian category (i.e., with all
finite products), F : C → C be a functor and X be an object in C. By an F -algebra in C with
parameters in X, we mean the tuple A = (X,A, a), where a : X × F (A) → A is a map in C.
The object A is called the carrier of A and is denoted by |A|. When X = 1, an F -algebra
with parameters in X is simply called an F -algebra. For any two F -algebras A = (X,A, a)
and B = (X,B, b) in C with parameters in X, by an F -homomorphism, we mean a C-map
f : A→ B such that the following diagram commutes:

X × F (A) A

X × F (B) B

f

a

b

idX×F (f)

It is clear that F -algebras in C with parameters in X together with F -homomorphisms form
a category denoted by AlgFX(C). Moreover, the assignment | − | : AlgFX(C) → C mapping an
F -algebra with parameters in X to its carrier and an F -homomorphism to itself is a functor.
Also, note that any g : X → Y in C induces a canonical functor g∗ : AlgFY (C)→ AlgFX(C).
Definition 1. Let E be a cartesian category, D be its (not necessarily full) cartesian subcat-
egory, i : D → E be the inclusion functor preserving all finite products, and F : E → E be a
functor whose restriction to D lands in D itself. An object I in E is called the F -scheme of
D in E , if for any X ∈ D, the object X × I is the limit of the diagram i| − | : AlgFX(D) → E
via the cone ⟨rX,A⟩A∈AlgF

X(D) and for any D-map f : X → Y and any F -algebra A in D with
parameters in Y , the following diagram commutes:

I ×X

I × Y |A|rY,A

idI×f
rX,f∗A
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The F -scheme of D in E is meant to formalize the common scheme of all F -algebras of D
(with parameters) inside the possibly greater category E . Using the universality of the limit,
one can easily show that there is a canonical F -algebra structure aI : F (I) → I on I, whose
composition with the projection provides an F -algebra structure on I ×X with parameters in
X. It is also easy to see that this algebraic structure makes all rX,A’s into F -homomorphisms.

In the special case when E = D, the F -scheme of D in D is nothing but the initial F -algebra:

Theorem 2. Let D be a finitely complete category. If I is the F -scheme of D in D, then
the F -algebra aI : F (I) → I is the parameterized initial F -algebra in D. Conversely, if A
is the parameterized initial F -algebra in D, then the object |A| together with its unique F -
homomorphisms into the F -algebras of D (with parameters) is the F -scheme of D in D.

In the general situation when E is different from D, we need to add an additional prop-
erty, called the approximability, to gain a more well-behaved F -scheme. Roughly speaking,
although the limit of the diagram i| − | : AlgFX(D) → E may not belong to D, we want it to
be approximable by the objects inside the smaller category D. More formally, the category
AlgFX(D) is called approximable iff there is a directed family {Sj}j∈J of classes of morphisms
of D (not necessarily closed under composition) such that it covers the whole Morph(D) and
the restriction of AlgFX(D) to Sj has an initial element, for any j ∈ J . Unfortunately, the fully
formal definition of approximability is beyond the scope of this short abstract. The reason is
some subtleties in the definitions of the restriction, the initial element and the compatibility in
the parameter object X, all because the Sj ’s are not necessarily closed under the composition.

Having approximability defined, the F -scheme of D in E is called predicative if AlgFX(D) is
approximable.

Now, we turn to the representability. Let N = (N, s, 0) and W = (W, s0, s1, ϵ) be the usual
algebras of natural numbers and binary strings, where s(n) = n + 1, s0(w) = w0, s1(w) = w1
and ϵ is the empty string. In the rest, let us assume that D and E are both cartesian and
cocartesian categories, i : D → E preserves these structures and FN : E → E and FW : E → E
be the functors defined by FN(X) = 1+X and FW(X) = 1+X+X. It is possible to represent
any element n ∈ N (resp. w ∈ W) as a map in HomE(1, I), if I is the FN-scheme (resp. FW-
scheme) of D in E . Denote this canonical representation by n̄ (resp. w̄). Similarly, we say that
an E-map f : Ik → I represents a function φ : Nk → N if the following commutes:

1

Ik I
f

⟨n̄1,...,n̄k⟩ φ(n1,...,nk)

for any (n1, . . . , nk) ∈ Nk. One can have a similar definition replacing N by W. Now, we are
finally ready to present our main result:

Theorem 3. (i) A function φ : Nk → N is linear space computable iff it is representable as
a map on the predicative FN-scheme of D in E, for any D and E.

(ii) A function φ : Wk →W is polynomial time computable iff it is representable as a map on
the predicative FW-scheme of D in E, for any D and E.
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It is a well-known fact that although the poset of opens of a topological space is a Heyting
algebra, its Heyting implication is not necessarily stable under the inverse image of continuous
functions and hence is not a geometric concept. This leaves us wondering if there is any
stable family of implications that can be safely called geometric. In this talk, after providing
a formalization for geometricity of a family of implications over a category of spaces, we first
present a classification for all geometric families over a given subcategory of Top satisfying
some closure properties and then we show that over the full category Top, there is only one
geometric family, consisting of trivial implications in a certain sense described below. In the rest
of this extended abstract, we will present the formal version of the classification we mentioned
above. Let us first start with the abstract notion of implication.

Definition 1. Let A = (A,≤,∧,∨, 1, 0) be a bounded distributive lattice. A binary operator
→ over A, decreasing in its first argument and increasing in its second is called an implication
over A if a → a = 1, for any a ∈ A and (a → b) ∧ (b → c) ≤ a → c, for any a, b, c ∈ A.
An implication is called weakly boolean if a → b = (a → 0) ∨ b, for any a, b ∈ A. If → is an
implication over the lattice of the opens of a space X, denoted by O(X), then the pair (X,→)
is called a strong space. A strong space map is a continuous map between spaces such that its
inverse image preserves the implication.

Example 2. Over any bounded distributive lattice A, there is a trivial implication defined by
a→t b = 1, for any a, b ∈ A. The Boolean and the Heyting implications are also implications.
Notice that the trivial and the boolean implications are weakly boolean.

The second element we must present is the geometricity. Intuitively, geometricity is the
stability of a family of implications under the inverse image of a family of continuous functions.
Therefore, to formalize this notion, we need to be precise about two ingredients: the continuous
maps we use and the family of implications we choose. For the former, it is reasonable to start
with a subcategory S of Top to have a relative version of geometricity. For the latter, as any
implication must be over a space in this case, a natural formalization of a family of implications
is some sort of fibration that to each space X in S assigns a fiber of strong spaces over X.
Having these two ingredients fixed, the geometricity simply means the stability of the fibres
under the inverse image of the maps in S. In other words, it states that for any map f : X → Y
in S, the inverse image map f−1 must map a fiber over Y into a fiber over X. The following is
the formalization of this idea.

