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Biresiduation algebras or pseudo-BCK-algebras are the {/, \, 1}-subreducts of integral resid-
uated po-monoids (or lattices). We will discuss semidirect products of biresiduation algebras,
with emphasis on divisible biresiduation algebras.

To begin with, we recall that a biresiduation algebra [8] or a pseudo-BCK-algebra [3] is an
algebra (A, /, \, 1) satisfying the equations (y/x)\((z/y)\(z/x)) = 1, ((x\z)/(y\z))/(x\y) = 1,
1\x = x, x/1 = x, x\1 = 1, 1/x = 1, and the quasi-equation (x\y = 1 & y\x = 1) ⇒
x = y. Following [9], we call a biresiduation algebra divisible if it satisfies the equations
(x\y)\(x\z) = (y\x)\(y\z) and (z/x)/(y/x) = (z/y)/(x/y) (which in case of integral residuated
po-monoids are equivalent to the divisibility law). By a closure endomorphism we mean an
endomorphism that is also a closure operator.

Given two nontrivial biresiduation algebras C, D and an action ρ of C on D we define
the semidirect product C ⋉ρ D to be {(a, x) ∈ C × D : ρ(a, x) = x} with (a, x)\(b, y) =
(a\b, x\ρ(a, y)) and (b, y)/(a, x) = (b/a, ρ(a, y)/x). If the action ρ satisfies certain conditions
resembling divisibility and the maps ρ(a,−) are closure endomorphisms of D, then C ⋉ρ D is
a biresiduation algebra (with a closure endomorphism), and C ⋉ρ D is divisible if and only if
both C and D are divisible.

This construction is a quite straightforward generalization of symmetric semidirect pro-
ducts of the so-called CKL-algebras [6] (which are equivalent divisible BCK-algebras or HBCK-
algebras [1]) as well as of quasidirect products of Hilbert algebras [2]. In fact, similarly to [4],
it goes back to the construction of implicative semilattices from triples consisting of a boolean
algebra, an implicative semilattice and an admissible function [5].

If A is a divisible biresiduation algebra with a fixed closure endomorphism δ, then C = δ(A)
is a subalgebra of A, D = δ−1(1) is a filter of A (hence a biresiduation algebra) and, for every
a ∈ C, the map ρ(a, –) = a\– is a closure endomorphism of D. Thus we can construct the
semidirect product C ⋉ρ D. Though A is in general smaller than C ⋉ρ D, the two algebras
determine essentially the same triples. In some particular cases, C ⋉ρ D is isomorphic to A.
For example, this happens when A is a BL-algebra and the fixed closure endomorphism δ is
just the double negation (this generalizes the results of [4]).

For divisible biresiduation algebras, we have an adjunction between the category of algebras
with closure endomorphisms and the category of “modules”/triples. Specifically, (i) let A be
the category of divisible biresiduation algebras with fixed closure endomorphisms, i.e., algebras
(A, δ), with morphisms = homomorphisms, and (ii) let M be the category of “modules” D
over C, i.e., triples (C,D, ρ) where C, D are divisible biresiduation algebras and ρ an action
of C on D, with morphisms from (C,D, ρ) to (C1, D1, ρ1) defined as pairs of homomorphisms
f : C → C1, g : D → D1 such that g(ρ(a, x)) = ρ1(f(a), g(x)) for all a ∈ C and x ∈ D. Then,
using the assignments “algebra (A, δ) 7→ triple (C,D, ρ)” and “triple (C,D, ρ) 7→ semidirect
product C⋉ρD” described above, we define adjoint functors F : A → M and G : M → A, with
F ⊣ G.

We will also discuss the role of n-potent elements and characterize the so-called quasi-
decompositions (in the sense of [7] or [2]) corresponding to closure endomorphisms of divisible
biresiduation algebras.
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