The finite model property for lattice based **S4**

Simon Lemal¹

University of Luxembourg

Distributive modal logics based on classical, positive and intuitionistic logics have been thoroughly investigated (see e.g. [3, 4, 10]). Non-distributive modal logics have received less attention, even though they contain important logics such as quantum logic [5, 8] and substructural logics [7]. Recently the duality and Sahlqvist theory of non-distributive modal logics were studied in [2, 9, 6]. In this abstract we investigate the finite model property of non-distributive modal logics, including a non-distributive version of S4, from an algebraic perspective.

Let $\ell S4_{\Box}$ be the logic whose algebraic semantics is given by lattices with a \Box satisfying:

 $\Box 1 \approx 1, \qquad \Box (a \wedge b) \approx \Box a \wedge \Box b, \qquad \Box a \leq a, \qquad \Box a \leq \Box \Box a.$

Theorem 1. The logic $\ell S4_{\Box}$ has the finite model property.

Proof. Let A be an algebra with valuation $\sigma: Fm \to A$ such that $\sigma(\phi) \neq \sigma(\psi)$ (i.e. $A \not\models \phi \approx \psi$). We construct a finite algebra B such that $B \not\models \phi \approx \psi$. Let Σ be the set of subformulas of ϕ and ψ . Define B to be the smallest $0, 1, \Box, \wedge$ -subreduct of A containing $\sigma[\Sigma]$. Then B is finite because \Box is normal and S4. Hence it is complete, so we can define a join in B as

$$a \vee_B b = \bigwedge \{ c \in B \mid c \ge a, b \}$$

One easily checks that if $a, b, a \lor b \in B$, then $a \lor_B b = a \lor b$. Therefore, we can define a valuation $\tau: Fm \to B$ by setting $\tau(\chi) = \sigma(\chi)$ if $\chi \in \Sigma$, and extending it to Fm in the natural way. This is well-defined. Indeed, if $\alpha \lor \beta \in \Sigma$, then

$$\tau(\alpha \lor \sigma) = \sigma(\alpha \lor \sigma) = \sigma(\alpha) \lor \sigma(\beta) = \tau(\alpha) \lor \tau(\beta) = \tau(\alpha) \lor_B \tau(\beta),$$

since $\tau(\alpha), \tau(\beta), \tau(\alpha) \lor \tau(\beta) \in B$. The valuation τ is such that $\tau(\phi) \neq \tau(\psi)$. Therefore $\phi \approx \psi$ can be refuted in a finite algebra.

We highlight the difference with the classical cases. When proving the finite model property for classical modal logic, one would take B to be the Boolean algebra generated by Σ , and define a suitable box on it. In our case, we cannot consider the lattice generated by Σ , as it could be infinite. Instead, we generate B as a meet-semilattice. Dropping joins from the generating set allows us to add box instead (provided that it is S4), which simplifies the construction.

Next we add a monotone diamond, in line with [2, Section 4], which satisfies the following:

$$\diamond 0 \approx 0, \qquad \diamond (a \lor b) \ge \diamond a \lor \diamond b.$$

The resulting logic is denoted by $\mathcal{L}_{\Diamond^m} S4_{\Box}$. From this we obtain the logic $\mathcal{L}S4_{\Box \Diamond^m}$ by adding:

$$a \leq \Diamond a \qquad \Diamond \Diamond a \leq \Diamond a$$

Theorem 2. The logics $\mathcal{L}_{\Diamond^m} \mathsf{S4}_{\Box}$ and $\mathcal{L}\mathsf{S4}_{\Box\Diamond^m}$ have the finite model property.

Proof. We proceed as in the previous proof. The only difference is that we need to define a diamond on B. We define

$$\diamond_B a = \bigwedge \{ b \in B \mid b \ge \diamond a \} \quad \text{and} \quad \diamond_B a = \bigwedge \{ \diamond b \mid b \in B, \diamond b \ge \diamond a, \diamond b \in B \}$$

in the first and second cases, respectively. One easily checks that if $a, \Diamond a \in B$, then $\Diamond_B a = \Diamond a$. One can also check that \Diamond_B is monotone, and that it is S4 provided that \Diamond is. FMP for lattice based ${\sf S4}$

One might wonder if the diamond can be made normal. The main difficulty lies in non distributivity. In [1, Lemmas 4.5 & 6.2], the proofs rely on distributivity. Another difficulty arises from the fact that one does not need to prove $\diamond_B(a \lor b) \leq \diamond_B a \lor \diamond_B b$, but $\diamond_B(a \lor_B b) \leq \diamond_B a \lor_B \diamond_B b$.

So far, we have treated \Box and \diamond as two unrelated operators. Guided by [2, Section 4], we may wish to add interaction axioms, such as

$$\Box a \land \Diamond b \le \Diamond (a \land b).$$

However, the method for obtaining finite models used above does not readily work in presence of this interaction axiom. We will illustrate where it fails; resolving this is ongoing work. Let A be the lattice N_{∞} equipped with an identity box and a diamond sending n to n + 1 (and sending \top, x, \bot to themselves). The axiom $\Box a \land \Diamond b \leq \Diamond (a \land b)$ is satisfied in A. However, it cannot be satisfied in any $B \subseteq A$. Indeed, let n be the maximum of $B \cap \mathbb{N}$. Then $\Diamond n = n + 1$. In line with [1, Theorem 4.2], we wish to have $\Diamond pm \geq \Diamond m$ which forces $\Diamond pm = \top$. Then $\Box r \land \Diamond pm = x$ although $\Diamond p(x)$ Figure 1: The lattice N_{∞}

 $\diamond_B m \ge \diamond m$, which forces $\diamond_B m = \top$. Then $\Box x \land \diamond_B m = x$, although $\diamond_B (x \land m) = \diamond_B \bot = \bot$. Therefore, $\Box a \land \diamond_B b \le \diamond_B (a \land b)$ is refuted in B.

This leaves the finite model property of this logic as an open question. We intend to resolve it by exploring the Kripke-like semantics of non-distributive modal logic developed in [2].

References

- G. Bezhanishvili, N. Bezhanishvili, and R. Iemhoff. Stable canonical rules. The Journal of Symbolic Logic, 81:284–315, 3 2016.
- [2] N. Bezhanishvili, A. Dmitrieva, J. de Groot, and T. Moraschini. Positive modal logic beyond distributivity. Annals of Pure and Applied Logic, 175:103374, 2024.
- [3] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, 6 2001.
- [4] S. Celani and R. Jansana. Priestley duality, a sahlqvist theorem and a goldblatt-thomason theorem for positive modal logic. *Logic Journal of IGPL*, 7:683–715, 11 1999.
- [5] M. L. D. Chiara. Quantum Logic, pages 427–469. Springer, Dordrecht, 1986.
- [6] W. Conradie and A. Palmigiano. Algorithmic correspondence and canonicity for non-distributive logics. Annals of Pure and Applied Logic, 170, 3 2016.
- [7] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated lattices: an algebraic glimpse at substructural logics. Elsevier, 2007.
- [8] R. I. Goldblatt. Semantic analysis of orthologic. Journal of Philosophical Logic, 3:19–35, 1974.
- [9] J. Groot. Non-distributive positive logic as a fragment of first-order logic over semilattices. Journal of Logic and Computation, 34, 2 2023.
- [10] F. Wolter and M. Zakharyaschev. Intuitionistic modal logics as fragments of classical bimodal logics, pages 168–186. Kluwer Academic Publishers Dordrecht, 1997.