Intuitionistic modal logics: a minimal setting

Philippe Balbiani¹*and Çiğdem Gencer^{1,2†}

 ¹ Toulouse Institute of Computer Science Research CNRS-INPT-UT3, Toulouse, France
² Faculty of Arts and Sciences Aydın University, Istanbul, Turkey

Abstract

We make a clean sweep of the tradition in intuitionistic modal logics by considering a new truth condition of \diamond -formulas saying that in model (W, \leq, R, V) , $\diamond A$ holds at $s \in W$ if there exists $t \in W$ where A holds and such that $s \geq \circ Rt$. While keeping the truth condition of \Box -formulas that is commonly used, we axiomatize validity in the class of all models. The resulting logic is the intuitionistic modal logic that we want to put forward as a candidate for the title of "minimal intuitionistic modal logic".

1 Syntax and semantics

Let **At** be a set of *atoms* (p, q, etc). The set **Fo** of all *formulas* (A, B, etc) is defined by $A ::= p|(A \to A)|\top|\perp|(A \land A)|(A \lor A)|\Box A|\Diamond A$. For all $A \in \mathbf{Fo}$, $\neg A$ is the abbreviation for $(A \to \bot)$.

A Kripke frame or a KF is a structure of the form (W, \leq, R) where W is a nonempty set, \leq is a partial order on W and R is a binary relation on W. Let C_{all}^{kf} be the class of all KFs. A KF (W, \leq, R) is forward (respectively: backward; downward) confluent if for all $s, t \in W$, if $s \geq \circ Rt$ then $sR \circ \geq t$ (respectively: for all $s, t \in W$, if $sR \circ \leq t$ then $s \leq \circ Rt$; for all $s, t \in W$, if $s \leq \circ Rt$ then $sR \circ \leq t$). Let C_{fc}^{kf} (respectively: C_{bc}^{kf} ; C_{dc}^{kf} ; C_{fdc}^{kf} ; C_{fbdc}^{kf} ; C_{fbdc}^{kf}) be the class of all forward (respectively: backward; downward; forward and backward; forward and downward; backward and downward; forward, backward and downward) confluent KFs. A valuation on a $KF(W, \leq, R)$ is a function V : $At \longrightarrow \wp(W)$ associating a \leq -closed subset of W to each atom. Such a function can be extended as a function V : $Fo \longrightarrow \wp(W)$ associating to each $A \in Fo$ a \leq -closed subset V(A) of W defined as usual when either A is an atom, or the main connective of A is intuitionistic and as follows otherwise: (i) $V(\Box A) = \{s \in W:$ for all $t \in W$, if $s \leq \circ Rt$ then $t \in V(A)\}$; (ii) $V(\Diamond A) = \{s \in W:$ there exists $t \in W$ such that $s \geq \circ Rt$ and $t \in V(A)\}$. A relational model is a couple consisting of a KF and a valuation on that KF. Truth in a relational model, validity in a KF and validity on a class of KFs are defined as usual. For all classes C of KFs, let Log(C) be the logic of C.

A *H*-modal algebra or a *HMA* is a structure of the form $(H, \leq_H, \rightarrow_H, \Box_H, \Diamond_H)$ where $(H, \leq_H, \rightarrow_H)$ is a Heyting algebra and $\Box_H : H \longrightarrow H$ and $\Diamond_H : H \longrightarrow H$ are operators such that for all $a, b, c \in H$: (i) $\Box_H \top_H = \top_H$; (ii) $\Box_H (a \wedge_H b) = \Box_H a \wedge_H \Box_H b$; (iii) $\Diamond_H \bot_H = \bot_H$; (iv) $\Diamond_H (a \vee_H b) = \Diamond_H a \vee_H \Diamond_H b$; (v) if $\Diamond_H a \leq_H b \vee_H \Box_H (a \rightarrow_H c)$ then $\Diamond_H a \leq_H b \vee_H \Diamond_H c$. Let \mathcal{C}_{all}^{hma} be the class of all HMAs. A HMA $(H, \leq_H, \rightarrow_H, \Box_H, \Diamond_H)$ is forward (respectively: backward; downward) confluent if for all $a, b \in H$, $\Diamond_H (a \rightarrow_H b) \leq_H (\Box_H a \rightarrow_H \Diamond_H b)$ (respectively: $(\Diamond_H a \rightarrow_H \Box_H b) \leq_H \Box_H (a \rightarrow_H b); \Box_H (a \vee_H b) \leq_H \Diamond_H a \vee_H \Box_H b)$. Let \mathcal{C}_{fc}^{hma} (respectively: \mathcal{C}_{bc}^{hma} ;

^{*}Email address: philippe.balbiani@irit.fr

 $^{^{\}dagger}\mathrm{Email}$ addresses: cigdem.gencer@irit.fr and cigdemgencer@aydin.edu.tr.

 \mathcal{C}_{dc}^{hma} ; \mathcal{C}_{fbc}^{hma} ; \mathcal{C}_{bdc}^{hma} ; \mathcal{C}_{fbdc}^{hma}) be the class of all forward (respectively: backward; downward; forward and backward; forward and downward; backward and downward; forward and downward; forward and downward; forward and downward; forward and downward; backward and downward; confluent HMA. A valuation on a HMA $(H, \leq_H, \rightarrow_H, \Box_H, \Diamond_H)$ is a function $V : \mathbf{At} \longrightarrow H$ associating an element of H to each atom. Such a function can be extended as a function $V : \mathbf{Fo} \longrightarrow H$ associating to each $A \in \mathbf{Fo}$ an element V(A) of H defined as usual when either A is an atom, or the main connective of A is intuitionistic and as follows otherwise: (i) $V(\Box A) = \Box_H V(A)$; (ii) $V(\Diamond A) = \Diamond_H V(A)$. An algebraic model is a couple consisting of a HMA and a valuation on that HMA. Truth in an algebraic model, validity in a HMA and validity on a class of HMAs are defined as usual. For all classes C of HMAs, let $\mathsf{Log}(C)$ be the logic of C.

