An algebraic semantics for possibilistic finite-valued Łukasiewicz logic

Manuela Busaniche¹, Penélope Cordero², Miguel Andrés Marcos³, and Ricardo Oscar Rodríguez⁴

 ¹ Universidad Nacional del Litoral - CONICET, Santa Fe, Argentina mbusaniche@santafe-conicet.gov.ar
² Universidad Nacional del Litoral, Santa Fe, Argentina epcorderopenelope@gmail.com
³ Universidad Nacional del Litoral - CONICET, Santa Fe, Argentina mmarcos@santafe-conicet.gov.ar
⁴ Universidad de Buenos Aires, Argentina ricardo@dc.uba.ar

In the present work, based on the ideas of [1], we analyse an algebraic semantics for a many-valued modal logical system based on the *n*-valued Lukasiewicz logic $\Lambda(\mathbf{L}_n)$. We extend $\Lambda(\mathbf{L}_n)$ (for each fixed natural *n*) to a modal system, by adding a unary operator \Box to the original many-valued propositional language. Our approach strongly relies on the fact that the system $\Lambda(\mathbf{L}_n)$ has as an algebraic semantics the subvariety of MV-algebras generated by the *n*-elements MV-chain \mathbf{L}_n , that is the algebra with universe $\{0, \frac{1}{n-1}, \ldots, \frac{n-2}{n-1}, 1\}$, and main operations $x \to y = \min\{1, 1 - x + y\}, \neg x = 1 - x$.

To achieve our aim, we work with a propositional modal language formed by a numerable set of variables Var and the connectives $\langle \rightarrow, \neg, \Box, 0 \rangle$, thus the set $Form_{\Box}$ of formulas in this language is built as usual. An \mathbf{L}_n -valued *possibilistic frame* $\langle W, \pi \rangle$ is given by a non-empty set of worlds W and a function $\pi : W \to \mathbf{L}_n$ (called a normalized possibility distribution over W) such that $\bigvee_{w \in W} \pi(w) = 1$. An \mathbf{L}_n -valued *possibilistic model* is a 3-tuple $M = \langle W, \pi, e \rangle$ where $\langle W, \pi \rangle$ is an \mathbf{L}_n -valued possibilistic frame and e is a map, called *valuation*, assigning to each propositional variable in Var and each possible world in W an element of \mathbf{L}_n (i.e., $e: Var \times W \longrightarrow \mathbf{L}_n$).

If $M = \langle W, \pi, e \rangle$ is a \mathbf{L}_n -valued possibilistic model, the map e can be uniquely extended to a map, assigning to each formula in $Form_{\Box}$ and each world in W an element of \mathbf{L}_n (i.e., $e: Form_{\Box} \times W \longrightarrow \mathbf{L}_n$) satisfying that:

- e is an algebraic homomorphism in its first component, i.e., for the connectives \rightarrow , \neg , 0,
- $e(\varphi, w) = \bigwedge \{ \pi(w') \to e(\varphi, w') : w' \in W \}$

The logical system that we are trying to characterize generalizes the classical possibilistic logic, and it is the many-valued modal system semantically defined by possibilistic models over \mathbf{L}_n

Our algebraic approach deals with complex algebras that arise from \mathbf{L}_n -valued frames. That is: given an \mathbf{L}_n -valued possibilistic frame $\langle W, \pi \rangle$ we consider the MV-algebra of functions \mathbf{L}_n^W and the unary operator $\Box : \mathbf{L}_n^W \to \mathbf{L}_n^W$ given by $\Box x(i) = \bigwedge \{\pi(j) \to x(j) : j \in W\}$. We study the quasivariety of algebras generated by these complex algebras, and this quasivariety, together with the abstract theory of algebraizable logics immediately provide an axiomatization for the possibilistic many-valued system over \mathbf{L}_n . From the way that the system is defined, it turns out to be complete with respect to the logic semantically defined by the \mathbf{L}_n -valued possibilistic Possibilistic $\Lambda(\mathbf{L}_n)$ -valued system

frames. So the logical system determined by frames over L_n has an algebraic semantics based on MV-algebras.

The present investigation provides a negative answer to a conjecture of P. Hájek posed in his book [2] which intends to generalize the classical setting, where the possibilistic logic coincides with the modal logic KD45. We prove that the logic semantically defined by \mathbf{L}_{n} valued possibilistic frames can not be axiomatized by simply requiring the fuzzy analogues of the classical axioms K,D,4 and 5.

References

- Busaniche, M., Cordero, P., Marcos, M. and Rodríguez, R., An algebraic semantics for possibilistic finite-valued Lukasiewicz logic. International Journal of Approximate Reasoning, (2023), DOI: 10.1016/j.ijar.2023.108924
- [2] Hájek, P., Metamathematics of Fuzzy Logic, Trends in Logic, Kluwer. 1998.