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The so-called algebraic approach to constraint satisfaction problems is well-established and
successful example of application of universal algebra in computational complexity. This line of
research started with a conjecture of Feder and Vardi [3], that each finite-template CSP is either
in P or NP-complete. The algebraic theory of polymorphisms was established by Jeavons et al.
[5, 1], and the approach culminated with two independent positive resolutions of the conjecture
by Bulatov [2] and by Zhuk [8].

Fixed-template constraint satisfaction problems (CSPs) may be defined in several ways:
The goal is to decide whether a given primitive positive formula is satisfiable in a fixed finite
structure (called template). Alternatively, it is a homomorphism problem for finite relational
structures where the target structure is fixed, i.e., we are asking given a structure X whether
there is a homomorphism to a fixed structure A. The problem is usually denoted by CSP(A).

A substantial recent effort has been dedicated to a slight generalisation of CSPs to promise
problems. A promise problem consists of two disjoint (but not necessarily complementary)
sets of instances: positive and negative. A promise CSP is a promise problem whose positive
instances are positive instance of CSP(A) and whose negative instances are negative instances
of another CSP(B); note that in order for these to be disjoint, we have to have a homomorphism
from A to B. A prototypical example of a promise CSP is approximate graph colouring: Given
a graph G, decide between the case that G is 3-colourable and the case that G is not even
6-colourable. The algebraic methods generalise to the promise setting, but universal algebra is
less relevant in resolving the complexity of these problems, and new tools need to be developed
to address these problems.

The goal of this talk is to share one of these new tools. I will outline a new application
of topology (more precisely, homotopy theory) in assessing the complexity of promise CSPs.
Namely, I will talk about hardness of two versions of graph and hypergraph colouring:

• It is NP-complete to decide between graphs that (A) map homomorphically to an odd
cycle and those that (B) are not 3-colourable (Krokhin, Opršal, Wrochna, and Živný [6]).

• It is NP-complete to decide between 3-uniform hypergraphs (A) that can be coloured by
3 colours in such a way that each edge has a unique maximum, and (B) those that cannot
be coloured by 4 colours in the same way. (Filakovský, Nakajima, Opršal, Tasinato, and
Wagner, [4]).

Both proofs are based on topological ideas first used to show lower bounds of the chromatic
number of Kneser graphs by Lovász [7] in conjunction with algebraic and categorical tools.
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