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In previous years, a formal connection between correspondence phenomena [7] and the theory of
display calculi [1] was established, applying results and insights from unified correspondence theory
[3]. One of the consequences of the aforementioned connection was the development of proper display
calculi for the class of LE-logics [4], together with a method to convert a broad class of axioms (the
class of all the analytic inductive inequalities) into rules that can be modularly added to the base calculus
without disrupting the admissibility of the cut rule [5].

In this work we extend the framework of proper display calculi for LE-logics to include axiomatic
extensions with axioms that are inductive [4] but not necessarily analytic inductive, greatly extending
the class of axioms that can be converted into analytic rules. This class covers and properly extends
all Sahlqvist axioms. A semantical analysis of the first-order correspondent of inductive inequalities
suggests an approach that is similar in nature to that of Schroeder-Heister’s Calculus of Higher-level
Rules [8], and captures the whole acyclic portion of the substructural hierarchy [2], meaning that we can
cope with arbitrary alternations of box-like and diamond-like connectives, as long as certain acyclicity
conditions are satisfied.

Our approach is somewhat reminiscent of Negri’s systems of rules [6], with the difference that no la-
belled G3c-like calculus is available for LE-logics, with the consequence that previously existing results
cannot be applied to the case at hand. We make use of unified correspondence theory and the algo-
rithm ALBA [4] to uniformly generate analytic rules for the previously mentioned inductive axiomatic
extensions, and we call our new framework Inception Display Calculus.

Definition of the Inception Display Calculus framework
Inception Display calculi introduce special side conditions to the rules of proper display calculi.

Definition 0.1. Let R and X be a set of analytic structural rules (see [5]) and a set of structure variables,
respectively. If Π ⊢ Σ is derivable using the rules of the base calculus together with R, where Π,Σ,R
may contain structure variables from X, we write [Π ⊢ Σ]R

X
and we call it a shallow contract. A shal-

low inception rule is an analytic structural rule augmented with one or more shallow contracts as side
conditions, namely a rule of the following form:

X1 ⊢ Y1 · · · Xn ⊢ Yn [Π1 ⊢ Σ1]R1
X1
· · · [Πm ⊢ Σm]Rm

Xm

X ⊢ Y

Sometimes we write [π]R
X

in place of [Π ⊢ Σ]R
X

, where π is a derivation of Π ⊢ Σ, omitting subscripts
and superscripts when they are clear from the context.

Definition 0.2. Let us define inductively depth-n inception rules (n ≥ 0) and depth-n contracts (n ≥ 1).

• Depth-0 inception rules are the analytic structural rules; depth-1 contracts are the shallow con-
tracts and depth-1 inception rules are the shallow inception rules.

• Suppose we defined depth-k inception rules and contracts for every k < n, for a certain n > 1.
A depth-n contract is a side condition of the form [Π ⊢ Σ]R

X
, where R is a set of inception rules

of depth smaller than n. A depth-n inception rule is an analytic structural rule augmented with
contracts of depth not greater than n.
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An inception rule (resp. a contract) is a depth-n inception rule (resp. depth-n contract) for some n ≥ 1.
We also say that its depth is n. A derivation has finite dreams if it contains a finite number of instances
of contracts.

In this work, we consider only derivations with finite dreams. As an example, consider the inductive
but not analytic inductive axiom □(^p ◦ p) ◦ ^p ⊢ p.

ALBA run computing the inception rule for □(^p ◦ p) ◦ ^p ⊢ p:
□(^p ◦ p) ◦ ^p ≤ p

iff ∀p∀i∀j∀m[i ≤ □(^p ◦ p) & j ≤ p & p ≤ m⇒ i ◦ ^j ≤ m]
iff ∀i∀j∀m[i ≤ □(^m ◦m) & j ≤ m⇒ i ◦ ^j ≤ m]
iff ∀i∀j∀m[∀n(^m ◦m ≤ n⇒ i ≤ □n) & j ≤ m⇒ i ◦ ^j ≤ m]
iff ∀i∀j∀m[∀n(∀k∀h(k ≤ m & h ≤ m⇒ ^k ◦ h ≤ n)⇒ i ≤ □n) & j ≤ m⇒ i ◦ ^j ≤ m]

The last line of the derivation above gives us the first-order correspondent of □(^p ◦ p) ◦ ^p ⊢ p,
from which we can obtain the depth-1 inception rule

Y ⊢ Z
[
X ⊢ □̌N

]R
{N}R0

X ◦̂ ˆ̂ Y ⊢ Z
where R is the singleton containing

K ⊢ Z H ⊢ ZR1 .
ˆ̂ K ◦̂ H ⊢ N

We show how to derive the axiom □(^p ◦ p) ◦ ^p ⊢ p from the rule just obtained, where adjunction
rules are omitted for brevity:

p ⊢ p [π]R
{N}R0

□(^p ◦ p) ◦̂ ˆ̂ p ⊢ p
, where π is:

□(^p ◦ p) ◦̂ ^p ⊢ p
□(^p ◦ p) ◦ ^p ⊢ p

p ⊢ p p ⊢ p
R1 ˆ̂ p ◦̂ p ⊢ W

^p ◦̂ p ⊢ W
^p ◦ p ⊢ W
□(^p ◦ p) ⊢ □̌W
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