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Basic non-distributive modal logic (a.k.a. LE-logic) is the non-distributive counterpart of
positive modal logic without the distributivity axiom. Algebraically, it can be viewed as the
logic of arbitrary lattices expanded with normal modal operators. Polarity-based semantics
for LE-logic is given by a tuple M = (F, V ), where F = (A,X, I,R2, R3) is an enriched
formal context [3], i.e. , a formal context P = (A,X, I) enriched with I-compatible [3] relations
R2 ⊆ A ×X and R3 ⊆ X × A, and V is a valuation map which maps LE-formulas to formal
concepts defined by P. Due to its natural connection with Formal Concept Analysis [4], LE-logic
with its polarity-based semantics has been studied as the “logic of categorization” expanded with
modal operators [3]. Motivated by this insight, in [5] we defined a two-sorted non-distributive
description logic counterpart of LE-logic called LE-ALC.

LE-ALC provides a natural description logic [1] to represent and reason about (partial)
knowledge about formal contexts and concepts defined by them. LE-ALC has same concept
names as LE-logic formulas, and has an analogous intended interpretation on the complex
algebras of enriched formal contexts. This is similar to the classical case, where concept names
of description logic are same as ALC and are interpreted over Kripke semantics in a similar
manner.
Concept names in LE-ALC over a set of atomic concepts D are defined as follows:

C := D ∈ D | C ∧ C | C ∨ C | ⊤ | ⊥ |⟨R3⟩C | [R2]C,
As usual, ∨ and ∧ are to be interpreted as the smallest common superconcept and the

greatest common subconcept. The constants ⊤ and ⊥ are to be interpreted as the largest and
the smallest concept, respectively. Like in the classical case, modal operators can be assigned
various interpretations such as knowledge or approximation [3, 2]. LE-ALC has individual
names of two types OBJ and FEAT intended to be interpreted as object and features names,
respectively. LE-ALC ABox assertions are of the form:

aR2x, xR3a, aIx, a : C, x :: C, ¬α,
where α is any of the first five ABox terms, and TBox assertions are of the form C1 ≡ C2 for
two concept names C1 and C2. The intended interpretation of term a : C (resp. x :: C) is
object (resp. feature) a (resp. x) is an element of (resp. feature describing) C. Relational terms
are interpreted in natural manner, and term ¬α is as negation of term α. Term C1 ≡ C2 is
interpreted as concepts C1 and C2 are equivalent.

An interpretation for LE-ALC is a tuple I = (F, ·I), where F = (P,R2,R3) is an enriched
formal context, and ·I maps:
1. individual names a ∈ OBJ (resp. x ∈ FEAT), to some aI ∈ A (resp. xI ∈ X);
2. relation names I, R2 and R3 to relations II, RI

2 and RI
3 in F;

3. any primitive concept D to DI ∈ F+, and other concepts as follows:

⊥I = (X↓, X) ⊤I = (A,A↑) (C1 ∧ C2)
I = CI

1 ∧ CI
2

(C1 ∨ C2)
I = CI

1 ∨ CI
2 ([R2]C)I = [RI

2]C
I (⟨R3⟩C)I = ⟨RI

3⟩CI
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An interpretation I is a model for an LE-ALC knowledge base (A, T ) if I |= A and I |= T .
In [5], we proved the following theorem regarding the complexity of checking consistency of
LE-ALC knowledge bases.

Theorem 1. A tableaux algorithm exists for LE-ALC, offering a sound and complete poly-
nomial time decision procedure for verifying the consistency of LE-ALC knowledge bases by
constructing a polynomial size model Tab(K) for any consistent knowledge base.

Several extensions of ALC with different concept constructors and axioms have been exten-
sively researched. On our ongoing work, we generalized these results to extension of LE-ALC
with axioms reflexivity, symmetery, and transitivity called LE-ALCR which can be seen as de-
scription logic for rough concepts [2]. We also proved similar results for extension of LE-ALCR
with two new constructors: feature inconsistency pairs (i.e., pairs of features that no object can
share) and concepts generated by sets of features.

Description logic ontologies play a crucial role in providing answers to queries based on
incomplete databases. The following property of the model constructed by the Tableaux algo-
rithm for LE-ALC is crucial with regards to querry answering over LE-ALC.

Lemma 1. Let K = (A, T ) be a consistent LE-ALC knowledge base with acyclic TBox. Let
b, y, C, and C ′ be any concept names appearing in T . Then for any term t consisting of
individual, role, and concept names appearing in K,
Tab(T ) |= t iff for every model I of T , I |= t .

Lemma 1 implies that many querries over LE-ALC knowledge bases like ascription quer-
ries (‘does object b has feature y’, ‘name all the objects having feature y’, etc. ), membership
querries (‘does object b belong to concept C’, ‘name all the features defining concept C’, etc. ),
subsumption querries (‘Is concept C1 included in C2’?, ‘Name all the concepts included in
C1’) can be answered by only looking at the model Tab(K). As Tab(K) can be constructed in
polynomial time and is of polynomial size (in size of |K|), we can answer querries over LE-ALC
knowledge bases with acyclic TBoxes in polynomial time.

We believe that similar approach can be used to answer more complex querries like on-
tology equivalence querries (‘Are two given ontologies equivalent?’) and to perform tasks like
querry-based ontology learning in polynomial-time. We believe these results show that LE-ALC
and its extensions allows us to solve many important reasoning tasks relating to knowledge
representation and reasoning in relation to formal contexts and concepts efficiently.
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