Definition 3. Let S be a (not necessarily full) subcategory of Top. A category C of strong
spaces is called geometric over S, if the forgetful functor U : C → Top mapping C into S, is
surjective on the objects of S, and for any object (Y,→Y ) in C, any object X in S and any
map f : X → Y = U(Y,→Y ) in S, there exists an object (X,→X) in C such that f induces a
strong space map f : (X,→X)→ (Y,→Y ) in C:
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C (X,→X) (Y,→Y )

S X Y = U(Y,→Y )

U

f

f

Note that using the functor U , the category C is nothing but a way to provide a fiber of
strong spaces or equivalently a fiber of implications over any space in S. Then, the conditions
simply demand that the fibers and the maps between them are all lying over S and none of the
fibers are empty and the last condition is the geometricity condition we discussed above.

Example 4. For any category S of spaces, let St be the category of strong spaces (X,→t),
where X is in S and →t is the trivial implication together with all the maps of S as the
morphisms. It is clear that St is a geometric category over S. To have more examples, recall
that a space X is called indiscrete if its only opens are ∅ and X and it is locally indiscrete if
each x ∈ X has an indiscrete neighbourhood. Now, if S only consists of locally indiscrete spaces,
then there are three other degenerate geometric categories over S. The first is the category Sb
of strong spaces (X,→b), where X is in S and →b is the Boolean implication together with
the maps of S as the morphisms. This category is well-defined, since the locally indiscreteness
of X implies the Booleanness of O(X) and the inverse images always preserve all the Boolean
operators. It is easy to see that Sb is actually geometric over S. The second example is the
union of Sb and St that we denote by Sbt. This category is also clearly geometric over S. The
third example is Sa, the subcategory of strong spaces (X,→), where X is in S and → is a
weakly boolean implication, together with the strong space morphisms that U maps into S. It
is not trivial but one can show that Sa is also geometric over S.

Definition 5. A subcategory S of Top is called local if it has at least one non-empty object
and it is closed under all embeddings, i.e., for any space X in S and any embedding f : Y → X,
both Y and f belongs to S. A space X is called full in S if it has X as an object and all maps
into X as its maps.

The following theorem provides a characterization for all geometric categories over local
subcategories of Top:

Theorem 6. Let S be a local subcategory of Top with a terminal object:

(i) If S has at least one non-locally-indiscrete space, then the only geometric category over S
is St.

(ii) If S only consists of locally-indiscrete spaces, includes a non-indiscrete space and a full
discrete space with two points, then the only geometric categories over S are the four
distinct categories St, Sb, Sbt and Sa.

(iii) If S only consists of indiscrete spaces, then the only geometric categories over S are the
three distinct categories St, Sb, and Sbt.

As a special case, we can see that there is only one geometric category over the whole
category Top, namely the one with the trivial implications.

Corollary 7. Topt is the only geometric category over Top.

Therefore, one can conclude that there is no non-trivial and fully-geometric notion of impli-
cation.
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Lambek Calculus [1] is a substructural logic that omits all the typical structural rules. The
system is derived from its origins and can be understood as an algebraic structure, typically
known as residuated monoid, and occaionally referred to as a semigroup [2]. The standard
Lambek calculus is a system where only the associative law holds, as shown in Definition 1.

From the perspective of substructural logics, research has been conducted on the proof-
theoretic and algebraic properties of this system by adding/ removing structural rules such as
weakening, contraction, and exchange. Building on the standard Lambek calculus, researchers
have identified a weaker system that incorporates only one structure rule. This paper focuses on
a system that employs solely the exchange rule Γ, α, β, Σ ⊢ γ =⇒ Γ, β, α, Σ and demonstrates
the existence of a countably infinite series of logics L1

e, L
2
e, L

3
e, . . . , L

n
e , . . ., shown in Definition 2,

and their closure L∗
e, shown in Definition 3, between the standard system and the system with

only exchange.
We discuss the logical systems Ln

e and L∗
e, and their relationship with L and Le, focusing

on modifications to the introduction rules for / and \ without explicitly adding the exchange
rule. The analysis argues that Ln

e adn L∗
e aer fundamentally different logical system, both from

each other and from L and Le (Theorem 1). It highlights that Ln
e is stronger than L but equal

to or weaker than Le, as evidenced by the number of provable sequents; namely, the rule /Lk

and \ Lk (and consequently /* and \ L*) are provable in Le but not in L. Additionally, it is
natural to consider the commutative Lambek calculus as possessing the algebraic structure of
a commutative residuated monoid.

The standard Lambek calculus, which is inherently non-commutative, is characterized by
the algebraic structure of a residuated monoid. Furthermore, the commutative Lambek calculus
can also naturally be considered to have the algebraic structure of a commutative residuated
monoid. However, the above-mentioned Ln

e and L∗
e do not fit into either algebra. We are

exploring the translation of these systems into the algebraic structure of operads and plan to
detail these effors in future work.

Definition 1 (Lambek Calculus L). The Lambek calculus L is a system of sequent calculus
defined solely by the following inference rules. In particular, / and \ correspond to implications.

Ax
α ⊢ α

Γ ⊢ α Σ, α, ∆ ⊢ β
Cut

Σ, Γ, ∆ ⊢ β

Γ, α ⊢ β /R
Γ ⊢ β/α

α, Γ ⊢ β \R
Γ ⊢ α\β

Γ ⊢ α Σ, β, ∆ ⊢ γ /L
Σ, β/α, Γ, ∆ ⊢ γ

Γ ⊢ α Σ, β, ∆ ⊢ γ \L
Σ, Γ, α\β, ∆ ⊢ γ

∗This work was supported by RIKEN Special Postdoctoral Researchers Program.
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Definition 2 (Mildly Commutative Lambek Calculus Ln
e ). Mildly Commutative Lambek Cal-

culus Ln
e is defined by the left introduction rules: /L0,\L0,/L1,\L1, /L2,\L2, . . ., /Ln,\Ln, and

L’s standard rules: Ax,Cut,/R,\R. All introduction rules /Lk and \Lk are defined as follows.

Γ ⊢ α Σ, β, δ1, δ2, . . . , δk, ∆ ⊢ γ
/Lk

Σ, β/α, δ1, δ2, . . . , δk︸ ︷︷ ︸
k skip

, Γ, ∆ ⊢ γ

Γ ⊢ α Σ, σ1, σ2, . . . , σk, β, ∆ ⊢ γ
\Lk

Σ, Γ, σ1, σ2, . . . , σk︸ ︷︷ ︸
k skip

, α\β, ∆ ⊢ γ

Definition 3 (Mildly Commutative Lambek Calculus L∗
e). Mildly Commutative Lambek Cal-

culus L∗
e is defined by the rules: /L*,\L*, and L’s standard rules: Ax,Cut,/R,\R.

Γ ⊢ α Σ, β, Θ, ∆ ⊢ γ
/L*

Σ, β/α, Θ, Γ, ∆ ⊢ γ

Γ ⊢ α Σ, Θ, β, ∆ ⊢ γ
\L*

Σ, Γ, Θ, α\β, ∆ ⊢ γ

Theorem 1. Ln−1
e is weaker than Ln

e and L∗
e because the following sequent is not provable in

Ln−1
e , but is provable in Ln

e and L∗
e. Let α1, α2, . . . , αn+1, β be atomic formulas. Then,

α1, α2, . . . , αn+1︸ ︷︷ ︸
n skip

, α1\(α2\(. . . \(αn\(αn+1\β)) . . . )) ⊢ β.

