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In 1992, A. Pitts proved a somewhat surprising result about Heyting’s intuitionistic propo-
sitional calculus, IPC [3]. He showed that for each variable p and formula ϕ in IPC there exists
a formula Apϕ (effectively computable from ϕ), containing only variables distinct from p which
occur in ϕ, and such that for all formulas ψ not involving p, ⊢ ψ ⇒ Apϕ if and only if ⊢ ψ ⇒ ϕ.
Here, ⊢ denotes validity in IPC.

This in particular means that one can model quantification over propositional variables in
IPC, which provides an interpretation of the second-order intuitionistic propositional calculus
IPC2 in IPC.

As a corollary, A. Pitts showed that a model of IPC2 can be constructed with an algebra of
truth values isomorphic to any given Heyting algebra. In [3] he also asked whether his result
can be generalized further to higher order calculi.

This question can also be reformulated in topos-theoretic terms, asking whether every Heyt-
ing algebra occurs as the algebra of all subobjects of an object in a topos.

For the case when the Heyting algebra in question is in fact Boolean, the affirmative answer
is the contents of Exercise 9.11 in [1]. The explicit construction of the corresponding topos FB

is sketched there; Johnstone attributes it to Peter Freyd.
Specifically, [1, Exercise 9.11] suggests expressing a Boolean algebra B as the (directed)

union of its finite subalgebras, utilizing the fact that Boolean algebras are locally finite (finitely
generated Boolean subalgebras are finite). Then one can describe the topos corresponding to B
as a colimit of a directed diagram of toposes and logical functors between them, corresponding
to finite subalgebras B0 ⊆ B. Each B0 is isomorphic to the powerset of the set at(B0) of its

atoms, and the corresponding topos is Finat(B0), the product of at(B0) many copies of the
topos Fin of finite sets.

We learned from the late D. Pataraia an alternative construction of what turns out to be
an equivalent topos LB . Namely, using the Stone duality for Boolean algebras, he consid-
ered certain explicitly described subcategory of local homeomorphisms over the Stone space
X = XB dual to the Boolean algebra B. Domains of his local homeomorphisms have form
(m1 × U1) ⊔ . . . ⊔ (mn × Un), where U1, . . . , Un are disjoint clopen subsets of X forming a
partition of X, and m1, . . . ,mn are finite discrete spaces (can be assumed to be of pairwise
distinct cardinalities). We have not heard about this kind of construction from anybody else.
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To demonstrate that for a given Boolean algebra B the topos FB

by Freyd and the topos LB by Pataraia are isomorphic, we consider
a third, intermediate category MB . The objects of this category
are pullbacks of the form shown on the right, where E → F is any
map between finite discrete topological spaces, and g is any surjective
continuous map from the Stone space XB of B to F .
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Note that later, D. Pataraia invented an entirely different construction of a topos, prov-
ing that for every Heyting algebra H, there exists a topos with the algebra of subterminals
isomorphic to H [2]. However, this work was never published.

In the present work, we generalize the constructions by Freyd and Pataraia and apply
the resulting generalization to some classes of Heyting algebras beyond the classes of Boolean
algebras and complete Heyting algebras. Important rôle in our investigations plays the notion
of coherent object, which we recall here.

Let A be an object of a category C with finite limits.

• A is compact if every jointly epimorphic family of subobjects of A admits a finite jointly
epimorphic subfamily.

• A is stable if, for every pair of morphisms U → A ← V with U and V compact, the
pullback U ×

A
V is compact as well.

• A is coherent if it is both compact and stable.

Here, a family of morphisms (ei : Ui → A) is called jointly epimorphic if, given any two
morphisms g, h : A→ B such that g ◦ ei = h ◦ ei for all i, it follows that g = h.

We will use coherent objects to characterize the above three categories by proving the
following theorem.

Theorem. For a given Boolean algebra B, the toposes FB, LB and MB described above are
equivalent to the subcategory C of coherent objects in the category of sheaves Sh(XB) over the
Stone space XB associated with the Boolean algebra B.

Note in particular that coherent objects of Sh(XB) form a Boolean topos.
In the talk we will discuss possible generalizations to some other classes of Heyting algebras.
One can describe the category of sheaves Sh(Spec(H)) over the spectral space Spec(H)

corresponding to H in order-topological terms, as certain Esakia spaces over XH . We will
use this description to study analogs of the above three categories, and relate them to the
subcategory of coherent objects in Sh(Spec(H)).

Finally, we consider the case of locally finite algebras and employ the latter construction of
taking coherent objects in the corresponding categories of sheaves. Instead of pullbacks of maps
between finite sets we will need pullbacks of local homeomorphisms between finite topological
spaces. In this case the corresponding inclusion functors are no longer logical.

In the talk we will address several related questions, namely, when do coherent objects of
a topos form a topos, and which spectral spaces can be obtained as inverse limits of directed
diagrams of local homeomorphisms between finite spaces.
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