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As explained in [3], some of Grothendieck’s algebro-geometric constructions may be ab-
stracted to the context of extensive categories. A category C with finite coproducts is extensive
if the canonical functor C/X ×C/Y → C/(X +Y ) is an equivalence for every pair of objects X,Y
in C. Extensivity attempts to make explicit a most basic property of (finite) coproducts in
categories ‘of spaces’. For instance, the category of topological spaces and continuous functions
between them is extensive; the category of groups is not. It easily follows that if C is extensive
then for any X ∈ C the category X/C is extensive [1].

Experience indeed confirms that conceiving an extensive category as a category ‘of spaces’
is a useful conceptual guide. Essential to the development of Algebraic Geometry is the fact
that the opposite of the category of (commutative unital) rings, is extensive.

A category C is coextensive when its opposite category Cop is coextensive. In this work
we examine the variety of algebras known as rigs, denoted Rig, which are commutative semi-
rings with (additive and multiplicative) unit. Of particular interest are those subvarieties 2Rig
of (additively) idempotent rigs, as well as the variety iRig of integral rigs; those satisfying
1 + x ≈ 1. Such classes play an important role, for instance, in non-classical logics in that these
algebras are exactly the (integral) join-semilattice reducts of (pointed) commutative residuated
lattices, or FLe-algebras (respectively, FLew), semantics for certain extensions of the Full Lambek
calculus. Viewed as categories, these classes are coextensive (see [2, 4]), and thus admit to the
prospect of geometric content.

Let C be a category with a terminal object 1. If X is an object of C, a point of X is an
arrow 1→X. An object is called Weil if it has a unique arrow to the terminal object. At least
in the case when the category is a variety of algebras, the terminal object is the free 0-generated
algebra. In the case of the variety of rigs, the terminal object is the rig of natural numbers N,
while for (non-trivial) subvarieties of 2-rigs the terminal object is always the two element chain
2. We note that there is no finite Weil algebra in the in Rig.

An arrow f ∶X → Y in C is called constant if it factors through 1. More generally, an arrow
f ∶X → Y is called a pseudo-constant if it coequalizes all the points of X. That is,
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for every pair of points a, b∶1→X, one has f(a) = f(b). Of course, every constant is a pseudo-
constant.

Let us write Aff for the opposite of 2Rig, and if A is an object in 2Rig, let us write A′ for the
corresponding object in Aff. Trivially, points of A′ in Aff are in bijective correspondence with
maps A → 2 in 2Rig. So, for example, A is a Weil 2-rig iff A′ has exactly one point. A map
f ∶A→ B is called pseudo-stant if for every g, h∶B → 2 one has g ○f = h○f . So, a map is pseudo-
stant in the category iR if and only if the corresponding B′ → A′ in Aff is a pseudo-constant.
Experience with Set suggests that pseudo-constants are constant, but this is too naive. What
is sometimes the case in categories of spaces is that the image of a pseudo-constant has exactly
one point. This is the content of the following question.

Question 1. Let V be a variety of rigs. Let f ∶A → B be such that for every g, h∶B → 2,
g ○ f = h ○ f ∶A→ 2. Is it the case that f factors through one Weil algebra in V?
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Part of this work is devoted to providing an answer to the above question. In the case for
classes of 2-rigs, in particular irigs, we answer this question in the affirmative. This is, in part,
a consequence of the following characterization.

Theorem 2. Let R be any 2-rig. Then the following are equivalent.

1. R is a Weil 2-rig.

2. R has a unique prime ideal closed under ≤.

3. R satisfies the following:

For all x ∈ R,∃n ∈ N, xn ≤ 0 or ∃r ∈ R,1 ≤ rx.

where ≤ is the partial order defined via x ≤ y iff x + y = y in R.

Moreover, the theorem above can be used to establish that the variety of 2-rigs is generated
by a its Weil members, in particular this class can be taken to consist of finite algebras of a
certain form.

Theorem 3. For V taken to be the variety of 2-rigs or the variety of integral rigs, V is generated
by a class of its finite Weil members. Specifically, each finitely generated free-algebra is a
subdirect product of finite Weil algebras in V [satisfying a stronger version of item (3)].
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