Proof. First, we prove the case when n = 1; i.e., α1, α2, α1\(α2\β) ⊢ β is provable in L1
e and L∗

e

but not in L. The sequent is provable in L1
e and L∗

e by the rule \L1. Furthermore, the sequent is
not provable in L because the exhaustive proof search is halted by the cut elimination theorem.
Next, we prove the case when n = 2; i.e., α1, α2, α3, α1\(α2\(α3\β)) ⊢ β is provable in L2

e and
L∗
e but not in L1

e. Similarly, we can prove that the sequent is provable in L2
e and L∗

e by the
rules \L2 and \L1. Unlike the standard Lambek calculus, there is no cut elimination theorem
in the systems Ln

e . However, we can prove that the sequent is not provable in L1
e by analyzing

the proof search. Accordingly, we can prove the remaining cases in the same manner. Thus, we
conclude that Ln−1

e is weaker than Ln
e and L∗

e.
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Modal logic admits two, by now classical, topological semantics. One is given by interpreting
the modal diamond 3 as the closure, and the other by interpreting 3 as the derived set1. We
refer to [2] for a thorough overview of these semantics. A celebrated result for the closure
semantics is the McKinsey and Tarski theorem stating that the modal logic S4 is sound and
complete with respect to any dense-in-itself metrizable space, in particular, any Euclidean space
[9]. A landmark result for the derivative semantics is the Abashidze-Blass theorem stating that
the modal logic GL = �(�p → p) → �p is sound and complete with respect to any ordinal
α ≥ ωω with the standard interval topology [1, 5] (See also: [4]). Earlier Esakia [7] showed that
GL is sound and complete with respect to the class of scattered spaces. Recall that a topological
space is scattered if its every non-empty subset contains a point isolated in that subset. It is
easy to verify that each ordinal is a scattered space with respect to the order topology.

In modal logic, general Kripke frames constitute an important generalization of Kripke se-
mantics. A general Kripke frame is a triple (X,R,A), where A ⊆ P(X) is a modal subalgebra
of the powerset algebra. In a general frame formulas are evaluated in the algebra A. A Kripke
frame can be seen as a general frame, where A = P(X). It is well known that, unlike Kripke
semantics, every modal logic is sound and complete with respect to its general Kripke frames [6].

Similarly to Kripke frames one can consider general topological spaces for both the clo-
sure and derived set semantics. A general (topological) c-space is a pair (X,A), where X is a
topological space and A is a modal subalgebra of (P(X), c), where c : P(X) → P(X) is the
topological closure. Like in general Kripke frames, in general c-spaces, formulas are evaluated
in the algebra A. Bezhanishvili et al. [3] show that the McKinsey and Tarski theorem can be
extended to all connected extensions of S4 by considering general c-spaces. In particular, they
showed that for every extension L ⊇ S4, such that L is the logic of a connected S4-algebra,
there is a general c-space (R, A) over the real line R such that L is sound and complete for (R, A).

General topological spaces for the derived set semantics have been considered in [8] for
provability logics with countably many modal operators and more recently in [10] where it was
shown that the bimodal provability logic GLB is sound and complete with respect to general
bi-topological spaces.

In this abstract we combine these two approaches. We will consider general topological
spaces for the derived set semantics over ordinal spaces and we will prove a generalization of
the Abashidze-Blass theorem for these spaces, in the same way [3] proved a generalized version
of the McKinsey and Tarski theorem for general spaces over the real line.

∗speaker
1Recall that the derived set d(U) of U consists of all those points x such that every open neighbourhood of

x intersects U \ {x}.
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Definition 1. A general d-space is a pair (X,A) with X a topological space and A ⊆ P(X) a
modal subalgebra of (P(X), d), where d : P(X)→ P(X) is the derived set operator.

A valuation in a general d-space is a map from propositional variables to A, which is extended
to all formulas in a standard way, mapping 3ϕ to dJϕK. Note that every general d-space has a
least subalgebra, the d-algebra generated by ∅. We call a general d-space (X,A) where X is a
scattered space and A is the least d-subalgebra of (P(X), d), a least scattered d-space. Recall
that GL.3 = GL + (3p ∧3q → 3(p ∧ q) ∨3(p ∧3q) ∨3(q ∧3p)).

Theorem 1. Let (X,A) be a least scattered d-space. Then (X,A) validates GL.3.

Recall that Kripke frames of GL.3 are linear dually well-founded frames (i.e., linear GL-
frames)[6]. The above result can be extended to a completeness of all extensions of GL.3.

Theorem 2. For every extension L ⊇ GL.3 there exists an ordinal α ≤ ωω and a least scattered
d-space (α,A) over α such that L is the logic of (α,A).

The above theorem can in fact be generalized to a much larger class.

Theorem 3. Let L ⊇ GL be a Kripke complete extension of GL. Then there exists a countable
ordinal α and a general scattered d-space (α,A) over α, such that L is the logic of (α,A).
Furthermore, if L enjoys the finite model property, then α ≤ ωω.

We leave it as an open problem whether any extension of GL (i.e., not Kripke complete
ones) is complete with respect to a class of general scattered d-spaces. Another interesting
direction for future research is to study least general d-spaces beyond scattered spaces and to
investigate completeness of modal logics, not necessarily of extensions of GL, with respect to
general topological d-spaces.
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Abstract

Continuous dcpos naturally arise in the study of operator algebras as families of certain
modules, equipped with the partial order given by inclusion. These domains play a crucial
role in noncommutative topology.

I will briefly explain the construction of these domains, give some important examples,
and then present a recent structure result showing that in many cases the domains are
semilattices.

Background

In 2008, a surprising connection between domain theory and operator algebras was discovered
[CEI08], see also [Kei17]: The isomorphism classes of countably generated Hilbert modules over
a C∗-algebra A, equipped with the partial order induced by the inclusion of closed submodules,
is a domain (a continuous dcpo). Moreover, direct sum of modules defines an abelian addition
on this domain, turning it into a domain semigroup. The construction goes back to Cuntz
[Cun78], and the said domain semigroup is therefore called the Cuntz semigroup Cu(A).

A C∗-algebra is a norm-closed ∗-algebra of operators on a Hilbert space. These are often
thought of as noncommutative topological spaces, since a C∗-algebra is commutative if and only
if it is isomorphic to C(X) = {f : X → C|f continuous} for some compact, Hausdorff space X.

For many C∗-algebras, the Cuntz semigroup can be computed explicitly. For example, if
A = C, then countably generated Hilbert modules are nothing but separable Hilbert spaces,
and these are characterized by their dimension, which gives

Cu(C) ∼= N := {0, 1, 2, 3, . . . ,∞}.

