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Distributive modal logics based on classical, positive and intuitionistic logics have been thor-
oughly investigated (see e.g. [3, 4, 10]). Non-distributive modal logics have received less atten-
tion, even though they contain important logics such as quantum logic [5, 8] and substructural
logics [7]. Recently the duality and Sahlqvist theory of non-distributive modal logics were stud-
ied in [2, 9, 6]. In this abstract we investigate the finite model property of non-distributive
modal logics, including a non-distributive version of S4, from an algebraic perspective.

Let ℓS4✷ be the logic whose algebraic semantics is given by lattices with a ✷ satisfying:

✷1 ≈ 1, ✷(a ∧ b) ≈ ✷a ∧✷b, ✷a ≤ a, ✷a ≤ ✷✷a.

Theorem 1. The logic ℓS4✷ has the finite model property.

Proof. Let A be an algebra with valuation σ : Fm→ A such that σ(φ) 6= σ(ψ) (i.e. A 6|= φ ≈ ψ).
We construct a finite algebra B such that B 6|= φ ≈ ψ. Let Σ be the set of subformulas of φ
and ψ. Define B to be the smallest 0, 1,✷,∧-subreduct of A containing σ[Σ]. Then B is finite
because ✷ is normal and S4. Hence it is complete, so we can define a join in B as

a ∨B b =
∧

{c ∈ B | c ≥ a, b}.

One easily checks that if a, b, a∨b ∈ B, then a∨B b = a∨b. Therefore, we can define a valuation
τ : Fm→ B by setting τ(χ) = σ(χ) if χ ∈ Σ, and extending it to Fm in the natural way. This
is well-defined. Indeed, if α ∨ β ∈ Σ, then

τ(α ∨ σ) = σ(α ∨ σ) = σ(α) ∨ σ(β) = τ(α) ∨ τ(β) = τ(α) ∨B τ(β),

since τ(α), τ(β), τ(α) ∨ τ(β) ∈ B. The valuation τ is such that τ(φ) 6= τ(ψ). Therefore φ ≈ ψ

can be refuted in a finite algebra.

We highlight the difference with the classical cases. When proving the finite model property
for classical modal logic, one would take B to be the Boolean algebra generated by Σ, and define
a suitable box on it. In our case, we cannot consider the lattice generated by Σ, as it could be
infinite. Instead, we generate B as a meet-semilattice. Dropping joins from the generating set
allows us to add box instead (provided that it is S4), which simplifies the construction.

Next we add a monotone diamond, in line with [2, Section 4], which satisfies the following:

✸0 ≈ 0, ✸(a ∨ b) ≥ ✸a ∨✸b.

The resulting logic is denoted by L✸mS4✷. From this we obtain the logic LS4✷✸m by adding:

a ≤ ✸a ✸✸a ≤ ✸a.

Theorem 2. The logics L✸mS4✷ and LS4✷✸m have the finite model property.

Proof. We proceed as in the previous proof. The only difference is that we need to define a
diamond on B. We define

✸Ba =
∧

{b ∈ B | b ≥ ✸a} and ✸Ba =
∧

{✸b | b ∈ B,✸b ≥ ✸a,✸b ∈ B}

in the first and second cases, respectively. One easily checks that if a,✸a ∈ B, then ✸Ba = ✸a.
One can also check that ✸B is monotone, and that it is S4 provided that ✸ is.
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Figure 1: The lat-
tice N∞

One might wonder if the diamond can be made normal. The main
difficulty lies in non distributivity. In [1, Lemmas 4.5 & 6.2], the proofs
rely on distributivity. Another difficulty arises from the fact that one does
not need to prove ✸B(a∨ b) ≤ ✸Ba∨✸Bb, but ✸B(a∨B b) ≤ ✸Ba∨B ✸Bb.

So far, we have treated ✷ and ✸ as two unrelated operators. Guided
by [2, Section 4], we may wish to add interaction axioms, such as

✷a ∧✸b ≤ ✸(a ∧ b).

However, the method for obtaining finite models used above does not readily
work in presence of this interaction axiom. We will illustrate where it fails;
resolving this is ongoing work. Let A be the lattice N∞ equipped with an
identity box and a diamond sending n to n + 1 (and sending ⊤, x,⊥ to
themselves). The axiom ✷a ∧ ✸b ≤ ✸(a ∧ b) is satisfied in A. However,
it cannot be satisfied in any B ⊆ A. Indeed, let n be the maximum of
B ∩ N. Then ✸n = n + 1. In line with [1, Theorem 4.2], we wish to have
✸Bm ≥ ✸m, which forces ✸Bm = ⊤. Then ✷x∧✸Bm = x, although ✸B(x∧m) = ✸B⊥ = ⊥.
Therefore, ✷a ∧✸Bb ≤ ✸B(a ∧ b) is refuted in B.

This leaves the finite model property of this logic as an open question. We intend to resolve
it by exploring the Kripke-like semantics of non-distributive modal logic developed in [2].
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