On Free Generalized 3-valued Post algebras

Revaz Grigolia ${ }^{1,2}$ and Ramaz Liparteliani ${ }^{1,2}$
${ }^{1}$ Tbilisi State University, Georgia
revaz.grigolia@tsu.ge
${ }^{2}$ Georgian Technical University, Georgia
r.liparteliani@yahoo.com

Abstract

We develop the theory of generalized 3 -valued Post algebras (P_{3}^{ω}-algebras), which are obtained from Komori type S_{2}^{ω}-algebras by enriching its signature with the constant $\frac{1}{2}$. Finitely generated free and projective algebras are described in the variety \mathbf{P}_{3}^{ω} generated by P_{3}^{ω}-algebras. The variety \mathbf{P}_{3}^{ω} contains only one proper subvariety - the subvariety of 3 -valued Post algebras [5].

$1 \quad P_{3}^{\omega}$-algebras

We introduce new class \mathbf{P}_{3}^{ω} of generalized 3-valued Post algebras that form a variety. P_{3}^{ω} algebra is a system $\left(A, \vee, \wedge, \oplus, \otimes, \neg, 0, \frac{1}{2}, 1\right)$, where A is a nonempty set of elements, $0, \frac{1}{2}$, and 1 are distinct constant elements of A, and $\vee, \wedge, \oplus, \otimes$ are binary operations on elements of A, and \neg is a unary operation on elements of A, obeying a finite set of axioms (identities).

The algebra $\left(A, \vee, \wedge, \oplus, \otimes, \neg, 0, \frac{1}{2}, 1\right)$ is P_{3}^{ω}-algebra if $(A, \oplus, \otimes, \neg, 0,1)$ is an S_{2}^{ω}-algebra (defined by Komori in [3]), i. e. $M V$-algebra satisfying the identity $\left(3\left(x^{2}\right)\right)^{2}=2\left(x^{3}\right)$, and $(A, \vee, \wedge, 0,1)$ is a distributive bounded lattice satisfying the following identities: $\frac{1}{2} \oplus \frac{1}{2}=1$, $\frac{1}{2} \otimes \frac{1}{2}=0, \frac{1}{2} \otimes(x \wedge \neg x)=0, \frac{1}{2} \oplus(x \vee \neg x)=1, \neg \frac{1}{2}=\frac{1}{2}$. The algebra $\left(\left\{0, \frac{1}{2}, 1\right\}, \vee, \wedge, \oplus, \otimes, \neg, 0, \frac{1}{2}, 1\right)$ with the following operations: $x \vee y=\max (x, y), x \wedge y=\min (x, y), x \oplus y=\min (1, x+y)$, $x \otimes y=\max (0, x+y-1), \neg x=1-x$, is an example of 3 -valued Post algebra. Notice, that this algebra is obtained by enriching the signature of an $M V_{3}$-algebra S_{2} [2] with the constant $\frac{1}{2}$. Moreover, the algebra $\left(\left\{0, \frac{1}{2}, 1\right\}, \vee, \wedge, \oplus, \otimes, \neg, 0, \frac{1}{2}, 1\right)$ is functionally equivalent to the 3 -element Post algebra P_{3}. Indeed, it is enough to express the cyclic negation $\sim x=\left(\frac{1}{2} \otimes x\right) \vee(\neg x \otimes \neg x)$.
$M V$-algebras are the algebraic counterpart of the infinite valued Lukasiewicz sentential calculus, as Boolean algebras are concerning the classical propositional logic. In contrast with what happens for Boolean algebras, some $M V$-algebras are not semi-simple, i.e. the intersection of their maximal ideals (the radical of A) is different from $\{0\}$. The simple example of non semisimple $M V$-algebra is given by C. Chang in [1] (the algebra C). The $M V$-algebras generated by their radical are called perfect.

Mundici [4] defined correspondence functor Γ between $M V$-algebras and lattice-ordered abelian groups (abelian l-groups) with strong unit, and proved that Γ is a categorical equivalence. We define analogical functor Γ_{c} of P_{3}^{ω} - algebras and l-groups with strong unit u. More precisely, for every abelian l-group G, the functor Γ_{c} equips the unit interval $[0,2 u]$ with the operations: $x \vee y=\max (x, y), x \wedge y=\min (x, y), x \oplus y=2 u \wedge(x+y), x \otimes y=0 \vee(x+y-2 u), \neg x=$ $2 u-x, 1=2 u$.

Notations.

(i) $D_{0}=\Gamma(Z, 2) \cong P_{3}$, with 1 as a strong unit.
(ii) $D_{1}=D=\Gamma_{c}\left(Z \times_{\text {lex }} Z,(2,0)\right)$ with the strong unit $(1,0)$, the generator $d_{1}(=(0,1))$, and $\times_{\text {lex }}$ is the lexicographic product.
(iii) $D_{m}=\Gamma_{c}\left(Z \times_{\text {lex }} \ldots \times_{\text {lex }} Z,(2,0, \ldots, 0)\right)$ with the strong unit $(1,0, \ldots, 0)$, the generators $d_{1}(=(0,0, \ldots, 1)), \ldots, d_{m}(=(0,1, \ldots, 0))$, where the number of factors of Z is equal to $m+1$.
(iv) Let D_{m}^{*} be the subalgebra of D_{m} generated by the radical (intersection of all maximal ideals) of D_{m}, where $m \in Z^{+}$.

Proposition: Let G be an abelian l-group with the strong unit u. Then $\Gamma_{c}(G, 2 u)$ is a generalized P_{3}^{ω}-algebra $([0,2 u], \vee, \wedge, \oplus, \otimes, \neg, 0, u, 2 u)$.

A subset F of a P_{3}^{ω}-algebra A is said to be an ideal if 1) $\left.0 \in I, 2\right)$ if $x, y \in I$, then $x \oplus y \in I$, and 3) if $x \in I$ and $y \leq x$, then $y \in I$.

Theorem:

1) D generates the variety \mathbf{P}_{3}^{ω}.
2) There exists lattice isomorphism between the lattice of ideals of a P_{3}^{ω}-algebra A and the lattice of congruences of a P_{3}^{ω}-algebra A.
3) m-generated free P_{3}^{ω}-algebra is isomorphic to $D_{m}^{*^{3^{m}}}$.
4) The P_{3}^{ω}-algebras P_{3} and D^{m} are projective for every $m \in Z^{+}$.
5) The variety \mathbf{P}_{3} of 3 -valued Post algebras is the only proper subvariety of the variety \mathbf{P}_{3}^{ω}.

References

[1] C.C. Chang. Algebraic analysis of many-valued reasoning. Trans. Amer. Math. Soc, 88:467-490, 1958.
[2] Revaz Grigolia. Algebraic analysis of lukasiewicz-tarski's n-valued logical systems. Selected papers on Lukasiewicz sentential calculi, pages 81-92, 1977.
[3] Yuichi Komori. Super-Łukasiewicz propositional logics. Nagoya Mathematical Journal, 84:119-133, 1981.
[4] Daniele Mundici. Interpretation of af c*-algebras in Lukasiewicz sentential calculus. Journal of Functional Analysis, 65(1):15-63, 1986.
[5] Emil L Post. Introduction to a general theory of elementary propositions. American journal of mathematics, 43(3):163-185, 1921.