For the C∗-algebra A = C([0, 1]), every countably generated Hilbert modules is a bundle
of separable Hilbert spaces over the base space [0, 1], with the dimension of the fibers varying
lower-semicontinuously, which gives

Cu(C([0, 1])) ∼= Lsc([0, 1],N).

Other examples of domain semigroups arising as the Cuntz semigroup of a C∗-algebra are
[0,∞] (with the usual addition and order), and the semigroup LAff(K)++ ∪ {0} of lower-
semicontinuous, affine functions K → (0,∞] for a Choquet simplex K.

Since 2008, domain semigroups have been studied extensively in the context of C∗-algebras.
In particular, the author and collaborators have shown that domain semigroups form a closed,
symmetric monoidal category [APT18, APT20].

A C∗-algebra is said to have stable rank one if its invertible operators are norm-dense, a
property that is known to be equivalent to the ring-theoretic notion of Bass stable range one.
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Stable rank one is a finiteness assumption that is automatically satisfied in many situations
of interest. Recently [APRT22], a deep structure result was shown for the domain semigroups
arising from such C∗-algebras:

Theorem 1. Given a C∗-algebra A with stable rank one, the Cuntz semigroup Cu(A) has the
Riesz interpolation property, that is, whenever countably generated Hilbert modules E1, E2 and
F1, F2 satisfy

Ej ↪→ Fk

for j = 1, 2 and k = 1, 2, then there exists a countably generated Hilbert module G such that

Ej ↪→ G ↪→ Fk

for j = 1, 2 and k = 1, 2.

This shows that for two elements x and y in Cu(A), the set of lower bounds for {x, y} is
upward directed and therefore has a supremum, which means that the infimum x ∧ y exists.
Thus, the Cuntz semigroup not only has the structure of a domain semigroup, but it is also a
continuous inf-semilattice.

References

[APRT22] R. Antoine, F. Perera, L. Robert, and H. Thiel, C∗-algebras of stable rank one and
their Cuntz semigroups, Duke Math. J. 171 (2022), 33–99.

[APT18] R. Antoine, F. Perera, and H. Thiel, Tensor products and regularity properties of Cuntz
semigroups, Mem. Amer. Math. Soc. 251 (2018), viii+191.

[APT20] R. Antoine, F. Perera, and H. Thiel, Abstract bivariant Cuntz semigroups, Int. Math.
Res. Not. IMRN (2020), 5342–5386.

[CEI08] K. T. Coward, G. A. Elliott, and C. Ivanescu, The Cuntz semigroup as an invariant
for C∗-algebras, J. Reine Angew. Math. 623 (2008), 161–193.

[Cun78] J. Cuntz, Dimension functions on simple C∗-algebras, Math. Ann. 233 (1978), 145–153.

[Kei17] K. Keimel, The Cuntz semigroup and domain theory, Soft Comput. 21 (2017), 2485–2502.

2

255



Canonical Approximations of Modal Logics

Niels C. Vooijs

Radboud University, Nijmegen, Netherlands
ncvooijs@gmail.com

Recall that a modal logic Λ is called canonical when its variety of algebras is closed under
taking canonical extensions [2, Definition 5.44]. It is well known that this is equivalent to being
D-persistent, i.e. having the property that for every descriptive frame of Λ, the underlying
Kripke frame is also a Λ-frame [2, Proposition 5.85].

The most important property of canonical logics is that they are strongly Kripke complete.
As such, canonicity is a major tool for establishing Kripke completeness for modal logics. In
addition, many logics of interest are canonical. Sahlqvist’s completeness theorem states that
every logic axiomatised by Sahlqvist formulas is canonical [2, Theorem 4.42], thus establishing
a convenient syntactic description for a large subclass of canonical logics. Moreover, the Fine-
van Benthem theorem states that every logic characterised by an elementary class of frames is
canonical [3, Theorem 10.19].

In spite of these results, several well-known modal logics are not canonical, most notably
the McKinsey logic K.1 (or KM), the Gödel-Löb logic GL and Grzegorczyk’s logic Grz [3,
Section 6.2] [4].1 In addition, several common extensions, such as Grz.2 and Grz.3, are not
canonical.

We are interested in finding closest canonical “approximations” for (non-canonical) normal
modal logics.

Approximations. Let NExt(K) denote the set of all normal modal logics, and let X ⊆
NExt(K) be a set of normal modal logics such that (X ,⊆) forms a complete lattice. For a logic
Λ not necessarily in X , define the X -approximation of Λ from below resp. from above to be

X↑(Λ) :=
∨
{Λ′ ∈ X |Λ′ ⊆ Λ} and X↓(Λ) :=

∧
{Λ′ ∈ X |Λ ⊆ Λ′}

respectively. Clearly, a completely analogous definition can be used in the intuitionistic setting.
When (X ,⊆) is a complete sublattice of (NExt(K),⊆) the meet is the intersection of logics

and the join is the sum, i.e. the least normal modal logic containing the union of the logics, and
we obtain

X↑(Λ) ⊆ Λ ⊆ X↓(Λ).

In this case the approximation from above is the least logic in X extending Λ and the approxi-
mation from below is the greatest sublogic of Λ contained in X .

Taking for X the set of weakly Kripke complete normal modal logics, the approximation
from above is just the logic of the frame class, i.e. Log(Fr(Λ)). In the intuitionistic setting,
[1, 5] studied approximations where the set of super-intuitionistic subframe logics and the set
of super-intuitionistic stable logics are taken for X . Canonical approximations however, have
not been studied before.

1Recall that K.1 is the normal modal logic axiomatised by the McKinsey axiom □3p → 3□p, GL is the
logic of irreflexive conversely wellfounded frames and Grz the logic of reflexive conversely wellfounded frames
[3, Section 3.5 and Table 4.2].
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Canonical approximations. Let us write Can for the set of canonical normal modal logics.
We note the following.

Theorem 1. Can is closed under arbitrary sums and finite intersections, but not under infinite
intersections. Hence it forms a complete lattice, and a sublattice of (NExt(K),⊆), but not a
complete sublattice.

Even though the closure under intersections is stated as Problem 10.2 in [3], the proof turns
out to be an easy exercise.2

Since Can is closed under arbitrary sums, Can↑(Λ) ⊆ Λ for every logic Λ. Interestingly,
however, the dual inequality need not hold: the canonical approximation from above of a logic
need not extend the logic. This is exemplified by the following theorem, which follows from the
Fine-van Benthem theorem.

Theorem 2. Let Λ be a logic that has the finite model property. Then Can↓(Λ) = Can↑(Λ).

Clearly this means that for non-canonical logic Λ which has the finite model property, e.g.
GL or Grz, Λ ̸⊆ Can↓(Λ). In fact the canonical approximation from above of a logic can be
expressed as a kind of special case of the one from below by the formula

Can↓(Λ) = Can↑
(⋂
{Λ′ ∈ Can |Λ ⊆ Λ′}

)
.

