The $(\infty, 2)$ -category theory of internal $(\infty, 1)$ -categories

Raffael Stenzel

Max Planck Institute for Mathematics, Bonn, Germany stenzel@mpim-bonn.mpg.de

Abstract submission for TACL 2024. Internal category theory is the study of the 2category $Cat(\mathcal{C})$ of internal categories, internal functors and internal natural transformations respective a base category \mathcal{C} . The Yoneda embedding $y: \mathcal{C} \to Fun(\mathcal{C}^{op}, Set)$ can be understood as an externalization functor of finite limit structures in \mathcal{C} (made precise in [5]); it can be shown to induce an embedding

$$y_*: \mathbf{Cat}(\mathcal{C}) \to \mathbf{Fun}(\mathcal{C}^{op}, \mathbf{Cat})$$

of 2-categories, at times also referred to as the externalization functor of the category C (see e.g. [2]). On the flipside, internalization is the practice of reflecting properties and indexed structures along y_* whenever possible.

Given an ∞ -categorical base \mathcal{C} (usually an ∞ -topos or at least left exact), the ∞ -category $\operatorname{Cat}_{\infty}(\mathcal{C})$ of \mathcal{C} -internal ∞ -categories is well-known, and internal constructions of internal ∞ -categories are pervasive in the higher categorical literature. A systematic study of internal ∞ -category theory as such however is not; indeed a definition of an according ∞ -categorical enrichment $\operatorname{Cat}_{\infty}(\mathcal{C})$ by hand is much less tangible than in the ordinary case. Thus, following [6], in this talk we instead discuss the ∞ -categorical externalization functor

$$y_* \colon \operatorname{Cat}_{\infty}(\mathcal{C}) \to \operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Cat}_{\infty})$$

first, and use it to define the $(\infty, 2)$ -category $\operatorname{Cat}_{\infty}(\mathcal{C})$ of \mathcal{C} -internal ∞ -categories as embedded in the $(\infty, 2)$ -category $\operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Cat}_{\infty})$ of \mathcal{C} -indexed ∞ -categories. We show various formal $(\infty, 2)$ -categorical closure properties of $\operatorname{Cat}_{\infty}(\mathcal{C})$ under the assumption of various suitable $(\infty, 1)$ -categorical closure properties of \mathcal{C} . The main theorem states that the $(\infty, 2)$ -category $\operatorname{Cat}_{\infty}(\mathcal{C})$ is a full sub- ∞ -cosmos of $\operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Cat}_{\infty})$ which is closed under all limits (and exponentials) whenever \mathcal{C} is complete (and cartesian closed). It thus defines a (cartesian closed) ∞ -cosmos in the sense of [3]. This means that a plethora of indexed ∞ -categorical constructions defined over a collection of internal ∞ -categories indexed over such a base \mathcal{C} can be internalized in \mathcal{C} automatically. We furthermore characterize the objects of $\operatorname{Cat}_{\infty}(\mathcal{C})$ by means of a Yoneda lemma that expresses indexed diagrams of internal shape over \mathcal{C} in terms of an ∞ - categorical totalization, and discuss applications.

Lastly, we relate the general theory developed to this point to results in the model categorical literature. We show that every model category \mathbb{M} gives rise to a "hands-on" ∞ -cosmos $\mathbf{Cat}_{\infty}(\mathbb{M})$ (of not-necessarily cofibrant objects) directly by restriction of the Reedy model structure on $\mathbb{M}^{\Delta^{op}}$. We then define an according right derived model categorical externalization functor, and use it to show that the ∞ -categorical and the model categorical constructions correspond to one another whenever \mathcal{C} is presentable and \mathbb{M} is a suitable presentation thereof. This shows that the theory presented in this talk recovers as special cases various well-known constructions in the model categorical literature. This for instance includes Dugger's simplicial replacements of model categories [1], Toën's framework for theories of (∞ , 1)-categories [7], as well as Riehl and Verity's ∞ -cosmoses of Rezk-objects [4] among others. TACL 2024

References

- D. Dugger, Replacing model categories with simplicial ones, Trans. Am. Math. Soc. 353 (2001), no. 12, 5003–5027.
- B. Jacobs, Categorical Logic and Type Theory, Studies in Logic and the Foundations of Mathematics, vol. 141, Elsevier Science B.V., 1999.
- [3] E. Riehl and D. Verity, *Elements of ∞-Category Theory*, Cambridge Studies in Advanced Mathematics, vol. 194, Cambridge University Press, 2022.
- [4] E. Riehl and D. Verity, Fibrations and Yoneda's lemma in an ∞-cosmos, J. Pure Appl. Algebra 221 (2017), no. 3, 499–564.
- [5] D. Scott, *Relating theories of the* λ -calculus, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press, 1980.
- [6] R. Stenzel, The $(\infty, 2)$ -category of internal $(\infty, 1)$ -categories, preprint arXiv:2402.01396, 2024.
- B. Toën, Vers une axiomatisation de la théorie des catégories supérieures, K Theory 34 (2005), no. 3, 233-263.