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Approximation Fixpoint Theory (AFT) [5] is an algebraic framework designed to study the
semantics of non-monotonic logics, like logic programming, autoepistemic logic, and default
logic, and to resolve longstanding problems on the relation between these formalisms [6]. The
core ideas of AFT are relatively simple: we are interested in fixpoints of an operator on a given
lattice ⟨L,≤⟩. For monotonic operators, Tarski’s theory guarantees the existence of a least
fixpoint. AFT generalizes Tarki’s theory to non-monotonic operators by making use of a so-
called approximating operator : an operator A : L2 → L2 monotonic with respect to the precision
order ≤p (defined by (x, y) ≤p (u, v) if x ≤ u and v ≤ y)). The intuition is that elements of
L2 are used to approximate elements of L: the tuple (x, y) ∈ L2 is said to approximate z if
x ≤ z ≤ y. Given such an approximator, AFT defines several types of fixpoints (supported
fixpoints, a Kripke-Kleene fixpoint, stable fixpoints, and a well-founded fixpoint) of interest.

Let us illustrate the application of AFT to standard, first-order, logic programming. In
this setting, the lattice L is the lattice of interpretations, ordered by the truth order I ≤ J if
P I ⊆ P J for each predicate P . The operator at hand is the immediate consequence operator TP

of a logic program P [9]. In this setting, pairs (I, J) can be seen as four-valued interpretations:
a fact q is true if it is true in both I and J , false if it is false in both I and J , unknown if it is
true in J but not true in I and inconsistent if it is true in I but not in J . The approximating
operator ΨP is, in this case, nothing more than Fitting’s four-valued immediate consequence
operator [7].

This research is motivated by a need to apply AFT to higher-order logic programming that
arose in several contexts [3, 2, 8]. An important issue in this context is that using pairs of
interpretations no longer allows for an obvious way to evaluate formulas in an approximation.
Let us illustrate this with an example. Consider a logic program in which a first-order predicate
p and a second-order predicate Q are defined. Now assume that in the body of a rule, the atom
Q(p) occurs. A tuple (I, J) of interpretations in this case tells us for any given set S if Q(S) is
true, false, unknown, or inconsistent. However, the interpretation of p in such an interpretation
(I, J) is not a set, but a partially defined set, making it hard to evaluate expressions of the form
Q(p). To deal with definitions of higher-order objects, approximate interpretations should take
into account the application of approximate objects to approximate objects. This suggests that
spaces of approximations of higher-order objects should be defined inductively from lower-order
ones, following the type hierarchy: we start by assigning a base approximation space to each
type at the bottom of the hierarchy, and then, for each composite type τ1 → τ2, we define its
approximation space as a certain class of functions from the approximation space for τ1 to the
approximation space for τ2. The main question is how to define the base approximation spaces
and the class of functions in a generic way that works in all applications of AFT.

Clearly, we want to be able to apply the same AFT techniques at any level of the hierarchy,
i.e. all approximation spaces should share the same algebraic structure. In Category Theory
(CT), there already exists a notion that captures this behavior: the concept of Cartesian closed
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category (ccc). The objects of a ccc C satisfy a property that can be intuitively understood as
follows: if A and B are two objects of C, then the set of morphisms from A to B is also an object
of C. It follows that, if the base approximation spaces are objects of a ccc, then the category
also contains the full hierarchy of approximation spaces we are aiming for. We will call such
a ccc an approximation category and denote it by Approx. Clearly, the definition of Approx
depends on the application we want to use AFT for. Different applications imply different
higher-order languages, with different types, and possibly different versions of AFT (standard
AFT [5], consistent AFT [4], or other extensions [1]). To formalize this, we develop the notion
of an approximation system. Once a language and the semantics of its types are fixed, we can
choose an approximation system that consists, among other things, of a ccc Approx, equipped
with a function App associating the semantics of a type to an approximation space in Approx.
The approximation system also determines which elements of the approximation spaces are
exact, i.e. which elements approximate exactly one element of the semantics of a type, and, for
every type, it provides a projection from the exact elements to the objects they represent in the
corresponding semantics. This is non-trivial for higher-order approximation spaces, and it is
indeed fundamental to obtain a sensible account for AFT for higher-order definitions. Thanks
to the generality of this formalization, there are several viable choices for an approximation
system. For instance, we show that the bilattices form a ccc with the monotone functions as
morphisms. With a suitable choice of App and exact elements we obtain an approximation
system that recovers the framework of standard AFT and extends it to higher-order objects.
Furthermore, we have shown that the approximation spaces from [1] form a ccc. Our approach
provides a clear definition for exact higher-order elements, which was missing in the work [1].
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