Kites and pseudo MV-algebras

Michal Botur¹ and Tomasz Kowalski²

 Palacký University Olomouc, Faculty of Sciences michal.botur@upol.cz
 ² Department of Logic, Jagiellonian University tomasz.s.kowalski@uj.edu.pl

We deal with variants of a special construction of certain algebras called *kites*, naturally associated with a noncommutative generalisation of BL-algebras known as *pseudo BL-algebras*. We focus on *perfect pseudo MV-algebras* generalising previous results by DiNola, Dvurečenskij and Tsinakis. The following varieties of algebras will also play an important role: LG – lattice-ordered groups, CanIGMV – cancellative integral generalised MV-algebras, Ψ MV – pseudo MV-algebras.

Definition 1. An FL_{w} -algebra \mathbf{A} is said to be perfect if there is a homomorphism $h_{\mathbf{A}} : \mathbf{A} \to \mathbf{2}$ such that for any $x \in h_{\mathbf{A}}^{-1}(0)$ and any $y \in h_{\mathbf{A}}^{-1}(1)$ the inequality $x \leq y$ holds.

We say that a variety \mathcal{V} of FL_w -algebras is *perfectly generated* if it is generated by its perfect members. If a perfectly generated variety \mathcal{V} is a subvariety of some larger variety, and that larger variety has a well established name, say NN, we write PNN for the perfectly generated subvariety of NN.

Let **A** be an FL-algebra, and $a, b \in A$. The *left conjugate* of $a \in A$ by $b \in A$ is the element $\lambda_b(a) := (b \setminus ab) \land 1$ and the *right conjugate* is $\rho_b(a) := (ba / b) \land 1$. A conjugation polynomial α over **A** is any unary polynomial $(\gamma_{a_1} \circ \gamma_{a_2} \circ \cdots \circ \gamma_{a_n})(x)$ where $\gamma \in \{\lambda, \rho\}$ and $a_i \in A$ for $1 \le i \le n$. We write cPol(**A**) for the set of all conjugation polynomials over **A**. For an element $u \in A$, an *iterated conjugate* of u is $\alpha(u)$ for some $\alpha \in cPol(\mathbf{A})$.

Theorem 1. A subvariety \mathcal{V} of FL_w is perfectly generated if and only if \mathcal{V} is nontrivial and satisfies the following identities:

$$\boldsymbol{\alpha}(x/x^{-}) \vee \boldsymbol{\beta}(x^{-}/x) = 1, \tag{1}$$

$$\boldsymbol{\alpha}((x \vee x^{-}) \cdot (y \vee y^{-}))^{-} \leq \boldsymbol{\alpha}((x \vee x^{-}) \cdot (y \vee y^{-})), \qquad (2)$$

$$x \wedge x^{-} \le y \vee y^{-} \tag{3}$$

for every $\mathbf{A} \in \mathcal{V}$ and all $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \operatorname{cPol}(\mathbf{A})$.

A natural generalisation of MV-algebras is the variety ΨMV of *pseudo MV-algebras*. By a result of Dvurečenskij, pseudo MV-algebras are categorically equivalent to the class of lattice-ordered groups with strong unit, so in a good sense they are the largest possible generalisation of MV-algebras for which a Mundici-type categorical equivalence holds. For pseudo MV-algebras, we define a natural generalisation of the kite construction.

Definition 2. Let **L** be an ℓ -group and $\lambda \colon \mathbf{L} \to \mathbf{L}$ be an automorphism. We define the algebra

$$\mathcal{K}(\mathbf{L},\lambda) := (L^{-} \uplus L^{+}; \land, \lor, \odot, \backslash, /, 0, 1)$$

where $L^- \uplus L^+$ is a disjoint union, $0 := e \in L^+$, $1 := e \in L^-$, and the other operations are given by

Botur and Kowalski

$$x \wedge y := \begin{cases} x \wedge y & \text{if } x, y \in L^{-}, \\ x & \text{if } x \in L^{+}, y \in L^{-} \\ y & \text{if } x \in L^{-}, y \in L^{+}, \\ y & \text{if } x \in L^{-}, y \in L^{+}, \\ x \wedge y & \text{if } x, y \in L^{+}, \end{cases} \qquad x \vee y := \begin{cases} x \vee y & \text{if } x, y \in L^{-}, \\ y & \text{if } x \in L^{-}, y \in L^{+}, \\ x \vee y & \text{if } x, y \in L^{+}, \end{cases} \\ x \vee y & \text{if } x, y \in L^{+}, \end{cases}$$

$$x \circ y := \begin{cases} x \cdot y & \text{if } x, y \in L^{-}, \\ \lambda(x) \cdot y \vee 0 & \text{if } x \in L^{-}, y \in L^{+}, \\ x \cdot y \vee 0 & \text{if } x \in L^{+}, y \in L^{-}, \\ 0 & \text{if } x, y \in L^{+}, \end{cases}$$

