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Abstract

Infinite trees with countably many branches, called thin trees, have been studied via
methods from automata theory and algebra. We take a categorical approach to thin trees
using the framework of coalgebra. We show that the collection of thin trees can be seen as
an initial algebra satisfying a certain axiom. We prove this by defining an algebra of thin
tree representatives and showing that each thin tree has a canonical representative.

1 Background

Infinite words serve as a basis for the analysis of reactive systems and have been studied by
means of automata and algebraic recognition [6]. Subsequently, infinite trees have also become
an object of study, as they can express more complex systems where branching occurs. Tools
from automata theory have been adapted to infinite trees [4].

In [7, 5] the authors look into automata and algebras for a class of infinite trees called
thin trees. These are the trees that have countably many infinite branches. Every node in a
thin tree can be assigned an ordinal called rank, which allows for inductive reasoning on the
rank of thin trees. Moreover, languages of thin trees admit an algebraic characterisation via
thin algebras, which are an extension of the notion of an ω-semigroup for infinite words. Thin
algebras and induction on the rank are used to prove that languages of thin trees are recognised
by unambiguous automata, i.e., automata that have unique accepting runs.

2 Contribution

In our current work we employ category theory to provide a uniform account of thin trees for
a finite signature F . We base our approach on the formalisation of trees via F -coalgebras for
a polynomial functor F over Set (see, e.g., [3]). Indeed, every tree with branching type F
corresponds to an element of the final F -coalgebra (Z, ζ), and every element of (Z, ζ) can be
unravelled into a tree. We take a look into the subcoalgebra (ZTh , ζTh) of (Z, ζ) consisting of
those elements whose unravelling is a thin tree. By endowing ZTh with a suitable algebraic
structure βTh , we characterise (ZTh , βTh) as the initial object in a certain category of algebras
ThAlg. In this way, we capture the principle of induction on the rank of thin trees via the
universal property of initiality. Moreover, objects in ThAlg allow for algebraic recognition of
languages of thin trees, analogously to thin algebras in [7]. This paves the way for future work
on categorifying properties of thin trees, such as the existence of unambiguous automata.

3 Universal Property of Thin Trees

Here we give some details behind the construction of (ZTh , βTh). A key ingredient is the functor
derivative F ′ [1], which represents the type of contexts, i.e., tree nodes where one successor is
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replaced by a hole. A context c can be composed with a tree or another context c′ by plugging
c′ into the hole of c.

We define the type of streams of F -contexts G := (F ′)ω and denote the initial (F + G)-
algebra by (A,α). Every term in A can be seen as a representative of a tree. If a term has
type F , we interpret it as a tree node with given immediate successors. If it has type G, we
interpret it as the tree obtained by composing infinitely many F -contexts. This gives rise to
an interpretation map int : A → Z. Moreover, we observe that interpretations are thin, i.e.,
int [A] ⊆ ZTh . However, one element of ZTh can have many representatives in A. For example,
consider an element of ZTh whose unravelling consists of a single infinite branch. It can be
represented as a stream x1 of contexts whose only successor is the hole, or as a node x2 whose
only successor is the stream x1.

In order to get unique representatives, we quotient (A,α) by the congruence ≈ generated
by the following axiom (†). We identify a term x of type G with the term y of type F obtained
by plugging tail(x) into the context head(x). For instance, (†) will directly identify x1 and x2

from the example above. We show that ≈ is sound for int , i.e., terms identified by ≈ have
the same interpretation. In order to show that each element of ZTh is represented by a unique
equivalence class of ≈, we introduce the notion of a normal term. It is defined via the rank of
a term, which is the earliest step in the initial colimit construction of (A,α) at which the term
appears. Now a term is called normal if it has the least rank among the terms with the same
interpretation, and all its subterms are normal.

We prove two main results: (1) each element of ZTh has a unique normal representative,
and (2) the quotient relation ≈ identifies each term with its corresponding normal term. As a
result, we conclude that the quotient of (A,α) by ≈ contains a unique representative for each
element of ZTh . Thus, for a suitable (F +G)-algebra structure βTh , we have that (ZTh , βTh)
is isomorphic to the quotient of (A,α) by ≈, so (ZTh , βTh) is initial among all (F +G)-algebras
satisfying the axiom (†).

Beyond the purposes of our proofs, we hope that thin tree representatives can find use
in applications, such as automata learning, where algorithms are sensitive to the particular
presentation of objects [2].
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[5] T. Idziaszek, M. Skrzypczak, and M. Bojańczyk. Regular languages of thin trees. Theory of
Computing Systems, 20, 04 2015.

[6] D. Perrin and J.-E. Pin. Infinite Words: Automata, Semigroups, Logic and Games, volume 141 of
Pure and applied mathematics. Elsevier, 2004.

[7] M. Skrzypczak. Descriptive Set Theoretic Methods in Automata Theory - Decidability and Topo-
logical Complexity, volume 9802 of Lecture Notes in Computer Science. Springer, 2016.

2


	1 Background
	2 Contribution
	3 Universal Property of Thin Trees
	References

