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Continuous logic is obtained by replacing the binary truth values {0, 1} by the unit interval
[0, 1]. It was introduced for the model theory of complete metric structures, see [5] for a recent
introduction. I will explain how continuous logic arises naturally when combining categorical
logic and duality theory.

A coherent hyperdoctrine is a functor Cop → DL satisfying some axioms (see, e.g., [3,
Ch. 5]), where C is a left exact category of contexts and where DL is the category of distributive
lattices. These hyperdoctrines algebraize theories in coherent logic, more precisely the ones
extending the theory of flat functors on C. Composing with Priestley duality, one obtains a
functor C → Priestley, giving, in model theoretic terms, the spaces of types of the theory.
The functors obtained in this way can be axiomatized as the open polyadic Priestley spaces
[9]. We can replace the Priestley spaces by the more general compact ordered spaces to obtain
open polyadic compact ordered spaces and it is possible to develop an elementary model theory
from this order-topological perspective (Beth definability, omitting types, Makkai conceptual
completeness).

In order to come back to the algebraic side, two dualities for compact ordered spaces behave
well:

1. The duality between compact ordered spaces and stably continuous frames.

2. The duality obtained in [1, 2] by taking the unit interval [0, 1] as a dualizing object.

Applying either of these dualities yields a different kind of hyperdoctrine. We will call them
respectively stably continuous hyperdoctrines and fuzzy hyperdoctrines. Each possibility has
its own advantage.

The duality with stably continuous frames allows to draw a connection to topos theory.
The classifying toposes of stably continuous hyperdoctrines are the stably continuous toposes,
specializing the continuous toposes of [6].

On the other hand, the duality of [1, 2] allows for a very straightforward generalization
of intuitionistic logic. For instance, Pitts’ uniform interpolation theorem [7] still holds by
generalizing the proof of [4, 8].
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