Conjunctive Table Algebras

Jens Kötters and Stefan E. Schmidt

Technische Universität Dresden, Dresden, Germany

Tables. The first infinite ordinal is denoted by ω . We formalize a *table* as a set $T \subseteq G^X$, where $X \subseteq \omega$ is a finite set of *column names* (not column numbers), an element $t \in T$ is a *row*, t(x) is the *entry* in row t and column x, and G is an arbitrary set. Hence,

$$\operatorname{Tab}(G) = \bigcup \{ \mathfrak{P}(G^X) \mid X \subseteq \omega \text{ finite} \}$$

$$\tag{1}$$

contains all tables with entries in G. Note that while X must be finite, a table can have an infinite number of rows if G is infinite.

Primitive Positive Formulas. Let M denote a relational signature. A first-order formula over M is *primitive positive* if it is built from atoms using $\{\land, \exists\}$. An atom is either a *relational atom* $Rx_1 \ldots x_n$, an *equality atom* x=y, or one of the special atoms true (the *tautology*) and false (the *contradiction*). The set of primitive positive formulas over M is denoted by PP(M).

Variables. We assume that ω is the countably infinite set of variables. The function free : $PP(M) \to \mathfrak{P}(\omega)$ maps each formula φ to the set of free variables occurring in φ ; for the special atoms, we define free(true) = \emptyset and free(false) = ω .

Conjunctive Table Algebras. Every relational structure \mathfrak{G} , with universe G and signature M, induces a solution operation $(\cdot)^{\mathfrak{G}} : \operatorname{PP}(M) \to \operatorname{Tab}(G)$ that maps each formula φ to its solution set

$$\varphi^{\mathfrak{G}} := \{ t \in G^{\operatorname{free}(\varphi)} \mid \mathfrak{G} \models \varphi[t] \} \subseteq \operatorname{Tab}(G) \quad , \tag{2}$$

where $\mathfrak{G} \models \varphi[t]$ means that φ holds in \mathfrak{G} under the variable assignment $t : \operatorname{free}(\varphi) \to G$.

The algebra $\mathbf{PP}(M) := (\mathbf{PP}(M), \wedge, \mathsf{false}, \mathsf{true}, \exists_x, x=y, \mathsf{free})_{x,y\in\omega}$ extends $\mathbf{PP}(M)$ with a binary operation \wedge (interpreted as syntactic conjunction), a unary operation \exists_x for each $x \in \omega$ (interpreted as syntactic existential quantification over x), the function free : $\mathbf{PP}(M) \to \mathfrak{P}(\omega)$, and it contains all non-relational atoms as distinguished elements. The solution operation homomorphically maps the logical operations to corresponding table operations; we have

$$(\varphi \wedge \psi)^{\mathfrak{G}} = \varphi^{\mathfrak{G}} \bowtie \psi^{\mathfrak{G}}, \quad \mathsf{false}^{\mathfrak{G}} = \emptyset, \quad \mathsf{true}^{\mathfrak{G}} = \{\emptyset\}, \quad (\exists_x \varphi)^{\mathfrak{G}} = \mathrm{del}_x(\varphi^{\mathfrak{G}}), \quad (x = y)^{\mathfrak{G}} = E_{xy},$$

where \bowtie is the *natural join*, \emptyset is the *empty table*, $\{\emptyset\}$ is the table with a single empty row, del_x is a *deletion operation* (deletes column x if it exists), and $E_{xy} := \{t \in G^{\{x,y\}} \mid t(x) = t(y)\}$ is a *diagonal*. Moreover, the *schema* of a table $T \in \text{Tab}(G)$ is uniquely defined by

$$\operatorname{schema}(T) := \begin{cases} X & \text{if } T \in G^X \text{ and } T \neq \emptyset \\ \omega & \text{if } T = \emptyset \end{cases}$$
(3)

and if $\varphi^{\mathfrak{G}} \neq \emptyset$, then also free (φ) = schema $(\varphi^{\mathfrak{G}})$. This motivates the definition of the table algebra $\operatorname{Tab}(G) := (\operatorname{Tab}(G), \bowtie, \emptyset, \{\emptyset\}, \operatorname{del}_x, E_{xy}, \operatorname{schema})_{x,y \in \omega}$. A conjunctive table algebra with base G is a subalgebra of $\operatorname{Tab}(G)$.

