A Discussion on Double Boolean Algebras Extended Abstract

Prosenjit Howlader and Churn-Jung Liau

Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan {prosen,liaucj}@mail.iis.sinica.edu.tw

In lattice theory, a *polarity* [1] is triple $\mathbb{K} := (G, M, I)$ where G and M are sets and $I \subseteq G \times M$. For any $X \subseteq G$, X^* is the set of all $m \in M$ such that gIm for all $g \in X$. For any $Y \subseteq M, Y^+$ is the set of all $g \in G$ such that gIm for all $m \in Y$. In formal concept analysis, a polarity is called a *context*. A *concept* is a pair of sets (X, Y) such that $X^* = Y$ and $X = Y^+$. The set of all concepts is denoted as $\mathcal{B}(\mathbb{K})$ and forms a complete lattice $\underline{\mathcal{B}}(\mathbb{K})$. The notion of a concept is generalized to protoconcepts and semiconcepts [4]. A *protoconcept* is a pair of sets (X, Y) such that $X^{*+} = Y^+$. A *semiconcept* is a pair of sets (X, Y) such that $X^{*+} = Y^+$. A *semiconcept* is a pair of sets (X, Y) such that $X^{*+} = Y^+$. We denote the sets of all protoconcepts and semiconcepts by $\mathcal{P}(\mathbb{K})$ and $\mathcal{H}(\mathbb{K})$, respectively. It is a straightforward observation that $\mathcal{B}(\mathbb{K}) \subseteq \mathcal{H}(\mathbb{K}) \subseteq \mathcal{P}(\mathbb{K})$. The meet (\Box) and join (\sqcup) operations of the complete lattice $\underline{\mathcal{B}}(\mathbb{K})$ are extended to the set of protoconcepts. Two negation operators \neg and \lrcorner are defined on the set $\mathcal{P}(\mathbb{K})$. With respect to the meet, join, and two negations, the set $\mathcal{P}(\mathbb{K})$ forms an algebraic structure which is called the *algebra of protoconcept*. The set of all semiconcept $\mathcal{H}(\mathbb{K})$ forms a subalgebra of the algebra of protoconcept and the subalgebra is called the *algebra of semiconcept*.

On the abstraction of the algebra of protoconcept and algebra of semiconcept, the definition of *double Boolean algebra* and *pure double Boolean algebra* are introduced. The definition of double Boolean algebra is given below.

Definition 1. [4] An algebra $\mathbf{D} := (D, \sqcup, \sqcap, \neg, \lrcorner, \top, \bot)$ satisfying the following properties is called a *double Boolean algebra* (dBa). For any $x, y, z \in D$,

$(1a)(x \sqcap x) \sqcap y = x \sqcap y$	$(1b)(x \sqcup x) \sqcup y = x \sqcup y$
$(2a)x \sqcap y = y \sqcap x$	$(2b)x \sqcup y = y \sqcup x$
$(3a)\neg(x\sqcap x) = \neg x$	$(3b) \lrcorner (x \sqcup x) = \lrcorner x$
$(4a)x \sqcap (x \sqcup y) = x \sqcap x$	$(4b)x \sqcup (x \sqcap y) = x \sqcup x$
$(5a)x \sqcap (y \lor z) = (x \sqcap y) \lor (x \sqcap z)$	$(5b)x \sqcup (y \land z) = (x \sqcup y) \land (x \sqcup z)$
$(6a)x \sqcap (x \lor y) = x \sqcap x$	$(6b)x \sqcup (x \land y) = x \sqcup x$
$(7a)\neg\neg(x\sqcap y) = x\sqcap y$	$(7b) \lrcorner \lrcorner (x \sqcup y) = x \sqcup y$
$(8a)x \sqcap \neg x = \bot$	$(8b)x \sqcup \lrcorner x = \top$
$(9a)\neg \top = \bot$	$(9b) \lrcorner \bot = \top$
$(10a)x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$	$(10b)x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z$
$(11a)\neg\bot=\top\sqcap\top$	$(11b) \lrcorner \top = \bot \sqcup \bot$
$(12)(x \sqcap x) \sqcup (x \sqcap x) = (x \sqcup x) \sqcap (x \sqcup x)$	

where $x \lor y := \neg(\neg x \sqcap \neg y)$ and $x \land y := \lrcorner(\lrcorner x \sqcup \lrcorner y)$. A quasi-order (that is reflexive and transitive) relation \sqsubseteq on D is obtained as: $x \sqsubseteq y \iff x \sqcap y = x \sqcap x$ and $x \sqcup y = y \sqcup y$, for any $x, y \in D$.

