Canonical Approximations of Modal Logics

Niels C. Vooijs

Radboud University, Nijmegen, Netherlands ncvooijs@gmail.com

Recall that a modal logic Λ is called *canonical* when its variety of algebras is closed under taking canonical extensions [2, Definition 5.44]. It is well known that this is equivalent to being \mathcal{D} -persistent, i.e. having the property that for every descriptive frame of Λ , the underlying Kripke frame is also a Λ -frame [2, Proposition 5.85].

The most important property of canonical logics is that they are *strongly Kripke complete*. As such, canonicity is a major tool for establishing Kripke completeness for modal logics. In addition, many logics of interest are canonical. Sahlqvist's completeness theorem states that every logic axiomatised by Sahlqvist formulas is canonical [2, Theorem 4.42], thus establishing a convenient syntactic description for a large subclass of canonical logics. Moreover, the Fine-van Benthem theorem states that every logic characterised by an elementary class of frames is canonical [3, Theorem 10.19].

In spite of these results, several well-known modal logics are not canonical, most notably the McKinsey logic **K.1** (or **KM**), the Gödel-Löb logic **GL** and Grzegorczyk's logic **Grz** [3, Section 6.2] [4].¹ In addition, several common extensions, such as **Grz.2** and **Grz.3**, are not canonical.

We are interested in finding closest canonical "approximations" for (non-canonical) normal modal logics.

Approximations. Let $\mathsf{NExt}(\mathbf{K})$ denote the set of all normal modal logics, and let $\mathcal{X} \subseteq \mathsf{NExt}(\mathbf{K})$ be a set of normal modal logics such that (\mathcal{X}, \subseteq) forms a complete lattice. For a logic Λ not necessarily in \mathcal{X} , define the \mathcal{X} -approximation of Λ from below resp. from above to be

$$\mathcal{X}_{\uparrow}(\Lambda) \coloneqq \bigvee \{\Lambda' \in \mathcal{X} \mid \Lambda' \subseteq \Lambda\}$$
 and $\mathcal{X}_{\downarrow}(\Lambda) \coloneqq \bigwedge \{\Lambda' \in \mathcal{X} \mid \Lambda \subseteq \Lambda'\}$

respectively. Clearly, a completely analogous definition can be used in the intuitionistic setting.

When (\mathcal{X}, \subseteq) is a complete *sub*lattice of $(\mathsf{NExt}(\mathbf{K}), \subseteq)$ the meet is the intersection of logics and the join is the sum, i.e. the least normal modal logic containing the union of the logics, and we obtain

$$\mathcal{X}_{\uparrow}(\Lambda) \subseteq \Lambda \subseteq \mathcal{X}_{\downarrow}(\Lambda).$$

In this case the approximation from above is the least logic in \mathcal{X} extending Λ and the approximation from below is the greatest sublogic of Λ contained in \mathcal{X} .

Taking for \mathcal{X} the set of weakly Kripke complete normal modal logics, the approximation from above is just the logic of the frame class, i.e. $\mathsf{Log}(\mathsf{Fr}(\Lambda))$. In the intuitionistic setting, [1, 5] studied approximations where the set of super-intuitionistic subframe logics and the set of super-intuitionistic stable logics are taken for \mathcal{X} . Canonical approximations however, have not been studied before.

¹Recall that **K.1** is the normal modal logic axiomatised by the McKinsey axiom $\Box \diamond p \rightarrow \diamond \Box p$, **GL** is the logic of irreflexive conversely wellfounded frames and **Grz** the logic of reflexive conversely wellfounded frames [3, Section 3.5 and Table 4.2].

Canonical Approximations of Modal Logics

Canonical approximations. Let us write **Can** for the set of canonical normal modal logics. We note the following.

Theorem 1. Can is closed under arbitrary sums and finite intersections, but not under infinite intersections. Hence it forms a complete lattice, and a sublattice of $(NExt(\mathbf{K}), \subseteq)$, but not a complete sublattice.

Even though the closure under intersections is stated as Problem 10.2 in [3], the proof turns out to be an easy exercise.²

Since Can is closed under arbitrary sums, $Can_{\uparrow}(\Lambda) \subseteq \Lambda$ for every logic Λ . Interestingly, however, the dual inequality need not hold: the canonical approximation from above of a logic need not extend the logic. This is exemplified by the following theorem, which follows from the Fine-van Benthem theorem.

Theorem 2. Let Λ be a logic that has the finite model property. Then $\mathsf{Can}_{\downarrow}(\Lambda) = \mathsf{Can}_{\uparrow}(\Lambda)$.

Clearly this means that for non-canonical logic Λ which has the finite model property, e.g. **GL** or **Grz**, $\Lambda \not\subseteq \mathsf{Can}_{\downarrow}(\Lambda)$. In fact the canonical approximation from above of a logic can be expressed as a kind of special case of the one from below by the formula

$$\mathsf{Can}_{\downarrow}(\Lambda) = \mathsf{Can}_{\uparrow} \big(\bigcap \{ \Lambda' \in \mathsf{Can} \, | \, \Lambda \subseteq \Lambda' \} \big).$$

Recall that over **S4**, the McKinsey axiom, denoted .1, corresponds to the class of frames in which every point sees a point that sees only itself. The .2 axiom expresses the *confluence* or *Church-Rosser* property, and the .3 axiom expresses linearity of frames [3, Section 3.5 and Table 4.2]. Using selection-based methods, we compute the canonical approximations of **Grz.2** and **Grz.3**.

Theorem 3.

- (i) $Can_{\downarrow}(Grz.2) = Can_{\uparrow}(Grz.2) = S4.2.1$,
- (ii) $\operatorname{Can}_{\downarrow}(\operatorname{\mathbf{Grz.3}}) = \operatorname{Can}_{\uparrow}(\operatorname{\mathbf{Grz.3}}) = \mathbf{S4.3.1}.$

In a sense, in these two cases the canonical approximation is obtained by "just" dropping the converse wellfoundedness from the frame conditions. This raises the question whether something similar happens for other non-canonical logics, in particular **Grz** itself and the analogous extensions of **GL**.

References

- Guram Bezhanishvili, Nick Bezhanishvili, and Julia Ilin. Subframization and stabilization for superintuitionistic logics. Journal of Logic and Computation, 29(1):1–35, 2019.
- [2] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53. Cambridge University Press, 2001. Cambridge Tracts in Theoretical Computer Science.
- [3] Alexander Chagrov and Michael Zakharyaschev. Modal Logic, volume 35. Oxford University Press, 1997. Oxford Logic Guides.
- [4] Robert Goldblat. The McKinsey axiom is not canonical. The Journal of Symbolic Logic, 56(2):554– 562, 1991.
- [5] Julia Ilin. Filtration Revisited: Lattices of Stable Non-Classical Logics. PhD thesis, Universiteit van Amsterdam, 2018.

²The fact that canonicity is not preserved under infinite intersections can be seen for example by considering the logic **GL**, known to be non-canonical, which can be shown to equal the intersection of the logics $\mathbf{K4} \oplus \Box^n \bot$.