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Introduction Despite the great technological progress, we are lacking a foundational theory
of modern artificial intelligence (AI). Specifically, we want to interpret, explain, and verify the
‘sub-symbolic’ computation performed by neural networks that drive this success. For classical
‘symbolic’ computation, this problem was solved by semantics: the mathematical description of
the meaning of program code. In this talk, we develop one approach to an analogous semantics
for non-symbolic computation performed by neural networks and other analog computers. To do
so, we first summarize the three semantics for symbolic computation, and then we describe our
analogous components—systems, domains, and logic—for non-symbolic computation, visualized
in figure 1. The key idea is to represent the dynamics of the non-symbolic computation as a
limit of symbolic approximations, which are given by observations.

Semantics for symbolic computation Symbolic computation is specified by some program
code P written in some programming language, and semantics should assign meaning to P .
There are three approaches. First, ‘systems’: Operational semantics describes P by the steps
a machine would take to implement this program, so the meaning of our program is given by a
transition system. Second, ‘domains’: Denotational semantics describes P by the function (or
denotation) JP K that it computes and the finite approximations to this function. The set of all
denotations and approximations of programs of a given type σ forms a so-called domain Dσ.
Third, ‘logic’: Logical semantics describes P by the properties it has: e.g., if the input is 1,
then executing P yields an even output, which is written as the Hoare triple {is 1}P{is even}.

Ideally, these three semantics are in harmony: Partial correctness requires that if a Hoare
triple {φ}P{ψ} is provable, then running program P in a state satisfying φ results in a state
satisfying ψ (if P terminates). Full abstraction requires that two programs have the same
denotation iff the machines running the two programs show the same behavior. Stone duality
requires that the properties of P jointly determine the denotation JP K, and vice versa [1].

For an analogous semantics for non-symbolic computation, we now explicate the italic terms.
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Figure 1: The threefold semantics for non-symbolic computation.
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Systems If symbolic computation is specified by program code, how is non-symbolic com-
putation specified? The answer is: by dynamical systems [2]. Let’s consider neural networks
as an example. (Other famous examples are cellular automata or differential analyzers.) Un-
derstanding their training dynamics is essential for a theory of deep learning. Neural networks
are trained by backpropagation: given a batch of training data, it updates the current weights
w of the network to weights w′ with smaller training loss. Hence backpropagation specifies a
dynamical system T : W ×Dω → W ×Dω, where W is the weight space and D is the set of
batches of data, and T maps a pair (w, d) of a weight w and a sequence of batches d to the
pair (w′, σ(d)), where w′ is the result of updating w with the batch d0 and σ(d) = d1d2 . . . (i.e.,
σ is the shift operator on sequences). Thus, the analogue of a program code is a dynamical
system specification like backpropagation (or the rule of a cellular automaton or the differential
equation specifying the differential analyzer, etc.). The analogue of a transition system is a
dynamical system T : X → X. Formally, we take X to be a zero-dimensional compact Polish
space and T a continuous function (as studied in the field of topological dynamics in dimension
zero [3]; though in [4] we also cover probabilistic systems).

Domains As in symbolic semantics, we obtain the ‘meaning’ of the dynamical system in the
limit of finite, ‘interpretable’ approximations to the system. These approximations are given
via observations about the system: e.g., that with the current set of weights w the neural
network classifies this given image correctly. As will be explained in the talk, we package these
observations as finite domains and, by refining the observations, we obtain in the limit (in the
category-theoretic sense) a domain DX with a Scott-continuous function JT K : DX → DX ,
which we call the dynamical domain. Formally, we develop this idea as a functor from the
category of dynamical systems to the category of dynamical domains. This functor has a left
adjoint, which naturally restricts to an equivalence—this can be regarded as a form of full
abstraction [4].

Logic Finally, the finite observations of the system can be identified with clopen subsets of
the state space X. The Hoare triple {φ}T{ψ} then says: whenever we observe the system
having property φ now, we observe property ψ next, i.e., φ ⊆ T−1(ψ). We can reformulate this
as a Boolean algebra with operators (BAO): let A be the Boolean algebra of clopen subsets of
X and let 2 := T−1 : A → A. Then the Hoare triple is the conditional a → b := ¬a ∨ 2b,
which is valid when equal to X. So Stone duality not only links these BAOs to our dynamical
domains but can also be regarded as a form of partial correctness.
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