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Our main objective is to investigate (discrete-time) Markov stochastic processes augmented
by a dynamic mapping from the modal logic point of view. These mathematical structures,
which we call dynamic Markov processes, are of the form 〈Ω,A, T, f〉 where 〈Ω,A〉 is a measure
space, T : Ω × A → [0, 1] is a Markov kernel and f : Ω → Ω is a measurable function. In this
case, the triple 〈Ω,A, T 〉 is called a Markov process on the state space 〈Ω,A〉.

In a somewhat broader context, the notion of probabilistic (random) dynamical systems
[1] covers one of the most important classes of dynamical systems with probabilistic features.
Typically, these systems contain stochastic processes, e.g. Markov processes possibly augmented
by some additional dynamic structures that describe the dynamic behavior of the system. In
a sense, our investigations lay in logical descriptions of certain special cases of probabilistic
dynamical systems. These structures have diverse applications, from stochastic differential
equations to finance and economics [4].

There are various logical approaches to modeling probability structures, among which we
consider propositional modal logic. In this approach, bounds on probability are treated as modal
operators. So there are countably many probability modal operators Lr, for each r ∈ Q∩ [0, 1].
For a formula ϕ, the formula Lrϕ is interpreted as ‘the probability of ϕ is at least r’. The
resulting modal probability logic is denoted by PL. It is shown that this logic is decidable [7, 13].
There are numerous papers in this area dealing with axiomatization which demonstrate several
completeness for PL [2, 7, 8, 10, 13] and prove some nice semantical properties [6, 12]. There
is also infinitary version of PL denoted by PLω1 [3, 9, 11]. The language PLω1 extends the
language PL by adding (infinite) countable conjunctions and disjunctions.

This presentation, which is based on our recent work in [5], is divided into two parts. The
first part of our research is devoted to introducing the finitary dynamic probability logic (DPL).
The language of DPL is obtained by adding a temporal-like modal operator © (denoted as
dynamic operator) which describes the dynamic part of the system. We subsequently propose a
Hilbert-style axiomatization for this logic and demonstrate its strong completeness for the class
of all dynamic Markov processes based on standard Borel spaces1. To this end, we use a canon-
ical model construction based on special maximal finitely consistent subsets of formula called
saturated sets. This approach is inspired by the proof of strong completeness for Markovian
logics in [10]. We further examine the logics of some important subclasses of dynamic Markov
processes, including the class of all dynamic Markov processes of the form 〈Ω,A, T, f〉 that are
measure-preserving, i.e., T (w, f−1(A)) = T (f(w), A) for each w ∈ Ω and a ∈ A. We also present
a logic for the class of all abstract dynamical systems, i.e. structures of the form 〈Ω,A, µ, f〉
where 〈Ω,A, µ〉 is a probability space and f : Ω→ Ω is a measure-preserving function.

Our ideas naturally extend to introducing the infinitary dynamic probability logic. This logic,
which is denoted by DPLω1

, allows countable conjunctions and disjunctions. The expressive
power of DPLω1 is compatible with σ-additivity of probability measures. So within this logic,
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1A measure space 〈Ω,A〉 is called a standard Borel space if A is the Borel σ-algebra generated by a Polish

topology on Ω.
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many properties of probability can be naturally axiomatized, and hence, it is not hard to extend
ideas from [3, 9] to show that there exists a weakly complete Hilbert-style axiomatization for this
logic. Meanwhile, we show that whenever the logic is restricted to its countable fragments, the
proposed axiomatization is strongly complete for the class of all dynamic Markov processes. We
should point out that while the canonical model introduced for the proof of strong completeness
for each countable fragment A of PLω1 in [9, Subsection 5.2] depends on A, we show that the
canonical model of DPL can be served uniformly as a canonical model for each countable
fragment of DPLω1

.
The second contribution of the present research is allocated to investigating (frame) defin-

ability of natural properties of dynamic Markov processes. We show that some dynamic prop-
erties such as measure-preserving, ergodicity, and mixing are definable within DPL and DPLω1 .
Moreover, we consider the infinitary probability logic with initial distribution (InPLω1) by dis-
regarding the dynamic operator. This logic studies Markov processes with initial distribution,
i.e. structures of the form 〈Ω,A, T, π〉 where 〈Ω,A, T 〉 is a Markov process and π : A → [0, 1] is
a σ-additive probability measure. We show that the strong expressive power of InPLω1

would
allow us to define n-step transition probabilities Tn of Markov kernel T . From this, we conclude
that many natural stochastic properties of Markov processes such as stationary, invariance,
irreducibility, and recurrence can be stated within InPLω1

. These results particularly show that
DPL as well as DPLω1

are natural and important extensions of PL.
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