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1 Introduction

Inquisitive logic [8, 3, 1] is a logic of so-called inquisitive propositions, intended to model ques-
tions in much the same way that the propositions of non-inquisitive logic model declarations.
This logic has many interesting linguistic applications [2]. First-order inquisitive logic was
studied in, e.g., [7], and intuitionistic inquisitive logic was introduced in [10, 11].

In our talk, we provide a categorical analysis of the main mathematical features of inquis-
itive logic. In particular, we give a sheaf-theoretic semantics for (higher-order, intuitionistic)
inquisitive logic. This subsumes as special cases the classical possible-worlds model of inquis-
itive logic [12], a refinement of this based on a topological space of worlds, as well as other
models with a topological flavor.

It was observed in the propositional case by [9] that the language of (intuitionistic) inquisitive
logic can be identified with (intuitionistic) logic, together with a geometric modality ∇ in the
sense of [6], also known as a Lawvere-Tierney modality or lax modality. Inquisitive logic is then
characterized by the addition of the so-called ‘split’ axiom.

∇α→ ϕ ∨ ψ
Split

(∇α→ ϕ) ∨ (∇α→ ψ)

From the inquisitive perspective, ∇ is understood as the presupposition modality, with ∇α
representing the declarative proposition presupposed by the inquisitive proposition α.

2 Higher-Order Semantics

To extend Holliday’s insight from the propositional setting to higher-order, we must pass from
Heyting algebras and nuclei to toposes and Cartesian reflectors.

Essentially since Lawvere and Tierney, it has been known that a topos E equipped with
with a Cartesian reflector J : E → E interprets intuitionistic higher-order logic with a geometric
modality. The Lawvere-Tierney operator j : Ω → Ω in E induced by J interprets the geometric
modality ∇. The rest of the logic is interpreted standardly in E . Our move will be to narrow
down this abstract semantics in order to validate the additional axioms of inquisitive logic.

Theorem 1. Let (C, J) be a site where C is small and cocomplete and J is canonical. Then,

SetC
op

, together with the sheafification a : SetC
op

→ SetC
op

induced by J is a model of of
intuitionistic higher-order inquisitive logic.

3 Examples

Example 2. Let W be a set (of possible worlds). Then, the singleton injection

{·} :W ↣ 2W
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induces the adjunction

{·}∗ ⊣ {·}∗ : SetW = SetW
op

↣ Set(2
W )op .

The composite {·}∗{·}∗ is a Cartesian reflector, and thus induces a coverage of 2W , which is
canonical. Moreover, 2W is small and cocomplete ( i.e. admits small joins).

This recovers the classical model of predicate inquisitive logic. In particular, we have

Sub
Set(2

W )op (1) ∼= 2(2W )op and SubSetW (1) ∼= 2W , i.e. the subsingletons of Set(2
W )op and

SetW correspond respectively to downwards-closed sets of subsets of W and subsets of W ,
which in inquisitive logic following [12] are respectively identified with inquisitive propositions
and declarative propositions.

Example 3. Any topological space W (of possible worlds), regarded as a site, satisfies the

conditions of Theorem 1. Thus, SetO(W )op , together with the sheafification

SetO(W )op a−→ Sh(W ) ↪→ SetO(W )op

is a model.
In particular, we have SubSetO(W )op (1) ∼= 2O(W )op and SubSh(W )(1) ∼= O(W ), which we

might identify with answerable inquisitive propositions and verifiable declarative propositions,
respectively.

The classical model of Example 2 is recovered in the case where W is discrete and thus
O(W ) = 2W .

Additional examples include sheaves on a locale, and, when size issues are dealt with, sheaves
on an ionad [5, 4] and sheaves on a Grothendieck topos.
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