$$x \setminus y := \begin{cases} x^{-1} \cdot y \wedge 1 & \text{if } x, y \in L^{-}, \\ 1 & \text{if } x \in L^{+}, y \in L^{-}, \\ \lambda(x)^{-1} \cdot y \vee 0 & \text{if } x \in L^{-}, y \in L^{+}, \\ x^{-1} \cdot y \wedge 1 & \text{if } x, y \in L^{+}, \end{cases} \qquad y / x := \begin{cases} y \cdot x^{-1} \wedge 1 & \text{if } x, y \in L^{-}, \\ 1 & \text{if } x \in L^{+}, y \in L^{-}, \\ 1 & \text{if } x \in L^{+}, y \in L^{-}, \\ y \cdot x^{-1} \vee 0 & \text{if } x \in L^{-}, y \in L^{+}, \\ \lambda^{-1}(y \cdot x^{-1}) \wedge 1 & \text{if } x, y \in L^{+}, \end{cases}$$

Theorem 2. Let **A** be a perfect pseudo MV-algebra. Then $\mathbf{A} \cong \mathcal{K}(\ell(\mathbf{F}_{\mathbf{A}}), \ell^{\approx})$, where ℓ^{\approx} is the automorphism induced by the term operation $x^{\approx} := 0 \setminus (0 \setminus x)$.

The next theorem generalises some results by Di Nola, Dvurečenskij and Tsinakis.

Theorem 3. The category $pf\Psi MV$ of perfect pseudo MV-algebras is equivalent to the category of lattice-ordered groups with a distinguished automorphism.

We also obtain a characterisation of varieties generated by kites, and a description of the lattice of such varieties. For a variety \mathcal{V} of algebras, we let $\Lambda(\mathcal{V})$ stand for the lattice of subvarieties of \mathcal{V} . If the poset of nontrivial subvarieties of \mathcal{V} is also a lattice, we let $\Lambda^+(\mathcal{V})$ stand for that lattice. We denote by \mathbb{D} the *divisibility lattice*, that is, \mathbb{N} ordered by divisibility. The parameter n and $dim(\mathcal{V})$ below refer to a notion of *dimension* of a variety, which we leave undefined here for lack of space.

Definition 3. We define two pairs of maps

 $\psi \colon \Lambda(\mathsf{P}\Psi\mathsf{M}\mathsf{V}) \to \Lambda(\mathsf{CanIGMV}), \text{ where } \psi(\mathcal{V}) = V\{\mathbf{F}_{\mathbf{A}} : \mathbf{A} \in \mathcal{V}_{pf}\},\\ \Psi \colon \Lambda(\mathsf{P}\Psi\mathsf{M}\mathsf{V}) \to \Lambda(\mathsf{CanIGMV}) \times \mathbb{D}, \text{ where } \Psi(\mathcal{V}) = (\psi(\mathcal{V}), \dim(\mathcal{V})),$

for any $\mathcal{V} \in \Lambda(\mathsf{P}\Psi\mathsf{M}\mathsf{V})$ and

 $\delta \colon \Lambda(\mathsf{CanIGMV}) \to \Lambda(\mathsf{P}\Psi\mathsf{MV}), \ where \ \delta(\mathcal{V}) = V\{\mathbf{A} \in \mathsf{pf}\Psi\mathsf{MV} : \mathbf{F}_{\mathbf{A}} \in \mathcal{V}\},\$

 $\Delta \colon \Lambda(\mathsf{CanIGMV}) \times \mathbb{D} \to \Lambda(\mathsf{P}\Psi\mathsf{MV}), \text{ where } \Delta(\mathcal{V}, n) = \delta(\mathcal{V}) \cap \mathsf{P}\Psi\mathsf{MV}_n,$

for any $\mathcal{V} \in \Lambda(\mathsf{CanIGMV})$ and $n \in \mathbb{D}$.

Theorem 4. Let $\mathcal{V} \in \Lambda(\mathsf{P}\Psi\mathsf{M}\mathsf{V})$. The following are equivalent.

1. \mathcal{V} is generated by kites.

2. $\mathcal{V} = \Delta \Psi(\mathcal{V}).$

3. $\mathcal{V} = \Delta(\mathcal{W}, n)$ for some $\mathcal{W} \in \Lambda(\mathsf{CanIGMV})$ and some $n \in \mathbb{D}$.

Theorem 5. Let \mathbb{K} be the lattice of subvarieties of $P\Psi MV$ generated by kites.

$$\mathbb{K} \cong \mathbf{1} \oplus (\Lambda^+(\mathsf{CanIGMV}) \times \mathbb{D}) \cong \mathbf{1} \oplus (\Lambda^+(\mathsf{LG}) \times \mathbb{D})$$

where $\mathbf{1}$ is the trivial lattice and \oplus is the operation of ordinal sum.