Meet-irreducible elements in the poset of all logics

T. Moraschini¹ and M. Muñoz Pérez²

¹ Departament de Filosofia, Facultat de Filosofia, Universitat de Barcelona (UB) Carrer Montalegre, 6, 08001, Barcelona, Spain tommaso.moraschini@ub.edu
² mmunozpe159@alumnes.ub.edu

In [2, 4, 3] the so-called *poset of all logics* is introduced and compared with the lattice Var of interpretability types of varieties (see, e.g., [1]). Roughly speaking, a variety V is *interpretable into* a variety W when W is term-equivalent to some variety, whose reducts (in a smaller language) belong to V. The interpretability relation for logics can be defined analogously, although it requires some tools from abstract algebraic logic (see, e.g., [2]).

More precisely, a (logical) matrix (\mathscr{A}, F) is said to be a *model* of a logic \vdash when F is a deductive filter of \vdash on \mathscr{A} . In addition, if the unique congruence of \mathscr{A} that does not glue an element of F to one of A - F is the identity, we say that (\mathscr{A}, F) is *reduced*. A matrix is a *Suszko model* of a logic \vdash if it is isomorphic to a subdirect product of reduced models of \vdash . We denote by $Mod^{\equiv}(\vdash)$ the class of all the Suszko models of \vdash [2].

Let \vdash be a logic. The set of connectives of \vdash will be denoted by $\mathscr{L}(\vdash)$ and the set of terms of \vdash with countably many variables by $\mathscr{T}(\vdash)$. Given two logics \vdash and \vdash' , we say that a map $\tau \colon \mathscr{L}(\vdash) \to \mathscr{T}(\vdash')$ is a *translation* when it sends *n*-ary connectives to *n*-ary terms. In this case, with every algebra \mathscr{A} in the language of \vdash' we can associate an algebra \mathscr{A}^{τ} in the language of \vdash defined as follows:

$$\mathscr{A}^{\tau} := (A, \{\tau(f)^{\mathscr{A}} : f \in \mathscr{L}(\vdash)\})$$

We say that \vdash is *interpretable* into \vdash' , in symbols $\vdash \leq \vdash'$, when there exists a translation $\tau \colon \mathscr{L}(\vdash) \to \mathscr{T}(\vdash')$ such that

$$(\mathscr{A}, F) \in \mathrm{Mod}^{\equiv}(\vdash')$$
 implies that $(\mathscr{A}^{\tau}, F) \in \mathrm{Mod}^{\equiv}(\vdash)$.

Two logics \vdash and \vdash' are said to be *equi-interpretable* when $\vdash \leq \vdash' \leq \vdash$. We denote the equivalence class of all the logics that are equi-interpretable with \vdash by $\llbracket \vdash \rrbracket$. Note that \leq is a preorder on the class of all logics. The *poset of all logics* Log is the corresponding poset, whose elements are precisely the classes $\llbracket \vdash \rrbracket^1$. Given two logics \vdash and \vdash' , we write $\llbracket \vdash \rrbracket \leq \llbracket \vdash' \rrbracket$ iff $\vdash \leq \vdash'$.

In [2] it is shown that even if Log has infima of families indexed by arbitrarily large sets, it may lack binary suprema (this is possible because its universe is not a set). Infima in Log can be described as follows. The *non-indexed product* of a family of algebraic languages $\{\mathscr{L}_i | i \in I\}$ is the algebraic language $\bigotimes_{i \in I} \mathscr{L}_i$ whose *n*-ary symbols are of the form $(\varphi_i(\bar{x}))_{i \in I}$, where each $\varphi_i(\bar{x})$ is an *n*-ary term of \mathscr{L}_i . Moreover, the *non-indexed product* of a family $\{\mathscr{A}_i | i \in I\}$, where each \mathscr{A}_i is a \mathscr{L}_i -algebra, is the $\bigotimes_{i \in I} \mathscr{L}_i$ -algebra $\bigotimes_{i \in I} \mathscr{A}_i$, whose universe is $\prod_{i \in I} A_i$ and whose *n*-ary symbols $(\varphi_i(x_1, \ldots, x_n))_{i \in I}$ are interpreted as follows:

$$(\boldsymbol{\varphi}_i(x_1,\ldots,x_n))_{i\in I}^{\bigotimes_{i\in I}\mathscr{A}_i}(\overline{a}_1,\ldots,\overline{a}_n) := (\boldsymbol{\varphi}_i^{\mathscr{A}_i}(\overline{a}_1(i),\ldots,\overline{a}_n(i)))_{i\in I}$$