2 Axiomatization and completeness

An *intuitionistic modal logic* is a set of formulas closed for uniform substitution, containing the standard axioms of **IPL**, closed with respect to the standard inference rules of **IPL**, containing the axioms $\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$, $\Box(p \lor q) \rightarrow ((\Diamond p \rightarrow \Box q) \rightarrow \Box q)$, $\Diamond(p \lor q) \leftrightarrow \Diamond p \lor \Diamond q$ and $\neg \Diamond \bot$ and closed with respect to the inference rules $\frac{p}{\Box p}$, $\frac{p \leftrightarrow q}{\rho p \leftrightarrow \Diamond q}$ and $\frac{\Diamond p \rightarrow q \lor \Box(p \rightarrow r)}{\Diamond p \rightarrow q \lor \Diamond r}$. We also consider the axioms (**Af**) $\Diamond(p \rightarrow q) \rightarrow (\Box p \rightarrow \Diamond q)$, (**Ab**) $(\Diamond p \rightarrow \Box q) \rightarrow \Box(p \rightarrow q)$ and (**Ad**) $\Box(p \lor q) \rightarrow \Diamond p \lor \Box q$. Let **L**_{min} be the least intuitionistic modal logic. For all intuitionistic modal logics **L** and for all $A \in \mathbf{Fo}$, let $\mathbf{L} \oplus A$ be the least intuitionistic modal logic containing **L** and *A*. Let $\mathbf{L_{fc}}$ (respectively: $\mathbf{L_{min}} \oplus (\mathbf{Af}) \oplus (\mathbf{Ad})$; $\mathbf{L_{min}} \oplus (\mathbf{Af}) \oplus (\mathbf{Ad})$; $\mathbf{L_{min}} \oplus (\mathbf{Af}) \oplus (\mathbf{Ad})$; $\mathbf{L_{min}} \oplus (\mathbf{Af}) \oplus (\mathbf{Ad})$.

 $\label{eq:proposition 1.} \textbf{Proposition 1.} \quad \bullet \ \mathbf{L}_{\min} {=} \texttt{Log}(\mathcal{C}_{\textbf{all}}^{\textbf{kf}}) {=} \texttt{Log}(\mathcal{C}_{\textbf{all}}^{\textbf{hma}});$

- $\mathbf{L_{fc}} = \text{Log}(\mathcal{C}_{fc}^{kf}) = \text{Log}(\mathcal{C}_{fc}^{hma}); \mathbf{L_{bc}} = \text{Log}(\mathcal{C}_{bc}^{kf}) = \text{Log}(\mathcal{C}_{bc}^{hma}); \mathbf{L_{dc}} = \text{Log}(\mathcal{C}_{dc}^{kf}) = \text{Log}(\mathcal{C}_{dc}^{hma});$
- $\mathbf{L_{fbc}} = \mathrm{Log}(\mathcal{C}_{fbc}^{kf}) = \mathrm{Log}(\mathcal{C}_{fbc}^{hma}); \mathbf{L_{fdc}} = \mathrm{Log}(\mathcal{C}_{fdc}^{kf}) = \mathrm{Log}(\mathcal{C}_{fdc}^{hma}); \mathbf{L_{bdc}} = \mathrm{Log}(\mathcal{C}_{bdc}^{kf}) = \mathrm{Log}(\mathcal{C}_{bdc}^{hma}); \mathbf{L_{bdc}} = \mathrm{Log}(\mathcal{C}_{bdc}^{kf}) = \mathrm{Log}(\mathcal{C}_{bdc}^{hma}); \mathbf{L_{bdc}} = \mathrm{Log}(\mathcal{C}_{bdc}^{kf}) = \mathrm{Log}(\mathcal{C}_{bdc}^{hma}); \mathbf{L_{bdc}} = \mathrm{Log}(\mathcal{C}_{bdc}^{hma}); \mathbf$
- $\mathbf{L_{fbdc}} = \text{Log}(\mathcal{C}_{fbdc}^{kf}) = \text{Log}(\mathcal{C}_{fbdc}^{hma}).$

Proposition 2. • WK [3] and L_{\min} are not comparable;

- WK [3] is strictly contained in L_{fc};
- L_{fc} and FIK [1] are equal;
- L_{fbc} and IK [2] are equal;
- $\mathbf{L}_{\mathbf{fbdc}}$ is strictly contained in \mathbf{K} the least normal modal logic.

All in all, \mathbf{L}_{\min} is the intuitionistic modal logic that we want to put forward as a candidate for the title of "minimal intuitionistic modal logic".

References

- Balbiani, P., Gao, H., Gencer, Ç., Olivetti, N.: A natural intuitionistic modal logic: axiomatization and bi-nested calculus. In 32nd EACSL Annual Conference on Computer Science Logic. LIPICS (2024) 13:1–13:21.
- [2] Fischer Servi, G.: Axiomatizations for some intuitionistic modal logics. Rendiconti del Seminario Matematico Università e Politecnico di Torino 42 (1984) 179–194.
- [3] Wijesekera, D.: Constructive modal logics I. Annals of Pure and Applied Logic 50 (1990) 271–301.