Conjunctive Table Algebras

Comparison with cylindric set algebras. Conjunctive table algebras are a databasetheoretic variant of cylindric set algebras (of dimension ω). In his survey paper [2, Sect. 7(4)], Németi briefly discusses the charm of such a variant. Németi's universe Gfs(G) is our Tab(G). He credits Howard [1] with the approach (although Howard refers to the universe $\mathfrak{P}(\bigcup_{X\subseteq\omega} G^X)$). Howard uses complements, so in that sense, conjunctive table algebras are more generic.

Main Result. We present an axiomatization of conjunctive table algebras. The conjunctive table algebras with nonempty base are, up to isomorphism, precisely the projectional semilattices; a *projectional semilattice* is an algebraic structure $(V, \land, 0, 1, c_x, d_{xy}, \operatorname{dom})_{x,y \in \omega}$ consisting of an infimum operation \land , a *bottom element* 0, a *top element* 1, a *cylindrification* $c_x : V \to V$ for each $x \in \omega$, a *diagonal* $d_{xy} \in V$ for each $(x, y) \in \omega \times \omega$, and a *domain function* dom : $V \to \mathfrak{P}(\omega)$, such that the axioms

(PS0) $(V, \wedge, 0, 1)$ is a bounded semilattice (PS1) $c_x(0) = 0$ (PS2) $u \le c_x(u)$ (PS3) $c_x(u \land c_x(v)) = c_x(u) \land c_x(v)$ (PS4) $c_x(c_y(u)) = c_y(c_x(u))$ (PS5) $u \ne 0 \Rightarrow (u \ne c_x(u) \Leftrightarrow u \le d_{xx})$ (PS6) $x \ne y, z \Rightarrow d_{yz} = c_x(d_{yx} \land d_{xz})$ (PS7) $x \neq y \Rightarrow d_{xy} \land c_x(d_{xy} \land u) \le u$ (PS8) $u \neq 0 \Rightarrow \operatorname{dom}(u)$ finite (PS9) $\operatorname{dom}(u) = \{x \in \omega \mid u \le d_{xx}\}$ (PS10) $\operatorname{dom}(u) = \emptyset \Rightarrow u = 1$ (PS11) $d_{xx} \neq 0$ (PS12) $d_{xy} = d_{yx}$

hold for all $u, v \in V$ and $x, y, z \in \omega$.

Comparison with cylindric algebras. The axioms (PS0), ..., (PS7) correspond to cylindric algebra axioms (CA0), ..., (CA7). Axiom (CA0) asserts a Boolean algebra; since we do not consider disjunction and negation, axiom (PS0) only asserts a bounded semilattice. The Axioms (CA1), (CA2), (CA3), (CA4) and (CA6) are identical to (PS1), (PS2), (PS3), (PS4) and (PS6), respectively. Cylindric algebra axiom (CA5) states $d_{xx} = 1$, reflecting that x=x is a tautology; however, the *table semantics* in eq. (2) corresponds to a logic with undefined variables, where x=x is not a tautology! We consider (PS5) to be a suitable replacement: Under the definition axiom (PS9), axiom (CA5) asserts dom(u) = ω for all $u \neq 0$; whereas axiom (PS5) asserts dom(u) = { $x \in \omega \mid c_x(u) \neq u$ } for all $u \neq 0$; the latter set is known as the dimension set $\Delta(u)$ in the terminology of cylindric algebras. Axiom (PS7) is the historical axiom (CA7); the contemporary axiom (CA7) is equivalent but involves negation! Historically, there was also an axiom (CA8), stating that $\Delta(u)$ is finite for all $u \in V$. Since dom(u) = $\Delta(u)$ for $u \neq 0$, we can identify (CA8) with (PS8), disregarding the case u = 0.

Variant: Empty Universe. If axiom (**PS11**) is weakened to $1 \neq 0$, we obtain a characterization of conjunctive table algebras (including base $G = \emptyset$) up to isomorphism.

References

- Charles Malone Howard. An Approach to Algebraic Logic. PhD thesis, University of California, Berkeley, 1965.
- [2] István Németi. Algebraizations of quantifier logics, an introductory overview. https://old.renyi. hu/pub/algebraic-logic/survey.html, January 1997. 12.1th Version.