Similarly, the *non-indexed product* of a family of matrices $\{(\mathscr{A}_i, F_i) | i \in I\}$ is the matrix $(\bigotimes_{i \in I} \mathscr{A}_i, \prod_{i \in I} F_i)$. Lastly, the *non-indexed product* of a family $\{\vdash_i | i \in I\}$ of logics is the logic $\bigotimes_{i \in I} \vdash_i$ in the language $\bigotimes_{i \in I} \mathscr{L}_i$ induced by the class of matrices $\bigotimes_{i \in I} \operatorname{Mod}^{\equiv}(\vdash_i)$. It turns out that $\llbracket \bigotimes_{i \in I} \vdash_i \rrbracket$ is the infimum of

¹Although strictly speaking the universe of Log is not a set (and, therefore, Log is not a poset in the traditional sense), our results on this structure can be effortlessly rephrased in ZFC (see, e.g., [2]).

 $\{ \llbracket \vdash_i \rrbracket : i \in I \}$ in Log [2, Thm. 4.6].

The aforementioned description of infima allows us to introduce a notion of meet-irreducibility for arbitrary logics. More precisely, we say that a logic \vdash is *meet-irreducible* when $\llbracket \vdash \rrbracket$ is a meet-irreducible element of Log, i.e., for every pair of logics \vdash_1 and \vdash_2 ,

$$\llbracket \vdash_1 \otimes \vdash_2 \rrbracket = \llbracket \vdash \rrbracket$$
 implies that either $\vdash_1 \leqslant \vdash$ or $\vdash_2 \leqslant \vdash$.

Our main result provides a sufficient condition for the meet-irreducibility of a given logic. We say that a model of a logic \vdash is *trivial* when it is either of the form $(1, \{1\})$ or $(1, \emptyset)$, where 1 is the trivial $\mathscr{L}(\vdash)$ -algebra. On the other hand, recall that a class of similar matrices \mathbb{K} has the *joint embedding property* (JEP) if for every set X of nontrivial members of \mathbb{K} there exists some $(\mathscr{A}, F) \in \mathbb{K}$ in which every member of X embeds.

Theorem 1. Every logic with theorems \vdash satisfying the following conditions is meet-irreducible:

- (1) $Mod^{\equiv}(\vdash)$ has the JEP;
- (2) The nontrivial members of $Mod^{\equiv}(\vdash)$ have substructures of prime cardinality;
- (3) The nontrivial members of $Mod^{\equiv}(\vdash)$ lack trivial substructures.

As a consequence, every intermediate logic is meet-irreducible and so are some prominent modal logics such as the global consequence of the normal modal logic S4.

It is natural to compare the above result with a well-known sufficient condition for meet-primeness in the lattice of interpretability types of varieties which states that, if V is the variety generated by a nested countable union of varieties V_n , where each V_n is generated by a finite algebra of prime cardinality, then V is meet-prime in Var [1, Prop. 18]. During the talk we will also discuss a variant of this observation in the context of logics (as opposed to varieties).

References

- [1] O. C. García and W. Taylor. *The Lattice of Interpretability Types of Varieties*. Memoirs of the American Mathematical Society, Volume 50, Number 305, July 1984.
- [2] R. Jansana and T. Moraschini. The poset of all logics I: Interpretations and lattice structure. Journal of Symbolic Logic, 86(3):935–964, 2021.
- [3] R. Jansana and T. Moraschini. *The poset of all logics III: Finitely presentable logics*. Studia Logica, 109:539-580, 2021.
- [4] R. Jansana and T. Moraschini. *The poset of all logics II: Leibniz classes and hierarchy*. Journal of Symbolic Logic, 88(1):324-362, 2023.