Recall that over S4, the McKinsey axiom, denoted .1 , corresponds to the class of frames
in which every point sees a point that sees only itself. The .2 axiom expresses the confluence
or Church-Rosser property, and the .3 axiom expresses linearity of frames [3, Section 3.5 and
Table 4.2]. Using selection-based methods, we compute the canonical approximations of Grz.2
and Grz.3.

Theorem 3.

(i) Can↓(Grz.2) = Can↑(Grz.2) = S4.2.1,

(ii) Can↓(Grz.3) = Can↑(Grz.3) = S4.3.1.

In a sense, in these two cases the canonical approximation is obtained by “just” dropping
the converse wellfoundedness from the frame conditions. This raises the question whether
something similar happens for other non-canonical logics, in particular Grz itself and the
analogous extensions of GL.
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The proof theory of multiple-valued logics, as well as its complexity, have been deeply studied,
particularly for the class of the so-called fuzzy logics. However, the study of a systematic
presentation of these logics with a view to the design of efficient satisfiability solvers has received
less attention. Since satisfiability is usually the main logical question addressed in instances of
real-world related problems, this study is motivated both from a purely mathematical and also a
more applied perspective. Finding a clausal-form like definition that would help the automatic
management of the SAT question is a rather open question, which we will address in this work.
We will focus here in SAT as the problem of determining, for a given formula, whether there is
an assignment making that formula true (sometimes called strong SAT), as opposed to other
definitions related to assigning a particular value to the formula.

It is immediate that SAT for Gödel and Product logics is equal to that of classical logic (see
eg. [3]), but the  Lukasiewicz logic case offers deeper challenges. In the literature, we find studies
on purely syntactical clausal forms for  Lukasiewicz logics for instance in [4] and [2]. While the
first one addresses only a subclass of  Lukasiewicz formulas, the second offers a definition of a
clausal form which is universal for SAT, but seems of limited use when attempting to design a
resolution-like algorithm.

We propose a definition of clausal form for  Lukasiewicz logic that is universal for SAT and
whose structure offers a high potential, since the many-valued operators (namely, the non lattice
ones) are applied to single literals.

Definition 1.1. We let monadic  Lukasiewicz formulas be the formulas build with the language
⊕,⊙ and a single literal.

For instance, ((¬x)3 ⊕ (¬x))⊙ (3¬x) is a monadic  Lukasiewicz term, while x⊕ y or x⊙ ¬x
are not.1

Definition 1.2. A formula φ is in  L-SAT conjunctive normal form if it has the structure

∧

i∈I

∨

j∈J
ti,j(xi,j)

for t monadic  Lukasiewicz formulas.
We denote by  L-SATCNF to the set of formulas in  L-SAT conjunctive normal form.

We can define a mapping σ : Fm→ L-SATCNF in such a way that the following result holds:

Theorem 1.3. Let φ be a  Lukasiewicz formula. Then φ is SAT if and only if σ(φ) is SAT.

The proof and construction rely in several known results about  Lukasiewicz logic, namely:

Lemma 1.4 (from [1]). φ is SAT in  L if and only if it is SAT in MVn for some n ⩽ ( ♯φn )n,
for ♯φ the number of apparitions of variables in φ and n the number of different variables in φ.

1By ln or nl we mean the usual application of the  Lukasiewicz product or sum n times.
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This implies that φ is SAT in  L if and only if it is SAT in MVkφ , for kφ = mcm({p : p ⩽
♯φ
n )n, p prime}).

Lemma 1.5 (Existence of so-called Ostermann terms, from [5]). Let a ∈ [0, 1] be a finite sum
of inverses of powers of 2. Then there is a formula from [0, 1] in [0, 1] in one free variable τa(x),
such that

1. τa(x) = 1 if and only if x ⩾ a,

2. τa(x) is a composition of y ⊙ y and y ⊕ y.

We do not detail the construction of σ here for lack of space, but the sketch of the definition
and proof of universality is as follows.

Let us denote by D the finite sums of inverse powers of 2 belonging to [0, 1], as in Lemma 1.5.
It is easy to check that, given any n, we can chose some finite Dn ⊂ D such that 0, 1 ∈ Dn and
for every i/n, (i+ 1)/n ∈MVn (for i < n) there is a single di ∈ Dn for which i/n < di < i+ 1/n,
and such that no other element belongs to Dn. Furthermore, an involutive negation can be
defined over them in the obvious way (namely, ∼ di = dn−i−1), as well as two suitable notions
of (closed) product between them (roughly speaking, the top one, and the bottom one). Using
these ideas, in combination with the above completeness for SAT with respect to a single finite
algebra, we can define constructively the translation σ relying in the possibility to split each
implication (a → b = 1 if and only if, for any element x in Dkφ , either a ⩽ x or x ⩽ b). The
involutive negation (both over the elements of the algebra and over Dkφ), when used carefully,
allows us to address both inequalities as the previous ones, leading to a total splitting of the
formulas in Ostermann terms over the elements in Dkφ applied to the literals arising from the
variables in φ. The distributivity of MV algebras allows to conclude the final form as CNF.

We will also present a resolution method complete with respect to the presented forms, which
needs of a finite number of rules to produce an assignment satisfying the formula. The fact that
the outermost level is that of classical CNF, and that the multi-valuedness is limited to single
variables makes this forms amenable to be solved either in the previous way or modeled with
tools like MIP or relying, for the outermost level of the solving algorithm, in efficient classical
SAT solvers. Furthermore, while the bound for finite satisfiability under Lemma 1.4 for the
translated formula would be very high, a refinement of our Theorem, following from the proof
itself, is that φ is SAT if and only if τ(φ) is SAT in MVkφ .
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Our contribution. In this presentation, we will demonstrate a bi-equivalence

Toposisow.e.p. ≃ [W−1]LogGrpd,

where:

• Toposiso
w.e.p. is the bi-category of topoi with enough points, geometric morphisms, and

natural isomorphisms,

• LogGrpd ⊆ TopGrpd is a bi-subcategory of the bi-category of topological groupoids –
the bi-category of logical groupoids,

• and W is a left bi-calculus of fractions on LogGrpd.

Background on localic representations of topoi. It is often remarked that Grothendieck
topoi are a generalisation of topological spaces, in their point-free incarnation, where ‘points can
have non-trivial isomorphisms’. As proved by Joyal and Tierney [4], every topos E is represented
by some localic groupoid X, in the sense that E is equivalent to the topos of sheaves Sh(X).

In [5], Moerdijk demonstrates that a geometric morphism Sh(X)
f−→ Sh(Y) is induced by a

cospan
W Y

X
of homomorphism of localic groupoids, and moreover a bi-equivalence

Toposiso ≃ ECG[Σ−1] (1)

between the bi-category of topoi (with only invertible 2-cells) and a localisation on the right of
a bi-subcategory ECG ⊆ LocGrpd of localic groupoids (where the details of the bi-category
fractions are handled in a paper by Pronk [6]).

