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Fifty years ago, Lawvere’s observation that ordered sets and metric spaces can be seen as
enriched categories over a quantale opened a wide path for the quantitative theory of domains,
using and generalising ideas from category theory, algebra, logic and and topology. Among the
most beneficial and pleasing properties of such quantale-enriched categories are undoubtedly
(co)completeness with respect to certain classes of (co)limits and commutation of such limits
and colimits (with prominent examples featuring the ordered case, like continuous or completely
distributive lattices).
The present talk considers the category V-Sup of cocomplete enriched categories over a commu-
tative quantale V – the V-valued analogue of complete sup-lattices. The arrows are cocontinuous
V-functors. Cocomplete V-categories are the Eilenberg-Moore algebras for the free cocomple-
tion monad D on V-categories. V-Sup is symmetric monoidal closed. The corresponding tensor
product ⊗V -Sup arises naturally, using that D is a KZ-monad (hence commutative) [6, 8], and
it classifies bimorphisms [1, 7]. The internal hom is V-Sup(A,B). Besides being monoidal
closed, V-Sup is also ∗-autonomous, with dualizing object Vop [3]. Consequently, the tensor
product A⊗V-SupB of two cocomplete V-categories A and B can alternatively be characterised
as V-Sup(A,Bop)op. In case of complete sup-lattices, this is precisely the set of Galois maps be-
tween them [10]. An alternative description of the tensor product of two complete sup-lattices
is obtained as the set of all down-sets in their cartesian product that are join-closed in either
coordinate [13]. Taking advantage of the 2-categorical setting, we can extend this description
to (co)complete quantale-enriched categories.

Proposition 1. Let A and B be two cocomplete V-categories. Then the coreflexive inverter in
V-Sup of the 2-cell (inequality) D(yA ⊗ yB) ⇒ D∀(yA ⊗ yB) is A⊗V-Sup B:

A⊗V-Sup B // D(A⊗B)
D(yA⊗yB)

//
⇓

D∀(yA⊗yB)
// D(D(A)⊗D(B))

In the above, yA : A → D(A) and yB : B → D(B) denote the Yoneda embeddings, and
D∀(yA ⊗ yB) is the right adjoint to the right adjoint to D(yA ⊗ yB).

Nuclearity (in modern parlance dualisability) originally arose in Operator Theory, in order
to mimic finite dimensionality behaviour (for objects) and matrix calculus (for arrows) [4].
It was subsequently observed that nuclearity was in fact a categorical concept, and that it
could be defined in the more general context of (symmetric) monoidal closed categories: An
arrow f : A → B is nuclear iff the associated 1 → [A,B] factorises through A∗ ⊗ B, where
A∗ = [A,1], and an object A is nuclear if idA is so [5]. Equivalently, B ⊗A∗ ∼= [A,B] holds for
all objects B. The nuclear objects in the category of sup-lattices and join-preserving maps are
precisely the completely distributive lattices [5, 11, 12]. The analogue concept in the realm of
V-enriched categories, the cocomplete and completely distributive V-categories (V-ccd) [14], are
(co)complete V-categories for which taking suprema distributes over limits, equivalently, they
are the projective objects in V-Sup. Their behaviour with respect to the monoidal structure of
V-Sup is described in the next Proposition:
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Proposition 2. 1. The tensor product in V-Sup of two V-ccds is V-ccd.
2. The nuclear objects in V-Sup are precisely the V-ccds.

To each arbitrary category A canonically corresponds a cocomplete one, namely DA. Being
free in V-Sup, the latter is also V-ccd. To obtain more examples of (completely distributive)
cocomplete V-categories associated to A, consider the Isbell adjunction [Aop,V ] //

⊥ [A,V ]opoo .
Taking the fixed points of this adjunction produces a V-category I(A) into which A embeds,
known as the Isbell completion, the categorical analogue of the MacNeille completion by cuts of
a poset. As such, I(A) is a (complete and) cocomplete V-category, hence an object of V-Sup.
When V is the two-element quantale, A is just an ordered set, and I(A) is a complete sup-lattice,
which moreover is completely distributive if and only if the negation of the underlying order of
A is a regular relation [2]. Regularity is a concept definable not only for relations; it can apply to
arrows in an arbitrary category [9]. We seek to generalise this result to V-categories. However,
a quantale has only tensor product and internal hom. Properly handling negation in a quantale
requires extra assumptions. We shall assume that V is a Girard quantale, the posetal analogue
of a ∗-autonomous category. Then taking internal homs into the cyclic dualising element of V
determines a negation operation ¬ on V , in particular, on all V-valued relations. Under these
assumptions, we obtain the sought generalisation:

Theorem 3. Let V be a Girard integral quantale and I(A) the Isbell completion of a V-enriched
category A. Then the following are equivalent:

1. I(A) is completely distributive (as a cocomplete V-category), that, is, I(A) is a nuclear
object in the ∗-autonomous category V-Sup.

2. Negation ¬A(−,−) of the V-hom of A is regular as a V-relation.
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