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Mostowski [5] showed that, for two pairs of logically equivalent relational structures
A ≡FO B and A′ ≡FO B′ in first-order logic, their cartesian products are also logically equiva-
lent A×A′ ≡FO B×B′. Then, Feferman and Vaught [2] showed that a similar statement holds
for arbitrary (potentially infinite) products and coproducts, instead of just binary products. In
our work we give a categorical account of these and other Feferman–Vaught–Mostowski type
theorems.

Aiming for applications in finite model theory, we reformulate these theorems in the recently
introduced setting of game comonads. Typically, for a well-behaved fragment L of first-order
logic, there is a comonad C on the category R(σ) of relational structures in signature σ. It is
a standard fact about comonads that we have a pair of adjunctions and a comparison functor
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where Kl(C) is the Kleisli category and EM(C) is the Eilenberg–Moore category of coalgebras
for C. For our typical comonads, the objects of EM(C) can be viewed as tree-ordered relational
structures and, moreover,

A ≡L B ⇐⇒ FC(A) ∼ FC(B)

where ∼ denotes that the two structures in EM(C) are bisimilar. In fact, this bisimulation
relation encodes that Duplicator/Player II has a winning strategy in the corresponding model
comparison game for ≡L. The structure of FC(A) encodes all possible positions in this game.
See [1] for a recent survey on game comonads.

Coming back to the theorem of Mostowski, we have a functor × : R(σ)×R(σ) → R(σ) and
we want to show that if

FC(A) ∼ FC(B) and FC(A′) ∼ FC(B′) then also FC(A×A′) ∼ FC(B ×B′).

This indicates that we need to find a functor ×̃ : EM(C) × EM(C) → EM(C) which commutes
with the free functors FC and preserves the bisimulation relation ∼.

A suitable candidate ×̃ can be found by making use of the universal property of products.
However, the task becomes more interesting when we abstract away from products and allow
operations of arbitrary arity. It turns out that it is more natural to consider only unary oper-
ations between possibly different categories. This subsumes the n-ary case since the pointwise
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product of n comonads on the product category is a comonad as well. To this end, assume that
we have a functor H : A → B and comonads C and D on A and B, respectively. As before, in
order to have that

FC(A) ∼ FC(B) implies FD(H(A)) ∼ FD(H(B))

we need to find a lifting of H, that is, a functor H̃ : EM(C) → EM(D) which preserves bisim-

ulation and commutes with free functors: FD(H(A)) ∼= H̃(FC(A)). Observe that comonad
morphisms HC ⇒ DH are not suitable because the lift of H that these induce only commutes
with the forgetful functors.

We take inspiration from the theory of monoidal monads (cf. [3, 6]), where the monoidal
structure on the base category is lifted to the category of algebras for the monad. Perhaps
surprisingly, the monoidal structure plays no role for the lift to exist. By dualising and gener-
alising these results to our situation, we only require a Kleisli law DH ⇒ HC (also known as
an oplax comonad morphism) and EM(D) with equalisers of coreflexive pairs (ECP). Then the

usual Kleisli lift Ĥ of H further lifts to the categories of coalgebras:
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Another surprising feature is that the theorems of [6] about bimorphisms generalise to this

setting as well. These become crucial when proving that the lifted functor H̃ preserves the
bisimulation relation. In fact, our conditions ensure that H̃ is a parametric relative right
adjoint. To summarise, we prove the following.

Theorem 1. Let C and D be comonads on R(σ) and R(τ), capturing logic fragments L and K,
respectively. Assume EM(D) has ECP and H : R(σ) → R(τ) admits a Kleisli law DH ⇒ HC
which lifts H to a parametric relative right adjoint between the categories of coalgebras then

A ≡L B implies H(A) ≡K H(B).

Not only many Feferman–Vaught–Mostowski type theorems from the literature are a special
case of this theorem but, also, this theorem becomes essential in the theory of game comonads.
It allows us to compare logics, show preservation of type-equivalence by transformations, prove
locality theorems, etc.
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