Topological representation of topoi. Since any topos with enough points can be repre-
sented by a topological groupoid (see [3]), it is natural to wonder whether a version of the
bi-equivalence (1) exists where localic groupoids are replaced by topological groupoids. How-
ever, we can demonstrate that:

Proposition 1. For any bi-subcategory C ⊆ TopGrpd, and any right bi-calculus of fractions
Σ on C,

Toposiso
w.e.p. ̸≃ C[Σ−1].

This motivates our adoption of a left bi-calculus of fractions in the result:

Theorem 2. There is a bi-equivalence Toposisow.e.p. ≃ [W−1]LogGrpd.
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An application to model theory. A classical result of model theory asserts that an
atomic/ω-categorical theory T is characterised, up to bi-interpretability, by the topological
automorphism group Aut(M) of its unique countable model (see [1]), i.e. given atomic theories
T1 and T2 with countable models M and N ,

T1,T2 are bi-interpretable ⇐⇒ Aut(M) ∼= Aut(N).

Recently, Ben Yaacov has shown that any theory is characterised up to bi-interpretability by a
topological groupoid [2]; however, his groupoid is not a groupoid of models for the theory.

From our bi-equivalence, we will deduce a groupoidal extension of the classical Ahlbrandt-
Ziegler result: given theories T1,T2,

T1,T2 are Morita equivalent ⇐⇒ X,Y are weakly equivalent,

where X and Y are representing topological groupoids of models for the classifying topoi of T1

and T2 respectively.
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Descent theory begins with Grothendieck’s remarkable work [4]. The context it uses consists
of a fibration of categories over a category C, and a morphism p : E → B in C; the morphism
p is called an effective descent morphism (resp. descent morphism) if the canonical morphism
from the fibre over B to a certain category of descent data that is described in terms of the
fibre over E is an equivalence of categories (resp. is full and faithful). Usually one restricts,
however, to the case of basic fibration, where the fibres over B and E are comma categories
C/B and C/E, respectively. Later, independently J. Beck (unpublished), and J. Bénabou and
J. Roubaud [1] worked out the monadic approach to descent theory. In particular, it was proved
that in the case of basic fibration, a morphism p is an effective descent morphism (resp. descent
morphism) if and only if the pullback functor p∗ : C/B → C/E is monadic (resp. premonadic).
In many concrete situations, describing such morphisms is a highly non-trivial problem, with
many publications of various authors devoted to it. For instance, effective descent morphisms in
the category of topological spaces were characterized by Reiterman and Tholen [6], Clementino
and Hofmann [2], Clementino and Janelidze [3]. Effective descent morphisms in the category
of Hausdorff spaces were described by Clementino and Janelidze [3].

In [10], we reduced the problem whether all descent morphisms are effective in a category
with a factorization system (E,M) (with M ⊆ M) to the simpler one. Namely, we have shown
that this problem is equivalent to the one obtained from it by replacing “all descent morphisms”
by “all descent morphisms from E”, and by replacing arbitrary descent data in the definition
of an effective descent morphism by descent data of a certain kind. The goal of this talk is
to present some applications of this simplification. Below we use codescent for descent in dual
categories.

A new proof of the following fact is found: every regular monomorphism in the category of
topological spaces (i.e., an embedding) is an effective codescent morphism. Note that, initially,
this fact was proved by Mantovani in a different way (unpublished). The third proof of this
fact arises from the results on effective descent morphisms in topological categories given in
[10]. The similar results are obtained for the categories of uniform spaces, proximity spaces,
and some other topological categories.

The problem when a functor reflects effective descent morphisms is simplified: as different
from the similar results known earlier, we require a functor to preserve not all pullbacks, but
pullbacks of E-morphisms. This enables us to study effective codescent morphisms in the duals
of several more categories of topological nature since, in topology, there is a number of forgetful
functors which do not preserve pushouts, but preserve pushouts of some monomorphisms. In
particular, the following statement is obtained: every codescent morphism in the category of
Hausdorff spaces is effective.

Note that not every regular monomorphism in the category of Hausdorff spaces (i.e. a closed
embedding) is a codescent morphism (Kelly [5]). We gave the following statement. Before we
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formulate it, recall that subsets U1 and U2 of a topological space B are called completely
separable if there exists a continuous mapping from B to the closed interval [0, 1] such that
f(U1) = {0} and f(U2) = {1}.

For a closed embedding p : B ↣ E in the category of Hausdorff spaces and, for the following
conditions, one has (i)⇒(ii)⇐(iii). If E is regular and B is compact, then (i) and (ii) are
equivalent. If, again, E is regular and each two disjoint open subsets of B are completely
separable, then all three conditions are equivalent: (i) p is an effective codescent morphism;
(ii) for any completely separable open subsets U1 and U2 of B, there exist disjoint open subsets
V1 and V2 of E such that U1 = B ∩ V1 and U2 = B ∩ V2; (iii) for any disjoint open subsets
U1 and U2 of B, there exist disjoint open subsets V1 and V2 of E such that U1 = B ∩ V1 and
U2 = B ∩ V2.

Further, the following statements are obtained: every monomorphism in the category of
compact Hausdorff spaces (i.e., an injective continuous mapping) is an effective codescent mor-
phism. Every regular monomorphism (i.e., an isometric embedding) in the category of Banach
spaces (with linear contractions) is an effective codescent morphism.

Effective descent morphisms in topological categories are studied. The obtained results
imply that if V be a Mal’cev variety of universal algebras, then every regular epimorphism (i.e.,
a continuous open surjective homomorphism) is an effective descent morphism in the category
of topological V-algebras.

Finally, note that, with the aid of the above-mentioned simplification of the descent problem,
effective codescent morphisms are characterized in some varieties of universal algebras [9], [11],
[7], [8], [12].

The author gratefully acknowledges the financial support from Shota Rustaveli National
Science Foundation of Georgia (FR-22-4923).
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De Vries [5] developed a renowned de Vries duality between the category KHaus of compact
Hausdorff spaces with continuous maps and the category Dev of de Vries algebras with de Vries
morphisms. In [1], Bezhanishvili and Harding extended de Vries duality to stably compact
spaces by replacing the category of de Vries algebras with regular proximity frames. They
established a de Vries duality between the category StKSp of stably compact spaces with
proper maps and the category RPrFrm of regular proximity frames with proximity morphisms.

In [7], Smyth generalized the compactifications of completely regular spaces to the stable
compactifications of T0-spaces. He showed that the equivalence classes of stable compactifica-
tions of a given T0-space form a poset. The largest element, named as the Smyth compactification
in [3], is a generalization of the Stone-C̆ech compactification.

It is well known that the Stone-C̆ech compactification yields a reflector β : CReg → KHaus
between the category CReg of completely regular spaces with continuous maps and the category
KHaus. That is, KHaus is a full reflective subcategory of CReg. In [4], by introducing the
category Comp of compactifications of completely regular spaces, Bezhanishvili, Morandi and
Olberding proved that the category CReg is equivalent to the full subcategory SComp of
Comp consisting of Stone-C̆ech compactifications of completely regular spaces. To develop the
de Vries duality for completely regular spaces, they introduced the category DeVe of de Vries
extensions, and built the dual equivalence between the categories Comp and DeVe. Under this
duality, the full subcategory MDeVe of DeVe comprising maximal de Vries extensions was
placed into duality with the category SComp of Stone-C̆ech compactifications of completely
regular spaces.

