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Kleene algebras, going back to [2], are algebraic structures central to automata theory,
semantics of programs, and theoretical computer science in general. Kozen [4] has shown that
the equational theory of Kleene algebras is complete with respect to the model based on regular
languages. Kozen [5] introduces Kleene algebras with tests, a combination of Kleene algebras
(programs) and Boolean algebras (tests), and shows that they have non-trivial applications
in verification of imperative programs. Ésik and Kuich [3] generalize Kozen’s completeness
result for Kleene algebras to the case of weighted regular languages, or formal power series.
In particular, their result applies to a weighted generalization of Kleene algebras where the
semiring of weights is finite, commutative, zero-bounded (or positive) and partially ordered.

We establish two completeness results for a weighted generalization of Kleene algebras with
tests. First, we establish completeness with respect to the algebra of weighted guarded lan-
guages using a reduction to weighted regular languages similar to the one used by Kozen and
Smith [6] in their completeness proof for (non-weighted) Kleene algebras with tests. Second,
we establish completeness with respect to weighted transition systems by using a Cayley-like
construction going back to Pratt’s work [7] on (non-weighted) dynamic algebras. In addition to
the assumptions of Ésik and Kuich, however, we need to assume that the semiring of weights
is also integral. These results are interesting also because of the connection between weighted
Kleene algebras with tests and weighted programs [1], noted in our earlier work [8]. We also
argue that finitely weighted Kleene algebras with tests are a natural framework for equational
reasoning about weighted programs in cases where an upper bound on admissible weights is
assumed.

A Kleene algebra [4] is an idempotent semiring X with a unary operation ∗ satisfying, for
all x, y, z ∈ X the following unrolling (left column) and fixpoint laws (right column):

1 + (x · x∗) = x∗ y + (x · z) ≤ z =⇒ x∗ · y ≤ z (1)

1 + (x∗ · x) = x∗ y + (z · x) ≤ z =⇒ y · x∗ ≤ z . (2)

a Kleene algebra with tests [5] is a Kleene algebra X with a distinguished B ⊆ X such that
〈B,+, ·, 0, 1〉 is a subalgebra of X and a bounded distributive lattice, and − is an unary oper-
ation on B such that x · x̄ = 0 and x + x̄ = 1 for all x ∈ B. Hence, B forms a Boolean algebra.
Intuitively, elements of B represent Boolean tests. (“If b then x else y” can be expressed as
bx + b̄y and “While b do x” as (bx)∗b̄; partial correctness is expressed by bxc̄ = 0.)

Definition 1. Let S be a finite semiring. A Kleene S-algebra with tests is a Kleene algebra
with tests X together with a binary operation � : X × S → X such that (the additive monoid
reduct of) X forms a right S-semimodule and

(xy)� s = x(y � s) = (x� s)y 1� s∗ ≤ (1� s)∗

Similar to Kleene algebras with tests, the algebraic language for Kleene S-algebras with
tests is two-sorted, consisting of tests and expressions:

b, c := p | b̄ | b + c | b · c | 0 | 1 e, f := a | b | e� s | e + f | e · f | e∗
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where p ∈ Φ (a finite set of proposition letters), a ∈ Σ (a finite set of program letters) and
s ∈ S. Expression e� s means “execute e and add s to the weight of the current computation”.

An atom over Φ is a finite sequence of literals over Φ containing exactly one of p and p̄ for
each p ∈ Φ. A guarded string is a string of the form G1a1G2 . . . an−1Gn where the G’s are
atoms and the a’s are program letters. Fusion product wG�Hu of guarded strings is undefined
if G 6= H and wGu otherwise. The set of guarded formal power series over a finite semiring S
is the set of mappings from the set of guarded strings to S. The rational operations on guarded
f.p.s. are defined point-wise as follows:

(r1 + r2)(w) = r1(w) + r2(w) (r1 · r2)(w) =
∑
{r1(v1) · r2(w2) | w = v1 � v2}

(r � s)(w) = r(w) · s r∗(w) =
∑
n∈ω

rn(w)

where r0 = 1 and rn+1 = rn · r. (Note that the sum is defined since S is assumed to be finite.)
A polynomial is any guarded f.p.s. r such that the set of guarded strings w where r(w) 6= 0
is finite. The set of rational guarded f.p.s. is the least set of guarded f.p.s. that contains all
polynomials and is closed under the rational operations. The set of rational guarded f.p.s. over
S forms a Kleene S-algebra with tests.

Theorem 1. The equational theory of Kleene S-algebras with tests coincides with the equational
theory of the algebra of rational guarded f.p.s. over S.

An S-transition system is a set with a collection of S-weighted binary relations M(a) on the
set for a ∈ Σ and {0, 1}-weighted diagonal relations M(p) for p ∈ Φ. Binary relations M(e) for
arbitrary expressions are defined as expected using familiar matrix operations.

Theorem 2. An equation e ≈ f is valid in all Kleene S-algebras with tests iff M(e) = M(f)
in all S-transition systems.
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