A Discussion on Double Boolean Algebras Extended Abstract

Prosenjit Howlader and Churn-Jung Liau
Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
\{prosen,liaucj\}@mail.iis.sinica.edu.tw

In lattice theory, a polarity [1] is triple $\mathbb{K}:=(G, M, I)$ where G and M are sets and $I \subseteq$ $G \times M$. For any $X \subseteq G, X^{*}$ is the set of all $m \in M$ such that $g I m$ for all $g \in X$. For any $Y \subseteq M, Y^{+}$is the set of all $g \in G$ such that $g I m$ for all $m \in Y$. In formal concept analysis, a polarity is called a context. A concept is a pair of sets (X, Y) such that $X^{*}=Y$ and $X=Y^{+}$. The set of all concepts is denoted as $\mathcal{B}(\mathbb{K})$ and forms a complete lattice $\underline{\mathcal{B}}(\mathbb{K})$. The notion of a concept is generalized to protoconcepts and semiconcepts [4]. A protoconcept is a pair of sets (X, Y) such that $X^{*+}=Y^{+}$. A semiconcept is a pair of sets (X, Y) such that $X^{*}=Y$ or $X=Y^{+}$. We denote the sets of all protoconcepts and semiconcepts by $\mathcal{P}(\mathbb{K})$ and $\mathcal{H}(\mathbb{K})$, respectively. It is a straightforward observation that $\mathcal{B}(\mathbb{K}) \subseteq \mathcal{H}(\mathbb{K}) \subseteq \mathcal{P}(\mathbb{K})$. The meet (\square) and join (\sqcup) operations of the complete lattice $\underline{\mathcal{B}}(\mathbb{K})$ are extended to the set of protoconcepts. Two negation operators \neg and \lrcorner are defined on the set $\mathcal{P}(\mathbb{K})$. With respect to the meet, join, and two negations, the set $\mathcal{P}(\mathbb{K})$ forms an algebraic structure which is called the algebra of protoconcept. The set of all semiconcept $\mathcal{H}(\mathbb{K})$ forms a subalgebra of the algebra of protoconcept and the subalgebra is called the algebra of semiconcept.

On the abstraction of the algebra of protoconcept and algebra of semiconcept, the definition of double Boolean algebra and pure double Boolean algebra are introduced. The definition of double Boolean algebra is given below.

Definition 1. [4] An algebra $\mathbf{D}:=(D, \sqcup, \sqcap, \neg\lrcorner,, \top, \perp)$ satisfying the following properties is called a double Boolean algebra (dBa). For any $x, y, z \in D$,

$$
\begin{array}{ll}
(1 a)(x \sqcap x) \sqcap y=x \sqcap y & (1 b)(x \sqcup x) \sqcup y=x \sqcup y \\
(2 a) x \sqcap y=y \sqcap x & (2 b) x \sqcup y=y \sqcup x \\
(3 a) \neg(x \sqcap x)=\neg x & (3 b)\lrcorner(x \sqcup x)=\lrcorner x \\
(4 a) x \sqcap(x \sqcup y)=x \sqcap x & (4 b) x \sqcup(x \sqcap y)=x \sqcup x \\
(5 a) x \sqcap(y \vee z)=(x \sqcap y) \vee(x \sqcap z) & (5 b) x \sqcup(y \wedge z)=(x \sqcup y) \wedge(x \sqcup z) \\
(6 a) x \sqcap(x \vee y)=x \sqcap x & (6 b) x \sqcup(x \wedge y)=x \sqcup x \\
(7 a) \neg \neg(x \sqcap y)=x \sqcap y & (7 b)\lrcorner\lrcorner(x \sqcup y)=x \sqcup y \\
(8 a) x \sqcap \neg x=\perp & (8 b) x \sqcup\lrcorner x=\top \\
(9 a) \neg \top=\perp & (9 b)\lrcorner \perp=\top \\
(10 a) x \sqcap(y \sqcap z)=(x \sqcap y) \sqcap z & (10 b) x \sqcup(y \sqcup z)=(x \sqcup y) \sqcup z \\
(11 a) \neg \perp=\top \sqcap \top & (11 b)\lrcorner \top=\perp \sqcup \perp \\
(12)(x \sqcap x) \sqcup(x \sqcap x)=(x \sqcup x) \sqcap(x \sqcup x) &
\end{array}
$$

where $x \vee y:=\neg(\neg x \sqcap \neg y)$ and $x \wedge y:=\lrcorner(\lrcorner x \sqcup\lrcorner y)$. A quasi-order (that is reflexive and transitive) relation \sqsubseteq on D is obtained as: $x \sqsubseteq y \Longleftrightarrow x \sqcap y=x \sqcap x$ and $x \sqcup y=y \sqcup y$, for any $x, y \in D$.

Now we consider the two sets $D_{\sqcap}:=\{x \in D: x \sqcap x=x\}$ and $D_{\sqcup}:=\{x \in D: x \sqcup x=x\}$. A pure double Boolean algebra is a $\mathrm{dBa} \mathbf{D}$ such that for $x \in D$, either $x \in D_{\sqcap}$ or $x \in D_{\sqcup}$. A $\mathrm{dBa} \mathbf{D}$ is called contextual if the quasi-order becomes partial-order. Moreover, if for each $y \in D_{\sqcap}$ and $x \in D_{\sqcup}$ with $y \sqcup y=x \sqcap x$, there is a unique $z \in D$ with $z \sqcap z=y$ and $z \sqcup z=x$, \mathbf{D} is called fully contextual.