Bezhanishvili and Harding developed two methods to establish the duality for T0-spaces.
On the one hand, in [3], by considering the category StComp of stable compactifications
of T0-spaces, they proved that the full subcategory Smyth of StComp composed of smyth
compactifications of T0-spaces is equivalent to the category Top0 of T0-spaces. To extended
the de Vries duality of stably compact spaces to T0-spaces, they introduced the category RE of
Raney extensions and established a duality between the categories StComp and RE. Thus it
yielded a duality between the category Top0 and the full subcategory MRE of RE consisting
of maximal Raney extensions. On the other hand, in [2], they developed an alternate duality
between the category Top0 and the category RAlg of Raney algebras.

As we all know, sober spaces are closely related to pointfree topology and logic because
of the duality (Kawahara duality) for spatial frames (see [6]). And the category Sob of sober
spaces is a full reflective subcategory of the category Top0. In this paper, instead of stably
compactifications of T0-spaces, we choose to employ sobrifications of T0-spaces to construct a
new duality for T0-spaces. We introduce the definition of a spatial frame Raney extension as
follows.
Definition 1. Let L be a spatial frame and K a Raney lattice, where Raney lattice is a
completely distributive complete lattice generated by completely join-irreducible elements. A
frame homomorphism ε : L → K is said to be a spatial frame Raney extension if it is injective
and ε(L) is dense in K.
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Then we establish a one-to-one correspondence between spatial frame Raney extensions and
sobrifications of T0-spaces. In order to build a duality for T0-spaces, we introduce the category
of spatial frame Raney extensions and the category of sobrifications of T0-spaces as follows.
Definition 2. The category of spatial frame Raney extensions, denoted by SFrmRE, is the
category whose objects are spatial frame Raney extensions ε : L → K and whose morphisms
are pairs (ϕ, ψ) where ϕ : L → L′ is a frame homomorphism, ψ : K → K ′ is a complete lattice
homomorphism, and ε′ ◦ ϕ = ψ ◦ ε.
Definition 3. The category of sobrifications, denoted Sobf , is the category whose objects are
sobrifications s : X → Y and whose morphisms are pairs (f, g) of continuous maps, and the
following diagram commutes:

X

f

��

s // Y

g

��
X ′

s′
// Y ′

We obtain one of the main theorem of this paper.
Theorem 4. The categories SFrmRE and Sobf are dually equivalent; and the category Sobf

is equivalent to the category Top0.
Therefore, by Theorem 4, we obtain the duality for T0-spaces.

Theorem 5. The category Top0 is dually equivalent to the category SFrmRE.
Especially, we apply the duality for T0-spaces to its full subcategory CKTop0 consisting

of core-compact T0-spaces. And we denote the category CFrmRE be the full subcategory
of SFrmRE consisting of continuous frame Raney extensions, where continuous frame Raney
extension is a special spatial frame Raney extension ε : L → K with L as a continuous frame.
Then we obtain the following result.
Theorem 6. There is a dual equivalence between the categories CKTop0 and CFrmRE.
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1 Introduction

Inquisitive logic [8, 3, 1] is a logic of so-called inquisitive propositions, intended to model ques-
tions in much the same way that the propositions of non-inquisitive logic model declarations.
This logic has many interesting linguistic applications [2]. First-order inquisitive logic was
studied in, e.g., [7], and intuitionistic inquisitive logic was introduced in [10, 11].

In our talk, we provide a categorical analysis of the main mathematical features of inquis-
itive logic. In particular, we give a sheaf-theoretic semantics for (higher-order, intuitionistic)
inquisitive logic. This subsumes as special cases the classical possible-worlds model of inquis-
itive logic [12], a refinement of this based on a topological space of worlds, as well as other
models with a topological flavor.

It was observed in the propositional case by [9] that the language of (intuitionistic) inquisitive
logic can be identified with (intuitionistic) logic, together with a geometric modality ∇ in the
sense of [6], also known as a Lawvere-Tierney modality or lax modality. Inquisitive logic is then
characterized by the addition of the so-called ‘split’ axiom.

∇α→ ϕ ∨ ψ
Split

(∇α→ ϕ) ∨ (∇α→ ψ)

From the inquisitive perspective, ∇ is understood as the presupposition modality, with ∇α
representing the declarative proposition presupposed by the inquisitive proposition α.

2 Higher-Order Semantics

To extend Holliday’s insight from the propositional setting to higher-order, we must pass from
Heyting algebras and nuclei to toposes and Cartesian reflectors.

Essentially since Lawvere and Tierney, it has been known that a topos E equipped with
with a Cartesian reflector J : E → E interprets intuitionistic higher-order logic with a geometric
modality. The Lawvere-Tierney operator j : Ω→ Ω in E induced by J interprets the geometric
modality ∇. The rest of the logic is interpreted standardly in E . Our move will be to narrow
down this abstract semantics in order to validate the additional axioms of inquisitive logic.

Theorem 1. Let (C, J) be a site where C is small and cocomplete and J is canonical. Then,

SetC
op

, together with the sheafification a : SetC
op → SetC

op

induced by J is a model of of
intuitionistic higher-order inquisitive logic.

3 Examples

Example 2. Let W be a set (of possible worlds). Then, the singleton injection

{·} : W ↣ 2W
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induces the adjunction

{·}∗ ⊣ {·}∗ : SetW = SetW
op

↣ Set(2
W )op .

The composite {·}∗{·}∗ is a Cartesian reflector, and thus induces a coverage of 2W , which is
canonical. Moreover, 2W is small and cocomplete ( i.e. admits small joins).

This recovers the classical model of predicate inquisitive logic. In particular, we have

Sub
Set(2

W )op (1) ∼= 2(2W )op and SubSetW (1) ∼= 2W , i.e. the subsingletons of Set(2
W )op and

SetW correspond respectively to downwards-closed sets of subsets of W and subsets of W ,
which in inquisitive logic following [12] are respectively identified with inquisitive propositions
and declarative propositions.

Example 3. Any topological space W (of possible worlds), regarded as a site, satisfies the

conditions of Theorem 1. Thus, SetO(W )op , together with the sheafification

SetO(W )op a−→ Sh(W ) ↪→ SetO(W )op

is a model.
In particular, we have SubSetO(W )op (1) ∼= 2O(W )op and SubSh(W )(1) ∼= O(W ), which we

might identify with answerable inquisitive propositions and verifiable declarative propositions,
respectively.

The classical model of Example 2 is recovered in the case where W is discrete and thus
O(W ) = 2W .

Additional examples include sheaves on a locale, and, when size issues are dealt with, sheaves
on an ionad [5, 4] and sheaves on a Grothendieck topos.
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[11] V. Punčochář, Substructural Inquisitive Logics. The Review of Symbolic Logic. 12(2)296–330, 2019.

