Craig Interpolation from Horn Semantics

Peter Arndt¹, Hugo Luiz Mariano², and Darllan Pinto³

¹ University of Düsseldorf, peter.arndt@uni-duesseldorf.de
² University of São Paulo, hugomar@ime.usp.br
³ University of Bahia, darllan_math@hotmail.com

In this work we consider semantics of a logic in a class of first order structures axiomatized by universal Horn sentences, a *Horn class*. We give conditions on such a semantics which ensure that an amalgamation property for the Horn class implies Craig interpolation for the logic.

This generalizes the well-known result that for an algebraizable logic the amalgamation property for the associated class of algebras implies Craig interpolation.

κ -Horn classes and lattices of atomic Horn formulas

Let κ be a regular cardinal. Let Σ be a signature consisting of function symbols and Σ^+ an expansion of Σ by relation symbols.

- A universal strict basic κ -Horn sentence is a sentence of the form $\forall \vec{x} \colon \bigwedge_{i \in I} P_i(\vec{x}) \to P(\vec{x})$, with P_i, P atomic formulas over Σ^+ not equivalent to \bot and $|I| < \kappa$.
- A κ -Horn theory is a theory axiomatized by universal strict basic κ -Horn sentences.
- A κ -Horn class is a class of Σ^+ -structures axiomatized by a κ -Horn theory.

We shall say that a class \mathbf{K} of Σ^+ -structures has the *atomic amalgamation property* if given $A, B, C \in \mathbf{K}$ and maps $i_B \colon A \to B$, $i_C \colon A \to C$ that preserve and reflect the validity of atomic formulas (atomic embeddings), there exist a Σ^+ -structure $D \in \mathbf{K}$ and atomic embeddings $e_B \colon B \to D$, $e_C \colon C \to D$ such that $e_B \circ i_B = e_C \circ i_C$.

For a κ -Horn theory \mathbb{T} , we define a lattice of atomic Horn formulas that will replace the congruence lattice from algebraic semantics: For a Σ -structure A let

- $G^{\mathbb{T}}(A) := \{(\theta, S) \mid \theta \text{ is a } \Sigma\text{-congruence on } A \text{ and } S \text{ an interpretation}$. of \mathfrak{R} on A/θ s.t. the resulting $\Sigma^+\text{-structure on } A/\theta$ is a $\mathbb{T}\text{-model}\}$
- We define an order on $G^{\mathbb{T}}(A)$ by declaring $(\theta, S) \leq (\theta', S')$ iff $\theta \subseteq \theta'$ and the induced quotient map $q_{\theta\theta'} : A/\theta \twoheadrightarrow A/\theta'$ is a homomorphism of Σ^+ -structures for the interpretations S, S'.

 $G^{\mathbb{T}}(A)$ is a κ -algebraic lattice.

κ -Horn Semantics

Let L be a logic over a signature Σ . Recall that an algebraic semantics for a logic L is a translation from formulas of L to sets of equations over the signature of L (i.e. atomic formulas of the first order language associated to Σ), commuting with substitution, and such that inference in the logic under this translation corresponds exactly to inference in the equational logic in a quasivariety **K**.

This situation has been abstracted into the notion of *filter pair* in [AMP1], [AMP2], [AMP3]: A filter pair is a functor $G: \Sigma$ -Str $\rightarrow \kappa$ -AlgLat together with a natural transformation to the power set functor $i: G \rightarrow \wp$, which objectwise preserves infima and κ -directed suprema. In the case of algebraic semantics for the functor one takes $G := Co_{\mathbf{K}}(\mathrm{Fm}) := \{\theta \mid \mathrm{Fm}/\theta \in \mathbf{K}\}$.

Horn Semantics arises by replacing the congruence lattice with the above lattice of atomic formulas of an expansion Σ^+ of Σ .

Theorem Let τ be a set of *atomic* Σ^+ -formulas with at most one free variable, such that $|\tau| < \kappa$. The collection of maps $i^{\tau} = (i^{\tau}_A)_{A \in \Sigma - Str}$, defined by

$$\begin{array}{rcl} i_A^\tau : G^{\mathbb{T}}(A) & \to & (\mathcal{P}(A), \subseteq) \\ & (\theta, S) & \mapsto & \{a \in A \mid \forall \varphi(x) \in \tau \colon \ A/(\theta, S) \vDash \varphi(a)\} \end{array}$$

is a natural transformation and for any $A \in \Sigma - Str$, i_A^{τ} preserves arbitrary infima and κ -directed suprema. In other words, $(G^{\mathbb{T}}, i^{\tau})$ is a κ -filter pair.

Such a filter pair is called *Horn filter pair*.

Definition A κ -Horn Semantics for a logic L is a Horn filter pair whose image over the formula algebra is the lattice of theories of L. It is an *equivalent Horn Semantics* if the natural transformations are injective.

Examples

- For $\Sigma^+ = \Sigma$ a Horn semantics is precisely an algebraic semantics, and an equivalent Horn semantics corresponds precisely to an algebraizable logic.
- For Σ⁺ = Σ ∪ {F} an expansion of the signature with a unary relation symbol one can define an equivalent Horn semantics corresponding to matrix semantics.
- For Σ⁺ = Σ ∪ {≤} an expansion of the signature with an inequality symbol, and a Horn theory demanding that this be an order relation, a Horn semantics is precisely an order algebraic semantics, and an equivalent Horn semantics corresponds precisely to an order algebraizable logic in the sense of [Raf]

Using the formalism of filter pairs, we can prove a general Craig Interpolation result: **Theorem** Let $(G^{\mathbb{T}}, i^{\tau})$ be a Horn semantics for a logic L. Suppose that the filter pair $(G^{\mathbb{T}}, i^{\tau})$ has the "theory lifting property". If $\mathbf{K} := \text{Mod}(\mathbb{T})$ has the atomic amalgamation property, then the logic L associated to $(G^{\mathbb{T}}, i^{\tau})$ has the Craig entailment property.

The "theory lifting property" is a technical condition, satisfied by every filter pair presenting an equivalent Horn Semantics, but also in other cases.

Examples The above theorem specializes to the following statements:

- the well-known statement that for algebraizable logics, the amalgamation property entails Craig interpolation
- the well-known statement that the theory amalgamation property entails Craig interpolation
- a corresponding statement for order algebraizable logics
- the statement that for logics with an algebraic semantics in a regular variety, the amalgamation property entails Craig interpolation

In the talk we will review the notion of filter pair and explain the above results and examples.

References

- [AMP1] Arndt, P., Mariano H., Pinto D., Finitary Filter Pairs and propositional logics, South American Journal of Logic, vol. 4, Nr. 2 p. 257-280 (2018)
- [AMP2] Arndt, P., Mariano H., Pinto D., Filter Pairs and natural extensions of logics, Archive for Mathematical Logic volume 62, pages 113-145 (2023)
- [AMP3] Arndt, P., Mariano H., Pinto D., Congruence Filter pairs, equational filter pairs and adjoints, Journal of Logic and Computation, vol. 34 (2), (2024)
- [Raf] Raftery, J.G., Order algebraizable logics, Annals of Pure and Applied Logic 164 (2013) 251-283