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Kripke frames (sets equipped with a binary relation) are one of the most popular semantics
of modal logics (see [4] for a complete overview). They form the categoryKFr, where the arrows
are the so called p-morphisms. Images via p-morphisms are called p-morphic images and such
images are generated subframes of their codomains. A Kripke frame F is called locally finite if,
for each p ∈ F , the smallest generated subframe containing p is finite (in literature, image finite
Kripke frames are better known; locally finite Kripke frames are those Kripke frames whose
transitive closure is image finite). We are interested in KFrlf, the full subcategory of locally
finite Kripke frames: this subcategory is closed under coproducts (disjoint unions), generated
subframes and p-morphic images. More generally, we are interested in any full subcategory
C ⊆ KFrlf closed under the same operations (all colimits in C can be built from such operations).
In [2], it has been shown that C is always comonadic over Set.

The algebraic semantics of modal logic is given by modal algebras. In the so called Thoma-
son duality [3], KFrlf corresponds to ProMAf, the category of profinite modal algebras, with
suitable morphisms, which is monadic over Set [2] (while image finite Kripke frames are dual
to the topological modal algebras whose underlying topology is a Stone topology). Topological
algebras and profiniteness are strictly related to classical problems such as canonical extensions
of lattice-based algebras (among them are modal algebras). More generally, for any variety V
of modal algebras generated by its finite members Vf, the pro-completion [6] ProVf is monadic
over Set. In the above duality, ProVf corresponds to the class of locally finite Kripke frames
validating the equations defining V; the latter class has the aforementioned closure properties.

Our aim is to study categorical properties of classes of locally finite Kripke frames dual to
ProVf, for some V. In particular, we want to characterize regularity and Barr exactness, at
least under the assumption that the Kripke frames are transitive. Indeed, it is possible to prove
that: (i) such classes have all limits (being the ind-completion of the class of finite Kripke frames
belonging to it [2]) and (ii) under the assumption of transitivity, the usual image factorization
gives an (extremal epi, mono)-factorization. Therefore, to establish regularity, it only remains
to check that extremal epimorphisms are stable under pullbacks. We present a partial solution
for the reflexive and transitive case.

From now on, we fix a full subcategory C of reflexive and transitive locally finite Kripke
frames closed under disjoint unions, generated subframes and p-morphic images. In this case,
the stability of extremal epimorphisms under pullbacks can be rephrased in terms of the dual of
the amalgamation property. A co-amalgamation for a finite family f1, . . . , fn of epimorphisms
with common codomain is a family g1, . . . , gn of epimorphisms with common domain, such
that all the compositions figi exist and coincide. The category C is said to satisfy the co-
amalgamation property if each finite family of epimorphisms with common codomain has a
co-amalgamation.

Co-amalgamation can be used to find out necessary conditions for regularity (following the
classification in [5, Section 6.3], see also [8, 7]): if C is regular, then it is forced to contain Kripke
frames that can be built using co-amalgamation and p-morphic images.
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The construction of a binary product in C can be performed by induction following the
universal model construction, well known in the modal logic literature — see [1]. This implies
that the product of a pair of objects in C′ is a generated subframe of the product computed
in any C containing C′. The two products might coincide, for example, when C′ = C ∩ Poslf,
where Poslf is the class of locally finite posets. If this is the case, C′ is closed under pullbacks
in C, being always closed under equalizers. This observation allows us to conclude that, if C is
regular, then all its subclasses closed under finite products in C must be regular; in particular,
C∩Poslf has to be regular, too. A case analysis, based on the co-amalgamation property, shows
that exctly 8 subclasses of Poslf are regular. Therefore, the regular C must intersect Poslf in
one of the 8 classes above; applying again the co-amalgamation property, we obtain 49 possible
cases.

Barr exactness can also be studied. Similarly to what happens for regularity, given two
regular C′ ⊆ C, with C′ closed under finite products in C, if C is exact then C′ is exact, too. In
particular, C ∩ Poslf is exact if C is so. After having excluded a certain number of cases, we
show that C is exact if it only contains the empty frame, or it is one of the following:

1. {F | ht(F) ≤ 1 & δe(F) ≤ 1} ∼= Set;

2. {F | ht(F) ≤ 1 & δe(F) ≤ 2} ∼= Z+
2 -Set;

3. {F | ht(F) ≤ 2 & wt(F) ≤ 1 & δi(F) ≤ 1 & δe(F) ≤ 1} ∼= Z×
2 -Set;

Where ht and wt give bound for cardinality of chains, resp. antichains, and δe and δi give
bound for cardinality of external, resp. internal clusters.

We are currently working on a full characterization of exactness in the reflexive and transitive
case and on a generalization of this characterization without the reflexivity condition. In the
latter context, exactness could be encountered in some non trivial cases. An example is given
by the class GL-Linlf of locally finite, transitive and irreflexive Kripke frames for which the
restriction of the binary relation to each rooted generated subframe is a (irreflexive) linear

order: GL-Linlf is indeed equivalent to the category of presheaves Set(N,≤)op .
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