Finite lattices, N-free posets and orthomodularity

Gejza Jenča^{1*}

Slovak University of Technology Bratislava, Slovakia gejza.jenca@stuba.sk

Dacey orthosets

In his PhD. thesis [1], Dacey explored the notion of "abstract orthogonality" through sets equipped with a symmetric, irreflexive relation \perp . He named these structures orthogonality spaces. More recently, these structures have been referred to as orthosets [6, 5] and we will adopt this terminology in this text. Note that an orthoset is just a simple graph.

Definition 1. An orthoset (O, \bot) is a set O equipped with an irreflexive symmetric binary relation $\bot \subseteq O \times O$, called orthogonality.

For every subset X of an orthoset O, we write

 $X^{\perp} = \{ y \in O \mid \text{for all } x \in X, \ x \perp y \}$

Graph-theoretically, this is just the set of all common neighbours of a set of vertices. It is easy to see that $X \mapsto X^{\perp \perp}$ is a closure operator; a subset of an orthoset (O, \perp) with $X = X^{\perp \perp}$ is called *orthoclosed*. The orthoclosed subsets of an orthoset O form a complete ortholattice $L(O, \perp)$, which we call the logic of (O, \perp) .

Arguably the most significant theorem established in Dacey's thesis [1] is the following.

Theorem 1. Let (O, \bot) be an orthoset. Then $L(O, \bot)$ is an orthomodular lattice if and only if for every orthoclosed subset X and every maximal pairwise orthogonal set (or a clique) $B \subseteq X$, $B^{\bot\bot} = X^{\bot\bot}$.

The orthosets that meet one of the equivalent conditions of Theorem 1 are called *Dacey* orthosets.

The basic idea

Recently, we have achieved moderate success using the following straightforward approach.

- 1. We consider some class of (finite) objects \mathcal{X} .
- 2. For every object $X \in \mathcal{X}$, we construct in some way an orthoset $\mathcal{O}(X)$.
- 3. We characterize those objects $X \in \mathcal{X}$ for which $\mathcal{O}(X)$ is a Dacey orthoset.
- 4. We characterize those objects $X \in \mathcal{X}$ for which $\mathcal{O}(X)$ is a Dacey orthoset with a Boolean logic.

In the talk, we will present several results we found using this approach. The class \mathcal{X} will be always some class of posets. We will consider two types of a construction of an orthoset from a poset: the orthoset of quotients and the incomparability orthoset.

Orthosets of quotients

For a poset P, we write $Q^+(P)$ for the set of all pairs $(a,b) \in P \times P$ with a < b. In lattice theory, the elements of $Q^+(A)$ are called *proper quotients*. An element $(a,b) \in Q^+(P)$ is denoted by [a < b].

^{*}This research is supported by grants VEGA 2/0128/24 and 1/0036/23, Slovakia and by the Slovak Research and Development Agency under the contracts APVV-20-0069 and APVV-23-0093.

Posets and orthomodularity

For $[a < b], [c < d] \in Q^+(P)$ we write $[a < b] \perp [c < d]$ if $b \le c$ or $d \le a$. Clearly, \perp is symmetric and irreflexive, so $(Q^+(P), \perp)$ is an orthoset.

Theorem 2. [3] Let P be a finite bounded poset. Then P is a lattice if and only if its orthoset of quotients $(Q^+(P), \bot)$ is Dacey.

Theorem 3. [3] Let P be a bounded poset. Then P is a chain if and only if $L(Q^+(P), \bot)$ is a Boolean algebra.

Incomparability orthosets

Let P be a poset. For $x, y \in P$ let us now write $x \perp y$ if and only if x, y are incomparable. We say that (P, \perp) is the *incomparability orthoset* of P.

Let P be a poset. For a quadruple of elements $(a, b, c, d) \in P^4$, we say that they form an N if and only if $a < c \succ b < d$ (note the covering relation here), b < d, and all the other distinct pairs of elements of the set $\{a, b, c, d\}$ are incomparable. We denote this by N(a, b, c, d). A poset such that no quadruple of elements forms an N is called *N*-free.

N-free posets were introduced by Grillet in [2]. In that paper, the following characterization of N-free posets was proved.

Theorem 4. A finite poset P is N-free if and only if every maximal chain in P intersects every maximal antichain in P.

Theorem 5. [4] Let P be a finite poset. Then P is N-free if and only if its incomparability orthoset (P, \perp) is Dacey.

We further characterize the finite posets P with a Boolean $L(P, \perp)$ by the absence a more general type of small substructure, which we term a *weak* N; a weak N is like the N defined earlier, with the distinction that we allow a and d to be comparable.

Theorem 6. [4] Let P be a finite poset. Then $L(P, \perp)$ is Boolean iff there is no weak N in P.

References

- [1] J C Dacey Jr. Orthomodular spaces. PhD thesis, University of Massachusetts Amherst, 1968.
- [2] P Grillet. Maximal chains and antichains. Fundamenta Mathematicae, 65(2):157–167, 1969.
- [3] G Jenča. Orthogonality spaces associated with posets. Order, 40(3):575–588, 2023.
- [4] G Jenča. N-free posets and orthomodularity. 2024. arXiv:2401.12749
- [5] J Paseka and T Vetterlein. Categories of orthogonality spaces. Journal of Pure and Applied Algebra, 226(3), 2022.
- [6] J Paseka and T Vetterlein. Normal orthogonality spaces. Journal of Mathematical Analysis and Applications, 507(1), 2022.