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This is the second part of a two-part talk, and we use some definitions and notations from
the Part I.

For variety V or quasivariety Q, Λv(V) and Λq(Q) denote the complete lattices of all subva-
rieties and all subquasivarieties, of V or Q; as every variety is a quasivariety the notation Λq(V)
also makes sense. The following observation shows the relations between splittings in Λv(V)
and Λq(V).

Theorem 1. Let W be a variety, V ∈ Λv(W) and Q = Q(FV(ω)). Then V splits Λv(W) if and
only if Q splits Λq(W).

If Q is a quasivariety, algebra A ∈ Q is Q-irreducible if there are two elements a, b ∈ A
such that for any distinct from identity congruence θ of A, if A/θ ∈ Q, then (a, b) ∈ θ. And A
is finitely Q-presentable if there is is a compact congruence θ of FQ(n) such that A ∼= FQ(n)/θ.

Similarly to splitting varieties (cf., e.g., [1]) the following holds for splitting quasivarieties.

Theorem 2. Suppose that K is a quasivariety and the pair (Q,Q∗) splits Λq(K). Then
1) Q∗ is axiomatized relative to K by any quasiequation φ such that Q∗ |= φ and Q ̸|= φ;
2) Q is generated by a single finitely generated Q-irreducible algebra A;
3) Q is generated by a single finitely Q-presented algebra A.

Among quasiequations mentioned in (1) there always is a Q-irreducible quasiequation
φ: if Φ |=Q φ, then there is φ′ ∈ Φ such that φ′ |=Q φ; the Q-irreducible quasiequation defining
relative to Q the co-splitting subquasivariety is called a splitting quasiequation.

The biggest difference between splittings in the lattices of varieties and quasivarieties is that
if a pair (V,V∗) splits Λv(W), the V-irreducible algebra generating V is subdirectly irreducible
and thus it is W-irreducible. For quasivarieties it is not the case: if pair (Q,Q∗) splits Λq(K),
Q may not be generated by any K-irreducible algebras. This observation justifies the following
definitions: algebra A is self-irreducible if it is Q(A)-irreducible; algebra A is a splitting
algebra in Λ if it is finitely generated self-irreducible and quasivariety Q(A) splits Λ; and A
is a strong splitting algebra if it is a splitting algebra and in addition it is K-irreducible,
where K is the top element of Λ. For a quasivariety K by Kspl we denote the class of all
algebras splitting Λq(K). On Kspl we also define a quasi-order by letting for any A,B ∈ Kspl,
A ≤ B ⇋ Q(A) ⊆ Q(B); and this quasi-order can be easily converted into a partial order on
the cosets.

The notion of separability was defined in the Part I. For instance, if quasivariety Q and
all its subquasivarieties have the finite embeddability property (FEP for short), that is if each
quasivariety from Λq(Q) is generated by its finite members, then Λq(Q) is separable.

Theorem 3. Let Λ be a complete lattice of quasivarieties and K be its top element. If Q ∈ Λ is
separable, then it has a basis consisting of splitting quasiequations relative to K. Thus, if Λ is
separable, then every member of Λ has a basis relative to K consisting of splitting quasiequations.
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A quasivariety Q is primitive if every its subquasivariety can be defined relative to Q by a
set of identities, i.e. for every Q′ ∈ Λq(Q), Q

′ = Q∩V(Q′), where V(Q′) is the variety generated
by Q′. The primitive quasivarieties are the algebraic counterparts of hereditarily structurally
complete finitary structural consequence relations. And Q is weakly primitive if in every
Q′ ∈ Λq(Q), every algebra A ∈ Q′ is a subdirect product of Q-irreducible algebras from Q′.

Theorem 4. Every primitive quasivariety is weakly primitive. Moreover, quasivariety Q is
weakly primitive if and only if every self-irreducible algebra in Q is Q-irreducible.

A quasivariety Q is weakly tame if every finitely generated Q-irreducible algebra in Q is
Q-splitting (and thus it is strong Q-splitting). For instance, every quasivariety of finite type
with the FEP (hence any locally finite quasivariety of finite type) is weakly tame.

Corollary 5. If Q is weakly tame and weakly primitive, then Q = Q(Qspl).

If Q′ ⊆ Q, we define I[Q′,Q] = {Q′′ : Q′ ⊆ Q′′ ⊆ Q}.

Theorem 6. Let Q be weakly primitive, weakly tame quasivariety of finite type and Q′ ⊆ Q
such that every quasivariety in I[Q′,Q] has the FEP. Then the following are equivalent:

1) every Q′′ ∈ I[Q′,Q] has a finite basis relative to Q;
2) I[Q′,Q] is countable;
3) Qspl \ Q′

spl has no infinite antichain;

4) I[Q′,Q] enjoys the descending chain condition.

Corollary 7. If Q is weakly primitive, of finite type and finitely generated then Λq(Q) is finite
and all its subquasivarieties have a finite basis relative to Q.

Proof. The proof follows from the observation that Q has just a finite (up to isomorphism) set
of strong Q-splitting algebras.

Corollary 8. If Q is primitive, finitely axiomatizable and of finite type, then every finitely
generated subquasivariety of Q is finitely axiomatizable.

Remark 9. Corollary 7 can be seen as a version of Baker’s Finite Basis Theorem for quasiva-
rieties; our version differs from the one in [2], in that we drop relative congruence distributivity
and add weak primitivity.

Note that primitivity is essential in Corollary 7. In [3] (also see [4, Section 4.5]) Rybakov
gave an example of finite Heyting algebra A with Q(A) not having a finite basis relative to
variety of all Heyting algebras and therefore, relative to V(A). We note that Λq(V(A)) is
infinite, while Λv(V(A)) is finite. Rybakov’s example also shows that congruence distributive
varieties may have subquasivarieties which are not relatively congruence distributive.

References

[1] R. McKenzie. Equational bases and nonmodular lattice varieties. Trans. Amer. Math. Soc., 174:1–
43, 1972.

[2] D. Pigozzi. Finite basis theorems for relatively congruence-distributive quasivarieties. Trans. Am.
Math. Soc., 310:499–533, 1988.

[3] Vladimir V. Rybakov. Even tabular modal logics sometimes do not have independent base for
admissible rules. Bulletin of the Section of Logic, 24(1):37–40, 1995.

[4] V.V. Rybakov. Admissibility of logical inference rules, volume 136 of Studies in Logic and the
Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1997.

2


