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Tables. The first infinite ordinal is denoted by ω. We formalize a table as a set T ⊆ GX ,
where X ⊆ ω is a finite set of column names (not column numbers), an element t ∈ T is a row,
t(x) is the entry in row t and column x, and G is an arbitrary set. Hence,

Tab(G) =
⋃

{P(GX) | X ⊆ ω finite} (1)

contains all tables with entries in G. Note that while X must be finite, a table can have an
infinite number of rows if G is infinite.

Primitive Positive Formulas. Let M denote a relational signature. A first-order formula
overM is primitive positive if it is built from atoms using {∧,∃}. An atom is either a relational
atom Rx1 . . . xn, an equality atom x=y, or one of the special atoms true (the tautology) and
false (the contradiction). The set of primitive positive formulas over M is denoted by PP(M).

Variables. We assume that ω is the countably infinite set of variables. The function free :
PP(M) → P(ω) maps each formula φ to the set of free variables occurring in φ; for the special
atoms, we define free(true) = ∅ and free(false) = ω.

Conjunctive Table Algebras. Every relational structure G, with universe G and signature
M , induces a solution operation (·)G : PP(M) → Tab(G) that maps each formula φ to its
solution set

φG := {t ∈ Gfree(φ) | G |= φ[t]} ⊆ Tab(G) , (2)

where G |= φ[t] means that φ holds in G under the variable assignment t : free(φ) → G.
The algebra PP(M) := (PP(M),∧, false, true,∃x, x=y, free)x,y∈ω extends PP(M) with a

binary operation ∧ (interpreted as syntactic conjunction), a unary operation ∃x for each x ∈ ω
(interpreted as syntactic existential quantification over x), the function free : PP(M) → P(ω),
and it contains all non-relational atoms as distinguished elements. The solution operation
homomorphically maps the logical operations to corresponding table operations; we have

(φ ∧ ψ)G = φG 1 ψG, falseG = ∅, trueG = {∅}, (∃xφ)G = delx(φ
G), (x= y)G = Exy,

where 1 is the natural join, ∅ is the empty table, {∅} is the table with a single empty row, delx
is a deletion operation (deletes column x if it exists), and Exy := {t ∈ G{x,y} | t(x) = t(y)} is a
diagonal. Moreover, the schema of a table T ∈ Tab(G) is uniquely defined by

schema(T ) :=

{
X if T ∈ GX and T ̸= ∅
ω if T = ∅ , (3)

and if φG ̸= ∅, then also free(φ) = schema(φG). This motivates the definition of the table
algebra Tab(G) := (Tab(G),1, ∅, {∅},delx, Exy, schema)x,y∈ω. A conjunctive table algebra with
base G is a subalgebra of Tab(G).
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Comparison with cylindric set algebras. Conjunctive table algebras are a database-
theoretic variant of cylindric set algebras (of dimension ω). In his survey paper [2, Sect. 7(4)],
Németi briefly discusses the charm of such a variant. Németi’s universe Gfs(G) is our Tab(G).
He credits Howard [1] with the approach (although Howard refers to the universeP(

⋃
X⊆ω G

X)).
Howard uses complements, so in that sense, conjunctive table algebras are more generic.

Main Result. We present an axiomatization of conjunctive table algebras. The conjunctive
table algebras with nonempty base are, up to isomorphism, precisely the projectional semilat-
tices; a projectional semilattice is an algebraic structure (V,∧, 0, 1, cx, dxy,dom)x,y∈ω consisting
of an infimum operation ∧, a bottom element 0, a top element 1, a cylindrification cx : V → V for
each x ∈ ω, a diagonal dxy ∈ V for each (x, y) ∈ ω×ω, and a domain function dom : V → P(ω),
such that the axioms

(PS0) (V,∧, 0, 1) is a bounded semilattice

(PS1) cx(0) = 0

(PS2) u ≤ cx(u)

(PS3) cx(u ∧ cx(v)) = cx(u) ∧ cx(v)

(PS4) cx(cy(u)) = cy(cx(u))

(PS5) u ̸= 0 ⇒ (u ̸= cx(u) ⇔ u ≤ dxx)

(PS6) x ̸= y, z ⇒ dyz = cx(dyx ∧ dxz)

(PS7) x ̸= y ⇒ dxy ∧ cx(dxy ∧ u) ≤ u

(PS8) u ̸= 0 ⇒ dom(u) finite

(PS9) dom(u) = {x ∈ ω | u ≤ dxx}
(PS10) dom(u) = ∅ ⇒ u = 1

(PS11) dxx ̸= 0

(PS12) dxy = dyx

hold for all u, v ∈ V and x, y, z ∈ ω.

Comparison with cylindric algebras. The axioms (PS0), . . . , (PS7) correspond to cylin-
dric algebra axioms (CA0), . . . , (CA7). Axiom (CA0) asserts a Boolean algebra; since we do
not consider disjunction and negation, axiom (PS0) only asserts a bounded semilattice. The
Axioms (CA1), (CA2), (CA3), (CA4) and (CA6) are identical to (PS1), (PS2), (PS3),
(PS4) and (PS6), respectively. Cylindric algebra axiom (CA5) states dxx = 1, reflecting that
x=x is a tautology; however, the table semantics in eq. (2) corresponds to a logic with unde-
fined variables, where x=x is not a tautology! We consider (PS5) to be a suitable replacement:
Under the definition axiom (PS9), axiom (CA5) asserts dom(u) = ω for all u ̸= 0; whereas
axiom (PS5) asserts dom(u) = {x ∈ ω | cx(u) ̸= u} for all u ̸= 0; the latter set is known as
the dimension set ∆(u) in the terminology of cylindric algebras. Axiom (PS7) is the historical
axiom (CA7); the contemporary axiom (CA7) is equivalent but involves negation! Historically,
there was also an axiom (CA8), stating that ∆(u) is finite for all u ∈ V . Since dom(u) = ∆(u)
for u ̸= 0, we can identify (CA8) with (PS8), disregarding the case u = 0.

Variant: Empty Universe. If axiom (PS11) is weakened to 1 ̸= 0, we obtain a characteri-
zation of conjunctive table algebras (including base G = ∅) up to isomorphism.
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