Categorical Foundations for Fundamental Logic

Guillaume Massas

University of California, Berkeley gmassas@berkeley.edu

Holliday [1] recently introduced a non-classical logic called *Fundamental Logic*, which intends to capture exactly those properties of the connectives \land, \lor and \neg that hold in virtue of their introduction and elimination rules in Fitch's natural deduction system for propositional logic. Holliday provides an intuitive semantics for fundamental logic in terms of *fundamental frames* (sets endowed with a relation of openness between its points satisfying some conditions) which generalizes both Goldblatt's semantics for orthologic and Kripke semantics for intuition-istic logic.

The main goal of this talk (based on [3, Chap. 4] and [4]) is to provide some robust categorical foundations for Holliday's semantics for Fundamental Logic. First, we will show how his semantics naturally arises as the discretization of a duality between fundamental lattices (the natural algebraic companions of Fundamental Logic) and a subcategory of the category of Priestley spaces. The main construction, which is of independent technical interest, consists in using Priestley's duality between distributive lattices and Priestley spaces to a obtain a duality between the category of all lattices and a category of binary products of Priestley spaces.

Time permitting, we will also discuss how one can construct natural functors between the category of fundamental lattices and a category of fundamental frames, so as to obtain a version of the Goldblatt-Thomason theorem both for Fundamental Logic and for its modal extension [2].

References

- [1] Wesley H. Holliday. A fundamental non-classical logic. Logics, 1:36–79, 2023.
- [2] Wesley H. Holliday. Modal logic, fundamentally. Manuscript, 2024.
- [3] Guillaume Massas. Duality and Infinity. PhD thesis, University of California, Berkeley, 2024.
- [4] Guillaume Massas. Goldblatt-Thomason theorems for fundamental logic. Manuscript, 2024.