Now we consider the two sets $D_{\Box} := \{x \in D : x \Box x = x\}$ and $D_{\sqcup} := \{x \in D : x \sqcup x = x\}$. A *pure* double Boolean algebra is a dBa **D** such that for $x \in D$, either $x \in D_{\Box}$ or $x \in D_{\sqcup}$. A dBa **D** is called *contextual* if the quasi-order becomes partial-order. Moreover, if for each $y \in D_{\Box}$ and $x \in D_{\sqcup}$ with $y \sqcup y = x \Box x$, there is a unique $z \in D$ with $z \Box z = y$ and $z \sqcup z = x$, **D** is called *fully contextual*. This new algebraic structure opens up several possible research directions. In [3], we study the topological representation theorem for fully contextual dBa and pure dBa. The definition of double Boolean algebra contains a large number of axioms. However, we show that the axioms (10a), (10b), (11a), and (11b) are derivable from the remaining ones.

Theorem 1. Let $\mathbf{D} := (D, \sqcup, \sqcap, \neg, \lrcorner, \top, \bot)$ be an algebraic structure satisfying (1a) - (9a), (1b) - (9b), and 12 of Definition 1, then for all $x, y, z \in D$ the following hold.

- (a) $x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$ and $x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z$.
 - (b) $\neg \bot = \top \sqcap \top$ and $\lrcorner \top = \bot \sqcup \bot$.

As the name suggests, for each dBa **D**, there are two underlying Boolean algebras, $\mathbf{D}_{\Box} := (D_{\Box}, \Box, \neg, \bot)$ and $\mathbf{D}_{\Box} := (D_{\Box}, \Box, \neg, \top)$. Moreover, the map $r : D \to D_{\Box}, r(x) := x \Box x$ preserves \Box, \neg and \bot . The map $r' : D \to D_{\Box}, r'(x) := x \sqcup x$ preserves \Box, \lrcorner and \top . We also have two injections $e : D_{\Box} \to D, e(x) = x$ and $e' : D_{\Box} \to D, e'(x) = x$ such that $r \circ e = id_{D_{\Box}}$ and $r' \circ e' = id_{D_{\Box}}$. Therefore, for a given dBa **D**, we have the following:

- (a) the semigroup (D, \Box, \neg, \bot) satisfying (1a) (3a), (5a) (8a), (10a), and 12 is a retract [2] of the Boolean algebra \mathbf{D}_{\Box} .
- (b) the semigroup $(D, \sqcup, \lrcorner, \top)$ satisfying (1b) (3b), (5b) (8b), (10b), and 12 is a retract [2] of the Boolean algebra \mathbf{D}_{\sqcup} .

The above observation gives the following representation theorem for dBa. We will sketch its proof in the talk.

Theorem 2. Let (B, \land, \neg, \bot) and $(B', \lor', \neg', \top')$ be two Boolean algebras. Let $r : A \rightleftharpoons B : e$ and $r' : A \rightleftharpoons B' : e'$ be two embedding-retraction pair. $\mathbf{A} := (A, \sqcap, \sqcup, \neg, \lrcorner, e'(\top'), e(\bot))$ is a universal algebra where, $x \sqcap y := e(r(x) \land r(y)), \ x \sqcup y := e'(r'(x) \lor r'(y)), \ \neg x := e(\neg r(x)),$ and $\lrcorner x := e'(\neg r'(x))$. Then \mathbf{A} is a dBa if and only if following holds.

- (a) $e \circ r \circ e' \circ r' = e' \circ r' \circ e \circ r.$
- (b) $e(r(x) \wedge r(e'(r'(x) \vee r'(y)))) = e(r(x))$ and $e'(r'(x) \vee r'(e(r(x) \wedge r(y)))) = e'(r'(x))$ for all $x, y \in A$.

(c)
$$r(e'(\top')) = \top$$
 and $r'(e(\top)) = \top'$.

Moreover, every dBa can be obtained from such an embedding-retraction construction.

In [4], it is shown that $D_p := D_{\sqcup} \cup D_{\sqcap}$ forms the largest pure subalgebra \mathbf{D}_p of a dBa \mathbf{D} . Moreover, the largest pure subalgebra plays an important role in characterizing two different dBa. In particular, we will discuss the following result.

Theorem 3. Let **D** and **M** be fully contextual dBas. Then **D** is isomorphic to **M** if and only if \mathbf{D}_p is isomorphic to \mathbf{M}_p . Moreover, every dBa isomorphism from \mathbf{D}_p to \mathbf{M}_p can be uniquely extended to a dBa isomorphism from **D** to **M**.

References

- [1] BIRKHOFF, G. Lattice theory, vol. 25. American Mathematical Soc., 1940.
- [2] GRÄTZER, G. Universal algebra. Springer Science & Business Media, 2008.
- [3] HOWLADER, P., AND BANERJEE, M. Topological representation of double Boolean algebras. Algebra Universalis 84 (2023), Paper No. 15, 32.
- [4] WILLE, R. Boolean concept logic. In Conceptual Structures: Logical, Linguistic, and Computational Issues (2000), B. Ganter and G. W. Mineau, Eds., Springer Berlin Heidelberg, pp. 317–331.