This new algebraic structure opens up several possible research directions. In [3], we study the topological representation theorem for fully contextual dBa and pure dBa . The definition of double Boolean algebra contains a large number of axioms. However, we show that the axioms $(10 a),(10 b),(11 a)$, and (11b) are derivable from the remaining ones.

Theorem 1. Let $\mathbf{D}:=(D, \sqcup, \sqcap, \neg,\lrcorner \top, \top, \perp)$ be an algebraic structure satisfying $(1 a)-(9 a)$, $(1 b)-(9 b)$, and 12 of Definition 1, then for all $x, y, z \in D$ the following hold.
(a) $x \sqcap(y \sqcap z)=(x \sqcap y) \sqcap z$ and $x \sqcup(y \sqcup z)=(x \sqcup y) \sqcup z$.
(b) $\neg \perp=\top \sqcap \top$ and $\lrcorner \top=\perp \sqcup \perp$.

As the name suggests, for each $\mathrm{dBa} \mathbf{D}$, there are two underlying Boolean algebras, $\mathbf{D}_{\square}:=$ $\left(D_{\sqcap}, \sqcap, \neg, \perp\right)$ and $\left.\mathbf{D}_{\sqcup}:=\left(D_{\sqcup}, \sqcup,\right\lrcorner, \top\right)$. Moreover, the map $r: D \rightarrow D_{\sqcap}, r(x):=x \sqcap x$ preserves \sqcap, \neg and \perp. The map $r^{\prime}: D \rightarrow D_{\sqcup}, r^{\prime}(x):=x \sqcup x$ preserves $\left.\sqcup,\right\lrcorner$ and \top. We also have two injections $e: D_{\Pi} \rightarrow D, e(x)=x$ and $e^{\prime}: D_{\sqcup} \rightarrow D, e^{\prime}(x)=x$ such that $r \circ e=i d_{D_{\Pi}}$ and $r^{\prime} \circ e^{\prime}=i d_{D \sqcup}$. Therefore, for a given $\mathrm{dBa} \mathbf{D}$, we have the following:
(a) the semigroup (D, \sqcap, \neg, \perp) satisfying $(1 a)-(3 a),(5 a)-(8 a),(10 a)$, and 12 is a retract [2] of the Boolean algebra \mathbf{D}_{\square}.
(b) the semigroup $(D, \sqcup\lrcorner,, \top)$ satisfying $(1 b)-(3 b),(5 b)-(8 b),(10 b)$, and 12 is a retract [2] of the Boolean algebra \mathbf{D}_{\sqcup}.
The above observation gives the following representation theorem for dBa . We will sketch its proof in the talk.

Theorem 2. Let (B, \wedge, \neg, \perp) and $\left(B^{\prime}, \vee^{\prime}, \neg^{\prime}, \top^{\prime}\right)$ be two Boolean algebras. Let $r: A \rightleftharpoons B: e$ and $r^{\prime}: A \rightleftharpoons B^{\prime}: e^{\prime}$ be two embedding-retraction pair. $\left.\mathbf{A}:=(A, \sqcap, \sqcup, \neg\lrcorner,, e^{\prime}\left(\top^{\prime}\right), e(\perp)\right)$ is a universal algebra where, $x \sqcap y:=e(r(x) \wedge r(y)), x \sqcup y:=e^{\prime}\left(r^{\prime}(x) \vee r^{\prime}(y)\right), \neg x:=e(\neg r(x))$, and $\lrcorner x:=e^{\prime}\left(\neg^{\prime} r^{\prime}(x)\right)$. Then \mathbf{A} is a dBa if and only if following holds.
(a) $e \circ r \circ e^{\prime} \circ r^{\prime}=e^{\prime} \circ r^{\prime} \circ e \circ r$.
(b) $e\left(r(x) \wedge r\left(e^{\prime}\left(r^{\prime}(x) \vee r^{\prime}(y)\right)\right)\right)=e(r(x))$ and $e^{\prime}\left(r^{\prime}(x) \vee r^{\prime}(e(r(x) \wedge r(y)))\right)=e^{\prime}\left(r^{\prime}(x)\right)$ for all $x, y \in A$.
(c) $\quad r\left(e^{\prime}\left(T^{\prime}\right)\right)=T$ and $r^{\prime}(e(T))=T^{\prime}$.

Moreover, every dBa can be obtained from such an embedding-retraction construction.
In [4], it is shown that $D_{p}:=D_{\sqcup} \cup D_{\sqcap}$ forms the largest pure subalgebra \mathbf{D}_{p} of a $\mathrm{dBa} \mathbf{D}$. Moreover, the largest pure subalgebra plays an important role in characterizing two different dBa . In particular, we will discuss the following result.

Theorem 3. Let \mathbf{D} and \mathbf{M} be fully contextual dBas. Then \mathbf{D} is isomorphic to \mathbf{M} if and only if \mathbf{D}_{p} is isomorphic to \mathbf{M}_{p}. Moreover, every dBa isomorphism from \mathbf{D}_{p} to \mathbf{M}_{p} can be uniquely extended to a dBa isomorphism from \mathbf{D} to \mathbf{M}.

References

[1] Birkhoff, G. Lattice theory, vol. 25. American Mathematical Soc., 1940.
[2] Grätzer, G. Universal algebra. Springer Science \& Business Media, 2008.
[3] Howlader, P., and Banerjee, M. Topological representation of double Boolean algebras. Algebra Universalis 84 (2023), Paper No. 15, 32.
[4] Wille, R. Boolean concept logic. In Conceptual Structures: Logical, Linguistic, and Computational Issues (2000), B. Ganter and G. W. Mineau, Eds., Springer Berlin Heidelberg, pp. 317-331.