[12] F. Roelofsen. Algebraic Foundations for the Semantic Treatment of Inquisitive Content. Synthese.
190:79–102, 2013.

2

268


	Invited talks
	An introduction to 12 proof theory
	Arrow algebras
	On quantale enriched monoids
	Extending the Blok-Esakia Theorem to the monadic setting
	Relational semantics and ordered algebras for monotone propositional logics
	Duality theory for Boolean right restriction semigroups
	Being, Becoming, and the dimension of combinatorial spaces
	Refining intentional modals via topology
	Priestley-type dualities beyond the case of finite dualizing objects
	Game comonads and resource-sensitive model theory
	Girard quantales, their linear orders, and completely distributive lattices
	Projectivity in quasivarieties of logic

	Contributed talks
	Varieties and quasivarieties of MV-monoids
	Vietoris endofunctor for closed relations and its de Vries dual
	Commutation groups and state-independent contextuality
	Some results on almost distributive lattices
	Splittings and finite basis theorems, Part I: Splittings of a lattice
	Splittings and finite basis theorems, Part II: Complete lattices of subquasivarieties
	Structurally complete finitary extensions of positive Łukasiewicz logic
	Completeness of the GL.3 provability logic for the intersection of normal measures
	Colimits of Heyting algebras through Esakia duality
	Strict Leibniz hierarchy and categories of logics
	On continuity and openness of maps between locales
	Weak distributive laws between powerspaces over stably compact spaces
	Craig interpolation from Horn semantics
	Remarks on the DeMorganization of a locale
	On non-Archimedean frames
	The limits of prenexation in first-order Gödel logics
	Monoidal aspects of cocomplete quantale-enriched categories
	Intuitionistic modal logics: a minimal setting
	Characterizing finite measurable Boolean algebras
	Category-theoretic Fraïssé theory: an overview
	The quasivariety SP(L6). II. A Duality result.
	Enriched and homotopical coalgebra
	Non-distributive description logic
	Induced congruences in -frames
	Local finiteness in varieties of MS4-algebras
	The maximal spectrum of d-elements is not always Hausdorff
	McKinsey-Tarski algebras
	Embeddings of metric Boolean algebras in RN
	Modal weak Kleene logics
	Kites and pseudo MV-algebras
	An algebraic semantics for possibilistic finite-valued Łukasiewicz logic
	Epimorphisms between finitely generated algebras
	Finite homomorphism preservation in many-valued logics
	On assume-guarantee contract algebras
	Characterizing formulas using Post's lattice
	Finitely generated varieties of commutative BCK-algebras: Covers
	The logic with unsharp implication and negation - algebraic approach
	Pretabular tense logics over S4t
	A categorical representation of thin trees
	Logics for probabilistic dynamical systems
	Gödel–Dummett CTL
	The Kuratowski's problem in pointfree topology
	From higher-order rewriting systems to higher-order categorial algebras and higher-order Curry-Howard isomorphisms
	The logic of vague categories
	A 2-categorical analysis of context comprehension
	Investigating Barr exactness in classes of locally finite, transitive and reflexive Kripke frames
	Inception display calculi
	Topoi with enough points
	Multi-type universal algebra: Categorical equivalence
	Multi-type universal algebra: Transfer of properties
	Conditional Esakia duality
	A mixed logic with binary operators
	The preserving non-falsity companion of the Nilpotent Minimum Logic
	On monadic De Morgan monoids
	Degrees of incompleteness of implicative logics: the trichotomy theorem.
	Amalgamation in varieties of BL-algebras
	Interpolation in some modal substructural logics
	Temporal logic of a sequence of finite linear processes
	Distributive lattice-ordered pregroups
	The tree structure of conservative commutative residuated lattices
	Constructing conical and perfect residuated lattices
	Topological duality for distributive lattices: theory and applications
	MUltseq2.0 A general purpose finite-valued prover
	On abstract model theory and logical topologies
	Unification for temporal logic via duality and automata
	Generalised unions of conjunctive queries in the algebraic data model
	On free generalized 3-valued Post algebras
	Semantics for non-symbolic computation: Neural networks and other analog computers
	Local inconsistency lemmas and the inconsistency by cases property
	A discussion on double Boolean algebras
	Approaching rough set theory via categories
	A comonadic account of Feferman–Vaught–Mostowski theorems
	On (modal) expansions of pointed Abelian logic
	Finite lattices, N-free posets and orthomodularity
	Semicartesian categories of relations
	A categorical equivalence for odd or even involutive FLe-chains
	On the structure of balanced residuated posets
	Semi-divisible residuated lattices and modal operators
	Semi-prelinear residuated lattices
	Conjunctive table algebras
	Implication free reduct of intuitionism, or p-algebras revisited
	Hereditarily structurally complete extensions of R-mingle
	Evolution systems: amalgamation, absorption, and termination
	On semidirect products of biresiduation algebras
	Canonical extensions of quantale enriched categories
	On Boolean topos constructions by Freyd and Pataraia and their generalizations
	Tensor product in the category of effect algebras and related categories
	Subdirectly irreducible and generic equational states
	The finite model property for lattice based S4
	On three-valued coalgebraic cover modalities
	Equivalential algebras with regular semilattice
	Localic uniform completions via Cauchy sequences
	Categorical continuous logic
	Bi-intermediate logics of co-trees: Local finiteness and decidability
	Categorical foundations for fundamental logic
	Maximal sublattices of convex geometries
	Three theorems on idempotent semifields
	Notes on omega-well-filtered spaces
	When are bounded arity polynomials enough?
	Meet-irreducible elements in the poset of all logics
	Finitary semantics and languages of lambda-terms
	Prenex normal form theorems in intuitionistic arithmetic and the effective topos
	The effective topos may be simple unstable
	NP-hardness of promise colouring graphs via homotopy
	Polynomial time checking of generalized Sahlqvist shape
	Semigroups in classical planning
	The category of approximation spaces
	A Stone duality for the class of compact Hausdorff spaces
	Equivalential algebras with conjunction on dense elements
	The algebras of Lewis’s counterfactuals and their duality theory
	On the implicative subreducts of subresiduated lattices
	Finitely weighted Kleene algebra with tests
	The Priestley duality for -distributive -predomains
	A logic of belief revision in simplicial complexes
	Weil 2-rigs
	The (,2)-category of internal (,1)-categories
	Raney extensions as pointfree T0 spaces
	Decompositions of locally integral involutive residuated structures
	A categorical characterization of the low-complexity functions
	On geometric implications
	Substructural logics weaker than commutative Lambek Calculus
	Modal completeness for general scattered spaces
	Domains arising in operator algebras
	Canonical covers of modal logics
	SAT-universal CNF for Łukasiewicz logic
	A bi-equivalence between topoi with enough points and a localisation of topological groupoids
	Effective descent morphisms in the dual categories of ((compact) Hausdorff) topological spaces, Banach spaces, and some other concrete categories
	An extension of Stone duality to T0-spaces and sobrifications
	Sheaf semantics for inquisitive logic


