Modal completeness for general scattered spaces

Gilan Takapui^{1*} and Nick Bezhanishvili²

 Radboud University, Nijmegen, The Netherlands gilantakapui@hotmail.nl
² University of Amsterdam, The Netherlands N.Bezhanishvili@uva.nl

Modal logic admits two, by now classical, topological semantics. One is given by interpreting the modal diamond \diamond as the closure, and the other by interpreting \diamond as the derived set¹. We refer to [2] for a thorough overview of these semantics. A celebrated result for the closure semantics is the McKinsey and Tarski theorem stating that the modal logic S4 is sound and complete with respect to any dense-in-itself metrizable space, in particular, any Euclidean space [9]. A landmark result for the derivative semantics is the Abashidze-Blass theorem stating that the modal logic $GL = \Box(\Box p \rightarrow p) \rightarrow \Box p$ is sound and complete with respect to any ordinal $\alpha \geq \omega^{\omega}$ with the standard interval topology [1, 5] (See also: [4]). Earlier Esakia [7] showed that GL is sound and complete with respect to the class of scattered spaces. Recall that a topological space is *scattered* if its every non-empty subset contains a point isolated in that subset. It is easy to verify that each ordinal is a scattered space with respect to the order topology.

In modal logic, general Kripke frames constitute an important generalization of Kripke semantics. A general Kripke frame is a triple (X, R, A), where $A \subseteq \mathcal{P}(X)$ is a modal subalgebra of the powerset algebra. In a general frame formulas are evaluated in the algebra A. A Kripke frame can be seen as a general frame, where $A = \mathcal{P}(X)$. It is well known that, unlike Kripke semantics, every modal logic is sound and complete with respect to its general Kripke frames [6].

Similarly to Kripke frames one can consider general topological spaces for both the closure and derived set semantics. A general (topological) c-space is a pair (X, A), where X is a topological space and A is a modal subalgebra of $(\mathcal{P}(X), c)$, where $c : \mathcal{P}(X) \to \mathcal{P}(X)$ is the topological closure. Like in general Kripke frames, in general c-spaces, formulas are evaluated in the algebra A. Bezhanishvili et al. [3] show that the McKinsey and Tarski theorem can be extended to all connected extensions of S4 by considering general c-spaces. In particular, they showed that for every extension $L \supseteq$ S4, such that L is the logic of a connected S4-algebra, there is a general c-space (\mathbb{R}, A) over the real line \mathbb{R} such that L is sound and complete for (\mathbb{R}, A).

General topological spaces for the derived set semantics have been considered in [8] for provability logics with countably many modal operators and more recently in [10] where it was shown that the bimodal provability logic GLB is sound and complete with respect to general bi-topological spaces.

In this abstract we combine these two approaches. We will consider general topological spaces for the derived set semantics over ordinal spaces and we will prove a generalization of the Abashidze-Blass theorem for these spaces, in the same way [3] proved a generalized version of the McKinsey and Tarski theorem for general spaces over the real line.

^{*}speaker

¹Recall that the derived set d(U) of U consists of all those points x such that every open neighbourhood of x intersects $U \setminus \{x\}$.

Definition 1. A general d-space is a pair (X, A) with X a topological space and $A \subseteq \mathcal{P}(X)$ a modal subalgebra of $(\mathcal{P}(X), d)$, where $d : \mathcal{P}(X) \to \mathcal{P}(X)$ is the derived set operator.

A valuation in a general *d*-space is a map from propositional variables to *A*, which is extended to all formulas in a standard way, mapping $\diamond \varphi$ to $d[\![\varphi]\!]$. Note that every general *d*-space has a least subalgebra, the *d*-algebra generated by \emptyset . We call a general *d*-space (X, A) where *X* is a scattered space and *A* is the least *d*-subalgebra of $(\mathcal{P}(X), d)$, a *least scattered d-space*. Recall that $\mathsf{GL.3} = \mathsf{GL} + (\diamond p \land \diamond q \to \diamond (p \land q) \lor \diamond (p \land \diamond q) \lor \diamond (q \land \diamond p))$.

Theorem 1. Let (X, A) be a least scattered d-space. Then (X, A) validates GL.3.

Recall that Kripke frames of GL.3 are linear dually well-founded frames (i.e., linear GLframes)[6]. The above result can be extended to a completeness of all extensions of GL.3.

Theorem 2. For every extension $L \supseteq \text{GL.3}$ there exists an ordinal $\alpha \leq \omega^{\omega}$ and a least scattered *d*-space (α, A) over α such that *L* is the logic of (α, A) .

The above theorem can in fact be generalized to a much larger class.

Theorem 3. Let $L \supseteq \mathsf{GL}$ be a Kripke complete extension of GL . Then there exists a countable ordinal α and a general scattered d-space (α, A) over α , such that L is the logic of (α, A) . Furthermore, if L enjoys the finite model property, then $\alpha \leq \omega^{\omega}$.

We leave it as an open problem whether any extension of GL (i.e., not Kripke complete ones) is complete with respect to a class of general scattered *d*-spaces. Another interesting direction for future research is to study least general *d*-spaces beyond scattered spaces and to investigate completeness of modal logics, not necessarily of extensions of GL, with respect to general topological *d*-spaces.

References

- M. Abashidze. Ordinal completeness of the Gödel-Löb modal system. Intensional logics and the logical structure of theories, pages 49–73, 1985. (In Russian).
- [2] J. van Benthem and G Bezhanishvili. Modal logics of space. In M. Aiello, I. Pratt-Hartmann, and J. van Benthem, editors, *Handbook of Spatial Logics*, pages 217–298. Springer, 2007.
- [3] G. Bezhanishvili, D. Gabelaia, and J. Lucero-Bryan. Topological completeness of logics above S4. J. Symb. Log., 80(2):520–566, 2015.
- [4] G. Bezhanishvili and P.J. Morandi. Scattered and hereditarily irresolvable spaces in modal logic. Arch. Math. Log., 49(3):343–365, 2010.
- [5] A. Blass. Infinitary combinatorics and modal logic. J. Symb. Log., 55(2):761-778, 1990.
- [6] A.V Chagrov and M Zakharyaschev. Modal Logic, volume 35 of Oxford logic guides. Oxford University Press, 1997.
- [7] L. Esakia. Diagonal constructions, Löb's formula and Cantor's scattered spaces. Studies in logic and semantics, 132(3):128–143, 1981. (In Russian).
- [8] D. Fernández-Duque. The polytopologies of transfinite provability logic. Archive for Mathematical Logic, 53(3-4):385-431, 2014.
- [9] J.C McKinsey and A. Tarski. The algebra of topology. Annals of Mathematics, pages 141–191, 1944.
- [10] Y. Wang. General topological frames for polymodal provability logic. 2023. MSc Thesis, ILLC, University of Amsterdam.